
ABSTRACT

PENDLETON, TERRANCE LAMAR. An Analytical and Numerical Study of a Class
of Nonlinear Evolutionary PDEs. (Under the direction of Dr. Alina Chertock.)

This thesis concerns itself with an analytical and numerical study of a family of

evolutionary partial differential equations (PDEs) which supports peakon solutions for

special values of a given bifurcation parameter. Here, the bifurcation parameter describes

the balance between convection and stretching for small viscosity in the dynamics of one

dimensional (1D) nonlinear waves in fluids.The first portion of this thesis is to provide

global existence and uniqueness results for the considered family of evolutionary PDEs

by establishing convergence results for the particle method applied to these equations.

This particular class of PDEs is a collection of strongly nonlinear equations which yield

traveling wave solutions and can be used to model a variety of flows in fluid dynamics.

We apply a particle method to the studied evolutionary equations and provide a new

self-contained method for proving its convergence. The latter is accomplished by using

the concept of space-time bounded variation and the associated compactness properties.

From this result, we prove the existence of a unique global weak solution in some special

cases and obtain stronger regularity properties of the solution than previously established.

The second portion of this thesis is dedicated to studying the dynamics of the in-

teraction among a special class of solutions of the one-dimensional Camassa-Holm (CH)

equation which are a particular example of such a PDE which supports peakon solutions.

The equation yields soliton solutions whose identity is preserved through nonlinear in-

teractions. These solutions are characterized by a discontinuity at the peak in the wave

shape and are thus called peakon solutions. We apply a particle method to the CH equa-

tion and show that the nonlinear interaction among the peakon solutions resembles an

elastic collision, i.e., the total energy and momentum of the system before the peakon

interaction is equal to the total energy and momentum of the system after the collision.

From this result, we provide several numerical illustrations which supports the analytical

study, as well as showcase the merits of using a particle method to simulate solutions to

the CH equation under a wide class of initial data.

The final portion of this thesis seeks to investigate the possibility of the two component

Camassa-Holm (2CH) equation as a relevant model for the long time propagation of

tsunami-like waves. The (2CH) equation is a generalization of the Camassa Holm equation



for which a continuity component for density is incorporated. We show how the 2CH

equation can be derived in the context of shallow water wave theory. Furthermore, we

solve the considered equations using both a central upwind scheme, and a hybrid particle-

finite volume scheme which combines the strengths of both the particle method and

central upwind scheme using physically relevant initial data. Our preliminary results

show that for a certain range of values of a length scale associated with the CH equation,

the shape and amplitude of the waves are preserved for a longer period of time compared

with the classical Saint-Venant system for shallow water waves. Furthermore, we show

that we can capture these dynamics on a coarser grid by using a hybrid finite volume

particle scheme.
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Chapter 1

Introduction

This thesis concerns itself with an analytical and numerical study of a family of evolu-

tionary partial differential equations (PDEs) which supports a special class of solitary

traveling waves for special values of a given bifurcation parameter (b). To this extent, we

are are interested in studying

mt +mxu+ bmux = 0 u = G ∗m, x ∈ R, t > 0, (1.1)

with the parameter b ∈ R and is considered subject to the initial condition

m(x, 0) = m0(x) x ∈ R. (1.2)

Here the momentum m and velocity u are functions of the time variable t and the

spatial variable x, and G(x) is the Green’s kernel which relates m with u through a convo-

lution. The parameter b describes the balance between convection (mxu) and stretching

(bmux) for small viscosity in the dynamics of one-dimensional (1-D) nonlinear waves in

fluids. In other words, the real dimensionless constant b is the ratio of stretching to con-

vection transport. b can also be seen as the number of covariant dimensions associated

with the momentum density m as was shown in [80] and provides a balance for the non-

linear solution behavior. We remark that for the remainder of this thesis, we will focus

our efforts on (1.1) with b > 1 which generates stable solitary traveling waves.

The aim of the first portion of this thesis focuses on establishing global weak solutions

and analyzing special solutions for (1.1)-(1.2). In this chapter we provide background

information and motivation which is pertinent to the numerical and analytical methods

1



developed in this thesis. We also provide an outline for the remainder of the thesis.

An important research area in the field of PDEs involves the study and establishment

of global solutions for a variety of equations. The equations given by (1.1) (b-equations)

are a family of first-order hyperbolic problems and have been studied in a variety of

contexts. Moreover, they have been shown to possess several interesting properties. For

instance, the b-equations’ invariance under space and time translations ensures that it

admits traveling wave solutions for b > 1 (although this is true for any b ∈ R). In

particular, the traveling wave solutions assume the form u(x, t) = aG(x− ct), with speed

c = −aG(0), which is proportional to the solution amplitude and G is the kernel in

(1.1). The kernel G(x) relates the velocity with the momentum through the convolution

product

u = G ∗m =

∫
R
G(x− y)m(y, t) dy, (1.3)

and determines the shape of the traveling wave and the length scale for (1.1); see e.g.,

[81].

The derivation of traveling wave solutions associated with (1.1) can be found in [80]

where

u = u(z) and m = m(z), where z = x− ct, (1.4)

and c is the wave speed. In what follows, we will let ′ denote d/dz and rewrite (1.1) in

the form of the conservation law

(
m1/b

)
t
+
(
m1/bu

)
x

= 0. (1.5)

For b 6= 0, the conservation law (1.5) for traveling waves becomes

(
(u− c)m1/b

)′
= 0, (1.6)

which after integrating gives

(u− c)bm = K. (1.7)

For b > 0, (1.1) has nontrivial solutions (m(x, t)) vanishing as |z| → ∞ so that K = 0 in

(1.7). Thus, one obtains

(u− c)bm = 0, (1.8)
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which yields the generalized function solutions

m = cδ(z) and u = G ∗m = cG(z),

matched by u− c = 0 at z = 0 and where δ(x) is the Dirac delta-function. This gives a

traveling wave, whose shape in u is given by the kernel G. Nonlinear interactions among

these solutions are governed by the following superposition of solutions:

u(x, t) =
N∑
i=1

pi(t)G(x− qi(t)). (1.9)

This class of solutions satisfy a finite dimensional dynamical system for the amplitudes

denoted by pi(t), and the associated locations denoted by qi(t).

The family of evolutionary PDEs given by (1.1)–(1.2) arises in diverse scientific appli-

cations such as shallow water waves, computational anatomy, mechanical vibrations and

turbulent fluid flows (see, e.g. [20, 73, 76, 77, 78]). These equations also enjoys several

remarkable properties both in the 1-D and multi-dimensional cases, see, e.g. [16, 110].

The quadratic terms in (1.1) represents the balance in fluid convection between nonlinear

transport and amplification due to b-dimensional stretching. If one considers G as the

Green’s function associated with the modified 1-D Helmholtz operator, I − α2∂xx, then

G(x) =
1

2α
e−|x|/α, (1.10)

and (1.1) reduces to

mt +mxu+ bmux = 0 m = u− α2uxx, x ∈ R, t > 0, (1.11)

where α is some length scale. If, for example, we consider m as the fluid momentum in

(1.11) then we have b = 2; see e.g., [81]. It turns out that this case b = 2 coincides with

the dispersionless case of the Camassa-Holm (CH) equation for shallow water waves.

Furthermore, the case for b = 3 coincides with the Degasperis-Procesi (DP) equation

used to model the propagation of nonlinear dispersive waves, see [55].In this special

case, the corresponding traveling wave solutions assume the form u(x, t) = ae−|x−ct|/α,

with speed c, amplitude a and length α. The traveling wave solutions to (1.11) are

characterized by a discontinuity in the first derivative at their peaks since ux(x, t) =

− a
α

sgn(x−ct)e−|x−ct|/α and are thus referred to as peakon solutions. Both the CH and DP
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equations are completely integrable as Hamiltonian systems and their peakon solutions

are true solitary waves that emerge from the initial data. Peakons for either b = 2 or b = 3

exhibit a remarkable stability–their identity is preserved through nonlinear interactions,

see, e.g. [16, 129] and [53, 54, 55, 110, 117]. Peakons corresponding to b = 2 and b = 3

are also orbitally stable–i.e. their shape is maintained under small perturbations, see, e.g.

[47, 58, 103]. We note that peakons can also be considered as waves of largest amplitude

that are exact solutions of the governing equations for irrotational water waves, see [140].

For a more complete discussion on the hydrodynamical properties of peakons generated

from the CH or DP equation, we refer the reader to [45, 86].

The two-dimensional (2-D) version of (1.11) with b = 2, the so-called EPDiff equation

(Euler-Poincaré equation associated with the diffeomorphism group) is given by

∂m

∂t
+ u · ∇m +∇uT ·m + m(div u) = 0, m = u− α2∆u, (1.12)

and appears in the theory of fully nonlinear shallow water waves [78, 79, 80, 81]. Applying

viscosity to the incompressible, three-dimensional analog of this equation produces the

Navier-Stokes α-model for the averaged fluid equations (see, e.g., [20]). The equation

(1.1) has many further interpretations beyond fluid applications. For instance, in 2D, it

coincides with the averaged template matching equation (ATME) for computer vision

(see, e.g., [73, 76, 77]). One could also use (1.1) to quantify growth and other changes in

shape, such as occurs in a beating heart, by providing the transformative mathematical

path between the two shapes, (see, e.g, [78]).

The Cauchy problems for both the CH (b = 2) and DP (b = 3) equations have been

extensively studied in the literature. We refer the reader to a review paper [121], where a

survey of recent results on well-posedness and existence of local and global weak solutions

for the CH equation is presented. In particular, the local well-posedeness results for the

CH equation in Hs(R), s > 3/2, were established in [40, 108, 133]. The continuation of

solutions to the CH equation after wave breaking in L∞ (R+, H
1 (R)) was established in

[11, 12]. The existence of a global weak solution to the CH equation in L∞ (R+, H
1 (R))

was proven in [11, 41, 145] and in [46], it was shown that this global solution is unique.

Recent results related to well-posedness and existence of local and global weak solu-

tions of the DP equation can be found, e.g., in [37, 60, 116, 147, 148], where it was proven

that the global weak solutions of the DP equation belong to L∞ (R+, H
1 (R)) and global

entropy weak solutions are in L∞ (R+, L
1(R) ∩ BV(R)) and L∞ (R+, L

2(R) ∩ L4(R)). The
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local well-posedeness and several global existence results were obtained in [61] for a gen-

eral case of the initial-value problem (IVP) (1.11), (1.2) with different values of the

parameter b.

Capturing peakon solutions numerically poses quite a challenge–especially if one con-

siders a peakon-antipeakon (a peakon with negative initial weight) interaction. Several nu-

merical methods have been proposed for simulating peakon interactions for the CH equa-

tion such as finite-difference [38, 74, 75], finite-volume [3] finite-element [119, 132, 146],

and spectral [34, 39, 62, 88, 89] methods. A few numerical methods, such as conservative

finite-difference schemes, have been used to study the DP equation (see [118]). Many

of these methods are computationally intensive and require very fine grids along with

adaptivity techniques in order to simulate the peakon behavior.

Solutions of (1.1), (1.2) can be accurately captured by using a particle method as it

was shown in our paper [31] as well as in [17, 18, 22] for the CH equation and in [22]

for the EPDiff equation. In the particle method, described in our paper [31] and in [22],

the solution is sought as a linear combination of Dirac distributions, whose positions and

coefficients represent locations and weights of the particles, respectively. The solution

is then found by following the time evolution of the locations and the weights of these

particles according to a system of ODEs obtained by considering a weak formulation

of the problem. The particle methods presented in [17, 18] have been derived using a

discretization of a variational principle and provide the equivalent representation of the

ODE particle system. The main advantage of particle methods is their (extremely) low

numerical diffusion that allows one to capture a variety of nonlinear waves with high

resolution, see, e.g., [25, 29, 30, 131] and references therein.

A convergence analysis for the particle method applied to the CH equation was studied

in [129] and in our paper [31]. In [129], the authors used the Hamiltonian structure of the

CH equation and its complete integrability to establish error estimates for the particle

method when the solutions are smooth. In our paper [31], the convergence of the particle

method for the CH equation has been proven using the concept of space-time bounded

variation. Properties of the particle method were also studied in the context of the DP

equation in [53, 54, 55, 81].

The thesis is organized as follows. For the remainder of this chapter, we develop

the numerical and analytical techniques that will be pertinent to our study as well as

provide background information for the considered equations that we wish to study. In
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Chapter 2, we provide global existence and uniqueness results for the family of fluid

transport equations given by (1.1) by establishing convergence results for the particle

method applied to these equations. In Chapter 3, we study the dynamics of the interaction

among a special class of solutions of the 1-D CH equation as well as showcase the merits of

using particle methods to simulate solutions to the CH equation using arbitrary smooth

initial data. In Chapter 4, we consider a two-component generalization of the CH equation

as a possible model for the long time propagation of tsunami waves by implementing a

variety of numerical methods with pertinent initial data. In Chapter 5, we conclude the

thesis by providing some future goals related to our study.

1.1 Camassa Holm Equation and Its Generalizations

Completely integrable nonlinear evolutionary partial differential equations often arise in

various applications in shallow water wave theory. By completely integrable, we mean

that there is some change of variables such that the given evolution equation in the

new variables is equivalent to a linear flow at constant speed. The Korteweg-de Vries

(KdV) equation is perhaps one of the most famous and extensively studied examples in

this particular class of equations (see e.g. [90]). The KdV equation is typically regarded

as the prototypical example of a nonlinear evolutionary PDE whose solutions can be

exactly specified and are given by solitons– localized solutions which undergo a strongly

nonlinear complex interaction but retain their form after the interaction, with the possible

exception of a phase shift [102]. This thesis concerns itself with the CH equation (and

one of its generalizations) which describes surface waves in shallow water.

In 1993, Roberto Camassa and Darryl Holm proposed a new completely integrable

dispersive shallow water equation by using an asymptotic expansion directly in the Hamil-

tonian for Euler’s equations in the shallow water regime [129]:

mt + umx + 2uxm = −c0ux − γuxxx, m = u− α2uxx. (1.13)

Here m = u−α2uxx is the momentum variable, α2 and γ/c0 are squares of length scales,

and c0 =
√
g′h is the linear wave speed for undisturbed water of depth h at rest under

gravity g′ at infinity. We note that any constant value u = u0 is also a solution of (1.13).

With an appropriate Galilean transformation and a velocity shift (t → t + t0, x →
x+ x0 + ct, u→ u+ c+ u0,m→ m+ c+ u0), one may absorb the linear dispersive terms

6



as seen in [80]. In this scenario, we are left with the following dispersionless CH equation:

mt + umx + 2uxm = 0, m = u− α2uxx. (1.14)

Indeed, one can derive a dispersion relation for (1.1) to understand why (1.1) corre-

sponds to the dispersionless CH equation (for the case b = 2). To this extent, we assume

a plane wave solution for the momentum m of the form:

m(x, t) = m0 + Aei(kx−ωt) = m0 + v(x, t). (1.15)

Here, m0 is the background uniform momentum, k is the wave number, |A| � 1 is a small

complex parameter (necessary for the linearizion) and ω is the frequency. By a dispersion

relation, we seek a relationship between k and ω of the form

ω = ω(k). (1.16)

We calculate u from (1.3) and (1.15) to obtain

u = G ∗ (m0 + v(x, t))

= G ∗m0 +G ∗ v(x, t)

= m0

∫ ∞
−∞

G(x− y) dy + Ae−iωt
∫ ∞
−∞

G(x− y)eiky dy

= m0

∫ ∞
−∞

G(x− y) dy + Aeikx−iωt
∫ ∞
−∞

G(z)e−ikz dz

= m0F [G](0) + F [G](k)v,

(1.17)

where F [G](k) is the Fourier transform of G(x) and is given by

F [G](k) =

∫ ∞
−∞

G(x)e−ikx dx. (1.18)

We substitute (1.15) and (1.17) into (1.1) to obtain

vt + (m0F [G](0) + F [G](k)v) vx + b (m0 + v) F [G](k)vx = 0. (1.19)
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To derive a dispersion relation, we linearize (1.19) to obtain

vt + (m0F [G](0) + bm0F [G](k)) vx = 0. (1.20)

Using v as was given in (1.15) to calculate vt and vx, we obtain the following dispersion

relation

ω(k) = km0 (F [G](0) + bF [G](k)) . (1.21)

Assuming that b 6= 0, from (1.21), we see that if m0 = 0, then the linearized flow is

dispersionless (i.e. w′′(k) = 0). This is what is meant by the dispersionless CH equation.

We recall that traveling waves, associated with differential equations, are solutions of

the form

u(x, t) = f(x− ct), (1.22)

which represents waves of a permanent shape f that propagates at some constant speed

c. The waves given by (1.22) are solitary if they are localized in the sense that the wave

profile decays at infinity. If in addition, these solitary waves retain their shape and speed

after interacting with other waves of the same type, then these waves are referred to as

solitons. The traveling wave solutions to (1.14) are given by (1.22) with f(x) = 1
2α
e−|x|/α

and are hence referred to as peakons–solitons with a sharp peak that is characterized

by a discontinuity in the first derivative. We remark that these particular traveling wave

solutions may be easily deduced by taking G(x) as given in (1.10). The interactions

among N peakons are given by

u(x, t) =
1

2α

N∑
i=1

pi(t)e
−|x−qi(t)|/α, (1.23)

where the amplitudes pi(t) and the locations qi(t) are given by a 2N dimensional dynam-

ical system (c.f. [129]) to be determined by substituting (1.23) into (1.14). This forms the

basis for applying a particle method for numerically simulating solutions to the considered

equations. We further discuss the particle method in the sections that follow.

The CH equation models breaking waves as was shown in [18] and [129]. In the

situation of a breaking wave, we consider a solution which remains bounded but its slope

becomes unbounded in finite time. It was shown in [129] that the only way singularities

may arise in solutions to the CH equation is in the form of breaking waves. Moreover,
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from the knowledge of a smooth initial profile it is possible to predict the occurrence

of wave breaking. If wave breaking occurs, then one can proceed with the continuation

of solutions in one of two ways. One may consider either the conservative case which is

characterized by the conservation of energy or the dissipative case which accounts for the

the loss of energy due to breaking.

In [129], Camassa and Holm first observed that (1.13) was bi-Hamiltonian; that is,

the equation can be expressed in Hamiltonian form in two different ways. Recalling that

m = u − α2uxx, the two compatible Hamiltonian descriptions of the CH equations are

given by

mt = − (m∂x + ∂xm)
δH1

δm
= −∂x

(
1− α2∂2

x

) δH2

δm
= −∂x

δH2

δu
, (1.24)

with the following conserved quantities:

H1 =
1

2

∫
R

(
u2 + α2u2

x

)
dx and H2 =

1

2

∫
R

(
u3 + α2uu2

x

)
dx.

Because of this unique property, the CH equation possesses an infinite number of conser-

vation laws. Given the fact that both the KdV equation and the CH equation are com-

pletely integrable, it is no surprise that the KdV equation and CH equation are related

in some formal way. Indeed, the KdV equation appears at linear order in an asymptotic

expansion for unidirectional shallow water waves in a free surface under gravity. The ex-

pansion is made in terms of two small dimensionless ratios for small-amplitude long waves

in shallow water. At quadratic order in the same asymptotic expansion, the Camassa-

Holm equation is derived. We note that the KdV equation may be recovered if we take

α2 → 0. Additional information regarding the derivation and associated properties of the

CH equation may be found in [43, 44, 51].

Recently, the CH equation has been extended to a two-component integrable system

(2CH) which includes both velocity and density variables in the dynamics. In particular,

the CH equation has been extended so as to combine its integrability property with

compressibility, or free-surface elevation dynamics in its shallow-water interpretation.

This extension involves adding a continuity equation for the scalar density, or total depth,

ρ for real functions and including a pressure term involving ρ in the equation for the fluid

momentum, as well as the fluid velocity u (see e.g. [42, 82, 84, 107]). To this regard, the

2CH equation is given by the following system of equations
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mt + umx + 2mux = −gρρx,

ρt + (ρu)x = 0.
(1.25)

Similar to the CH equation, one may derive a dispersion relation for (1.25). To this

extent, we assume a plane wave solution for the momentum m and the density ρ of the

forms:
m(x, t) = m0 + Aei(kx−ωt) = m0 + v(x, t),

ρ(x, t) = ρ0 +Bei(kx−ωt) = ρ0 + w(x, t).
(1.26)

Here, m0 is the background uniform momentum, ρ0 is the background uniform density,

k is the wave number, |A|, |B| � 1 are small complex parameters (necessary for the

linearizion) and ω is the frequency. By substituting (1.26) and (1.17) into (1.25) and

linearizing the results we obtain

vt + (m0F [G](0) + 2m0F [G](k)) vx = −gρ0wx,

ρt + ρ0F [G](k)vx +m0F [G](0)wx = 0.
(1.27)

Using our definition for v and w in (1.26), we obtain the following system of equations

written in matrix form−ω + km0 (F [G](0) + 2F [G](k)) kgρ0

kρ0F [G](k) −ω +m0kF [G](0)

A
B

 =

0

0


Since A,B 6= 0, we must have that det(M) = 0 where

M =

−ω + km0 (F [G](0) + 2F [G](k)) kgρ0

kρ0F [G](k) −ω +m0kF [G](0)

 .
Thus, to find the dispersion relation, we must solve

(−ω + km0 (F [G](0) + 2F [G](k))) (−ω +m0kF [G](0))− gk2ρ2
0F [G](k) = 0, (1.28)

for ω. Solving this quadratic equation for ω yields the following results:

ω(k) = m0kF [G](0) +m0kF [G](k)±
√
m2

0k
2(F [G](k))2 + gk2F [G](k)ρ2

0. (1.29)

10



This particular multicomponent generalization of the CH equation has been studied

extensively and was shown to be completely integrable in [42]. Additionally in [42], it

was shown that similar to the CH equation, (1.25) has a Lax pair formulation and is

bi-Hamiltonian. Many others studied a modified version of (1.25) which supports peakon

solutions (see e.g. [59, 123] and references therein). However, a hallmark feature of (1.25)

is that the system was shown to be physically relevant in [42]. There, it was shown

how the system given by (1.25) arises in shallow water theory, where it is derived from

the Green-Naghdi [69] equations using appropriate expansions in terms of physical pa-

rameters. The Green-Naghdi equations themselves are approximate models to the full

governing equations [69] and are commonly used in coastal oceanography to describe the

propagation of large amplitude surface waves. The shallow water scaling (µ � 1), gives

rise to the Green-Naghdi equations where µ is a dimensionless parameter given by

µ =
h2

λ2
,

where h is the mean depth and λ is the typical wavelength of the waves under consider-

ation. In [42], it was also shown that the only way for singularities to occur in smooth

solutions is through wave breaking–a similar occurrence for the 1-D CH equation. In

addition, they were able to establish the global existence of small amplitude solutions of

(1.25) and large amplitude traveling wave solutions with initial data that has a sufficient

rate of decay. From their investigation, it was determined that unlike the CH equation,

the solitary waves generated form (1.25) must be smooth and hence cannot be referred

to as peakon solutions. In Chapter 4, we show how the 2CH equation may be derived

in the context of shallow water wave theory and from there determine its potential as a

relevant model for the long time propagation of tsunami waves.

1.2 Numerical Methods

Because exact answers to mathematical problems derived from real world considerations

are usually impossible to find, we employ numerical tools in an attempt to provide ad-

equate approximations to solutions of these problems. Numerical methods are rich and

varied and have been used for centuries to approximate solutions and other mathemat-

ical quantities of interest. In the field of numerical PDEs, one may consider a variety of

numerical methods/tools to approximate a solution to a PDE. For example, one may con-
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sider using a finite difference method, for which a function is represented by its values at

certain grid points and derivatives are approximated through differences in these values.

Another popular numerical tool involves the method of lines, where all but one variable

is discretized. The result is a system of ODEs in the remaining continuous variable. One

may also consider a finite volume method, where the computational domain is divided

into regions or volumes and the change within each volume is computed by considering

the flux (flow rate) across the surfaces of the volume. In this thesis, we focus our attention

on two particular methods for obtaining a numerical solution for the b-equation of fluid

transport equations and its generalizations.

1.2.1 Finite Volume Method For Systems of Conservation Laws

In this section, we describe an important class of numerical methods for solving systems

of hyperbolic conservation laws. Finite Volume methods (FV) are typically useful for

solving these types of problems thanks to their ability to capture (possibly) discontinuous

solutions in an accurate and non-oscillatory manner. To begin the process for formulating

a finite volume method for a system of conservation laws, we consider the following (for

simplicity) 1-D version of a system of conservation laws:

∂

∂t
q(x, t) +

∂

∂x
f(q(x, t)) = 0, (1.30)

where q := (q1, . . . , qn) and f := (f1, . . . , fn) are mappings from Rn into Rn and (1.30) is

subjected to some initial condition of the form

q(x, 0) = q0(x). (1.31)

Here, q(x, t) is the quantity under consideration, f(q) is the flux function, and x and t

are the spatial and time variables respectively. If we let A(q) denote the n× n Jacobian

of f then we may express (1.30) in the following quasilinear form

qt + A(q)qx = 0, (1.32)
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with

A :=


∂f1
∂q1

. . . ∂f1
∂qn

...
. . .

...

∂fn
∂q1

. . . ∂fn
∂qn

 .

The system given by (1.30) is said to be strictly hyperbolic if its Jacobian matrix A(q)

has n real, distinct eigenvalues that can be ordered in such a way: λ1(q) < . . . < λn(q).

In general, if we are given smooth initial conditions and A is sufficiently smooth, then a

smooth solution exists for at least a short time. However, it is well known that for systems

of nonlinear conservation laws, a solution may develop a singularity in finite time, even if

A and g are infinitely differentiable functions. Thus, while (1.30) is in the conservation

form of the conservation law, it is usually advantageous to consider a weak solution to

(1.30) in order to study the associated singularities that may arise in the solution. Indeed

we say that q(x, t) is a weak/distributional solution to (1.30)–(1.31) if and only if

∫ ∞
0

∫ ∞
−∞

q(x, t)φt(x, t) + f(q(x, t))φx(x, t) dx dt = −
∫ ∞
−∞

q(x, 0)φ(x, 0) dx, (1.33)

for every C1 function φ : Ω ⊂ R × R+ → Rn with compact support. We remark that

using integration by parts, one could show that if q and A are C1 functions, then (1.33)

implies that q is a solution to (1.30). We also note that from this definition, we only

require q to be locally integrable in R. To investigate weak solutions for (1.30), we

typically solve Riemann problems which are conservation laws of the form (1.30) coupled

with the following special class of initial conditions:

qo(x) =

 ql : x < 0

qr : x > 0
. (1.34)

Characteristic curves are curves in the solution space along which the PDE becomes

an ordinary differential equation (ODE). The union of the solutions, or the integral

surface, of the ODEs that pass through the initial curve is the solution to the PDE. One

can visualize this process as flowing out from each point of the initial curve along the

characteristic curve that passes through this point. For example, in linear problems these

curve are necessarily parallel and their slopes (or characteristic speeds) are given by the
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coefficient matrix A(q) = A. For nonlinear problems, the eigenvalues of the Jacobian

matrices depend on the solution, and thus the possibility exists that as we evolve the

solution, we will observe regions on the wave that propagate faster or slower than other

regions. If two characteristics intersect at any given time, then we have a solution that

has different values at the same point. That is, the integral surface has folded over on

itself. Thus, the solution is discontinuous and we can no longer consider derivatives at this

point. To avoid such a situation, we consider the weak form of the PDE (i.e. we look for a

solution which satisfies (1.33)). Shocks occur in our solution whenever two characteristic

curves carry conflicting information and meet. To investigate the development of shocks

in our solution, we let Λ be a surface which separates our considered domain Ω into two

separate regions, say Ω1 and Ω2. Suppose that q|Ω1 = q1, and q|Ω2 = q2 are the initial

states in the given regions. Then q satisfies (1.33) if any only if q is a classical solution

(i.e q solves (1.30)) in each region Ω1 and Ω2 and the Rankine-Hugoniot (R-H) jump

condition holds along Λ. The R-H jump condition is given by

nt [q] + nx [f (q)] = 0, (1.35)

where the unit normal vector is given by n = (nt, nx). In our example, we have that the

jump across the solution q is given by

[q] = q2 − q1, (1.36)

and the jump across the flux function is given by

[f (q)] = f (q2)− f (q1) . (1.37)

For additional information regarding hyperbolic PDEs and hyperbolic systems of con-

servation laws, we refer the reader to [64, 104, 120, 136, 137, 141]. For more information

about the general theory of PDEs, we refer the reader to [64, 83, 120, 128, 138, 142, 149].

We now turn our attention to the formation of finite volume schemes. To this extent,

we consider the integral form of a conservation law which takes on the following form:

d

dt

∫
Ci

q(x, t) dx = f(q(xi−1/2, t))− f(q(xi+1/2, t)). (1.38)

where Ci is the ith subdomain (grid cell) denoted by
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Ci =
[
xi−1/2, xi+1/2

]
. (1.39)

In the 1-D case, finite volume methods involve dividing a computational domain into

subdomains (sometimes called finite volumes and/or grid cells) and then approximating

the integral of q(x, t) over these subdomains. We use the fluxes through the endpoints

of the intervals to update the approximation at each time step. To this extent, we define

our grid cells given in (1.39) by subdividing our computational domain and letting ∆x =

xi+1/2 − xi−1/2 , xi = i∆x, and xi+1/2 = xi + ∆x
2

, i = 1, . . . , N , where N denotes the size

of each subinterval. In each cell average, we denote the approximation of the integral of

q(x, t) by q̄(x, t) given by

q̄ni ≈
1

∆x

∫
Ci

q(x, tn) dx, (1.40)

at time tn and ∆x = xi+1/2 − xi−1/2. We note that if q(x, t) is a smooth function, then

one may obtain a second-order approximation of the integral given in (1.40) through the

midpoint rule. To evolve this cell average in time, we integrate (1.38) from tn to tn+1 to

obtain:

∫
Ci

q(x, tn+1) dx−
∫
Ci

q(x, tn) dx =

∫ tn+1

tn
f
(
q(xi−1/2, t)

)
dt−

∫ tn+1

tn
f
(
q(xi+1/2, t)

)
dt.

(1.41)

By rearranging terms and dividing by ∆x we obtain

1

∆x

∫
Ci

q
(
x, tn+1

)
dx =

1

∆x

∫
Ci

q(x, tn) dx− 1

∆x

[∫ tn+1

tn
f
(
q(xi+1/2, t)

)
dt−

∫ tn+1

tn
f
(
q(xi−1/2, t)

)
dt

]
.

(1.42)

This tells us exactly how one should update the cell averages q̄ in one time step. However,

in general we cannot directly evaluate the integrals on the right hand side because q varies

with time along each edge of the cell, and the exact solution for q is unknown. We may

rewrite (1.42) using cell averages as follows:
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q̄n+1
i = q̄ni −

1

∆x

[∫ tn+1

tn
f
(
q(xi+1/2, t)

)
dt−

∫ tn+1

tn
f
(
q(xi−1/2, t)

)
dt

]
. (1.43)

We now see that the issue lies in approximating the flux functions. In fact, the decision

on how to approximate the integrals in (1.43) is what gives rise to finite volume methods.

From (1.43), we see that we are interested in studying numerical schemes of the form

Qn+1
i = Qn

i −
∆t

∆x

(
F n
i+1/2 − F n

i−1/2

)
, (1.44)

where

F n
i+1/2 ≈

1

∆t

∫ tn+1

tn
f(q(xi+1/2, t)) dt. (1.45)

One key advantage in working with grid averages rather then pointwise values for q(x, t)

is the ease of mimicking certain useful properties associated with conservation laws. In

particular, by considering grid averages, one may ensure that a numerical method is

conservative in the sense that the total mass within the computation domain will be

preserved. This is true since the sum
∑N

i=1 Q
n
i ∆x approximates the integral of q over

the interval [a, b], and thus if our scheme is conservative, then the discrete sum given

above will be altered only due to the fluxes at the boundary points. The method that we

describe below is an example of a conservation form which is useful for capturing shock

solutions.

In choosing how to approximate the fluxes given in (1.45), one should take into account

the convergence of the resulting numerical scheme. That is, we require that the numerical

solution, generated from applying a finite volume method, should converge to the true

solution of the differential equation as the grid is refined (i.e. as ∆x,∆t→ 0). In analyzing

the convergence of a numerical scheme, we are typically concerned with satisfying the

following two conditions:

• The finite volume method should be consistent with the differential equation. That

is, the method approximates the solution well locally.

• The finite volume method should be stable. That is, small errors made in each time

step do not grow too fast in later time steps.

Regarding consistency, we locally measure the accuracy of the numerical method in
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approximating the solution. That is, we require that the local truncation error go to 0 as

∆x,∆t→ 0. We also require that our method be stable. By stable, we mean that small

changes in the initial data will result in small changes in the numerical approximation.

That is, small errors in each time step should not grow too quickly. To analyze these

properties further, we use the hyperbolicity of the equation to write the scheme in a

manner that is more convenient for us to study. Since we expect information to propagate

in a finite amount of time, one may assume that the fluxes F n
i−1/2 can be obtained by

the cell averages on either side of the grid, Qn
i and Qn

i−1. With this assumption,the fluxes

may be approximated by a function of the form

F n
i−1/2 = F

(
Qn
i , Q

n
i−1

)
, (1.46)

where F is some numerical flux function. This allows us to recast our numerical scheme

as

Qn+1
i = Qn

i −
∆t

∆x

(
F
(
Qn
i , Q

n
i+1

)
−F

(
Qn
i , Q

n
i−1

))
. (1.47)

To determine if a numerical scheme is consistent, we need to check the accuracy of the

approximation of the integrals given in (1.45). We observe that if q(x, t) = q̄ is constant

in x, then the integral in (1.45) simply reduces to f(q̄). Thus, if Qn
i−1 = Qn

i = q̄, then

the numerical flux function also reduces down to f(q̄), so we require

F (q̄, q̄) = f(q̄), (1.48)

for any such value q̄. We also generally expect continuity in F as Qi and Qi−1 vary,

so that F (Qi−1, Qi) → f (q̄) as Qi−1, Qi → q̄. Thus, we would also like to enforce a

Lipschitz continuity condition. That is, we require the existence of a constant L > 0 so

that

|F
(
Qn
i , Q

n
i−1

)
− f(q̄)| ≤ Lmax (|Qi − q̄|, |Qi−1 − q̄|) . (1.49)

Recall that, for hyperbolic problems, information propagates along the characteristics at

finite speed. Thus, the domain of dependence for a fixed point is necessarily a bounded

set. The bounds of this set are determined by the eigenvalues of the flux of the Jacobian

f ′ (q). In order for the numerical method to be stable, it must necessarily satisfy the

Courant-Friederichs-Lewy (CFL) condition which states that the numerical domain of

17



dependence must contain the actual domain of dependence of the PDE. This is obviously

necessary, since if there exists information contributing to the evaluation of a quantity

that is not being considered by the numerical method, then a change in the initial data

outside the numerical domain of dependence would not affect the approximation, while

the true solution would change. We remark that the CFL condition is a necessary, but not

a sufficient condition for stability. In what follows, we discuss how one may approximate

the fluxes to derive a finite volume method for the numerical simulation of systems of

conservation laws.

Godunov Schemes

In numerical analysis and computational fluid dynamics, Godunov’s scheme is a conserva-

tive numerical scheme, suggested by S. K. Godunov in 1959, for solving partial differential

equations. This important class of finite volume methods solves exact, or approximate,

Riemann problems at each inter-cell boundary. In its basic form, Godunov’s scheme is

first order accurate in both space, and time, yet can be used as a base scheme for devel-

oping higher-order methods. In [65], the information available at time tn is reconstructed

using a piecewise polynomial function over the cell averages. To update the information

to time tn+1, we must solve a corresponding Riemann problem that results from this re-

construction.We remark that the solutions to Riemann problems are not easily accessible

nor necessarily available, thus limiting the types of problems to which the method may

be applied. For systems of conservation laws, because waves may propagate in different

directions, solutions to the Riemann problem are even more complicated. In general, his

method can be interpreted as the following REA algorithm:

1. Reconstruct a piecewise polynomial function q̃n(x, tn) from the cell averages Qn
i .

In the simplest case, q̃n(x, tn+1) is a piecewise constant on each grid cell:

q̃n(x, tn) = Qn
i , for all x ∈ Ci.

2. Evolve the hyperbolic equation with this initial data to obtain q̃n(x, tn+1).

3. Average this function over each grid cell to obtain new cell averages.

Qn+1
i =

1

∆x

∫
Ci

q̃n(x, tn+1) dx. (1.50)
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Generally, the piecewise reconstruction is given as:

q(x, tn) ≈ pni (x), for x ∈ Ci, (1.51)

which is typically discontinuous at the cell interfaces x = xi±1/2.

The stability of the finite volume method is, in general, guaranteed when (1.51) is non-

oscillatory, which is accomplished by the use of slope limiters. A library of non-oscillatory

reconstructions is available, (see e.g., [1, 36, 64, 71, 72, 91, 97, 106]). A more detailed

description of the linear piecewise reconstruction is provided in the section describing the

semi-discrete central upwind scheme, which is a special class of FV methods. We note

that this piecewise reconstruction allows one to obtain an exact evolution of the solution.

This solution is given by a finite set of waves traveling at constant speeds. Typically,

depending on the type of grid cells used in the derivation of the scheme, Godunov’s

method requires the solutions to the Riemann problems that arise at the grid interfaces.

In what follows, we discuss a few possibilities for calculating the numerical flux func-

tions in terms of the cell averages available on either side of the flux interface. To this

extent, we will consider two ways to determine the control volumes over which the flux

function is integrated. These two methods for constructing numerical approximations to

the flux functions divide Godunov schemes into two distinct classes: upwind schemes and

central schemes.

Upwind Schemes Versus Central Schemes

Recall that for hyperbolic problems, we expect the information to propagate with a finite

speed. That is, the waves generated by solving the hyperbolic problem travel at finite

speeds. A major goal of upwind methods is to use information about how a solution

behaves at previous time steps to determine the numerical flux functions. Upwind meth-

ods anticipate the arrival of information along the characteristics on which they travel.

Because of this, upwind methods are typically able to produce numerical solutions that

are less diffusive.

If we consider the 1-D conservation law given by (1.32), then using upwind schemes,

one may update the cell averages at t = tn+1 by approximating the integrals on the right

hand side of (1.45). One significant disadvantage involved in using upwind schemes is that

since the piecewise polynomial reconstruction is usually discontinuous at the interfaces

x = xj± 1
2
, one must approximate the solution to the Riemann problems that arise there.
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As mentioned earlier, this is typically a costly, complicated task. For more information

regarding Riemann solvers and upwind schemes, we refer the reader to [5, 9, 36, 64, 65,

91, 104, 141].

Central schemes are usually easier to implement in comparison to upwind schemes,

and hence are more applicable to a wide range of problems in a melange of fields. A

hallmark feature of central schemes, is that no information about the solution is required

to implement the scheme successfully. While the central scheme is easier to implement

than the upwind scheme, it is more prone to the development of spurious oscillations

during the propagation of the solution. To evolve the solution via a central scheme, one

may use the following formula which incorporates a staggered grid:

q̄n+1
i+1/2 =

1

2∆x

(∫ xj+1/2

xj−1/2

qnj (x) dx+

∫ xj+1/2

xj−1/2

qnj+1(x) dx

)

− 1

∆x

[∫ tn+1

tn
f (q(xi+1, t)) dt−

∫ tn+1

tn
f (q(xi+1, t)) dt

]
.

(1.52)

In contrast to the upwind schemes, the solution is smooth in a neighborhood of the

points {xj}. Thus, by using an appropriate quadrature formula, one may approximate

the flux integrals given in (1.52). For more information regarding central schemes, we

refer the reader to [2, 6, 85, 104, 106, 109, 112, 115, 122, 125, 126, 134].

Semidiscrete Central Upwind Scheme

The semi-discrete central upwind scheme considered in [48, 92, 93, 96, 98, 99, 100], com-

bines the advantages of both central schemes and upwind schemes. The main advantages

of central upwind schemes are the high resolution, due to the smaller amount of numer-

ical dissipation–a key advantage of the upwind method, and the ease of use–a hallmark

feature for central schemes. There are no Riemann solvers to consider and thus this makes

central upwind schemes a universal tool for a wide variety of applications. In fact, semi-

discrete central upwind schemes have been used to solve a variety of partial differential

equations–in particular for systems of hyperbolic conservation laws and Hamilton-Jacobi

equations.We remark that much like upwind schemes, central upwind schemes consider

the directions for which a wave propagates during its evolution. In what follows, we

consider a one dimensional system of N strictly hyperbolic conservation laws and follow
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the methods of [94, 96] to develop a semi-discrete central upwind scheme for the con-

sidered equations. We recall the 1-D system of N strictly hyperbolic conservation laws

given by (1.30).To construct a semi-discrete central upwind scheme, we use the following

equivalent integral form for (1.30)

q(x, t+ ∆t)

=q(x, t)− 1

∆x

[∫ t+∆t

t

f

(
q

(
x+

∆x

2
, τ

))
dτ −

∫ t+∆t

t

f

(
q

(
x− ∆x

2
, τ

))
dτ

]
.

(1.53)

Here we denote the cell average (the sliding averages of q(·, t) over the interval(
x− ∆x

2
, x+ ∆x

2

)
), q(x, t) as

q(x, t) :=
1

∆x

∫
I(x)

q(ξ, t) dξ, I(x) =

{
ξ : |ξ − x| < ∆x

2

}
. (1.54)

For a particular choice of time, say t = tn, we consider (1.53), coupled with a piecewise

polynomial initial condition

q̃(x, tn) = pnj (x) xj−1/2 < x < xj+1/2 for all j, (1.55)

where xi = i∆x and is obtained from the cell averages, computed at the previous time

step. We then evolve this reconstruction according to (1.53). We note that the order of

accuracy for such a method will depend both on the order of accuracy of the piecewise

polynomial reconstruction and on the quadrature used to approximate the integrals given

in (1.53). For instance, one may use a midpoint quadrature to estimate the integral given

in (1.53), and the following piecewise linear polynomial reconstruction:

pj(x, t) = q(xj, t) + s(xj)(x− xj). (1.56)

For the second-order central upwind scheme to be non-oscillatory, one must use a non-

linear limiter when computing (1.56). For instance, one could use

s(xj) = minmod

(
θ
qnj − qnj−1

∆x
,
qnj+1 − qnj−1

2∆x
, θ

qnj+1 − qnj
∆x

)
, (1.57)
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where 1 ≤ θ ≤ 2 and

minmod(x1, x2, . . .) :=


minj {xj} : xj > 0 ∀j

maxj {xj} : xj < 0 ∀j

0 : otherwise

. (1.58)

We observe that there may exist discontinuities at the end points for each value of j in

our linear piecewise polynomial reconstruction. These possible discontinuities propagate

with right- and left sided local speeds, which may be estimated as follows

a+
j+1/2 = max

{
λN

(
∂f

∂q

(
q−j+1/2

))
λN

(
∂f

∂q

(
q+
j+1/2

))
, 0

}
a−j+1/2 = min

{
λ1

(
∂f

∂q

(
q−j+1/2

))
, λ1

(
∂f

∂q

(
q−j+1/2

))
, 0

}
,

where λ1 < . . . < λN are the N eigenvalues of the Jacobian ∂f
∂q

. Given a piecewise

polynomial reconstruction, p(x), then

q+
j+1/2 := pj+1(xj+1/2) and q−j+1/2 := pj(xj+1/2)

where xj+1/2 = xj + ∆x
2

. The second-order semi-discrete central-upwind scheme is given

as
d

dt
qj(t) = −

Hj+1/2(t)−Hj−1/2(t)

∆x
. (1.59)

The numerical fluxes, Hj+1/2 are given by

Hj+1/2(t) :=
a+
j+1/2f

(
q−j+1/2

)
− a−j+1/2f

(
q+
j+1/2

)
a+
j+1/2 − a

−
j+1/2

+
a+
j+1/2a

−
j+1/2

a+
j+1/2 − a

−
j+1/2

[
q+
j+1/2 − q−j+1/2

]
.

(1.60)

We remark that the resulting scheme is a system of time dependent ODEs which

may be solved using a high-order (at least second order accuracy) method. For our

numerical experiments, we used a third-order SSP (strong stability preserving) Runge-
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Kutta method (see e.g. [66]) given as follows

q(1) = qn + ∆tL(q(n)),

q(2) =
3

4
qn +

1

4
q(1) +

1

4
∆tL(q(1)),

q(n+1) =
1

3
qn +

2

3
q(2) +

2

3
∆tL(q(2)),

where
d

dt
q = L(q). (1.61)

We also choose ∆t adaptively. That is, at each time step, we choose ∆t in such a way so

that ∆t < ∆x
amax

where

amax := max
j

{
a+
j+1/2,−a

−
j+1/2

}
.

We also note that while central-upwind schemes have been originally developed for

hyperbolic systems of conservation laws [94, 96, 101], they have been extended and applied

to hyperbolic systems of balance laws arising in modeling shallow water flows, see [19,

21, 26, 28, 93, 95, 98, 99].

1.2.2 The Particle Method For Transport Equations

In this section, we briefly describe particle methods in the context of linear transport

equations. While in recent years, the use of particle methods have been extended to

solve a wider variety of PDEs, see [22, 25, 29, 30, 31, 32, 50, 131], particle methods were

first used to solve linear transport equations, see [131]. To this extent, we consider the

following 1-D linear transport equation:

wt + (uw)x + u0 (x, t)w = S (x, t) . (1.62)

Here, w(x, t) is our unknown transported quantity. The velocity, u, coefficient u0, and

our source term S(x, t) are known quantities. The primary goal of the particle method

is to seek a solution to (1.62) as a linear combination of Dirac- delta functions which are

located at certain points in a given domain. To describe the particle method, we wish to

consider the following Cauchy problem as considered in [29, 131]:
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wt + (uw)x + u0 (x, t)w = S (x, t) ,

w(x, 0) = w0(x).
(1.63)

We assume that u0 ∈ C (R× [0, T )) . In the particle method, the location and weights of

the Dirac- delta functions are chosen in such a way that the initial condition is appro-

priately approximated. We then evolve these functions in time according to a system of

ODEs which can be derived from considering a weak formulation of the transport equa-

tion. To define what is meant by a weak solution, we first denote M(Ω) as the space of

measures defined on Ω ⊂ R which is the dual space of continuous functions from Ω→ R
with compact support (denoted by C0

0(Ω)). In this context, we may define a weak solution

as defined in [29].

Definition 1.2.1. A function w ∈M(R× [0, T )) is called a weak solution to (1.63) if

−
∫
R
w0(x)φ(x, 0)dx−

∫ T

0

∫
R
w(x, t) [φt(x, t) + u(x, t)φx(x, t)] dxdt

+

∫ T

0

∫
R
u0(x, t)w(x, t)φ(x, t)dxdt =

∫ T

0

∫
R
S(x, t)φ(x, t)dxdt,

holds for any test function, φ ∈ C1
0(R× [0, T )).

Along with Definition 1.2.1, we need to establish what is meant by a fundamental

solution. A fundamental solution to a partial differential equation is a solution (not

necessarily unique), which satisfies Lu = δ, where L is some linear differential operator.

To define a weak solution for the linear transport equation, we consider equation (1.62)

equipped with a special initial condition (and S(x, t) = 0 for simplicity):

wt + (uw)x + u0 (x, t)w = 0,

w0(x) = δ (x− x0) ,
(1.64)

where δ is the Dirac-delta function. In [131], a weak solution to equation (1.64) is given

by

w(x, t) = α(t)δ (x− x(t)) , (1.65)
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where
dx(t)

dt
= u(x(t), t), x(0) = x0,

dα(t)

dt
+ u0(x, t)α(t) = 0, α(0) = 1.

. (1.66)

To verify this weak solution, it suffices to show that the solution as given in (1.65) satisfies

our definition for a weak solution to (1.62). Using the definition of a weak solution, we

obtain:

−φ(x(0), 0)−
∫ T

0

α(t) [φt(x(t), t) + u(x(t), t)φx(x(t), t)] dt

+

∫ T

0

α(t)u0(x(t), t)φ(x(t), t)dt = 0.

Now, we add and subtract

∫ T

0

α(t)
dx

dt
φx(x(t), t) dt in the equation given above. We also

use the fact that along a particular curve x = x(t),

dφ(x(t), t)

dt
= φt(x(t), t) +

dx

dt
φx(x(t), t).

(via the chain rule). Combining these two facts yields the following equation:

−φ(x(0), 0)−
∫ T

0

α(t)
dφ(x(t), t)

dt
dt

−
∫ T

0

α(t)

[
u(x(t), t)− dx

dt

]
φx(x(t), t)dt+

∫ T

0

α(t)u0(x(t), t)φ(x(t), t)dt = 0.

If we integrate the second term by parts and combine like terms, we obtain:

−
∫ T

0

α(t)

[
u(x(t), t)− dx

dt

]
φx(x(t), t)dt

+

∫ T

0

dα

dt
+ α(t)u0(x(t), t) = 0.

Now, we recall the system of differential equations that x(t) and α(t) satisfy (i.e. (1.66)).

Because this equation holds for all test functions φ, we may conclude that equations (1.65)

and (1.66) form a weak solution to the transport equation. We note that by using the

superposition principle for ODES, we may derive a similar result for any initial data that

is a linear combination of δ functions. Given in [29], we state the following proposition:
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Proposition 1.2.2. Consider the following Cauchy problem:

wt + (uw)x + u0 (x, t)w = 0,

w0(x) =
N∑
i=1

αi(0)δ(x− xi(0)),
(1.67)

where αi(0) are given coefficients and xi(0) are the initial locations of the δ functions. If

we assume that u0 ∈ C(R× [0, T )), then a weak solution of the Cauchy problem given in

equations (1.67) is:

wN(x, t) =
N∑
i=1

αi(t)δ(x− xi(t)), (1.68)

where
dxi(t)

dt
= u(xi(t), t),

dαi(t)

dt
+ u0(xi(t), t)αi(t) = 0,

i = 1, . . . , N.

(1.69)

If S 6= 0, then when using a particle method, we must account for the contribution

given by this source term. This is done by considering the following particle approximation

for S(x, t):

S(x, t) ≈ SN(x, t) :=
N∑
i=1

βi(t)δ(x− xi(t)),

where

βi(t) =

∫
Ωi(t)

S(x, t)dx ≈ S(xi(t), t)|Ωi(t)|, (1.70)

where Ωi(t) is the domain that includes the ith particle. Here, the size of Ωi(t) is usually

obtained by solving the following ODE:

d

dt
|Ωi(t)| = |Ωi(t)|ux(xi(t), t). (1.71)

Once βi(t) has been determined, we solve the associated system of ODES for the transport
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equation with a source:

dxi(t)

dt
= u(xi(t), t),

dαi(t)

dt
+ u0(xi(t), t)αi(t) = βi(t). (1.72)

Solutions given by equation (1.68) are called particle solutions–that is, solutions which

are linear combinations of Dirac- delta functions which are then evolved in time through

solving an associated system of differential equations. We observe that as long as the

initial condition can be described as a linear combination of Dirac-delta functions, then

equations (1.68) and (1.69) represent an exact solution to the transport equation. Gen-

erally, we will need to approximate the initial condition, w0, by a linear combination

of Dirac-delta functions. Because of this, our particle solution will be an approximation

to the true solution. A natural question that arises when dealing with particle methods

is how an arbitrary initial datum w0 can be approximated by a linear combination of

Dirac-delta functions (or equivalently as a collection of particles). That is, we look for

(αi(0), xi(0)) such that w0(x) is accurately approximated by

w0(x) ≈ wN0 (x) =
N∑
i=1

αi(0)δ(x− xi(0)). (1.73)

This is typically done in the sense of measures, and since we are dealing with the Dirac

delta function, we must emphasize the fact that such a comparison is valid only through

the sense of distributions. Thus, for any test function, φ ∈ C0
0(Ω(0)), we compare the

following quantities:

∫
Ω(0)

w0(x)φ(x)dx =
N∑
i=1

(∫
Ωi(0)

w0(x)φ(x)dx

)
, (1.74)

with
N∑
i=1

αi(0)φ(xi(0)) =
N∑
i=1

(∫
Ωi(0)

w0(x)dx

)
φ(xi(0)), (1.75)

where Ωi(0) is chosen so that it is the domain that includes the ith particle and satisfies

the following property:

Ω1(0)⊕ · · · ⊕ ΩN(0) = Ω(0).

We observe that equation (1.75) is simply a quadrature for equation (1.74). Thus, we may

consider a midpoint rule, as was done in [29], (assuming that the ith particle is placed
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in the center of mass for Ωi(0)) for approximating the integral given in equation (1.75).

That is, we may set αi(0) = |Ωi(0)|w0(xi(0)).

To recover the solution w(x, t) at a particular x for some t > 0, we must regularize the

particle solution wN(x, t). Following [29], we may regularize the solution by considering

a convolution product with a “cutoff function” ζ(x) that takes into account the initial

tightness of the particle discretization (after a proper scaling). That is, we look at

wNε (x, t) =
(
wN ∗ ζε

)
(x, t) =

N∑
i=1

αi(t)ζε(x− xi(t)), (1.76)

where the function is taken as a smooth approximation of the δ-function which satisfies

ζε(x) =
1

ε
ζ
(x
ε

)
, and

∫
R
ζ(x) dx = 1.

We remark that the accuracy of the particle method will depend on the choice of the cutoff

function. We refer the reader to [35, 49, 70, 131] and references therein for a discussion

on possible choices for the cutoff function.

We are now in a position to summarize the process for using a particle method to

approximate solutions to the Cauchy problem given by equations (1.62) and (1.63). We

begin by first approximating the initial condition according to the discussion given above.

That is, we choose xi(0) and αi(0) in such a way that the initial condition is accurately

approximated. Next, we solve the system of differential equations for αi(t) and xi(t),

as given by equation (1.69) (if S = 0). We can then recover the particle solution for

the transport equation, wN(x, t), at a given time by equation (1.68). Finally, to recover

the solution w(x, t) at a particular x for some t > 0, we regularize the particle solution

wN(x, t) using (1.76).
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Chapter 2

Global Weak Solutions to the

b-Family of PDEs

2.1 Introduction

In this chapter, we apply the particle method from [22, 31] to the following family of

evolutionary 1+1 PDEs which we introduced in the previous chapter:

mt +mxu+ bmux = 0 u = G ∗m, x ∈ R, t > 0, (2.1)

with b > 1 and is considered subject to the initial condition

m(x, 0) = m0(x) x ∈ R, (2.2)

and propose a new self-contained proof of its convergence for any b > 1. To accomplish

this goal, we establish bounded variation (BV) estimates for the particle solution and use

the associated compactness properties found in [113, 114]. To this end, we assume that

the kernel G(x) in (2.1) satisfies the the following properties:

(I) G(x) is an even function, that is, G(−x) = G(x) for any x ∈ R and thus G′(0) = 0,

(II) G(x) ∈ C1(R\0), ||G||∞ = G(0),

(III) G(x), G′(x) ∈ L1(R) ∩ BV (R), and consequently both ||G||∞ and ||G′||∞ are

bounded, see e.g. [10].
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From this convergence result, we provide a novel method for obtaining global existence

and uniqueness results for (2.1), (2.2) with b > 1 and G(x) is given by:

G(x) =
1

2α
e−|x|/α (2.3)

and show that the global weak solution of (2.1), (2.2) has stronger regularity properties

than those previously established in, e.g., [61].

Chapter 2 is organized as follows. We begin in §2.2 with a brief overview of the particle

method applied to (2.1)-(2.2) and some of its main features which are relevant to our

discussion. We then show that both the particle solution and its derivative are functions of

bounded variation for any b > 1 and an arbitrary kernel G satisfying the above properties

(I)-(III). §2.3 is dedicated to the special case of IVP (2.1), (2.2) with b > 1 and G given

by (2.3). In particular, in §2.3.1, we prove that for a relatively wide class of initial data

there exists a unique global solution of the particle ODE system. Next, in §2.3.2, we use

the compactness results associated with BV functions and verify that both the particle

solution and its limit are weak solutions to the b-family of fluid transport equations (b-

equations), and complete our study on the convergence analysis. Finally, in §2.3.3, we

use our convergence results and the obtained BV estimates to prove the existence of a

unique global weak solution for the b-equations (2.1), (2.2) for any b > 1.

2.2 Particle Method for the CH Equation

In this section, we describe the particle method and show how it is used to solve the

b-equations. We also establish important conservation properties of the corresponding

particle system and obtain BV estimates of the particle solution that will allow us to

prove (in §2.3) our main result – existence of a global weak solution for the IVP (2.1),

(2.2).
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2.2.1 Description of the Particle Method for the CH Equation

To solve the b-equations by a particle method, we follow [22, 31] and search for a weak

solution of (2.1) as a linear combination of Dirac-delta functions:

mN(x, t) =
N∑
i=1

pi(t)δ(x− xi(t)). (2.4)

Here, xi(t) and pi(t) represent the location of the ith particle and its weight, and N

denotes the total number of particles. The locations and weights of the particles are then

evolved in time according to the following system of ODEs, obtained by substituting

(2.4) into a weak formulation of (2.1) (for a detailed derivation of the ODE system we

refer the reader to [22]):
dxi(t)

dt
= uN(xi(t), t),

dpi(t)

dt
+ (b− 1)uNx (xi(t), t)pi(t) = 0.

(2.5)

Using the special relationship between m and u given in (2.1), one can explicitly compute

the velocity u and its derivative, by the convolution uN = G ∗ mN . Thus we have the

following exact expressions for both uN(x, t) and uNx (x, t):

uN(x, t) =
N∑
i=1

pi(t)G(x− xi(t)), (2.6)

uNx (x, t) =
N∑
i=1

pi(t)G
′(x− xi(t)). (2.7)

With the exception of a few isolated cases, the functions xi(t) and pi(t), i = 1, . . . , N

must be determined numerically and the system (2.5) must be integrated by choosing

an appropriate ODE solver. In order to start the time integration, one should choose the

initial positions of particles, x0
i , and the weights, p0

i , so that (2.4) represents a high-order

approximation to the initial data m0(x) in (2.2), as it is shown in [22, 131]. The latter

can be done in the sense of measures on R. Namely, we choose (xi(0), pi(0)) in such a
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way such that for any test function φ(x) ∈ C∞0 (R), we have that

∫
R

m0(x)φ(x) dx ≈
〈
mN(·, 0), φ(·)

〉
=

N∑
i=1

pi(0)φ(xi), (2.8)

where

mN(x, 0) = mN
0 (x) =

N∑
i=1

pi(0)δ(x− xi(0)). (2.9)

Based on (2.8), we observe that determining the initial weights, p0
i , is exactly equivalent

to solving a standard numerical quadrature problem. One way of solving this problem is

to first divide the computational domain Ω into N nonoverlapping subdomains Ωi, such

that their union is Ω. We then set the ith particle xi(0) to be the center of mass Ωi. For

instance, given initial particles {xi(0)}Ni=1, we may define Ωi as

Ωi = [xi−1/2, xi+1/2] =
{
x | xi−1/2 ≤ x ≤ xi+1/2

}
, i = 1, . . . , N,

and by xi(0) the center of Ωi. For example, a midpoint quadrature will be then given by

setting pi(0) = ∆xm0(xi(0)), where ∆x = max
1≤i≤N

|xi+1 − xi|.

In general, one can build a sequence of basis functions {σi(x)}Ni=1 that will aid in

solving the numerical quadrature problem given by (2.8). Indeed, we have the following

proposition.

Proposition 2.2.1. Let χ(x) be a characteristic function,

χΩi
(x) =

1, when x ∈ Ωi,

0, when x ∈ X \ Ωi,

N∑
i=1

χΩi
= 1,

and σ(x) ∈ C∞0 (R) be a mollifier, that is,

σ(x) ≥ 0,

∫
R

σ(x) dx = 1, lim
ε→0

σε(x) = lim
ε→0

1

ε
σ(x/ε) = δ(x).

Then

1 = 1 ∗ σε =
N∑
i=1

χΩi
∗ σε =

N∑
i=1

σi(x).
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From here one can approximate the initial data by taking pi(0) =
∫
R σi(x) dm0 in

(2.9). We note that the latter makes sense only if m0 ∈ M(R), where M(R) is the set

of Radon measures. Furthermore, one can prove that mN
0 converges weakly to m0(x) as

N → ∞. Indeed, given the above definition for pi(0), one can show that if mN
0 is given

by (2.2) then mN
0 converges weakly to m0 in the sense of measures.

Proposition 2.2.2. Let m0(x) be defined by (2.2) and mN
0 (x) be given by (2.9). Let

h = max
1≤i≤N

|xi+1 − xi|. Then mN
0 converges weakly to m0(x) in the sense of measures.

Proof. For any φ(x) ∈ C∞0 (R), we denote M0 =
∫
R
dm0 and have the following:

∣∣∣∣∣∣
∫
R

φ(x)dm0 −
∫
R

φ(x) dmN
0

∣∣∣∣∣∣ =

∣∣∣∣∣∣
N∑
i=1

∫
R

φ(x)σi(x) dm0 − φ(xi)

∫
R

σi(x) dm0

∣∣∣∣∣∣
=

∣∣∣∣∣∣
N∑
i=1

∫
R

(φ(x)− φ(xi))σi(x) dm0

∣∣∣∣∣∣ ≤ Kh
N∑
i=1

∫
R

σi(x) dm0 = KhM0 → 0

as h→ 0 or equivalently as N →∞.

While the system (2.5) may be derived by considering a weak formulation of (2.1)

and making an appropriate substitution, if we consider the case where b = 2, then one

may follow [17, 18] by considering the Hamiltonian structure of (2.1). In particular one

may show that xi(t), and pi(t) satisfy the canonical Hamiltonian equations:

dxi
dt

=
∂HN

∂pi
,

dpi
dt

= −∂H
N

∂xi
, i = 1, . . . , N, (2.10)

where HN(t) is the Hamiltonian function defined as:

HN(t) =
1

2

N∑
i=1

N∑
j=1

pi(t)pj(t)G(xi(t)− xj(t)). (2.11)

Also, one can easily establish the following result.

Proposition 2.2.3. Consider the Hamiltonian function given in (2.11) with G(x) given

by (2.3). Then

HN(t) =
1

2

∫ ∞
−∞

(uN)2(x, t) + α2(uNx )2(x, t) dx, (2.12)
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with uN(x, t) and uNx (x, t) given by (2.6) and (2.7) respectively.

Proof. From (2.6) and (2.7), we observe that

(uN)2(x, t) =
1

4α2

N∑
i=1

N∑
j=1

pi(t)pj(t)e
−|x−xi(t)|/α−|x−xj(t)|/α, (2.13)

and

α2(uNx )2(x, t) =
1

4α2

N∑
i=1

N∑
j=1

pi(t)pj(t)sgn(x− xi(t))sgn(x− xj(t))e−|x−xi(t)|/α−|x−xj(t)|/α.

(2.14)

Substituting (2.13) and (2.14) into (2.12), yields

1

2

∫ ∞
−∞

(uN)2(x, t) + α2(uNx )2(x, t) dx =

1

8α2

N∑
i=1

N∑
j=1

pi(t)pj(t)

∫ ∞
−∞

(1 + sgn(xi(t)− x)sgn(xj(t)− x)) e−|x−xi(t)|/α−|x−xj(t)|/α dx.

Computing the integral in the right-hand side (RHS) of the last equation, we obtain∫ ∞
−∞

(1 + sgn(xi(t)− x)sgn(xj(t)− x)) e−|x−xi(t)|/α−|x−xj(t)|/α dx = 2αe−|xi(t)−xj(t)|/α,

and thus prove the proposition.

The Hamiltonian nature of the particle system for b = 2 and its complete integrability

allows one to establish the global existence results for the solution of (2.5) and to show

that for a relatively wide class of initial data there are no particle collisions in finite time.

In particular, we remark that for positive initial momenta, (2.5) has a unique global

solution, and hence pi(t) 6= pj(t) for all i 6= j, t ≥ 0. A similar concept may also be

established for the case where b = 3. For a general b > 1, it can be shown that the time

dependent parameters xi(t) and pi(t) in (2.5) satisfy the following dynamics equations,

[81]:
dxi
dt

=
∂HN

∂pi
,

dpi
dt

= −(b− 1)
∂HN

∂xi
, i = 1, . . . , N, (2.15)

where the function HN(t) is given by (2.11). Notice that equations (2.10) are canonically
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Hamiltonian only for the CH equation (2.1) with b = 2.

2.2.2 Properties of the Particle System

We now discuss some general properties of the derived particle method. In particular,

we establish conservation laws for the particle momenta and show that the particles

propagate with a finite speed.

First, we prove the conservation property of the particle system. Namely,

Proposition 2.2.4. The total momentum of the particle system (2.5) is conserved. That

is,

d

dt

[
N∑
i=1

pi(t)

]
= 0. (2.16)

Proof. We recall (2.5) and (2.7) to obtain

d

dt

[
N∑
i=1

pi(t)

]
= −

N∑
i=1

N∑
j=1

(b− 1)pi(t)pj(t)G
′(xi(t)− xj(t)). (2.17)

Taking into account the fact that G′(x) is an odd function and G′(0) = 0 (see page 29)

and the fact that the summation in (2.17) is performed over all i, j = 1, . . . , N , we obtain

(2.16) and consequently
N∑
i=1

pi(t) =
N∑
i=1

pi(0) = M0. (2.18)

Next, we assume that x1(0) < · · · < xN(0) and pi(0) > 0, i = 1, . . . , N and show that

these properties are preserved by the flow. We also provide an estimation for the speed

of propagation of particles.

Proposition 2.2.5. Suppose that the initial momenta in (2.9) are positive, i.e. pi(0) > 0

for all i = 1, . . . , N . Then pi(t) > 0 for all i = 1, . . . , N and t > 0.

Proof. The proof follows directly from [18], in which one may use the fact that the total

momentum is conserved, see (2.18), as well as Gronwall’s inequality to obtain

pi(0)e−Kt ≤ pi(t) ≤ pi(0)eKt, i = 1, . . . , N, (2.19)
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where K = (b−1)M0||G′||∞. We observe that the left inequality prevents pi(t) from being

negative as t goes to 0, while the right inequality prevents pi(t) from being negative as t

goes off to infinity. Hence, pi(t) > 0 for all i = 1, . . . , N and t > 0.

Proposition 2.2.6. Suppose that
dxi(t)

dt
is given by (2.5) in the interval 0 ≤ t ≤ T .

Then there exists a constant 0 < C ≤ ∞ such that

|xi(t)| < CT. (2.20)

Proof. From (2.5), we have the following

∣∣∣∣dxi(t)dt

∣∣∣∣ = |uN(xi(t), t)| =

∣∣∣∣∣
N∑
j=1

pj(t)G(|xj(t)− xi(t)|)

∣∣∣∣∣ ≤ C. (2.21)

The last inequality holds due to the conservation of total momentum (2.18) and the

properties (I)–(III) of G(x) stated on page 29. Integrating both sides of (2.21) over

0 ≤ t ≤ T leads us to the desired conclusion (2.20).

2.2.3 Space and Time BV Estimates

In what follows, we show that the total variations of the particle solution uN(x, t) and

its derivative uNx (x, t) are bounded both in space and time. To this end, we recall the

definition of the total variation of a function.

Definition 2.2.7. Consider a (possibly unbounded) interval J ⊆ R and a function

u : J → R. The total variation of u is defined as

Tot.Var. {u} ≡ sup

{
N∑
j=1

|u(xj)− u(xj−1)|

}
, (2.22)

where the supremum is taken over all N ≥ 1 and all (N + 1)-tuples of points xj ∈ J such

that x0 < x1 < · · · < xN . If the right hand side of (2.22) is bounded, then we say that u

has bounded variation, and write u ∈ BV (R).

Theorem 2.2.8. Let uN(x, t) and uNx (x, t) be functions defined in (2.6) and (2.7), re-

spectively. Furthermore, assume that G(x), G′(x) ∈ L1(R) ∩ BV (R). Then, both uN ∈
BV (R× R+) and uNx ∈ BV (R× R+).
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Proof. We begin with showing that

Tot. Var.
{
uN(·, t)

}
and Tot. Var.

{
uNx (·, t)

}
are bounded. Indeed, from the fact that the total momentum of the particle system (2.18)

is conserved and the fact that for any two functions f, g and for any constant a

Tot.Var.{f + g} ≤ Tot.Var.{f}+ Tot.Var.{g} and Tot.Var.{f(x+a)} ≤ Tot.Var.{f},

we obtain from (2.6) and (2.7)

Tot.Var.{uN(·, t)} ≤
N∑
j=1

pj(t)Tot.Var.{G(x)} = M0Tot.Var.{G(x)}, (2.23)

Tot.Var.{uNx (·, t)} ≤
N∑
j=1

pj(t)Tot.Var.{G′(x)} = M0Tot.Var.{G′(x)}. (2.24)

Since both the total variation of G(x) and G′(x) is bounded, we conclude that uN(x, t)

and uNx (x, t) have bounded variations in space.

In order to prove that uN(x, t) and uNx (x, t) have bounded variation with respect to t

as well, it now suffices to show that uN and uNx are both Lipschitz continuous in time in

L1, [10, Theorem 2.6]. To this end, we first consider the expression (2.6) for uN(x, t) to

have

∞∫
−∞

|uN(x, t)− uN(x, s)| dx ≤
∞∫

−∞

N∑
i=1

∣∣∣pi(t)G(x− xi(t))− pi(s)G(x− xi(s))
∣∣∣ dx.

Next, we add and subtract the term
∞∫
−∞

∑N
i=1 pi(t)G(x− xi(s)) dx in the RHS of the last

inequality and rewrite it as:

∞∫
−∞

|uN(x, t)− uN(x, s)| dx ≤
∞∫

−∞

N∑
i=1

pi(t) |G(x− xi(t))−G(x− xi(s))| dx

+

∞∫
−∞

N∑
i=1

|G(x− xi(s))||pi(t)− pi(s)| dx.
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Using the results from [10, Lemma 2.3] and the fact that G ∈ L1(R) ∩ BV (R), we thus

have

∞∫
−∞

|uN(x, t)− uN(x, s)| dx

≤ Tot.Var.{G(x)}
N∑
i=1

pi(t)|xi(t)− xi(s)|+ ||G||L1

N∑
i=1

|pi(t)− pi(s)|.

(2.25)

The sums in the RHS of (2.25) can now be estimated using the ODE system (2.5) as

follows:

|xi(t)− xi(s)| =

∣∣∣∣∣∣
t∫

s

dxi
dτ

dτ

∣∣∣∣∣∣ ≤
t∫

s

|u(xi(τ), τ)| dτ ≤ ||G||∞

t∫
s

N∑
j=1

pj(τ) dτ

= ||G||∞
N∑
j=1

pj(0)|t− s| = ||G||∞M0|t− s|,

(2.26)

and

|pi(t)− pi(s)| =

∣∣∣∣∣∣
t∫

s

dpi
dτ

dτ

∣∣∣∣∣∣ ≤ (b− 1)||G′||∞

t∫
s

pi(τ)
N∑
j=1

pj(τ) dτ

≤ (b− 1)||G′||∞

t∫
s

pi(τ) dτ
N∑
j=1

pj(0) = (b− 1)||G′||∞M0

t∫
s

pi dτ.

Also,

N∑
i=1

|pi(t)− pi(s)| ≤ (b− 1)||G′||∞M0

t∫
s

N∑
i=1

pi(τ) dτ = (b− 1)||G′||∞M2
0 |t− s|. (2.27)

Substituting (2.26) and (2.27) into (2.25), yields

∞∫
−∞

|uN(x, t)− uN(x, s)| dx ≤

(Tot.Var.{G(x)}||G||∞ + (b− 1)||G′||∞||G||L1)M2
0 |t− s|,
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proving that uN is Lipshitz continuous in time in L1 and thus uN ∈ BV (R × R+), [10,

Theorem 2.6].

Similarly, from (2.7) we have:

∞∫
−∞

|uNx (x, t)− uNx (x, s)| dx ≤
∞∫

−∞

N∑
i=1

pi(t) |G′(x− xi(t))−G′(x− xi(s))| dx

+

∞∫
−∞

N∑
i=1

|G′(x− xi(s))||pi(t)− pi(s)| dx.

(2.28)

Substituting (2.26) and (2.27) into (2.28) and using the fact that G′ ∈ L1(R) ∩ BV (R),

we finally conclude that

∞∫
−∞

|uNx (x, t)− uNx (x, s)| dx ≤

(Tot.Var.{G′(x)}||G||∞ + (b− 1)||G′||∞||G′||L1)M2
0 |t− s|,

which together with (2.24) proves that uNx (x, t) is a BV function in x, t and also the

statement of the theorem.

2.3 Global Weak Solution and Convergence Analysis

In this section, we propose a new, concise method for showing the convergence of the

particle solution to a unique global weak solution of the b-equations. We restrict our

attention to the specific case of the IVP (2.1), (2.2) with b > 1. In this case, one can

explicitly compute the velocity u and its derivative, by the convolutions (2.6) and (2.7),

respectively, with G defined by (2.3) and G′ is given by

G′(x) = − 1

2α2
sgn(x)e−|x|/α. (2.29)

One can also easily verify that the functions G and G′ defined in (2.3) and (2.29), re-

spectively, satisfy properties (I)–(III) (see page 29) and calculate the total variation of
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G and G′ explicitly:

Tot.Var.{G(x)} = 1/α and Tot.Var.{G′(x)} = 2/α2. (2.30)

We begin the section by proving that for a relatively wide class of initial data, there

are no particle collisions in finite time and as a result there exists a unique global solution

of the particle ODE system (2.5) for any b > 1. We then show that the particle method

applied to the b-equation is a weak solution to (2.1), (2.2). Finally, we state our main

convergence result, which is proved using the compactness results generated from the BV

estimates established above.

2.3.1 Global Solution of the Particle System

We first prove the following important conservation law.

Proposition 2.3.1. Consider (2.5)–(2.7) for any b > 1 and G and G′ given by (2.3)

and (2.29), respectively, and assume that pi(0) > 0, i = 1 . . . N and xi(t) < xi+1(t), i =

1 . . . N at some time t. Then,

PN(t) =

(
N∏
k=1

pk(t)

)(
N−1∏
k=1

[
G(0)−G(xk(t)− xk+1(t))

](b−1)
)

(2.31)

is constant of motion.

Proof. To establish the above proposition, it suffices to show that (see also [81, 117])

d

dt
PN(t) = 0. (2.32)

To this end, we calculate the derivative of PN(t) and write it in the following form:

d

dt
PN(t) = PN(t)

N−1∑
k=1

(b− 1)G′(xk(t)− xk+1(t))(ẋk+1(t)− ẋk(t))
G(0)−G(xk(t)− xk+1(t))

+ PN(t)
N∑
k=1

ṗk(t)

pk(t)
,

where ẋk(t) and ṗk(t) denote the derivatives of xk(t) and pk(t) with respect to time,

respectively. Substituting the expressions for ẋk(t)) and ṗk(t) from (2.5) and expressions

40



for G and G′ from (2.3) and (2.29) into the above equation, we obtain the following:

d

dt
PN(t) =

b− 1

2α2
PN(t)

N−1∑
k=1

N∑
i=1

e(xk(t)−xk+1(t))/α
(
pi(t)e

−|xk+1(t)−xi(t)|/α − pi(t)e−|xk(t)−xi(t)|/α
)

1− e(xk(t)−xk+1(t))/α

+
b− 1

2α2
PN(t)

N∑
k=1

N∑
i=1

pi(t)sgn(xk(t)− xi(t))e−|xk(t)−xi(t)|/α. (2.33)

By splitting up the summation terms in (2.33) into the intervals i < k, i = k, and i > k,

the first sum becomes

N−1∑
k=1

N∑
i=1

e(xk(t)−xk+1(t))/αpi(t)
(
e−|xk+1(t)−xi(t)|/α − e−|xk(t)−xi(t)|/α

)
1− e(xk(t)−xk+1(t))/α

=
N−1∑
k=1

∑
i<k

pi(t)
(
e(xk(t)+xi(t)−2xk+1(t))/α − e(xi(t)−xk+1(t))/α

)
1− e(xk(t)−xk+1(t))/α

+
N−1∑
k=1

e(xk(t)−xk+1(t))/αpk(t)
(
e(xk(t)−xk+1(t))/α − 1

)
1− e(xk(t)−xk+1(t))/α

+
N−1∑
k=1

∑
i>k

pi(t)
(
e(xk(t)−xi(t))/α − e(2xk(t)−xi(t)−xk+1(t))/α

)
1− e(xk(t)−xk+1(t))/α

(2.34)

=
N−1∑
k=1

∑
i<k

pi(t)(e
(xk(t)−xk+1(t))/α − 1)e(xi(t)−xk+1(t))/α

1− e(xk(t)−xk+1(t))/α
−

N−1∑
k=1

pk(t)e
(xk(t)−xk+1(t))/α

+
N−1∑
k=1

∑
i>k

pi(t)(1− e(xk(t)−xk+1(t))/α)e(xk(t)−xi(t))/α

1− e(xk(t)−xk+1(t))/α

−
N−1∑
k=1

∑
i<k

pi(t)e
(xi(t)−xk+1(t))/α −

N−1∑
k=1

pk(t)e
(xk(t)−xk+1(t))/α (2.35)

+
N−1∑
k=1

∑
i>k

pi(t)e
(xk(t)−xi(t))/α.

Using properties of the signum function, we also split the second summation term in
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(2.33) into the intervals i < k, i = k, and i > k to obtain

N∑
k=1

N∑
i=1

pi(t)sgn(xk(t)− xi(t))e−|xk(t)−xi(t)|/α

=
N∑
k=1

∑
i<k

pi(t)e
(xi(t)−xk(t))/α −

N−1∑
k=1

∑
i>k

pi(t)e
(xk(t)−xi(t))/α.

(2.36)

Combining (2.34) and (2.36) and using the fact that

N∑
k=1

(∑
i<k

pi(t)e
(xi(t)−xk(t))/α

)
−
N−1∑
k=1

(∑
i<k

pi(t)e
(xi(t)−xk+1(t))/α

)
=

N−1∑
k=1

pk(t)e
(xk(t)−xk+1(t))/α,

the derivative in (2.33) simplifies to

d

dt
PN(t) =

b− 1

2α2
PN(t)

(
N−1∑
k=1

∑
i>k

pi(t)e
(xk(t)−xi(t))/α

−
N−1∑
k=1

∑
i<k

pi(t)e
(xi(t)−xk+1(t))/α −

N−1∑
k=1

pk(t)e
(xk(t)−xk+1(t))/α

)

+
b− 1

2α2
PN(t)

(
N∑
k=1

∑
i<k

pi(t)e
(xi(t)−xk(t))/α −

N−1∑
k=1

∑
i>k

pi(t)e
(xk(t)−xi(t))/α

)
= 0,

which establishes the proposition.

Using Propositions 2.2.4–2.2.6 and 2.3.1, we can now show that, for a class of initial

data, particles cannot cross and thus establish global existence of the solution to the

ODE system given by (2.5).

Lemma 2.3.2. Consider the system (2.5) with initial data pi(0) > 0 and xi(0) < xi+1(0)

for any i = 1 . . . N . Then, for all t > 0, xi(t) 6= xi+1(t) for any i = 1 . . . N and for all.

Proof. Suppose on the contrary that there exist time t∗ > 0 and number k such that

lim
t→t∗

xk(t)− xk+1(t) = 0. (2.37)
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Then, using the fact that PN(0) > 0 by our choice of initial data, we have

lim
t→t∗

N∏
i=1

pi(t) =∞, (2.38)

which contradicts the conservation property (2.18). Hence no two particles may cross in

finite time.

We finally present the following global existence result for (2.5) (the proof follows

directly from the Propositions 2.2.4–2.2.6, 2.3.1 and Lemma 2.3.2):

Theorem 2.3.3. If the initial momenta in the system (2.5) are positive, i.e. pi(0) > 0,

and xi(0) < xi+1(0) for any i = 1 . . . N , then the solution of system (2.5) exists uniquely

for all t ∈ (0,∞).

Remark 2.3.4. We do have a proof for an arbitrary (non-smooth) kernel G(x) satisfying

properties (I)–(III). However, if G is smooth, the existence and uniqueness of a global

solution to system (2.5) follows from standard ODE theory. In particular, if G in non-

smooth, one may regularize a general kernel G to obtain a blob particle/vortex method

as was done in [113, 114]. From here, one can apply similar techniques to establish global

weak solutions for a general kernel G(x).

Remark 2.3.5. We would also like to note that similar results have been established in

[18] and [117] for the special cases of the CH equation (equation (2.1) with b = 2) and

the DP equation (equation (2.1) with b = 3), respectively, for which equation (2.1) is

proven to be completely integrable (see, e.g., [53, 57, 129]). The latter property and the

Hamiltonian structure of (2.1) was used in [18] to obtain the desired result for the CH

equation. The no cross property for the N -peakon solution to the CH equation was proved

in [18] by the iso-spectral property associated to the Lax pair.

2.3.2 Consistency of the Particle Method

Throughout this section, we shall assume that the initial momenta are positive and that

there are no particle collisions in finite time, that is, the statement of Theorem 2.3.3

holds.
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We begin the section with a definition of a weak solution to the IVP (2.1), (2.2)

and then show that the particle solution (mN , uN) given by (2.4), (2.6) is indeed a weak

solution to the IVP.

Definition 2.3.6. u(x, t) ∈ C(0, T ;H1(R)),m(x, t) = u(x, t) − α2uxx(x, t) is said to be

a weak solution of (2.1), (2.2) if

∞∫
−∞

φ(x, 0)m(x, 0) dx+

∞∫
0

∞∫
−∞

[
φt(x, t)− α2φtxx(x, t)

]
u(x, t) dxdt

+

∞∫
0

∞∫
−∞

[
b+ 1

2
φx(x, t)−

α2

2
φxxx(x, t)

]
u2(x, t) dxdt

−
∞∫

0

∞∫
−∞

α2(b− 1)

2
φx(x, t)u

2
x(x, t) dxdt = 0

(2.39)

for all φ ∈ C∞0 (R× R+).

Before showing that the particle solution (mN(x, t), uN(x, t)) given by (2.4), (2.6) is a

weak solution of the problem (2.1), (2.2), we first establish the following propositions.

Proposition 2.3.7. Suppose that G(x) and G′(x) are given by (2.3) and (2.29), respec-

tively. Then the following relation is true for any φ(x) ∈ C∞0 (R):

G(x1 − x2) (φ′(x1) + φ′(x2)) = 2

∞∫
−∞

G(x− x1)G(x− x2)

(
φ′(x)− α2

2
φ′′′(x)

)
dx

+ 2α2

∞∫
−∞

G′(x− x1)G′(x− x2)φ′(x) dx.

(2.40)

Proof. We consider both the cases where x1 = x2 and x1 < x2. If x1 = x2, then (2.40)

reduces to the following:

1

α
G(0)φ′(x1) = 2

∞∫
−∞

G2(x− x1)

(
φ′(x)− α2

2
φ′′′(x)

)
dx+ 2α2

∞∫
−∞

(G′(x− x1))2φ′(x) dx.

Splitting the above integrals into two regions (x < x1 and x > x1), integrating the term
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containing φ′′′(x) twice, and combining like terms, proves the equality.

We now consider the case where x1 < x2. We split the integrals into three regions

(x < x1, x1 < x < x2, and x > x2) and integrate the term containing φ′′′(x) by parts

twice to obtain

−α2

∞∫
−∞

G(x− x1)G(x− x2)φ′′′(x) dx

=
1

2α
e(x1−x2/α)φ′(x1)− 1

α2

x1∫
−∞

e(x−x1)/α+(x−x2)/αφ′(x) dx

+
1

2α
e(x1−x2)/αφ′(x2)− 1

α2

∞∫
x2

e(x1−x)/α+(x2−x)/αφ′(x) dx.

(2.41)

We also have the following:

2

∞∫
−∞

G(x− x1)G(x− x2)φ′(x) dx =
1

2α2

x1∫
−∞

e−(x1−x)/α−(x2−x)/αφ′(x) dx

+
1

2α2

x2∫
x1

e(x1−x)/α−(x2−x)/αφ′(x) dx+
1

2α2

∞∫
x2

e−(x−x1)/α−(x−x2)/αφ′(x) dx

(2.42)

and

2α2

∞∫
−∞

G′(x− x1)G′(x− x2)φ′(x) dx =
1

2α2

x1∫
−∞

e−(x1−x)/α−(x2−x)/αφ′(x) dx

+
1

2α2

x2∫
x1

e(x1−x)/α−(x2−x)/αφ′ dx+
1

2α2

∞∫
x2

e−(x−x1)/α−(x−x2)/αφ′(x) dx.

(2.43)

Combining (2.41), (2.42), and (2.43), we obtain

1

2α
e(x1−x2)/αφ′(x1) +

1

2α
e(x1−x2)/αφ′(x2) = G(x1 − x2) (φ′(x1) + φ′(x2)) ,

and hence the proposition is proven.

Proposition 2.3.8. Suppose that G(x) and G′(x) are given by (2.3) and (2.29), respec-
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tively. Then the following relation is true for any φ(x) ∈ C∞0 (R):

G′(x1 − x2)(φ(x1)− φ(x2)) =
∞∫

−∞

[
α2G′(x− x1)G′(x− x2)−G(x− x1)G(x− x2)

]
φ′(x) dx.

(2.44)

Proof. As before, we first consider the case where x1 = x2. Then the problem reduces to

showing
∞∫

−∞

[
α2 (G′(x− x1))

2 − (G(x− x1))2
]
φ′(x) dx = 0. (2.45)

Indeed, by definition of G(x) and its derivative in (2.3) and (2.29), we have

∞∫
−∞

[
α2 (G′(x− x1))

2 − (G(x− x1))2
]
φ′(x) dx

=
1

4α2

∞∫
−∞

[
e−2|x−x1|/α − e−2|x−x1|/α

]
φ′(x) dx = 0.

We now consider the case where x1 < x2, and split the integrals as follows:

−
∞∫

−∞

G(x− x1)G(x− x2)φ′(x) dx = − 1

4α2

x1∫
−∞

e−(x1−x)/α−(x2−x)/αφ′(x) dx

+
1

4α2

x2∫
x1

e−(x−x1)/α−(x2−x)/αφ′(x) dx+
1

4α2

∞∫
x2

e−(x−x1)/α−(x−x2)/αφ′(x) dx

(2.46)

and

α2

∞∫
−∞

G′(x− x1)G′(x− x2)φ′(x) dx =
1

4α2

x1∫
−∞

e−(x1−x)/α−(x2−x)/αφ′(x) dx

− 1

4α2

x2∫
x1

e−(x−x1)/α−(x2−x)/αφ′(x) dx+
1

4α2

∞∫
x2

e−(x−x1)/α−(x−x2)/αφ′(x) dx.

(2.47)
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By combining (2.46) and (2.47) and integrating once, we obtain

− 1

2α2
e−(x2−x1)/α (φ(x2)− φ(x1)) = G′(x1 − x2) (φ(x1)− φ(x2)) .

This proves the proposition.

Proposition 2.3.9. Suppose that mN(x, t), uN(x, t), and uNx (x, t) are given by (2.4),

(2.6), and (2.7), respectively. Then relations (2.48)–(2.50) are true for any φ(x, t) ∈
C∞0 (R× R+).

Proof. To begin, we first prove the relation (2.48), which implies that

mN(x, t) = uN(x, t)− α2uNxx(x, t)

in the sense of distributions. Indeed for any φ(x, t) ∈ C∞0 (R× R+), we have the follow-

ing relation by direct substitution of (2.4) into the left-hand side (LHS) of (2.48) and

integration by parts:

〈
uN − α2uNxx, φt

〉
=
〈
uN , φt

〉
+ α2

〈
uNx , φtx

〉
.

Using (2.6) and (2.7) and integrating by parts once again, we prove (2.48):

〈
uN − α2uNxx, φt

〉
=

∞∫
0

N∑
i=1

pi(t)

∞∫
−∞

G(x− xi(t))φt(x, t) dxdt

+ α2

∞∫
0

N∑
i=1

pi(t)

∞∫
−∞

G′(x− xi(t))φtx(x, t) dxdt

=

∞∫
0

N∑
i=1

pi(t)

∞∫
−∞

G(x− xi(t))
(
φt(x, t)− α2φtxx(x, t)

)
dxdt

= 〈uN , φt − α2φtxx〉.

Next, we verify (2.49) as follows. Direct substitution shows that

〈
mNuN , φx

〉
=

∞∫
0

N∑
i=1

N∑
j=1

pi(t)pj(t)G(xi(t)− xj(t))φx(xi(t), t) dt.
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Using Propositions 2.3.7 and the fact that G(x) is an even function (see page 29), we

find that〈
mNuN , φx

〉
=

1

2

∞∫
0

N∑
i=1

N∑
j=1

pi(t)pj(t)G(xi(t)− xj(t)) (φx(xi(t), t) + φx(xj(t), t)) dt

=

∞∫
0

N∑
i=1

N∑
j=1

pi(t)pj(t)

 ∞∫
−∞

G(x− xi(t))G(x− xj(t))
(
φx(x, t)−

α2

2
φxxx(x, t)

)
dx

+α2

∞∫
−∞

G′(x− xi(t))G′(x− xj(t))φx(x, t)dx

 dt
=

〈
(uN)2, φx −

α2

2
φxxx

〉
+ α2

〈
(uNx )2, φx

〉
.

Finally, in order to prove (2.50), we proceed in a similar manner as above by first observing

that 〈
mNuNx , φ

〉
=

∞∫
0

N∑
i=1

N∑
j=1

pi(t)pj(t)G
′(xi(t)− xj(t))φ(xi(t), t) dt.

We use Proposition 2.3.8 and the fact that G′(x) is an odd function (see page 29)), to

obtain〈
mNuNx , φ

〉
=

1

2

∞∫
0

N∑
i=1

N∑
j=1

pi(t)pj(t)G
′(xi(t)− xj(t)) (φ(xi(t), t)− φ(xj(t), t)) dt

=
1

2

∞∫
0

N∑
i=1

N∑
j=1

pi(t)pj(t)

− ∞∫
−∞

G(x− xi(t))G(x− xj(t))φx(x, t) dx

+
α2

2

∞∫
−∞

G′(x− xi(t))G′(x− xj(t))φx(x, t) dx

 dt =

〈
α2(uNx )2 − (uN)2

2
, φx

〉
.
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Theorem 2.3.10. Assume that m0 ∈M(R), then the particle solution

(mN(x, t), uN(x, t)),

given by (2.4), (2.6) is a weak solution of the problem (2.1), (2.2).

Proof. Let mN(x, 0),mN(x, t) and uN(x, t), uNx (x, t) be given by formulae (2.9), (2.4) and

(2.6), (2.7), respectively and φ ∈ C∞0 (R× R+) be a test function. Then, the following

relations are true for any φ (see 2.3.9):

〈mN , φt〉 = 〈uN , φt − α2φtxx〉, (2.48)

〈mNuN , φx〉 =

〈
(uN)2, φx −

α2

2
φxxx

〉
+ α2

〈
(uNx )2, φx

〉
, (2.49)

〈
mNuNx , φ

〉
=

〈
α2(uNx )2 − (uN)2

2
, φx

〉
, (2.50)

where 〈·, ·〉 denotes a scalar product in R×R+, i.e., 〈mN , φt〉 =
∞∫
0

∞∫
−∞

mN(x, t)φt(x, t) dxdt,

etc.

Using (2.48)–(2.50) and substituting mN(x, t) as defined by (2.4) into (2.39), yields

N∑
i=1

pi(0)φ(xi(0), 0) +

∞∫
0

N∑
i=1

pi(t)φt (xi(t), t) dt+

∞∫
0

N∑
i=1

pi(t)u
N(xi(t), t)φx (xi(t), t) dt

− (b− 1)

∞∫
0

N∑
i=1

pi(t)u
N
x (xi(t), t)φ (xi(t), t) dt = 0. (2.51)

We now add and subtract
N∑
i=1

∫ ∞
0

pi(t)
dxi
dt
φx(xi(t), t) dt into the last equation, use the

fact that
dφ(xi(t), t)

dt
= φx(xi(t), t)

dxi(t)

dt
+ φt(xi(t), t)
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and rewrite (2.51) as follows:

N∑
i=1

pi(0)φ(xi(0), 0) +

∞∫
0

N∑
i=1

pi(t)
dφ(xi(t), t)

dt
dt

∞∫
0

N∑
i=1

pi(t)

[
uN(xi(t), t)−

dxi(t)

dt

]
φx (xi(t), t) dt

− (b− 1)

∞∫
0

N∑
i=1

pi(t)u
N
x (xi(t), t)φ (xi(t), t) dt = 0.

(2.52)

Integrating by parts the second term in the first row in (2.52), and rearranging other

terms, we finally obtain:

∞∫
0

N∑
i=1

pi(t)

[
dxi(t)

dt
− uN(xi(t), t)

]
φx (xi(t), t) dt

+

∞∫
0

N∑
i=1

[
dpi(t)

dt
+ (b− 1)pi(t)u

N
x (xi(t), t)

]
φ(xi(t), t) dt = 0.

(2.53)

Since the functions xi(t) and pi(t) satisfy the system (2.5), the last equation holds for

any φ implying that mN , uN defined by (2.4), (2.6) is a weak solution of (2.1), (2.2). This

completes the proof.

2.3.3 Compactness and Convergence

We are now in a position to establish a convergence result for the particle method applied

to equation (2.1). Using the BV estimates for uN(x, t) and uNx (x, t), and the fact that

the particle solution satisfies the equation in the sense of distributions, we may establish

the following convergence result, which in turn proves the existence of a unique global

weak solution to the b-equation (2.1) with any b > 1. Once again, we assume that the

statement of Theorem 2.3.3 holds.

Theorem 2.3.11. Suppose that (mN(x, t), uN(x, t)) is a particle solution of (2.4), (2.5)

with initial approximation mN(·, 0)
∗
⇀ m0, m0 ∈ M+(R). Then there exist functions

u(x, t) ∈ BV(R × R+) and m(x, t) ∈ M+(R × R+) such that mN(x, t) and uN(x, t)
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converge to m(x, t) and u(x, t), respectively in the sense of distributions as N → ∞.

Furthermore, the limit (u,m) is the unique weak solution of (2.1), (2.2) for any b > 1

with the regularity u ∈ C(0, T ;H1(R)), ux ∈ BV(R× R+).

Proof. Using BV estimates for uN(x, t) and uNx (x, t), we refer to the compactness prop-

erty in [10, Theorem 2.4] and conclude that there exist functions u(x, t) and ux(x, t) and

a subsequence (still labeled as uN(x, t)) such that

lim
N→0
||uN − u||L1

loc(R×R+) = 0, lim
N→0
||uNx − ux||L1

loc(R×R+) = 0. (2.54)

From Proposition 2.3.10, we know that the particle solution (mN , uN) is a weak so-

lution of (2.1) and thus satisfy

∞∫
−∞

φ(x, 0)mN(x, 0) dx+

∞∫
0

∞∫
−∞

[
φt(x, t)− α2φtxx(x, t)

]
uN(x, t) dxdt

+

∞∫
0

∞∫
−∞

[
b+ 1

2
φx(x, t)−

α2

2
φxxx(x, t)

]
(uN)2(x, t) dxdt

+

∞∫
0

∞∫
−∞

α2(b− 1)

2
φx(x, t)(u

N
x )2(x, t) dxdt = 0.

(2.55)

To complete the proof, we need to show that each terms in (2.55) converges to that of

the limit solution (m,u) in (2.39).

Indeed, by the construction of the initial approximation and Proposition 2.2.2, we

have

lim
N→∞

∞∫
−∞

φ(x, 0)mN(x, 0) dx =

∞∫
−∞

φ(x, 0)m(x, 0) dx. (2.56)

Furthermore, from (2.54) and the fact that uN ∈ BV(R×R+) and uNx ∈ BV(R×R+) it

follows that

∣∣∣ ∞∫
0

∞∫
−∞

(
uN(x, t)2 − u(x, t)2

)
φ(x, t) dxdt

∣∣∣
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=
∣∣∣ ∞∫

0

∞∫
−∞

(uN(x, t) + u(x, t))(uN(x, t)− u(x, t))φ(x, t) dxdt
∣∣∣

≤ ‖φ‖L∞(‖uN‖L∞ + ‖u‖L∞)

∫∫
(x,t)∈supp{φ}

∣∣uN(x, t)− u(x, t)
∣∣ dxdt

holds for any φ ∈ C∞0 (R× R+), and thus

〈
(uN)2, φ

〉
→
〈
u2, φ

〉
as N →∞. (2.57)

Similarly, for any φ ∈ C∞0 (R× R+) we have

〈
(uNx )2, φ

〉
→
〈
u2
x, φ
〉

as N →∞, (2.58)

and therefore

〈uN , φt − α2φtxx〉 → 〈u, φt − α2φtxx〉 (2.59)〈
(uN)2, φx −

α2

2
φxxx

〉
→
〈

(u)2, φx −
α2

2
φxxx

〉
, (2.60)〈

α2(uNx )2 − (uN)2

2
, φx

〉
→
〈
α2(ux)

2 − (u)2

2
, φx

〉
, (2.61)

as N →∞. This shows that the limit (m,u) is indeed a weak solution to the b-equation

(2.1).

It should be observed that since G,G′ ∈ L1(R) ∩ BV (R), then G,G′ ∈ L2(R) and

thus with the bounds (2.18), we have u ∈ L∞(0, T ;H1(R)) and u, ux ∈ BV(R×R+). The

latter implies that (see, e.g., [10])∫
R

|u(x, t)− u(x, s)| dx ≤ C1|t− s|,
∫
R

|ux(x, t)− ux(x, s)| dx ≤ C2|t− s|,
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and thus

||u(·, t)||2H1 − ||u(·, s)||2H1 ≤
∫
R

|u(x, t)− u(x, s)|2 + |ux(x, t)− ux(x, s)|2 dx

≤ 2||u||∞
∫
R

|u(x, t)− u(x, s)| dx+ 2||ux||∞
∫
R

|ux(x, t)− ux(x, s)| dx ≤ C|t− s|,

proving that u ∈ C(0, T ;H1(R)).

Finally, we remark that the weak solution for the b-equation (2.1), (2.2) is unique in

the obtained class of functions. The result has been proven in [46] for the CH equation

(b = 2), by direct estimations for the equation recast in the following conservative form:

ut + uux +G′ ∗
[
u2 +

1

2
u2
x

]
= 0, (2.62)

where G′ is given by (2.29), as before. The proof of the uniqueness result for any b > 1

follows directly from [46] by rewriting (2.1) as

ut + uux +G′ ∗
[
b

2
u2 +

3− b
2

u2
x

]
= 0. (2.63)

Remark 2.3.12. We also note that for the special case of CH equation (b = 2), the

convergence of the particle method to a smooth solution has been verified in [17, 18].
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Chapter 3

A Practical Implementation of the

Particle Method to the

Camassa-Holm Equation

3.1 Introduction

In this chapter, we investigate the dynamics of the interaction among peakon solutions

for the 1D Camassa-Holm (CH) equation as well as showcase the merits of using particle

methods to simulate solutions to the CH equation using arbitrary smooth initial data.

To this extent, we recall that the CH equation is given by

mt + umx + 2mux = 0, m = u− α2uxx, (3.1)

which is subjected to the following initial data:

m(x, 0) = m0(x). (3.2)

We apply the particle method for the numerical solution of the CH equation in order to

study the elastic collisions among peakon solutions. Using the particle method developed

in Chapter 2 for solving the CH equation, we begin this chapter by reviewing some

important properties of the particle method that will be pertinent to our study. In Section

3.2 we provide an analytical discussion about the behavior of peakon interactions for

two positive peakons. In Section 3.3, we present several numerical experiments which
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showcases both the complex interactions among peakon solutions, as well as the merits

of using a particle method to simulate such solutions.

It should be instructive to review some of the general properties of the particle system

which are pertinent to our study on the investigation of elastic collisions of peakons. For

a more detailed description of the following properties including their proofs, we refer

the reader to Chapter 2.

• We begin by observing that the functions xi(t) and pi(t) given by (2.5) satisfy the

following canonical Hamiltonian equations:

dxi
dt

=
∂HN

∂pi
,

dpi
dt

= −∂H
N

∂xi
, i = 1, . . . , n, (3.3)

where the Hamiltonian HN(t) is given as follows:

HN(t) =
1

2

N∑
i=1

N∑
j=1

pi(t)pj(t)G (xi(t)− xj(t)) , (3.4)

and G is the Green’s function associated with the modified 1D Helmholtz operator

which relates the momentum m with velocity u.

We note that HN(t) is conserved, i.e, HN(t) = HN(0) for all t > 0.

• Another important conservation law for the particle system (2.5) is the conservation

of the total momentum, i.e.,

d

dt

[
N∑
i=1

pi(t)

]
= 0. (3.5)

• Finally, if the initial momenta given in (2.5) are positive, i.e., pi(0) > 0 for all

i = 1, . . . , N , then pi(t) > 0 for all i = 1, . . . , N and t > 0. If, in addition,

xi(0) < xi+1(0) i = 1, . . . , N , then the particles never cross, i.e., xi(t) < xi+1(t) for

any i = 1, . . . , N and for all t. This important property was proved in [17] by using

a Lax-Pair formulation. It can also be proved by using a conservation law,

dPN(t)

dt
:=

d

dt

(
N∏
k=1

pk(t)
N−1∏
k=1

[
G(0)−G(xk(t)− xk+1(t))

])
= 0,

55



as it has been done in Chapter 2. We will show in the next section that peakons ,

generated by solving the CH equation, indeed elastically bounce back after becom-

ing close to each other.

3.2 Elastic Collisions Among Peakon Solutions

In this section, we take a close look at the dynamics and interactions of the peakon solu-

tions (2.6) associated with CH equation. In particular, we study the soliton-type behavior

of peakons and their elastic collisions. An elastic collision is an encounter between two

bodies in which the total kinetic energy and momentum of the two bodies after the en-

counter are equal to their total kinetic energy and momentum before the encounter. That

is, both momentum and kinetic energy are conserved. By conservation of momentum, we

mean that the sum of the momenta of all the objects of a system under consideration

cannot be changed by the interactions within the system. Additionally, the total energy

of a system remains constant at all times under the conservation of energy principle.

Using these principal conservation properties, we begin by showing analytically that any

collisions among peakons for the case where the initial weights are assumed to be positive

are elastic. That is, the collision is through the interaction potential in the Hamiltonian

given in (3.3) rather than a head on collision.

3.2.1 Analysis of Two-Peakon Interactions

Since the interaction of peakons is local, it is sufficient to investigate the interactions

among two peakons. To this extent, we consider a two-peakon system with weights p1(t),

p2(t) and locations x1(t), x2(t) that evolve in time according to the following system of

ODEs (see (2.5)):

dx1(t)

dt
=

1

2α
p1(t) +

1

2α
p2(t)e−|x2(t)−x1(t)|/α,

dx2(t)

dt
=

1

2α
p2(t) +

1

2α
p1(t)e−|x1(t)−x2(t)|/α,

dp1(t)

dt
=

1

2α2
p1(t)p2(t)sgn(x1(t)− x2(t))e−|x1(t)−x2(t)|/α,

dp2(t)

dt
=

1

2α2
p1(t)p2(t)sgn(x2(t)− x1(t))e−|x2(t)−x1(t)|/α.

(3.6)
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We assume that there are two times, say tbefore and tafter such that

|x1(tbefore)− x2(tbefore)| = |x1(tafter)− x2(tafter)|,

with x1(t) 6= x2(t) for any finite time t. Here tbefore is some time t before the two peakons

interact, and tafter is some time t after the peakons undergo a nonlinear exchange of

momentum.

We begin by recalling the two conservation properties of the particle system: the

conservation of the Hamiltonian (see (3.3)):

HN(t) = p2
1(t) + p2

2(t) + 2p1(t)p2(t)e−|x1(t)−x2(t)|/α = HN(0), ∀t > 0, (3.7)

and the conservation of momentum (see (3.5)):

p1(t) + p2(t) = p1(0) + p2(0), ∀t > 0. (3.8)

From (3.7) and (3.8), we observe that 2 (p1p2)before = 2 (p1p2)after. Indeed if we square

both sides of (3.8) and subtract (3.7), we obtain

2p1(tbefore)p2(tbefore)(1− e−|x1(tbefore)−x2(tbefore)|/α)

= 2p1(tafter)p2(tafter)(1− e−|x1(tafter)−x2(tafter)|/α).

From here, we use the fact that |x1(tbefore) − x2(tbefore)| = |x1(tafter) − x2(tafter)| to con-

clude that 2 (p1p2)before = 2 (p1p2)after. This observation along with the conservation of

momentum property (see (3.8)) allows us to obtain the following system of equations:

p2
1(tbefore) + p2

2(tbefore) = p2
1(tafter) + p2

2(tafter),

p1(tbefore) + p2(tbefore) = p1(tafter) + p2(tafter).
(3.9)

The only possible solutions to the system of equations given above are,

p1(tbefore) = p1(tafter), p2(tbefore) = p2(tafter), (3.10)

and

p1(tbefore) = p2(tafter), p2(tbefore) = p1(tafter). (3.11)
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The solution given by (3.10) implies that the peakons do not interact, which is not

possible. Hence, the solution to (3.9) is given by (3.11) which shows that the momentum

is exchanged after the collision. This explicitly shows the elastic collision behavior among

peakon solutions generated by solving (3.1) via a particle method. Below, we illustrate

an example of the interaction among two peakons which exhibits the elastic collision

behavior as described above.

An Illustration of the Two Positive Peakons Interaction

In this illustration, we begin by considering an interaction among two positive peakons

generated from solving the CH equation given in (3.1). To this extent, we consider two

positive peakons, which are initially placed at x1(0) = 0, and x2(0) = 5 with initial

weights p1(0) = 4 and p2(0) = 1, and move them exactly in time according to (3.6) with

α = 1 on the domain [a, b] = [−10, 30]. We observe that the peakon defined by its initial

values at (x1, p1) has a bigger weight and will hence move faster than the peakon defined

by (x2, p2). Thus, we expect that as the two peakons move closer to each other, they will

undergo a complex interaction which involves the exchange of momentum.

In Figure 3.1, we provide snapshots of the solution u at different times. To plot the

velocity profile, we introduce a uniform grid of size ∆xp, i.e., xpj = j∆xp, ∆xp = b−a
Np
, j =

1, . . . Np, and compute the values of u(xpj , t), j = 1, . . . Np, according to formula (2.6) with

α = 1, i.e., uN(xpj , t) = 1
2

Np∑
i=1

pi(t)e
−|xpj−xi(t)|. As one can see, the peakons emerge unscathed

with the exception of a phase shift as predicted by the underlying integrable system. In

Figure 3.2, we also show the trajectories of each particle and its momentum as functions

of time. From this figure, we see that the particles do not cross; rather, they exchange

momentums as they undergo a complex nonlinear interaction with each other.

To gain a better understanding of the elastic collision behavior among two peakon

solutions, we compare the particle method (3.6), in which each particle represents a

peakon with the multi-particle approach for simulating the evolution of two peakons.

The latter case assumes a simple form as well. We follow the method presented in [22]

and consider a suitably refined initial grid of particles to represent the two peakons, in

which the initial weights, pi, of the particles are all zero except for two particles that

have weights pn1(0) = 4 and pn2(0) = 1 and are placed at xn1(0) = 0 and xn2(0) = 5,

respectively. In this case, it follows from (2.5) that dpi/dt = 0 for each i 6= n1, n2, and thus

the weights of all of the weightless particles will remain constant in time. However, the
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Figure 3.1: Two positive peakon interaction for the CH equation (3.1) for various times.
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Figure 3.2: Location and momentum trajectories for the two positive peakon interaction.
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locations of these particles may change in time since the velocity of the particles depend

explicitly on (2.6) which is not necessarily zero. From (2.5) and (2.6), we observe that

the u(xi(t), t) depends solely on xn1(t), xn2(t) and pn1(t), pn2(t), and thus it is sufficient

to evolve the same ODEs for non-zero particles as before.

To rectify the issue of particles clustering around each other, we implement a swap-

ping algorithm, in which the particles are switched once a certain distance threshold

is met. In particular, if as before we let ∆xp be the distance between each equidis-

tant point on a computational grid, then we switch the weights, pi+1(t) ↔ pi(t), if

xi+1(t)− xi(t) < min(1
2
(xi(t)− xi−1(t)), 1

2
∆xp), and pi(t) ≥ pi+1(t). Physically, this algo-

rithm allows peakons to undergo a complex, nonlinear interaction for which there is an

exchange of momentum. The results are shown in Figures 3.3–3.6 below – the blue lines

correspond to the solution (location trajectories) obtained by running the two particle

system (3.6), while the the red ones correspond to the solution computed using the multi-

particle approach according to system (2.5). Once again, to plot the computed solution

u(x, t), we recover its values on a uniform grid using (2.6). As one can see, the trajec-

tory paths with many particles agree with the trajectory paths for the solution in which

we consider only two particles. This shows that even when we consider the interaction

among many particles in a peakon simulation, the particles will never cross; rather, they

exchange momentums as the particles move closer to each other.
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Figure 3.3: The velocity u for the CH equation (3.1) at t=1, and the associated particle
location trajectories.
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Figure 3.4: The velocity u for the CH equation (3.1) at t=2, and the associated particle
location trajectories.

−10 0 10 20
0

0.5

1

1.5

2
t=8

x

ve
lo

ci
ty

 

 

2 Particles
Many Particles

0 10 20

2

4

6

8
t=8

x

tim
e

Figure 3.5: The velocity u for the CH equation (3.1) at t=8, and the associated particle
location trajectories.
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Figure 3.6: The velocity u for the CH equation (3.1) at t=10, and the associated particle
location trajectories.
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An Illustration of the Peakon-Antipeakon Interaction

One may also observe this no crossing behavior in the peakon-antipeakon case. In this

illustration, the peakon and antipeakon (a peakon with a negative initial weight) are

initially located at xn1(0) = −10 and xn2(0) = 10 and have momenta of equal magnitude

but opposite signs so that the total momentum is zero, i.e., pn1(0) = 2 and pn2(0) = −2.

We move the peakons exactly in time according to (3.6) with α = 1 on the domain

[a, b] = [−30, 30]. During the simulation, the total momentum remains zero, however the

magnitudes grow very large as the peakon traveling from the left to the right approaches

the antipeakon traveling in the opposite direction (see Figure 3.8). At some finite time, t∗,

the peakon and antipeakon will collide. Since the total momentum of the system is zero,

we expect that the solution will be zero at the collision time t∗. However, due to the in-

herent symmetry of the problem, u(x, t)→ −u(−x,−t), (c.f, [22] and references therein),

peakons may develop after the collision time and propagate in opposite directions, thus

exhibiting the elastic collison properties discussed in the previous section. To implement

this numerically, we allow particles to exchange momentum, if the particles associated

with the nonzero weights are sufficiently close to each other, i.e. |xn1−xn2| < d∗ where d∗

is some prescribed small distance. In our examples, d∗ = 1
2
∆xp. To recover the solution

u(x, t) as shown below , we once again calculate its values on a uniform grid according

to (2.6) (as before, we take xpj = j∆xp, ∆xp = b−a
Np

). In Figures 3.8 and 3.9, we plot

the location and momentum trajectories for the peakon and antipeakon as a function

of time. Here, we observe that similar to the two positive peakon example, the collision

between the peakon and antipeakon is elastic in the sense that it involves the exchange

of momentum.

If we consider the example where the peakon and antipeakon do not have weights with

the same magnitude (say , pn1(0) = 1 and pn2(0) = −1.5), then one may also observe the

no crossing behavior for which the peakons exchange momentum. We solve the problem

exactly as above with the only change being in the initial weights. With this change,

the total momentum is no longer 0; rather, it is −0.5. Similar to the example above, the

magnitudes grow very large as the peakon traveling from the left to the right approaches

the antipeakon traveling in the opposite direction. Once again, at some finite time, t∗, the

peakon and antipeakon will collide. This time, however, the two peakons merge into one

antipeakon with a weight −0.5 which is to be expected. Taking advantage of the inherent

symmetry built into the problem (see above), we know that peakons may develop after
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Figure 3.7: An Illustration of the peakon-antipeakon phenomenon at various times.
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Figure 3.8: Location and momentum trajectories for the peakon-antipeakon interaction.
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Figure 3.9: (Zoomed) Location trajectories for the peakon-antipeakon interaction.

the collision and propagate in different directions. Using the same numerical strategy as

the first peakon-antipeakon case, we observe that the collision between the peakon and

antipeakon is elastic in the sense that it involves the exchange of momentum, even when

the initial weights have different magnitudes.

3.3 Numerical Experiments

In this section, we perform several numerical simulations, which solve the CH equation

under a wide range of initial data. We illustrate that the peakons’ behavior is reminiscent

of the soliton paradigm as the peakon represents a self-reinforcing solitary wave that

maintains its shape while it travels at a constant finite speed. Peakons also exhibit a

remarkable stability as their identity is retained through strong nonlinear interactions.

The presented numerical examples do not only corroborate the analytical results, but

also demonstrate some of the practical advantages that the particle method holds over

other numerical methods. In particular, we consider both peakon solutions and solutions

arising from arbitrary smooth initial data. In all cases, we compare the results obtained

by the particle method (PM) with those obtained using a finite volume (FV) approach,

in particular, a semi-discrete central upwind scheme (CU) described in Chapter 1.

CU Scheme for the CH Equation

To apply the CU scheme to the CH equation, we first rewrite the CH equation in the

equivalent conservative form:
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Figure 3.10: An Illustration of the peakon-antipeakon (with different magnitudes) phe-
nomenon at various times.
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Figure 3.11: Location and momentum trajectories for the peakon-antipeakon (with different
magnitudes) interaction.
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Figure 3.12: (Zoomed) Location trajectories for the peakon-antipeakon (with different mag-
nitudes) interaction.

mt + f(m,u)x = 0, f(m,u) := um+
1

2
u2 − α2

2
u2
x, m = u− α2uxx. (3.12)

According to the description in Chapter 1, the second-order CU scheme is then given as

d

dt
mj(t) = −

Hj+1/2(t)−Hj−1/2(t)

∆xc
, (3.13)

where the numerical fluxes, Hj+1/2, are

Hj+1/2(t) =
a+
j+1/2f

(
m−j+1/2

)
− a−j+1/2f

(
m+
j+1/2

)
a+
j+1/2 − a

−
j+1/2

+
a+
j+1/2a

−
j+1/2

a+
j+1/2 − a

−
j+1/2

[
m+
j+1/2 −m

−
j+1/2

]
.

(3.14)

In (3.13), mj(t) denote the cell averages of m and are given by

mj(t) :=
1

∆xc

∫
Cj

m(x, t) dx, (3.15)

where Cj = [xj− 1
2
, xj+ 1

2
]. m±j+1/2 are the point values at xj±1/2 = xj ± ∆xc

2
to the solution

m at each cell interface, given a piecewise polynomial reconstruction (1.56). That is,

m+
j+1/2 = mj+1(t) + (mx)j+1

(
xj+1/2 − xj

)
,

m−j+1/2 = mj(t) + (mx)j
(
xj+1/2 − xj

)
,
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where (mx)j is calculated using (1.57).

We recall from Chapter 1 that there may exist discontinuities at the end points for each

value of j in our linear piecewise polynomial reconstruction. These possible discontinuities

propagate with right- and left sided local speeds, which may be estimated as follows

a+
j+1/2 = max

{
u−j+1/2, u

+
j+1/2, 0

}
,

a−j+1/2 = min
{
u−j+1/2, u

+
j+1/2, 0

}
,

where u±j+1/2 are the values of the velocity at cell interfaces. We recall that the momen-

tum and velocity in the CH equation (3.1) are related through the modified Helmholtz

equation, which we may solve by transforming the PDE to an algebraic equation in an-

other (i.e. frequency) domain, via a Fourier transform. To this extent, we recall that the

Fourier transform of a continuous function is given by

F [u] = F (ξ) =
1√
2π

∫ ∞
−∞

u(x)e−iξx dx. (3.16)

For sufficiently smooth functions, the following property is particularly useful for trans-

forming PDEs to algebraic equations:

F
[
u(n)
]

=
1√
2π

∫ ∞
−∞

u(n)e−iξx dx = (iξ)nF [u]. (3.17)

For instance, if F [u] = û, then one has the following expression:

m = u− α2uxx =⇒ û =
m̂

1 + α2ξ2
. (3.18)

One can then compute the inverse Fourier transform given by

F−1[û] = u =
1√
2π

∫ ∞
−∞

û(ξ)eiξx dξ. (3.19)

to recover u. Numerically, one can use a Fast Fourier Transform (and an Inverse Fast

Fourier Transform) to carry out these calculations. This technique is used to first solve

the modified Helmholtz equation (3.18) to recover the cell center values {uj} from {mj}
(in the performed numerical experiments, we have used periodic boundary conditions).

The cell interface values u±
j+ 1

2

are then computed from {uj} using the minmod limiter
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(1.58).

We remark that the resulting scheme (3.13), (3.14) is a system of time dependent

ODEs which should be solved using a high-order (at least second order accuracy) method.

For our numerical experiments, we used a third-order SSP (strong stability preserving)

Runge-Kutta method (see e.g. [68]) with an adaptive time step ∆t < ∆xc

2amax
, where

amax := max
j

{
a+
j+1/2,−a

−
j+1/2

}
.

The results shown below demonstrate the advantages that the particle method holds

over the CU scheme. In all of the examples that follow, we take α = 1 and θ = 1.5 in

(1.58) associated with the CU scheme.

3.3.1 Peakon Initial Data

Single Peakon. We begin by considering a single peakon solution and implementing

the multi-particle approach described in Section 3.2.1 in the context of two particles. To

this extent, we place Np = 500 equidistant particles in the interval [−30, 30] at t = 0

such that pi = 0 for i 6= q and pq = 1. As we discussed before, the weights of all of the

zero particles in consideration will remain constant in time. Their locations will change in

time according to the values of the velocity u(xi(t), t), which in this case depends solely

on xq(t) and pq(t), and therefore can be computed explicitly:

u(xi(t), t) =
1

2
pq(t)e

−|xq(t)−xi(t)|, xq(t) =
1

2
pq(0)t+ xq(0). (3.20)

This remarkable simplicity in integrating the ODE as well as recovering the solution

at any t > 0 is one advantage that the particle method holds over say a finite volume

approach. To illustrate this, we compare the results generated from the particle method

to those obtained by applying a second-order CU scheme to the CH equation (3.1). In the

finite volume setting, we use a uniform grid xj = j∆xc with ∆xc = 0.12 (i.e., Nc = 500)

on the same interval [−30, 30]. To compare the FV solution with the PM solution we run

the simulations until t = 1 and t = 10 (initially we place particles at the middle of each

finite volume cell). The solutions obtained by both methods are presented in Figure 3.13.

As one can see, the particle solution generates a more accurate approximation to the

solution of (3.1) due to the minimal effects of numerical diffusion. We observe that the
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maximum height of the “peak” generated from the CU scheme becomes noticeably smaller

as time progresses. This is due to the numerical diffusion introduced by the FV scheme

which is a result of its Eulerian nature. In contrast, the particle method is Lagrangian

in nature, and hence is generally resistant to the numerical diffusion introduced in the

approximation of the solution. In Figure 3.14 we show that the FV solution converges

to the particle solution through an appropriate grid refinement study. In this figure, we

take Nc = 3000 in the FV simulations while the number of particles remains Np = 500

as before.

Remark 3.3.1. We would like to remark that the examples considered in this chapter are

comparable with [146], in which the authors solved the CH equation with both peakon

initial data and non-peakon initial data. There, they considered a local discontinuous

Galerkin method to numerically solve the CH equation.
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Figure 3.13: The velocity u obtained by both PM and FV at times t = 1, 10 with Np =
Nc = 500.

Two Peakons. Next, we return to the two-peakon problem discussed in Section 3.2.1

and perform a comparison against a CU scheme. Similar to the previous example, for

the FV method, we use a uniform grid xj = j∆xc with ∆xc = 0.12 (i.e., Nc = 500) on

the same interval [−10, 30]. As in the one peakon case, we see in Figure 3.15 that the

peak associated with the FV solution is shorter than that of the PM solution which is a

direct consequence of the numerical diffusion introduced into the problem. Due to this

dampening of the peakon’s height from the FV method, we expect that as the peakons
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Figure 3.14: The velocity u obtained by both PM and FV at times t = 1 with Np =
500, Nc = 3000.

propagate in time, the error between the CU scheme and particle method grows. One can

reduce this error between the simulations by considering a finer computational grid for

the CU scheme. In Figure 3.16, we consider such a refinement by taking Nc = 3000 while

still having Np = 500. This shows that the particle method is able to capture complicated

nonlinear interactions among peakon solutions for (3.1) with considerably fewer points

compared to FV methods. We also see that as in the single peakon example, the solution

generated from the FV method will converge to the particle method.

3.3.2 Arbitrary Smooth Initial Data

If we do not consider an initial condition in the form of a linear combination of peakon

solutions, then we are no longer guaranteed that the particle method will yield an exact

solution to (3.1).To this extent, we consider the following smooth initial data:

m(x, 0) =

 3 cos2
(

1
4
x
)

: |x| ≤ 2π,

0 : |x| > 2π.
(3.21)

To simulate solutions using a particle method, we place Np = 500 equidistant particles in

the interval [−10, 30] at t = 0, with the initial weights given by pi(0) = ∆xpm(xi(0), 0)

where ∆xp = 4
50

. We then evolve the locations and weights of the particles according to

the system of ODEs given by (2.5). As usual, we recover the velocity u(x, t) at some final

time t by computing its values on a uniform grid according to (2.6) (here we take the
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Figure 3.15: The velocity u for the CH equation obtained by FV and PM at various times
with Np = Nc = 500.
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Figure 3.16: The velocity u for the CH equation at t=9 with Np = 500, Nc = 3000.
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same ∆xp used in the initial placement of the particles). To simulate solutions via a CU

scheme, we use a uniform grid xj = j∆xc with ∆xc = ∆xp on the same interval [−10, 30].

For clarity purposes, at further times (t > 4), we extend the computation domain so that

one may clearly see the “peakon train” that forms as we simulate the solution for longer

periods of time.

In Figure 3.17, we show that the PM solution generates a more accurate approxima-

tion to the solution of (3.1) due to its low numerical diffusion. We observe a “steepening

behavior” as was described in [16, 17] and the formation of peakons from arbitrarily

smooth data. This is due to the complete integrability of (3.1). In fact, we expect peakons

to form after a finite time for any smooth arbitrary initial data.

The accuracy of both the particle and finite volume method may be visualized by

performing a grid refinement study as is done in Figure 3.18. Similar to the peakon

simulations in 3.3.1, we observe that the maximum height of the “peak” generated from

the CU scheme becomes noticeably smaller as time progresses. Finally, in Figure 3.19,

we show that the FV solution converges to the PM solution with a suitably refined grid.

Here we consider Nc = 7000 compared to the original Np = 500 particles placed in a

uniform grid for the particle method. This shows once again that the particle method is

able to resolve the solution to (3.1) under a suitable class of smooth initial data, with

less points than a a FV method.
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Figure 3.17: The velocity u for the CH equation obtained by FV and PM at various times
with Nc = Np = 500.
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Figure 3.18: Grid refinement analysis for both FV and PM at t = 10.
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Figure 3.19: The velocity u for the CH equation obtained by FV and PM at t = 10,
Nc = 7000 and Np = 500.
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Chapter 4

Long Time Tsunami Wave

Propagation

4.1 Introduction

Due to the potential tragic nature of tsunami waves, there is a need for the scientific

understanding and modeling of this complicated phenomenon in order to reduce unwanted

destruction and prevent unnecessary deaths from this natural disaster. Tsunami waves are

caused by the displacement of a large volume of a body of water, typically in an ocean or

a large lake, see, e.g., [15, 124, 127]. They do not resemble other sea waves and are instead

characterized by having relatively low amplitude (wave height) offshore, large wavelength,

and large characteristic wave speed. This characterization is what prevents tsunami waves

from being felt at sea. Tsunami waves grow in height as they reach shallowing water,

in what is known as a wave shoaling process. In this process, the wave slows down, the

wavelength decreases, and a very high and powerful wave arrives on the shore and may

cause massive destruction.

There have been many attempts to create accurate models and corresponding numer-

ical methods for simulating tsunami waves. One popular model in shallow water wave

theory is the classical Saint-Venant system [52], which reasonably approximates the be-

havior of real ocean waves and is a depth-averaged system that can be derived from

the Navier-Stokes equations, see, e.g., [87, 105, 130]. The Saint-Venant system is a very

good simplification for lakes, rivers, and coastal areas in which the typical time and space

scales of interest are relatively short. Because the Saint-Venant system is quite difficult to
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solve, it is sometimes simplified in a number of ways, including linearization, in which the

velocity of water particles is taken to be the gradient of a scalar potential. Taking various

asymptotic limits of the inviscid Euler equations result in a host of integrable and nearly

integrable equations such as the Korteweg-de Vries (KdV) equation, the Camassa-Holm

(CH) equation,the nonlinear Schrödinger equation, and so on, see, e.g., [90, 129, 139, 144].

Tsunami waves form in deep water and travel very long distances (thousands of

kilometers) before coming to shore. Over long time, solutions of the Saint-Venant system

break down, dissipate in an unphysical manner, develop shock waves, and fail to capture

small, trailing waves that are seen in nature and laboratory experiments. Thus, it is

necessary to use a more sophisticated model in order to preserve the wave characteristics

over long time simulations.

Non-hydrostatic models (such as the celebrated Green-Naghdi equations [69] and

several others, see, e.g., [4, 7, 8] and references therein) work well for the long-time prop-

agation of tsunami-type waves because they allow the wave to travel for long distances

without changing the shape or decaying in amplitude. In addition, since these systems are

dispersive, they give rise to trailing waves that are observed to follow tsunamis in nature.

However, it is necessary to achieve some balance between the dispersion observed with a

non-hydrostatic model and the dissipation seen in the classical Saint-Venant system.

One attempt to achieve such a balance has been recently made in [13, 14], where

the non-hydrostatic Saint-Venant system has been rigorously derived from the Green-

Naghdi equations. As has been demonstrated in [26], the non-hydrostatic Saint-Venant

system is capable of accurately modeling long-time propagation of tsunami-type waves.

However, the system is quite complicated and developing highly accurate, robust and

efficient numerical methods for computing its solutions is a highly non-trivial task.

Another system that has been derived from the Green-Naghdi equations is a two-

component generalization of the CH equation, for which the integrability property associ-

ated with the CH equation has been combined with compressibility, see, e.g., [42, 84, 135].

Compared with the original CH equation, the two-component Camassa-Holm (2CH)

equation contains an additional continuity equation for the scalar density ρ, and the

momentum (velocity) equation contains a pressure term involving density:

ρt + (ρu)x = 0, (4.1a)
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mt + umx + 2mux = −g
2

(ρ2)x, m = u− α2uxx. (4.1b)

Similar to the CH equation, m(x, t) is the momentum related to the fluid velocity

u(x, t) through the modified Helmholtz equation, the density ρ(x, t) is related to the

total depth of the water column, α > 0 is a length scale, and g > 0 is the gravitational

constant.

In this chapter, we develop a new numerical method in an attempt to solve the 2CH

equation under the context of tsunami waves dynamics using appropriate initial data.

The preliminary results shown in this chapter serve as an impetus for the eventual goal of

showing that the 2CH equation could become a viable model for the long time propagation

of tsunami-type waves. To begin, we first consider the finite-volume central-upwind (CU)

scheme for solving the system (4.1). To apply the (CU) scheme to the system (4.1), we

rewrite equations (4.1a) and (4.1b) in the following conservative form:

ρt + (ρu)x = 0,

mt +

(
um+

1

2
u2 − α2

2
u2
x +

1

2
gρ2

)
x

= 0,
(4.2)

and then implement the CU scheme for system (4.2) in quite a straightforward manner

as it was described in Chapter 1.

Even though the designed finite-volume (FV) method is robust and efficient, it suffers

from excessive numerical dissipation in the same manner for which the CU scheme for

the original CH equation did (as was shown in Chapter 3). To reduce the amount of

numerical diffusion, we follow the idea presented in [23, 24, 27] and derive a hybrid

finite-volume-particle (FVP) method for the system (4.1). In the hybrid approach, the

density equation (4.1a) is solved using the CU scheme, while the momentum equation and

velocity equation (4.1b) are solved by a deterministic particle method. Particle methods

were originally introduced for solving linear transport equations (see, e.g., [49, 131]), but

in recent years have also been used for approximating solutions to a variety of time-

dependent PDEs, see, e.g., [25, 29, 30, 56, 111].

Finally, in §4.4, we perform several numerical experiments to study the effect of the

bifurcation parameter α in (4.1b) and to compare the performance of the CU scheme

and hybrid FVP method. The obtained results demonstrate that for certain choices of
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α, the amplitude and speed of the wave, generated by solving (4.1a)–(4.1b), is preserved

for longer times than those solved by the classical Saint-Venant system.

4.2 A Derivation of the Two Component Camassa-

Holm System

In this section, we follow a process as described in [42, 86] for deriving the 2CH equation

in the context of shallow water waves. To this extent, we begin with a reduced version of

the celebrated Green-Naghdi (GN) equations, which are derived from Euler’s equations,

under a particular set of assumptions. For instance, one may consider the motion of

shallow water over a flat surface, which is located at z = 0. One may also assume that

the motion is in the x-direction and that the physical variables do not depend on y. If

we let h be the mean level of water, a the typical wavelength amplitude of the wave and

λ the typical wavelength of the wave then we can introduce the following dimensionless

parameters ε = a/h and δ = h/λ, which are assumed to be small in shallow water wave

dynamics. If we let u(x, t) describe the horizontal velocity of the fluid and η(x, t) describe

the horizontal deviation of the surface from equilibrium, then the reduced form of the

GN equations (in the context of 1D wave motion over a flat, horizontal bed) are given as

ut + εuux + ηx =
δ2/3

1 + εη

[
(1 + εη)3 (uxt + εuuxx − εu2

x

)]
x

= 0,

ηt + [u (1 + εη)]x = 0.

(4.3)

These equations are obtained under the assumption that at leading order, u is not a

function of z. While this is not correct at O(ε), this approximation is valid for the leading

order problem (see e.g. [86]). In fact, this assumption is equivalent to the simplifying

approximation used by Green and Naghdi ([69]). Using this assumption as well as the

pressure term’s derivative in Euler’s equation, the authors in [86] were able to deduce

the following condition for the pressure term in Euler’s equation:

p = η − 1

2
δ2
{

(1 + εη)2 − z2
} (
uxt + εuux − εu2

x

)
. (4.4)

A leading order expansion with respect to the variables ε and δ2 yields the following

system of equations
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(
u− δ2

3
uxx

)
t
+ εuux + ηx = 0, (4.5)

ηt + [u (1 + εη)]x = 0. (4.6)

To derive the 2CH equation, we follow the process given in [42] and consider a function

of u and η in the form

ρ(u, η) = ρ0 +Bεη − Cε2
(
u2 + η2

)
, (4.7)

where ρ0, B, C are arbitrary constants. One may expand ρ in the same order of ε as in

ρ2 to obtain

ρ2 = ρ2
0 + 2Bρ0εη + ε2

(
B2 − 2Cρ0

)
η2 − 2Cρ0ε

2u2. (4.8)

We observe that

(
ρ2
)
x

= 2Bρ0εηx + ε2
(
2B2 − 4Cρ0

)
ηηx − 4Cρ0ε

2uux,

and when comparing this to (4.5), we take 2B2 − 4Cρ0 = 0 or B =
√

2Cρ0. This yields

the following
1

ε

(
ρ2
)
x

= 2
√

2Cρ0ρ0ηx − 4Cρ0εuux. (4.9)

Thus, we may rewrite (4.5) as follows

(
u− δ2

3
uxx

)
t

+

(
1 +

√
2C

ρ0

)
εuux +

1

2ε
√

2Cρ0ρ0

(
ρ2
)
x

= 0. (4.10)

We may further simplify (4.10), by taking m = u− δ2

3
uxx and using the following relations

(taking ε as the highest order):

εmux ≈ εuux,

εumx ≈ εuux.

This allows us to rewrite (4.10) as follows:

mt +
1

2ε
√

2Cρ0ρ0

(
ρ2
)
x

+Dεmux + Eεumx = 0, (4.11)
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where D + E = 1 +
√

2C
ρ0

. From (4.3), we have the following approximations: ut ≈ −ηx
and ηt ≈ −ux. Thus, we can write

ρt =
√

2Cρ0εηt + 2Cε2 (uut + ηηt) =
√

2Cρ0εηt + 2Cε2 (ηu)x .

Using the fact that ρ ≈ ρ0 +
√

2Cρεη, we obtain

(ρu)x = ρux + uρx

=
(
ρ0 +

√
2Cρεη

)
ux + u

(√
2Cρεηx

)
= ρ0ux +

√
2Cρ0ε (ηu)x .

Using the two facts above, we obtain

ρt +

√
2C

ρ0

ε (ρu)x =
√

2Cρ0ε

(
ηt + ux +

4C√
2Cρ0

ε (ηu)x

)
= 0, (4.12)

if we take 4C√
2Cρ0

= 1 or C = 1
8
ρ0 (by (4.6)). We remark that this implies that

ρ = ρ0 +
1

2
ρ0εη −

1

8
ρ0ε

2
(
u2 + η2

)
,

and hence ρ → ρ0 as |x| → ∞. We also note that if the local size of ε is about the

same size of δ2, then one may achieve a balance between nonlinearity and dispersion.

The scalings that allow one to achieve such a balance are given by

x =
δ√
ε
x̂, t =

δ√
ε
t̂. (4.13)

We can use the following rescaling to eliminate ε and ρ0 from (4.11) and (4.12) : u→ 2
ε
u,

ρ→ ρ0ρ. If we let α2 = δ2

3
, then we obtain the following system of PDEs:

mt + 2Dmux + 2Eumx = −ρρx,

ρt + (ρu)x = 0,
(4.14)

with m = u − α2uxx and D + E = 3
2
. Finally, to add a dependence on g as given by

(4.1b), we let ρ =
√
gρ to obtain:
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mt + 2Dmux + 2Eumx = −gρρx,

ρt + (ρu)x = 0.
(4.15)

We remark that if D = 1 and E = 1/2, then (4.15) reduces to the 2CH equation. If

D = E = 3/4, then (4.15) reduces to the following conservative form:

mt +
3

2
(um)x = −gρρx,

ρt + (ρu)x = 0,
(4.16)

Another interesting case is when α = 0 or m = u in which the 2CH equation assumes

the form

ut +

(
3

2
u2 + gρ2

)
x

= 0,

ρt + (ρu)x = 0.

(4.17)

For comparison purposes we note that this case most closely resembles the Saint-Venant

system given by

ht + (uh)x = 0,

(hu)t +

(
hu2 +

1

2
gh2

)
x

= 0.
(4.18)

Here, h is the height (depth) of an incompressible fluid, and hu is the momentum (or

discharge) of the system.

An open question is to determine how one may relate (4.17) with (4.18). For instance,

is there a way to relate ρ in (4.17) with h in (4.18) algebraically? Is the momentum

m given in (4.17) the same momentum as given in (4.18)? One way to gain a better

understanding of the possible connection between the 2CH equation (with α = 0) and

the Saint Venant system is to derive (4.18) in the context of the Green-Nagdhi equations

without dispersion (as we have done for the 2CH equation). Indeed, if we consider (4.3)

with h = 1 + εη or η = 1
ε

(h− 1) then we may express (4.3) as follows:

ut + εuux +
1

ε
(hx) = 0,

1

ε
ht + (hu)x = 0.

(4.19)
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(4.19) further simplifies to

(εu)t +

(
(εu)2

2
+ h

)
x

= 0,

ht + (h (εu))x = 0.

(4.20)

Finally, we take ū = εu to arrive at an alternative form of the Saint Venant system:

ūt +

(
ū2

2
+ h

)
x

= 0,

ht + (hū)x = 0.

(4.21)

To add a dependence on g and arrive back to the Saint Venant system given in (4.18),

we let h = gh. We remark that (4.18) is equivalent to (4.21) only under the assumption

of smooth solutions. From the derivations of the 2CH equation and the Saint Venant

system, we see that a possible relation between h and ρ is

ρ ≈ ρ0 +
1

2
ρ0(h− 1)− 1

8
ρ0(h− 1)2.

4.3 Numerical Methods for the 2CH Equation

In this section, we present two different numerical methods for the purpose of solving

the 2CH equation. We begin our discussion by describing the process for applying a

CU scheme (as presented in Chapter 1) to the 2CH equation. We then present a hybrid

finite volume-particle (FVP) method, which utilizes the strengths of both the FV and

particle method. To this regard, we solve the continuity equation (4.1a) using the CU

scheme while simultaneously solving the momentum and velocity equations (4.1b) by a

deterministic particle method.

4.3.1 A Semi-discrete Central Upwind Scheme for the 2CH

Equation

To apply a semi-discrete central upwind scheme (FV) for the 2CH equation, we follow

the approach described in Chapter 1 in quite a straightforward manner by rewriting the
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2CH equation in conservative form (see (1.30)) to obtain

q =

 ρ

m

 , f(q) =

 ρu

mu+
1

2
u2 − α2

2
u2
x +

g

2
ρ2

 , (4.22)

where u globally depends on m through the modified Helmholtz equation (4.1b). The CU

scheme for (4.22) is then given by (1.59)–(1.60) with the local speeds a±j±1/2 that should

be estimated from the largest and smallest eigenvalues of the Jacobian ∂f
∂q

. In the purely

hyperbolic case, that is, when α = 0 and thus u(m) ≡ m, the right- and left-sided local

speeds of propagation can be easily estimated using the largest and smallest eigenvalues

of the Jacobian

∂f

∂q
=

m ρ

gρ 3m

 ≡
 u ρ

gρ 3u

 . (4.23)

The eigenvalues associated with (4.23) are given by

λ± = 2u±
√
u2 + gρ2, (4.24)

and hence we have

a+
j+ 1

2

= max

{
2u−

j+ 1
2

+

√(
u−
j+ 1

2

)2

+ g
(
ρ−
j+ 1

2

)2

, 2u+
j+ 1

2

+

√(
u+
j+ 1

2

)2

+ g
(
ρ+
j+ 1

2

)2

, 0

}
,

a−
j+ 1

2

= min

{
2u−

j+ 1
2

−
√(

u−
j+ 1

2

)2

+ g
(
ρ−
j+ 1

2

)2

, 2u+
j+ 1

2

−
√(

u+
j+ 1

2

)2

+ g
(
ρ+
j+ 1

2

)2

, 0

}
.

(4.25)

In the dispersive case, that is, when α 6= 0, there is a global dependence of u on m and

formula (4.25) is not true any more. However, when α is small, we still use (4.25) to

estimate the local speeds. In the minmod function (1.58), we take θ = 1.3.

In (4.25), u±
j+ 1

2

are the values of the velocity at cell interfaces x = xj+ 1
2
, which are

obtained as follows. Recalling that the momentum m and velocity u of the 2CH equation

are related by (4.1b), we recover u±
j+ 1

2

from m at each time step using a Fast Fourier

approach as discussed in Chapter 3.
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4.3.2 A Hybrid Finite Volume-Particle Method for the 2CH

Equation

To construct a hybrid finite volume-particle (FVP) method for the 2CH equation, let

us assume that at some time level t the computed solution is available. As described in

Chapter 1, the density ρ is realized in terms of its cell averages, {ρj(t)}, and thus it is

globally available at all x via the piecewise linear reconstruction,

ρ̃(x; t) = ρj(t) + (ρx(t))j(x− xj), x ∈ Cj, (4.26)

where the cells Cj are given by (1.39) and the slopes (ρx(t))j are computed using the

minmod limiter as given by (1.58).

On the other hand, the particle approximation of the momentum m is given in the

form of a linear combination of Dirac δ-functions,

mN(x, t) =
N∑
i=1

wi(t)δ(x− xp
i (t)), (4.27)

where xp
i (t) and wi(t) represent the location and weight of the ith particle, and N denotes

the total number of particles in the computational domain Ω.

Using the special relationship between m and u given in (4.1b), one can directly com-

pute the velocity u from the particle distribution of the momentum (4.27), see Chapter

2. Namely, u can be obtained by taking the convolution product u = G ∗m, where

G(|x− y|) =
1

2α
e−|x−y|/α,

is the Green’s function associated with the Helmholtz operator in (4.1b). Thus, we have

the following global (in x) approximation of u:

uN(x, t) =
(
G ∗mN

)
(x, t) =

1

2α

N∑
i=1

wi(t)e
−|x−xpi (t)|/α. (4.28)

The solution at the next time level is computed according to the following algorithm.
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First, the cell averages {ρj} are evolved using the CU scheme as described in Chapter 1:

d

dt
ρj(t) = −

Hj+ 1
2
(t)−Hj− 1

2
(t)

∆x
, (4.29)

where (after omitting the time dependence of all of the indexed quantities)

Hj+ 1
2

=

(
a+
j+ 1

2

ρ−
j+ 1

2

− a−
j+ 1

2

ρ+
j+ 1

2

)
uj+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

[
ρ+
j+ 1

2

− ρ−
j+ 1

2

]
. (4.30)

Here, ρ±
j+ 1

2

are the left and right values of the piecewise linear reconstruction (4.26) at

x = xj+ 1
2
, uj+ 1

2
= uN(xj+ 1

2
, t) is the velocity obtained from (4.28), and the one-sided

local speeds a±
j+ 1

2

are estimated using (4.25) with u+
j+ 1

2

= u−
j+ 1

2

= uj+ 1
2
.

Next, following [22, 31, 33], we substitute (2.4) into a weak formulation of (4.1b) and

obtain the following system of ODEs for xp
i (t) and wi(t):

dxp
i (t)

dt
= u(xp

i (t), t),

dwi(t)

dt
+ ux(x

p
i (t), t)wi(t) = βi(t).

(4.31)

Here, ux(x
p
i (t), t) are computed from

uNx (x, t) =
(
Gx ∗mN

)
(x, t) = − 1

2α2

N∑
i=1

wi(t)sgn(x− xp
i (t))e

−|x−xpi (t)|/α, (4.32)

and βi(t) is the contribution associated with the pressure term −g
2
(ρ2)x:

βi(t) = −
∫

Ωi(t)

g

2
(ρ2)x dx, (4.33)

with Ωi(t) being a domain that includes the ith particle and satisfies the following prop-

erties:

wi(t) =

∫
Ωi(t)

m(x, t) dx, Ω1(t)⊕ · · · ⊕ ΩN(t) = Ω. (4.34)
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In general, Ωi(t) is not known (see, e.g., [25]), but it can be approximated by

Ωi(t) ≈
[
xp

i− 1
2

(t), xp

i+ 1
2

(t)
]
, xp

i+ 1
2

(t) :=
xp
i (t) + xp

i+1(t)

2
, (4.35)

and thus the integration in (4.33) results in

βi(t) = −g
2

{
ρ2
(
xp

i+ 1
2

(t)
)
− ρ2

(
xp

i− 1
2

(t)
)}

, (4.36)

where ρ
(
xp

i+ 1
2

(t)
)

= ρ̃
(
xp

i+ 1
2

(t); t
)

are obtained using the piecewise linear reconstruction

(4.26). To this end, one needs to find out which cell the point xp

i+ 1
2

(t) is located. This can

be efficiently done since by a time step restriction associated with the particle method,

every particle can either remain in the same cell or move to the neighboring cell within

one time step.

The ODE system (4.29), (4.31) is to be integrated by an appropriate ODE solver. In

our numerical experiments, we have used the third-order SSP Runge-Kutta method from

[67, 68]. To this end, the initial positions of particles, xp
i (0), and their weights, wi(0), are

chosen so that

mN(x, 0) =
N∑
i=1

wi(0)δ(x− xp
i (0)),

represents a high-order approximation of the initial data m(x, 0) at time t = 0. One way

of obtaining such an approximation is to use (4.34), (4.35) with t = 0. For example, a

second-order midpoint quadrature applied to the integral in (4.34) will lead to wi(0) =

|Ωi(0)|m(xp
i (0), 0).

4.4 Numerical Experiments

In this section, we apply a CU scheme and a hybrid FVP method to the 2CH equation

subjected to physically relevant initial data to simulate the propagation of tsunami-type

waves.

We are interested in using the 2CH equation as a model for the long time propagation

of tsunami waves. To this extent, we consider the initial data generated in [26], for which

they consider the situation for which a steep ridge on the bottom of the water body

breaks off and causes a submarine landslide using a Savage-Hutter type model. In this

scenario, the landslide creates surface waves which propagate in two directions. In one
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direction, this yields a “tsunami-like” wave. For more information regarding the Savage-

Hutter model, we refer the readers to [63, 143] and references therein. While this model

seems sufficient for the generation of these waves, it is incapable of exhibiting the long

time behavior of the wave, as the wave dissipates after a short time. To exhibit the long-

time propagation of this “tsunami-like” wave, we solve (4.1) using this initial data with

α = 0 up to t = .0015. Here, time is measured in hours. When this simulation is ran,

we observe the formation of two waves propagating in opposite directions. To study the

dynamics of the propagation of our “tsunami-like” wave, we consider only the portion of

the domain which captures the propagation of the right traveling wave. To accomplish

this, we adjust the computational domain by removing the portion that does not capture

this wave. This new data serves as the initial data used to simulate solutions to (4.1),

with g = 271008 km/h2 and α ≥ 0.

In the following numerical examples, we show how the speed and magnitude of the

wave is affected by our choice of α. We run each of these simulations with 1024 grid

points using a CU scheme with a uniform grid and minmod parameter θ = 1.3. For the

time evolution, we use a third-order strong stability preserving Runge-Kutta ODE solver

as presented in [68]. The boundary conditions are taken to be periodic and the time steps

were chosen adaptively as to satisfy the associated CFL conditions required for both the

CU/FV scheme and the particle method.

In what follows, we show the necessity of adding dispersion (in the form of a nonzero

α) to preserve the wave’s height during longer time intervals. We also show that if we

consider the hybrid FVP method for simulating the tsunami dynamics, then we can

recover the solution with fewer grid points.

4.4.1 Tsunami Dynamics for α = 0

In this example, we consider (4.1) with the initial data described above with α = 0.

Recalling our previous discussion, we note that it was shown in [26], that for the

classical Saint-Venant system, the modeling of long-time propagation and on-shore arrival

of the tsunami-type waves is not feasible as the waves diffuse and decay over time. We

expect to see a similar behavior for the α = 0 case, given its close resemblance to this

system. Indeed, we observe the following behavior in Figure 4.1.
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Figure 4.1: The velocity u and density ρ for the 2CH equation at various times with ∆x =
0.029 using the CU scheme.

4.4.2 Tsunami Dynamics for α 6= 0

To compensate for this feature, we may introduce dispersion into the equation by choosing

a nonzero α. Of course, we must be careful not to add too much dispersion, or the wave

profile will be destroyed. Indeed, if we look at Figure 4.2, we see that the height of the

traveling tsunami wave is better preserved for a nonzero value of α. Indeed, we run the

exact same simulation as the α = 0 example with the exception that we consider α = 0.01

in order to introduce dispersion into the equation.
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Figure 4.2: The density ρ for the 2CH equation obtained by at various times with ∆x =
0.029, α = 0.01 using the CU scheme.
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We also see that if we choose α too large, as in Figure 4.3, then the initial tsunami

wave decomposes into a train of oscillatory waves, and the profile is destroyed. In Figure

4.3, we take α = 0.05, and compare it to the solution at t = 0. Here, we consider solutions

up to t = 1.
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Figure 4.3: The density ρ for the 2CH equation obtained by at various times with ∆x =
0.029, α = 0.05 using the CU scheme.

We may tackle the problem of diffusion in another manner. Recall that the hybrid

FVP method, presented in the previous section, seeks to combine the advantages of both

the particle method and finite volume method to solve (4.1). One of the advantages

of using the particle method is its Lagrangian nature which implies that the scheme

is generally resistant to the numerical diffusion introduced in the approximation of the

solution. Indeed, we see that we may recover the same solution via the FVP method with

considerably less grid points, see Figure 4.4. Combining these results allow us to conclude

that with a small perturbation of α, using the FVP method on (4.1) can potentially serve

as viable model for the long time propagation of tsunami waves.
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scheme and FVP method , α = 0.1.

90



Chapter 5

Conclusion

In this thesis, we established various analytical and numerical properties for a class of

evolutionary PDEs. For instance, the concept of functions of bounded variation was used

to establish the convergence of the particle method applied to the b-equation (2.1) for a

special choice of the convolution kernel G and under a suitable class of initial data. These

bounded variation estimates were derived by using conservation properties associated

with the particle system. In turn, our convergence results allowed us to provide a novel

method for proving the existence of a unique global weak solution to (2.1) for G given

by (2.3) and for any b > 1.

We also applied a particle method to the CH equation, (3.1) to show that the non-

linear interaction among peakon solutions for (3.1) is indeed an elastic collision. This

was accomplished by using the conservation of momentum and conservation of kinetic

energy associated with the particle system obtained from the particle method applied

to the considered equations. We were able to visualize these results through a numerical

implementation of the method. Futhermore, we were able to explicitly showcase some of

the advantages a particle method holds over other numerical methods, such as a semi-

discrete central upwind scheme, in simulating these solutions. For instance, the particle

method allowed us to show multiple solutions for the peakon-antipeakon interaction for

the CH equation. We were also able to show that the particle method can capture the

interaction and dynamics of the solution with a lower resolution than a semi-discrete

central upwind method.

Finally, we have introduced two numerical methods for solving a two component

generalization of the CH equation, (4.1) which was derived in the context of shallow
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water wave theory by considering a reduced form of the Green-Nadghi equations. Using

both a semi-discrete central upwind scheme as well as a hybrid finite-volume particle

method, we were able to show that for certain values of α, (4.1) may potentially serve

as a viable model for the long time propagation of tsunami-like waves. For these values

of α, which adds dispersion to (4.1), we have shown that the amplitude and speed of

the wave was preserved for longer times than those solved by the classical Saint-Venant

system. We were also able to explicitly showcase some of the advantages that a hybrid

finite-volume particle method holds over other numerical methods, such as a semi-discrete

central upwind scheme, in simulating these solutions. For instance, we are able to resolve

the dynamics of the tsunami wave with a coarser grid when compared to the semi-discrete

method.

To this extent, we have only provided an analytical and theoretical study of the dy-

namics and interaction of peakon solutions for (3.1). In the future, numerical experiments

will performed on the analogous 2-D version of (3.1), i.e. the EPDiff equation, with ar-

bitrary smooth initial data. We will also analyze the interaction and dynamics of peakon

solutions generated from numerically solving the EPDiff equation. We have also only

provided an initial study of numerically solving (4.1) from the viewpoint of a model for

the propagation of tsunami waves. In the future, further studies will be conducted to

better understand the effects of changing the length scale α on the solutions generated

from solving (4.1).
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in computational anatomy, NeuroImage, 23 (2004), pp. S170 – S178.

98



[78] D. Holm, T. Schmah, and C. Stoica, Geometric mechanics and symmetry,
vol. 12 of Oxford Texts in Applied and Engineering Mathematics, Oxford University
Press, Oxford, 2009.

[79] D. Holm and M. Staley, Interaction dynamics of singular wave fronts. under
“Recent Papers” at http://cnls.lanl.gov/∼staley/.

[80] , Nonlinear balance and exchange of stability of dynamics of solitons, peakons,
ramps/cliffs and leftons in a 1 + 1 nonlinear evolutionary PDE, Phys. Lett. A, 308
(2003), pp. 437–444.

[81] , Wave structure and nonlinear balances in a family of evolutionary PDEs,
SIAM J. Appl. Dyn. Syst., 2 (2003), pp. 323–380 (electronic).

[82] D. D. Holm, L. Ó Náraigh, and C. Tronci, Singular solutions of a modified
two-component Camassa-Holm equation, Phys. Rev. E (3), 79 (2009), pp. 016601,
13.
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