
ABSTRACT 
ELAMAMI, ELGADDAFI ELSAAD. Augmented Strategies for 3D Elliptic Interface 
Problems with Piecewise Constant Discontinuous Coefficients. (Under the direction of Dr. 
Zhilin Li.) 
 

The augmented strategies for three-dimensional interface problems are reviewed in this 

thesis. A fast second-order accurate iterative method is proposed for the elliptic interface 

problems in a cubic domain in 3D using Cartesian grids for three dimensional elliptic 

interface problems in which the coefficients, the source term, the solution and its normal flux 

may be discontinuous (may have jumps) across an irregular interface. The idea in our 

approach is to precondition the differential equation before applying the immersed interface 

IIM method proposed by LeVeque and Li [SIAM J. Numer. Anal., 31(1994), pp. 1019-1044]. 

In order to take advantage of fast Poisson solvers on a cubic domain, an intermediate 

unknown function of co-dimension two, the jump in the normal derivative across the 

interface, is introduced. Our discretization is equivalent to using a second-order difference 

scheme for a corresponding Poisson equation in the domain, and a second-order 

discretization for a Neumann-like interface condition. Thus second-order accuracy is 

guaranteed. Weighted least square method is also proposed to approximate interface 

quantities from a grid function. 

Numerical experiments are provided and analyzed. The number of iterations in solving the 

Schur complement system appears to be independent of both the jump in the coefficient and 

the mesh size. The method is designed for interface problems with piecewise constant 

coefficient. The method is based on the fast immersed interface method and a fast 3D 

Poisson solver. There are at least two reasons to use augmented strategies. The first one is to 

get faster algorithms, particularly, to take advantages of existing fast solvers. The second 

reason is that, for some interface problems, an augmented approach may be the only way to 

derive an accurate algorithm. Using an augmented approach, one or several quantities of co-

dimension two are introduced. The GMRES iterative method is employed to solve the Schur 

complement system derived from the discretization and is often used to solve the augmented 

variable(s) that are only defined along the interface or the irregular boundary. Several 

examples of the augmented method are provided in this thesis.  An application of the method 

is that it has been modified to solve Poisson equations on irregular domains.  
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Chapter 1 

 

Introduction 
 

1.1 Introduction 

 
In this thesis, we develop a second order fast algorithm to solve three-dimensional elliptic 

equations with piecewise constant discontinuous coefficients on a cubic domain. The 

problem can be described as follows: 

Let Ω  be a cubic domain in the space  ℝ . Consider the following elliptic problem of the 

form: 

                        ∇. 𝛽𝛽 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 ∇𝑢𝑢 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 + 𝑘𝑘𝑘𝑘 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 = 𝑓𝑓 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 ,   𝑥𝑥, 𝑦𝑦, 𝑧𝑧 ∈ Ω\Γ,              (1.1a)      

                  𝑢𝑢 = 𝑤𝑤 𝑠𝑠 ,                         𝛽𝛽𝛽𝛽 = 𝑣𝑣 𝑠𝑠 ,        on Γ,                                                        (1.1b)    

  with a specified boundary condition on 𝜕𝜕Ω,  where Γ(s)  is an interface that divides the 

domain  Ω   into two sub-domains, Ω and, Ω , and 𝑢𝑢 = ∇𝑢𝑢. 𝑛𝑛   is the normal derivative along 

the unit normal direction  𝑛𝑛, 𝑠𝑠 is the arc length parameterization of  Γ . We use [.] to represent 

the jump of a quantity across the interface Γ. The coefficients 𝛽𝛽, 𝑘𝑘, and the source term 𝑓𝑓 

may be discontinuous across the interface Γ. We assume that      𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)  has a constant value 

in each sub-domain, i.e., 

𝛽𝛽 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 = 𝛽𝛽 ,      𝑖𝑖𝑖𝑖  Ω ,
𝛽𝛽 ,        𝑖𝑖𝑖𝑖  Ω .                                                              (1.2) 

If 𝛽𝛽 = 𝛽𝛽 = 𝛽𝛽 is a constant, then we have a Poisson equations Δ𝑢𝑢 = 𝑓𝑓 𝛽𝛽 with the source 

distributions along the interface that corresponds to the jumps in the solution and the flux. 

The finite difference method obtained from the immersed interface method [26,27,30] yields 

the standard discrete Laplacian plus some correction terms to the right hand side. Therefore, 

a fast Poisson solver, for example, the Fishpack [2], can be used to solve the discrete system 

of equations. If  𝛽𝛽 ≠   𝛽𝛽 , we can not divide the coefficient 𝛽𝛽  from the flux jump condition. 

The motivation is to introduce an augmented variable so that we can take advantage of fast 



 

2 

Poisson solver for the interface problem with only singular sources. Our approach is based on 

finite difference method. It is of second order accuracy and the algorithm is fast, requiring 

only 𝑂𝑂(𝑁𝑁 𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁 ) arithmetic operations for a mesh of 𝑁𝑁 grid points. 

 

1.2 Some application examples 

 
Equation (1.1) is called Poisson problem and such problems arises in several fields of 

physical applications in material science, some mathematical biology problems modeled by 

PDEs, and fluid dynamics when two distinct materials or fluids with different conductivities 

or densities are interfaced. Classical examples can be found in the so-called heat equation. 

For example, 𝑢𝑢 may represent the temperature distribution in a material with heat 

conductivity 𝛽𝛽 and a heat source 𝑓𝑓. For composite materials, the coefficient 𝛽𝛽 is 

discontinuous across the interface between two different materials. For example, the 

temperature 𝑢𝑢 should be continuous, which means   𝑢𝑢 = 0 across the interface, where [.] 

denotes the jump in a quantity across the interface. The heat flux 𝛽𝛽𝑢𝑢  should also be 

continuous across any interface, i.e.,  [𝛽𝛽𝑢𝑢 ] = 0, if no heat source is present there, where 

𝑛𝑛  denotes the unit normal vector at the interface. If 𝛽𝛽 is discontinuous, then there must be a 

jump in the normal derivative 𝑢𝑢 . Mathematically, the temperature 𝑢𝑢 can be modeled as 

follows 

            𝑢𝑢 = ∇. 𝛽𝛽∇𝑢𝑢 ,            in     Ω, 
 

with boundary conditions on 𝜕𝜕Ω, initial conditions, and jump conditions on Γ:     𝑢𝑢 = 0,

𝛽𝛽𝑢𝑢 = 0.  The coefficient 𝛽𝛽 is given as above, where Ω    and Ω   denote the two sides of the 

interface, and  Γ  denotes the interface between Ω    and Ω   . More physical applications of 

interface problems can be found in Hele-Shaw flow [21,22,47], two-phase flow [6,11,50], 

drop spreading [23] and electro-migration of voids [8,34,40], etc. 
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1.3 Elliptic interface problems 

 
This thesis is concerned with numerical analysis of elliptic interface problems in three-

dimensional space. Let Ω be a simple convex domain subset of ℝ   which is divided into two 

sub-domains by an irregular interface Γ such that Ω = Ω      ∪ Ω . Consider the elliptic 

equation (1.1) and (1.2a-b). 

Assume that the coefficient 𝛽𝛽  and source term  𝑓𝑓 may be discontinuous across the interface Γ,  

i.e., 

𝛽𝛽 = 𝛽𝛽 ,                    𝑖𝑖𝑖𝑖      Ω ,
𝛽𝛽 , 𝑖𝑖𝑖𝑖        Ω . 

𝑓𝑓 = 𝑓𝑓 ,                        𝑖𝑖𝑖𝑖        Ω ,
𝑓𝑓   ,                      𝑖𝑖𝑖𝑖        Ω . 

 

See Figure 1.1 for illustrations. 

 

 

 

 

 

 

 

 

                 Figure 1.1: A cubic domain Ω  with an immersed interface Γ. The coefficients 𝛽𝛽  

                                    and the source term 𝑓𝑓 may have jumps across the interface. 
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It is crucial for our approach that we have enough a priori knowledge about some interface 

conditions. Equations (1.2a) and (1.2b) can be derived either by physical reasoning or 

directly from the differential equation itself. 

 

1.4 Overview of numerical methods for the elliptic equations 

 
Solving interface problems efficiently and accurately has been a challenge because of many 

discontinuities or non-smoothness of their solution across the interface or discontinuities in 

the coefficients and singular source terms across the interfaces. Over years, interface problem 

have attracted a lot of attention from numerical analysts, and many numerical methods have 

been developed for the interface problems such as: 

 Peskin’s immersed boundary method (IBM), see [6,16,43,44]; 

 Smoothing methods for discontinuous coefficients, see [4,49,51]; 

  The immersed interface method (IIM), see [26,27]; 

 Harmonic averaging for discontinuous coefficients, see [4,49]; 

 Ghost fluid methods ( GFM), see [17,18,19]; 

 Finite elements methods (FEMs); with body-fitted meshes; 

 Immersed finite element method (IFEM), see [3,24]. 

Some methods (immersed boundary methods, ghost fluid methods) are easy to implement, 

but only achieve first order accuracy. Others (immersed interface method, finite element 

methods with body-fitted meshes) achieve second order accuracy, but they are not easy to 

implement. We refer the reader to [26,27,30,32,33] for an incomplete review of Cartesian 

grid methods for interface problems. Moreover, most of the above numerical methods can be 

second order accurate in 𝐿𝐿 or 𝐿𝐿  norm, but not in 𝐿𝐿  norm. And it seems that only the IIM 

method can guarantee a second order accurate solution in 𝐿𝐿  norm for interface problems. 
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1.5 Interface expression 

 
To solve interface problems numerically, we need the information about the interface such as 

the position, tangential and normal directions, and sometimes curvatures as well. We choose 

to use the level set approach in this thesis since we focus on three-dimensional interface 

problems. The level set approach was introduced by Osher and Sethian in [42] and has been 

applied for many moving interface problems (e.g., [9,10,21,32,50,52]) since then. In this 

approach the interface is modeled as the zero level set of a smooth function 𝜑𝜑 defined on the 

entire physical domain. The interface is then moved by updating values of 𝜑𝜑  through non-

linear Hamilton-Jacobi equation of the level set function. By the narrow band approach [10], 

the Hamilton-Jacobi equation is solved only over a computational tube surrounding the 

interface, and only the values of 𝜑𝜑 within the narrow tube are updated. 

Furthermore, this approach can be used for complicated moving interfaces in two and 

three dimensions. It can handle cusps and spikes and situations in which the interfaces break 

or merge. 

 

1.6 Our strategy 

 
The main idea in our approach is to precondition the partial differential equation PDE 

(1.1),(1.2a) and (1.2b) before we apply the immersed interface method IIM proposed by 

LeVeque and Li [26], and in order to take advantage of fast Poisson solvers on a cubic 

domain, an intermediate unknown function of co-dimension two which is the jump in the 

normal derivative is introduced. 

 

1.6.1 The sketch of our method 

 
Our method is based on an approach that involves the following steps: 
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 We precondition (1.1),(1.2a-b) to get an equivalent problem before using the 

IIM. 

 We use the IIM idea to discretize the equivalent problem and derive the Schur 

complement system. 

 We discuss the weighted least squares approach to approximate from the grid 

function. 

 We propose an efficient preconditioner for the Schur complement system. 

 

1.6.2 The augmented variable and augmented equations 

 
There are more than one way to introduce an augmented variable. Since the original partial 

differential equation PDE (1.1),(1.2a-b) can be written as a Poisson equation in each 

subdomain after we divide 𝛽𝛽 from the original PDE excluding the interface Γ,  it is natural to 

introduce [𝑢𝑢 ] as the augmented variable. 

Consider the solution set  𝑢𝑢 (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) of the following problem as a functional of  𝑔𝑔(𝑠𝑠), 

∆𝑢𝑢 = 𝑓𝑓 𝛽𝛽 ,                 𝑖𝑖𝑖𝑖  Ω , 

(1.3)	
  

∆𝑢𝑢 = 𝑓𝑓 𝛽𝛽 ,                𝑖𝑖𝑖𝑖  Ω .     

 

with the same boundary condition on 𝜕𝜕Ω  as in the original problem (1.1). Let the solution of 

(1.1) be 𝑢𝑢∗ 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 , and define 

                                                                                      𝑔𝑔∗ 𝑠𝑠 = 𝑢𝑢∗ 𝑠𝑠 ,                                                                                                                                                                           1.4    

along the interface Γ. Then 𝑢𝑢∗ 𝑥𝑥, 𝑦𝑦, 𝑧𝑧  satisfies the PDE and the jump conditions in (1.3) with 

𝑔𝑔 𝑠𝑠 = 𝑔𝑔∗. In other words, 𝑢𝑢 ∗ 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 = 𝑢𝑢∗ 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 , and  

                                                                                 𝛽𝛽
𝜕𝜕𝑢𝑢 ∗

𝜕𝜕𝜕𝜕 = 𝑣𝑣 𝑠𝑠 ,                                                                                                                                                                                  (1.5) 

is satisfied. The expression (1.5) is called the augmented equation. Therefore, solving the 

original problem (1.1),(1.2a-b) is equivalent to finding the corresponding    𝑔𝑔∗(𝑠𝑠) that satisfies 
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(1.3) and (1.5). Note that 𝑔𝑔∗ 𝑠𝑠  is only defined along the interface, so it is one-dimension 

lower than that of 𝑢𝑢(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). If we are given 𝑢𝑢 = 𝑔𝑔(𝑠𝑠), then it is easy to solve (1.3) using 

the IIM since only correction terms at irregular grid points are needed to add to the right hand 

side of the finite difference equations. A fast Poisson solver such as the FFT then can be 

used. The cost in solving (1.3) is just a little more than that in solving a regular Poisson 

equation on the cubic domain as in Figure (1.1) with a smooth solution. 

As mentioned earlier, it requires only 𝑂𝑂(𝑁𝑁 𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁 ) arithmetic operations for a mesh of 𝑁𝑁 

grid points. 

 

1.7 The outline of the thesis 

 
In chapter 2, we will give the detailed description on how to apply the immersed interface 

method IIM to solve 3D elliptic interface problems and introduce the interface relations of 

the problem which will be utilized in the derivation of our augmented approach. The main 

task of this thesis is to develop a second order fast algorithm for 3D elliptic interface 

problems with piecewise constant but discontinuous coefficients which is established mainly 

in chapter 3. In order to use fast Poisson solvers, we introduce the jump in the normal 

derivative 𝑢𝑢  as an unknown variable (augmented variable). Then the GMRES method is 

employed to solve a Schure complement system for 𝑢𝑢 . Moreover, this method has no 

significant storage need, 𝛽𝛽 and 𝛽𝛽 are inputs, and it gives us 𝑢𝑢  in addition to the solution 

𝑢𝑢. In chapter 4, the fast Poisson solver for piecewise constant coefficients is investigated by 

some numerical experiments. 

In chapter 5, as a part of this thesis, we will investigate some applications to the proposed 

fast augmented IIM method by using the domain embedding technique to solve interior or 

exterior Poisson equations with Dirichlet boundary conditions on irregular domain. The main 

idea is to embed the irregular domain into cubic domains, and treat them as interface 

problems, and then use the fast algorithm to solve them. Finally, in chapter 6 we summarize 

the contributions we have achieved and discuss several possible future research topics. 
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Chapter 2 

 

The IIM for elliptic interface problems in 3D 
 

2.1   Introduction 
 

Let Ω be a convex domain in ℝ  and Γ be an arbitrary piecewise smooth surface in Ω. The 

interface divides Ω into two sub-domains Ω   and Ω  and therefore Ω = Ω ∪ Ω ∪ Γ. See 

figure (1.1). In this chapter, we discuss the IIM for the elliptic interface problems of the form 

 

                  ∇. 𝛽𝛽∇𝑢𝑢(𝑥𝑥, 𝑦𝑦, 𝑧𝑧 ) + 𝑘𝑘𝑘𝑘 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 = 𝑓𝑓 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 ,                       𝑥𝑥, 𝑦𝑦, 𝑧𝑧 ∈ Ω\Γ,                                                              (2.1)             

 

in three dimensions in a region Ω with a boundary condition on 𝜕𝜕Ω, where all the coefficients 

𝛽𝛽, 𝑘𝑘 ,and  the source term 𝑓𝑓   may be discontinuous across  the interface Γ , which is a surface 

S: 𝑥𝑥 = 𝑥𝑥 𝑠𝑠 , 𝑠𝑠 , 𝑦𝑦 = 𝑦𝑦 𝑠𝑠 , 𝑠𝑠 , 𝑧𝑧 = 𝑧𝑧(𝑠𝑠 , 𝑠𝑠 ) . To make the problem well-posed, we assume 

that we have knowledge of the jump conditions in the solution and the flux, 

 

                         𝑢𝑢 = 𝑤𝑤 𝑠𝑠 , 𝑠𝑠 ,               𝛽𝛽𝑢𝑢 = 𝑣𝑣 𝑠𝑠 , 𝑠𝑠 ,                                                                                                                    (2.2)           

 

where 𝑤𝑤  and 𝑣𝑣  are two known functions defined only along the interface Γ. 

 

In this chapter, we will introduce the interface relations of the problem of that will be used 

in the derivation of our method later in chapter 3. Now, let us start to present a complete set 

of interface relations up to second order derivative by differentiating the jumps along the 

interface Γ,  and making use of the original partial differential equation (PDE) (2.1). Since the 

flux jump condition 𝛽𝛽𝑢𝑢  is given in the normal direction of the interface, it is convenient to 

use local coordinates in the normal and tangential directions. 
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2.2   A local coordinate system in 3D  
 

Given a point 𝑋𝑋, 𝑌𝑌, 𝑍𝑍   on the interface Γ, let  𝜉𝜉  (with 𝜉𝜉 = 1) be the normal direction of  Γ 

pointing to a specific side, say the “+’’ side. Let 𝜂𝜂  𝑎𝑎𝑎𝑎𝑎𝑎  𝜏𝜏 be two orthogonal unit vectors 

tangential to Γ, then a local coordinate transformation is given by 

 

    𝜉𝜉 = 𝑥𝑥 − 𝑋𝑋 𝛼𝛼 + 𝑦𝑦 − 𝑌𝑌 𝛼𝛼 + 𝑧𝑧 − 𝑍𝑍 𝛼𝛼 ,                                                                   

                                                 

𝜂𝜂 = 𝑥𝑥 − 𝑋𝑋 𝛼𝛼 + 𝑦𝑦 − 𝑌𝑌 𝛼𝛼 + 𝑧𝑧 − 𝑍𝑍 𝛼𝛼 ,                                                                                            (2.3) 

                                           

                                                            𝜏𝜏 = 𝑥𝑥 − 𝑋𝑋 𝛼𝛼 + 𝑦𝑦 − 𝑌𝑌 𝛼𝛼 + 𝑧𝑧 − 𝑍𝑍 𝛼𝛼 ,    

 

 

where 𝛼𝛼  represents the directional cosine between the x–axis and 𝜉𝜉, and so forth. See figure 

(2.1) for an illustration. Note that the choice of the two orthogonal tangential vectors is not 

unique. 
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                       Figure 2.1: A sketch of local coordinates transformation in 3D. 

 

 

 The three-dimensional coordinate transformation above can also be written in a matrix-

vector form. Define the local transformation matrix as 

 

𝐴𝐴 =
𝛼𝛼 𝛼𝛼 𝛼𝛼
𝛼𝛼 𝛼𝛼 𝛼𝛼
𝛼𝛼 𝛼𝛼 𝛼𝛼

,                                                   (2.4) 

 

Then we have  

 

 

𝜉𝜉
𝜂𝜂
𝜏𝜏

= 𝐴𝐴
𝑥𝑥 − 𝑋𝑋
𝑦𝑦 − 𝑌𝑌
𝑧𝑧 − 𝑍𝑍

.                                                       (2.5) 

   

 

Also, for any differentiable function 𝑝𝑝(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) we have 

 

z 

y 

x 

o 

𝜉𝜉 𝜂𝜂 

𝜏𝜏 

(x*,y*,z*) 
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𝑝𝑝
𝑝𝑝
𝑝𝑝

= 𝐴𝐴
𝑝𝑝
𝑝𝑝
𝑝𝑝

,                                                                                                                                                                                                         (2.6)                              

𝑝𝑝 𝑝𝑝 𝑝𝑝
𝑝𝑝 𝑝𝑝 𝑝𝑝
𝑝𝑝 𝑝𝑝 𝑝𝑝

= 𝐴𝐴
𝑝𝑝 𝑝𝑝 𝑝𝑝
𝑝𝑝 𝑝𝑝 𝑝𝑝
𝑝𝑝 𝑝𝑝 𝑝𝑝

                                                                                                            (2.7)        

 

 

where p(𝜉𝜉, 𝜂𝜂, 𝜏𝜏) = 𝑝𝑝(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) and  𝐴𝐴  is the transpose of A. It is easy to verify that 𝐴𝐴 𝐴𝐴 = 𝐼𝐼, 

the identity matrix. For two dimensional problems, the matrix-vector relations under the local 

coordinates can be found in [29]. Note that under the local coordinates transformation (2.3), 

the PDE (2.1) is invariant. Therefore we will drop the bars for simplicity.  

 

2.3   Interface relations for elliptic interface problems in 3D 
 

Using the superscript " + " or " − " to denote the limiting values of a function from the 

Ω   side or the Ω  side of the interface, respectively, we can write the limiting differential 

equation from the " − " side as 

                    𝛽𝛽 𝑢𝑢 + 𝑢𝑢 + 𝑢𝑢 + 𝛽𝛽 𝑢𝑢 + 𝛽𝛽 𝑢𝑢 + 𝛽𝛽 𝑢𝑢 − 𝑘𝑘 𝑢𝑢 − 𝑓𝑓 = 0            (2.8)                                                  

 

Under the local coordinate system 𝜉𝜉 − 𝜂𝜂 − 𝜏𝜏  , the interface Γ  can be expressed as 

 

            𝜉𝜉 = 𝜒𝜒 𝜂𝜂, 𝜏𝜏 ,          𝑤𝑤𝑤𝑤𝑤𝑤ℎ      𝜒𝜒 0,0 = 0, 𝜒𝜒 0,0 = 0, 𝜒𝜒 0,0 = 0.                     (2.9) 

 

From the jump condition (2.2) and the differential equation (2.1), we can derive more 

interface relations, which are summarized in the following theorem. 
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Theorem 2.1.  Assume that the differential equation (2.1) has a solution 𝑢𝑢(𝐱𝐱)  in a 

neighborhood of Γ. Assume also that 𝑢𝑢(𝐱𝐱)  is a piecewise 𝐶𝐶  function in both sides of the 

neighborhood of  Γ excluding the interface Γ.  Then we have the interface relations 

 

𝑢𝑢 = 𝑢𝑢 + 𝑤𝑤,                                                                                                                                   (2.10a)    

       

𝑢𝑢 = 𝑢𝑢 + ,                                                                                                                             (2.10b) 

 

𝑢𝑢 = 𝑢𝑢 + 𝑤𝑤 ,                                                                                                                                (2.10c) 

 

𝑢𝑢 = 𝑢𝑢 + 𝑤𝑤 ,                                                                                                                                  (2.10d) 

 

𝑢𝑢 = 𝑢𝑢 + 𝑢𝑢 − 𝑢𝑢 𝜒𝜒 + 𝑤𝑤 ,                                                                                                    (2.10e) 

 

𝑢𝑢 = 𝑢𝑢 + 𝑢𝑢 − 𝑢𝑢 𝜒𝜒 + 𝑤𝑤 ,                                                                                                 (2.10f) 

 

𝑢𝑢 = 𝑢𝑢 + 𝑢𝑢 − 𝑢𝑢 𝜒𝜒 + 𝑤𝑤 ,                                                                                                 (2.10g) 

 

𝑢𝑢 = 𝑢𝑢 + 𝑢𝑢 − 𝑢𝑢 𝜒𝜒 + 𝑢𝑢 − 𝑢𝑢 𝜒𝜒 + 𝑢𝑢 − 𝑢𝑢 + ,                         (2.10h) 
 

𝑢𝑢 = 𝑢𝑢 + 𝑢𝑢 − 𝑢𝑢 𝜒𝜒 + 𝑢𝑢 − 𝑢𝑢 𝜒𝜒 + 𝑢𝑢 − 𝑢𝑢 + ,                (2.10i)    

    
𝑢𝑢 = 𝑢𝑢 + − 1 𝑢𝑢 + − 1 𝑢𝑢 + 𝑢𝑢 𝜒𝜒 + 𝜒𝜒 − − 𝑢𝑢 𝜒𝜒 + 𝜒𝜒 − +

                 𝛽𝛽 𝑢𝑢 − 𝛽𝛽 𝑢𝑢 + 𝛽𝛽 𝑢𝑢 − 𝛽𝛽 𝑢𝑢 + 𝜎𝜎 𝑢𝑢 − 𝜎𝜎 𝑢𝑢 + − 𝑤𝑤 − 𝑤𝑤 .        (2.10j) 

 

Proof. 

 The first two interface conditions are the original jump conditions (2.2). By differentiating 

the first jump condition 𝑢𝑢 = 𝑤𝑤 in (2.2) with respect to 𝜂𝜂  and 𝜏𝜏  respectively, we get 
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𝑢𝑢 𝜒𝜒 + 𝑢𝑢 = 𝑤𝑤 ,                                             (2.11) 

 

𝑢𝑢 𝜒𝜒 + 𝑢𝑢 = 𝑤𝑤 ,                                               (2.12) 

 

which give (2.10c) and (2.10d) if we evaluate the equations at 𝜉𝜉, 𝜂𝜂, 𝜏𝜏 = (0,0,0) in the new 

coordinate system and use the fact  𝜒𝜒 0,0 = 𝜒𝜒 0,0 = 0. Differentiating (2.11) with 

respect to 𝜏𝜏 yields 

𝜒𝜒 𝑢𝑢 + 𝜒𝜒 𝑢𝑢 + 𝜒𝜒 𝑢𝑢 + 𝑢𝑢 = 𝑤𝑤 ,                                                               (2.13) 

 

From which we get (2.10e). Differentiating (2.11) with respect to 𝜂𝜂 and differentiating (2.12) 

with respect to 𝜏𝜏  respectively, we obtain  

 

𝜒𝜒 𝑢𝑢 + 𝜒𝜒 𝑢𝑢 + 𝜒𝜒 𝑢𝑢 + 𝑢𝑢 = 𝑤𝑤 ,                                                     (2.14) 

 

𝜒𝜒 𝑢𝑢 + 𝜒𝜒 𝑢𝑢 + 𝜒𝜒 𝑢𝑢 + 𝑢𝑢 = 𝑤𝑤 ,                                  (2.15) 

 

from which we get (2.10f) and (2.10g). Before differentiating the jump condition of the 

normal derivative 𝛽𝛽𝑢𝑢 = 𝑣𝑣, in (2.2), we first express the normal vector of the interface Γ as 

 

𝒏𝒏 =
(1,−𝜒𝜒       , −  𝜒𝜒 )

1 + 𝜒𝜒 + 𝜒𝜒                 
. 

 

Thus, the second interface condition  𝛽𝛽𝑢𝑢 = 𝑣𝑣 in (2.2) can be written as 

 

                                                       𝛽𝛽(𝑢𝑢 − 𝑢𝑢 𝜒𝜒 − 𝑢𝑢 𝜒𝜒 ) = 𝑣𝑣(𝜂𝜂, 𝜏𝜏) 1 + 𝜒𝜒 + 𝜒𝜒 .  (2.17) 

Differentiating this with respect to 𝜂𝜂, we get 
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𝛽𝛽 𝜒𝜒 + 𝛽𝛽 𝑢𝑢 − 𝑢𝑢 𝜒𝜒 − 𝑢𝑢 𝜒𝜒 + 𝛽𝛽(𝑢𝑢 𝜒𝜒 + 𝑢𝑢 − 𝜒𝜒
𝜕𝜕
𝜕𝜕𝜕𝜕
𝑢𝑢 − 𝜒𝜒

𝜕𝜕
𝜕𝜕𝜕𝜕
𝑢𝑢 − 𝑢𝑢 𝜒𝜒 − 𝑢𝑢 𝜒𝜒 )

= 𝑣𝑣 1 + 𝜒𝜒 + 𝜒𝜒 + 𝑣𝑣
𝜒𝜒 𝜒𝜒

1 + 𝜒𝜒 + 𝜒𝜒
,                                                                                                                                              (2.18) 

which gives (2.10h) at 𝜉𝜉, 𝜂𝜂, 𝜏𝜏 = (0,0,0). Similarly, differentiating (2.17) with respect  to 𝜏𝜏 , 

we get  the last interface relation (2.10j) by 

𝛽𝛽 𝜒𝜒 + 𝛽𝛽 𝑢𝑢 − 𝑢𝑢 𝜒𝜒 − 𝑢𝑢 𝜒𝜒 + 𝛽𝛽(𝑢𝑢 𝜒𝜒 + 𝑢𝑢 − 𝜒𝜒
𝜕𝜕
𝜕𝜕𝜕𝜕
𝑢𝑢 − 𝜒𝜒

𝜕𝜕
𝜕𝜕𝜕𝜕
𝑢𝑢 − 𝑢𝑢 𝜒𝜒 − 𝑢𝑢 𝜒𝜒 )  

= 𝑣𝑣 1 + 𝜒𝜒 + 𝜒𝜒 + 𝑣𝑣
𝜒𝜒 𝜒𝜒

1 + 𝜒𝜒 + 𝜒𝜒
, 

which gives (2.10i) at 𝜉𝜉, 𝜂𝜂, 𝜏𝜏 = 0,0,0 . 

 

To get the relation for 𝑢𝑢  , we need to use the differential equation (2.8) itself, from which 

we can write 

 

𝛽𝛽 𝑢𝑢 + 𝑢𝑢 + 𝑢𝑢 + 𝛽𝛽 𝑢𝑢 + 𝛽𝛽 𝑢𝑢 + 𝛽𝛽 𝑢𝑢 − 𝑘𝑘𝑘𝑘 = 𝑓𝑓 .                (2.20) 

 

Notice that 

−𝑘𝑘 𝑢𝑢 + 𝑘𝑘 𝑢𝑢 = −𝑘𝑘 𝑢𝑢 + 𝑘𝑘 𝑢𝑢 − 𝑘𝑘 𝑢𝑢 + 𝑘𝑘 𝑢𝑢 =    𝑘𝑘 𝑢𝑢 + 𝑘𝑘 𝑢𝑢 .                     (2.21) 

 

Rearranging (2.20) and using (2.21) above, we get 

 

𝛽𝛽 𝑢𝑢 + 𝑢𝑢 + 𝑢𝑢 + 𝛽𝛽 𝑢𝑢 + 𝛽𝛽 𝑢𝑢 + 𝛽𝛽 𝑢𝑢                                         	
  
= 𝛽𝛽 𝑢𝑢 + 𝑢𝑢 + 𝑢𝑢 + 𝛽𝛽 𝑢𝑢 + 𝛽𝛽 𝑢𝑢 + 𝛽𝛽 𝑢𝑢 + 𝑓𝑓 − 𝑘𝑘 𝑢𝑢 + 𝑘𝑘 𝑢𝑢 .                      (2.22) 
 

By solving  𝑢𝑢  from the equation above, we get the last interface relation, (2.10j).  
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2.4   The finite difference scheme of the IIM in 3D 
 

It is more convenient and also easier to use the zero level surface of the three-dimensional 

function 𝜑𝜑(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) to represent the interface Γ compared with other approaches. Let 

𝜑𝜑(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) be a Lipschitz continuous function satisfying 

 

 

𝜑𝜑 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 < 0        𝑖𝑖𝑖𝑖         𝑥𝑥, 𝑦𝑦, 𝑧𝑧 ∈ Ω , 

 

𝜑𝜑 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 = 0        𝑖𝑖𝑖𝑖         𝑥𝑥, 𝑦𝑦, 𝑧𝑧 ∈ Γ,                                        (2.23) 

 

𝜑𝜑 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 > 0        𝑖𝑖𝑖𝑖         𝑥𝑥, 𝑦𝑦, 𝑧𝑧 ∈ Ω . 

 

  Such a level set function is not unique but should be chosen as an approximation of the 

signed distance function to the interface Γ. We also assume that the level set function 

𝜑𝜑(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) has up to second-order continuous partial derivatives in a neighborhood of the zero 

level set  𝜑𝜑 = 0.  We refer the reader to [41,48] for more information about the level set 

method. 

 

Let the domain Ω be a convex cubic domain in three dimension space and let 𝑥𝑥 , 𝑦𝑦 , 𝑧𝑧  be a 

uniform Cartesian grid. The level set function is defined at grid points 𝜑𝜑 = 𝜑𝜑(𝑥𝑥 , 𝑦𝑦 , 𝑧𝑧 ).  

At a grid point, 𝐱𝐱  we define 

 

                                                𝜑𝜑 = min  {𝜑𝜑 ± , , ,𝜑𝜑 , ± , , 𝜑𝜑 , , ± },                                                                      (2.24) 

 

                              𝜑𝜑 = max  {𝜑𝜑 ± , , ,𝜑𝜑 , ± , , 𝜑𝜑 , , ± }.                                                                      (2.25) 

A grid point 𝐱𝐱  is called an irregular grid point if  

                                              𝜑𝜑 𝜑𝜑 ≤ 0                                                                                                                                                                (2.26) 
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in reference to the standard central 7-point finite difference stencil. Otherwise 𝐱𝐱  is called a 

regular grid point. 

 

2.4.1   Finite difference scheme of the IIM in 3D 

 
Similar to the IIM in two dimensions, given a Cartesian grid (𝑥𝑥 , 𝑦𝑦 , 𝑧𝑧 ), 𝑖𝑖 = 0,1, … , 𝐿𝐿, 𝑗𝑗 =

0,1, … ,𝑀𝑀, 𝑘𝑘 = 0,1, … , 𝑁𝑁, the finite difference scheme of (2.1) has the generic form: 

 

𝛾𝛾 𝑈𝑈 , , − 𝜎𝜎 𝑈𝑈 = 𝑓𝑓 + 𝐶𝐶                                                     (2.27) 

at any grid point (𝑥𝑥 , 𝑦𝑦 , 𝑧𝑧 ) where the solution 𝑢𝑢(𝑥𝑥 , 𝑦𝑦 , 𝑧𝑧 ) is unknown. In the finite 

difference scheme above, 𝑛𝑛  is the number of grid points involved in the finite difference 

stencil and 𝑈𝑈 is an approximation to the solution 𝑢𝑢 𝑥𝑥, 𝑦𝑦, 𝑧𝑧   of (2.1) at (𝑥𝑥 , 𝑦𝑦 , 𝑧𝑧 ). The sum 

over 𝑚𝑚 involves a finite number of grid points neighboring (𝑥𝑥 , 𝑦𝑦 , 𝑧𝑧 ).  So each  𝑖𝑖 , 𝑗𝑗 , 𝑘𝑘   

will  take values  in the set {0,±1,±2,… }. The coefficients {𝛾𝛾 } and the indexes  𝑖𝑖 , 𝑗𝑗 , 𝑘𝑘   

depend on (𝑖𝑖, 𝑗𝑗, 𝑘𝑘), so they should really be labeled as 𝛾𝛾 , etc. But for simplicity of notation, 

we will concentrate on a single grid point (𝑥𝑥 ,𝑦𝑦 , 𝑧𝑧 ) and drop the dependency. The local 

truncation error at a grid point (𝑥𝑥 , 𝑦𝑦 , 𝑧𝑧 ) can be defined as 

                𝑇𝑇 = 𝛾𝛾 𝑢𝑢 𝑥𝑥 , 𝑦𝑦 , 𝑧𝑧 − 𝜎𝜎 𝑢𝑢 𝑥𝑥 , 𝑦𝑦 , 𝑧𝑧 − 𝑓𝑓 − 𝐶𝐶 .                                                                      (2.28) 

A grid point (𝑥𝑥 , 𝑦𝑦 , 𝑧𝑧 ) is called a regular grid point in reference to the standard 7-point 

finite difference stencil centered at (𝑖𝑖, 𝑗𝑗, 𝑘𝑘) if all seven grid points are on the same side of the 

interface.  

At regular grid point, the local truncation errors are 𝑂𝑂 ℎ  if the standard centered 7-point in  

(𝑛𝑛 = 7) finite difference coefficients  are given by 
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𝛾𝛾 ± , , =
± , ,

,     𝛾𝛾 , ± , =
, ± ,

,    𝛾𝛾 , , ± =
, , ±

, 

 

𝛾𝛾 , , = − 𝛾𝛾 ± , , + 𝛾𝛾 , ± , + 𝛾𝛾 , , ± ,                                                     (2.29) 

where    𝛽𝛽 , , = 𝛽𝛽 𝑥𝑥 − ℎ 2 , 𝑦𝑦 , 𝑧𝑧 ,   and so forth. Here, we have assumed for simplicity 

that ℎ = ℎ = ℎ = ℎ. The correction term is simply 𝐶𝐶 = 0 and the local truncation 

errors are 𝑂𝑂 ℎ . 

If  (𝑥𝑥 , 𝑦𝑦 , 𝑧𝑧 )  is an irregular grid point, that is, the grid points in the centered 7-point stencil 

are from both sides of the interface, then an undetermined coefficient method is used to set 

up a linear system of equations for the finite difference coefficients {𝛾𝛾 }  in (2.27) . The 

correction term 𝐶𝐶  can be determined after  {𝛾𝛾 }′𝑠𝑠  are obtained. With the assumption that 

the solution is piecewise smooth, a point (𝑥𝑥∗, 𝑦𝑦∗, 𝑧𝑧∗) on the interface Γ near the grid point 

(𝑥𝑥 , 𝑦𝑦 , 𝑧𝑧 ) is chosen so that Taylor expansion can be carried out from each side of the 

interface. Usually  (𝑥𝑥∗, 𝑦𝑦∗, 𝑧𝑧∗)  is chosen either as the orthogonal projection of (𝑥𝑥 , 𝑦𝑦 , 𝑧𝑧 ) on 

the interface or as the intersection of the interface on one of the axes. See Figure 2.2 below 

for more illustrations. Let the local coordinates of 𝑥𝑥 , 𝑦𝑦 , 𝑧𝑧   be (𝜉𝜉 , 𝜂𝜂 , 𝜏𝜏 ). The 

idea is to minimize the magnitude of the local truncation error 𝑇𝑇  in (2.28) by matching the 

finite difference equation to the differential equation up to all second-order partial 

derivatives. Thus, the local truncation error would be zero if the exact solution is a piecewise 

quadratic function, which implies second –order convergence if the stability condition is also 

satisfied. 
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      Figure 2.2 The irregular grid points and their one-sided projections on the interface Γ.   
                        The projection points are the control points on the interface Γ. 

 

 

More detail with the local truncation error and correction term can be found in [33].      

 

2.4.2 Computing the orthogonal projection in 3D Cartesian grid 

  

To derive the finite difference equation using the IIM at an irregular grid point 𝐱𝐱   =

𝑥𝑥 , 𝑦𝑦 , 𝑧𝑧 ,  we need to choose a point 𝑿𝑿∗ = (𝑋𝑋∗, 𝑌𝑌∗, 𝑍𝑍∗) on the interface that is close to 

𝐱𝐱 . At this point, we can use the Taylor expansion from each side of the interface so that 

the jump conditions (2.2) and the interface relations (2.10a)-(2.10j) can be utilized. While we 

can choose any point (on the interface) that is close to the grid point 𝐱𝐱 , it is natural to 

choose the orthogonal projection of  𝐱𝐱    on the interface. Since ±∇φ 𝐱𝐱  is the direction 
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where the level set function has the largest rate increase/decrease, the orthogonal projection 

can be determined from  

𝑿𝑿∗ = 𝐱𝐱 + 𝛼𝛼𝑷𝑷, 

where 𝑷𝑷 = ∇φ/ ∇𝜑𝜑  and 𝛼𝛼 ~ℎ  is an approximation to the distance between the grid point 

𝐱𝐱  and 𝐗𝐗∗ . Neglecting 𝑂𝑂(𝛼𝛼 ) and higher-order terms in Taylor expansion of  𝜑𝜑 𝑋𝑋∗ =

𝜑𝜑 𝑋𝑋 + 𝛼𝛼𝑷𝑷 = 0  𝑎𝑎𝑎𝑎  𝐱𝐱   , we get a quadratic equation for 𝛼𝛼, 

𝜑𝜑 𝐱𝐱 + ∇𝜑𝜑(𝐱𝐱 ) 𝛼𝛼 +
1
2 𝑷𝑷 𝐻𝐻𝐻𝐻 𝜑𝜑 𝐱𝐱 𝑷𝑷 𝛼𝛼 = 0, 

where  𝐻𝐻𝐻𝐻(𝜑𝜑 𝐱𝐱 ) is the Hessian matrix of 𝜑𝜑. 

𝐻𝐻𝐻𝐻 𝜑𝜑 𝐱𝐱𝒊𝒊𝒊𝒊𝒊𝒊 =
𝜑𝜑 𝜑𝜑 𝜑𝜑
𝜑𝜑 𝜑𝜑 𝜑𝜑
𝜑𝜑 𝜑𝜑 𝜑𝜑

 

Evaluated at 𝐱𝐱𝒊𝒊𝒊𝒊𝒊𝒊. The values of 𝜑𝜑,𝜑𝜑 , 𝜑𝜑 , 𝜑𝜑 , 𝜑𝜑 , 𝜑𝜑 , 𝜑𝜑 , 𝜑𝜑 , 𝜑𝜑 , 𝑎𝑎𝑎𝑎𝑎𝑎  𝜑𝜑  are evaluated 

at the grid point 𝐱𝐱 = (𝑥𝑥 , 𝑦𝑦 , 𝑧𝑧 ) and can be approximated using the standard central finite 

difference formulas, for example, 

𝜑𝜑 ≈
𝜑𝜑 , , − 𝜑𝜑 , ,

2ℎ ,                                                                                                                               

𝜑𝜑 ≈
𝜑𝜑 , , − 2𝜑𝜑 , , − 𝜑𝜑 , ,

ℎ ,                                                                                         

𝜑𝜑 ≈
𝜑𝜑 , , + 𝜑𝜑 , , − 𝜑𝜑 , , − 𝜑𝜑 , ,

4ℎ ℎ . 

Note that the truncation error of the quadratic approximation is 𝑂𝑂(𝛼𝛼 ) ∼ 𝑂𝑂(ℎ ). The 

computed projections are typically third-order accurate. 
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2.4.3 Setting up a local coordinate system using a level set function 

 

Given a point 𝑿𝑿∗ = (𝑥𝑥∗, 𝑦𝑦∗, 𝑧𝑧∗) on the interface Γ, the unit normal direction of the interface at 

𝑿𝑿∗ is given by 

𝝃𝝃 =
∇𝜑𝜑
∇𝜑𝜑 =

𝜑𝜑 ,𝜑𝜑 , 𝜑𝜑
𝜑𝜑 + 𝜑𝜑 + 𝜑𝜑

, 

where the partial derivatives are evaluated at (𝑋𝑋∗, 𝑌𝑌∗, 𝑍𝑍∗). Note that at the interface Γ, the 

level set function should be chosen such that ∇𝜑𝜑 ≠ 0. We prefer to choose the level set 

function 𝜑𝜑 as the signed distance function, which satisfies   ∇𝜑𝜑 = 1  at least in two-sided 

neighborhood of the interface Γ. The choice of the tangential axis vectors is not unique. It is 

recommended that if  𝜑𝜑 + 𝜑𝜑 ≥ 𝜑𝜑 + 𝜑𝜑 , then the two tangential directions should be 

chosen as  

   𝜼𝜼 = (𝜑𝜑 ,−𝜑𝜑 , 0) / 𝜑𝜑 + 𝜑𝜑 ,                               

                                                                            𝝉𝝉 =
𝒔𝒔
𝒔𝒔 ,                                                                                                                                                                                                                                         

where  𝒔𝒔 = (𝜑𝜑 𝜑𝜑 , 𝜑𝜑 𝜑𝜑 ,−𝜑𝜑 − 𝜑𝜑 ) . 

Otherwise, the two tangential directions are chosen as 

 

                                                                          𝜼𝜼 =
𝜑𝜑 , 0, −𝜑𝜑
𝜑𝜑 + 𝜑𝜑

, 

                                                                      𝝉𝝉 =
𝑡𝑡
𝑡𝑡   , 
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where   𝒕𝒕 = (−𝜑𝜑 𝜑𝜑 , 𝜑𝜑 + 𝜑𝜑 ,−𝜑𝜑 𝜑𝜑 ) . 

The three unit orthogonal vectors 𝝃𝝃, 𝜼𝜼 and 𝝉𝝉 form local coordinates in the normal and 

tangential directions. 

Next in chapter 3, based on the IIM for elliptic interface problems in 3D, we will establish 

our 3D augmented approach. It is second order fast algorithm for elliptic interface problems 

with piecewise constant but discontinuous coefficients. 

 

 

 

 

 

 

 

. 
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Chapter 3 
 

The augmented approach for 3D elliptic interface problems with 

piecewise constant coefficients 
 

In this chapter, we will develop a second order fast approach for elliptic interface equations  

with large jump in the coefficients which are piecewise constant, in both cases, continuous 

and discontinuous coefficients. 

 

3.1   Introduction 

 

The problem we are interested in solving is of the form: 

 

Problem Formulation (I)  

 

∇. 𝛽𝛽∇𝑢𝑢 = 𝑓𝑓,        in   Ω,                                                       (3.1)	
  
	
  

𝑢𝑢 = 𝑤𝑤,                  on   Γ,                                                   (3.2a) 
𝛽𝛽𝑢𝑢 = 𝑞𝑞,              on   Γ,                                                   (3.2b)	
  

 

with boundary conditions on 𝜕𝜕Ω. There are two main concerns in solving problem (I) 

numerically. One is how to discretize it to certain accuracy. As we pointed out in chapter 1, 

there are a few numerical methods presented in the past few years. Most of these methods 

can be second order accurate in  𝐿𝐿  or  𝐿𝐿  norm, but not in 𝐿𝐿  norm. 

 

The other concern is how to solve the resulting linear system efficiently. Usually the 

number of iterations depends on the mesh size. Also, if the jump in the coefficient 𝛽𝛽 is large, 

then the resulting linear system is ill-conditioned, and thus the number of iterations in solving 

such a linear system is large and may also be proportional to the jump in the coefficient. 
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Based on integral equations, some fast solvers are available for Poisson equation with 

piecewise constant coefficient and other problems [20,35,37,38]. In these methods, integral 

equations are set up at some points on the interface and boundaries for unknown source 

strength, and the solution then can be found using fast boundary integral techniques. Non-

homogeneous source terms can be decomposed as two homogeneous problems. For example, 

Mayo and Greenbaum [36,37] have derived an integral equation for elliptic interface 

problems with piecewise constant coefficients. By solving the integral equation, they can 

solve such interface problems to second order accuracy in 𝐿𝐿  norm using the techniques 

developed by Mayo in [35,36] for solving Poisson and biharmonic  equations on irregular 

regions. Basically, the region is embedded in a regular region where a fast solver can be used 

on a uniform grid and the right-hand side is appropriately modified near the original 

boundary. The total cost includes solving the integral equation and regular Poisson equation 

using a fast solver, so this gives a fast algorithm. The possibility of extension to variable 

coefficient 𝛽𝛽 is mentioned in [36]. 

 

In this chapter, we develop a fast approach for elliptic interface equations with piecewise 

constant but discontinuous coefficients. The idea is to precondition the original elliptic 

equation before using the immersed interface method IIM. In order to take advantage of 

existing fast Poisson solvers on cubic domains, we introduce a new problem by rewriting the 

PDE and introducing an intermediate unknown jump in 𝑢𝑢 . The new problem looks like a 

Poisson equation, which can be discretized by using the standard seven point stencil with 

some modification to the right-hand side. Then some existing fast Poisson solver can be 

called directly. Basically, this approach is equivalent to using a second order finite difference 

scheme to approximate the Poisson equation in  Ω  and Ω  , and a second order discretization 

for the Neumann-like interface condition 

 

                                  𝛽𝛽 𝑢𝑢 − 𝛽𝛽 𝑢𝑢 = 𝑞𝑞. 
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Thus from the error analysis for elliptic equations with Neumann boundary conditions, for 

example, see [39], we would have second order accurate solution at all grid points including 

those near or on the interface. The GMRES method is employed to solve the Schur 

complement system derived from the discretization. This approach appears to be very 

promising not only because it is second order accurate, but also because the number of 

iterations in solving the Schur complement system is nearly independent of both the mesh 

size and the 𝛽𝛽 jump coefficients. 

 

Now, we begin to describe the approach in detail.           

 

3.2   The augmented IIM approach description 

 
Now, we will describe our approach and strategies in detail as pointed out earlier in  

Chapter 1. 

 

3.2.1   Preconditioning the PDE to an equivalent problem 
 

By dividing the coefficient 𝛽𝛽 in each sub-domain of Ω, then we get that equation (3.1) can be 

rewritten into the following differential equations 

 

∆𝑢𝑢 +
∇𝛽𝛽
𝛽𝛽 . ∇𝑢𝑢 =   

𝑓𝑓
𝛽𝛽   ,                    𝑖𝑖𝑖𝑖    Ω , 

(3.3) 

∆𝑢𝑢 +
∇𝛽𝛽
𝛽𝛽 . ∇𝑢𝑢 =   

𝑓𝑓
𝛽𝛽   ,                    𝑖𝑖𝑖𝑖    Ω . 

 

And since 𝛽𝛽 is piecewise constant, we get 
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∆𝑢𝑢 =   
𝑓𝑓
𝛽𝛽   ,            𝑖𝑖𝑖𝑖      Ω , 

(3.4) 

Δ𝑢𝑢 =   
𝑓𝑓
𝛽𝛽   ,                  𝑖𝑖𝑖𝑖      Ω . 

The Poisson equation can be solved readily with a fast 3D Poisson solver if we know the 

jump in the solution 𝑢𝑢 = 𝑤𝑤 and the jump in the normal derivative 𝑢𝑢 , but unfortunately it 

is given to us the flux jump condition (3.2b) which is 𝛽𝛽𝑢𝑢 = 𝑞𝑞 instead of 𝑢𝑢 .  

 

Notice that we can not divide 𝛽𝛽 from the flux jump condition (3.2b) because 𝛽𝛽 is 

discontinuous. In [29], a fast method for two dimensional problems is proposed, but in this 

thesis, we describe our augmented method for three dimensional problems. As described in 

[29], the idea is to augment the unknown [𝑢𝑢 ]= 𝑔𝑔 and equation (3.2b) to (3.4). 
 

Another observation here is that: let 𝑢𝑢* be the solution of problem (I). Define 

 

                                             𝑔𝑔*= 𝑢𝑢∗ , 

 

Then 𝑢𝑢∗ will also be the solution of (3.3) with the jump condition [𝑢𝑢]= 𝑤𝑤 and [𝑢𝑢 ]= 𝑔𝑔*. 

Therefore, solving problem (I) is equivalent to finding the corresponding 𝑔𝑔* and then the 

solution, 𝑢𝑢 ∗, of the following problem with 𝑔𝑔 = 𝑔𝑔∗. 

 

Problem Formulation (II). 

 

∆𝑢𝑢 + ∇
   . ∇𝑢𝑢 =   ,          𝑖𝑖𝑖𝑖    Ω ,                                         (3.5) 

∆𝑢𝑢 + ∇
   . ∇𝑢𝑢 =   ,          𝑖𝑖𝑖𝑖    Ω ,                                         (3.6) 

𝑢𝑢 = 𝑤𝑤,              𝑜𝑜𝑜𝑜      Γ,                                                            (3.7) 

𝑢𝑢 = 𝑔𝑔,              𝑜𝑜𝑜𝑜    Γ.                                                             (3.8) 
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with boundary conditions on  𝜕𝜕Ω.   The key is how to find 𝑔𝑔* efficiently. Basically, we choose 

an initial guess and then iteratively update it until the flux jump condition in (3.2b) is 

satisfied.  

 

Notice that 𝑔𝑔* is only defined along the interface Γ, so it two-dimensional in a three-

dimensional space. Problem (II) is much easier to solve because one jump condition is given 

in [𝑢𝑢 ] instead of in [𝛽𝛽𝑢𝑢 ]. 

 

In this thesis, we are especially interested in the case that 𝛽𝛽 is piecewise constant, so the 

corresponding problem becomes a Poisson equation with discontinuous source term and 

given jump conditions. We can then use the standard seven point stencil to discretize the left-

hand side of (3.6), but just modify the right-hand side to get a second order finite difference 

scheme, see [26,27] for the detail. Thus we can take advantage of fast Poisson solvers for the 

discrete system. 

  

Here we want to compute 𝑢𝑢 ∗ to second order accuracy. We also hope that the total cost in 

computing 𝑔𝑔* and 𝑢𝑢 ∗ is less than in computing 𝑢𝑢 ∗ through the original problem. The key to 

success is to compute 𝑔𝑔* efficiently. Now we begin to describe our approach to determine 𝑔𝑔*. 

Once 𝑔𝑔* is found, we just need one more fast Poisson solver call to get the solution 𝑢𝑢*. As we 

briefed earlier in Chapter 1, only 𝑂𝑂 𝑁𝑁 𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁  arithmetic operations for a mesh of  N grids 

points are required. 

 

3.2.2   Representation of the interface and jump conditions 
 

We use the level set approach to represent the interface. For any quantity 𝒑𝒑 defined along 

the interface Г, we represent it at some specified discrete points on the interface. We call 

these points Control Points. Then any information of 𝒑𝒑 is evaluated by its values at these 

control points, see §  3.2.6. 
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Obviously, one simple approach is to choose projections of irregular grid points as control 

points. But it is quite possible that different irregular grid points may share the common 

projections or some projections may be very close to each other. To avoid this situation, only 

projections corresponding to the irregular grid points in one side of the interface are chosen 

as control points. Usually, the number of control points is about half of that of total 

projections. 

 

Let the control points be  𝑿𝑿𝒌𝒌 = 𝑋𝑋 , 𝑌𝑌 , 𝑍𝑍 , 𝑘𝑘 = 1,2, … , 𝑛𝑛 , where   𝑛𝑛   is the number of the 

control points. Then any quantity defined on the interface can be discretized. For example, 

we denote the discrete vector forms of 𝑤𝑤, 𝑞𝑞  and  𝑔𝑔 by      

 

𝑊𝑊 = (𝑤𝑤 ,𝑤𝑤 ,… ,𝑤𝑤 ) , 

𝑄𝑄 = (𝑞𝑞 , 𝑞𝑞 , … , 𝑞𝑞 ) , 

𝐺𝐺 = (𝑔𝑔 , 𝑔𝑔 , … , 𝑔𝑔 ) . 

where    

𝑤𝑤 ≈ 𝑤𝑤 𝑿𝑿𝒌𝒌 =   𝑤𝑤 𝑋𝑋 , 𝑌𝑌 , 𝑍𝑍 , 

𝑞𝑞 ≈ 𝑞𝑞 𝑿𝑿𝒌𝒌 =   𝑞𝑞 𝑋𝑋 , 𝑌𝑌 , 𝑍𝑍 , 

𝑔𝑔 ≈ 𝑔𝑔 𝑿𝑿𝒌𝒌 =   𝑔𝑔 𝑋𝑋 ,𝑌𝑌 , 𝑍𝑍 . 

 

  

3.2.3   Discretization 
 

As we mentioned earlier in Chapter 2, the uniform Cartesian grid on the cube [𝑎𝑎 , 𝑏𝑏 ]×

𝑎𝑎 , 𝑏𝑏 ×[𝑎𝑎 , 𝑏𝑏 ] where Problem (I) is defined and given by: 

 
𝑥𝑥 = 𝑎𝑎 + 𝑖𝑖ℎ, 𝑦𝑦 = 𝑎𝑎 + 𝑗𝑗ℎ, 𝑧𝑧 = 𝑎𝑎 + 𝑘𝑘ℎ, 0 ≤ 𝑖𝑖 ≤ 𝑙𝑙, 0 ≤ 𝑗𝑗 ≤ 𝑚𝑚,

0 ≤ 𝑘𝑘 ≤ 𝑛𝑛. 
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Here, for convenience, we assume that the mesh size ℎ is given as 

ℎ = (𝑏𝑏 − 𝑎𝑎 ) 𝑙𝑙 = (𝑏𝑏 − 𝑎𝑎 ) 𝑚𝑚 = (𝑏𝑏 − 𝑎𝑎 ) 𝑛𝑛.    From the IIM, it is known that the discrete 

form of (3.6) can be written as 

 

                        𝐿𝐿 𝑢𝑢 = + 𝐶𝐶 ,                        0 ≤ 𝑖𝑖 ≤ 𝑙𝑙,      0 ≤ 𝑗𝑗 ≤ 𝑚𝑚,      0 ≤ 𝑘𝑘 ≤ 𝑛𝑛,                                                                (3.9)                                          

 

where 

𝐿𝐿 𝑢𝑢 ≝
𝑢𝑢 , , + 𝑢𝑢 , , + 𝑢𝑢 , , + 𝑢𝑢 , , + 𝑢𝑢 , , + 𝑢𝑢 , , − 6𝑢𝑢

ℎ ,                        (3.10)   

 

is the discrete Laplace operator using the standard seven point stencil. Note that if a grid 

point 𝑥𝑥 , 𝑦𝑦 , 𝑧𝑧  happens to be on the interface, then 𝑓𝑓  and 𝛽𝛽  are defined as the limiting 

values from a pre-chosen side of the interface. For regular grid point, the correction term 𝐶𝐶  

is zero. For irregular grid points, 𝐶𝐶   is computed with the IIM. Then, a fast Poisson solver, 

for example, a fast Fourier transformation (FFT), or a multigrid solver can be applied to 

solve (3.9). 

 

3.2.4   Updating the jump in the normal derivative 
  

As presented earlier, the key idea of the fast approach is to guess a jump in 𝑢𝑢  initially and 

then update it gradually until we have that the original jump condition in 𝛽𝛽𝑢𝑢  is satisfied. 

Hence the crucial part of the fast approach is how to update [𝑢𝑢 ] efficiently. 

 

By choosing an initial guess on [𝑢𝑢 ], say 𝑔𝑔 , and solving Problem (II) for 𝑢𝑢 , we actually 

have 𝑢𝑢 , the approximate value of 𝑢𝑢 at grid points (𝑥𝑥 , 𝑦𝑦 , 𝑧𝑧 ),  0 ≤ 𝑖𝑖 ≤ 𝑙𝑙, 0 ≤ 𝑗𝑗 ≤ 𝑚𝑚, 0 ≤

𝑘𝑘 ≤ 𝑛𝑛. Then based upon these values (defined on grid points, sometimes we call it a grid 

function), for each control point 𝑿𝑿 , 𝑘𝑘 = 1,2, …  , 𝑛𝑛 , we may find the limiting values of 𝑢𝑢  
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from both sides of the interface respectively, say 𝑢𝑢 (𝑿𝑿 ) and 𝑢𝑢 𝑿𝑿𝒌𝒌 , 𝑘𝑘 = 1,2, …     , 𝑛𝑛 . This 

can be done by an interpolation scheme, and we will cover this later. Let  

 

𝑈𝑈 = (𝑢𝑢 𝑋𝑋 , 𝑢𝑢 𝑋𝑋 ,… , 𝑢𝑢 (𝑋𝑋 )) , 

 

𝑈𝑈 = (𝑢𝑢 𝑋𝑋 , 𝑢𝑢 𝑋𝑋 ,… , 𝑢𝑢 𝑋𝑋 ) . 

  

The ideal situation would be that we already got the solution of Problem (I). In other words, 

𝑈𝑈  and 𝑈𝑈  already satisfy the discrete form of (3.4) 

 

                                                                𝛽𝛽 𝑈𝑈 − 𝛽𝛽 𝑈𝑈 − 𝑄𝑄 = 0.                                                                                                                                                                (4.11) 

 

Unfortunately, usually this is not true for an arbitrary initial guess. 

 

 If 𝑈𝑈  and 𝑈𝑈  are exact, that is (3.14) is satisfied, then we can solve [𝑈𝑈 ] = 𝑈𝑈 − 𝑈𝑈  in 

terms of 𝑄𝑄, 𝛽𝛽 , 𝛽𝛽   , and one of 𝑈𝑈   𝑎𝑎𝑎𝑎𝑑𝑑  𝑈𝑈 . It is straightforward to get 

 

 

                                 𝑈𝑈 =
𝑄𝑄 − 𝛽𝛽 − 𝛽𝛽 𝑈𝑈

𝛽𝛽 ,                                                                     

or 

                             𝑈𝑈 =
𝑄𝑄 − 𝛽𝛽 − 𝛽𝛽 𝑈𝑈

𝛽𝛽 .                                                                         

 

And these lead to the following updating scheme 
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                                                              𝐺𝐺 = ( ) ,                                                                                                   (3.12) 

 

or 

                                                    𝐺𝐺 = .                                                                                                                          (3.13) 

 

We did some numerical experiments by using this updating approach. It turned out that in 

most cases the iteration converged. However, the convergence rate was too slow, and the 

number of iterations seemed to be proportional to 1 ℎ. Now we describe the augmented 

approach for the 3D IIM. 

 

The solution 𝑈𝑈 of Problem (II) depends on G and W continuously. When W  = 0, 𝐺𝐺 =   0, the 

discrete linear system for Problem (II) is 

 

𝐴𝐴𝐴𝐴 = 𝐹𝐹, 

                                                      

which is the standard discretization of a usual Poisson problem. For non-homogeneous 𝑊𝑊 or 

𝐺𝐺, the discrete linear system of problem (II), in matrix-vector form is 

 

                                                                                𝐴𝐴𝐴𝐴 + Ψ 𝑊𝑊,𝐺𝐺 = 𝐹𝐹,                                                                                                                                (3.14) 

 

where Ψ 𝑊𝑊,𝐺𝐺   is a mapping from 𝑊𝑊 and 𝐺𝐺 to 𝐶𝐶 ′𝑠𝑠  in (3.9). We also know that Ψ 𝑊𝑊,𝐺𝐺  

depend on the first and second derivatives of 𝑤𝑤, and the first derivatives of 𝑔𝑔, where the 

differentiation is carried out along the interface. At this time we do not know whether such a 

mapping is linear or not. However in the discrete case, as we will see later, all the derivatives 

are obtained by interpolation values of 𝑤𝑤 or 𝑔𝑔  on those control points. Therefore, Ψ 𝑊𝑊,𝐺𝐺  is 

indeed a linear mapping and can be written as 
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                                                                                        Ψ 𝑊𝑊, 𝐺𝐺   = 𝐵𝐵𝐵𝐵 − 𝐵𝐵 𝑊𝑊,                                                                                                           (3.15) 

 

where B and 𝐵𝐵    are two matrices with real entries. So (3.17) becomes 

                                                    

                                                                                          𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 = 𝐹𝐹 + 𝐵𝐵 𝑊𝑊 = 𝐹𝐹,                                                                 (3.16) 

 

where 𝐹𝐹  is defined as 𝐹𝐹 + 𝐵𝐵 𝑊𝑊. 

                 

The solution 𝑈𝑈 of the equation above certainly depends on 𝐺𝐺 and 𝑊𝑊  we are interested in 

finding 𝐺𝐺∗  which satisfies the discrete form of (3.2b) 

 

                                                        𝛽𝛽 𝑈𝑈 𝐺𝐺∗ − 𝛽𝛽 𝑈𝑈 𝐺𝐺∗ − 𝑄𝑄 = 0.                                                                                                    (3.17) 

 

                                      

Later on, we will discuss how to use the known jump 𝐺𝐺, and sometimes also 𝑄𝑄, to interpolate 

𝑈𝑈  to get 𝑈𝑈   and 𝑈𝑈  in detail. As we will see, 𝑈𝑈   and 𝑈𝑈  depend on U, G, and Q linearly, 

which implies 

 

𝛽𝛽 𝑈𝑈 − 𝛽𝛽 𝑈𝑈 − 𝑄𝑄 = 𝐸𝐸𝐸𝐸 + 𝐷𝐷𝐷𝐷 + 𝑃𝑃𝑄𝑄 − 𝑄𝑄 

 

                                                                                                                                                = 𝐸𝐸𝐸𝐸 + 𝐷𝐷𝐷𝐷 − 𝑃𝑃𝑃𝑃.                                                                                  (3.18) 

 

where 𝐸𝐸, 𝐷𝐷, 𝑃𝑃, 𝑎𝑎𝑎𝑎𝑎𝑎  𝑃𝑃 are some matrices, and 𝑃𝑃 = 𝐼𝐼 − 𝑃𝑃. Combining (3.16) and (3.18), we 

obtain the system of linear equations for  𝑈𝑈 and 𝐺𝐺  

 

                                                                                                                           𝐴𝐴 𝐵𝐵
𝐸𝐸 𝐷𝐷

𝑈𝑈
𝐺𝐺 = 𝐹𝐹

𝑃𝑃𝑃𝑃 .                                                                                                              (3.19) 
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Now the question is how to solve (3.19) efficiently. We will solve for 𝐺𝐺 and 𝑈𝑈   in turn using 

the most updated information. 

 

Solving for  𝑈𝑈 is one fast Poisson solver call if 𝛽𝛽 is piecewise constant. The question is how 

to solve for 𝐺𝐺 efficiently. Eliminating  𝑈𝑈 from (3.19)  gives us a linear system for 𝐺𝐺  

 

𝐷𝐷 − 𝐸𝐸𝐴𝐴 𝐵𝐵 𝐺𝐺 = 𝑃𝑃𝑃𝑃 − 𝐸𝐸𝐴𝐴 𝐹𝐹 = 𝑄𝑄,                                                                        (3.20) 

 

where 𝑄𝑄  is defined as 𝑃𝑃𝑃𝑃 − 𝐸𝐸𝐴𝐴 𝐹𝐹 . This is an 𝑛𝑛c ×𝑛𝑛c linear system for 𝐺𝐺, a much smaller 

system compared to the one for 𝑈𝑈. The coefficient matrix is the Schur complement of 𝐷𝐷 in 

(3.19). In practice, the matrices 𝐴𝐴, 𝐵𝐵, 𝐸𝐸, 𝐷𝐷, 𝑃𝑃 and the vectors 𝑄𝑄,  𝐹𝐹 are never explicitly formed. 

They are merely used for theoretical purposes. Therefore an iterative method is preferred. 

Especially, note that the Schur complement is not symmetric, then GMRES iterative method 

will be employed to solve the Schur complement system. 

 

Also note that if 𝛽𝛽 is continuous, the coefficient matrix of (3.20) is invertible since 𝐸𝐸 ≡ 0 

and 𝐷𝐷 ≡ 𝐼𝐼. 

 

3.2.5   The Least squares approach  
 

When we apply the GMRES method to solve the Schur complement system (3.20), we need 

to compute 𝑈𝑈  and 𝑈𝑈   with the knowledge of 𝑈𝑈. This turns out to be a crucial step in solving 

the system of linear equations. Below we will describe a least square approach to interpolate 

𝑈𝑈   and 𝑈𝑈 . 

 

Let 𝑢𝑢 be a piecewise smooth function, with discontinuities only along the interface. For a 

given point 𝑿𝑿 = (𝑋𝑋, 𝑌𝑌, 𝑍𝑍) on the interface, we want to interpolate 𝑢𝑢(𝑥𝑥 ,𝑦𝑦 , 𝑧𝑧 ), 0 ≤ 𝑖𝑖 ≤ 𝑙𝑙,

0 ≤ 𝑗𝑗 ≤ 𝑚𝑚, 0 ≤ 𝑘𝑘 ≤ 𝑛𝑛, to get the normal derivatives 𝑢𝑢  (𝑿𝑿) and  𝑢𝑢   (𝑿𝑿). 
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The approach is inspired by Peskin,s method [43] in interpolating a velocity field to get the 

velocity of the interface using a discrete 𝛿𝛿-function. The continuous and discrete forms are 

the following 

 

        𝑢𝑢 𝑋𝑋 = 𝑢𝑢 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 𝛿𝛿 𝑋𝑋 − 𝑥𝑥 𝛿𝛿 𝑦𝑦 − 𝑌𝑌 𝛿𝛿 𝑍𝑍 − 𝑧𝑧 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,                                                                                        (3.21) 

 

             𝑢𝑢 𝑋𝑋 ≈ ℎ3 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝛿𝛿ℎ 𝑋𝑋− 𝑥𝑥𝑖𝑖 𝛿𝛿ℎ 𝑌𝑌− 𝑦𝑦𝑗𝑗 𝛿𝛿ℎ 𝑍𝑍− 𝑧𝑧𝑘𝑘 ,                                                                                                                    (3.22)𝑖𝑖𝑖𝑖𝑖𝑖  

 

where 𝑿𝑿 = 𝑋𝑋, 𝑌𝑌, 𝑍𝑍   is a point on the interface and 𝛿𝛿  is a discrete Dirac 𝛿𝛿-function.  A 

commonly used one is 

 

                                            𝛿𝛿 𝑥𝑥 =
1
4ℎ 1 + cos 𝜋𝜋𝜋𝜋 2ℎ ,              𝑖𝑖𝑖𝑖     𝑥𝑥 < 2ℎ,

0,                                                                                      𝑖𝑖𝑖𝑖     𝑥𝑥 ≥ 2ℎ.
                                                                                        (3.23) 

  

Notice that 𝛿𝛿 (𝑥𝑥) is a smooth function of  𝑥𝑥. Peskin’s  approach is very robust and only a few 

neighboring grid points near 𝑿𝑿 are involved. However, this approach is only first order 

accurate and may smear out the solution near the interface. 

 

Our interpolation formula for 𝑢𝑢 𝑿𝑿 , for example, can be written in the following form 

 

                                            𝑢𝑢 𝑿𝑿 ≈ 𝛾𝛾
, , ∈

𝑢𝑢 − 𝐶𝐶,                                                                                                                                                              (3.24) 

 

where 𝑁𝑁 denotes a set of neighboring grid points near  𝑿𝑿, and 𝐶𝐶 is a correction term which 

can be determined once 𝛾𝛾 ′𝑠𝑠 are known. Usually, we choose 𝑁𝑁 starting with those grid 

points closest to 𝑿𝑿. Therefore, expression (3.24) is robust and depends on the grid function 

𝑢𝑢  continuously, one very attractive property of Peskin’s formula (3.25). In addition to the 
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advantages of Peskin’s approach, we also have flexibility in choosing the coefficient 𝛾𝛾 ′𝑠𝑠 

and the correction term 𝐶𝐶 to achieve second order accuracy. See[13]. 

  

Now we discuss how to use the IIM method to determine the coefficients    𝛾𝛾 ′𝑠𝑠 and the 

correction term  𝐶𝐶. They are different from point to point on the interface. 

 

We use the same idea as used in the IIM method. Since one jump condition is given in the 

normal derivative of the solution, we use the local coordinates at 𝑿𝑿 = 𝑋𝑋, 𝑌𝑌, 𝑍𝑍    

       

                                                        
𝜉𝜉
𝜂𝜂
𝜏𝜏

= 𝐴𝐴
𝑥𝑥 − 𝑋𝑋
𝑦𝑦 − 𝑌𝑌
𝑧𝑧 − 𝑍𝑍

,                                                                                                              (3.25) 

 

where 𝐴𝐴 is defined in (2.4) in. Recall that under such new coordinates, the interface can be 

parameterized by 

 

𝜉𝜉 = 𝜒𝜒 𝜂𝜂  , 𝜏𝜏           with     𝜒𝜒 0, 0 = 0,        𝜒𝜒 0, 0 = 0, 𝜒𝜒 0, 0 = 0,                             (3.26) 

 

provided the interface is smooth at  𝑿𝑿 = 𝑋𝑋, 𝑌𝑌, 𝑍𝑍  

 

It is easy to check that when 𝛽𝛽 is piecewise constant, the interface relation (2.10a)-(2.10j) 

from Chapter 2 for Problem (II) can be reduced to 
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𝑢𝑢 = 𝑢𝑢 + 𝑤𝑤,
𝑢𝑢 = 𝑢𝑢 + 𝑔𝑔,
𝑢𝑢 = 𝑢𝑢 + 𝑤𝑤 ,
𝑢𝑢 = 𝑢𝑢 + 𝑤𝑤 ,

                                𝑢𝑢 = 𝑢𝑢 − 𝑔𝑔𝜒𝜒 + 𝑤𝑤 ,
                                  𝑢𝑢 = 𝑢𝑢 − 𝑔𝑔𝜒𝜒 + 𝑤𝑤 ,
                                𝑢𝑢 = 𝑢𝑢 − 𝑔𝑔𝜒𝜒 + 𝑤𝑤 ,

                                                                            (3.27) 

                                                𝑢𝑢 = 𝑢𝑢 + 𝑤𝑤 𝜒𝜒 + 𝑤𝑤 𝜒𝜒 + 𝑔𝑔 ,   

                                                𝑢𝑢 = 𝑢𝑢 + 𝑤𝑤 𝜒𝜒 + 𝑤𝑤 𝜒𝜒 + 𝑔𝑔        

                                              𝑢𝑢 = 𝑢𝑢 + 𝑔𝑔 𝜒𝜒 + 𝜒𝜒 +
𝑓𝑓
𝛽𝛽 − 𝑤𝑤 − 𝑤𝑤 . 

 

 Let (𝜉𝜉 , 𝜂𝜂 , 𝜏𝜏 ) be the 𝜉𝜉 − 𝜂𝜂 − 𝜏𝜏 coordinates of (𝑥𝑥 , 𝑦𝑦 , 𝑧𝑧 ), then by Taylor series expansion 

as we did in chapter 2,then we get 

 

𝑢𝑢(𝜉𝜉 , 𝜂𝜂 , 𝜏𝜏 ) ≈ 𝑢𝑢± + 𝑢𝑢±𝜉𝜉 + 𝑢𝑢±𝜂𝜂 + 𝑢𝑢±𝜏𝜏 + 𝑢𝑢± 𝜉𝜉 + 𝑢𝑢± 𝜂𝜂 + 𝑢𝑢± 𝜏𝜏 + 𝑢𝑢± 𝜉𝜉 𝜂𝜂 +

                                                    𝑢𝑢± 𝜉𝜉 𝜏𝜏 + 𝑢𝑢± 𝜂𝜂 𝜏𝜏 ,                                                                                        (3.28) 

                                                                                                                              
where + and −  sign depends on whether (𝜉𝜉 , 𝜂𝜂 , 𝜏𝜏 ) lies in the + or - side of the interface Г. 

Expressing + values by - values and collecting like terms, we get 

 

𝑢𝑢 𝑿𝑿 ≈ 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 𝑢𝑢 +

𝑎𝑎 𝑢𝑢 + 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 𝑢𝑢 +

𝑎𝑎 𝑢𝑢 + 𝑎𝑎 𝑢𝑢 − 𝐶𝐶 + 𝑂𝑂(ℎ 𝑚𝑚𝑚𝑚𝑚𝑚|𝛾𝛾 |),                                                                     (3.29) 

 

where the coefficient 𝑎𝑎 ′𝑠𝑠 are given by (2.36).   After using the interface relations in (3.27), 

we get  
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𝑢𝑢 𝑿𝑿 ≈ 𝑎𝑎 + 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 + 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 + 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 + 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 + 𝑎𝑎 𝑢𝑢 +

𝑎𝑎 + 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 + 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 + 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 + 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 + 𝑎𝑎 𝑢𝑢 +

𝑎𝑎 𝑢𝑢 + 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 𝑢𝑢 +

𝑎𝑎 𝑢𝑢 + 𝑎𝑎 𝑢𝑢 − 𝐶𝐶 + 𝑂𝑂 ℎ max 𝛾𝛾 .                         (3.30) 

 

On the other hand, we know 𝑢𝑢 = 𝑢𝑢 . Therefore, we have the system of linear equation for 

𝛾𝛾 ′𝑠𝑠 

 
𝑎𝑎 +  𝑎𝑎   = 0
𝑎𝑎 +  𝑎𝑎 = 1
𝑎𝑎 +  𝑎𝑎 = 0
𝑎𝑎 +  𝑎𝑎 = 0
𝑎𝑎 +  𝑎𝑎 = 0
𝑎𝑎 +  𝑎𝑎 = 0
𝑎𝑎 +  𝑎𝑎   = 0
𝑎𝑎 +  𝑎𝑎 = 0
𝑎𝑎 +  𝑎𝑎 = 0
𝑎𝑎 +  𝑎𝑎   = 0

                                                                        (3.31) 

    

If the system of linear equations (3.31) has a solution, then we can obtain a second order 

approximate to the normal derivative 𝑢𝑢 (𝑿𝑿) by choosing an appropriate correction term  𝐶𝐶. 

The above linear system has ten equations. So the set of neighboring grid points 𝑁𝑁 should be 

large enough such that at least 10 grid points are included. Usually we take more than 10 grid 

points and the above linear system becomes an underdetermined system which has an infinite 

number of solutions.  

 

When we get the coefficient 𝛾𝛾 ’s we can compute the 𝑎𝑎 ’s From the  𝑎𝑎 ’s and (3.30), we 

can determine the correction term  𝐶𝐶  easily by 
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𝐶𝐶 = 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 𝑢𝑢 + 𝑎𝑎 𝑢𝑢 +

𝑎𝑎 𝑢𝑢 + 𝑎𝑎 𝑢𝑢   

                                          = 𝑎𝑎 𝑤𝑤 + 𝑎𝑎 𝑔𝑔 + 𝑎𝑎 𝑤𝑤 + 𝑎𝑎 𝑤𝑤 + 𝑎𝑎 𝑔𝑔 𝜒𝜒 + 𝜒𝜒 +  −𝑤𝑤 − 𝑤𝑤                  

                                                      +𝑎𝑎 𝑤𝑤 − 𝑔𝑔𝑔𝑔 + 𝑎𝑎 𝑤𝑤 − 𝑔𝑔𝑔𝑔 + 𝑎𝑎 𝑤𝑤 𝜒𝜒 + 𝑤𝑤 𝜒𝜒 𝑔𝑔                 

+ 𝑎𝑎 𝑤𝑤ƞ𝜒𝜒ƞ + 𝑤𝑤 𝜒𝜒 + 𝑔𝑔 + 𝑎𝑎 𝑤𝑤ƞ − 𝑔𝑔𝑔𝑔ƞ .     

     (3.32) 
 

 

Therefore we are able to compute 𝑢𝑢 𝑿𝑿  to second order accuracy. Similarly we can 

 derive a formula for 𝑢𝑢 𝑿𝑿  in exactly the same way, i.e., we may use the following 

interpolation formula  

 

                                 𝑢𝑢 𝑿𝑿 ≈    𝛾𝛾 𝑢𝑢 − 𝐶𝐶.                                                                                                                                                  (3.33)                                   

 

However, with the jump condition   𝑢𝑢 𝑿𝑿 = 𝑢𝑢 𝑿𝑿 + 𝑔𝑔(𝑿𝑿), we can write down a second 

order interpolation scheme for 𝑢𝑢 𝑿𝑿  immediately 

 

𝑢𝑢 𝑿𝑿 ≈ 𝛾𝛾 𝑢𝑢 − 𝐶𝐶 + 𝑔𝑔 𝑿𝑿 ,                                                                                              (3.34)
, , ∈

 

 

where   𝛾𝛾 ’s is the solution we computed  for 𝑢𝑢 (𝑿𝑿). 

 

  The above least squares technique has several nice properties. First of all, it has second 

order accuracy with local support.  Second, it is robust. The interpolation formulas (3.24) and 

(3.34) depend continuously on the location of the point 𝑿𝑿 and the grid points involved, and 

so does the truncation error for these two interpolation schemes. In other words, we have a 

smooth error distribution. This is very important for moving interface problems where we do 

not want to introduce any non-physical oscillations. 



 

38 

With the augmented techniques described above, we are able to solve Problem (I) to second 

order accuracy. In each iteration, we need to solve a Poisson equation with a modified right-

hand side. A fast Poisson solver using the FFT method, the cyclic reduction, etc, can then be 

used. Also we need to solve a Schur complement system. The GMRES method can be used 

and the number if iterations depends on the condition number of the Schur complement 

system, if we make use of both (3.24) and (3.34) to compute 𝑢𝑢 (𝑿𝑿) and 𝑢𝑢 𝑿𝑿   the condition 

number seems to be proportional to 1 ℎ. Therefore, the number of iterations will grow 

linearly as we increase the number of grid points. This is what we do not want to see in the 

fast augmented IIM approach. 

 

A simple modification in the way of computing 𝑈𝑈  and  𝑈𝑈  seems to improve the condition 

number of the Schur complement system. The idea is simple. We have the jump condition 

𝛽𝛽𝑢𝑢 = 𝑞𝑞, which implies that if  𝑈𝑈  and 𝑈𝑈  are exact, then 

 

𝛽𝛽 𝑈𝑈 − 𝛽𝛽 𝑈𝑈 = 𝑄𝑄. 

 

 We can solve for  𝑈𝑈   or  𝑈𝑈  in terms of  𝑄𝑄, 𝛽𝛽 , 𝛽𝛽  and [𝑈𝑈 ] to have 

 

𝑈𝑈 =
𝑄𝑄 − 𝛽𝛽 [𝑈𝑈 ]
𝛽𝛽    − 𝛽𝛽                                                                                                                                                            (3.35) 

or 

 

𝑈𝑈 =
𝑄𝑄 − 𝛽𝛽 [𝑈𝑈 ]
𝛽𝛽 − 𝛽𝛽                                                                                                                                                      (3.36) 

 

If we independently compute 𝑈𝑈  and 𝑈𝑈  from (3.24) and (3.34) respectively, due to errors, 

usually they may not satisfy the flux jump condition. Therefore, in practice we use one of the 

formulas (3.24) and (3.34) to approximate 𝑈𝑈  or  𝑈𝑈  , and then use (3.36) or (3.35) to 
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approximate 𝑈𝑈  or 𝑈𝑈  to force the solution to satisfy the flux jump condition. This is an 

acceleration process or a preconditioner for the Schur complement system. 

 

Whether we use the pair (3.24) and (3.36) or the other, (3.34) and (3.35), has only a little 

effect on accuracy of the computed solution and the number of iterations. In our numerical 

experiment, we have been using the following criteria to choose the desired pair 

  

                      𝐼𝐼𝐼𝐼  𝛽𝛽 < 𝛽𝛽 :  
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼  𝑓𝑓𝑓𝑓𝑓𝑓      𝑈𝑈         𝑏𝑏𝑏𝑏     3.34 ,

𝑈𝑈       =     
𝑄𝑄 − 𝛽𝛽 𝐺𝐺
𝛽𝛽 − 𝛽𝛽   .                                                                

 

 

                                                          𝐼𝐼𝐼𝐼  𝛽𝛽 > 𝛽𝛽 :
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼  𝑓𝑓𝑓𝑓𝑓𝑓      𝑈𝑈           𝑏𝑏𝑏𝑏       3.24 ,
𝑈𝑈       =        .                                                                                

            
 

 

3.2.6   A least squares approach for computing an interface quantity from 

its values at control points 

 
To avoid unnecessary large and ill-conditioned Schur complement system, not all projection 

points are chosen as control points. Therefore, when we solve the Schur complement system, 

we only have values of the update jump at those control points. However, to apply the 

immersed interface method to Problem (II), we need values of the jump and/or derivatives of 

the jump at all projection points. Basically, this leads us to ask, given discrete values 

𝑝𝑝 , 𝑘𝑘 = 1,2, … , 𝑛𝑛  of a quantity 𝑝𝑝 at control points 𝑿𝑿 , 𝑘𝑘 = 1,2, … , 𝑛𝑛 , how to find its value 

or derivatives at a projection point 𝑿𝑿 = (𝑋𝑋, 𝑌𝑌, 𝑍𝑍) on the interface. Again a least square 

approach can be used, say, 

 

 

                                        𝑃𝑃 𝑋𝑋 = 𝛼𝛼 𝑝𝑝 ,                                                                  (3.37) 
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                                                                                          𝑝𝑝 𝑋𝑋 = 𝜆𝜆 𝑝𝑝 ,                                                                 (3.38) 

 

                                         𝑝𝑝 𝑋𝑋 = 𝛼𝛼 𝑝𝑝 ,                                                               (3.39)   

 

                                         𝑝𝑝 𝑋𝑋 = 𝜇𝜇 𝑝𝑝 ,                                                                                                                                               (3.40)                 

 

 

where the summation is over a set of  𝑛𝑛  neighboring control points near the point 𝑿𝑿 . Also 

the coefficient 𝛼𝛼 ′s, 𝜆𝜆 ’s ,𝜎𝜎 ′𝑠𝑠 and 𝜇𝜇 𝑠𝑠  can be found in the same way as discussed in [33]. 

 

3.2.7  Invertibility of the Schur complement system 
 

As mentioned earlier in §  3.2.4, if 𝛽𝛽 is continuous, the coefficient matrix of (3.20) is 

invertible since 𝐸𝐸 ≡ 0 and 𝐷𝐷 = 𝐼𝐼. For general cases, we can show that the coefficient matrix  

𝐷𝐷 − 𝐸𝐸𝐴𝐴 𝐵𝐵  is also  invertible if  ℎ  is small enough. 

 

We know the system of linear equations for the jump in the normal derivative 𝐺𝐺∗  is 

implicitly defined in the discrete form of the flux jump condition 

 

𝛽𝛽 𝑈𝑈 − 𝛽𝛽 𝑈𝑈 − 𝑄𝑄 = 0.                                                       (3.41) 

 

With the least square interpolation (3.24) and (3.34) described earlier, the component of the 

equation above at a control point is approximated by 

 

𝛽𝛽 − 𝛽𝛽    𝛾𝛾 𝑢𝑢, , + (𝛽𝛽 − (𝛽𝛽 − 𝛽𝛽 )(𝑎𝑎 + 𝑎𝑎 (𝜒𝜒 + 𝜒𝜒 ) − 𝑎𝑎 𝜒𝜒 −

𝑎𝑎 𝜒𝜒 − 𝑎𝑎 𝜒𝜒 ))  𝑔𝑔 + 𝑎𝑎 𝑔𝑔 + 𝑎𝑎 𝑔𝑔 − 𝑞𝑞 − 𝛽𝛽 − 𝛽𝛽 𝐶𝐶 = 0,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (3.42)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

where 

𝐶𝐶 = 𝑎𝑎 𝑤𝑤 + 𝑎𝑎 𝑤𝑤 + 𝑎𝑎 𝑤𝑤 + 𝑎𝑎 (    [𝑓𝑓/𝛽𝛽]   − 𝑤𝑤 − 𝑤𝑤 ) 
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                        +𝑎𝑎 𝑤𝑤 + 𝑎𝑎 𝑤𝑤 − 𝑔𝑔𝑔𝑔 + 𝑎𝑎 (𝑤𝑤ƞ𝜒𝜒 + 𝑤𝑤 𝜒𝜒 )             

                        +𝑎𝑎 𝑤𝑤ƞ𝜒𝜒ƞ + 𝑤𝑤 𝜒𝜒 + 𝑎𝑎 𝑤𝑤ƞ .                                                              (3.43) 

 

 

In vector form, it is the second equation in (3.22)  

 

𝐸𝐸𝐸𝐸 + 𝐷𝐷𝐷𝐷 = 𝑃𝑃𝑃𝑃.                                                                      (3.44) 

 

If  𝛽𝛽 = 𝛽𝛽 , then we have the unique solution for 𝐺𝐺, 𝐺𝐺 = 𝑄𝑄/𝛽𝛽 . Assuming now 𝛽𝛽 ≠ 𝛽𝛽 , 

we prove the following theorem on the invertibility of the Schur complement system (3.20). 

 

Theorem 3.1 

 
 Assume that we use the least square interpolation formula (3.23) to compute u , and the 

equation (3.34) to compute u  . If  h  is small enough, then D − EA B is invertible. 

 

Proof. 

  It is enough to consider the homogeneous case 

 

                                                                  𝑤𝑤 = 0,      𝑓𝑓 = 0,      𝑞𝑞 = 0,  and 𝑢𝑢 = 0,    on    𝜕𝜕Ω. 

 

In this case, 𝑄𝑄 = −𝐸𝐸𝐴𝐴  𝐹𝐹 = 0.  If the theorem is not true, then there is a 𝐺𝐺∗ ≠ 0 such that 

(𝐷𝐷 − 𝐸𝐸𝐴𝐴  𝐵𝐵)𝐺𝐺∗ = 0. Let 𝑈𝑈∗ = −𝐴𝐴  𝐵𝐵𝐺𝐺∗, which is the discrete solution of Problem (II) 

with 𝑢𝑢 = 𝑔𝑔∗ , a continuous extension of 𝐺𝐺∗ along the interface. Since(𝐷𝐷 − 𝐸𝐸𝐴𝐴 𝐵𝐵)𝐺𝐺∗is 

second order approximation of  𝛽𝛽 𝑢𝑢 − 𝛽𝛽 𝑢𝑢 , we conclude 𝛽𝛽𝛽𝛽∗ = 0  when  ℎ  is small 

enough. So 𝑢𝑢∗ is also the solution of Problem (I). However 𝑢𝑢 ≡ 0 is an obvious solution of 

Problem (I). By the uniqueness of the solution of the interface problem, we must have  

𝑢𝑢∗ ≡ 0 and 𝑔𝑔∗ ≡ 0. This contradicts the assumption that 𝐺𝐺∗ = 0. 
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Next, in Chapter 4 we will provide some numerical experiments of the augmented 

approach based on the fast algorithm described earlier in this Chapter. 
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Chapter 4 
 

Numerical	
  experiments	
  
 

4.1	
  Numerical	
  examples	
  

 

We have done some numerical experiments here of the 3D fast IIM approach with different 

jumps which show second order accuracy of the solution and more importantly also, discuss 

the number of iterations for the GMRES iterative method. 

 

The computations are done by using Dell Precision 690 Workstation running RHEL4, 

OS: RedHat Enterprise Linux, ws release 4 RHEL4, CPU: 1  XEON 5160, 2 cores ( 

HT4 cores), memory 32GB. We used the gfortran compilier. The initial guess for 𝑔𝑔 is 

always chosen as 0, 𝑛𝑛  as 50 and 𝑛𝑛   as 50. The computational domain is [-1,1]×[-1,1]×[-

1,1] unless otherwise specified. We also used 𝑙𝑙 = 𝑚𝑚 = 𝑛𝑛  in all computations. The tolerance 

for the GMRES iteration is taken as 10 . 

 

We used the program hw3crt.f (Fishpack)[2] as the 3D fast Poisson solver, and the 

program ssvdc.f (Linpack) to perform the singular value decomposition (SVD) which is then 

used to solve the undetermined linear system. The present version of hw3crt.f solves the 

standard seven point finite difference approximation to the Helmholtz equation Δ𝑢𝑢 + 𝑘𝑘𝑘𝑘 = 𝑓𝑓 

in Cartesian coordinates. 
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Example 4.1  
In this example we consider a problem with a piecewise constant coefficient 𝛽𝛽  and a 

discontinuous source term 𝑓𝑓. The interface is a sphere    𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 = 1/4. The differential 

equation is 

 

𝛽𝛽𝑢𝑢 + 𝛽𝛽𝑢𝑢 + 𝛽𝛽𝑢𝑢 = 𝑓𝑓,             

 

with   

𝛽𝛽 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 =
𝛽𝛽 ,            𝑖𝑖𝑖𝑖  𝑟𝑟 <

1
2
,

𝛽𝛽 ,              𝑖𝑖𝑖𝑖  𝑟𝑟 ≥
1
2
.
 

𝑓𝑓 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 =
−6𝛽𝛽 ,                            𝑖𝑖𝑖𝑖    𝑟𝑟 <

1
2
,

6𝛽𝛽 ,                              𝑖𝑖𝑖𝑖    𝑟𝑟 ≥
1
2
.
 

 

Dirichlet boundary conditions and the jump conditions (3.3) and (3.4) are determined from the 

exact solution and the level set function: 

 

𝑢𝑢 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 =
−𝑟𝑟 ,                                𝑖𝑖𝑖𝑖  𝑟𝑟 <   

1
2
,

𝑟𝑟 ,                                  𝑖𝑖𝑖𝑖  𝑟𝑟   ≥   
1
2
.
 

 

i.e ., 

𝑢𝑢 = 2𝑟𝑟 = 1/2, 

𝛽𝛽𝑢𝑢 = (𝛽𝛽 + 𝛽𝛽 ), 

where  𝑟𝑟 = 𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧   and on Γ, 𝑟𝑟 = 𝑟𝑟 = 1/2. 

Note that there are jumps in 𝑢𝑢 and 𝛽𝛽𝑢𝑢 . 
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We tested three different cases, no jump case, samall jump case, and a big jump case. The 

no jump case is with 𝛽𝛽 = 𝛽𝛽 = 1, the small jump case is with 𝛽𝛽 = 1,   𝛽𝛽 = 2 and the big 

jump case is with  𝛽𝛽 = 1, 𝛽𝛽 = 2000.   We see that the augmented approach does accurately 

give the jumps in the solution and in the normal derivative of the solution, without smearing 

out the solution. 

 

Table (4.)-(4.3) show the results of a grid refinement analysis, where 𝑙𝑙 = 𝑚𝑚 = 𝑛𝑛    is the 

number of uniform grid points in the 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 directions, respectively. The maximum 

relative error over all grid points ( the infinity norm) is defined as 

 

𝐸𝐸 = , , , ,   

, , , ,
,                                                       (4.1) 

 

where  𝑢𝑢 , ,  is the computed approximation of 𝑢𝑢(𝑥𝑥 , 𝑦𝑦 , 𝑧𝑧 ) . We also display the ratio of two 

successive errors and order of accuracy, respectively, as 

 

         Ratio = 𝐸𝐸 / 𝐸𝐸 ,                order =log  ( 𝐸𝐸 / 𝐸𝐸 )/log2                        (4.2) 
 

For a first order method, the ratio approaches to 2, and for a second order method, the 

ratio approaches to 4. We will use the same notation for other examples in this thesis.  

We see that an average ratio of 4 indicates that the augmented approach is a second order 

accuracy. 
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Figure  4.1 Plot of a slice of the computed solution −𝑢𝑢 𝑥𝑥, 𝑦𝑦, 0  for example (4.1) with 

𝛽𝛽 = 2000,   𝛽𝛽 = 1, and 𝑙𝑙 = 𝑚𝑚 = 𝑛𝑛 =52.  

 

 

In Figure 4.1. The mesh size is ℎ = 1/26. Both the solution and the flux [𝛽𝛽𝑢𝑢 ] are 

discontinuous across the interface Γ. The source term 𝑓𝑓 is discontinuous across the interface 

as well. The interface is a sphere and the computational domain is a unit cube [-1,1]×[-

1,1]×[-1,1]. The plot of the solution is composed of two pieces. We see that our method does 

accurately give the jumps in the solution and in the normal derivative of the solution, without 

smearing out the solution. The discontinuity in the solution and the flux is captured sharply 

by our numerical method. 
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  Figure 4.2 Error plot of the slice of the computed solution for example (4.1) with 

  𝛽𝛽 = 2000, 𝛽𝛽 = 1, and 𝑙𝑙 = 𝑚𝑚 = 𝑛𝑛 = 52.  
 

 

In Figure 4.2. The mesh size is ℎ = 1/26.  The largest error usually occurs at those points 

which are close to the part of the interface which has large curvature. The errors of the 

solution obtained by our approach are usually more evenly distributed. The largest error in 

magnitude is about 0.8×10 .  
 

 

Table 4.1: The grid refinement analysis for example 4.1. Using Dell Precision 

Workstation 690 
𝑛𝑛 𝛽𝛽 = 1   𝛽𝛽 =  2   𝛽𝛽 = 10 𝛽𝛽 = 2000 

𝐸𝐸  Ratio(order) 𝐸𝐸  ratio(order) 𝐸𝐸  ratio(order) 𝐸𝐸  ratio(order) 

26 0.1558E-2  0.1460E-2  0.1363E-2  0.1325E-2  

52 0.4162E-3 3.743(1.90) 0.3773E-3 3.89(1.96) 0.3478E-3 3.92(1.97) 0.3414E-3 3.88(1.96) 

104 0.9919E-4 4.195(2.07) 0.8544E-4 4.42(2.14) 0.8130E-4 4.28(2.10) 0.8103E-4 4.21(2.07) 

 

The coefficient 𝜷𝜷 in 𝛀𝛀 is 1. 
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Table 4.1 above shows the results of a grid refinement study with errors in the infinity 

norm defined over all grid points. The first column is the number of uniform grid points in 

the 𝑥𝑥, 𝑦𝑦  and 𝑧𝑧 directions. The third column is the ratio/order of convergence as defined in 

(4.2). We can see clearly an average of 4 which confirms second order accuracy of our 

method. The tolerance for the GMRES iterations is taken as 10 . 

 

Example 4.2  
In this example we consider a problem with a piecewise constant coefficient 𝛽𝛽, but variable 

and discontinuous source term 𝑓𝑓. The interface is a sphere 𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 = 1/4 and the 

differential equation is 

 

𝛽𝛽𝑢𝑢 + 𝛽𝛽𝑢𝑢 + 𝛽𝛽𝑢𝑢 = 𝑓𝑓, 

with 

𝛽𝛽 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 =
𝛽𝛽             𝑖𝑖𝑖𝑖  𝑟𝑟 <

1
2

𝛽𝛽               𝑖𝑖𝑖𝑖  𝑟𝑟 ≥
1
2

 

𝑓𝑓 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 =
6,                                                𝑖𝑖𝑖𝑖    𝑟𝑟 <

1
2
,

20𝑟𝑟 + ,        𝑖𝑖𝑖𝑖  𝑟𝑟 ≥
1
2
.
 

 

The Dirichlet boundary conditions and the jump conditions (3.3) and (3.4) are determined 

from the exact solution and the level set function: 

 

 

                                      𝑢𝑢 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 =

𝑟𝑟
𝛽𝛽

,                                                                                              𝑖𝑖𝑖𝑖        𝑟𝑟 <
1
2
  

𝑟𝑟 + log(2𝑟𝑟)
𝛽𝛽

+
(12)
𝛽𝛽

−
(12)
𝛽𝛽

, 𝑖𝑖𝑖𝑖        𝑟𝑟 ≥   
1
2
  

 

𝑖𝑖.e., 
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𝑢𝑢 = 0,                 𝛽𝛽𝑢𝑢 = 4𝑟𝑟 +    − 2𝑟𝑟 , 

where  𝑟𝑟 = 𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧  and on Γ, 𝑟𝑟 = 𝑟𝑟 = 1/2. . Note that there is no jump in 𝑢𝑢 in this 

example, but in the normal derivative there is. 

 

The jump in the coefficient 𝛽𝛽  depends on the choice of the constants 𝛽𝛽  and 𝛽𝛽 . Again, We 

tested the different cases, no jump, small jump, and big case. Unlike in example 4.1, the 

solution in this example is continuous. 

 

 

 

Figure 4.3 Plot of a slice of the computed solution −𝑢𝑢 𝑥𝑥, 𝑦𝑦, 0  for example (4.2) with  

𝛽𝛽 = 1, 𝛽𝛽 = 1, and 𝑙𝑙 = 𝑚𝑚 = 𝑛𝑛 = 52.  
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In Figure 4.3 The mesh size is ℎ = 1/26. .The solution is continuous, but the flux [𝛽𝛽𝑢𝑢 ] is 

not. The source term 𝑓𝑓 is discontinuous across the interface. The interface is a sphere and the 

computational domain is a unit cube [-1,1]×[-1,1]×[-1,1]. The plot of the solution is 

composed as one piece. We see that our method does accurately give the jumps in the 

solution and in the normal derivative of the solution, without smearing out the solution. The 

discontinuity in the flux is captured sharply by our numerical method. 

 

 

 

 
Figure 4.4 Plot of a slice of the computed solution −𝑢𝑢 𝑥𝑥, 𝑦𝑦, 0  for example (4.2) with 

𝛽𝛽 = 10, 𝛽𝛽 = 1, and 𝑙𝑙 = 𝑚𝑚 = 𝑛𝑛 = 52.  
 

 

In Figure 4.4 The mesh size is ℎ = 1/26. .The solution is continuous, but the flux [𝛽𝛽𝑢𝑢 ] is 

not. The source term 𝑓𝑓 is discontinuous across the interface. The interface is a sphere and the 

computational domain is a unit cube [-1,1]×[-1,1]×[-1,1]. The plot of the solution is 

composed as one piece. We see that our method does accurately give the jumps in the 
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solution and in the normal derivative of the solution, without smearing out the solution. The 

discontinuity in the flux is captured sharply by our numerical method. 

 

 
 

 

Figure 4.5 Plot of a slice of the computed solution −𝑢𝑢 𝑥𝑥, 𝑦𝑦, 0  for example (4.2) with 

𝛽𝛽 = 2000, 𝛽𝛽 = 1, and 𝑙𝑙 = 𝑚𝑚 = 𝑛𝑛 = 52.  

 

 

In Figure 4.5 The mesh size is ℎ = 1/26. .The solution is continuous, but the flux [𝛽𝛽𝑢𝑢 ] is 

not. The source term 𝑓𝑓 is discontinuous across the interface. The interface is a sphere and the 

computational domain is a unit cube [-1,1]×[-1,1]×[-1,1]. The plot of the solution is 

composed as one piece. We see that our method does accurately give the jumps in the 

solution and in the normal derivative of the solution, without smearing out the solution. The 

discontinuity in the flux is captured sharply by our numerical method. 

 

 
 

. 
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Figure 4.6 Error plot of the slice of the computed solution for example (4.2) with   𝛽𝛽 =

1, 𝛽𝛽 = 1, and 𝑙𝑙 = 𝑚𝑚 = 𝑛𝑛 = 52.  
 

 

Figure 4.6 is a plot of the error in the infinity norm of the slice of the computed solution. The 

mesh size is ℎ = 1/26.  The largest error usually occurs at those points which are close to the 

part of the interface which has large curvature. The errors of the solution obtained by our 

approach are usually more evenly distributed. The largest error in magnitude is about 

0.8×10 .  
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Figure 4.7 Error plot of the slice of the computed solution for example (4.1) with 𝛽𝛽 =

10, 𝛽𝛽 = 1, and 𝑙𝑙 = 𝑚𝑚 = 𝑛𝑛 = 52.  
 

 

Figure 4.7 is a plot of the error in the infinity norm of the slice of the computed solution. The 

mesh size is ℎ = 1/26.  The largest error usually occurs at those points which are close to the 

part of the interface which has large curvature. The errors of the solution obtained by our 

approach are usually more evenly distributed. The largest error in magnitude is about 
1.3×10 . 
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Figure 4.8 Error plot of the slice of the computed solution for example (4.1) with 𝛽𝛽 =

2000, 𝛽𝛽 = 1, and  𝑙𝑙 = 𝑚𝑚 = 𝑛𝑛 = 52.  
 

 

Figure 4.8 is a plot of the error in the infinity norm of the slice of the computed solution. In 

this Figure where 𝛽𝛽 = 2000, 𝛽𝛽 = 1, we see that the error in the solution drops much more 

rapidly. This is because the solution in Ω  approaches a constant as 𝛽𝛽  becomes large, and it 

is quadratic in Ω . The mesh size is ℎ = 1/26. The largest error in magnitude is about 

1.5×10 .  
 

 

Table 4.2: The grid refinement analysis for example (4.2). Using Dell Precision 

Workstation 690. 
𝑛𝑛 𝛽𝛽 = 1   𝛽𝛽 =  2   𝛽𝛽 = 10 𝛽𝛽 = 2000 

𝐸𝐸  Ratio(order) 𝐸𝐸  ratio(order) 𝐸𝐸  ratio(order) 𝐸𝐸  ratio(order) 

26 0.5531E-3  0.5806E-3  0.1083E-2  0.4874E-2  

52 0.1475E-3 3.74(1.90) 0.1596E-3 3.64(1.86) 0.2330E-3 4.65(2.22) 0.1314E-2 3.71(1.90) 

104 0.3826E-4 3.86(1.95) 0.3792E-4 4.21(2.07) 0.6030E-4 3.85(1.94) 0.3382E-3 3.89(1.96) 

 

The coefficient 𝜷𝜷 in 𝛀𝛀 is 1. 
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Table 4.2 above shows the results of a grid refinement study with errors in the infinity 

norm when 𝑙𝑙 = 𝑚𝑚 = 𝑛𝑛 = 52 as shown in Figure (4.6)-(4.8). Again second order convergence 

is verified. The tolerance for the GMRES iterations is taken as 10 . 

 

Example 4.3 
In this example we consider a problem with a piecewise constant coefficient 𝛽𝛽  and a 

discontinuous source term 𝑓𝑓. The interface is a sphere    𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 = 1/4. The differential 

equation is 

 

𝛽𝛽𝑢𝑢 + 𝛽𝛽𝑢𝑢 + 𝛽𝛽𝑢𝑢 = 𝑓𝑓, 

with 

𝛽𝛽 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 =
𝛽𝛽 ,            𝑖𝑖𝑖𝑖    𝑟𝑟 <

1
2
,

𝛽𝛽 ,              𝑖𝑖𝑖𝑖    𝑟𝑟 ≥
1
2
.
 

                                                        𝑓𝑓 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 =
−200𝛽𝛽 𝑟𝑟 ,            𝑖𝑖𝑖𝑖            𝑟𝑟 <

1
2
,

20𝛽𝛽 𝑟𝑟 ,                      𝑖𝑖𝑖𝑖            𝑟𝑟 ≥
1
2
.
 

Dirichlet boundary conditions and the jump conditions (3.3) and (3.4) are determined from the 

exact solution and the level set function: 

 

𝑢𝑢 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 =
−10𝑟𝑟 ,                        𝑖𝑖𝑖𝑖      𝑟𝑟 <   

1
2
,

𝑟𝑟 ,                                      𝑖𝑖𝑖𝑖      𝑟𝑟   ≥   
1
2
.
 

 

i.e ., 

𝑢𝑢 = 11𝑟𝑟 = 11/16, 

𝛽𝛽𝑢𝑢 = 4(10𝛽𝛽 + 𝛽𝛽 )/2, 

where 𝑟𝑟 = 𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧  and on Γ, 𝑟𝑟 = 𝑟𝑟 = 1/2. 
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Note that there are jumps in 𝑢𝑢 and 𝛽𝛽𝑢𝑢 . 

 

 

 

 
Figure 4.9 Plot of a slice of the computed solution −𝑢𝑢 𝑥𝑥, 𝑦𝑦, 0  for example (4.3) with  

𝛽𝛽 = 2000,   𝛽𝛽 = 1, and 𝑙𝑙 = 𝑚𝑚 = 𝑛𝑛 =52.  

 

 

In Figure 4.9 The mesh size is ℎ = 1/26. Both the solution and the flux [𝛽𝛽𝑢𝑢 ] are 

discontinuous across the interface Γ. The source term 𝑓𝑓 is discontinuous across the interface 

as well. The interface is a sphere and the computational domain is a unit cube [-1,1]×[-

1,1]×[-1,1]. The plot of the solution is composed of two pieces. We see that our method does 

accurately give the jumps in the solution and in the normal derivative of the solution, without 

smearing out the solution. The discontinuity in the solution and the flux is captured sharply 

by our numerical method. 
 

 
.  
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Figure 4.10 Error plot of the slice of the computed solution for example (4.3) with 

  𝛽𝛽 = 2000, 𝛽𝛽 = 1, and 𝑙𝑙 = 𝑚𝑚 = 𝑛𝑛 = 52.  
 

 

Figure 4.10 is a plot of the error in the infinity norm of the slice of the computed solution. 

The mesh size is ℎ = 1/26.  The largest error usually occurs at those points which are close 

to the part of the interface which has large curvature. The errors of the solution obtained by 

our approach are usually more evenly distributed. The largest error in magnitude is about 

0.9×10 .  

 
 

Table 4.3: The grid refinement analysis for example 4.3. Using Dell Precision 

Workstation 690. 
𝑛𝑛 𝛽𝛽 = 1   𝛽𝛽 =  2   𝛽𝛽 = 10 𝛽𝛽 = 2000 

𝐸𝐸  Ratio(order) 𝐸𝐸  ratio(order) 𝐸𝐸  ratio(order) 𝐸𝐸  ratio(order) 

26 0.2180E-2  0.2849E-2  0.4672E-2  0.5234E-2  

52 0.5686E-3 3.83(1.93) 0.6499E-3 4.38(2.13) 0.1121E-2 4.17(2.06) 0.1245E-2 4.20(2.07) 

104 0.1229E-3 4.63(2.21) 0.1729E-3 3.76(1.91) 0.2997E-3 3.74(1.90) 0.3456E-3 3.60(1.85) 
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The coefficient 𝜷𝜷 in 𝛀𝛀 is 1. 

 

 

Table 4.3 above shows the results of a grid refinement study with errors in the infinity 

norm when 𝑙𝑙 = 𝑚𝑚 = 𝑛𝑛 = 52 as shown in Figure 4.10. Again. we can see again clearly the 

average ratio is close to 4 indicating second order accuracy of our method. The tolerance for 

the GMRES iterations is taken as 10 . 
 

4.2 The augmented approach efficiency analysis 

 
From the numerical tests we have already seen that the augmented approach is second order 

accurate and can deal with large enough mesh size and large enough jumps in the coefficient. 

We also want to know whether the number of iterations is dependent on the mesh size or the 

jump in the coefficient 𝛽𝛽. 
 

Tables (4.4)-(4.6) list some statistics for the above examples, where 𝑁𝑁  denotes the 

number of irregular points, 𝑁𝑁  denotes the number of control points and 𝑁𝑁  is the 

number of iterations (i.e., the number of calls to the fast Poisson solver). It can be seen 

clearly for all cases, that our method is fast in terms of number of iterations and in terms of 

time (in seconds) considering the very large condition number of the system of equations 

from a direct discretization even for a regular domain such as a cube, also the number of 

iterations does not increase by a big jump greatly. If there is no jump in 𝛽𝛽, the GMRES 

method converges in one step. 

 

However, the number of iterations seems to depend on the jump in the coefficient 𝛽𝛽. This 

is different from two-dimensional cases in [29]. 
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Table 4.4: CPU  time for example 4.1. Using Dell Precision Workstation 690 

𝑛𝑛 𝑁𝑁  
 

𝑁𝑁  
 

𝛽𝛽 = 1   𝛽𝛽 = 2   𝛽𝛽 = 10 𝛽𝛽 = 2000 
CPU(s) 𝑁𝑁  

 
CPU(s) 𝑁𝑁  

 
CPU(s) 𝑁𝑁  

 
CPU(s) 𝑁𝑁  

 
26     920 506 1.8202 5 2.3821 10 2.7173 13 3.1565 17 

52 3528 1820 7.6128 5 10.2216 10 12.3317 14 14.9292 19 
104 14048 7172 35.979 5 49.8391 10 61.0546 14 77.6706 20 

 

The coefficient 𝜷𝜷 in 𝛀𝛀 is 1. 

 

 

In Table 4.4 we can see that our method is fast in terms of number of iterations and in 

terms of time (in seconds) considering the very large condition number of the system of 

equations from a direct discretization even for a regular domain such as a cube. However, the 

number of iteration depends on the mesh size and the jump in the coefficient 𝛽𝛽, but that does 

not increase the CPU time greatly. 

 

 

Table 4.5:   CPU time for example 4.2. Using Dell Precision Workstation 690 

𝑛𝑛 𝑁𝑁  
 

𝑁𝑁  
 

𝛽𝛽 = 1   𝛽𝛽 = 2   𝛽𝛽 = 10 𝛽𝛽 = 2000 
CPU(s) 𝑁𝑁  

 
CPU(s) 𝑁𝑁  

 
CPU(s) 𝑁𝑁  

 
CPU(s) 𝑁𝑁  

 
26     920 506 1.8148 5 2.2664 9 2.6036 12 3.1553 17 

52 3528 1820 7.6364 5 9.7203 9 11.8205 13 14.9187 19 
104 14048 7172 35.924 5 47.0968 9 58.3436 13 77.8693 20 

 

The coefficient 𝜷𝜷 in 𝛀𝛀 is 1. 

 



 

60 

In Table 4.5 above, again we can see that the number of iteration depends on the mesh 

size and the jump in the coefficient 𝛽𝛽, but that does not increase the CPU time greatly. 

 

 

Table 4.6:   CPU time for example 4.3. Using Dell Precision Workstation 690 

𝑛𝑛 𝑁𝑁  
 

𝑁𝑁  
 

𝛽𝛽 = 1   𝛽𝛽 = 2   𝛽𝛽 = 10 𝛽𝛽 = 2000 
CPU(s) 𝑁𝑁  

 
CPU(s) 𝑁𝑁  

 
CPU(s) 𝑁𝑁  

 
CPU(s) 𝑁𝑁  

 
26     920 506 1.8125 5 2.3849 10 2.7095 13 3.2683 18 

52 3528 1820 7.5889 5 10.236 10 12.8407 15 15.4590 20 
104 14048 7172 35.868 5 49.854 10 64.0625 15 80.5074 21 

 

The coefficient 𝜷𝜷 in 𝛀𝛀 is 1. 

 

 

In Table 4.6 again we can see that the number of iteration depends on the mesh size and 

the jump in the coefficient 𝛽𝛽, but that does not increase the CPU time greatly. 
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Chapter 5 

 

Applications of the fast 3D solver 

 
5.1   The augmented method for Holmholtz / Poisson equations on irregular    

  domains 

 
Sometimes a problem on an irregular domain can be handled more easily as an interface 

problem by embedding the domain into a cubic domain and then solving the equation on a 

Cartesian grid in the cube. The original boundary then becomes an interface. As an example, 

suppose we want to solve a three-dimensional elliptic equation on an irregular domain Ω. We 

can embed the domain in a larger cubic domain R. For example, we could solve the 

following Laplace equation with a Dirichlet boundary condition 

 

𝑢𝑢 + 𝑢𝑢 + 𝑢𝑢 + 𝑘𝑘𝑘𝑘 = 0,        in     Ω, 

𝑢𝑢 = 𝑣𝑣,                                          on    𝜕𝜕Ω. 

 

By extending it to the problem 

Δ𝑢𝑢 = 𝐹𝐹 𝑿𝑿 𝛿𝛿 𝑥𝑥 − 𝑋𝑋 𝛿𝛿 𝑦𝑦 − 𝑌𝑌 𝛿𝛿 𝑧𝑧 − 𝑍𝑍 𝑑𝑑𝑑𝑑,      in     𝑅𝑅,                       (5.1) 

u = 0,                                                                       on    ∂R. 

 

The problem is then to determine F(X) so that the boundary condition  𝑢𝑢 = 𝑣𝑣    𝑜𝑜𝑜𝑜    𝜕𝜕Ω       is 

satisfied.  

The solution is still continuous on the enlarged region R, but not smooth across the interface 

𝜕𝜕Ω. 

This particular problem has been extensively studied in the past and a number of domain 

embedding procedures have been developed, e.g., capacitance methods [7,15,35,45] and 
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methods based on solving integral equations along 𝜕𝜕Ω. With the idea of the augmented 

approach, we can also develop an embedding technique to solve elliptic equations on 

complicated regions with Dirichlet, Neumann, or Robin boundary conditions as will be 

indicated in chapter 6 as future work. In this Chapter, we show how the augmented approach 

can be utilized to solve exterior / interior Poisson equations on irregular domains. 

 

First, consider 3D interface Poisson equation with Dirichlet boundary condition 

Δ𝑢𝑢 + 𝑘𝑘𝑘𝑘 = 𝑓𝑓,             in           Ω,                                                                    (5.2) 

𝑢𝑢 = 𝑣𝑣,                          on         𝜕𝜕Ω. 

 

where Ω  is a cubic volume with an arbitrary closed void region, 𝜕𝜕Ω is the interior boundary 

of Ω and 𝜕𝜕𝜕𝜕 is the exterior boundary of  Ω, see Figure (5.1) below for an illustration. 

 

 

 

 

 

 

  

 

 

 

 

                            

                    Figure 5.1 : A diagram for  exterior Poisson problem. 

 

 

From the embedding or the fictitious techniques, we can imagine the irregular region as an 

embedded region into a cube R. We may treat the original problem as an interface problem 

 ∂Ω 

Ω 

𝑅𝑅 

𝜕𝜕𝜕𝜕 
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and use the IIM to solve it. However, recall that to make the resulting interface problem well-

posed, usually we need to know not only the jump in the solution [u], but also the jump in the 

normal derivative of the solution 𝑢𝑢 , across the boundary (now it becomes the interface). 

We may simply use the Dirichlet boundary condition as the jump condition in the solution, 

but unfortunately there seems no way to know the exact jump in the normal derivative of the 

solution. Thus, it will be assumed to be an augmented variable. 

 

Based on the same idea as used in the augmented approach, we can solve the above 

problem by choosing an initial guess on 𝑢𝑢 , and then updating it until the original boundary 

condition is satisfied. Below we begin to describe this approach in more detail. 

 

We extend the source term in the Poisson equation by zero outside Ω. On the irregular 

boundary 𝜕𝜕Ω, we allow a finite jump 𝑢𝑢  in the solution itself. One particular choice is just to 

use the original boundary condition 𝑣𝑣 as 𝑢𝑢  and let 𝑢𝑢 = 0  on the boundary 𝜕𝜕𝜕𝜕 of the cube R. 

As for the jump in the normal derivative of the solution 𝑢𝑢 , we may use an initial guess, 

say, 𝑢𝑢 = 𝑔𝑔  (usually 0). This extension leads to the following interface problem 

 

Δ𝑢𝑢 + 𝑘𝑘𝑘𝑘 = 𝑓𝑓,          𝑖𝑖𝑖𝑖       𝑥𝑥, 𝑦𝑦, 𝑧𝑧   ∈   Ω,
0,          𝑖𝑖𝑖𝑖       𝑥𝑥, 𝑦𝑦, 𝑧𝑧   ∉   Ω, 

𝑢𝑢 = 𝑣𝑣,              on    𝜕𝜕Ω, 

𝑢𝑢 = 𝑔𝑔,          on    𝜕𝜕Ω,                                                (5.3) 

𝑢𝑢 = 0,                on    𝜕𝜕R. 

 

We then use the GMRES iteration to update 𝑔𝑔 until the original boundary condition is 

satisfied, i.e., 

𝑢𝑢 = 𝑣𝑣,          𝑜𝑜𝑜𝑜      𝜕𝜕Ω,                                                      (5.4) 

 

where 𝑢𝑢  is the limiting value of the solution on the boundary from the inside of  𝜕𝜕Ω. 
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Now the augmented approach can be used and only some minor changes are needed. First, 

instead of using 𝛽𝛽𝑢𝑢 = 𝑔𝑔  as the convergence-checking rule, we use 𝑢𝑢 = 𝑣𝑣. Therefore, 

instead of interpolating 𝑢𝑢   𝑎𝑎𝑎𝑎𝑎𝑎  𝑢𝑢  with the knowledge of 𝑢𝑢 ’s, we need to find 𝑢𝑢  and 𝑢𝑢 . 

The same least square approach can still be used here. For example, our interpolation formula 

for  𝑢𝑢 can be written in the following: 

𝑢𝑢 ≈    𝛾𝛾 𝑢𝑢 − 𝑄𝑄., ,                                              (5.5) 

The same idea also applies to interior Poisson problem with Dirichlet boundary conditions as 

follows 

Δ𝑢𝑢 + 𝑘𝑘𝑘𝑘 = 𝑓𝑓,              in    ∂Ω, 

u = v,                       on    ∂Ω,                                                                        (5.6) 

𝑢𝑢 = 𝑢𝑢 ,                         on   ∂R. 

 

where Ω is an arbitrary closed region in 3D space, see Figure (5.2) for an illustrations. 

 

By extending the source term in the Poisson equation by zero outside Ω  and forming 

interface conditions across 𝜕𝜕Ω , we get the following interface problem  

 

Δ𝑢𝑢 + 𝑘𝑘𝑘𝑘 =    𝑓𝑓,                                    𝑖𝑖𝑖𝑖   𝑥𝑥, 𝑦𝑦, 𝑧𝑧 ∈   Ω
0,                                    𝑖𝑖𝑖𝑖   𝑥𝑥, 𝑦𝑦, 𝑧𝑧 ∉ Ω  

                                                   𝑢𝑢 = 𝑣𝑣,                    on    𝜕𝜕Ω, 

𝑢𝑢 = 𝑔𝑔,                 on    𝜕𝜕Ω,                                                                           (5.7) 

                                                    𝑢𝑢 = 𝑢𝑢 ,                   on    𝜕𝜕R. 
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Figure 5.2: A diagram for interior Poisson problem.  

 

 

Similarly, we then use the GMRES iteration to update 𝑔𝑔 until the original interior 

boundary condition is satisfied, i.e., 

𝑢𝑢 = 𝑣𝑣,        on    𝜕𝜕Ω.                                                      (5.8) 

where 𝑢𝑢  is the limiting value of the solution on the interior boundary from the outside of  

𝜕𝜕Ω, which can still be obtained by the same least  square approach as in §  3.2.5 , i.e., 

𝑢𝑢 ≈ 𝛾𝛾 , , 𝑢𝑢 , , − 𝑄𝑄., ,                                                (5.9) 

 

We have tested the fictitious or embedding techniques by solving some exterior or interior 

Poisson equations with Dirichlet boundary conditions. As mentioned earlier, the 

computations are done by using Dell Precision 690 Workstation running RHEL4, OS: 

RedHat Enterprise Linux, ws release 4 RHEL4, CPU: 1  XEON 5160, 2 cores ( HT4 

cores), memory 32GB. and by using gfortran compiler. The tolerance for the GMRES is 

taken as 10 . 

 

 

 

Ω 
.𝜕𝜕Ω 

𝜕𝜕𝜕𝜕 

R 
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5.1  Numerical experiments 

 
We will provide two examples in solving three-dimensional Poisson equations on exterior 

and interior irregular domains, respectively, to show the efficiency of the augmented 

approach. We want to show second order accuracy of the solution, and more importantly 

also, show that the number of iterations is nearly independent of the mesh size in this chapter. 

 

Example 5.1  

In this example, the domain is the exterior of the sphere   𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 = 1/4. The 

differential equation is 

𝑢𝑢 + 𝑢𝑢 + 𝑢𝑢 = 20𝑟𝑟 +
log  (𝑒𝑒)
𝑟𝑟  

Dirichlet boundary condition is chosen from the following exact solution and level set 

function:   

 

𝑢𝑢 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 = 𝑟𝑟 + log 2𝑟𝑟 +
3
16, 

  

where   𝑟𝑟 = 𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 . and on Γ, 𝑟𝑟 = 𝑟𝑟 = 1/2 

 

Below, Figure 5.3 (outside of the sphere) shows a slice of the computed 

solution:  −𝑢𝑢 𝑥𝑥, 𝑦𝑦, 0 . The sphere is embedded into a unit cube [-1,1]×[-1,1]×[-1,1]. 

 

Again we did the simulations, but on a 104×104×104 grids. The mesh size is ℎ = 1/52.  
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Figure 5.3 : Plot of a slice of the computed solution −𝑢𝑢 𝑥𝑥, 𝑦𝑦, 0  for example (5.1) with 

  𝑙𝑙 = 𝑚𝑚 = 𝑛𝑛 =104.  
 

 

In Figure 5.3(outside of the sphere) shows a slice of the computed solution : −𝑢𝑢 𝑥𝑥, 𝑦𝑦, 0  on a 

104×104×104 grids. The mesh size is ℎ = 1/52. Both the solution and the flux [𝛽𝛽𝑢𝑢 ] are 

discontinuous across the interface Γ. The source term 𝑓𝑓 is discontinuous across the interface 

as well. The mesh size is ℎ = 1/52. The interface is a sphere and the computational domain 

is a unit cube [-1,1]×[-1,1]×[-1,1]. The plot of the solution is composed of two pieces. We 

see that our method does accurately give the jumps in the solution and in the normal 

derivative of the solution, without smearing out the solution. The discontinuity in the solution 

and the flux is captured sharply by our numerical method. 
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              Figure 5.4 : Error plot of the slice of the computed solution for example (5.1)  

           with  𝑙𝑙 = 𝑚𝑚 = 𝑛𝑛 = 104.  

 

 

Figure 5.4 is a plot of the error in the infinity norm of the slice of the computed solution 

plotted in Figure 5.3 on a 104×104×104 grids. The mesh size is ℎ = 1/52. The largest error 

in magnitude is about 1.2×10 .  The number of iterations for solving the Schur complement 

system using a GMRES is almost independent the mesh size ℎ. 

 

Example 5.2 
The differential equation is 

𝑢𝑢 + 𝑢𝑢 + 𝑢𝑢 = 𝑓𝑓, 

 

in the interior of the sphere 𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 = 1 4 

 

with  

      𝑓𝑓 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 = −200𝑟𝑟 ,                      𝑖𝑖𝑖𝑖  𝑟𝑟 < 1 2,
20𝑟𝑟 ,                              𝑖𝑖𝑖𝑖  𝑟𝑟 ≥   1 2.
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Dirichlet boundary condition is chosen from the exact solution and level set function: 

𝑢𝑢 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 = −10𝑟𝑟 . 

 

where 𝑟𝑟 = 𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧   and on Γ, 𝑟𝑟 = 𝑟𝑟 = 1 2. 

 

Again the domain is embedded into the unit cube [-1,1]×[-1,1]×[-1,1]. 

 

 

 

 
 Figure 5.5: Plot of a slice of the computed solution −𝑢𝑢 𝑥𝑥, 𝑦𝑦, 0  for example (5.2) with 

𝑙𝑙 = 𝑚𝑚 = 𝑛𝑛 =104. 
 

 

Figure 5.5 (inside on the top) shows a slice of the computed solution: −𝑢𝑢 𝑥𝑥, 𝑦𝑦, 0  on a 

104×104×104 grids. The mesh size is ℎ = 1/52. Both the solution and the flux [𝛽𝛽𝑢𝑢 ] are 
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discontinuous across the interface Γ. The source term 𝑓𝑓 is discontinuous across the interface 

as well. The mesh size is ℎ = 1/52. The interface is a sphere and the computational domain 

is a unit cube [-1,1]×[-1,1]×[-1,1]. The plot of the solution is composed of two pieces. We 

see that our method does accurately give the jumps in the solution and in the normal 

derivative of the solution, without smearing out the solution. The discontinuity in the solution 

and the flux is captured sharply by our numerical method. 

 

 
 

 

 

 

Figure 5.6: Error plot of the slice of the computed solution for example (5.2)  with  𝑙𝑙 = 𝑚𝑚 =

𝑛𝑛 = 104.  

 
 

Figure 5.6 is a plot of the error in the infinity norm of the slice of the computed solution on a 

104×104×104 grids. The mesh size is ℎ = 1/52.The largest error in magnitude is about  

0.5×10 . The number of iterations for solving the Schur complement system using a 

GMRES is almost independent the mesh size ℎ. 



 

71 

Table (5.1)-(5.2) show the results of a grid refinement analysis, where 𝑙𝑙 = 𝑚𝑚 = 𝑛𝑛  is the 

number of uniform grid points in the 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 direction, respectively. The infinity norm 

over all grid points and order of convergence are defined as in (4.1) and (4.2) respectively. 

 

 show that the approach is second order accurate and we notice that the number of calls to 

the fast Poisson solver on the cubic domain is independent of the mesh size similar to the 

case of two space dimensions proposed in [29] although it may depend on the geometry of 

the domain. They also show the error in the infinity norm and other information. In those 

tables, 𝑁𝑁  and 𝑁𝑁  are the number of total irregular grid points and the number of 

control points respectively; 𝑁𝑁  is the number of iterations of the GMRES method or the 

number the calls of the 3D fast Poisson solver. 

 

 

Table 5.1: the grid refinement analysis of Example 5.1. Using Dell Precision 

Workstation 690 

𝑛𝑛 𝑁𝑁  𝑁𝑁  CPU(s) 𝑁𝑁  𝐸𝐸  Ratio(order) 

26 920 506 2.1637 5 0.3898E-04  

52 3528 1820 8.6127 5 0.9849E-04 3.9577(1.98) 

104 14048 7172 37.1104 5 0.2419E-04 4.0715(2.03) 

 

 

Table 5.1 above shows the results of a grid refinement study with errors in the infinity 

norm and other information. We can see that the method still has second order accuracy 

when we use the embedding technique. We see that only a few iterations (only 5) are needed 

and the number is independent of the mesh size. The CPU time column (in seconds) shows 

that our method is very fast considering the very large condition number of the system of 

equations from a direct discretization even for a regular domain such as a cube. Furthermore, 

in this Table we can see that the number of iterations (only 5) is independent of the mesh size 
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as in the case of two space dimensions. The CPU time does not increase much. Thus, our 

method here is fast in terms of number of GMRES iterations and in terms of CPU time. 

 

 

Table 5.2: the grid refinement analysis for Example 5.2. Using Dell Precision 

Workstation 690 

𝑛𝑛 𝑁𝑁  𝑁𝑁  CPU(s) 𝑁𝑁  𝐸𝐸  Ratio(order) 

26 920 506 2.1577 5 0.2445E-01  

52 3528 1820 8.5897 5 0.6882E-02 3.9577(1.83) 

104 14048 7172 36.9984 5 0.1744E-02 4.0715(1.98) 

 

 

Table 5.2 above shows the results of a grid refinement study with errors in the infinity 

norm and other information. Again, we can see that the method still has second order 

accuracy when we use the embedding technique. Furthermore, in this Table we can see that 

the number of iterations (only 5) is independent of the mesh size as in the case of two space 

dimension. The CPU time does not increase much. 

 

So far, in the discussion for a Poisson equation on an irregular domain, we form an 

interface problem that requires a known fixed jump in the solution and set an unknown jump 

in the normal derivative of the solution. Then we iteratively update the jump in the normal 

derivative using the GMRES iteration to 10  tolerance until the original boundary condition 

is satisfied. Alternatively, we can set a known fixed jump in the normal derivative and an 

unknown jump in the solution. Then we use a similar GMRES iteration to update the jump in 

the solution until the original boundary condition is satisfied. For example, the following 

interior Holmholtz/Poisson equation with a Neumann boundary condition 

 

Δ𝑢𝑢 + 𝑘𝑘𝑘𝑘 = 𝑓𝑓,               in             Ω,                                                                (5.10) 

𝑢𝑢 = 𝑞𝑞,                       on       𝜕𝜕Ω. 
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It may be treated as the following interface problem 

 

Δ𝑢𝑢 =
  

𝑓𝑓,                    𝑖𝑖𝑖𝑖     𝑥𝑥, 𝑦𝑦, 𝑧𝑧 ∈ Ω,
0,                    𝑖𝑖𝑖𝑖   𝑥𝑥, 𝑦𝑦, 𝑧𝑧 ∉ Ω,

 

𝑢𝑢 = 𝑔𝑔,                on      𝜕𝜕Ω,                               (5.11) 

𝑢𝑢 = 𝑞𝑞,                 on      𝜕𝜕Ω, 

𝑢𝑢 = 0.                     on      𝜕𝜕R. 

 

Again, the solution 𝑢𝑢 is a linear functional of 𝑔𝑔. We determine 𝑔𝑔(𝑠𝑠 , 𝑠𝑠 ) such that the 

solution 𝑢𝑢(𝑔𝑔) satisfies the original boundary condition in (5.10) above. i.e., 𝑢𝑢 𝑔𝑔 = 𝑞𝑞. This 

can be solved using the GMRES iteration exactly as we discussed earlier in Chapter 3. 
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Chapter 6 
 

Conclusions and future work 
 

6.1 Research Conclusions 
 

In this dissertation, we described a numerical method for 3D elliptic interface problems in 

which the 𝛽𝛽 coefficient, the source term, the solution and its derivatives, have a discontinuity 

across the interface Γ. The fast solver can only be applied to the Poisson problems with 

piecewise constant coefficients. The number of iterations is nearly independent of the mesh 

size and the 𝛽𝛽 coefficients jump. More importantly, the computed normal derivative from 

each side of the interface Γ  appear to be second order accurate. The fast solver can be 

applied to Holmholtz/Poisson problems on irregular domains which may have many 

applications.  In detail, we have presented the augmented approaches for solving 3D elliptic 

interface problems and problems defined on 3D irregular domains. Using augmented 

approaches, one or several augmented variables are introduced along a co-dimensional 

interface or boundary. When the augmented variable(s) is known, we can solve the governing 

PDE efficiently. In the discrete case, this gives a system of equations for the solution with 

given augmented variable(s). However, the solution that depends the augmented variable(s) 

usually do not satisfy all the interface relations or the boundary condition. The discrete 

interface relation or the boundary condition forms the second linear system of equations for 

the augmented variable whose dimension is much smaller than that of the solution to the 

PDE. Therefore, we can use GMRES iterative method to solve the Schur complement system 

for the augmented variable(s). In many instances, the GMRES method converge quickly, 

although it is still an open question how to precondition the system of linear equations 

without explicitly form a coefficient matrix. 
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By using the level set method as we discussed in chapter 2 how to determine geometric 

information of the interface, how to locate the projection of an irregular grid point on the 

interface, how to reconstruct the interface by interpolation, and how to perform local 

coordinate transformation. 

 

Then in chapter 3, based on the IIM proposed by LeVeque and Li, 1994,[27] we have 

developed our 3D augmented approach which is second order fast algorithm for elliptic 

interface problems with piecewise constant but discontinuous coefficients. Before applying 

the IIM, we precondition the PDE first. In order to take advantage of existing fast Poisson 

solver on cubic domains, an intermediate unknown function, the jump in the normal 

derivative across the interface, is introduced. Then the GMRES iteration is employed to solve 

the Schur complement system derived from the discretization. Numerical experiments 

showed that the fast algorithm was very successful and efficient when the coefficients are 

piecewise constant.  

In chapter 5, as apart of the dissertation, we have investigated some applications of the 

fast 3D solver. We developed embedding techniques to solve interior or exterior Poisson 

equations on complicated regions with Dirichlet or Neumann boundary conditions. The idea 

is to embed the irregular region into a cube to extend the Poisson equation to the entire cubic 

domain to introduce suitable jump conditions and to get an interface problem.  In the future, 

we hope to develop further analysis of the augmented fast IIM approaches. 

 

6.2   Future work 

 
In the future we plan to conduct further numerical investigations about other boundary 

conditions, i.e., Neumann and Robin boundary conditions. Although the main theoretical 

analysis is presented in chapter 3, the change of boundary condition may requires many 

subroutines and functions due to the nature of our interface, which demands more time and 

energy. Additional test examples in 3D space are also needed. We have so far explored large 

enough ranges of coefficient jumps from 1 up to 2000 and large enough mesh size from 26 
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up to 104. In many instances, the GMRES method converge quickly, although it is still an 

open question how to precondition the system of linear equations without explicitly form a 

coefficient matrix. Also, I plan in future to test this augmented approach dealing with 

complicated interfaces. 

 

There are other plan of work can be considered, maybe in a long term effect. There are 

high convergence order IIM existing for 3D Poisson problems with discontinuous 

coefficients and solution. It would be an interesting challenge to extend our work to 3D 

biharmonic equations by adopting our 3D-IIM solver into our algorithm. 
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