
ABSTRACT

SCHWARTZ, NATHANIEL JACOB. On the Classification of k-involutions of SL(n, k) and
O(n, k) over Fields of Characteristic 2. (Under the direction of Aloysius G. Helminck.)

The characterization and classification of k-involutions of algebraic groups enables one to

determine much of the structure of the related symmetric k-varieties. Helminck characterized k-

involutions of connected, reductive algebraic groups over algebraically closed fields of character-

istic not 2 in [20]. More recently, Benim, Dometrius, and Wu completely classified k-involutions

of SL(n, k) and SO(2n+ 1, k) over perfect fields of characteristic not 2. In this present work, we

proceed with a similar theme, but k is any field of characteristic 2. We classify k-involutions of

SL(2, k) as a preliminary step, then, using similar techniques, we classify involutions of SL(n, k).

Finally, we initiate a similar classification for O(n, k) and note partial results.
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Chapter 1

Introduction

This work follows and extends the work of Aloysius Helminck, his collaborators, and several

of his current and former graduate students. Recent works by Wu, Dometrius, and Benim

have provided significant insight for the present work (see [39], [14], and [5]). Their examples

and techniques have been helpful in classifying k-involutions and symmetric k-varieties for

linear algebraic groups defined over fields of characteristic 2. Beyond the standard references

by Helgason [18], Borel [6], etc., the several publications of Helminck (see [21], [19], and [20])

provide most of the direct background for the present work.

1.1 Symmetric Spaces

Symmetric spaces have been studied since the late 19th century. Recent advances in the subject

brought about several useful connections between symmetric spaces and a variety of applica-

tions. They have also been extended in several ways from symmetric spaces of Lie groups over

the real and complex numbers. Our present concern is with symmetric k-varieties of algebraic

groups over arbitrary fields k. In the most general sense, symmetric spaces can be defined for

any group, in which case they are called generalized symmetric spaces.

Let G be any group, and let θ be an automorphism of G such that θ2 = Id. We say that θ

is an involution since it has order exactly 2. A generalized symmetric space of G is the set

Q = {xθ(x)−1 | x ∈ G}.

The fixed point group of the involution θ is particularly useful in studying symmetric spaces,

especially when it is compact. We define the fixed point group of θ as

H = Gθ = {g ∈ G | θ(g) = g}.
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Define a map τ : G → Q by τ(g) = gθ(g)−1; τ is surjective and the fiber of τ(g) is gH; hence

Q ' G/H. This illustrates the relationship between symmetric spaces and the fixed point groups

of the corresponding involutions. Viewing symmetric spaces in this way yields a great deal of

information about their structure.

Example 1.1. Any group G is a symmetric space. Consider the group g = G×G. The map

θ : g → g defined by θ(x, y) = (y, x) is an involution, and the fixed point group H of θ is

isomorphic to G; it consists of elements of the form (x, x). Moreover,

H = {(x, x)|x ∈ G} and Q = {(x, x−1)|x ∈ G} ∼= G.

�

Historically, the first symmetric spaces studied were those associated with the real reductive

Lie groups whose involutions have compact fixed point groups. When H is compact and G is a

real reductive Lie group, the involution is called the Cartan involution. The Cartan involution

plays a significant role in the representation theory of semisimple Lie algebras and Lie groups.

These symmetric spaces were called Riemannian symmetric spaces and they were studied by

Cartan in the late 1800’s through the 1920’s (see [7] and [8]). Riemannian symmetric spaces

can also be defined via differential geometry, but we prefer the more algebraic definition as

it is more easily extensible and falls within the realm of Lie theory. The two approaches are

equivalent for Riemannian symmetric spaces.

Example 1.2. Symmetric spaces were originally named for the symmetry of their elements.

Historically, the first symmetric space that was studied illustrates this phenomenon elegantly.

We begin with a finite dimensional vector space V over R. Let B be a bilinear form on V . For

this example, we will let B be the standard dot product on V , for the sake of illustration. For

any linear operator A on V , we define its adjoint to be the operator A′ that satisfies

B(Ax, y) = B(x,A′y)

for all x, y ∈ V . The adjoint depends on B. Since B is the dot product, the adjoint of A is the

transpose of A. Thus, if A is self-adjoint (i.e., A = A′), then A is symmetric, since A = AT .

The set of all self-adjoint operators of V with respect to B is a subspace, which we denote

p(V,B). Every A ∈ p(V,B) has real eigenvalues; if these eigenvalues are positive we say A is a

positive operator. We denote by P (V,B) the set of positive, self-adjoint operators. Also, note

that exp(p) = P ⊂ GL(V ).

An operator A is orthogonal with respect to B if B(Ax,Ay) = B(x, y) for all x, y ∈ V . This

condition is equivalent to the condition that A′A = Id. When B is the dot product A′ = AT ,
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and A is orthogonal in the usual sense. With respect to B, the orthogonal operators on V form

a compact subgroup of GL(V ), which we denote O(V,B).

Let θ : GL(V ) → GL(V ) by θ(A) = (A′)−1. If B is the dot product, this is the same as

A 7→ (AT )−1. Then θ is an automorphism of GL(V ), and θ2 = Id. Moreover, the fixed point

group of θ is O(V,B).

The symmetric space Q consists of elements Aθ(A)−1 = A
(
(A′)−1

)−1
= AA′ = AAT . Since,

for any A ∈ GL(V ), AAT is a positive operator, it follows that Q ⊂ P (V,B). Moreover, every

positive operator A has a unique, positive square root T in P (V,B). To see this, notice that

P (V,B) consists of semisimple elements A with positive real eigenvalues. For each A, there exists

a diagonal matrix Λ and an orthogonal matrix S so that A = SΛS−1. Moreover, T = S
√

ΛS−1,

T 2 = A, and T ∈ P (V,B).

Every element X of GL(V ) can be uniquely decomposed as a product of an orthogonal

operatorO and a self-adjoint operator A, i.e.,X = O·A. Since the fixed points are the orthogonal

operators, the map θ : GL(V ) → GL(V ) has image P (V,B) and hence GL(V )/O(V,B) ∼=
P (V,B). If B is the dot product, it consists of symmetric operators which can be viewed as

symmetric matrices.

In summary, Q = P (V,B), and when B is the dot product, Q consists of symmetric matrices.

�

Affine symmetric spaces, or real reductive symmetric spaces, are essentially the same as

Riemannian symmetric spaces, except that the involution does not have a compact fixed point

group. Equivalently, the involution is not the Cartan involution.

Symmetric varieties are defined as the spherical homogeneous spaces G/H where the field

k is algebraically closed and G is a reductive algebraic group with H the fixed point of an

involution.

Symmetric k-varieties are a generalization to both affine symmetric spaces and symmetric

varieties. They are defined as the homogeneous spaces Qk = Gk/Hk where G is a reductive

algebraic group defined over k, and H is the fixed point group of a k-involution of G. Here Hk

and Gk denote the k-rational points of H and G, respectively.

In Example 1.2, H is compact, θ is the Cartan involution, and the elements of Q are

orthogonally diagonalizable. In the more general setting, the elements of Qk are semisimple if

k has characteristic 0 and H is k-anisotropic (i.e., there are no non-trivial k-split tori in H). H

being k-anisotropic is somewhat analogous to H being compact. Consequently, one theme is to

determine which (if any) fixed point groups are k-anisotropic.

Beginning in the 1980’s, symmetric k-varieties became important in a variety of areas of

mathematics. Some examples are found in the study of arithmetic subgroups (see [35]), character

sheaves (see [28, 15]), geometry (see [10, 11] and [1]), singularity theory (see [29] and [25]), and
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the study of Harish-Chandra modules (see [4] and [36, 37]). They are most well-known for their

role in representation theory. This prompted a detailed study of these symmetric k-varieties

and their applications. The first major results were obtained by Helminck and Wang [22]. They

showed that symmetric k-varieties are isomorphic if and only if their corresponding k-involutions

are isomorphic. After this ground-breaking work, many results followed.

A classification of symmetric k-varieties turned out to be much more complicated than in

the case of classical (affine) symmetric spaces. It was not until the late 90’s that Helminck [21]

characterized the symmetric k-varieties defined over perfect fields of characteristic not 2.

All previous studies of symmetric k-varieties and their applications exclude the case that k

has characteristic 2. This is due to of a variety of complications that arise. The building blocks

of symmetric spaces come from algebraic groups and not all of it applies to characteristic 2

fields. At some point, all of the dependent assumptions must be verified for characteristic 2

fields.

Example 1.3. One example that arises which is distinct to characteristic 2 is that k-involutions

can correspond to conjugation by matrices that are not semisimple. For other fields, inner k-

involutions always correspond to conjugation by a semisimple matrix. One such k-involution of

G = GL(2, k) conjugation by X = [ 1 1
0 1 ]. Since k has characteristic 2, X is not semisimple. �

A consequence of these differences is that there are many open questions about the clas-

sification and characterization of symmetric k-varieties over fields of characteristic 2. In this

dissertation, we initiate the study of symmetric k-varieties over fields of characteristic two,

beginning with a classification of k-involutions.

1.2 Summary of Results

In this dissertation, we classify k-involutions of SL(2, k) and SL(n, k) when k is a field of

characteristic 2. We determine the fixed point groups of each k-involution.

For O(n, k) we indicate some preliminary results in the effort to classify the involutions. We

also list several conjectures. We verified some of these conjectures in the case that n is small

and with small finite fields.

In order to summarize the involutions of SL(n, k), we need the following notation. Let
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θ : SL(n, k)→ SL(n, k) by θ(x) = (xT )−1. We also use the following special matrices.

Lp =
[
0 1

p 0

]

Ln
2
,p =


[
0 1

p 0

]
. . . [

0 1

p 0

]


Lm,c2,c =



[
0 1

c2 0

]
. . . [

0 1

c2 0

]
c

. . .

c



For SL(2, k), the k-involutions are:

1. Inn(Lp) where p ∈ k.

For SL(n, k), the k-involutions are:

1. For k = Fq or k = k, one of

(a) Inn(Lm,c2,c) for some c ∈ k.

(b) θ.

2. For k = Fq(x), or any field k which is neither finite nor algebraically closed, the k-

involutions are as follows:

(a) Inn(Lm,c2,c) for some c ∈ k.

(b) Inn(Ln
2
,p) for some p ∈ k.

(c) θ Inn(A) whereA is Diag(1, . . . , 1, Np1 , . . . , Npr) whereNpi are (not necessarily unique)

non-squares in k, and 0 ≤ r ≤ n.

For O(2n+ 1, k), the k-involutions satisfy:

1. Inn(A) where A2 ∈ St(2n+ 1, k) and ATA ∈ St(2n+ 1, k).
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Chapter 2

Background & Related Results

The main goal of this dissertation is to understand involutions, so we begin with a definition:

Definition 2.0.1. Let G be a group and ϕ : G → G be an automorphism of order exactly 2.

Then ϕ is called an involution of G.

This dissertation concerns classifying and characterizing k-involutions of linear algebraic

groups. In particular, these groups are defined over fields of characteristic 2, most of which are

finite fields, so the groups can be very different from Lie groups. For example, the notions of

compactness and connectedness do not apply. Linear algebraic groups are groups of matrices,

so one expects to use standard linear algebra results; however, in characteristic 2, some of

the matrix theory does not apply. Because the field is not ordered, there are no norms in the

traditional sense; this complicates the process of finding orthonormal bases of eigenvectors,

for instance. Many properties which are true for real or complex matrices are false. Another

significant difference is that many of the standard facts about bilinear and quadratic forms no

longer hold, further complicating matters for the orthogonal groups. We will address the main

concerns and differences in this chapter, comparing and contrasting with the real and complex

cases in the process.

This project is a small part of a large, collected effort to classify and characterize symmetric

spaces and their several generalizations. Much work has already been completed, leading to

many useful results, especially for the ‘nice’ fields. The final section of this chapter contains an

outline of some closely related results. In the subsequent chapters, we will refer to the related

results, draw comparisons, and highlight contrasting differences in the characteristic 2 case.

Some directly related work has been completed by the joint efforts of Ling Wu, Christopher

Dometrius, and Robert Benim (summarized and expanded upon in [5]); they are current or

former Ph.D. students of Aloysius Helminck. The general background and theory has been

developed over the past century by many mathematicians, and Helminck has made important
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contributions to the area. This work is a natural extension of Helminck’s work.

Our basic references for Lie groups is Brian Hall [17], and for algebraic groups Borel [6] and

Humphreys [27]. When possible, we follow their terminology and notation. For groups defined

over finite fields, we make frequent reference to Wilson [38] and Dieudonné [12]. For bilinear

and quadratic forms and the orthogonal groups, Wilson [38] is again helpful, as well as books

by Sharlau [32] and Dieudonné. Basic linear algebra facts may be found in the excellent book

by Hoffman and Kunze [26]; slightly more advanced explanations may be found in the book by

Roman [31]. Most of the general abstract algebra notation is consistent with that used by Artin

in [3]; his book contains useful and relevant examples manywhere.

2.1 Lie Groups

For this entire section, let k = R or C.

Definition 2.1.1. A matrix Lie group G is any closed subgroup of GL(n, k).

By closed, we mean a convergent sequence of matrices An → A, An ∈ G implies that

A ∈ G or else A has no inverse. It is clear that this property holds for the general linear groups

GL(n, k). It is basically a technicality that we require a subgroup of GL(n, k) be closed; most

of the interesting subgroups of GL(n, k) are closed anyway.

The special linear groups SL(n, k) are the groups of n×n invertible matrices with determi-

nant 1. Since the determinant is a continuous function, and any sequence An of matrices with

determinant 1 converges to a matrix with determinant 1, the special linear groups are also Lie

groups.

Before we define the orthogonal groups O(n, k), we will need some additional terminology

and definitions pertaining to bilinear forms.

Definition 2.1.2. Let V be a vector space over k. A bilinear form B is a mapping

B : V × V → k

that is linear in each coordinate. That is, for scalars α and β,

B(αu+ βv,w) = αB(u,w) + βB(v, w)

B(w,αu+ βv) = αB(w, u) + βB(w, v).

A bilinear form B is called symmetric if B(u, v) = B(v, u) for all u, v ∈ V , skew-symmetric if

B(u, v) = −B(v, u) for all u, v ∈ V , and alternating if B(u, u) = 0 for all u ∈ V .

7



Definition 2.1.3. A matrix A is orthogonal if ATA = Id. A more general way to describe

orthogonal matrices is that they are the matrices which preserve the form B in the sense that

B(Ax,Ay) = B(x, y) for all x, y ∈ V . This is equivalent to saying that the columns of A are

orthonormal, i.e., B(Ai, Aj) = δi,j for all columns Ai and Aj of A.

Given a particular basis B of V , the bilinear form B can be uniquely represented by a

matrix M so that B(u, v) = uTMv. If B = {v1, . . . , vn}, then Mi,j = B(vi, vj). Orthogonality

is independent of the choice of basis.

Example 2.1. The standard dot product on kn is a bilinear form with B(u, v) = uT v. So

M = Id, and the dot product is non-degenerate. A matrix A is orthogonal with respect to the

dot product if and only if ATA = Id. �

Definition 2.1.4. A bilinear form B is said to be non-degenerate if, whenever B(u, v) = 0 for

all v ∈ V , then u = 0.

Consequently, the matrix M of B is non-singular exactly when B is non-degenerate. When

B is symmetric, skew-symmetric, or alternating, the pair (V,B) is called an inner product

space. When B is symmetric M is a symmetric matrix, when B is skew-symmetric M is skew-

symmetric, and when B is alternating M is skew-symmetric with zero diagonal. The dot product

is a symmetric bilinear form, since M = Id in this case.

Definition 2.1.5. We say a vector u is perpendicular to a vector v (and we write u ⊥ v) if

B(u, v) = 0. The radical of V , denoted rad(B) or V ⊥, is the set {v ∈ V | v ⊥ w, ∀ w ∈ V }.

Two matrices represent the same bilinear form (with respect to different bases of V ) if they

are congruent, i.e., B1
∼= B2 if and only if M1 = P TM2P , where P is some invertible matrix.

Definition 2.1.6. Let V and W be vector spaces. An isometry is a bijective linear map

ϕ : V →W such that B
(
ϕ(u), ϕ(v)

)
= B(u, v).

We are ready to define the orthogonal groups when k is not a field of characteristic 2.

Definition 2.1.7. If ϕ : V → V is an isometry of (V,B) then ϕ is called an orthogonal trans-

formation. The set, O(V,B), of orthogonal transformations on V is a group under composition;

it is called the orthogonal group of V with respect to B.

Definition 2.1.8. The group of orthogonal transformations all have determinant 1 or −1.

Those having determinant 1 form a subgroup of O(V,B) called the special orthogonal group,

denoted SO(V,B).

8



In the Lie group case, k = R or k = C and V = kn, we write O(n, k) and SO(n, k). If B

happens to be an alternating bilinear form, then ϕ is a symplectic transformation. The group

of all symplectic transformations on V is called the symplectic group of V , and we denote it by

Sp(V ).

The properties of the underlying field determine relationships between symmetric, skew-

symmetric, and alternating bilinear forms. In particular, if the field k has characteristic not 2,

alternating forms are also skew-symmetric forms.

As we saw above, the definition of the orthogonal groups depends on the symmetric bilinear

form. Thus, to classify orthogonal groups in general, a classification of symmetric bilinear forms

is needed. This classification may be found in the book by Roman (see [31], Chapter 11).

There are a couple of relevant facts. First, as we have noted, symmetric bilinear forms have

symmetric matrices. Second, symmetric matrices are congruent to diagonal matrices. Third,

diagonal matrices are congruent to diagonal matrices whose entries are either 1, -1, or at most

a single non-square entry. These facts can be combined to give a general classification of non-

degenerate, symmetric bilinear forms, in terms of their matrices:

1. For algebraically closed fields (C, eg.) we have

MB =


1

. . .

1

 .
2. For k = R we have

MB =



1

. . .

1

−1

. . .

−1


,

where there are i ones and j negative ones on the diagonal such that i + j = n. The

number j of negative ones is called the signature of the form.
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3. For k a finite field (not of characteristic 2) we have

MB =


1

. . .

1

d


where d is either a non-square and has no square factors, or else d = 1.

As mentioned above, two symmetric bilinear forms are equivalent (up to a change of basis) if

and only if their matrices are congruent. This is analogous to linear operators being equivalent

if and only if their matrices are conjugate. Hence the classification of symmetric bilinear forms

essentially classifies the orthogonal groups, except in the case that k has characteristic 2. Since

our main groups of interest are GL(n, k), SL(n, k) and O(n, k), we are almost ready to proceed

to a discussion of these groups over fields of characteristic 2. But first we give a short treatment

of finite fields and also of general properties of fields of characteristic 2.

2.2 Finite Fields

Richard Dedekind was allegedly the first to call the real numbers and complex numbers a “field.”

In French, the word used for “field” is “corps,” which means “body”; in German the word for

body is “Körper,” which may be why the symbol k is often used to denote an arbitrary field.

In some of the literature, there are references made to “sfields” or a “skew fields.” The modern

terminology is “division ring.” Division rings are essentially fields in which multiplication is

non-commutative. We do not need to consider division rings in this dissertation.

Throughout this section, unless otherwise specified, we will assume k is an arbitrary field

of characteristic 2, K is an extension field of k, and k is the algebraic closure of k. Finite fields

are not the only fields of characteristic 2, but they are (in some ways) the easiest to work with.

Most of the examples in this dissertation are of linear algebraic groups defined over finite fields.

This section is a summary of the important facts about finite fields. We also explain how finite

fields are extended to larger fields, and how to construct fields of fractions of finite fields.

Definition 2.2.1. The integers modulo a prime p is a field, called a prime field.

Z/pZ = {0, 1, 2, 3, . . . , (p− 1)}.

All fields with p elements are identical (up to isomorphism). We denote the prime fields by Fp
and the non-zero elements of Fp by F∗p.
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Lemma 2.2.2 (Artin [3]). There are p − 1 non-zero elements of Fp that form a cyclic group

under multiplication.

Prime fields can be extended to fields whose order is a power of p. This is accomplished by

adjoining the roots of an irreducible polynomial f(x) whose coefficients are in the prime field

Fp. Let r ∈ N and q = pr. The new field Fq consists of Fp, the prime subfield of Fq, and all

linear combinations of the roots of f . All finite fields have the form Fq, and whenever q is a

prime power there is a field of order q that is isomorphic to Fq. As in Lemma 2.2.2, the non-zero

elements form a cyclic group of order q − 1.

Definition 2.2.3. When p = 2, the finite fields Fq are called fields of even characteristic, binary

fields, or fields of characteristic 2.

The finite field F2 = {0, 1} is the smallest of all finite fields. Extension fields of F2 are

straightforward. The polynomial f(x) = xr + x + 1 is always irreducible over F2; the roots of

f(x) generate F2r . Following are several useful facts about fields of characteristic 2.

Lemma 2.2.4 (J-P. Serre, [33]). Let k = F2r . Let k∗ denote the set of nonzero elements of k.

Every element of k∗ is a square. Hence |k∗/(k∗)2| = 1.

Proof. Consider the Frobenius homomorphism ϕ : k → k given by x 7→ x2. This is a ring

homomorphism since (x + y)n = xn + yn (all the other binomial coefficients are zero in the

expansion) and (xy)n = xnyn. Moreover, ϕ is surjective since 1 ∈ Im(ϕ), which is an ideal of k.

Therefore, kerϕ = {0} and ϕ is an automorphism of k. �

The algebraic closure of a field k is the smallest field k which contains k and the roots of all

polynomials whose coefficients are in k. The algebraic closure of the finite field Fpr is an infinite

field constructed by taking the union of all fields Fpn for any n ∈ N. That is

Fp =
⋃
n∈N

Fpn .

Lemma 2.2.4 holds for the algebraic closure of Fq, since every element of the algebraic closure

is also an element of a finite field.

Another extension of finite fields is the quotient field Fp[x]/(f) where f is an irreducible

polynomial. Since f(x) is irreducible over Fp, (f) is a maximal ideal. Therefore Fp[x]/(f) is a

field.

Lemma 2.2.5. Every nonzero element of a finite field k of characteristic 2 has a unique square

root.

Proof. Let x = p2 and x = q2. Then p2 = q2 and hence (p+ q)(p+ q) = 0. Since k is a field, it

is a unique factorization domain and there are no zero divisors. Thus p = q. �
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Lemma 2.2.6. When k has characteristic 2, the equation (x+ y)n = xn + yn is always true.

Occasionally we will need to differentiate between results that hold for perfect fields only.

The fields of rational functions k(x) are imperfect fields when the characteristic of the field is

positive. Otherwise, all fields encountered in this dissertation are perfect.

We now turn our discussion towards the groups GL(n, k), SL(n, k), and O(n, k) over fields

of characteristic 2.

2.3 Algebraic Groups in Characteristic 2

In terms of definitions, the general linear group GL(n, k) and the special linear group SL(n, k)

are essentially the same as over fields characteristic 2. The classification of involutions of sym-

plectic groups will be the object of some future work. But, the even dimensional symplectic

groups turn out to be useful in classifying automorphisms of orthogonal groups when k has

characteristic 2. The following theorem gives the order of general and special linear groups

when k is finite and of characteristic 2.

Theorem 2.3.1 (Robinson [30], 3.2.7). Let q = 2r for some r ∈ N. Then

1. |GL(n,Fq)| =
n∏
i=1

(
qn − qi−1

)
.

2. |SL(n,Fq)| =
|GL(n,Fq)|

(q − 1)
.

Proof.

1. An invertible, n × n matrix can be constructed as follows. For entries in the first row,

we may choose any combination except all zeros. There are qn − 1 ways to do this. For

the second row, we may choose any combination of elements except for scalar multiples

of the first row. There are qn − q ways to do this. For the i-th row, we may choose any

combination of elements provided that the result is not a linear combination of the first

i− 1 rows. There are qn − qi−1 ways to do this.

2. The determinant function det(X) 7→ Fq is a surjective homomorphism whose kernel is

SL(n,Fq). The formula follows directly from the first isomorphism theorem and the count-

ing formula (see [3], p.58 and p.68).

�

The differences between orthogonal groups over characteristic 2 begin with the definition

of the group. We must use quadratic forms instead of symmetric bilinear forms to construct
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the orthogonal groups. Moreover, all determinants are +1, so O(n, k) = SO(n, k). Our basic

references for this section will be Wilson [38], Scharlau [32], Dieudonné [12], and Grove [16].

After more than 50 years, Dieudonné’s book still seems to be the go-to reference for information

on automorphisms of the classical groups. It’s not as helpful for fields of characteristic 2 in

the orthogonal case, but it does give us some information in the odd dimensional case because

O(2n+1, k) ∼= Sp(2n, k) when k is a perfect field. Scharlau’s book should probably be considered

the bible of quadratic forms, and he gives a lot of details, though not always presented with

the same terminology as more modern sources. Wilson gives a fairly complete account of the

properties of finite simple groups in general, and classical groups in particular, though he omits

certain details. Grove’s account of classical groups over arbitrary fields is also quite useful.

For a field whose characteristic is not 2, symmetric bilinear forms are in a one-to-one cor-

respondence with quadratic forms, and it is simple to determine one form if given the other.

Thus a classification of symmetric bilinear forms is equivalent to a classification of quadratic

forms, which classifies the orthogonal groups. In characteristic 2, quadratic forms and bilinear

forms are not in 1−1 correspondence. Thus, it is impossible to recover the quadratic form from

a given symmetric bilinear form. Moreover, the definition of symmetric bilinear form does not

“capture the interesting geometrical (and group theoretical) phenomena” [38]. Thus, in order

to classify orthogonal groups over fields of characteristic 2, a classification of quadratic forms

is needed.

Orthogonal groups are different according to the parity of the dimension. Over characteristic

2, O(2n+ 1, k) ∼= Sp(2n, k), if k is a perfect field (see [16], Theorem 14.2, p. 129). This applies

to all finite fields of characteristic 2, as well as their algebraic closure, but it does not include

the function fields k(x), where k is a field of characteristic 2 and x is an indeterminant (or a

vector of indeterminants). So the automorphisms in the odd dimensional case are the same as

those of the even dimensional symplectic group. A description of these automorphisms can be

found in Dieudonné [12], as summarized below.

Definition 2.3.2. A semi-linear transformation is a function T : V → V such that

1. T (u+ v) = T (u) + T (v)

2. T (au) = aσT (u)

where σ is an automorphism of the field k, and aσ denotes the image of a under σ.

Theorem 2.3.3 (Dieudonné [12], Theorem 9, p. 31). Every automorphism of Sp(2m, k) (m ≥ 2

and m 6= 2 if k has only two elements) is of the form X 7→ TXT−1, where T is a 1 − 1

semi-linear transformation of V onto itself relative to an automorphism σ of k, and such that(
T (X), T (Y )

)
= λ(X,Y )σ for all X,Y ∈ V and for some λ ∈ k.
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Wilson provides the following formula for the order of the odd-dimensional orthogonal

groups over finite fields of characteristic 2 (see [38], p. 60, (3.22)). Grove also proves the same

formula (see [16] Theorem 3.12, p.27).

Theorem 2.3.4.

|O(2n+ 1,Fq)| = qn
2
n∏
i=1

(q2i − 1)

The symplectic group Sp(2m, k) is generated by symplectic transvections, as asserted by

Wilson, and given an isomorphism between Sp(2m, k) and O(2n+ 1, k) we obtain information

about the odd-dimensional orthogonal groups.

Definition 2.3.5 (Wilson [38], p. 61). A symplectic transvection is a linear map

Tv(λ) : x 7→ x+ λB(x, v)v,

where B is a fixed symplectic (i.e. non-singular alternating bilinear) form on V and v 6= 0 and

λ 6= 0.

We proceed to the even-dimensional case. In what follows, we collect the necessary facts

about quadratic forms from relevant sections of Wilson’s book on finite groups (see [38]) and

Scharlau’s book on quadratic and hermitian forms (see [32]). There are only two forms when k =

F2r ; thus there are two orthogonal groups in even dimension. So we begin with a classification

of quadratic forms over fields of characteristic 2.

Definition 2.3.6. A quadratic form is a map q : V → k such that

q(au+ v) = a2q(u) + aBq(u, v) + q(v)

where Bq is a symmetric bilinear form called the associated form.

The associated form Bq can be recovered from q when the characteristic of k is not 2 by

q(v) = 1
2Bq(v, v). When k has characteristic 2, the reverse correspondence does not hold; that

is, the quadratic form cannot be recovered from the bilinear form. Moreover, in characteristic

2, the associated form Bq is alternating since

0 = q(2v) = q(v + v) = q(v) +Bq(v, v) + q(v) = Bq(v, v).

Definition 2.3.7. A non-zero vector u is said to be isotropic if it is perpendicular to itself;

that is, if B(u, u) = 0. A space is said to be totally isotropic if it consists entirely of isotropic

vectors. Analogously, and with respect to a quadratic form, we say that a vector is isotropic if

q(u) = 0.
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When k has characteristic different from 2, the notion of isotropic is the same regardless of

whether the form is quadratic or symmetric bilinear. However, this is not true for characteristic

2.

Definition 2.3.8. The radical of q is the set rad(q) = {v ∈ rad(f) | q(v) = 0}.

In analogy with bilinear forms, q is called non-singular if rad q = {0} and non-degenerate

or non-defective if rad f = {0}.
There are two main methods used to classify quadratic forms over fields of characteristic 2.

The method used by Scharlau [32] is called the Arf invariant. There exists a symplectic basis

e1, e2, . . . , em, f1, f2, . . . , fm of V with respect to q (see [32], Chapter 7.8, eg.). In other words,

bq(ei, fi) = 1 and all other pairs are orthogonal (with respect to bq). Collectively, this means

we can write the matrix Q = (qi,j) of q where

qij =


q(ei) if i = j

bq(ei, ej) if i < j

0 if i > j

and Q has the form

Q =



[
α1 1

0 β1

]
0

. . .

0

[
αm 1

0 βm

]


,

where αi = q(ei) and βi = q(fi).

We also have the following theorem due to Arf [2]. For a proof, see Scharlau [32], (Theorem

9.4.2, p. 340).

Theorem 2.3.9 (Arf). Let q be a non-degenerate quadratic form on a vector space V with

dimension n = 2m with symplectic basis as above. Set P(k) = {γ2 + γ | γ ∈ k}. Then the class

∆ of q(e1)q(f1) + · · ·+ q(em)q(fm) in k/P(k) is independent of the choice of symplectic basis.

Definition 2.3.10. The element ∆(V, q) =
∑m

i=1 q(ei)q(fi) is called the Arf invariant of V

with respect to q.

With the previous definition in hand, we are able to characterize quadratic spaces in the

following theorem.

Theorem 2.3.11 (Scharlau, 9.4.5). For perfect fields k of characteristic 2, quadratic spaces

are classified by dimension and Arf invariant.
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Definition 2.3.12. A reflection is a map

rv : x 7→ x− 2
B(x, v)

B(v, v)
v

which fixes all vectors orthogonal to v and maps 〈v〉 to −〈v〉. Obviously rv is undefined for

characteristic 2. Instead we replace it by an orthogonal transvection, which is a map

tv : x 7→ x+
Bq(x, v)

q(v)
v,

where v is not isotropic. Orthogonal transvections are often called reflections in the literature.

Now, according to Scharlau, if k is finite of characteristic 2, then O(n, k) is a subset of

Sp(n, k). We use the Dickson invariant as a replacement for the determinant. Letting σ ∈
O(n, k), this is defined as

∆ : O(n, k)→ {0, 1},

with ∆(σ) = 0 or 1 depending on whether or not σ can be written as a product of an even or odd

number of orthogonal transvections. Except for the case that k = F2 and n = 4, (with k assumed

finite, characteristic 2), O(n, k) is generated by orthogonal transvections ([32], Theorem 9.4.12,

p.345).

For finite fields of characteristic 2, and the dimension of V is n = 2m, there are two non-

singular, quadratic forms. They are distinguished by plus type and minus type depending on

the value of the Dixon invariant.

In summary, if k is finite and of characteristic 2, there are two orthogonal groups in even

dimension. Furthermore, excepting the case that k = F2 and n = 4, the orthogonal groups

are all generated by orthogonal transvections. The even-dimensional orthogonal groups are

O+(2m,F2r) and O−(2m,F2r), and their orders are

|O+(2m,F2r)| = 2qm(m−1)(q2 − 1)(q4 − 1) · · · (q2m−2 − 1)(qm − 1)

|O−(2m,F2r)| = 2qm(m−1)(q2 − 1)(q4 − 1) · · · (q2m−2 − 1)(qm + 1).

For details, see Wilson [38], (3.39) on p. 77 or Grove [16], Theorem 14.48, p. 149. Moreover, if we

know how to write an element as a product of orthogonal transvections, we know which group

contains the element. The literature does not appear to provide hints on how to decompose

elements as products of reflections.
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2.4 Summary of Related Results

Let k be algebraically closed, finite or p-adic. We summarize the following results from papers

by Wu (see [39]), Dometrius (see [14]) and Benim (see [5]). Let

Is,t =



1

. . .

1

−1

. . .

−1


where there are s plus ones and t minus ones such that s+ t = n. Also, let

Ln,q =



[
0 1

q 0

]
. . . [

0 1

q 0

]


be a block diagonal matrix of dimension 2n× 2n. When q = −1 we write

Jn =



[
0 1

−1 0

]
. . . [

0 1

−1 0

]


.

Finally, we have the n× n diagonal matrix

Kn,x,y,z =



1

. . .

1

x

y

z


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where there are n− 3 ones. We will also write Mn,x for Kn,1,1,x and Nn,x,y for Kn,1,x,y.

2.4.1 k-involutions of SL(2, k)

All k-involutions are inner, and representatives of isomorphism classes are
[
0 1

p 0

]
, where p is a

non-square in k. The fixed point groups of these k-involutions are

Hq =

{[
x y

ay x

] ∣∣∣∣∣x2 − qy2 = 1

}

2.4.2 k-involutions of SL(n, k), n > 2

Here we have both inner and outer automorphisms of G = SL(n, k). Since |Aut(G)/ Inn(G)| = 2

and θ : G → G by θ(X) = (X−1)T is always in Aut(G), representatives of Aut(G) are of the

form θ Inn(A) where Inn(A) ∈ Inn(G). The k-involutions belong to the following cases:

1. k is algebraically closed.

• If n is odd, there are n+1
2 isomorphism classes of k-involutions. Representatives are

Inn(In−i,i) and θ, i = 1, 2, . . . , n−12 .

• If n is even, there are n
2 + 2 isomorphism classes of k-involutions. Representatives

are Inn(In−i,i) with i = 1, 2, . . . , n2 , θ and θ Inn(Jn).

2. k is the real numbers R.

• If n is odd, there are n isomorphism classes of k-involutions. Representatives are θ,

Inn(In−i,i) for i = 1, 2, . . . , n−12 , and θ Inn(In−i,i).

• If n is even, there are n+3 isomorphism classes of k-involutions. Representatives are

Inn(Jn), θ, θ Inn(Jn), Inn(In−i,i) and θ Inn(In−i,i) with i = 1, 2, . . . , n2 .

3. k is a finite field, Fp, p 6= 2. Let Np be a non-trivial representative of F∗p/(F∗p)2.

• If n is odd, there are n−1
2 + 2 isomorphism classes of k-involutions. Representatives

are θ, Inn(In−i,i), θ Inn(Mn,Np), where i = 1, 2, . . . , n−12 .

• If n is even, there are n
2 + 4 isomorphism classes of k-involutions. Representatives

are Inn(In−i,i), Inn(Ln,Np), θ Inn(Jn) and θ Inn(Mn,Np), i = 1, 2, . . . , n2 .

4. k is the p-adic numbers. If p 6= 2 then we take 1, p, Np, and pNp as representatives of

Q∗p/(Q∗p)2. If p = 2, we take the representatives 1,−1, 2,−2, 3,−3, 6,−6 instead.

• If n is even, there are n
2 + 9 isomorphism classes of involutions for p 6= 2 and n

2 + 17

for p = 2. Representatives are
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– For p 6= 2, Inn(In−i,i), Inn(B), θ, θ Inn(C), and θ Inn(D). Here we have i =

1, 2, . . . , n2 , B is Ln,x, and C is Mn,x where x = Np, p or pNp. For D, it is slightly

more complex:

D =


Kn,p,Np,pNp if −1 ∈ Q2

p

Nn,p,p if −1 /∈ Q2
p and n = 4k

Nn,p,p,Np if −1 /∈ Q2
p and n = 4k + 2

.

– For p = 2, we have the same as above, but x is now chosen from 1, −1, 2, −2,

3, −3, 6, or −6 instead. Also D is again slightly more complex:

D =

{
In−2,2 if n = 4k

Kn,2,3,−6 if n = 4k + 2
.

• If n = 4k + 1 there are n−1
2 + 2 isomorphism classes of k-involutions if −1 ∈ Q2

p;

otherwise there are n−1
2 + 1. Representatives are Inn(In−i,i), θ, and possibly Inn(D)

if −1 ∈ Q2
p. Here D is Kn,p,Np,pNp , and i = 1, 2, . . . , n−12 .

• If n = 4k+3, there are n−1
2 +2 isomorphism classes of k-involutions. Representatives

are Inn(In−i,i), θ, and θ Inn(D) where i = 1, 2, . . . , n−12 and D is again complicated:

D =


Kn,p,Np,pNp if −1 ∈ Q2

p

Nn,p,p if −1 /∈ Q2
p

In−2,2 if p = 2

.

2.4.3 k-involutions of SO(n, k)

We now summarize the results on the special orthogonal groups SO(n, β, k) that were obtained

by the combined efforts of Wu, Dometrius, Benim, and Helminck; the results are collected

in [5]. The authors determined four possible types of inner k-involutions. The k-involutions

corresponding different types are not isomorphic. As with the case of G = SL(2, k), all k-

involutions of SO(n, β, k) are inner. This follows from a proposition due to Borel [6].

Fix a bilinear form β with matrix M . If A ∈ GL(n, k) is a matrix such that M−1ATMA =

α Id, then we call A α-orthogonal. Note that orthogonal matrices are 1-orthogonal.

The inner k-involutions of SO(n, k) come from conjugation by a matrix A which is in either

O(n, k, β) or O(n, k[
√
α], β)\O(n, k, β). A has the additional property that A2 = ±1, so this

gives four cases, as shown in Figure 2.1.

The type that is of most interest to us (and most relevant) is Type 1 since we are interested

in the odd-dimensional orthogonal groups, and since we will never have A2 = − Id over charac-
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A ∈ O(n, k, β) A ∈ O(n, k[
√
α], β)\O(n, k, β)

A2 = Id Type I Type 2
A2 = − Id Type 3 Type 4

Table 2.1: List of Types of Inner k-involutions

teristic 2 fields. The inner k-involutions of Type 1 come from conjugation by a matrix A such

that A2 = Id,

A = XIs,tX
−1,

where X ∈ GL(n, k) and X has columns of orthogonal eigenvectors of A, and

Is,t =

[
− Ids 0

0 Idt

]
,

where s + t = n and s ≤ t. If the matrix of β is M , then XTMX is diagonal. The following

theorem classifies the isomorphism classes of Type 1 inner k-involutions.

Theorem 2.4.4 ([5], Theorem 4.3). Suppose ϑ and ϕ are two Type 1 k-involutions of SO(n, k, β)

where ϑ = Inn(A) and ϕ = Inn(B). Then, A = XImA,n−mAX
−1 and B = Y ImB ,n−mBY

−1

where X and Y ∈ GL(n, k) with columns that are orthogonal eigenvectors of A and B, respec-

tively. We also have the diagonal matrices

XTMX =

[
X1 0

0 X2

]

and

Y TMY =

[
Y1 0

0 Y2

]
.

The following are equivalent:

1. ϑ is congruent to ϕ over SO(n, k, β)

2. A is conjugate to B over SO(n, k, β)

3. X1 and Y1 are both m × m matrices, X1 is congruent to Y1 over GL(m, k) and X2 is

congruent to Y2 over GL(n−m, k)

4. If k = Qp, there exists some γ ∈ Qp such that det(X1) = γ2 det(Y1), det(X2) = γ2 det(Y2),

cp(X1) = cp(Y1) and cp(X2) = cp(Y2)

20



where cp(M) denotes the Hasse symbol of the matrix M .
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Chapter 3

k-involutions of SL(2, k)

In this chapter let k be a field of characteristic 2, let K ⊃ k be an extension field of k,

and let k be the algebraic closure of k; thus k ⊂ K ⊆ k. Let G = SL(2, k), Gk = SL(2, k), and

GK = SL(2,K). We first characterize the k-involutions of Gk, and then use the characterization

to classify k-involutions of Gk.

In his Ph.D. dissertation [39] Wu characterized and classified k-involutions of Gk for perfect

fields k of characteristic not 2. In this dissertation, we find several similarities and differences

in the classification as compared to the classification in [39]. Because 2 = 0 and 1 = −1, we

also find differences in many proofs of analogous results.

In order to determine the k-involutions of Gk, we first determine which automorphisms of

GK fix Gk point-wise. Next, we establish which automorphisms of GK fix Gk as a group. Finally,

we choose the automorphisms of GK that fix Gk such that the square of the automorphism

fixes Gk point-wise; these are the k-involutions of Gk.

3.1 Automorphisms of SL(2, k)

The process of conjugating elements of a group by some fixed group element is a group auto-

morphism. That is, for some g ∈ G, the map Inn(g)(x) = gxg−1 is an automorphism of G that

is called an inner automorphism. It is possible, in the case that G = SL(n, k), that conjugation

by a matrix in GL(n, k) or GL(n,K) is an automorphism of G, so we also need to consider these

automorphisms. Let Aut(Gk) denote the set of automorphisms of Gk such that conjugation is

by elements in GL(n, k); then Aut(G,Gk) denotes the group of automorphisms in Aut(G) that

fix Gk; these are called k-automorphisms. Similar notation applies to inner automorphisms.

Beyond determining k-involutions of Gk, we are also interested in characterizing the ways

in which k-involutions act equivalently in some sense. In the context of this dissertation, the

most useful measure of equivalence is conjugacy. We say that two conjugate automorphisms are
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isomorphic. Thus our goal is to determine the conjugacy or isomorphism classes of k-involutions

of Gk.

Definition 3.1.1. Let θ and ϕ ∈ Aut(G,Gk). If σθσ−1 = ϕ and

• σ ∈ Aut(G,Gk), then θ and ϕ are Aut(G,Gk)-isomorphic.

• σ ∈ Inn(G,Gk), then θ and ϕ are Inn(G,Gk)-isomorphic.

We want to determine which k-involutions are Inn(G,Gk)-isomorphic. To begin, we note

the following lemma which is consequence of a proposition of Borel [6, Proposition 14.9].

Lemma 3.1.2. Let G = SL(n, k) as above. Then Aut(G) = Inn(G).

In other words, every automorphism of Gk can be written as conjugation by some element

of GL(2,K). Specifically, given an automorphism ϕ of Gk, there is a matrix A ∈ GL(2,K) such

that ϕ = Inn(A)|Gk
. Notice that the entries of A may be in some (smaller) extension field, K,

rather than k; we choose A to be as generic as possible.

Lemma 3.1.3. Suppose A ∈ GL(2,K). If Inn(A)|Gk
= Id, then A = p Id, for some p ∈ K.

Proof. Let A = (aij) with i, j ∈ {1, 2} and aij ∈ K. Since Inn(A)|Gk
= Id, then for all

X = (xij) ∈ Gk, Inn(A)(X) = AXA−1 = X, so AX = XA. In other words, A commutes with

all elements of Gk. In terms of matrices, XA = AX is[
a11x11 + a12x21 a11x12 + a12x22

a21x11 + a22x21 a21x12 + a22x22

]
=

[
a11x11 + a21x12 a12x11 + a22x12

a11x21 + a21x22 a12x21 + a22x22

]
.

In particular, this holds for X =
[
1 0

1 1

]
, and the above relations reduce to

[
a11 + a12 a12

a21 + a22 a22

]
=

[
a11 a12

a11 + a21 a12 + a22

]
.

This forces the following relations a11 = a22 = p and a12 = 0. Similarly, by setting X =
[
1 1

0 1

]
,

we force the relations a21 = 0. Thus A = p Id. �

Lemma 3.1.4. Inn(A) ∈ Aut(G,GK) acts invariantly on Gk if and only if A = pB, for some

p ∈ K and B ∈ GL(2, k).

Proof. Write A ∈ GL(2,K) as

A =

[
a11 a12

a21 a22

]
.
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Then

A−1 =
1

det(A)

[
a22 a12

a21 a11

]
.

For each X = (xij) ∈ Gk, set Inn(A)(X) = AXA−1 = B. The entries of B are

b11 =
a22a11x11 + a12a22x21 + a11a21x12 + a21a12x22

a11a22 + a12a21
, (3.1.4.1)

b12 =
a12a11x11 + a212x21 + a211x12 + a11a12x22

a11a22 + a12a21
, (3.1.4.2)

b21 =
a22a21x11 + a222x21 + a221x12 + a21a22x22

a11a22 + a12a21
, (3.1.4.3)

b22 =
a12a21x11 + a12a22x21 + a11a21x12 + a11a22x22

a11a22 + a12a21
. (3.1.4.4)

Since X can vary over all Gk, we may choose particular elements Xij , the matrix whose ij-th

entry is zero and all other entries are one, and X ′ij , the matrix which has zeros on the diagonal

which contains the ij-th element and ones on the other diagonal. Adding

AXijA
−1 +AX ′ijA

−1,

for each i and j, and using all of the combinations of Xi,j , we get

aijak`
a11a22 + a12a21

∈ k

for all i, j, k and `.

What we have shown is that Inn(A)(X) ∈ Gk if and only if

aijak`
a11a22 + a12a21

∈ k.

Now choose i and j so that aij 6= 0, and let

r =
aijak`

a11a22 + a12a21

and

s =

(
aijaij

a11a22 + a12a21

)−1
.

Since r · s ∈ k, then ak`
aij
∈ k for all k and `. Therefore,

A = aij

[
a11
aij

a12
aij

a21
aij

a22
aij

]
,
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where aij ∈ K. That is, A = pB with B ∈ Gk and p ∈ K. �

Corollary 3.1.5. Every automorphism of Gk can be written as Inn(A) for some A ∈ GL(2, k).

Proof. By Lemma 3.1.2, Aut(GK) = Inn(GK), and Lemma 3.1.4 states that if Inn(A) ∈
Aut(G,Gk), then Inn(A) = Inn(pB) where B ∈ GL(2, k). But, pBX(pB)−1 = BXB−1. Thus

Inn(pB) = Inn(B). �

3.2 k-involutions of SL(2, k)

Since every automorphism of Gk is inner, every involution of Gk is inner. Suppose θ ∈ Aut(Gk)

is an involution. Then, as a consequence of Lemma 3.1.2 and Corollary 3.1.5, there is a matrix

A ∈ GL(2, k) such that θ = Inn(A)|Gk
. Since A ∈ GL(2, k), by Lemma 3.1.3, A2 = p Id, where

p ∈ k since A ∈ GL(2, k). This is slightly more general than what Lemma 3.1.3 implies.

Lemma 3.2.1. Suppose θ ∈ Aut(Gk) is an involution. There exists some p ∈ k and a matrix

A ∈ GL(2, k) such that θ = Inn(A)|Gk
and A is conjugate to

[
0 1

p 0

]
.

Proof. θ is an involution, so there exists some A ∈ GL(2, k) such that Inn(A)2 = Id. That is,

Inn(A2) = Id. Let a, b, c, d ∈ k and

A =

[
a b

c d

]
.

Then

A2 =

[
a2 + bc (a+ c)b

(a+ d)c d2 + bc

]
.

By Lemma 3.1.3, A2 = p Id for some p ∈ k. This forces the relations

a2 + bc = d2 + bc (3.2.1.1)

(a+ d)c = (a+ d)b = 0. (3.2.1.2)

Thus a = d. There are no restrictions on b and c. Since A is invertible, a2 + bc 6= 0 and

A =

[
a b

c a

]
.

The characteristic polynomial of A is

CA(x) = x2 + Tr(A)x+ det(A) (3.2.1.3)

= x2 + 2ax+ a2 + bc (3.2.1.4)

= x2 + a2 + bc. (3.2.1.5)
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If the minimal polynomial of A is MA(x) = x + β, for some β ∈ k, then A = β Id for some

β ∈ k, and Inn(A) is not an involution. If MA(x) = CA(x) then A is conjugate to the matrix

(in rational canonical form)

B =

[
0 a2 + bc

1 0

]
.

To demonstrate the rational canonical form explicitly, we find a cyclic vector α of A. Because

CA(x) = MA(x), A has a cyclic vector. Next, we construct the basis {α,A(α)} by which A can

be represented as B. We can assume, without loss of generality, that c is non-zero. Let α = e1.

Then

P =

[
1 a

0 c

]
,

and B = P−1AP .

In general, we write

B =

[
0 1

p 0

]
,

where p = (bc+ a2)−1 ∈ k. �

Example 3.1. In the case that k = F2, there are three involutions. The two involutions

Inn(A) and Inn(B), which correspond to the matrices

A =

[
1 1

0 1

]
and B =

[
1 0

1 1

]
,

are both conjugate to the matrix Inn(Y ), where

Y =

[
0 1

1 0

]
,

by letting

PA =

[
0 1

1 1

]
P−1A =

[
1 1

1 0

]
and

PB =

[
1 1

0 1

]
P−1B =

[
1 1

0 1

]
.

�

Corollary 3.2.2. Each isomorphism class of k-involutions of Gk can be represented by Inn(A),
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where A ∈ GL(2, k) is of the form

A =

[
0 1

p 0

]
.

Remark 3.2.3. Since the characteristic and minimal polynomials of A =
[
0 1

p 0

]
are different, A

is never a semisimple element. However A is a unipotent element, as we showed in Example 3.1.

Lemma 3.2.4. Let

A =

[
0 1

r 0

]
, B =

[
0 1

s 0

]
.

Then Inn(A) is isomorphic to Inn(B) if and only if there is a matrix C ∈ GL(2, k) and a

constant p ∈ k such that CAC−1 = pB.

Proof. By definition, Inn(A) is isomorphic to Inn(B) if and only if there is a matrix C ∈ GL(2, k)

such that Inn(C) Inn(A) Inn(C)−1 = Inn(B). For any X ∈ G, then CAC−1XCA−1C−1 =

BXB−1 which we can rearrange to

(B−1CAC−1)X(CA−1C−1B) = X.

That is, when Inn(B−1CAC−1) = Id. By Lemma 3.1.3, B−1CAC−1 = p Id for some p ∈ k.

Thus

CAC−1 = pB (3.2.4.1)

�

Let k∗ denote the non-zero elements of k and let (k∗)2 denote the set of elements of k which

have square roots in k.

Theorem 3.2.5. If Inn(A) and Inn(B) ∈ Aut(G,Gk) are k-involutions corresponding to

A =

[
0 1

r 0

]
and B =

[
0 1

s 0

]
,

then Inn(A) is isomorphic to Inn(B) if and only if r/s ∈ (k∗)2.

Proof. From Lemma 3.2.4, take the determinant of both sides of (3.2.4.1), which leads to the

27



following equivalent statements:

det(CAC−1) = det(pB)

det(C) det(A) det(C−1) = p2 det(B)

det(C) det(A) det(C)−1 = p2 det(B)

det(A) = p2 det(B)

r = p2s.

Thus r/s = p2, so r/s ∈ (k∗)2. Conversely, let r/s = p2 for some p ∈ k, and let

C =

[
0 1

ps 0

]
.

Then

CAC−1 =

[
0 1

ps 0

][
0 1

r 0

][
0 1

ps

1 0

]

=

[
0 r

ps

ps 0

]

= p

[
0 1

s 0

]
= pB.

By Lemma 3.2.4, Inn(A) is isomorphic to Inn(B). �

Corollary 3.2.6. The number of isomorphism classes of k-involutions of Gk is the same as

the number of square classes of k∗.

3.3 Isomorphism Classes of k-involutions of SL(2, k)

The isomorphism classes of k-involutions of Gk depend on the elements in (k∗)2. By Lemma

2.2.4, every non-zero element of the finite field Fq is a square. Therefore, we have the following

corollary to Theorem 3.2.5:

Corollary 3.3.1. Let k be a finite field, or any algebraically closed field. Then there is one

isomorphism class of k-involutions of SL(2, k).

For any algebraically closed field k, with a ∈ k, the equation x2+a = 0 has a unique solution.

By Theorem 3.2.5 and Corollary 3.3.1, there is exactly one isomorphism class of k-involutions
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of SL(2, k).

Let k be any infinite field which is not algebraically closed. There are infinitely many non-

squares in k. For example, if k = Fq(x), where x is a vector of indeterminates, there are

non-squares x, x3, x5, etc. In these cases, k is not a perfect field.

Corollary 3.3.2. Let k be any infinite field which is not algebraically closed. There are infinitely

many isomorphism classes of k-involutions of SL(2, k).

3.4 Fixed Point Groups

The fixed point group Hk of a k-involution of Gk plays an important role in determining the

structure of the corresponding symmetric k-variety. Since Qk ∼= Gk/Hk, it is important to

characterize Hk. Recall Hk = {x ∈ Gk | θ(x) = x} and Qk = {gθ(g)−1 | g ∈ Gk}. If k = Fq,
where q = 2r (or if k is the algebraic closure of Fq), then there is only one representative of

k∗/(k∗)2. In general we have

Hk =

{[
x y

z w

] ∣∣∣∣∣
[

0 1

p 0

][
x y

z w

][
0 p−1

1 0

]
=

[
x y

z w

]
, wx+ yz = 1

}

=

{[
x y

z w

] ∣∣∣∣∣
[
w p−1z

py x

]
=

[
x y

z w

]
, wx+ yz = 1

}

=

{[
x y

z w

] ∣∣∣∣∣ w = x, py = z, wx+ yz = 1

}

=

{[
x y

py x

] ∣∣∣∣∣ x2 + py2 = 1

}
.

The following lemma asserts that isomorphic k-involutions have isomorphic fixed point groups.

Lemma 3.4.1. If θ1 and θ2 are isomorphic k-involutions of Gk, then their fixed point groups

H1 and H2, respectively, are isomorphic.

Proof. Suppose ψθ1ψ
−1 = θ2. By definition, ψ is an automorphism of Gk. So ψ : H1 → H2 is the

desired isomorphism of the fixed point groups. To see this, suppose X ∈ H1. Then θ1(X) = X

which means that ψ(θ1(X)) = ψ(X) = θ2(ψ(X)) which shows that ψ(X) ∈ H2. Since ψ is

already an isomorphism of Gk, it is also an isomorphism of subgroups of Gk. �

Remark 3.4.2. The converse of Lemma 3.4.1 is not true in general, though it does hold in general

for algebraic groups. That is, two fixed point groups H1 and H2 may be isomorphic, but their
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related involutions may not be isomorphic. In a paper describing the generalized symmetric

spaces of the dihedral groups [9], Helminck et al. give an example illustrating this fact.

We state without proof, in the following lemma, that semisimple fixed point groups are

conjugate to semisimple fixed point groups.

Lemma 3.4.3. Let θ1 and θ2 be isomorphic k-involutions of Gk, and let ϕθ1ϕ
−1 = θ2. Suppose

H1 and H2 are the fixed point groups of θ1 and θ2, respectively. If X ∈ H1 is diagonalizable

with PXP−1 = D for some invertible P and diagonal D, then ϕ(X) is diagonalizable.

Remark 3.4.4. Suppose Inn(A) ∈ Aut(G,Gk) is a k-involution such that A =
[
0 1

a 0

]
. For some

Y ∈ Hk, the characteristic polynomial of Y is CY (t) = t2 + x2 + ay2. Since x2 + ay2 = 1, then

CY (t) = t2 + 1 = (t+ 1)2. Thus Y is diagonalizable if and only if Y = Id. This means that Hk

consists of non-semisimple elements unless k = F2. Moreover, we will soon show the fixed point

groups consist of unipotent elements.

Example 3.2. The fixed point groups of k-involutions have different properties when k does

not have characteristic 2. The inner k-involution corresponding to A =
[
0 1

a 0

]
is an element of

Aut(G,Gk) with fixed point group

Ha =

{[
x y

ay x

] ∣∣∣∣∣x2 − ay2 = 1

}
.

For k = R, there are two possibilities for a, a = 1, and a = −1. For k = C, the only possibility is

that a = 1. This gives two fixed point groups. Wu [39] showed that Ha is k-split if and only if a

is a square in k∗, and otherwise Ha is k-anisotropic. Thus Ha is k-anisotropic if k = R, and Ha

is non-compact if k = C. The fixed point groups of k-involutions corresponding to semisimple

matrices are reductive. �

For any k-involution ϕ ∈ Aut(G,Gk), ϕ = Inn(A) and A is conjugate to some
[
0 1

p 0

]
. Since

Inn(pA) = Inn(A), and since[
1 0
√
p 1

][
0 1

p 0

][
1 0
√
p 1

]
=

[√
p 1

0
√
p

]
,

if p ∈ (k∗)2, then ϕ is isomorphic to Inn(B) where

B =

[
1
√
p−1

0 1

]
.

To summarize, we have proved the following
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Theorem 3.4.5. Every k-involution of Gk is conjugate to a k-involution of the form Inn(B)

where

B = S

[
1
√
p−1

0 1

]
S−1,

for some S ∈ GL(n,K). Moreover, Inn(B) has fixed point group SHS−1, where H is the

unipotent subgroup

H =

{[
1 x

0 1

] ∣∣∣∣∣ x ∈ k
}
.

So every k-involution of Gk has a unipotent fixed point group.

3.5 The Structure of Qk

Since every k-involution of Gk is conjugation by an element of the form A =
[
0 1

p 0

]
, for some

p ∈ k, the elements of Qk ∼= Gk/Hk have the following form:

Qk =
{
Xθ(X)−1 | X ∈ G

}
=
{
X [Inn(A)(X)]−1 | X ∈ G

}
=
{
X
[
AXA−1

]−1 | X ∈ G}
=
{
XAX−1A−1 | X ∈ G

}
=

{[
a b

c d

][
0 1

p 0

][
d b

c a

][
0 1

p

1 0

] ∣∣∣∣∣ ad+ bc = 1

}

=

{[
pb2 + a2 1

p(pbd+ ac)

pbd+ ac 1
p(pd2 + c2)

] ∣∣∣∣∣ ad+ bc = 1

}

The minimal polynomial of any element X ∈ Qk has the form

MX(t) = t2 + t

(
a2 + d2 + pb2 +

c2

p

)
+

1

p
(pdb+ ac)2

which can be factored into distinct linear factors if and only if a2 + d2 + pb2 + c2

p = 0. That

means that X ∈ Qk is semisimple exactly when a2 + d2 + pb2 + c2

p 6= 0.
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Chapter 4

k-involutions of SL(n, k) for n > 2

In this chapter, we build upon the results from Chapter 3. As before, let k be a field of charac-

teristic 2, K an extension field of k, G = SL(n, k), GK = SL(n,K), and Gk = SL(n, k).

The automorphisms of the classical groups were (mostly) characterized in the mid 1900’s.

Dieudonné [12] completed most of the work for n ≥ 3. Usually, the case n = 2 must be treated

separately, as must the case that k has characteristic 2. In a supplement to Dieudonné’s results,

L. K. Hua directly computed the automorphisms for some of the remaining low-dimension cases.

Dieudonné also published these and other results in 1955 [13]. This is a very useful reference,

though it is written in French. Unfortunately, the case that k has characteristic 2 was not

included for the orthogonal groups, but that is the subject of the next chapter.

Proposition 4.0.1 (Dieudonné).

1. Every automorphism of GL(n, k) (n ≥ 2) takes one of the two forms u → χ(u)gug−1 or

u → χ(u)hŭh−1, where u → χ(u) is a representation of GL(n, k) in the multiplicative

group of the center of k, g is a semi-linear transformation of V onto V ; h is a semi-linear

transformation of V onto V ∗ and ŭ denotes the transformation contragredient to u. Every

automorphism of PGL(n, k) (n ≥ 2) is induced by an automorphism of GL(n, k).

2. Every automorphism of SL(n, k) (n ≥ 2) is the restriction of an automorphism of GL(n, k),

with the possible exception of the cases n = 2 or 4 when k is non-commutative, has char-

acteristic different from 2 and is such that −1 is not in the commutator subgroup of k∗.

Every automorphism of PSL(n, k) (same restrictions as above) is induced by an automor-

phism of SL(n, k).

Now that n > 2, there are both inner and outer automorphisms of Gk, and we must deal

with each case separately.
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4.1 Inner Automorphisms of SL(n, k)

Any automorphism in Inn(G,Gk) is defined by conjugation by a matrix in GL(n,K). As before,

we want to determine which of these automorphisms fix Gk as a group and which fix Gk point-

wise. The general plan of attack is very similar to that of Chapter 3, at least for the inner

automorphisms and involutions. We begin by proving several similar statements.

Lemma 4.1.1. Suppose A ∈ GL(n,K). If Inn(A)|Gk
= Id, then A = p Id, for some p ∈ K.

Proof. Let A ∈ GL(n,K). Since Inn(A)(X) = X, then AX = XA for any X ∈ Gk. Equating

corresponding entries of AX and XA, we get the relations

n∑
k=1

aikxkj =
n∑
`=1

xi`a`j (4.1.1.1)

for `, k ∈ {1, 2, . . . n}. When X is the matrix Er,s + Id, i = r, and j = s, we get

ar,sxs,s + ar,rxr,s = xr,sas,s + xr,rar,s

which gives ar,r = as,s (xs,s = xr,s = xr,r = 1). Since X can vary over all Er,s with r 6= s, it

follows that the diagonal entries are equal.

To show that ar,s = 0 when r 6= s, there are many suitable choices for X. For example, let

X = Es,q + Id for s 6= q. Setting i = r and j = q in (4.1.1.1) gives

ar,sxs,q + ar,qxq,q = xr,rar,q.

This equation reduces to ar,s = 0, as desired, since xs,q = 1 = xq,q = xr,r. �

Lemma 4.1.2. Let A ∈ GL(n,K). Then Inn(A)|Gk
∈ Aut(Gk) if and only if A = pB, for some

p ∈ K and B ∈ GL(n, k).

Proof. We want to show that if Inn(A)(X) ∈ Gk then A = pB. We do this by choosing X ∈ Gk
so that it forces certain relationships between the entries of A. Then we factor out a constant.

Let X ∈ Gk. By definition,

InnA(X) = AXA−1 =
1

det(A)
AXA′, (4.1.2.1)

where A′ is the transpose of the adjugate matrix of A. That is, A′ is the matrix whose (i, j)

entry is Aj,i, the determinant of the (j, i)-th minor of A. Then the (i, j) entry of (4.1.2.1) is

1

detA

(
n∑

m=1

n∑
`=1

ai,mxm,`Aj,`

)
, (4.1.2.2)
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which must be an element of k since Inn(A) fixes Gk point-wise.

Let X = Id. Then (4.1.2.2) becomes

1

detA
(ai,1Aj,1 + · · ·+ ai,nAj,n) . (4.1.2.3)

Also, let X = Id +Epq, where p 6= q. Then (4.1.2.2) is

1

detA
(ai,1Aj,1 + · · ·+ ai,nAj,n + ai,pAq,j) . (4.1.2.4)

By adding these two we get
ai,pAq,j
det(A)

∈ k. (4.1.2.5)

This holds for any p 6= q.

Next, let X be the permutation matrix with rows p and q switched. Then (4.1.2.1) is

1

det(A)

ai,qAp,j + ai,pAq,j +

n∑
`=1
6̀=p,q

ai,`Aj,`

 . (4.1.2.6)

Finally, let X be as above with xq,q = 1 instead of 0. Then (4.1.2.1) is

1

det(A)

ai,qAp,j + (ai,p + ai,q)Aq,j +
n∑

`=1
` 6=p,q

ai,`Aj,`

 . (4.1.2.7)

Adding these last two expressions, we get

ai,qAq,j
det(A)

∈ k. (4.1.2.8)

By dividing 4.1.2.5 by 4.1.2.8 and re-labeling indices as needed, we have

ai,jAm,`
det(A)
am,nAm,`
det(A)

=
ai,j
am,n

∈ k

for any m,n, i, j ∈ {1, 2, . . . n}, provided that am,n 6= 0. Now, by factoring am,n from A, we get

A = am,nB = pB where bi,j =
ai,j
am,n

. Since Inn(pB) = Inn(B), we have proved the claim. �

Corollary 4.1.3. Any inner automorphism of Gk can be written as conjugation by a matrix

in GL(n, k), since Inn(pA) = Inn(A).
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Lemma 4.1.4. The inner automorphisms Inn(A) and Inn(B) are isomorphic if and only if A

is conjugate to cB for some c ∈ k.

Proof. Since Inn(A) is isomorphic to Inn(B), by definition, there is a matrix C ∈ GL(n,K)

with Inn(C) ∈ Aut(G,Gk) such that

Inn(C) Inn(A) Inn(C)−1 = Inn(B).

By the Corollary 4.1.3, we can take C ∈ GL(n, k), so that Inn(C) ∈ Aut(Gk). This implies that

Inn(C) Inn(A) Inn(C)−1(X) = Inn(B)(X) for every X ∈ Gk. Moreover,

Inn(B−1CAC−1) = Id,

and, by Lemma 4.1.1, it follows that

B−1CAC−1 = c Id

for some c ∈ k. Thus CAC−1 = cB. �

4.2 Inner k-involutions of SL(n, k)

By Lemma 4.1.1, if Inn(A) ∈ Aut(G,Gk) fixes Gk point-wise, then A = p Id for some p ∈ K.

By Lemma 4.1.2, we may take p ∈ k. Since Inn(A)2 = Inn(A2), it makes sense to determine

which properties of A lead to A2 = p Id. We begin by noting the following lemma:

Lemma 4.2.1. Suppose A ∈ GL(n, k) with A2 = p Id.

1. If A = c Id where c2 = p and c ∈ k, then Inn(A) is not a k-involution.

2. If A2 +c2 Id = 0, where c ∈ k, but A 6= c Id, then A is conjugate to a matrix with m copies

of Lc2 and n− 2m copies of c on the diagonal, as in

Lm,c2,c =



[
0 1

c2 0

]
. . . [

0 1

c2 0

]
c

. . .

c


. (4.2.1.1)
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3. If A2 + p Id = 0, where p /∈ (k∗)2, then A is conjugate to a matrix with n
2 copies of

Lp =
[
0 1

p 0

]
on the diagonal, as in

Ln
2
,p =


[
0 1

p 0

]
. . . [

0 1

p 0

]
 . (4.2.1.2)

Proof.

1. Since Inn(A) has order 1, it is not an involution.

2. Since the minimal polynomial of A is MA(x) = x2 + c2 = (x + c)2, and the invariant

factors of A must divide MA(x), we know some of the structure of the rational canonical

form of A. Without knowing A explicitly we can not determine the multiplicities of the

invariant factors, so there may be any combination of invariant factors of the form (x+c)2

or (x+c). The only constraint is that the sum of the degrees of the invariant factors equals

n, and that there is at least one factor of (x+ c)2. Therefore A = Lm,c2,c, where m varies

from 1 to n/2.

3. The minimal polynomial is MA(x) = x2 + p, where p is not a square. The characteristic

polynomial is CA(x) = (x2 + p)n/2, and here, the invariant factors are all MA(x), since

they are forced to divide MA(x). Since the sum of the degrees of all the invariant factors

must equal the degree of CA(x) = n, the dimension of A is even. Therefore, A is a direct

sum of n
2 blocks of Lp, as in Ln

2
,p.

In both (2) and (3), we use the fact that Inn(pA) = Inn(A) in order to obtain Lp, since it is

not always possible to write the blocks in the form Lp by only using conjugation. Notice that

(3) does not occur when k = k or when k is finite. �

Example 4.1. Let

A =

0 a 0

a 0 0

0 0 a

 .
Then A2 = a2 Id, but A 6= a Id. Square roots of matrices are not unique, in general, and there

exist non-diagonal matrices that square to p Id. Here, the minimal polynomial is MA(x) =

(x + a)2, and the characteristic polynomial is CA(x) = (x + a)3. The invariant factors are
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(x+ a)2 and (x+ a), and hence

A ∼=

0 a2 0

1 0 0

0 0 a

 = a2

 0 1 0

a−2 0 0

0 0 a−1

 .
Since Inn(pA) = Inn(A), we can write the corresponding inner automorphism as conjugation

by

A =

0 1 0

p 0 0

0 0 c


for some c ∈ k such that c2 = p.

Notice that any matrix is diagonalizable if and only if the minimal polynomial is a product

of distinct linear factors. Since MA(x) = (x+ a)2, A is not diagonalizable. However, if the field

is R, then MA(x) = (x + a)(x − a) which implies A is diagonalizable. (See Hoffman & Kunze

[26], Theorem 6.6, p. 204.) �

Example 4.2. Let A be as in Example 4.1, but now let k = R. In this case, A can be

diagonalized as follows:

A =

−1 0 1

1 0 1

0 1 0


−a 0 0

0 a 0

0 0 a


−

1
2

1
2 0

0 0 1
1
2

1
2 0

 .
The difference between this example and Example 4.1 is that the minimal polynomial here is

MA(x) = (x + a)(x − a) = x2 − a2, and hence A is diagonalizable. Ling Wu considered this

situation in his doctoral dissertation (See [39], Lemma 15, p.26 or [24]). In this case, Inn(A) is

a k-involution since A � p Id. �

Example 4.3. Let

A =

[
0 1

p 0

]
.

Whenever p is a square in k, which always occurs when k is finite, A is conjugate to a symmetric

matrix. The transition matrix is

P =

[
1 0

0 1√
p

]
.

So we have

PAP−1 =

[
0
√
p

√
p 0

]
.
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Corollary 4.2.2. Suppose ϕ ∈ Aut(Gk) is a k-inner involution. Then there is a matrix A ∈
GL(n, k) such that ϕ = Inn(A) where A is conjugate to one of the following matrices:

1. Lm,c2,c for c ∈ k∗ (See 4.2.1.1).

2. Ln
2
,p for some p ∈ k∗/(k∗)2 (See 4.2.1.2).

Proof. By Corollary 4.1.3, there is a matrix A ∈ GL(n, k) so that ϕ = Inn(A). Since ϕ is an

involution, we have ϕ2 = Inn(A2) = Id. Moreover, by Lemma 4.1.1, A2 = p Id for some p ∈ k.

It follows from Lemma 4.2.1 that A is conjugate to either Ln
2
,p or Lm,c2,c. �

Notice the special case when 4.2.1.1 and 4.2.1.2 appear to be the same matrix; this happens

when there are n/2 blocks of Lc2 as in Ln
2
,c2,c, for n even. The subtle difference in 4.2.1.2 is

that p /∈ (k∗)2, whereas in 4.2.1.1, c2 ∈ (k∗)2 which implies that c ∈ k. This is an important

distinction that we will later use to determine isomorphism classes of k-involutions.

Also note that Lm,c2,c and Ln
2
,p have different minimal and characteristic polynomials and

different invariant factors, so they are not conjugate. Moreover, whenever m1 6= m2, by the

same argument Lm1,c2,c � Lm2,c2,c. This is because the number of blocks of Lc2 is different,

which means they have different numbers of invariant factors.

We do need to determine when Lm,c2,c and Lm,d2,d correspond to isomorphic k-involutions

and when Ln
2
,p and Ln

2
,q correspond to isomorphic k-involutions.

Lemma 4.2.3. Inn(Ln
2
,p) is isomorphic to Inn(Ln

2
,q) if and only if p/q ∈ (k∗)2.

Proof. By (4.2.1.2), p, q ∈ k∗/(k∗)2, and by Lemma 4.1.4, Inn(Ln
2
,p) is isomorphic to Inn(Ln

2
,q)

if and only if A = Ln
2
,p is conjugate to cB = cLn

2
,q for some c ∈ k. The minimal polynomials

are MA(x) = x2 + p and McB(x) = x2 + c2q, and the characteristic polynomials are CA(x) =

(x2 + p)n/2 and CB(x) = (x2 + c2q)n/2, respectively. This means that A and cB are conjugate if

and only if c2q = p, since the invariant factors are fixed by the minimal polynomials. But this

implies that c2 = p/q. Thus p/q ∈ (k∗)2. �

Lemma 4.2.4. Let b, c ∈ k∗. Then Inn(Lm,b2,b) is isomorphic to Inn(Lm,c2,c).

Proof. By Lemma 4.1.4, Inn(Lm,b2,b) is isomorphic to Inn(Lm,c2,c) if and only if A = Lm,b2,b ∼=
tB = tLm,c2,c for some t ∈ k. By Lemma 4.1.1, the minimal polynomials are MA(x) = (x2 +

b2)(x + b) and MtB(x) = (x2 + t2c2)(x + tc). If A and tB are conjugate, they must have the

same invariant factors and characteristic and minimal polynomials. Thus they are conjugate if

and only if tc = b and t2c2 = b2; these two conditions are equivalent to t = b/c. It is always

possible to pick t so that t = b/c. Therefore, Inn(Lm,b2,b) is isomorphic to Inn(Lm,c2,c). �
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Theorem 4.2.5. Suppose ϕ ∈ Aut(Gk) is an inner k-involution. Then, up to isomorphism, ϕ

is of the form

1. Inn(A) where A = Ln
2
,p for some p ∈ k∗/(k∗)2.

2. Inn(A) where A = Lm,c2,c for some c ∈ k∗.

Proof. The claim follows directly from Lemmas 4.2.3 and 4.2.4 and Corollary 4.2.2. �

As in the Chapter 3, the isomorphism classes of k-involutions of SL(n, k) depend on the

number of square classes in k∗. All inner k-involutions of Gk correspond to matrices which

are not semisimple, because the minimal polynomials are not products of distinct linear terms.

However, there exist unipotent elements which correspond to inner k-involutions, as in the

SL(2, k) case.

Example 4.4. Conjugation by

A =

1 0 1

0 1 0

0 0 1


corresponds to a unipotent inner k-involution since A2 = Id and A 6= Id. Since the characteristic

polynomial of A is CA(x) = x3+1, and the minimal polynomial is MA(x) = x2+1, the invariant

factors are x2 + 1 and x + 1. Thus A is conjugate to the block diagonal matrix B where the

blocks are the companion matrices of the invariant factors.

A ∼= B =

0 1 0

1 0 0

0 0 1


which is L1,1,1. �

When k does not have characteristic 2, there are several differences as compared to the

characteristic not 2 case. First, the matrices In−i,i (see Chapter 2.4) are diagonal matrices

which correspond to k-involutions, so there are semisimple elements which correspond to k-

involutions whenever k is perfect with characteristic not 2. In fact, there are several different

types of semisimple elements, all of which are listed in Chapter 2.4.

The k-involution Inn(Lm,c2,c) is unique to fields of characteristic 2. By Theorem 4.2.5,

whenever k is algebraically closed or finite (and all field elements have unique squares), the

k-involutions may be represented by either Inn(Ln
2
,1) or Inn(Lm,1,1). In summary, we have the

following corollary to Theorem 4.2.5, analogous to the corollary in Chapter 3.

Corollary 4.2.6.
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1. Let k be a finite field or any algebraically closed field. Then there is one isomorphism class

of k-involutions of SL(n, k) corresponding to Ln
2
,p and there are n

2−1 classes corresponding

to Lm,c2,c.

2. Let k be any field which is not a union of finite fields. Then there are infinitely many

isomorphism classes of k-involutions of SL(2, k), corresponding to Ln
2
,p, and there are

n
2 − 1 classes corresponding to Lm,c2,c.

4.3 Outer Automorphisms of SL(n, k)

For n > 2, there are k-automorphisms of Gk which are not inner. For example, θ : Gk → Gk by

θ(X) = (X−1)T is not an inner automorphism. When n = 2, we can represent θ by conjugation

by
[
0 1

1 0

]
. We will call θ the duality automorphism. In some situations, over fields not considered

in this work, θ is actually a Cartan involution.

Lemma 4.3.1. If k is an algebraically closed field and n > 2, then

|Aut(G)|
| Inn(G)|

= 2.

Proof. This is a consequence of Lemma 3.1.2. �

Our plan is simpler than when determined the inner k-involutions of Gk. To begin, we note

the following characterization of outer k-involutions in terms of inner k-involutions.

Lemma 4.3.2. Let θ be a fixed outer automorphism of G. Since |Aut(G)/ Inn(G)| = 2, we can

write any outer automorphism of G as θ Inn(A) for some matrix A ∈ GL(n, k).

For convenience, we choose θ to be the duality automorphism. Note that θ is already an

involution of Gk, and hence an automorphism of Gk. Thus θ Inn(A) is always an automorphism

of Gk. Throughout the rest of this chapter, θ will always refer to the duality automorphism.

The next step is simply to determine which automorphisms θ Inn(A) square to the identity.

4.4 Outer Involutions of SL(n, k)

From Section 4.3, we know that every outer automorphism of G can be represented as θ Inn(A)

for some A ∈ GL(n, k) where θ is the duality automorphism. Recall that θ(X) = (X−1)T . The

next lemma describes outer k-involutions in terms of the duality automorphism.

Lemma 4.4.1. Let θ be the duality automorphism. Then θ Inn(A) is an involution if and only

if A is symmetric.
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Proof. We break the proof into two steps. First we show θ Inn(A) is an involution if and only

if θ(A)A ∈ Z(Gk), and then we show that θ(A)A ∈ Z(Gk) if and only if AT = A. We use the

fact that θ Inn(A)θ = Inn
(
θ(A)

)
; this equation is a consequence of the fact that θ = θ−1.

Let Z(Gk) denote the center of Gk, and let X ∈ Gk.

1. Assume θ Inn(A) is an involution; then θ Inn(A)θ Inn(A)(X) = X for any X ∈ Gk. This

also holds for X = θ(X). We want to show that θ(A)A ∈ Z(Gk). Then

θ Inn(A)θ Inn(A)
(
θ(X)

)
= θ(X)

Inn
(
θ(A)

)
Inn(A)

(
θ(X)

)
= θ(X)

Inn
(
Aθ(A)

)(
θ(X)

)
= θ(X)

θ−1(A)A−1θ(X)Aθ(A) = θ(X)

θ(X)Aθ(A) = Aθ(A)θ(X)(
X−1

)T
A
(
A−1

)T
= A

(
A−1

)T (
X−1

)T
Xθ(A)A = θ(A)AX.

Each pair of statements is a double implication.

2. Since
(
A−1

)T
A ∈ ZGL(n,k)(Gk), we re-label it as z−1. Then AT = zA. ZGL(n,k)(Gk)

consists of all scalar multiples s Id of the identity matrix such that sn = 1, since det(s Id) =

1. Hence we can write z = s and we have AT = sA. But A = ATT = (sA)T = sTAT =

s(sA) = s2A =⇒ s = 1. So A = AT .

�

Example 4.5. The matrix Lp =
[
0 1

p 0

]
is conjugate to a symmetric matrix. So Inn(Ln

2
,p)

is isomorphic as an automorphism to Inn(A) which meets the requirements of Lemma 4.4.1.

However, as we will see, this does not mean that θ Inn(Ln
2
,p) is isomorphic as an outer involution

to θ Inn(A). The notion of isomorphic outer involutions is discussed next. �

Now that we know more about the shape of A when θ Inn(A) is a k-involution, we need to

determine which k-involutions are isomorphic.

Lemma 4.4.2. θ Inn(A) is isomorphic to θ Inn(B) if and only if A is congruent to pB, for

some p ∈ k.

Proof. Since A is congruent to pB, there is a matrix Q ∈ GL(n, k) such that QTAQ = pB. For
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C−1 ∈ GL(n, k),

Inn(C−1)θ Inn(A) Inn((C−1)−1) = θθ Inn(C−1)θ Inn(A) Inn((C−1)−1)

= θ Inn(θ(C−1)AC)

= θ Inn(CTAC).

So Inn(B) = Inn(CTAC). By Lemma 4.1.4, this forces CTAC = pB, for some p ∈ k. �

Remark 4.4.3. By Lemma 4.4.1, if θ Inn(A) is an involution, then A is symmetric. We use the

relations θ Inn
(
θ(A)

)
= Inn(A)θ and θ Inn(A) = Inn

(
θ(A)

)
θ to show that A−1 is congruent to

pB if θ Inn(A) ∼= θ Inn(B).[
θ Inn(C)

][
θ Inn(A)

][
θ Inn(C)

]−1
= θ Inn(C)θ Inn(A) Inn

(
C−1

)
θ

= θ Inn(C)θ Inn
(
AC−1

)
θ

= Inn
(
θ(C)

)
Inn

(
AC−1

)
θ

= Inn
((
C−1

)
AC−1

)
θ

= θ Inn
[
θ
((
C−1

)T
AC−1

)]
= θ Inn

(
C(A−1)TCT

)
= θ Inn

(
CA−1CT

)
By Lemma 4.1.4, θ Inn(A) ∼= θ Inn(B) if A−1 is congruent to pB for some p ∈ k. This condition

is equivalent to the condition in Lemma 4.1.4, and it shows that if two outer k-involutions are

Inn(G,Gk)-isomorphic, then they are also Aut(G,Gk)-isomorphic.

Lemma 4.4.4.

1. Symmetric (non-singular) matrices are congruent to diagonal matrices.

2. If b1, . . . , bn ∈ k∗, then A = Diag(a1, . . . , an) ≡ Diag(b21a1, . . . , b
2
nan) = B.

Proof.

1. Let A be a symmetric matrix. The claim holds for n = 1, trivially. Assume the claim
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holds for some n = k − 1 where k ∈ N. We want to show the claim holds for n = k. Let

A =



a1 a11 a12 . . . a1k

a11 a2 a22 . . . a2k

a12 a22 a3 . . . a3k
...

...
...

. . .
...

a1k a2k a3k . . . ak


.

Suppose that a1 6= 0. Let

Q =


1 −a11

a1
. . . −a1k

a1

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

 .
Then

QTAQ =

[
a1 0

0 Ak

]
,

where Ak is symmetric, since for any symmetric matrix A, P TAP is also symmetric. The

induction hypothesis shows that QTAQ is a diagonal matrix. If a1 = 0 then there is a

non-zero entry in the first column, say a1,i 6= 0. For T = In + E1,i, T
TAT is symmetric

with the (1, 1) entry non-zero. Then we apply the procedure as above.

2. Choose Q = Diag(b1, . . . , bn). Then QTAQ = B.

�

Let θ be an outer automorphism of Gk and Inn(A) be an inner automorphism of Gk. By

Lemma 4.4.1, θ Inn(A) is an involution if and only if A is symmetric. By Lemma 4.4.2, if

θ Inn(A) is congruent to θ Inn(B), then A is congruent to pB for some p ∈ k. Also, by Lemma

4.4.4, A is congruent to a diagonal matrix. To summarize the situation, the outer involutions

are always of the form θ Inn(A) where A is a diagonal matrix. Moreover, we can write A as

Diag(1, . . . , 1, Np1 , . . . , Npr) where Npi are (not necessarily unique) non-squares in k. If k is

closed or if all elements of k∗ are squares, then A = Id.

Theorem 4.4.5. Let θ Inn(A) be a k-involution, where θ is the duality automorphism.

(1) If k = Fq where q = 2r, then there is one isomorphism class of k-involutions of outer type.

(2) If k = Fq, the algebraic closure of Fq, there is one isomorphism class of k-involutions of

outer type.
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(3) If k = Fq(x), the field of fractions, then there are infinitely many classes of k-involutions

of outer type.

Proof. For the first two cases, there is exactly one square class, so conjugation by a matrix A is

equivalent to conjugation by the identity matrix. In other words, A is congruent to the identity

matrix. For the last case, there are infinitely many square classes in the field. It is possible to

reorder the diagonal elements by congruence with a permutation matrix, so by convention we

order the diagonal elements as stated in the previous comments. �

The outer k-involutions of SL(n, k) always correspond to θ Inn(A) where A is semisimple.

In fact, if k is a finite field or an algebraically closed field, then A is the identity matrix. If k is

infinite and not algebraically closed, e.g. k = Fq(x), then A 6= Id.

The situation is somewhat simpler than it is for fields k of characteristic not 2. When k = Fp
and p 6= 2, there are k-involutions of the form θ Inn(Jn), and Jn is not semisimple. In all the

remaining cases, the outer k-involutions correspond to semisimple matrices.

When k is a field of characteristic 2, the following corollary summarizes the number of

isomorphism classes of outer k-involutions of SL(n, k).

Corollary 4.4.6.

1. Let k be a finite field, or any algebraically closed field. There is one isomorphism class of

outer k-involutions of SL(n, k).

2. Let k be any finite, not algebraically closed field. There are infinitely many isomorphism

classes of outer k-involutions of SL(2, k).

4.5 Fixed Point Groups and Symmetric k-Varieties

When Gk is an algebraic group, the fixed point groups of isomorphic involutions are isomorphic

groups (recall Lemma 3.4.1). This is important in classifying fixed point groups. We need to

determine explicitly the fixed point groups for each of the involutions of Gk. We begin with the

inner involutions.

Lemma 4.5.1.
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1. The fixed point group of the involution Inn(Lm,c2,c) consists of matrices in Gk of the form

[
a1,1 b1,1

c2b1,1 a1,1

]
. . .

[
a1,2m−1 b1,2m−1

c2b1,2m−1 a1,2m−1

]
h1,2m . . . h1,n

ch1,2m . . . ch1,n
...

...
...[

a2m,1 b2m,1

c2b2m−1,1 a2m−1,1

]
. . .

[
a2m−1,2m−1 b2m−1,2m−1

c2b2m−1,2m−1 a2m−1,2m−1

]
h2m,2m . . . h2m,n

ch2m,2m . . . ch2m,n

g2m,1 cg2m,1
...

...

gn,1 cgn,1

. . .

g2m,2m−1 cg2m,2m−1
...

...

gn,2m−1 cgn,2m−1

s2m,2m . . . s2m,n
...

...

sn,2m . . . sn,n


.

This matrix has m 2×2 blocks in the upper left-hand corner. The upper right-hand corner

has the property that the even rows are c-multiples of the preceding odd rows. Analogously,

the bottom left-hand corner has the property that the even columns are c-multiples of the

preceding odd columns. Finally, in the bottom right-hand corner, there are no relations.

2. The fixed point group of the involution Inn(Ln
2
,p) consists of the block matrices

[
a1,1 b1,1

pb1,1 a1,1

]
. . .

[
a1,n−1 b1,n−1

pb1,n−1 a1,n−1

]
...

...[
an−1,1 bn−1,1

pbn−1,1 an−1,1

]
. . .

[
an−1,n−1 bn−1,n−1

pbn−1,n−1 an−1,n−1

]


.

This matrix consists of 2× 2 blocks, and is basically the same as in case (1) above, in the

upper left-hand corner.

Proof.

1. The matrix Lm,c2,c acts on a matrix A when multiplying on the left and on the right. Let

Ri denote the ith row of A, and Ci denote the ith column of A. Multiplication on the left

by Lm,c2,c changes A as follows:

• Replace Ri by c2Ri−1 when i is even and 1 < i ≤ 2m.

• Replace Rj by Rj+1 when j is odd and 1 ≤ j < 2m.

• Replace Rk by cRk for k > 2m.

Multiplication on the right by L−1
m,c2,c

changes A as follows:
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• Replace Ci by 1
c2
Ci−1 when i is even and 1 < i ≤ 2m.

• Replace Cj by Cj+1 when j is odd and 1 ≤ j < 2m.

• Replace Ck by 1
cCk for k > 2m.

Now equate entries to get the desired relations.

2. This is simpler than case 1, and the result corresponds to the upper left-hand corner of

the matrix in case 1.

�

Example 4.6. Here we explicitly compute the fixed point group of Inn(L1,c2,c):
0 1 0 0

c2 0 0 0

0 0 c 0

0 0 0 c



a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4




0 c−2 0 0

1 0 0 0

0 0 c−1 0

0 0 0 c−1

 =


a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4



a2,1 a2,2 a2,3 a2,4

c2a1,1 c2a1,2 c2a1,3 c2a1,4

ca3,1 ca3,2 ca3,3 ca3,4

ca4,1 ca4,2 ca4,3 ca4,4




0 c−2 0 0

1 0 0 0

0 0 c−1 0

0 0 0 c−1

 =


a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4



a2,2 c−2a2,1 c−1a2,3 c−1a2,4

c2a1,2 a1,1 ca1,3 ca1,4

ca3,2 c−1a3,1 a3,3 a3,4

ca4,2 c−1a4,1 a4,3 a4,4

 =


a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4


Now we can see that a1,1 = a2,2, c

2a1,2 = a2,1, ca4,2 = a4,1, etc. Thus the fixed points are the

matrices with unit determinant of the form
a1,1 a1,2 a1,3 a1,4

c2a1,2 a1,1 ca1,3 ca1,4

a3,1 ca3,1 a3,3 a3,4

a4,1 ca4,1 a4,3 a4,4

 .

�

The matrix Lm,c2,c is conjugate to a constant times a unipotent matrix. Let

Uc =

[
1 0

c 1

]
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and let

Um,c =



[
1 0

c 1

]
. . . [

1 0

c 1

]
1

. . .

1


.

Then Um,cLm,c2,cUm,c = cB where

B =



1 c−1

. . .
. . .

1 c−1

1

. . .

1


. (4.5.1.1)

By a similar method, Ln
2
,p is conjugate (over GK) to a matrix of the form

√
pB where

B =


1
√
p−1

. . .
. . .

. . .
√
p−1

1

 . (4.5.1.2)

So, in both cases, ϕ is conjugate to some involution of the form Inn(B), where B is one of

4.5.1.1 or 4.5.1.2, both of which are unipotent matrices. Over fields of characteristic not 2,

inner involutions are always semi simple.

Lemma 4.5.2. Let k = Fq or Fq. Then the fixed point group of the outer automorphism θ Inn(A)

consists of orthogonal matrices with determinant 1. That is, G
θ Inn(A)
k = O(n, k).

Proof. By Lemma 4.4.4, A is diagonal. By congruence, we can reduce any squares on the

diagonal of A to ones. By Lemma 2.2.4, every non-zero element is a square in k, so A is

congruent to the identity matrix. Thus, if X is a fixed point, then θ Inn(A)(X) = (X−1)T = X

and so X ∈ O(n, k). Recall that SO(n, k) = O(n, k) when k has characteristic 2. �

Lemma 4.5.3. Let k = Fq(x). The fixed point group of θ Inn(A) is the matrices X ∈ Gk such

that AX−1 = XTA, where A ∈ GL(n, k) and A is diagonal.
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Proof. Since θ Inn(A)(X) = X, then θ(AXA−1) = X. So X = A−1(X−1)TA, and AX−1 =

XTA. �

4.5.4 The Structure of Qk

For the involutions Inn(Lm,c2,c) and Inn(Ln
2
,p), Qk has the following structure:

Qk =
{
X
(

Inn(A)(X)
)−1 | X ∈ Gk}

=
{
X(AT )−1XTAT | X ∈ Gk

}
.

In the case that the involutions are outer, we have

Qk =
{
X
(
θ Inn(A)(X)

)−1 | X ∈ Gk}
=
{
Xθ(AXA−1)−1 | X ∈ Gk

}
=
{
X
(
(AT )−1(XT )−1AT

)−1 | X ∈ Gk}
=
{
XATXT (AT )−1 | X ∈ Gk

}
.

If A = Id, then Qk consists of symmetric matrices.
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Chapter 5

Involutions of O(2n + 1, k)

Our goal again is to determine the involutions of Gk = O(n, k). We will proceed as we did with

the SL(n, k) case. However, we quickly encounter some difficulties. For now, we note some initial

findings and state conjectures that we have verified for small field sizes and low dimensional

groups. Most of the work in this chapter applies to both even and odd dimensional orthogonal

groups over fields k of characteristic 2, though the primary goal is to determine involutions in

the odd case. By a similar statement as in Chapter 3, all automorphisms of O(2n + 1, k) are

inner automorphisms.

Before considering automorphisms, we introduce some notation and record several pertinent

facts. All of this will be used in Section 5.2.

5.1 Strictly Symmetric Matrices

Definition 5.1.1. We will call the matrix An ∈ GL(n, k) strictly symmetric if it is a constant

matrix plus a scalar times the identity matrix. That is, if it has the form

An =


a b . . . b

b
. . .

. . .
...

...
. . .

. . . b

b . . . b a

 . (5.1.1.1)

We will frequently refer to a strictly symmetric matrix as An or (5.1.1.1). This matrix is

fundamental in determining the inner automorphisms of O(n, k). With this in mind, we record

the following facts for later use.

Lemma 5.1.2. Let An be strictly symmetric, as in (5.1.1.1).

1. If n is odd, then det(An) = a(a+ b)n−1.
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2. If n is even, then det(An) = (a+ b)n.

Proof. We proceed by complete induction. For the first few values of n, the calculations are

straightforward. Assume the claim holds for all n up to and including n = k. Let

Ak−1 =



b b

b


a b . . . b

b
. . .

. . .
...

...
. . .

. . . b

b . . . b a




, (5.1.2.1)

which is the form (up to permutation of rows) of every (k− 1)× (k− 1) minor of Ak, except for

the (1,1) minor which is simply Ak−1. Notice that Ak−1 has a nested copy of Ak−2 in the bottom

right corner. In the following two cases, we use cofactor expansion to find the determinants.

Case I: Assume k is odd. Then k+1 is even, so we want to show det(Ak+1) = (a+b)k+1. Notice

that k ≡ 1 (mod 2) and k − 1 ≡ 0 (mod 2). We have

det(Ak+1) = a · det(Ak) + b · k · det(Ak)

= a
[
a(a+ b)k−1

]
+ b · k

[
b · det(Ak−1) + (k − 1) · b · det

(
Ak−1

) ]
= a2(a+ b)k−1 + b · 1 ·

[
b · det(Ak−1) + 0 · b · det

(
Ak−1

) ]
= a2(a+ b)k−1 + b2 · (a+ b)k−1

= (a2 + b2)(a+ b)k−1

= (a+ b)k+1,

which is what we wanted to show. Notice that a2 + b2 = (a+ b)2 if k has characteristic 2.

Case II: Assume k is even. Then k+ 1 is odd. We want to show det(Ak+1) = a(a+ b)k. We have

det(Ak+1) = a · det(Ak) + b · k · det(Ak)

= a · (a+ b)k + b · 0 · det(Ak)

= a(a+ b)k,

which is what we wanted to show. �

Corollary 5.1.3. The strictly symmetric matrix An in (5.1.1.1) is singular if and only if

1. a = 0 or a = b when n is odd

2. a = b when n is even.
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Lemma 5.1.4. The inverse of the strictly symmetric matrix An in (5.1.1.1) is

A−1n =
1

det(An)
Adj(An)T

where Adj(An) denotes the adjugate matrix of An, (the matrix of cofactors of An). Since An is

symmetric, Adj(An)T = Adj(An). The matrix A−1n has the form

A−1n =
1

a(a+ b)n−1


(a+ b)n−1 b(a+ b)n−2 . . . b(a+ b)n−2

b(a+ b)n−2
. . .

. . .
...

...
. . .

. . . b(a+ b)n−2

b(a+ b)n−2 . . . b(a+ b)n−2 (a+ b)n−1

 (5.1.4.1)

if n is odd, and

A−1n =
1

(a+ b)n


a(a+ b)n−2 b(a+ b)n−2 . . . b(a+ b)n−2

b(a+ b)n−2
. . .

. . .
...

...
. . .

. . . b(a+ b)n−2

b(a+ b)n−2 . . . b(a+ b)n−2 a(a+ b)n−2

 (5.1.4.2)

if n is even.

Proof. Case I: Suppose n is odd. Then (i, j)th cofactor of An, [An]i,j , is

• [An]i,j = det
(
An−1

)
if i 6= j, (see matrix 5.1.2.1)

• [An]i,j = det(An−1) if i = j. (see matrix 5.1.1.1)

The diagonal entries of Adj(An) are

[An]i,i = (a+ b)n−1
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since n− 1 is even. The off-diagonal entries are slightly more complex:

[An]i,j = det
(
An−1

)
= b · det(An−2) + b · (n− 2) det

(
An−2

)
= b ·

[
a(a+ b)n−3

]
+ b · det

(
An−2

)
= ab(a+ b)n−3 + b ·

[
b · det(An−3) + b · (n− 3) det

(
An−3

) ]
= ab(a+ b)n−3 + b ·

[
b · (a+ b)n−3 + 0

]
= ab(a+ b)n−3 + b2 · (a+ b)n−3

= (ab+ b2)(a+ b)n−3

= b(a+ b)n−2

Case II: Suppose n is even. Then

[An]i,i = a(a+ b)n−2

since n− 1 is odd. The off diagonal entries are

[An]i,j = det
(
An−1

)
= b · det(An−2) + (n− 2) · b · det

(
An−2

)
= b · (a+ b)n−2 + 0

= b · (a+ b)n−2

�

Factoring A−1n in (5.1.4.1 and 5.1.4.2) leads to nice forms:

A−1n =
1

a(a+ b)


a+ b b . . . b

b
. . .

. . .
...

...
. . .

. . . b

b . . . b a+ b

 (if n is odd) (5.1.4.3)

A−1n =
1

(a+ b)2


a b . . . b

b
. . .

. . .
...

...
. . .

. . . b

b . . . b a

 (if n is even). (5.1.4.4)
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In particular, it is clear that the inverse of a strictly symmetric matrix (5.1.1.1) is also strictly

symmetric. The identity matrix is strictly symmetric, and these two facts together establish the

following corollary:

Corollary 5.1.5. If k has characteristic 2, the strictly symmetric matrices form a subgroup of

GL(n, k), which we denote St(n, k).

Lemma 5.1.6. Let k be the finite field with q = 2r elements, where r ∈ N. Then St(n, k) has

q(q − 1) elements if n is even, and (q − 1)2 elements if n is odd.

Proof. Suppose n is even. Then there are q choices for a and q − 1 choices for b 6= a, when n is

even. The only restriction from the det(An) = 1 is that a 6= b. When n is odd, the det(An) = 0

when a = 0 or a = b, so there are q − 1 choices for a and q − 1 choices for b. In this last case

we may choose b = 0. �

Lemma 5.1.7. Let An be a strictly symmetric matrix as in (5.1.1.1). If n is odd, An is diag-

onalizable.

Proof. By Lemma 5.1.2, the characteristic polynomial for An is

CAn(x) = det(x Id +An) = (a+ x)
(

(a+ x) + b
)n−1

.

From this it is clear that the eigenvalues are λ1 = a and λ2 = a + b. The minimal polynomial

for An is

MAn(x) = (x+ a)(x+ a+ b).

If b = 0, then MAn(x) has a repeated linear factor, but in that case An is already diagonal. It

is simple to verify the minimal polynomial of An by a direct calculation.

MAn(An) =


0 b . . . b

b
. . .

. . .
...

...
. . .

. . . b

b . . . b 0




b b . . . b

b
. . .

. . .
...

...
. . .

. . . b

b . . . b b

 = 0

Note that each entry of the product is (n− 1) · b2 = 0, and n is odd; hence n− 1 ≡ 0 (mod 2).

Finally, by a standard result from linear algebra (e.g. [26], Theorem 6 on p. 204), any matrix

over a field is diagonalizable if and only if the minimal polynomial is a product of distinct linear

factors. �
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Example 5.1. Let n = 3. Then A3 has eigenvalues λ1 = a and λ2 = a+ b. The basis of Eλ1
is the basis of the nullspace of A3 + λ1I; i.e., the nullspace of the matrix0 b b

b 0 b

b b 0

→
1 0 1

0 1 1

0 0 0

 .
The basis is 

1

1

1


 .

Similarly, the basis of Eλ2 is 
1

1

0

 ,
1

0

1


 .

We form the transition matrix

P =

1 1 1

1 1 0

1 0 1


for which PAP−1 = D, where

D =

a 0 0

0 a+ b 0

0 0 a+ b

 .
�

The method used in the last example is extensible to dimension 2n+ 1, as in the following

lemma.

Lemma 5.1.8. If n is odd, then An (5.1.1.1) is diagonalizable via the transition matrix

P =



1 1 1 . . . 1

1 1 0 . . . 0

1 0
. . .

...
...

...
. . .

...

1 0 . . . 0 1


.
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Proof.

PAnP
−1 =



1 1 1 . . . 1

1 1 0 . . . 0

1 0
. . .

. . .
...

...
...

. . .
. . . 0

1 0 . . . 0 1




a b . . . b

b
. . .

. . .
...

...
. . .

. . . b

b . . . b a





1 1 1 . . . 1

1 0 1 . . . 1

1 1
. . .

. . .
...

...
...

. . .
. . . 1

1 1 . . . 1 0



=



a a a . . . a

a+ b a+ b 0 . . . 0

a+ b 0
. . .

. . .
...

...
...

. . .
. . . 0

a+ b 0 . . . 0 a+ b





1 1 1 . . . 1

1 0 1 . . . 1

1 1
. . .

. . .
...

...
...

. . .
. . . 1

1 1 . . . 1 0



=



a 0 0 . . . 0

0 a+ b 0 . . . 0

0 0
. . .

. . .
...

...
...

. . .
. . . 0

0 0 . . . 0 a+ b


.

�

When n is even, the strictly symmetric matrix An (5.1.1.1) is not diagonalizable. The best

possible form is block diagonal.

Lemma 5.1.9. If n is even, the strictly symmetric matrix An (5.1.1.1) is conjugate to Ln
2
,a2+b2.

That is, a direct sum of n
2 blocks of the matrix[

0 a2 + b2

1 0

]

Proof. The characteristic polynomial of An is

CAn(x) =
(
x+ (a+ b)

)n
,

which follows directly from Lemma 5.1.2. The minimal polynomial of An is

MAn(x) =
(
x+ (a+ b)

)2
.
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This can be verified by calculation:

MAn(An) =


b b . . . b

b
. . .

. . .
...

...
. . .

. . . b

b . . . b b



2

= 0

since each entry is n · b2 = 0.

The invariant factors of An are multiples of
(
x+ (a+ b)

)2
= x2 +

(
a2 + b2

)
, but that is not

enough to determine the rational canonical form of An. However, if we can show the maximum

dimension of any cyclic subspace is 2, then the invariant factors each have degree 2. This will

prove that the invariant factors are x2 + (a2 + b2).

Let e = (c1, . . . , cn)T . Then

Ane =

(ac1 + b
n∑
k=2

ck

)
, . . . ,

aci + b
n∑

k=1,k 6=i
ck

 , . . . ,

(
acn + b

n−1∑
k=1

ck

)T .
The kth entry of (An)2e is

a2ck + ab
∑
i6=k
i∈[n]

ci + ab
∑
i6=k
i∈[n]

ci + b2
∑
j 6=k
j∈[n]

∑
i 6=j
i∈[n]

ci.

The first two sums are the same, so they cancel. The double sum contains ck in an odd number

of terms and, for ` 6= k, c` in an even number of terms. The only surviving terms are a2ck and

b2ck. So

a2ck + ab
∑
i 6=k
i∈[n]

ci + ab
∑
i 6=k
i∈[n]

ci + b2
∑
j 6=k
j∈[n]

∑
i 6=j
i∈[n]

ci = ck

(
a2 + b2

)
.

This implies that A2
ne is a scalar multiple of e; hence the maximum dimension of any cyclic

subspace is 2. It is possible to pick e to be a characteristic vector, but the minimal polynomials

for the cyclic subspaces (i.e. the invariant factors) must be divisible by the minimal polynomial

of An. This forces each invariant factor to have degree 2 or more, and since the degree of the

invariant factor is the degree of the cyclic subspace, it can be no more than 2.

So each cyclic subspace in the cyclic decomposition of An has dimension 2, and the invariant

factors are (x2 + (a2 + b2)). There are n
2 subspaces in the decomposition.

To put things in the same form as in the SL(n, k) case, we note that the matrix
[
0 a2 + b2

1 0

]
is congruent to

[
0 1

a2 + b2 0

]
via the transition matrix

[
0 a2 + b2

a2 + b2 0

]
. So An is congruent to the
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matrix in the statement, Ln
2
,a2+b2 . �

Over the complex numbers, An is diagonalizable if n is even, since the minimal polynomial

factors as
(
x+ (a+ b)

)2
= (x+ a+ b)(x− a− b) which is a product of distinct linear factors.

5.2 Automorphisms of O(n, k)

Now that we have set up the basic notation, we are ready to proceed with determining some

properties of automorphisms of Gk = O(n, k). Most of these apply to arbitrary n, but at some

point we will split the discussion between even and odd cases. Similar to previous chapters, we

let G = O(n, k) and GK = O(n,K) where k ⊂ K ⊆ k are fields of characteristic 2.

Lemma 5.2.1. Let k be a field of characteristic 2. If A ∈ GL(n,K) and Inn(A)|Gk
= Id, then

A is strictly symmetric.

Proof. Let Ii,j denote the (i, j) permutation matrix (i.e. the i-th and j-th rows or columns are

swapped). Note that Ii,j ∈ O(2n+1, k). If Inn(A)(X) = X for every X ∈ Gk, then AIi,j = Ii,jA.

Note that AIi,j is the same as A, except with the i and j columns permuted, and Ii,jA is the

same as A, but with the i and j rows permuted. For i, j, k, ` distinct, the equation forces the

following relations:

ai,k = aj,k (5.2.1.1)

a`,i = a`,j (5.2.1.2)

ai,i = aj,j (5.2.1.3)

ai,j = aj,i. (5.2.1.4)

More concisely, aij = aji for all i 6= j, and aii = ajj for all i and j, where i, j ∈ [2n+ 1]. �

Over fields with characteristic not 2, the elements which induce automorphisms that act

as the identity on SO(n, k) are at least diagonal matrices. For most orthogonal groups, these

matrices are scalar multiples of the identity matrix; hence they are in the center of GL(n, k).

Over characteristic 2 fields, many more matrices potentially induce inner involutions on G.

Lemma 5.2.2. The center of O(n, k) is trivial.

Proof. Suppose A ∈ O(n, k) is in the center of O(n, k). Then XA = AX for any X ∈ O(n, k).

This means that Inn(A) = Id on O(n, k). By Lemma 5.2.1, A is strictly symmetric. Since

A ∈ O(n, k), we know that ATA = Id, which means that A2 = Id. We must use a different

argument depending on the parity of the dimension of the group.
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1. The square of an odd dimensional strictly symmetric matrix is the same as the element-

wise square, i.e., if A is strictly symmetric of the form (5.1.1.1), then

A2 =


a2 b2 . . . b2

b2
. . .

. . .
...

...
. . .

. . . b2

b2 . . . b2 a2

 .

Thus a2 = 1 which means a = 1. Also, b2 = 0 which means b = 0. (See Lemma 2.2.5.)

2. The square of an even-dimensional strictly symmetric of the form (5.1.1.1) is

A2 =


a2 + b2

. . .

a2 + b2

 .
Thus a2 + b2 = (a+ b)2 = 1, so a+ b must be an element of order 2. This cannot happen

when k is finite, since pr = q is even, and hence q − 1 is odd. This implies that the

multiplicative group has odd order, so no element can have multiplicative order 2. For

Fq(x), the only possible elements of order 2 must belong to the finite subfield, so the same

argument applies. All elements of Fq(x) that do not belong to the subfield Fq have infinite

order. Since a+ b does not have order 2, and since (a+ b)2 = 2, then a+ b = 1.

�

Lemma 5.2.3. Suppose Inn(A) fixes G = O(n, k). Then ATA is strictly symmetric.

Proof. Let A ∈ GL(n, k1). If Inn(A) fixes G, then Inn(A)(X) ∈ G. That means

[
Inn(A)(X)

]T [
Inn(A)(X)

]
= Id .

From this we see that

[
AXA−1

]T [
AXA−1

]
=
(
A−1

)T
XTATAXA−1 = Id

which implies that Inn(ATA)(X) = X for all X ∈ G. So Inn(ATA) = Id, and by Lemma 5.2.1,

ATA is strictly symmetric. �

Lemma 5.2.4. Strictly symmetric matrices of odd dimension have a unique strictly symmetric

square root.
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Proof. Beginning with the matrix An in (5.1.1.1), set

√
An =



√
a
√
b . . .

√
b

√
b

. . .
. . .

...
...

. . .
. . .

√
b√

b . . .
√
b
√
a

 .

The matrix
√
An is the square root of An, and clearly

√
An ∈ St(n, k). This fact relies on the

property that the square of a strictly symmetric matrix (for odd n) is the element-wise square.

Since the square of any field element is unique, the matrix
√
An is unique. �

Lemma 5.2.5. Let A ∈ St(2n + 1, k). Let S be the unique, strictly symmetric square root of

A. Let O be symmetric in O(2n + 1, k). Then Inn(SO) is always an involution corresponding

to the strictly symmetric matrix A. That is, (SO)2 = A.

Proof. Since O is orthogonal, OTO = Id. Also, note that S commutes with O(2n + 1, k) since

ZGL(n,k)(Gk) = St(n, k). This means that (OS)2 = OSOS = OOSS = OTOS2 = Id ·A =

A. �

Lemma 5.2.6. The eigenvalues of A are the same as the eigenvalues of AT .

Proof.

det(AT ) = det(A)

=⇒ 0 = det(A− λ Id) = det(AT − λ Id) = 0

�

Example 5.2. Symmetric matrices do not have unique square roots. Consider

A =

0 1 1

0 1 0

1 1 0

 .
This matrix squares to the identity, which is symmetric. Also notice that another symmetric

square root of the identity matrix is the identity matrix itself. There are many more simple

examples. �
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Example 5.3. Symmetric matrices defined over finite fields do not necessarily have eigenval-

ues in the field. For example, let

A =

β
2 + 1 1 1

1 0 β2 + β + 1

1 β2 + β + 1 β2 + 1

 ,
where A ∈ GL(3,F8). This matrix has characteristic polynomial CA(x) = xβ2 + x3 + 1. None

of the roots of CA(x) are in F8. �

5.2.7 Conjectures & Computed Results

In the absence of a complete characterization of the involutions of O(n, k), we close with some

conjectures and a summary of results of direct computations. The computations have been

instrumental in forming conjectures and guiding the work to this point.

Conjecture 5.2.8. Let A ∈ GL(n, k) so that Inn(A)2 = Id and Inn(A) keeps Gk invariant.

1. There exist matrices B ∈ St(n, k) and C ∈ O(n, k) so that A = BC.

2. If X ∈ G and Inn(X)
(
Gk
)

= Gk, then there exists some Y ∈ Gk so that Inn(X)|Gk
=

Inn(Y ).

Conjecture 5.2.9. Let n be odd, and let k be a finite field of order q = 2r. Then the fixed point

group of an involution Inn(A) ∈ Aut(Gk) has q (symmetric) elements. If A ∈ St(n, k) the fixed

point group is all of Gk.

Conjecture 5.2.10. If A2 and ATA are both strictly symmetric, then A2 = ATA.

Conjecture 5.2.11. If Inn(A) is an involution on O(2n+ 1, k), then A is symmetric.

Proof. If Conjecture 5.2.10 is true, this is also true. By Lemma 5.2.1, since Inn(A) is an invo-

lution, Inn(A)2 = Id, and hence A2 is strictly symmetric. Also, by Lemma 5.2.3, since Inn(A)

fixes G, ATA is strictly symmetric. By Conjecture 5.2.10, A2 = ATA. Multiplying by A−1 on

the right on both sides finishes the proof. �

By brute force calculations, the involutions of O(3,F4) and O(3,F8) match Lemma 5.2.5;

that is, these are the only involutions. There are more involutions which come from fields which

contain F4, for example F16 induces more involutions. The following example illustrates this

last point.

There are 16 symmetric matrices in O(3,F4) and 9 matrices in St(3,F4) which results in 144

involutions. For O(3,F8), there are 64 symmetric matrices in O(3,F8) and 49 strictly symmetric

matrices, for a total of 64 · 49 = 3136 involutions.
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Example 5.4. Let

k = F4 = {0, 1, α, α+ 1}

where α is a solution of x2 + x+ 1 = 0 over F2, and

K = F16 =


0, 1, γ, γ + 1,

γ2, γ2 + 1, γ2 + γ, γ2 + γ + 1,

γ3, γ3 + 1, γ3 + γ, γ3 + γ + 1,

γ3 + γ2, γ3 + γ2 + 1, γ3 + γ2 + γ, γ3 + γ2 + γ + 1


where γ is a solution of x4 + x+ 1 = 0 over F2. The subgroup of F16 that corresponds to F4 is

F4 = {0, 1, γ2 + γ, γ2 + γ + 1}.

Here is an example of an involution of O(3,F4) coming from O(3,F16). In this case Inn(A) ∈
Aut(GK , Gk) where

A =

γ
2 γ2 1

γ2 γ2 + 1 1

1 0 0

 .
Then Inn(A) is an involution defined over an extension field K of k, and Inn(A) is an involution

of O(3, k). Since

A2 =

 1 γ2 γ2

γ2 1 γ2

γ2 γ2 1


is strictly symmetric, we expect that Inn(A) ∈ Aut(GK) is an involution of GK . Also, since k

is a subset of K, we expect that, Inn(A) ∈ Aut(G,Gk), and that it is an involution as well. �
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Appendix A

Multiplication Tables

A.1 F4

The polynomial here is f(x) = x2 + x+ 1, with roots α and α+ 1.

1 α α+ 1

α α+ 1 1
α+ 1 1 α

Table A.1: Multiplication within F4

A.2 F8

The polynomial here is f(x) = x3 + x+ 1.

A.3 F16

The polynomial here is f(x) = x4 + x+ 1. Notice that F4 is a subgroup. The correspondence is

that α←→ γ2 + γ and α+ 1←→ γ2 + γ + 1.
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1 β β + 1 β2 β2 + 1 β2 + β β2 + β + 1

β β2 β2 + β β + 1 1 β2 + β + 1 β2 + 1
β + 1 β2 + β β2 + 1 β2 + β + 1 β2 1 β
β2 β + 1 β2 + β + 1 β2 + β β β2 + 1 1

β2 + 1 1 β2 β β2 + β + 1 β + 1 β2 + β
β2 + β β2 + β + 1 1 β2 + 1 β + 1 β β2

β2 + β + 1 β2 + 1 β 1 β2 + β β2 β + 1

Table A.2: Multiplication within F8

1 γ γ + 1 γ2 γ2 + 1 γ2 + γ γ2 + γ + 1 γ3

γ γ2 γ2 + γ γ3 γ3 + γ γ3 + γ2 γ3 + γ2 + γ γ + 1
γ + 1 γ2 + γ γ2 + 1 γ3 + γ2 γ3 + γ2 + γ + 1 γ3 + γ γ3 + 1 γ3 + γ + 1
γ2 γ3 γ3 + γ2 γ + 1 γ2 + γ + 1 γ3 + γ + 1 γ3 + γ2 + γ + 1 γ2 + γ

γ2 + 1 γ3 + γ γ3 + γ2 + γ + 1 γ2 + γ + 1 γ γ3 + γ2 + 1 γ3 γ3 + γ2 + γ
γ2 + γ γ3 + γ2 γ3 + γ γ3 + γ + 1 γ3 + γ2 + 1 γ2 + γ + 1 1 γ2 + 1

γ2 + γ + 1 γ3 + γ2 + γ γ3 + 1 γ3 + γ2 + γ + 1 γ3 1 γ2 + γ γ3 + γ2 + 1
γ3 γ + 1 γ3 + γ + 1 γ2 + γ γ3 + γ2 + γ γ2 + 1 γ3 + γ2 + 1 γ3 + γ2

γ3 + 1 1 γ3 γ γ3 + γ + 1 γ + 1 γ3 + γ γ2

γ3 + γ γ2 + γ + 1 γ3 + γ2 + 1 γ3 + γ2 + γ γ2 γ3 + 1 γ + 1 γ3 + γ2 + γ + 1
γ3 + γ + 1 γ2 + 1 γ3 + γ2 + γ γ3 + γ 1 γ3 + γ2 + γ + 1 γ2 γ2 + γ + 1
γ3 + γ2 γ3 + γ + 1 γ2 + γ + 1 γ2 + 1 γ3 + 1 γ3 + γ2 + γ γ γ3 + γ

γ3 + γ2 + 1 γ3 + 1 γ2 1 γ3 + γ2 γ3 γ2 + 1 γ
γ3 + γ2 + γ γ3 + γ2 + γ + 1 1 γ3 + γ2 + 1 γ + 1 γ γ3 + γ2 γ3 + 1

γ3 + γ2 + γ + 1 γ3 + γ2 + 1 γ γ3 + 1 γ2 + γ γ2 γ3 + γ + 1 1

1 γ3 + 1 γ3 + γ γ3 + γ + 1 γ3 + γ2 γ3 + γ2 + 1 γ3 + γ2 + γ γ3 + γ2 + γ + 1

γ 1 γ2 + γ + 1 γ2 + 1 γ3 + γ + 1 γ3 + 1 γ3 + γ2 + γ + 1 γ3 + γ2 + 1
γ + 1 γ3 γ3 + γ2 + 1 γ3 + γ2 + γ γ2 + γ + 1 γ2 1 γ
γ2 γ γ3 + γ2 + γ γ3 + γ γ2 + 1 1 γ3 + γ2 + 1 γ3 + 1

γ2 + 1 γ3 + γ + 1 γ2 1 γ3 + 1 γ3 + γ2 γ + 1 γ2 + γ
γ2 + γ γ + 1 γ3 + 1 γ3 + γ2 + γ + 1 γ3 + γ2 + γ γ3 γ γ2

γ2 + γ + 1 γ3 + γ γ + 1 γ2 γ γ2 + 1 γ3 + γ2 γ3 + γ + 1
γ3 γ2 γ3 + γ2 + γ + 1 γ2 + γ + 1 γ3 + γ γ γ3 + 1 1

γ3 + 1 γ3 + γ2 + 1 γ2 + 1 γ3 + γ2 γ2 + γ γ3 + γ2 + γ + 1 γ2 + γ + 1 γ3 + γ2 + γ
γ3 + γ γ2 + 1 γ3 γ 1 γ3 + γ + 1 γ2 + γ γ3 + γ2

γ3 + γ + 1 γ3 + γ2 γ γ3 + 1 γ3 + γ2 + 1 γ2 + γ γ3 γ + 1
γ3 + γ2 γ2 + γ 1 γ3 + γ2 + 1 γ3 + γ2 + γ + 1 γ + 1 γ2 γ3

γ3 + γ2 + 1 γ3 + γ2 + γ + 1 γ3 + γ + 1 γ2 + γ γ + 1 γ3 + γ2 + γ γ3 + γ γ2 + γ + 1
γ3 + γ2 + γ γ2 + γ + 1 γ2 + γ γ3 γ2 γ3 + γ γ3 + γ + 1 γ2 + 1

γ3 + γ2 + γ + 1 γ3 + γ2 + γ γ3 + γ2 γ + 1 γ3 γ2 + γ + 1 γ2 + 1 γ3 + γ

Table A.3: Multiplication within F16
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Appendix B

Python Code

The bulk of the examples for finite fields were constructed using a combination of Maple and

Python. I have written a small library of functions for working with finite fields in Python.

In particular, creating multiplication tables has been useful. I have made my code available to

the public via a Google Code project located on the Internet at http://code.google.com/p/

char2/. The latest improvements will be kept at the Google Code project, and the code below

is only current as of the publication of this dissertation. The code is licensed as Free Software,

under the terms of the GNU General Public License http://www.gnu.org/licenses/gpl.

html.
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B.1 char2.py

# This file is part of char2.

# char2 is free software: you can redistribute it and/or modify

# it under the terms of the GNU General Public License as published by

# the Free Software Foundation, either version 2 of the License, or

# (at your option) any later version.

#

# char2 is distributed in the hope that it will be useful,

# but WITHOUT ANY WARRANTY; without even the implied warranty of

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

# GNU General Public License for more details.

#

# You should have received a copy of the GNU General Public License

# along with char2. If not, see <http://www.gnu.org/licenses/>.

#

# Copyright (C) 2013 Nathaniel Schwartz.

from math_functions import *

from math import pow, log

import sys

mtable = [] # Mulitplication table

r = -1 # The power of the field. The field will have size 2^r

poly = -1 # The irreducible (over {1,0}) polynomial for the field

setup = False # Set to True when the field size and polynomial are set

register = -1 # The register for the calculator. Currently not functional

# Process command line options.

def getOption():

option = raw_input("2=0: ").upper()

cmd = option[0]

if (cmd == ’Q’):

exit()

elif (cmd == ’S’):

size(option[1:])

elif (cmd == ’P’):

polynomial(option[1:])

elif (cmd == ’T’):

table(option[1:])

elif (cmd == ’R’):

reset()

elif (cmd == ’V’):

view()

elif option.find(’+’)>= 0:

add(option)

elif option.find(’*’) >= 0:

multiply(option)

else:
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print "Invalid option."

# Print the list of options so the user has information to make a choice.

def printOptions():

print ’=’*73

print ’Welcome to char2, a calculator for fininte fields in even characteristic.’

print ’=’*73

print "R\tReset the state of the program"

print "S\tSet the size of the field"

print "P\tSet the polynomial - takes an integer (eg. 7 -> 111 -> a^2 + a + 1)"

print "T\tPrints the multiplication table - (1 -> numbers, 0 -> strings)"

print "V\tView the current setup"

print "Q\tQuits the program"

print ’\n’

# Convert the command line string (of an integer) to an integer.

def polynomial(string):

input = ’’

try:

input = int(string.split()[0])

except IndexError:

print "Try again."

return

if input > 2:

global poly

poly = input

else:

raise ValueError("Invalid polynomial.")

# Here we go ahead and create the multiplication table if we can.

if r > 0:

global mtable

global setup

mtable = getTable(r,poly)

setup = True

# Multiply some elements of the field.

def multiply(multiplicands):

global register

x = -1

loc = multiplicands.split(’*’)

if setup:

try:

x = int(loc[0])

except ValueError:

x = -1

if (x < 0 and register > 0):

x = register

else:

print "Register is empty!"

return
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try:

y = int(loc[1])

except ValueError:

print "Invalid multiplication input."

return

global mtable

try:

elt = mtable[x][y]

except IndexError:

print "Element isn’t in the defined field."

return

print printElt(elt) + "\t[" + str(elt) + "]"

register = elt

else:

print "Set options first!"

# Add some elements of the field.

def add(summands):

x = -1

global register

loc = summands.split(’+’)

if setup:

try:

x = int(loc[0])

except ValueError:

x = -1

if (x < 0 and register > 0):

x = register

else:

print "Register is empty!"

return

try:

y = int(loc[1])

except ValueError:

print "Invalid addition input."

return

elt = addElts(x,y)

print str(printElt(elt)) + "\t[" + str(elt) + "]"

register = elt

else:

print "Set options first!"

# Print the multiplication table, either in integer or string format.

def table(option):

input = ’’

try:

input = int(option.split()[0])

except IndexError:

print "Try again."

return
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if input == 0:

printTable(mtable)

elif input == 1:

for row in mtable[1:]:

print row[1:]

else:

raise ValueError("Invalid Table Option.")

# Set the size of the field. User input should be the size. We convert it to

# the power of 2 here.

def size(option):

try:

value = int(option.split()[0])

except IndexError:

print "Invalid size argument."

return

if value > 1:

global r

rtmp = int(log(value,2))

if pow(2, rtmp) != value:

print ’Field size should be a power of 2.’

return

else:

r = rtmp

else:

raise ValueError("Invalid integer.")

if poly > 0:

global mtable

global setup

mtable = getTable(r,poly)

setup = True

# View the current field setup.

def view():

if r > 1:

print ’The field has’, int(pow(2,r)), ’elements, and the polynomial is’,

printElt(poly),

else:

print ’The field is not defined yet.’

# Reset the field setup.

def reset():

global mtable

global r

global poly

global setup

mtable = []

r = -1

poly = -1

setup = False
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register = -1

# EXECUTION LOOP

# ==============

# This is the main loop which runs the program

printOptions()

while(True):

try:

getOption()

except ValueError as e:

print e
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B.2 math_functions.py

# This file is part of char2.

# char2 is free software: you can redistribute it and/or modify

# it under the terms of the GNU General Public License as published by

# the Free Software Foundation, either version 2 of the License, or

# (at your option) any later version.

#

# char2 is distributed in the hope that it will be useful,

# but WITHOUT ANY WARRANTY; without even the implied warranty of

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

# GNU General Public License for more details.

#

# You should have received a copy of the GNU General Public License

# along with char2. If not, see <http://www.gnu.org/licenses/>.

#

# Copyright (C) 2013 Nathaniel Schwartz.

from math import log, ceil

# Make a 2x2 array of values, a multiplication table.

def getTable(q,p):

n = pow(2,q) - 1

table = []

table.append([0]*(n+1))

for i in range(1,n + 1):

row = [0]

for j in range(1,n + 1):

row.append(multiply(i,j,p,q))

table.append(row)

return table

# Print the multiplication table.

def printTable(table):

size = len(table[1])

wordLength = 0

for i in range(size):

word = printElt(i+1)

if len(word) > wordLength:

wordLength = len(word)

overline = ’+’ + ’-’*(wordLength+2)

print ’-’ *((size - 1) * (wordLength + 3) + 1)

for row in table[1:]:

rowString = ’| ’

for code in row[1:]:

elt = printElt(code)

sizeOfElement = len(elt)

if sizeOfElement < wordLength:
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elt += ’ ’*(wordLength - sizeOfElement)

rowString += elt + ’ | ’

print rowString

print overline * (size - 1) + ’+’

# Multiply a and b, given the irreducible polynomial p and the size of the

# field q = 2^r. Here a and b are elements of F_q and the field has

# n = 2^q - 1 non-zero elements.

def multiply(a, b, p, q):

result = []

v = bv(a)

w = bv(b)

long = []

short = []

n = pow(2,q)

#find the short array

if len(v) >= len(w):

long = v

short = w

else:

long = w

short = v

size = len(long)

#pad the shorter array

short.reverse()

for x in range(len(short), size):

short.append(0)

short.reverse()

#multiply short * long

tempv = []

addends = []

for x in range(size):

temp = scale(short[size-x-1], long)

for y in range(x):

temp.append(0)

addends.append(temp)

for x in range(len(addends)):

result = xor(result, addends[x])

#if the number is bigger than the polynomial, mod xor that with p.

intval = bv2int(result)

while intval >= n:

result = reduce(result, p)

intval = bv2int(result)

result = bv(intval)

return intval
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# Reduce an element to standard form.

# Eg, a^3 + a + 1 is not in F_4, so reduce it using a^2 + a + 1 = 0.

def reduce(vector, p):

vec = vector[:]

poly = bv(p)

l = len(vector)

diff = l - len(poly)

temp = poly[:]

for x in range(diff):

temp.append(0)

vec = xor(vec, temp)

return vec

# Scale a vector by 1 or 0.

def scale(scalar, vector):

result = []

for x in range(len(vector)):

result.append(scalar*vector[x])

return result

# XOR the bits of two arrays.

def xor(a, b):

result = []

long = []

short = []

#find the short array

if len(a) >= len(b):

long = a

short = b

else:

long = b

short = a

#pad the shorter array

short.reverse()

for x in range(len(short), len(long)):

short.append(0)

short.reverse()

#do the xor operation

for i in range(len(short)):

result.append(long[i]^short[i]);

for i in range(len(short), len(long)):

result.append(long[i])

return result

# Compute the binary representation of an integer, a vector of binary digits.

def bv(a):
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b = a

result = []

for i in range(1,len(bin(a))-1):

result.append(b%2)

b = b/2

result.reverse()

return result

# Converts a vector of binary digits to an integer.

def bv2int(v):

v.reverse()

result = 0

for s in range(len(v)):

result = result + v[s]*pow(2,s)

v.reverse()

return result

# Add two field elements.

def addElts(a,b):

u = bv(a)

v = bv(b)

w = xor(u,v)

return bv2int(w)

# Convert an element to a string.

def printElt(elt):

if elt < 1:

return ’0’

char = bv(elt)

n = len(char)

result = ’’

list = [i for i in reversed(range(len(char)))]

for i in range(len(char)):

if i == 0:

if len(char) > 2:

result = ’a^%i’ % (list[i])

if len(char) == 2:

result = ’a’

if len(char) == 1:

result = ’1’

if len(char) == 0:

result = ’0’

elif (i < n-2 and char[i] == 1):

result = result + ’ + a^%i’ % (n-i-1)

elif (i == n-2 and char[i] == 1):

result = result + ’ + a’

elif (i == n-1 and char[i] == 1):

result = result + ’ + 1’

return result
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