ABSTRACT

SMITH, ERICK MARTIN. SAR Imaging Through the Earth’s Ionosphere. (Under the direction
of Semyon Tsynkov.)

Imaging of the Earth’s surface by spaceborne synthetic aperture radars (SAR) may be
adversely affected by the ionosphere, as the temporal dispersion of radio waves gives rise to
distortions of signals emitted and received by the radar antenna. Those distortions lead to a
mismatch between the actual received signal and its assumed form used in the signal processing
algorithm (known as the matched filter). In turn, the discrepancy between the filter and the
signal causes a deterioration of the image.

In this dissertation, we conduct a thorough mathematical analysis of transionospheric SAR
imaging, and accurately quantify the distortions of images due to the ionosphere. In doing so,
we model the ionosphere as a dilute cold plasma. Then, to mitigate the ionospheric distortions
of SAR images, we propose to probe the terrain, and hence the ionosphere, on two distinct
carrier frequencies. The resulting two images appear shifted with respect to one another, and the
magnitude of the shift allows one to evaluate the total electron content (TEC) in the ionosphere.
Knowing the TEC, one can correct the matched filter, and hence improve the quality of the
image. Robustness of the proposed approach can subsequently be improved by applying an
area-based image registration technique to the two images obtained on two frequencies. The
latter enables a very accurate evaluation of the shift, which, in turn, translates into a very
accurate estimate of the TEC.

We also analyze a host of additional factors that affect the spaceborne SAR performance.
Those include the Ohm conductivity of the ionosphere, which is due to the collisions of electrons
with other particles, the horizontal variation of the ionospheric parameters, and the random
fluctuations of the electron number density, i.e., the ionospheric turbulence. The effect of the
latter on the SAR resolution is evaluated in the statistical sense.

Finally, we devote special attention to anisotropic phenomena. The ionospheric plasma
becomes anisotropic (gyrotropic) due to the magnetic field of the Earth. The propagation of
radio waves in a gyrotropic medium is accompanied by the Faraday rotation. For spaceborne
SAR, the Faraday rotation presents an additional source of mismatch between the received
signal and the filter, and hence causes additional image distortions. We propose to use the
image autocorrelation analysis to quantify the impact of the Faraday rotation and obtain its
parameters, which then allows us to correct the filter accordingly.

Scattering of radar signals at the target may also be affected by anisotropy. We interpret
the target as a weakly conductive birefringent dielectric, and derive a necessary and sufficient

condition under which this model allows one to reconstruct all the degrees of freedom in the



scattered signal that the previous studies in the literature have introduced phenomenologically.
This development can help construct a full-fledged radar ambiguity theory for polarimetric SAR
imaging, i.e., the type of imaging that exploits individual polarizations of the transmitted and
received signals.

This dissertation is based on four journal articles published or submitted for publication
between 2011 and 2013. Although every effort has been made to streamline the overall presenta-
tion, unify the notations and cross-references, and remove the redundancies, still the structure
and content of individual chapters may inherit the style of those journal publications whence

they originate.
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Chapter 1

Introduction

Synthetic aperture radar (SAR) is a coherent imaging technology that uses microwave electro-
magnetic pulses primarily for imaging the surface of the Earth from airplanes or satellites, but
it is also used to image the surfaces of other planets like Venus or even moons like Titan. It is
based predominantly on the phase information of the emitted and received waves (as opposed,
say, to conventional photography, which is based on the amplitude). In particular, spaceborne
SAR imaging of the Earth’s surface involves sending specially shaped pulses of radio waves
from a satellite to the ground, receiving the scattered response, and processing it by means of a
matched filter [Che01, CB09]. In doing so, the received signal can, in some approximate sense,
be interpreted as a Fourier transform of the ground reflectivity function,! whereas filtering that
yields the image is analogous to the inverse transform. The filter is called matched because its
phase is supposed to match that of the received signal.

However, when the signal of a spaceborne radar travels between the satellite and the ground,
it becomes subject to the temporal dispersion in the Earth’s ionosphere [Gin64]. This causes
delays in arrival times and advances in the phases of the waves; the dispersion distorts the signal,
and if the filter does not account for that, a mismatch of the phase occurs and the quality of the
image deteriorates [Tsy09a]. The extent of deterioration depends on the carrier frequency of the
radar, or more precisely, on its ratio to the Langmuir frequency of the ionospheric plasma. The
higher the carrier frequency the less prone the image to ionospheric distortions, requiring less
processing of the data received. Also, higher frequencies correspond to shorter wavelengths, so
the physical size of the system itself can be smaller than one operating with longer wavelengths.
Therefore, many modern spaceborne SAR sensors operate on the frequencies of around 10GHz.
For example, the European satellite TerraSAR-X operates in the X-band, on the frequency of
9.65GHz.

'In the simplest formulation [Che01], the ground reflectivity function is the difference between the reciprocal
of the square of the speed of light and the reciprocal of the square of the local propagation speed.



Nonetheless, radars operating on lower carrier frequencies, in particular, in the UHF or even
VHF band, i.e., in the range of hundreds of megahertz (also referred to as the P-band [Par(02]),
have at least one key advantage, which is a better surface/foliage penetrating capability. At the
same time, their images are much more sensitive to ionospheric distortions. Hence, an effort is
justified aimed at correcting the matched filter and reducing or removing those distortions. That
brings us to the work presented in this dissertation, as well as in the preceding paper [Tsy09a].?

We also emphasize that the matched filter must be corrected precisely for the time and place
the image is taken. The reason is that the extent of correction will depend on the current state
of the ionosphere, and the Earth’s ionosphere is not steady. Its characteristics such as the total
electron content depend on many factors, e.g., time of the day, time of the year, geographic
location, level of Solar activity, etc., and may change rapidly, namely, considerably faster than

the period of one revolution of the satellite around the Earth.

Remark. This dissertation stems from three published journal papers: [ST11], [GST12], and
[GST13a], and another paper [GST13b] that has recently been submitted for publication. Al-
though every effort has been made to streamline the overall presentation, unify the notations
and cross-references, and remove the redundancies, still the structure and content of individual

chapters may inherit the style of those journal publications upon which they are based.

1.1 Trans-ionospheric SAR fundamentals

In [Tsy09al, the author analyzed the distortions for the case of SAR imaging by means of
a scalar field (in the form of linear upchirps) that propagates through the inhomogeneous
ionosphere modeled as weakly dispersive dilute cold plasma. The transverse electric field in such
a medium is governed by the Klein-Gordon equation (dispersive wave equation), see formula
(2.8). The scattering at the target in [Tsy09a] was considered in the framework of the first
Born approximation. The latter enables linearization and thus makes the inverse problem of
reconstructing the target properties (i.e., the ground reflectivity function) from the observable
quantities amenable to solution. Continuing the work started in that paper, repeating and
enhancing the results given in [ST11, GST13a], we begin in Chapter 2 with investigating the
distortions of SAR images due to the propagation of radar signals through a dispersive medium.

Our analysis allows for both a homogeneous and an inhomogeneous ionosphere where the
inhomogeneity can be vertical and horizontal (as analyzed in [GST13a, Section 3]). We also
consider a dissipative ionosphere, i.e., one where Ohmic losses are present. However, these
losses attenuate the signal nearly uniformly and have no noticeable effect on the phase, so they

are not a major part of this study. Overall, the analysis enables an accurate quantification of the

2Some performance criteria for the correction of ionospheric effects in SAR images obtained on low frequencies
are discussed in [Mey11].



group delay and phase advance that characterize the propagation, as well as of the changes in
the chirp duration and rate. As such, it leads to a precise description of the ionosphere-induced
mismatches between the received signal and the matched filter. Those mismatches are shown to
be the primary source of image distortions, and the distortions are quantified in terms of how
the image resolution, sharpness, and displacement depend on the parameters of the ionospheric
plasma, primarily its total electron content (TEC) along the signal trajectory.

This part of the study involves building and analyzing the generalized ambiguity function
(GAF) for the radar that takes into account the dispersive propagation in the ionosphere.
We note that in Sections 2.2, 2.3, 2.4, 2.5, and later 2.10 (with the addition of another type of
distortion, due to turbulence) we basically develop a full-fledged radar ambiguity theory [CB09]
for the SAR sensor operating through the Earth’s ionosphere (monostatic, scalar case). To the
best of our knowledge, prior to [Tsy09a], a mathematical analysis of this type has not been
reported in the literature, even though there were a number of publications discussing the
effects of the ionosphere on SAR imaging, see, e.g., [GMS00] or [XWWO04] (areview). An analysis
similar to ours is presented in [IKLT99], however, only for the case of a homogeneous background
ionosphere. Knowing what the distortions in the image caused by ionospheric dispersion are is
only the first step, though. To improve the image, mismatch between the matched filter and
the received data must be removed.

In addition to analyzing the distortions in SAR images caused by the ionosphere, it was also
proposed in [Tsy09a] to probe the terrain, and hence the ionosphere, on two distinct carrier
frequencies. We expand upon this idea in Section 2.6 and show in Section 2.7 that the resulting
two images, while both incorrect per se, can be used to reconstruct the unknown TEC along the
line of sight, and the matched filter can be corrected accordingly. Specifically, a given object or
feature in the scene will be displaced from its true position if imaged through the ionosphere.
Considering the same object or feature imaged on two carrier frequencies, we can write down
a system of equations, in which the two observed distances to the object will be the data, and
the true distance and the TEC will be the unknowns. Solving for the TEC, we can get it as
a function of the shift between the two images. In addition, for a horizontally inhomogeneous
ionosphere, this method can be used to reconstruct the first moment of the azimuthal gradient
of the electron number density. We correct the matched filter by introducing the actual phase
and group travel times, as well as the new chirp rate, computed via the TEC. Then, by re-
processing the raw data with the new filter, we can obtain an improved image. By evaluating
and analyzing the new GAF that is built with the help of the corrected filter, we show that the
quality of the image indeed becomes better, see [ST11].

It is to be noted that the idea of dual carrier probing for quantifying the ionospheric
distortions of satellite radio signals has been used in the GPS community for quite some

time. For example, the near-realtime GPS-derived global TEC maps are available on-line at



http://swaciweb.dlr.de. In the literature, work [DS02] discusses general effects of the iono-
sphere on the satellite to land radio propagation in the UHF and L bands. Work [vdKCT09]
exploits the TEC data obtained from GPS-based measurements for evaluating the extent of
defocusing in space-based SAR images. Similarly, work [CZ12] exploits the GPS derived TEC
data to determine the nature of phase artifacts in interferometric SAR images. The fundamen-
tal difference between the GPS and SAR though is that in GPS there is a “sufficiently smart”
receiver on the ground that can interpret the data it receives on two frequencies. In SAR, on
the other hand, the imaged terrain is assumed completely passive. Moreover, no artificial tar-
gets with a priori known characteristics are, generally speaking, available, and the parameters
of the ionosphere must be determined from the same data that are used to form the image itself
(scattered field received by the antenna on the orbit).

Unlike in GPS, the application of dual carrier probing for quantifying and mitigating the
distortions of spaceborne SAR images in the formulation above is new, see [Tsy09a,ST11]. The
key consideration is precisely the use of the same (redundant) data for both the image formation
and the TEC reconstruction. Indeed, as stated before, if the TEC data are acquired at a different
location and/or different time, they may reflect on a different state of the ionosphere and hence
appear not particularly helpful for correcting the matched filter to be used for a given image.

Prior to the work in [Tsy09a, ST11], we are aware of only one paper [WQWHO3] that
briefly touches upon the idea of two frequencies for SAR, and also of an equally brief comment
in [CM91, page 381]. The authors of [WQWHO3] suggest that the two frequencies can be taken
from the available bandwidth but never actually develop the approach beyond mentioning it as
a potential strategy for obtaining the TEC. Another group of publications [MBJF06, RHC10,
BPE'10, BPET11] discusses and demonstrates the use of two sub-bands in the context of
SAR interferometry. Some of the methods of [MBJF06, RHC10, BPE*10, BPE*11] also utilize
the aforementioned difference in the displacement between the two images. The interferometric
approach, however, allows one to reconstruct only the differential TEC,? although with very high
accuracy [BPET10,BPET11]. Given the satellite revisit time of several days that characterizes
both existing and future SAR systems, and the volatility of the ionosphere, the requirement
of having a repeat acquisition makes the acquired information less valuable for many practical
applications.

Several alternative approaches to deriving the ionospheric TEC have also been proposed
in the literature. Some of them are motivated by the launch of the Japanese Advanced Land
Observation Satellite (ALOS) that carries a phased array SAR instrument (PALSAR) operating
in the L-band. In [JRZ109] and [PFC*11], it is proposed to use the Faraday rotation (see
Chapter 3) for retrieving the TEC information from the the fully polarimetric quad-channel
SAR data, in case the corresponding SAR sensor provides this capability (which ALOS PALSAR

3 Tt is the difference between the TEC distributions for two successive data acquisitions.
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does, see [LP09, Section 10.4]). The authors of [JRZT09] also present the estimates of the
group delays and phase advances for a non-turbulent ionosphere similar to those obtained in
the previous paper in this study [Tsy09a]. An even earlier publication discussing the effect of
Faraday rotation on polarimetric SAR is [Gai98]. Of course, if the fully polarimetric data are
not available (or, otherwise, if polarimetry puts too high of a demand on storage, downlink
capacity, etc.), then the approach based on the Faraday rotation is not going to work. For
example, the authors of [WQWHO3] also rely on the Faraday rotation for TEC reconstruction
(in fact, they consider it the only source of image distortions), but emphasize that for other types
of sensors (e.g., single-channel), an explicit a priori estimate of the Faraday rotation is needed
for introducing corrections. The authors of [MBJF06] indicate that in the absence of external
information one can use autofocus algorithms (see [FL99, Section 3.9.1] or [EJJ89, WEGJJ94])
to obtain the TEC, which is not a very reliable approach though, whereas the SAR system
itself (L-band) can be efficient in obtaining the difference of the TEC distributions between the
two radar acquisitions. The authors of [LLO8] present two approaches; the first one involves a
spaceborne radar operating on a very low frequency, below the Langmuir value, and is similar
to the traditional ground-based sounding. The second one uses a higher frequency and derives
the TEC information by analyzing the returns from the specially chosen bright point targets.
The authors of [MGO02] employ a model known as the ionospheric phase screen to analyze the
effect of auroral arcs (special electron density irregularities) on spaceborne SAR images taken
in the polar regions of the Earth. Finally, the authors of [JFSM10] introduce two methods
for measuring the ionospheric TEC based on single-polarized data. The first one estimates
the TEC from the phase error of the filter mismatch and requires high contrast strong point
targets such as corner reflectors within an otherwise dark area; the second one requires two
different interrogating waveforms, up and down linear chirps, and estimates the TEC from the
path-delay differences between them. We note that none of these papers, see [JRZT09, Gai98,
MBJF06, RHC10, BPET10, BPET11,LL08, MG02, JFSM10], provides a comprehensive analysis
of how the reconstructed TEC can be used for correcting the filter and subsequently improving
the image.

As far as our own work, after demonstrating (as seen in [ST11]) that the filter corrected
by dual carrier probing indeed helps improve the image, we proceed in Section 2.8 (as seen
in [GST13a]) to analyzing the robustness and accuracy of the TEC reconstruction itself. The
goal is to see what happens if the TEC is reconstructed not precisely, but with some error.
One of the reasons the TEC reconstruction may be prone to an error is that the formula for
the TEC derived in [Tsy09a,ST11] by taking the two distances to a given object as the data
appears poorly conditioned with respect to each individual distance. The first obvious remedy is
to use several distinct objects instead of just one. In this case, the overall error can be reduced

by a factor of VL, where L is the number of objects (under a natural assumption that the



values of the TEC computed for individual objects can be interpreted as independent random
variables). However, a more promising approach is to use the technique known as area-based
image registration [ZF03]. It allows one to superimpose the two shifted images and obtain the
shift as an independent quantity that is not related to the distance from the satellite. The
accuracy of the modern registration techniques can be as high as a few percent of the resolution
pixel, see, e.g., [FZB02,SOCMO01, GSTF08, TH86, Abd99].

Thus, we show that if an area-based image registration approach (see, e.g., [KH75, KBP79)])
is employed for evaluating the shift, then the robustness, and hence the accuracy of the TEC
reconstruction, considerably improves. In Section 2.9, for the phase correlation method, we
obtain specific quantitative estimates of how the error in the value of the shift affects the error
in the TEC and how the latter, in turn, affects the final quality of the image. Of course, these
results withstand a natural “backward compatibility check.” If we assume that there is no error
in the value of the shift, then there will be no error in the value of the TEC, and eventually all
the deterministic distortions of the image will be completely removed, as in [ST11].

Although most of the thesis focuses on the distortions caused by the deterministic part of the
ionospheric phenomena, we also look at the distortions of SAR images due to the ionospheric
randomness (caused by turbulence). These distortions are related to the fluctuations of the
electron number density of the ionosphere and can be quantified reasonably well, see, e.g.,
[Tsy09al, as well as [QL86,IKLT99,LKI"03,Arm05,GS13]. However, mitigating those distortions
requires a substantial additional effort: obtaining the statistics of radio waves based on the
statistics of the medium (turbulent ionosphere), see, e.g., [RKT89a, RKT89b, Tat68], and then
modifying the signal processing algorithm (the matched filter) accordingly, and even then all of
the distortions may still not be mitigated. We investigate the issue of ionospheric turbulence in
Section 2.10 and find that it is much more of an issue for the azimuthal (parallel to the flight
track) resolution than the range (normal to the flight track) resolution. In fact, the distortions
in range are completely removed by correcting the filter for the deterministic errors alone. This
“unevenness” between the range and azimuth stems from the performance of a spaceborne SAR
in range being practically not affected by the ionospheric turbulence due to the ergodicity of
the random field that represents the fluctuations, whereas the performance in azimuth being
sensitive to both the deterministic and random component of the electron number density. In the
literature, the subject of mitigating the distortions caused by turbulence has not received too
much attention; among the relevant publications we mention [BG88, GB88|, where the authors
propose several approaches to reducing the random component of the phase error.

For the rest of the dissertation, we will assume that the SAR imaging is done in the stripmap
mode, and that it is broadside, i.e., that the antenna always points in the direction normal to
the orbit, see Figure 1.1. We will also employ the start-stop approximation for our analysis

[Che01, Tsy09b]. In Table 1.1, we present the key parameters and their typical values that we



Table 1.1: Typical values of parameters throughout most of this dissertation.

Parameter Notation | Typical value Reference
Radar carrier frequency 52 300MHz (2.4)
Carrier wavelength Ao = QMLOC Im (2.4)
Bandwidth 2 SMHz (2.18)
Pulse (chirp) duration T 5-107°s (2.18)
Pulse repetition frequency fo 2KHz page 23
Total electron content in the ionosphere Ny 5-10%em =2 (D.8)
Plasma electron (Langmuir) frequency Lo IMHz (2.8)
Collision frequency in the ionosphere Ve 10° Hz (2.55), (E.1)
Satellite velocity USAT 7.6km/s page 23
Length of synthetic aperture Lga 50km page 24
One-way distance from orbit to target R 1000km (2.76), Fig. 1.1
Orbit altitude H 500km Figure 1.1
Incidence angle cosf = % 60° Figure 1.1
Registration accuracy, in resolution units Cr,Ca 0.05 (2.119), (2.126)
Carrier frequency separation factor Z 10% (2.121)
Relative magnitude of fluctuations M 5-1073 (2.11)
Outer scale of ionospheric turbulence 0 1km — 10km (2.15)
Integral squared mean electron density No g 5-10¥em™> (2.139)
Magnetic field of the Earth, CGS units | Ho| 0.31 — 0.58 G (J.4)
Electron cyclotron (Larmor) frequency |2%| 0.87 — 1.6 MHz (J.4)

use hereafter (excluding Chapter 4). Note that along with the physical units of the TEC, em ™2,
used in Table 1.1, engineering units defined as 1TECU=10"2¢m ™2 can often be found in the

literature. We also use the electrostatic CGS units throughout this dissertation.

1.2 Anisotropy as it relates to SAR

In Chapter 2, we deal with inhomogeneity of the mean electron number density, but this is
done within an isotropic framework. Namely, the permittivity of the plasma, which is due
to the interaction of the impinging electromagnetic field with the electrons, may vary both
horizontally and vertically, but may not vary as a function of the local propagation direction.
The matched filter in this case is corrected by introducing a total electron content (TEC) over
the ray path.

Looking at anisotropy both in the propagating medium and at the target are the logical

next steps in adding complexity to the model introduced in the isotropic framework. In Chapter
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Figure 1.1: Schematic for the broadside stripmap SAR imaging.

3, we study the electromagnetic propagation in a plasma with the presence of a magnetic field,
and in Chapter 4 we take into account the anisotropy of the target material. These add new
levels of complexity to the model but are significant steps toward improving the interpretation
of spaceborne SAR images obtained on the frequencies low enough where the ionosphere is a

major issue.

1.2.1 Anisotropic medium — an external magnetic field

Chapter 3 is an extension of the main focal point of the study: the SAR imaging through the
ionosphere and construction of the generalized ambiguity function. However, we are no longer
ignoring the polarization of the radar pulses. Typical SAR systems emit linearly polarized
signals. Knowing that the waves are linearly polarized allows us to consider the anisotropy

of the medium in which they propagate. The Earth’s magnetic field introduces a significant



anisotropy in the ionosphere (gyrotropy), and therefore it is vital to analyze its effect on the
ambiguity theory that is being developed. Analysis of the Faraday rotation,® which is the
change in a wave’s plane of polarization due to propagation in a magnetized plasma, is thus
warranted. While it was mentioned in Section 1.1 that others have proposed using it to obtain
the TEC [JRZ109, PFC*11], this capability is limited to the fully polarimetric SAR data. In
a single polarization framework though, the Faraday rotation must be accounted for as it has
the potential of severely distorting the received signal and hence the image.

Chapter 3 is the first step in this direction. We construct the generalized ambiguity function
for single polarization images in the presence of Faraday rotation. As expected, additional
parameters dependent on the external magnetic field arise that are not present in the isotropic
case. We are able to identify these parameters and show how the effect of Faraday rotation
varies along the length of the chirp. As for the GAF, we show that the Faraday rotation only
affects the range part; the azimuthal part is identical to that in the isotropic case analyzed in
Chapter 2.

Although the Faraday rotation affects the propagation of a chirp, the magnitude of the
effect can vary depending on the values of the parameters involved. It can sometimes be difficult
to detect the Faraday rotation by a single-polarization instrument. In Chapter 3, we present
three possible scenarios as far as how much the rotation affects the chirp, and analyze the
one for which the rotation is neither too small nor too large. Within the specifications of this
intermediate case, we propose a method to determine the parameters that characterize the
Faraday rotation given the image obtained. Once these values are known, a new corrected filter
can be constructed to improve the SAR performance in range. These corrections can be applied
on top of the corrections derived in Chapter 2, providing compensation of both dispersion and

Faraday rotation effects.

1.2.2 Anisotropic target material

Chapter 4 deals with the scattering at the target, which could also be anisotropic, with the
focus being on the degrees of freedom in the scattering model. Ultimately, we are able to
provide a necessary and sufficient condition under which interpreting the target material as a
weakly conductive uniaxial crystal allows one to reconstruct all the degrees of freedom contained
in the complex 2 x 2 Sinclair scattering matrix®. As in the previous parts of our study, we
are assuming that the scattering is weak, i.e., the scattered field is much smaller than the

incident field. This, again, allows us to invoke the first Born approximation, which is a very

4The rotation is named after Michael Faraday, a prominent 19th century scientist and pioneer in the field of
electromagnetism.

®This matrix is widely used to describe the relation between incident and scattered monochromatic waves
since the concept was first introduced by George Sinclair in [Sin50].



important simplification, as otherwise the nonlinear inverse problem would be very difficult, if
at all possible, to solve [Che01,CB09].

Using the first Born approximation, we start in Section 4.2 with the most basic kind of
scatterer: an isotropic dielectric, and slowly add layers of complexity. The next framework we
analyze is that of a perfect birefringent dielectric. We restrict ourselves with a uniaxial crystal
model because it is the simplest. Following this, we repeat the studies of isotropic and uniaxial
scatters but allow them to have a finite conductivity, making them lossy dielectrics. The study
of lossy uniaxial dielectrics is broken down further because the conductivity can also be isotropic
or anisotropic. Again, we are only considering the uniaxial anisotropy. After adding the final
level of complexity, i.e., anisotropic conductivity, we find that all of the degrees of freedom of
the Sinclair matrix are recovered.

It turns out though this problem does not have a solution for every combination of possi-
ble entries for the scattering matrix. However, we are able to provide a necessary and sufficient
condition for the solution to exist and demonstrate that the presence of a “region of nonexis-
tence”, so to speak, for the solution is not due to the first Born approximation that we use but
rather is an inherent feature of scattering off the target material with the chosen structure.

Furthermore, all these scenarios of increasing complexity assume that the wave is coming
from a vacuum and is being scattered off a half-space with certain properties. However, for
SAR imaging, the target material is usually considered concentrated only on the surface of the
half-space [Che01]. We show in Section 4.3 that the two setups are equivalent in the sense that
the reflected fields for both are the same in the first Born approximation.

Modern practical applications of radar polarimetry employ different empirical and semi-
empirical criteria that rely on the entries of the Sinclair scattering matrix. Examples include
a co-polaraized phase difference-based study of oil spills [MNGO09], an algorithm for recon-
structing the ocean surface slopes that utilizes all four channels [SLKP04], several soil moisture
retrieval algorithms analyzed in [MMP10], and a vegetation classification technique that uses
multi-frequency polarimetric data [LFT*11]. Additional references can be found in [LP09]. In
contradistinction to all those techniques that interpret the entries of the scattering matrix phe-
nomenologically, we are able to reconstruct the physical characteristics of the scattering material
within the adopted model, namely the principal values of the permittivities and conductivities,
i.e. those associated with the principal axes, and the orientation of the optical axes in regards

to the plane of incidence.
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Chapter 2

SAR in an isotropic framework

2.1 Chapter layout

The current chapter is based on [ST11] and [GST13a] and is organized as follows. In Section 2.2,
we introduce the physical model for the propagation of radio waves in the ionosphere. This model
has a deterministic and a stochastic component. The stochastic component is due to turbulence,
and in Section 2.2 we also present the basic formulas that we use to describe the turbulence.
In Section 2.3 we introduce the generalized ambiguity function, or GAF. The concept of GAF
appears when considering the matched filter applied to the SAR signal scattered off the target
and received by the antenna, and then summing up the contributions from all the pulses along
the synthetic array. As seen in [Che0l], the GAF can be interpreted as the image of a point
target. It provides a convenient way to assess the radar performance. In Section 2.3 we assume
that the shape of the pulse that the radar transmits is a linear upchirp, which is common,
and investigate how these pulses travel between the antenna and the target in three separate
scenarios: unobstructed non-dispersive propagation, dispersive propagation in a homogeneous
ionosphere, and dispersive propagation in an inhomogeneous ionosphere. We also look at how
the latter two scenarios affect the GAF.

The effect of the ionosphere on the SAR performance is analyzed in detail in Sections 2.4 and
2.5, where we show that temporal dispersion in the ionosphere can lead to image displacement
and can also result in a loss of image resolution and sharpness in both range and azimuth. The
distortions caused by the ionospheric dispersion can actually be quantified, demonstrating the
significance of the issue and why mitigation of the distortions would be greatly beneficial.

Following the idea put forth in [Tsy09a, Section 3], Section 2.6 proposes to probe the terrain,
and hence the ionosphere, on two distinct carrier frequencies. From the information gathered
from this double probing, one can set up a system of equations and solve for the total electron

content, TEC, of the ionosphere along the ray path. The resulting TEC can then be used to
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construct a corrected matched filter for the GAF. If the reconstruction is accurate, then, as
seen in Section 2.7, the images obtained through the new matched filter are greatly improved
from their non-corrected counterparts in Sections 2.4 and 2.5.

However, the original approach of [Tsy09a] to TEC reconstruction based on dual carrier
probing appears poorly conditioned, meaning that it is sensitive to errors in the input data. We
discuss this in Appendix G. In Section 2.8, we show that probing the ionosphere on two carrier
frequencies can rather be combined with image registration, which yields an accurate and robust
procedure for TEC reconstruction. Still, even with the best registration techniques, the TEC
will not be reconstructed ezactly, and it is important to see how the errors in the reconstruction
affect the performance of the corrected matched filter. We look into this in Section 2.9.

Finally, in Section 2.10 we turn our attention to ionospheric turbulence, which is a crucial
feature of the ionosphere. We quantify the distortions of the image due to the turbulent fluctu-
ations of the ionosphere and find that the azimuthal resolution is much more sensitive to the
turbulence than the range resolution. However, the issue of mitigating the distortions due to
the turbulent fluctuations is left for future study.

Appendices A through I correspond to this chapter and are arranged in the order they are

referenced (for the most part).

2.2 The model

2.2.1 Fundamentals

For the discussion in the current chapter we adopt the same model as in [Tsy09a]. We analyze the
standard (as opposed to interferometric) SAR images [FL99], i.e., all the images are considered
two-dimensional (range and azimuth), and the elevation is not taken into account. We also
assume that the images are rendered by scalar propagating fields, i.e., that the polarization
can be disregarded [Che01, CB09]. All the targets are assumed deterministic (no randomness
is involved in describing them) and dispersionless (the scattering properties are not frequency-
dependent within the spectrum of the radar signal); scattering of radar signals off the targets
is linearized and interpreted using the first Born approximation. The start-stop approximation
is employed to describe the synthetic antenna; its applicability to spaceborne SAR sensors is
justified in [Tsy09b].

The ionosphere is modeled as a layer of inhomogeneous dilute plasma: the mean concen-
tration (number density) of electrons can depend on both the altitude and the horizontal co-
ordinates (as seen in section 2.5). In this chapter we disregard the effect of the magnetic field
of the Earth on the propagating waves. This implies, in particular, that the Faraday rota-

tion is not taken into account. On top of its mean value, the electron number density has a
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stochastic component due to the ionospheric turbulence, which is a quasi-homogeneous random
field [MY71,RKT89a]. The effect of the Earth’s magnetic field on the ionospheric turbulence is
disregarded, and the turbulence is assumed isotropic.

The propagation of electromagnetic waves in the ionosphere is analyzed with the help of the
cold plasma approximation [Gin64], which requires that the phase speed of the waves be much
faster than the thermal speed of the electrons. The cold plasma approximation is equivalent
to disregarding spatial dispersion and taking into account only temporal dispersion of radio
waves in the plasma [MMO91]. Moreover, the propagation is assumed linear, because the power
of signals emitted by spaceborne antennas is typically much lower than that needed for setting
off the nonlinear effects, see [GG60, Gur78, Gur07], as well as [Gin64, Ch. VIII].

We use the classical Helmholtz theorem [MF53] to partition the overall electric field into
the longitudinal and transverse components. Then, from the full Maxwell’s equations and the
equation of motion of electrons in the electric field one can derive the Klein-Gordon equation (see
[Tsy09a, App. A]) that governs the propagation of high frequency transverse! electromagnetic

waves in dilute plasma:
0’E,|
ot?

The quantity wp. in equation (2.1) is the Langmuir frequency, or plasma electron frequency. It

— *AE, +wl B =0. (2.1)

characterizes temporal responses of the plasma and is given by:

4me? N,
= 2.2
“pe Me (2.2)

where e and m, are the charge and mass of the electron, and N, is the electron number density.

The behavior of wg in the ionosphere follows that of Ne; it has an altitude-dependent deter-

e
ministic component and a stochastic component due to the turbulence. Typical values of the
Langmuir frequency in the Earth’s ionosphere range between 19 and 94 megaradians/s, which
corresponds to between 3 and 15 MHz.

Unlike in a vacuum, the propagation speed of electromagnetic waves in the ionosphere
depends on the frequency. This phenomenon is known as temporal dispersion; it is due to the
presence of the last, non-differentiated, term in equation (2.1). The dispersion relation for the
Klein-Gordon equation reads:

w? = wge + K2, (2.3)

which is derived by substituting the form of a plane electromagnetic wave,

© ~ ei(wt—kr)’ (24)

!The corresponding longitudinal oscillations are known as Langmuir waves, in a cold plasma they have zero
group velocity [MMO91].
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into (2.1). We emphasize that according to (2.3) the short waves are weakly dispersive, whereas
the long waves are subject to stronger dispersion. Indeed, the phase and group velocity of the

propagation (w/k and dw/dk, respectively) are given by:

vpn = ¢ (1 +w§e/c2k2)% (2.5)
and

Vg =c (14 wﬁe/Cka)_% , (2.6)

so that the shorter the wave (the larger the k), the closer both velocities to the non-dispersive

limit v = ¢. Also, (2.3) yields the following expression for the dielectric constant e of a cold

plasma:
k2c? wge
7:5’:1—&)2. (27)

In the Cartesian coordinates we can consider equation (2.1) for individual field components:

*E 5

In the rest of the chapter, we will use the scalar governing equation (2.8) to describe the
propagation of electromagnetic waves in the ionosphere. For a comprehensive account of the

propagation of radio waves in plasma we refer the reader to the monographs [Gin64| and [Bud85].

2.2.2 Turbulence basics
To characterize the ionospheric turbulence, we write the electron number density as follows:

Ne = <Ne> + M(ZC), (2'9)

where the angular brackets ( - ) denote the expected value (mean) and p represents the fluc-
tuations: (1) = 0. In the simplest case of constant (Ne), p(x) is a homogeneous and isotropic
random field, and its correlation function depends only on the distance r = |#; — a»| and not

on the individual locations z; € R3 and z; € R3:
ef
V(w,2) S (u(z)p(e)) = V(e — z)) = V(r). (2.10)

In reality, however, (N,) is a function of the altitude h. At the same time, the ratio

(2.11)



is assumed constant. A typical numerical value of M is 5- 1073, and in extreme situations it
may reach 107! [Arm05]. Hence, /(;i2) also depends on z; and h, which makes x(z) a quasi-
homogeneous (rather than truly homogeneous) random field. While in this case we still keep
the same notation (2.10) for the correlation function, in fact we have V' = V(x1, h,r), where
the dependence on z; and h is slow and the dependence on r (local variable) is fast.
For the Kolmogorov-Obukhov turbulence, the spectrum is (see [MY75, Section 12.1]):
~ C

11
V(i = ———5——, where k= — and C = const. 2.12

Hence, the correlation function evaluates to

def giar ° singr ~
/// Tdq = 47T/0 o V(g)g*dg

22 KC7T2q0 T7%+HK’{7%(QQT),

(2.13)

F()

where K, s is the Macdonald function, or modified Bessel function of the second kind (see,

e.g., [LS87, Chapter VII, § 3]). Asymptotically for large r, we have K,{i%(qor) ~ Q;Z)Te—%r’

N

so that the correlation function decays exponentially:

2—kK 3
2

V)~ 0 () )i, (2.14)

This means that effectively we are taking into account only short-range phenomena in the
ionosphere. The quantity qo in formulae (2.12)—(2.14) helps define the correlation length rg, or

the outer scale of turbulence:

-1
o g [ v = (et i) SR L
0

where we have taken into account that

= ///Z V(q)dg = /077 V(q)q* sin 0dfdpdq = Cw3/2q3F(I’f(;)g). (2.16)
0 0 O

The value of 79 in (2.15) ranges between 1km and 10km according to different sources in the

literature. The value of the constant C in (2.12) is related to the variance (u?) of u(x), which

15



follows immediately the definition (2.10) and normalization (2.16):

JI| vaaa=uey = o= (2.17)

72g30(k — 3)

\G]IoV)

Moreover, because of (2.14), the correlation function (2.13) clearly satisfies the necessary and
sufficient condition for ergodicity of u(z) known as the Slutskii theorem (1938), see [MY71,
Section 4.7]:

1 S
lim S/o V(s)ds = 0.

S—o0
Hence, we can substitute statistical means for spatial averages of y when averaging over long
distances. In [Bel08, Section 5.1] one can find some experimental data on the spectra of the
ionospheric turbulence.
For the purpose of obtaining specific quantitative estimates, we will use the typical values

given in Table 1.1. The effects of turbulence on a SAR image are analyzed in Section 2.10.

2.3 The generalized ambiguity function

The generalized ambiguity function offers a convenient way of assessing the radar performance.
It is basically the image of a point target, i.e., that of a delta-type scatterer. In the ideal world,
this image would be a delta-function as well. In reality, however, it is smeared out (by the
nature of the radar signal processing, even when there is no ionosphere and no dispersion), and
the extent of this smearing provides the limits of radar resolution.

The interrogating pulses emitted by the antenna of a SAR are taken as linear upchirps? of

the form:
P(t) = A(t)e™!,  where A(t) = x,(t)e’". (2.18)

In formula (2.18), x-(¢) is the indicator function of the interval of duration 7:

1> te [_7/277-/2]7
o (8) = (2.19)
0, otherwise,

and a = B/(27), where % is the bandwidth of the chirp (for an upchirp, « > 0). Accordingly,

the instantaneous frequency of the chirp [Che01,CB09], “’2%?, is given by
Bt
w(t) = Wwo + TJ te [_T/27 T/2]7 (220)

*High-range resolution waveforms, see [CB09).
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where 52 is the center carrier frequency. The modulating function A(t) in formula (2.18) is

assumed slowly varying compared to the fast carrier oscillation e®ot:

dA T B d ;
ldt = 2atx,(t)] < 2045 =ar=5 L wy = ’dte“"ot .

Hereafter, the radar is assumed to operate in the stripmap mode, see [CGM95], when the
antenna points in a fixed direction relative to that of the satellite motion.? Hence, the footprint
of the beam emitted by the antenna sweeps a strip on the Earth’s surface parallel to the flight
track, i.e., to the orbit.

To obtain the image, the antenna emits a series of pulses (2.18) when moving along the orbit.
Those pulses travel to the Earth’s surface, get scattered off the ground, and propagate back
toward the satellite where they are received by the same antenna (in the case of a monostatic
SAR [CGM95]). In doing so, clearly, both the emission and the reception of pulses are done by
a moving antenna (which gives rise to the Doppler frequency shift) and moreover, the satellite
travels a certain distance along the orbit during the pulse round-trip time between the antenna
and the ground. However, in a simplified framework of the start-stop approximation those
effects are disregarded. Instead, we assume that the pulse is emitted and the scattered response
received while the antenna is at standstill at one and the same position, after which it moves to
its next sending/receiving position along the orbit. This assumption has been used extensively
in the SAR literature as it renders the corresponding analysis much easier. A full justification

for the use of start-stop approximation for spaceborne SAR imaging can be found in [Tsy09b].

2.3.1 Non-dispersive propagation

Following [Che01], we first reproduce the derivation of the generalized ambiguity function for
the case of unobstructed propagation with the speed c. In this case, the field is governed by
the standard d’Alembert equation, which is obtained from the Klein-Gordon equation (2.8) by
dropping the last term, i.e., by setting wpe = 0. As indicated in Section 2.2, all images are
assumed two-dimensional with range and azimuth (i.e., cross-range) being the coordinates, and
the elevation of the target above the Earth’s surface is not taken into account. This applies to
the analysis of both non-dispersive and dispersive cases.

Suppose that the antenna is a motionless point source located at & € R3. Then, the propa-
gating field due to the emitted chirp (2.18) is given by the standard retarded potential of the

d’Alembert operator:
Pt —|z—=|/c)

1
— 2.21
47 |z — x| (221)

@(u z) =

3When this direction is normal to the flight track, the imaging is referred to as broadside.
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Let us assume that the imaged terrain, which is also motionless, is characterized by the variable
refraction index n = n(z). Under the first Born approximation [BW99, Sec. 13.1.4], which is
elaborated on in Section 4.1.2 and Appendix M, scattering is linearized so that the terrain is

interpreted as a secondary waves’ source due to the incident field (¢, z) of (2.21):
1— 2 82 82
n°(2) 07 def ()22
c? ot? ot?

and each point z of the target is considered a source of the scattered field with intensity

0%p(t, 2)
I/(Z)T ~ —wiv(z)p(t, 2). (2.22)
In Chapter 4 we extend the consideration of specular reflection to the backscattering, potentially
bringing in some issues which will be part of a future study. The scattered field at the location x

of the antenna and the moment of time ¢ is given by the Kirchhoff integral, as derived in [Che01]:

bt z) = //// S(t—7— |z — Z'/C>V<z>82(§5 ¥) (7. 2)drdz

dr|x — z|

(Born approximation) //// ot =7 =l = zl/c) V(z)a;i;p) (1,z)drdz

Adr|x — z|
: o 1 v(z) 0%
(using d-function in /...dT) = 471/// P (t—|z—z|/c,z)dz.
(2.23)

As the amplitude A(t) in (2.18) is slowly varying, it can be left out when differentiating the
incident field (2.21) for substitution into (2.23), which yields:

0? 2Pt — |z —
L onn
Consequently,
Y(t,x) ~ v(x,z)P(t—2|x — z|/c)dz
/// (2.25)
= /// D(x, 2)A(t — 2|z — z|/c) eot2l2=2l/e) g
where )
P(w, ) = — 202 (2.26)

1672 |z — z|?

According to (2.25), the scattered field (¢, ) can be interpreted as a result of application of
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a Fourier integral operator (FIO) to the ground reflectivity function

2

U(z) = 12‘2(2) (2.27)
see, e.g., [CN04,NC04,CB08,CB09]. The FIO is approximately inverted by applying a matched
filter to ¢ and accumulating the information due to multiple interrogating pulses (2.18) emitted
from and received by the antenna at different locations on the orbit. This procedure is similar
to application of the adjoint operator, which would have coincided with the true inverse if the

mapping (2.25) was a standard Fourier transform.
The matched filter is defined as follows. Assume that there is a point scatterer at the
reference location y, then the resulting field at (¢, ) is obtained by substituting v(z) = 6(z—y)

into formula (2.25):
R P 2e —yl/o)
1672 |z — y|?

Vi(t,x) = (2.28)

The filter is essentially a complex conjugate of 11 given by (2.28); for simplicity, the constant

factor —wg /1672, as well the entire denominator, which is a slowly varying function (compared

to the fast oscillation e°?), are disregarded. What remains is merely P(t — 2|z — y|/c), where
the overbar denotes complex conjugation. The idea of building the filter this way, i.e., the idea of
matching, is to have the large phase cancel in the exponent, see formula (2.18). The application

of this filter yields an image from a single chirp:

I(y) = /P(t — 2]z — y|/c)v(t, )dt (2.29)
X
- //// P(t 2]z — y[/O)P(t - 2|z — z|/c)dt 7(w, 2)dz.
X
W(y,z)

where we have changed the order of integration after substituting expression (2.25) for ¢ (t, ).
The interior integral W(y, z) in formula (2.29) is called the point spread function, see [Che01,
CB09], and its limits are determined by the indicator function(s) x, under the integral, see
(2.18) and (2.19). Up to a slowly varying denominator, the point spread function W (y, z)
yields a single-chirp image of the point scatterer located at z, i.e., it is the field due to a unit

magnitude delta-function at z processed with the matched filter P(-).

Let us consider a sequence of emitting/receiving times and locations (¢, ™). For each n,
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we build the point spread function following (2.29):

Wn(y, 2) = / Pli— 17 — 2" — g/ P(t — " — 2" — =|/c)dt (2.30)

where the notation in the second line is used below in Chapter 3. The generalized ambiguity
function of a SAR system takes into account the information from multiple interrogating pulses

by summing up the corresponding contributions (2.30):
Wy, z) =3 0(z,a")W"(y, 2). (231)
n

The factor ¥(z, ™) under the sum in (2.31) determines the range of summation; it may come
from the directivity pattern of the antenna. If so, the quantity ¥(z, ™) can be approximated

as follows:

1, if the target z is in the beam emitted from ™,
Iz, z") = (2.32a)
0, otherwise.

Often, the synthetic aperture is smaller than this, though, due to technical limitations.
The antenna of longitudinal dimension L emits a beam of angular width of about 2\/L
provided that the carrier wavelength A = 2mwc/wg is much shorter than L. Consequently, the

longitudinal size of the antenna footprint on the ground in the case of broadside imaging is

Rtanz ~ R— > Lga, (2.32b)

where R is the distance from the location of the antenna x™ to the center of the footprint. Let
the subscript “1” denote the coordinate along the flight track (orbit), and Ax; be the distance
along the orbit between the successive emissions of pulses. We can also take z; = 0 with no loss
of generality. Then, we have —L% <z < L%, or —% <n< %, where N = [iiﬂ < [AZQ’}FL ,
see (2.32b), and [] denotes the integer part. Consequently, we recast (2.30), (2.31), and (2.32a)

as

N/2
W(y,z)= Z At —tn — 2]y — $n|/c)e2iwo\y—wn|/c
N2 (2.33)

XAt —t" — 2|z — x"|/c)e2wolz=a" /e gy

Next, we change the integration variable from ¢ to ¢ — ¢" in each term of the sum (2.33) and

realize that neither A(t — 2|y — x”|/c) nor A(t — 2|z — x™|/c) depends on n explicitly, except
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for the dependence via ™. The latter is weak, because for large R both |y — ™| and |z — "]
are slowly varying functions of ™, and they appear as arguments of another slowly varying

function, A. Hence, the factors A and A can be taken out of the sum (2.33), and 2™ inside A( - )

and A(-) can be replaced by z for definiteness, which yields:

N/2

Wy, z) =~ (/XA(t — 2y — 2] /o)At — 2|z — w0|/c)dt> ( 3 einlly—arl/c-lz=e"1/o )

~N/2

WR(y,Z) WA(’y,Z)
(2.34)
Hence, the generalized ambiguity function gets approximately split into the product of the range

factor:

Wr(y,z) = / At — 2]y — 29 /c)A(t — 2|z — 0| /c)dt (2.35)

and the azimuthal factor:
N/2

Walgz)= 3 ienluelfe-lz—a"1/e) (2.36)
n=—N/2

These control the range and azimuthal resolution of the radar,* respectively, see [Che01,CB09],
for the case of an unobstructed propagation between the orbit and the ground. For a more com-
plete argument and analysis of the error introduced with this approximation, see Appendix A.
The actual calculation of the range and azimuthal factors of the GAF (2.35) and (2.36) is also

done in Appendix A. In particular, the azimuthal factor (2.36) evaluates to

Waly, z) ~ e"®0N sinc (ﬂAy—l),
A
2.37)
RO _ RO (
where ¢ = QM and Ay = mhic

wolsa

The quantity A4 in (2.37) is the azimuthal resolution. The sinc function in (2.37) defines the
shape of the GAF in the azimuthal direction. While azimuthal resolution is determined by the
width of synthetic aperture, the range resolution depends on the properties of the interrogating

pulse, i.e., P(t). The analysis for chirp waveforms is given in Section 2.4.1 and Appendix A.

Remark. The quantity e'®0 in Wy, see (2.37), is a factor of magnitude one in front of the
sum. It may not have received proper attention in the earlier accounts of the SAR ambiguity
theory, including [Tsy09a] and those of our own [ST11,GST13a]. This factor rapidly oscillates in

range. While an inconvenience at a first glance, it actually helps redefine the ground reflectivity

4Resolution is a capability of the radar to distinguish between two different targets located a certain dis-
tance apart.
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function so that to enable backscattering via the Bragg mechanism.? This is done by means
of a windowed Fourier transform (WFT) on an intermediate scale [GT13] (much longer than
the carrier wavelength yet much shorter than the resolution). In doing so, the geometrical
spreading of spherical waves, which is accounted for by the denominator in formula (2.26), can
be included into the definition of the ground reflectivity prior to applying the WFT. Indeed, for
x within a given synthetic aperture, the denominator of (2.26) varies slowly and produces only
insignificant changes in the signal amplitude. Therefore, for the rest of the dissertation we will
omit the rapidly oscillating factor e!®° in (2.37) and disregard the dependence of 7 on z. This is
equivalent to assuming ahead of time that (z) has already been transformed, and needs to be
interpreted as the local backscattering coefficient at the target rather than the plain variation

of the refraction index, as in (2.27).

The generalized ambiguity function (2.34) is the image of a delta-type scatterer. Hence, if
we could make it equal to a delta-function as well, W(y, z) = §(y — z), then the radar would
have had perfect resolution. In reality this is never achieved, and instead W (y, z) has a peak
of finite height and finite width as the reference point y approaches the target z. The sharper
(i.e., the narrower) this peak the better the resolution, because two sharper peaks can be told

apart if they are closer.

2.3.2 Dispersive propagation in the homogeneous medium

In the case of propagation through the ionosphere, the shape of the pulse changes in time and
space because of the dispersion. The simplest case to analyze is that of a homogeneous iono-
sphere; a detailed analysis (based on the Fourier transform and linearization of the dispersion
relation around the carrier frequency) is provided in Appendix B. The form of the propagating
pulse emitted by the antenna at  is given by equation (B.19) [cf. formula (2.21)]:
ot 2) = At -z - m‘/vgr(wo))eiwg(t7|zfz|/vph(wo))’
4|z — x| (2.38)
where A'(t) = y (t)e",

or more compactly as
1 P'(x,z,wp,t)

2.39
A |z—z| (2:39)

(P(tv Z) =

where

_ . 1 |z—z|
Plla, z,w0.) = A (1 — 1222 em( “ph@’o)). (2.40)
Vgr (wo)

® Allowing for backscattering at the target is critical for the analysis of a monostatic SAR. Yet formulae (2.25),
(2.26), (2.27) show some physical inconsistency as they may yield non-zero backscattering even where it does not
exist, e.g., for the scattering off a half-space with v(z) = const, which is known to be specular.
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The variables 7/ and ' are the new chirp duration and rate given by equations (B.17) and

(B.18), respectively:
|z — x| wpe B

S : 2.41
=7 T=T . w% o ( )
and > s
—z|ws. B ot B B ot
/ ey 5 e |Z x| pei = —_—— = — 1 e . 242
@ =atoa=adt 2c wg T2 2 72 27 +7- ( )

According to (2.41) and (2.42), the longer the distance |z—x| that the pulse travels, the more
it gets compressed (7' becomes shorter) and the more its rate increases (o’ becomes larger). We
also emphasize that as formula (2.38) indicates, the chirp itself, i.e., its slowly varying envelope
A’, which represents energy distribution in the pulse, travels with the group velocity vg(wo)
that corresponds to the center carrier frequency wg. For the high frequency case that we are

interested in, i.e., wp > wpe, the group velocity (2.6) can also be linearized:

1 wie 1 whe 1whe
’Ugr:’Ugr(W)%C<1—262k2> :C<1_2u)2_u)2 ~ C 1_§w2 . (243)

At the same time, the carrier phase travels with the corresponding phase velocity vpn(wo) and

can also be linearized:

1 Wpe I e L @he
’Uph:’Uph(W)%C<1+2c2k2> :C<1+2u)2_u)2 ~ C 1+§w2 . (244)

Using the notions of the group and phase velocity (2.43) and (2.44), we can introduce the group

and phase travel times, respectively, in the homogeneous ionosphere:

|z — z| |z — z|
Tor(x,z,w) = and Typ(z, z,w) = ——, 2.45
g( ) Ugr(w) Ph( ) Uph(w) ( )
and recast formula (2.38) as follows:
/!
@(t, Z) — A (t — Tgr(w7 z7wo))eiwo(thph(a;,z,wo)). (246)

4|z — x|

It is important to point out that the group velocity vgy of (2.43) is slower than the speed of
light c. However, the phase velocity vpn (2.44) is faster than the speed of light ¢. Hence, if we

introduce the neutral (non-dispersive) travel time 7' = T'(x, z) = | — z|/¢, then, according to
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(2.43) and (2.44), for the group and phase travel time we can write:

To(x,2,w) =T(z,2) + AT and Tpu(zx, z,w) =T(x,2z) — AT,

a1l (2.47)
where AT = AT(z,z,w) = lw=z[1wp

c 2w?’

In other words, the group delay and the phase advance in formula (2.46) are equal to one

another. Given (2.47), we can recast formula (2.41) for the pulse contraction as follows:

o1 = 2AT (x, z,wo)wﬁ. (2.48)
0

2.3.3 Dispersive propagation in the inhomogeneous medium

In the actual ionosphere, the electron number density N, is not constant, and this is going to
affect the propagation times (2.45). For the current analysis, we will assume that the mean
electron number density (N.) depends on the altitude above the Earth’s surface, but does
not depend on the horizontal coordinates. A typical dependence of the mean electron number
density on the altitude h is non-monotonic. The maximum is reached in the F-layer somewhere
between 200km and 300km above the Earth’s surface, and the characteristic scale hy of the
variations of (N,) is on the order of tens of kilometers, see [Gin64, Ch. VI]. Clearly, hy > X,
where A is the wavelength, which suggests that we can use the approximation of geometrical
optics to analyze the propagation of SAR pulses in the inhomogeneous ionosphere.

We should remember, however, that the total electron number density N, also has a stochas-
tic component p(x), see formula (2.9). It depends on all spatial coordinates, and can be in-
terpreted as a quasi-homogeneous random field. To justify the use of geometrical optics for
the study of pulse propagation through the turbulent ionosphere, the wavelength A\ must be
much shorter than the characteristic scale of turbulent inhomogeneities. If the latter is taken
as 7o (the outer scale of turbulence), the constraint A < rp is obviously met. There is, how-
ever, a more subtle criterion for applicability of the geometrical optics. The characteristic scale
of inhomogeneities must be much longer than the size of the first Fresnel zone /AR, where
R, = |z — x| is the propagation distance between the antenna and the target. The quantity
VAR, comes to 1km for A = 1m and R, = 1000km, which is roughly r¢ according to [Arm05]
or %TO according to [BG88]. Technically speaking, this makes the geometrical optics a border-
line approximation for the class of problems we are considering. It is known however, that there
are fewer shorter scale inhomogeneities in the spectrum of ionospheric turbulence than longer
scale inhomogeneities, which still leaves the main conclusions of geometrical optics valid even
outside its formal applicability range, see [RKT89b, Ch. I].

The expressions for travel times in the inhomogeneous ionosphere that replace formulae
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(2.45) are derived in Appendix C for the deterministic case and in Appendix D for the stochastic
case. Further analyzing the case of an inhomogeneous dispersive ionosphere, where the Langmuir
frequency wpe depends on the altitude, we see that while the form of the propagating signal
(2.38), (2.40) in this case does not change, the travel times become [cf. formula (2.45)]

2=z ha Tph(m,z,wo):|_$_z|. (2.49)

Uph(wo)

Tor(x, 2,w0) =

Ugr (wo)

The modified phase and group velocities Up, and v, in (2.49) are [cf. formulae (2.44) and (2.43)]

16, 16,
Uph(wo) = ¢ (1 + Wpe> and  Ugr(wp) = ¢ (1 — wpe> , (2.50)

2 2
2 w; 2 w;

2
p

between the antenna and the target:

where @?, is the square of the Langmuir frequency averaged over the straightened signal path

i 1 T 9 . 1 Rz 9
oo = : Wpe(s)ds = ol Whe(s)ds. (2.51)

[z — 2|

The quantity J)ge of (2.51) also helps re-define the new chirp duration and rate for the stratified
ionosphere [cf. formulae (2.41) and (2.42)]:

— z2|@% B B )
7"27—(57':7'—u PP~ and o/:a+5a:<1+7>- (2.52)

2
c wh wo 2T T

Note that in integral (2.51), s is the distance along the straight line connecting z and . In the
case where the electron number density depends only on the altitude h: No = N(h), integral
(2.51) reduces to (see Figure 1.1):

1 H dh 1 [ 4dre? N
-2 2 2 H
- h = — h)dh = — 2.
=g | RS =g [ ek = T (2.53)
where H is the orbit altitude and
aef [
Ny = / Ne(h)dh (2.54)
0

is the total electron content (TEC) in the ionosphere.® A more realistic case, where the iono-
sphere has a horizontal inhomogeneity as well, is analyzed in Section 2.5, whereas the ionospheric
turbulence is accounted for in Section 2.10.

In addition to temporal dispersion, the propagation of radio waves in the ionosphere may

5In many ionospheric studies, the upper integration limit in (D.8) is formally taken as co.
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be subject to Ohmic losses. In Appendix E we show that in the case of a lossy ionosphere, the
propagating chirp (2.18) still has the form (2.38), but instead of (2.40) the numerator is given
by [see formula (E.4)]

2
|lz—z| Yewpe

1
P'(x, z,wo,t) = A'(t — T(x, z,wp) )0t Ton(@zw0))g 2 e wf (2.55)

where v, is the effective frequency of the particle collisions in the ionosphere [Gin64]. For the
typical parameters presented in Table 1.1, including |z — z| ~ R, the last exponential factor in
(2.55) evaluates to e %1% a2 0.86, which means that the one-way signal attenuation due to the
Ohmic losses in the ionosphere is about 14%. While not negligible by itself, this attenuation
affects only the amplitude of the propagating chirp and does not affect its phase. Therefore, we
will not be taking the Ohmic losses into account hereafter [as we effectively do not take into
account the geometric attenuation, i.e., the denominator in formula (2.22)], and will always be
using the ionospheric propagator in the form (2.38), (2.40) rather than (2.38), (2.55).

Neglecting the turbulence for now (see Section 2.10), we can write (2.49) in a way that
corresponds to (C.20) and (C.21):

To(x, 2,w) = % ;:ij;]\g]] , (2.56a)
Ton(z, z,w) = % - ;:;;f;]\g]] . (2.56b)
Similarly to (2.47), we can also write:
To(x,2,w) =T(z,2) + AT and Tpn(z, z,w) =T(x,2z) — AT,
where T(z,z) = % and AT =AT(z,z,w) = R;;:Z:; , 257
where we introduce the notation it Nt
o (2.58)

Given the travel times (2.57), we can evaluate the contraction of the pulse on its way between
the antenna x and the target z using formula (2.48):
B R, 4ne* B IN;

01 =2AT(x, z,wp)— = 5
wo C MeWw§ wo

(2.59)

Finally, we can modify the generalized ambiguity function derived in Section 2.3.1, see for-

mula (2.34), by substituting the actual travel times (2.56) instead of the unobstructed travel
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time |z — x|/c into those factors that correspond to the received signal. According to the form
(2.46) of the propagating pulse, the group travel time Ty (2°, 2,wp) of (2.56a) shall be substi-
tuted into Wr(y, z) and the phase travel time T, (2", z,wp) of (2.56b) shall be substituted
into Wy(y, z). Then, instead of formulae (2.35) and (2.36) we have:

Wiy, z) = / At = 2y — @0/) Als(t — 2T (2, 2, o)) dt (2.60)
X
and
N/2
Wzil(yu Z) — Z einO(‘y_‘”nVC_Tph(w”vz’wo))_ (261)
n=—N/2

Similarly, for the scattered field received by the antenna, we can replace (2.25) by

Y(t, z) ~ /// D(w, 2) Abs(t — 2Ty (, 2, wp))e 0t =2 on(@:200)) g 5 (2.62)

The subscript 26 in formulae (2.60) and (2.62) indicates that the round trip pulse contraction
is twice the 67 of (2.59).

We emphasize that in formulae (2.60) and (2.61) the factors that correspond to the actual
field received by the antenna take into account the dispersion of radio waves in the ionosphere.
However, the factors that represent the matched filter remain the same as in the non-dispersive
case. This creates a mismatch, and as it will be shown, it is precisely this mismatch that is

responsible for the deterioration of the image.

2.4 Radar resolution and ionospheric distortions of SAR images

2.4.1 Range resolution

Expression (2.60) for the range ambiguity function, accurate to a constant factor, is given by

the following integral:
i " - 0, ,
W]l%(y’ z) N /m n{7/2+2Ry/c, 7" /2+2T g (z°,2,w0)} ei(a”—a)tQ64i(aRy/C—C¥NTgr(mo,z,wo))tdt’ (263)
max{—7/242Ry/c, =7 |242T g (2°,2,w0) }

where [cf. formula (2.52)]

T T

B 20
Ry=1|z"—y|, 7"=7-26r, and o’ =a+20a= > (1 + T) . (2.64)
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Changing the integration variable in (2.63) to u =t — (% + Ty (20, 2, wo)), removing the higher

order terms, and denoting
a=a"—a and b=2(a+d")(Ry/c—Tu(z’ z,w0)), (2.65)

we can convert integral (2.63) to
T/2 9.
w(a,b) = / glawFibugy, (2.66)
—7/2

Note that the exact integration limits are approximated by simpler expressions in (2.66), which
introduces a small relative error ~ 5{. A comprehensive analysis can be found in Appendix F,
where we consider all possible scenarios of how the intervals y,(t — 2|y — 2°|/c) and ., (t —
2T (20, z,wp)) can be positioned with respect to one another.

Integrals of type (2.66) commonly appear in the analysis of the radar ambiguity functions
and their properties [JWET96, CW05]. The quadratic phase error (QPE) for (2.66) is defined
as the maximum absolute value of the quadratic term in the exponent (see, e.g., [CW05, Chap-
ter 3.5] or [JWE'96, Chapter 2.6]):

¢q = |al (%)2 (2.67)

The QPE characterizes the mismatch between the chirp rates in the direct (2.62) and inverse
(2.29) operators. If the QPE is small, then w of (2.66) can be represented as

w(a,b) ~ wy(b) + w(a,b), (2.68)

where

wo(b) = 7 sinc (b—T> TM and |wi| < |wol. (2.69)
2 bt /2

With no dispersion at all, formula (2.65) yields ¢ = 0 and b = 4a(Ry — R.)/c, because
Ty = R, /c. In this case, the semi-width of the main lobe of wg(b), which is given by the
conditions %T = &7, determines the undistorted radar resolution in range, A = 75, see [Che01],
while the sidelobes of wg determine the image contrast.

In the dispersive case, the term wy in (2.68) represents the effect of the filter with the group
delay of the signal taken into account, but with no rate mismatch, i.e., no QPE. Substituting b
of (2.65) into wp of (2.69) and keeping only the first term on the right-hand side of (2.68), we

approximate (2.63) as follows:

Wé(y, z) o« T sinc ([(o/’ +a)Ry/c— (o/’ + a)Tgr(wO, z,wo)]T) . (2.70)
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The range resolution Ap is also given by the semi-width of the main lobe of the sinc in (2.70).
(@ H)Arr 7, we derive with the help of (2.64):

e oT
Ap=—(1—-——]. 2.71
R B( T) (2.71)

Setting

Formula (2.71) yields roughly 19m for the values of the parameters listed in Table 1.1. The
term 577 is formally kept in (2.71) only because it comes from the analysis of (2.70) with no
simplifications. Otherwise, this term is small, about 0.15%, and of the same order as the terms
dropped when simplifying the integration limits in (2.66). Thus, it can be neglected, and the
range resolution in the dispersive case remains practically unchanged.

The term w; in (2.68) leads to the broadening of the main lobe of w(a,b) and increase of
its sidelobes, both of which add to the image blurring. Quantitatively, the role of w; has been
estimated in [Tsy09a, Appendix C].” Specifically, it has been shown® that at the edge of the

main lobe we have |w| # 0 due to the presence of wi, so that

1 |w1|”§:n ar? 2

‘U)|b77—: ~ 53 = ﬁgbq’ (2.72)

max |w| ™ Jwol b
2

where the QPE ¢ is defined by (2.67) and should be small for (2.72) to hold. A non-zero
value in (2.72) suggests that the image is smeared, because the main lobe is not so well defined
compared to the case where |w|y __ = 0. For the typical parameters given in Table 1.1, the
extent of the smearing in the sensQe of (2.72) is ~ 40%, assuming that for the definition of §7 in
(2.52) we take |x — z| ~ R. An alternative measure for image imperfections due to the QPE is
called the integrated side lobe ratio (ISLR). The ISLR is defined as a ratio of the power (i.e.,
integral of |w|?) in the sidelobes to that in the main lobe, see [CW05, Section 2.8]. It is usually
expressed in decibels, and can be calculated numerically. The increase of ISLR that corresponds
to the data in Table 1.1 is ~ 1.8dB.

The ionosphere also causes a displacement of the image. Formula (2.69) indicates that wq
attains its maximum at b = 0. In the non-dispersive case, we have Ty, (2°, 2,wp) = R, /c where
R, = |2° — z|, and according to (2.65), b = 0 for Ry = R,. In other words, the sinc reaches
its maximum value precisely when the reference location y and the target z are at the same
distance away from the orbit in the normal direction. In the dispersive case though, b = 0 when
Ry(z) = Ty (2P, 2,wp), where Ty, is given by (2.49). This is not equivalent to R, = R, and

hence the image of a point scatterer at z will be displaced in range with respect to its true

"The effect of QPE can, to some degree, be controlled by introducing the weight functions into integral (2.29),
see, e.g., [CWO05]; we do not consider this approach here.

8 At this point we should note that there are some arithmetic errors in that appendix, but the end result of
the analysis is the same.
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position. The displacement is given by

-2
def 0 1 41?2 Ny 1 @
SR :e Ry(Z)—Rz:CTgr(w 7Z7L4_}0)—RZ:RZ(I‘)78276 :§Rz u}pge.

(2.73)

For the parameters in Table 1.1, formula (2.73) yields approximately 450m, assuming that
R, ~ R. The origin of this displacement is the group delay, i.e., the mismatch between the
actual propagation velocity vg, of (2.50), which is used in the direct operator (2.62), and the
speed of light in the inverse operator (2.29). Although the displacement of the image in range is
a distortion per se, it appears of key importance for the reconstruction of the ionospheric TEC

by means of dual-carrier probing (see Section 2.8).

2.4.2 Azimuthal resolution

To analyze the azimuthal factor of the GAF, we first introduce the notation

_ ly — z"| — Tpn(z™, z,wo)

¥, 7 (2.74)
so that the sum (2.61) is recast as
Nz, R
’LLA)O
Wiy, z)= > e e ' (2.75)
n=—N/2

When calculating the distances in (2.74), we will use the subscripts “1” and “2” to denote
the horizontal coordinates along the orbit (azimuth) and across the orbit (range), respectively,
leaving the index “3” for the altitude, so that for the points on the orbit we will have x =
(21,0, H). For the target z = (21, 22,0) we will assume with no loss of generality that z; = 0,
see Figure 1.1; we also take yo = 23 when analyzing azimuthal resolution. Then, we can linearize

the travel distances:

1 2
R,=|z—z| = VR2+ (21 — 11)? zR(l—i—g%),
1(y1 — 1)

Ry =1y -3l =R+ (-2~ R(1+ 5 P00,

) (2.76)

because 27| < R and |y; — 2| < R, where R = \/H? + z3. Substituting (2.76) into (2.74),
we get

U e 16, GG
" 92 R2 R? 2 wd wid 4R?%’

(2.77)

N
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For the azimuthal coordinate z; in formula (2.77) we can write: 2 = n - Az, where Az is
the distance that the satellite travels along the orbit between the successive emission of pulses:

Axy = vsat/ fp- Introducing

wo(A{L‘l)2 @ge and 6 _ 2w0y1Afn1
2Rc W Re 7

a =

(2.78)

and ignoring the proportionality constant that results from the first and third terms in (2.77),

we can approximate the sum (2.75) by the integral:

N/2

= ) iy / v gian=ibn gy, (2.79)

n=—N/2 N/2

def
WA(yh 0) = WA(yv Z)

z1=0,
Y2==z22

The integral in (2.79) is of the type (2.66). Thus, the calculation of the azimuthal wy is equivalent
to keeping only the first term on the right-hand side of (2.77) for the sum (2.75):

N/2
iwg Y177 Az N
Wi, 00~ 3> e e F & Nine LAZTT (2.80)
n=—N/2 ¢
The semi-width of the main lobe of the sinc in (2.80) yields the azimuthal resolution:
1 MR

Ap=57— 2.81
A= T (2.81)

which is another way of writing what appears in (2.37). It appears approximately equal to 10m
for the typical parameters given in Table 1.1.

The azimuthal w; is due to a of (2.78), i.e., to the second term on the right-hand side of
(2.77). This second term accounts for the difference between the phase velocity in the dispersive
propagator (2.40), (2.49) and the speed of light in the non-dispersive filter in (2.29). Similarly
to (2.67), the expression for the azimuthal QPE is

aN? 1wy @pe 1

_ LwoLga “e
4  2Rcw? 4

8 Rc Wi’

¢qA = (NAx1)2

(2.82)
and the same argument that leads to equation (2.72) yields the deterioration of the GAF contrast
of approximately 35% for the the typical parameters given in Table 1.1. Note though that such
a substantial deterioration implies that the main lobe of the sinc absorbs the first sidelobe, the
resolution drops, and the measure of image defects based on formula (2.72) essentially loses its
original meaning. On the other hand, the ISLR still provides an adequate measure, and the

corresponding increase is about 4dB.
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2.5 Azimuthal displacement due to horizontal variation of the

ionosphere

In Section 2.4, we have assumed that the electron number density does not depend on the
horizontal coordinates. Then, the only characteristic of the ionospheric plasma that enters into
the expression for the propagator (2.38) is the constant TEC given by (2.54).

In order to account for the horizontally inhomogeneous ionosphere, we will let the electron
number density N, depend not only on the altitude h but also on the azimuthal coordinate
&1. In doing so, we will assume that the dependence is predominantly linear and truncate the

Taylor expansion of N, in the direction &; after the second term:

8]§V (0,h), where |&| < R. (2.83)

Ne(€1,h) = Ne(0,h) + &

Following Appendix C, for w? > wge (see Table 1.1) we can calculate the phase travel time by
integrating the reciprocal phase velocity of (2.44) along the straight line connecting « and z

(i.e., ignoring the ray curvature) [cf. formulae (2.51) and (2.53)]:

R,
Tph(mazyw) = /0 Uph - COSH/ ’Uph {1 )
R, /H 1M

w2

(2.84)
dh.

c ccos&

Here, &1(h) is the azimuthal coordinate of the point on the line between & and z that has
altitude h (see Figure 1.1):
h H-—h h

Gh) =&(@,2,h) = gor+ —p—a1 = ga, (2.85)

and we again assume z; = 0. Substituting (2.85) into (2.84), we get:

H
Ton(e, 2,0) = 22 — 1/0 ( (0.n) 4 S dmet ONe h)h> dh. (2.86)

c 2cw? cos 0 H me 0&

Then, using formulae (2.50)—(2.54), we transform expression (2.86) into

R,  R; e
Uph(w) ¢ 2w?

Tph(masz) = Q(J)O,Z):El, (287)

where
Q(z’ 2) = — _ (0, h)h dh (2.88)
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Uph(w) in formulae (2.87) and (2.88) are evaluated according to (2.53) and (2.50), respectively,
for & = 0, ie., for w2, = w2, (0,h), or Ne = Ne(0, k). Substituting (2.88), (2.87), and (2.76)

pe
into (2.74), we have [cf. formula (2.77)]:

is essentially the first vertical moment of the azimuthal gradient of N,. The quantities w:, and

e Spe (2])’ | Do

\II =
n + 2“8

R? wi 4R?

Q1. (2.89)

With the third term on the right-hand side of (2.89) taken into account, and the second term

temporarily disregarded, we obtain instead of formula (2.80):

K —M(ﬂ—RQESQ%’f wo [ Y1 @y
Wi (y1,0) ~ Z e\ 2% ~ Nsinc |— | == — RS0 | Az N | .
c \ R 2w;
n=—N/2

Consequently, a non-zero value of Q of (2.88), which is due to the azimuthal gradient of N,
see (2.83), results in an azimuthal displacement of the entire image by
1o

Sy=-—"LQR% (2.90)
2 wg

As in the case of the displacement in range, see formula (2.73), the origin of the azimuthal
displacement (2.90) is a mismatch between the filter in (2.29) and the propagator (2.40). The
presence of the azimuthal displacement (2.90) allows us to reconstruct the value of Q by means
of the dual-carrier probing (see Section 2.8) and subsequently use this value to correct the
matched filter in (2.29).

The effect of the second term on the right-hand side of (2.89) is exactly the same for the
horizontally inhomogeneous ionosphere as it is for the horizontally homogeneous ionosphere.
Namely, the QPE leads to a deterioration of the GAF contrast, see (2.82).

It is also to be noted that in the literature one sometimes uses a simplified model based on
the so-called phase screens to describe the propagation of radar pulses through the ionosphere,
see, e.g., [MG02, Bel08, BPET10].

2.6 Dual carrier probing

To remove the mismatches that cause distortions of the image, one needs to correct the filter, i.e.,
replace the unobstructed travel times |y —x"|/c by Tg: (2", y,wp) in (2.60) and by Tpn (2™, y, wo)
in (2.61), and also adjust the chirp duration and chirp rate in the filter factor under the integral
(2.60). However, unlike in the received field, which is a physical observable, the correction in the

filter must be done theoretically. Therefore, one needs to know the quantity A, see formulas
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(2.57) and (2.58), that characterizes the ionosphere. The availability of A/ will allow one to
calculate the dilation (2.59) and the new chirp rate (2.42), as well as travel times for any
reference location y.

In the literature, many estimates are available for the electron number density and the TEC
in the ionosphere, see, e.g., [Gin64] or [Bud85|. Those estimates, however, can only provide
a typical range of values, especially as the parameters of the ionosphere are known to vary
in space and in time. This will not allow one to correct the filter with a sufficient degree of
reliability. More accurate values of the ionospheric parameters can be obtained with the help
of the specialized techniques, such as those described in the papers surveyed in Chapter 1. It is
to be emphasized though that even if the TEC is known accurately, but not for the exact same
state of the ionosphere that corresponds to a given image, it may still be not very useful for
mitigating the image distortions. What is rather needed is an accurate value of N exactly at
the time and place the image is taken. The technique we describe hereafter provides just that.

Namely, we exploit the idea of dual carrier probing as it applies to the determination of A/
for the given specific state of the ionosphere. Let us assume that there is an object or feature in
the scene that can be clearly identified on the image. This object does not have to be artificial.
It does not have to dominate the scene, say, by having the highest reflectivity. Its location does
not have to be known ahead of time. It merely has to be something that can be fairly easily
picked out and matched on different images that represent the same terrain. For example, it
can be some landmark, such as a hilltop, a building, a road intersection, etc.

Let wy and wy be two distinct carrier frequencies, wy # we, and let R(yl) and Rgf) be the
corresponding ranges of the aforementioned object measured by the radar, whereas its true
range is R, (unknown yet). Then, we can consider the corresponding two equations (2.73) as a

system:

(2.91)

where the group travel time T, is given by formula (2.56a). With the data Rél) and R;Q)

available, system (2.91) can be solved with respect to the two unknown quantities: the true
range R, and the integral quantity N that characterizes the plasma.
Let us reintroduce (see (2.51) and (2.58)) the following notation for brevity:

2
o  dme

Gpe = ——N. (2.92)

pe
(&}
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Using this notation, system (2.91) with the expression for Ty, given by (2.56a) is recast as
-2
w
R(l) =R 1 pe ,
v =R (1450

-2
(2) Wpe
Ry =R, (1 )
Y ( + 2w%>

The range R, can be eliminated from system (2.93) by dividing the equations by one another.

(2.93)

Then, after simple transformations, we have:

202WIAR
@ge = u(J21)w2 y(l)’ where AR, = R(yl) — R?(/2). (2.94)
wiRy’ — wily

Once the frequency J)ge has been obtained, the actual electron content Nz can be determined
using (2.92). Moreover, if there is a need to know the true range R, of the chosen reference
object, it can be easily found from any of the equations (2.93).

Let us emphasize that formula (2.94) does not degenerate in the sense that its denominator
does not turn into zero. Indeed, if it were equal to zero, then system (2.93) would immediately
yield wy = wy. However, the quantity Jjge computed according to (2.94) appears sensitive
to the errors in the data Rél) and Rgf). A rigorous analysis of this sensitivity, i.e., of the
conditioning [RT07, Chapter 1] of formula (2.94), can be found in Appendix G. It shows that
the conditioning is only weakly affected by how far the probing frequencies w; and wy are chosen
from each other. For the most part, @ge appears sensitive to errors because there is a difference
between two large numbers that are close to one another (Rg(}) and R?(f)) in the numerator
of (2.94). The overall conditioning of G;ge can be improved though by using several reference
locations instead of one. In Appendix G, we are showing that this approach indeed helps reduce
the resulting error. But there is an even better way to reduce the error, image registration, and
we look into this in Section 2.8.

It is also to be noted that the idea of using two frequencies for determining the TEC is
briefly mentioned in [WQWHO3|, without analyzing the resulting performance. The authors
of [WQWHO3]| suggest however that the two frequencies be taken from the existing SAR band-
width. In the context of our approach, we analyze the split-band technique in Appendix I.

2.7 Correcting the matched filter when the exact TEC is known

Let us recall that the distortions of the SAR image are due to the mismatch between the actual
field received by the radar antenna and the assumptions made about this field when designing

the signal processing algorithm, i.e., the matched filter. In this section, we assume that we are
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able to reconstruct the TEC exactly. Analysis of the case where there is some error in the
reconstructed TEC is done in Section 2.9. Once the quantity Ny has been found, one can use
formulae (2.56) and accurately evaluate the travel times T, (2", y,wo) and Ty (2™, y,wo) for
any location y. Then, one can also compute the pulse dilation for the reference point y using
formula (2.59), and the new pulse rate according to (2.42). This allows to correct the matched
filter, i.e., to modify its definition in formulae (2.60) and (2.61) by substituting the travel times

that account for the ionospheric dispersion.

2.7.1 Range resolution

With the above correction in place, the range factor of the generalized ambiguity function
becomes [cf. formula (2.63)]:

min{7"’ 24+2Tor (y), T 2427
@)/ 242 (), 7(2) /22T (2)) =10 (¥) (t=2T5: (y))? o’ (2) (12T (2))? gy

Whiy.2) = |

max{—7"(y)/2+2Tgr (y), —7"(2)/2+2Tex (2)}

min{7"’ 24+2Tor (y), T 24-2T 5y
N / R R,

max{—7"(y)/2+2Tg: (y), —7""(2)/24+2T¢:(2) } ’
(2.95)

where we have introduced the abbreviated notation Ty, (2) = Ty (2, z,wp). The double primed
quantities 7" and o in formula (2.95) are to be evaluated for the pulse round-trip between the
antenna and the target [cf. formulae (2.52) and (2.42)]:
B B 26
=727 and o' =a+ 0T— = 5= <1 + T) , (2.96)
T 2T T
where 67 is given by formula (2.59). For the integral (2.95), we consider the integration limits
F7"(y)/2 + 2T (y), and, changing the integration variable: u =t — 2T, (y), obtain:
T//(y)/Q i1 2 s 2
Wiy, 2) / ¢ () e ()0t 2T (1) 2T (2))?
oo
oc/ eilo” () =a" (y))u? ghia” (2)(Ter (y) ~Ter(2))u gy
—-7"(y)/2

where the constant factors of magnitude one in front of the integrals are dropped.
Following the analysis of Section 2.4, we first disregard the quadratic term ~ u? in the
exponent under the integral (2.97), because this term is small. Then, integral (2.97) evaluates

to
Wr(y, z) oc 7" (y) sinc[2a” (2) (T (y) — T (2)) 7" (y)]- (2.98)

The range resolution of the radar is defined as the semi-width of the sinc function (2.98)
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interpreted as a function of Ry — R, and hence can be obtained by setting the argument of the

sinc equal to m:
20" (2)(Ty(y) — Tw(2))7"(y) = .

With the help of (2.96), the previous equality transforms into

B (1 n 257) (T () — Tpe(2))7 <1 = 257) = (2.99)

T T T

Per our discussion in Appendix F, we can disregard the terms 677 in the expression for resolution
and instead of (2.99) write:

B(Ty(y) ~ Tul2)) = . (2.100)

Then, we can use formulae (2.56a) and (2.92), and express the difference between the group

travel times in (2.100) as follows:

R,—R 12
Taly) = Ta(z) = ——— (1 +3 ;;) : (2.101)
0

Thus, substituting the result into (2.100), we arrive at the following expression for the range

resolution:

AR:Ry—Rz%m< —Wge). (2.102)
B 2 w%
The resolution given by formula (2.102) is an improvement over the non-corrected case (2.71)
because it is basically as good as the non-dispersive resolution A = mc/B. However, as in-
dicated in Section 2.4.1, the range resolution of a SAR sensor does not suffer much from the
ionospheric dispersion in any event. Therefore, what is even more important is that when the
filter is corrected, the target is no longer shifted in range from its true position as in formula
(2.73). That is because the maximum of the sinc in formula (2.98) is attained precisely at
Ry=R,.

What is also very important is that the degradation of image sharpness becomes negligible
once the filter has been corrected. To analyze this effect, we bring back the quadratic term in

the exponent under the integral (2.97). First, we recast this integral in the form

w2
Wr(y, 2) oc/ e et (2.103)
—7(y)/2
where
B B2 — R,) 4we® B
7= a(z) — o"(y) = 2 (or(y) — br(z)) = B2y —Be) dme” B\ (2.104)
T T c MWy Wo
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¢ = 40" (2)(Tx(y) — Tir(2)), (2.105)

and the quantity A is defined in formula (2.58). The quadratic term in the exponent under the
integral (2.103) is small: |yu?| < 1 for u € [-7"(y)/2,7"(y)/2], and consequently we have:

™'(y)/2 ,
Wg(y, z) ~ / (1 + iyu?)edu
-7 (y)/2

4¢T" cos %” +(—-8+ C2T”2) sin %”

203 ’
(2.106)

where 7" = 7"(y). The first term on the right-hand side of (2.106) obviously coincides with
(2.98), and the second term represents a correction. According to (2.104) and (2.105), (2.101),
both v and ¢ vanish as R, approaches R,. However, the fraction on the right-hand side of

=7"sinc2d/ (2) (Tee(y) — Tex(2))7"] + iy

(2.106) remains bounded as ( — 0 (and v — 0). It is, in fact, easy to see that

Wh(y, 2) ~ 7" sinc[20” (2) (T (y) — Tor (2))7"] + —ein".

2.1
16 (2107

As the first term on the right-hand side of (2.107) is proportional to 7”7, the relative magnitude
of the correction is about 7/ (this is a dimensionless quantity). There is no correction at
the central peak of the sinc, because v = 0 when R, = R,. To quantify the extent to what
the image sharpness is affected, we estimate the correction at the first zero of the sinc. Using
formulae (2.104) and (2.96), we obtain:

77‘”2 =B

5—N

2(Ry — R:) 4ne® B\ (207 2
C Mewqy Wo ’

where the value of R, — R, shall be taken according to formula (2.102). For the typical values

of the parameters involved, Table 1.1, we have

-2
4rre? w _ B _
N~ 2 ~9x107 and — ~ 1072,
MeWy Wy wo

so that altogether we can write:

-9 —2
377_,,2%?&%);5 1_}“’1926 1_4577 N3£.1()—5,
16 8 wj wo 2 wp T 4

We therefore conclude that the degradation of image contrast in range decreases to approxi-
mately 0.003% as opposed to 20% in the non-corrected case, see formula (2.72). Again, this is

assuming that the TEC is reconstructed exactly.
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2.7.2 Azimuthal resolution

Once the matched filter has been corrected, expression (2.61) for the azimuthal component of

the generalized ambiguity function becomes

N/2
Wg(y’ Z) _ Z e2iw0(Tph(m”,y,wo)—Tph(m”,z,wg)). (2108)
n=—N/2

Then, using formulae (2.56b) and (2.76), we can transform expression (2.108) into:

N/2 iw e e
Wiy, z) o< Y e2°0{7y1T1(7%'ie“’%N>}, (2.109)
n=—N/2

where the constant factor of unit magnitude in front of the sum was dropped. The result is
another sinc function, and it leads to the following estimate of the azimuthal resolution in the

case of a non-fluctuating ionosphere:

L 1 4me? L 103
= (l+—FN]|==|1+=-E].
n 2< +2mew8N> 2( +2wg>

This value is only marginally worse than that obtained in the non-dispersive case: 2y; = L/2.

Even more important, correction of the filter restores the sharpness of the image for the non-
fluctuating ionosphere, so that there is no deterioration like in the non-corrected case, see
formula (2.80). The reason is that unlike in formula (2.75), there is no quadratic term with
respect to x in the exponent in the sum (2.109).

We have seen that dual carrier probing can dramatically improve the quality of a SAR im-
age. However, the analysis in this section neglects one important detail: in practice, the TEC
will never be reconstructed exactly. As seen in Appendix G, formula (2.94) is poorly condi-
tioned. Any errors in ng,l) and RéQ) will significantly affect the determined Langmuir frequency
nge and thus the determined TEC. A method to improve the conditioning and accuracy of the
TEC reconstruction is proposed in Section 2.8; it is based on image registration [ZF03]. How-
ever, even the most advanced registration techniques carry a certain error, which, in turn, will
affect the computed value of the TEC. In Section 2.9, we analyze the resulting errors in the
corrected matched filter and the residual distortions of the image that occur when the TEC is

not reconstructed exactly.
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2.8 Robust evaluation of ionospheric parameters by dual-

carrier probing combined with image registration

In the previous sections, it has been demonstrated how mismatches between the direct and
inverse operators (formulae (2.62) and (2.29), respectively) result in image distortions of vari-
ous kinds. For a horizontally homogeneous ionosphere (Section 2.4), these mismatches include
a substantial displacement of the entire image in range, as well as both range and azimuthal
smearing. Horizontal inhomogeneity of the ionosphere (Section 2.5) adds an azimuthal displace-
ment that may sometimes be of the same magnitude as the range displacement. Our goal is
to remove (or reduce) the mismatches and thus reduce the image distortions. The mismatches
originate from the difference between the actual phase and group travel times of radar sig-
nals in the ionosphere [formulae (2.38)—(2.52)] and the expression | — z|/c in (2.29) that is
based on the speed of light in vacuum. Hence, it is necessary to evaluate the parameters of the
ionospheric plasma that appear in formulae (2.50), (2.53), and (2.87).

The approach to correcting the ionospheric distortions based on dual-carrier probing as-
sumes that at the first stage, two SAR images of the same area at the same time are acquired
using two different carrier frequencies and a filter with no correction. Each of the two images
will be displaced from the ground truth, but the magnitude of the displacement will depend
on the carrier frequency, see (2.73). In doing so, the difference between the two values of the
displacement allows one to estimate the parameter the given by (2.92). This has been demon-
strated in section 2.6. The next step is that J)ge is substituted into formulae (2.50), which helps
determine the phase and group travel times (2.49) and the new chirp rate and length (2.52).
These quantities, in turn, are used to build a new filter P’ based on (2.40) that would match
the actual signal that propagates through the ionosphere (2.38). The distortions of the image
obtained with the help of the new filter will be reduced or removed. We have seen this in Sec-
tion 2.7 but there are still more effects to account for, namely the horizontal inhomogeneity of
the ionosphere introduced in Section 2.5.

Following the argument used previously, we assume that there exists a point-like object in
the scene that is imaged at two different slant distances R_S}) and R_Sf) using carrier frequencies wy
and wo. Then, a similar approach to that used in section 2.6 can be used to reconstruct the
horizontal inhomogeneity parameter Q from the measurements of the azimuthal displacement

S4 on two images. According to (2.90), the azimuthal coordinates ygl) and y?) of a given object
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on two images are related to its true azimuthal coordinate z; by

-2
(1) L% o p2
Yy =21+ 5—5 QR%,
! 2 w%
-2
(2) L %%e 4 p2
Yy =21+ 55 QR%,
! 2 w%
which yields
2wlwi A
@geQRQ = 7(,(1; fwgl, where Ay, = yg) — y§2). (2.110)
2 1

Formulae (2.94) and (2.110) allow one to reconstruct the ionospheric parameters @ge and Q
that are responsible for the filter mismatch between P in (2.29) and P’ in (2.40). The deficiencies
of this method include the following:

(i) Formula (2.94) involves a small quantity AR, = R_S}) - R;Z) defined as a difference of two

large quantities. Hence, this formula is poorly conditioned, i.e., sensitive to errors in the
input data R?(}) and R_Sf), see [ST11].

(ii) The method of (2.91)-(2.94) requires having point-like objects in the scene. Yet the initial
images built using the uncorrected filter may be smeared because of the chirp rate mis-
matches (Section 2.4). With no sharp objects, the measurements of Rél) and Réz) should
use diffuse objects and/or brightness gradients, which reduces the accuracy and further
aggravates the problem outlined in item (i). Additional complication comes from the fact
that the extent of smearing depends on the radar frequency, and thus one and the same

object may appear different in two images.

2
pe’

fact, vary over the scale of the image, so that different values of the TEC may be needed

(iii) Expression (2.94) yields a single value of @z, whereas the electron number density may, in

for different parts of the image.

In Appendix G, which follows up on our prior work [ST11], we address the issue of condi-
tioning of formula (2.94) by exploiting multiple pairs of (Rél), Rgf)) chosen over the image, so
that the result given by (2.94) is averaged over the set of those pairs. If the values of c‘uge ob-
tained for individual pairs are interpreted as independent random variables, then this approach
may reduce the total error by a factor of v/L, where L is the number of pairs. It, however,
puts an even higher demand on the availability of sharp objects (item (ii)), whereas if the TEC
varies over the image (item (iii)), there will be little or no improvement.

In the current section, instead of determining the range values R, from individual images,
we follow the approach of [GST13a] and propose to calculate the shift between the two images

using registration techniques [ZF03]. The key advantage of the registration approach is that
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it determines the value of AR, directly, as opposed to computing it as the difference of two
much larger values. While there is still a need to know Rg,l) and R:(f) individually to calculate
the denominator in (2.94), it has been shown in Section 2.6 that it is the quantity AR, in the
numerator of (2.94) that is primarily responsible for the poor conditioning of the formula.

A particular registration method that can be used is known as phase correlation [KHT75,
KBP79]. It belongs to the family of area-based image registration techniques [ZF03].® Consider
two functions of a single real argument: u(x) and v(x) = u(x — s), where s is the unknown shift.

Then, for the Fourier transforms of v and v we have:

(k) = / u(z)e ™ dr = (k) = / u(z — s)e " dr = e (k). (2.111)
Therefore,
L det [ @t (R)O(K) /oo o
o(z) = / ——— ="k = e e dr = 2w (x — 8), 2.112
D | T o) . sk e

where asterisk (*) denotes complex conjugation. The idea of phase correlation for the area-based
image registration is to look for the value of z that delivers the maximum to &(z) of (2.112).
In the ideal world, 5(3:) peaks exactly at s, so the approach immediately yields the shift.
Moreover, one can interpret the shift obtained this way as an independent quantity rather than
the difference AR, of two large distances, as in the original formula (2.94). In the real world,
one uses a discrete Fourier transforms instead of both (2.111) and (2.112). This leads to the
usual ambiguities due to the finite size of the image and finite size of the grid, on which the
discrete transform is done, and the result is not a pure §-function any more. It is rather a grid
function with its maximum at the node closest to x = s, see Appendix H. This brings the
accuracy of determining the shift s to half the grid size, which has a lower bound of half the
pixel size. Additional steps can be taken to improve this accuracy further, and also to mitigate
the component of the error due to the presence of noise, see [MM93]. Altogether, the error

172 see formula (H.8), where

of determining the shift s by phase correlation decreases as L~
L is the dimension of the discrete Fourier transform.'® It is fundamentally the same “inverse
square root” behavior as appears in the feature-based registration. The advantage of the area-
based approach is that by involving areas without distinct point-like features it helps increase
the effective number of “pairs of the reference points,” and thus improves the accuracy and
robustness of the shift estimation. In practice, the best techniques currently available in the
literature report the accuracy of the area-based image registration of only a few percent of the
resolution cell, see [TH86,SOCMO01, GSTF08, FZB02, Abd99].

We note that the functions u(x) and v(z) in formula (2.111), as well as in Appendix H,

9The technique of Appendix G, which exploits multiple objects, is an example of the feature-based registration.
10The value of L may not exceed the overall number of pixels in a given direction, see Appendix H.
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represent the absolute value of the complex image I(y). Correlation of complex images, called
coherent cross correlation in [BE05], provides a better registration accuracy, but is only possible
if frequency bands of the two images substantially overlap.

In Section 2.9, we show how the accuracy of registration affects the accuracy of TEC re-
construction by dual-carrier probing. We also analyze the residual distortions of SAR images.
When making numerical estimates, we will assume that the registration accuracy, in both range

and azimuthal direction, is 5% of the corresponding resolution.

2.9 Performance of the matched filter with ionospheric correc-

tions

2.9.1 Implementation of ionospheric corrections into the matched filter

Let us recall that the goal of reconstructing the parameters of the ionosphere wge and Q is to
correct formula (2.29) [as well as formulae (2.30) and (2.31)], i.e., replace the filter P(z, y,wp)

by the complex conjugate of P'(x, y,wp) of (2.40), so that the mismatch between the filter and

2
pe

the travel times Tpn (2", y,wp) and Ty (2™, y,wo) with the help of formulae (2.49), (2.50), and

also computing corrections to the chirp rate and duration using (2.52). Furthermore, if Q is

the dispersive propagator is removed. If W%, is known, then P’ can be obtained by evaluating

known, then an additional correction to the phase travel time is given by formula (2.87), and a
similar formula can be easily derived for the group travel time by flipping the sign in front of

Q and replacing v, by Ugr.

2
pe

Section 2.8, i.e., by means of formulae (2.94) and (2.110). The values of AR, and Ay; entering

The ionospheric parameters w7, and Q are reconstructed using the dual-carrier approach of

these formulae are obtained by evaluating the shift between the two SAR images with the help of
image registration (see Section 2.8 and Appendix H). In doing so, the accuracy of reconstructing
nge and @ will obviously depend on the accuracy of registration. The latter is discussed in
Appendix H, and for the rest of this section we will analyze the effect of the registration errors
on the performance of the corrected matched filter. In Section 2.7, we conducted similar analysis
for a horizontally homogeneous ionosphere under the assumption that the TEC is reconstructed

exactly.

2.9.2 Residual errors of corrected filter

Throughout this section, we are using the tilde above the symbol (e.g., cbge, a, Wg) to denote

the quantities computed with the help of the reconstructed TEC.
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2.9.2.1 Range factor.

The analysis of the range factor of the GAF will be based on formula (2.60) with the replacement

10
At =2y — x| /c) — Ags(t — 2|y — x°|/Vgr), where 0g =c ( —5 p;) .
“0
Note that the quantity ) does not contribute to Tgr(wo,y,wo) because 2§ = 0, so that
Tor (20, y,w0) = |y — 2°|/Tgr(wo) [cf. formula (2.87)]. Changing the integration variable from ¢
tou=1t— (Tgr($0, y,wo)+ T (2", 2,wp)), we obtain [similarly to obtaining (2.66) from (2.63)]:

- T2, s
Wr(y, z) oc/ e’““Q'Hb“du, (2.113)

—7/2
where [cf. formulae (2.52), (2.64), and (2.65)]

‘y — CBO| ajgeﬁ

2 )
c wj wo

0T B
A =a+20a(y) =a+2°0 =
a=a+2ia(y) =a+ 5 -2

T=7-207(y)=7—-2
(2.114)

~ - _ ,0 _ 0
CNL:Oé”—ONé7 and b:b(y72):2(0é”+0[)<|y~w‘—’z:c|>
Vgr Vgr
As in Section 2.4, we first disregard the quadratic phase term under the integral in (2.113), in

which case it approximately evaluates to [cf. formula (2.69)]

. b
Wr(y, z) x 7sinc (?T) (2.115)

From (2.115) and (2.114), we obtain the new overall displacement of the image in range:

2
Srp=Ry(z) — R, ~ R, - > (2.116)
where Ry (2) = cTy (2°, z,wp) and R, = |z —z"|. Formula (2.116) shows that the displacement
Sgis directly proportional to the error of the reconstructed TEC. The two “extreme” cases here
are no correction at all, i.e., no attempt to reconstruct the TEC, and the exact reconstruction

of the TEC. If no filter correction is implemented, then one can set Cuge = 0 and formula (2.116)

2

reduces to (2.73), whereas if the TEC is reconstructed exactly, then &g, = wge and Sp = 0,

which is a result from Section 2.7.
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To derive the new range resolution from (2.115) and (2.114), we set TT = 7 and get:
< e (6T — d7) 102,
Apre—(1-——=)1-22]. 2.117

E~B ( T ) ( 2 w% ( )

Again, with no correction @2, = 0 and 67 = 0, so that formula (2.117) reduces to (2.71).

To obtain quantitative estimates for (2.116) and (2.117), we need to relate the accuracy of
reconstructing the TEC to the accuracy of registering the two images, i.e., accuracy of obtaining
the shift AR, (Section 2.8 and Appendix H). Let us denote by 6(w2,) and 6(AR,) the errors

in determining J)ge and AR,, respectively. Then, according to (2.94) we can write:

2wiw3d(AR
S(@2) Yo, — a2~ 2“’1(;")2 ( - y()l). (2.118)
wyRy” — wiRy
In turn, the error in evaluating the shift AR, can be taken as a fraction of the undistorted

range resolution or, equivalently, a fraction of the pixel size (see Appendix H):

S(AR,) Y

e
Hence, combining formulae (2.116), (2.118), and (2.119), we can write:

~ w3
SR ~ R,
AR - ]

iy
— 2.12
CR R (2.120)

where we have identified the central carrier frequency wy with one of the two carrier frequen-
cies used for dual-carrier probing, namely, wi.'' Next, let us introduce the carrier frequency
separation factor

g e w2 — o] (2.121)

w1

and assume that Z < 1, which also implies %1“’1 ~ 2. Then, given that R, ~ 751) = Rgf) ~ R,
formula (2.120) yields:

(R mc
2Z B’
Remarkably, this estimate of the residual displacement given as a fraction of the range resolution
75 does not depend on the TEC. If, for example, Z = 10% (w1 /27 = 300MHz as in Table 1.1 and
wa/2m = 330MHz), and the dimensionless factor (g = 0.05 = 5%, which is reasonable for sub-

pixel registration, then formula (2.122) yields Sk & 5.5m. This is a most noticeable improvement

Sk~ (2.122)

over Sg &~ 450m given by formula (2.73). In other words, with the filter correction in effect, the

U1 fact, wo can be identified either with w1 or with wa.
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displacement of the image in range is practically removed. As for the range resolution (2.117),
it shows little change compared to either (2.71) or the undistorted value 7.

What the correction of the filter helps improve very substantially is the contrast/sharpness
of the GAF. The corresponding estimate is given by formula (2.72) with the following QPE [see
(2.64), (2.67), (2.114), (2.116), and (2.122)]:

~9 ~9 ~9 <1 =2 =1 =2
~ T oo T T |0 — da| T B|oT — 67| T
Pa =lal7p = o7 = a7 =20 =04l =20 = T g ) 1o
_BR|&y. wp.| B  BR|2Sg B7* _ B, (gmcB7*  (r7B (2.123)
Tr2e¢ wi wi wod T2¢| R |wd T2 2ZBuwy 4 AZ wy’

which yields only about 0.2% of contrast deterioration for the parameters in Table 1.1, as
opposed to 20% in the non-corrected case (2.72). If the TEC is reconstructed exactly, then the

correction yields about 4 orders of magnitude of improvement, see Section 2.7.

Remark. Another way of comparing the initial shift and the residual shift (formulae (2.73)
and (2.122), respectively) is to determine the TEC sensitivity, i.e., the minimal value of the
TEC for which the correction is still beneficial. The carrier frequency separation factor Z
in (2.122) cannot be made very large because of the technical limitations. In Appendix I, we
analyze the extreme situation where the separation of carrier frequencies is capped by the single
bandwidth. This is called a split bandwidth configuration. The analysis shows that in this case,
the formulae for the residual shift and the TEC sensitivity have an inverse square dependence
on the system bandwidth, see (I.4) and (I.5), as opposed to the inverse dependence on the
bandwidth in (2.122).

2.9.2.2 Azimuthal factor.

The azimuthal factor of the GAF W4(y, z) with the corrected filter will still be given by formula
(2.75), where instead of (2.74) we substitute

g, _ (T, vao)}; Ton(2", 2, w0)) (2.124)

Then, using formulae (2.50), (2.76), and (2.87) we can write:

~ — ™2 1 o2 ~
o~ (1 ) (1 5250+ 0t - )
0
n\2 1 02
_ (1 + (;2)2 ) (1 - 521+ Qa:?)) (2.125)
0
~2 -2 ~2 —2 ~2 A
~ - yl:ﬂ; (1 - }wp;) “pe ;wpe (x?); + “peQ _;)pegx? + const,
R 2 w; W 4R 2w;

46



where we have dropped the small term lipge yey Q27 — y1), as well as all the terms ~ (z7)3,

which are also small. The first term on the last line of (2.125) corresponds to the first term
on the right-hand side of (2.89), whereas the second and third terms show the effect of the
corrected filter on the azimuthal QPE and azimuthal displacement of the image, respectively.
The term “const” combines everything that does not depend on n.

To evaluate the azimuthal displacement for the corrected filter using formula (2.125), we first
introduce the dimensionless registration accuracy (4 as a fraction of the undistorted azimuthal
resolution (2.81) [cf. formula (2.119)]:

5(Au) = ot = g (2.126)
SA
Then, the error of reconstructing the quantity (DgeQ can be obtained from formula (2.110) with
the help of formulae (2.126) and (2.121):

1 w%wz A G ¥ A
Lgsa ~2z” ORLga’

(2.127)

Formula (2.127), combined with (2.75) and (2.125), yields the residual azimuthal displacement
of the image in the case of a corrected filter [cf. formula (2.90)]:
0(@3eQ)  CaR A
Sp=-RP—P— =2 2.128
2 wg 27 2 Lga ( )

which is approximately 2.5m for the typical parameters given in Table 1.1. Note that formu-
lae (2.122) and (2.128) are similar in the sense that both use the factors (g a/(2Z) to relate
the residual displacement of the image S and Sy4 to the range and azimuthal resolution given
by formulae (2.71) and (2.81), respectively.

Similarly to the range resolution (2.117), the new azimuthal resolution obtained with the
help of formulae (2.75) and (2.125)

. 1XR 1 @pe

Ag =210 2 22¢

A7 2 Lga ( e
shows little change after the correction of the filter [i.e., little change compared to (2.81)]. Yet
the GAF contrast in the azimuthal direction improves very substantially. Indeed, the new value
of the parameter a [see formulae (2.78) and (2.79)] due to the second term on the last line

of (2.125) differs from the one that corresponds to (2.77) [or (2.89)] by a factor of §(w2,)/@2,.
Hence, the same will be the reduction of the azimuthal QPE, and using formulae (2.118),
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(2.119), and (2.82) we get:

0(@he) _ CrmwoLgs
@2, 8Z R’B

Par = dqa (2.129)
Expression (2.129) leads to only about 0.4% of deterioration of the GAF contrast in azimuth,
as opposed to 35% given by formula (2.82).

2.10 The effect of ionospheric turbulence

In our previous analysis regarding correcting the matched filter we have assumed that the elec-
tron number density in the ionosphere was a regular function of the altitude h and, maybe,
the horizontal coordinate x1: No = Ne(z1,h), see Sections 2.4 and 2.5, as well as Appen-
dices B and E. The actual Earth’s ionosphere, however, is a turbulent medium, see Appendix
D.

Turbulent fluctuations of the ionosphere will affect the group and phase travel times that
are otherwise derived in Sections 2.4 and 2.5 with no account for randomness. Specifically, in
the framework of Section 2.4, we assume that the mean electron number density depends only
on the altitude: (Ne) = (Ne(h)). Then, expressions (2.49) for Ty, and Tpp, keep their form, and
so do expressions (2.50) that introduce the average velocities. However, according to (2.9) (and
(D.15), (D.16)), instead of formula (2.92) for the quantity w2, that enters into (2.50), we now

need to write:

1 R, 4drre2 H dh R,
Wpe = - /0 Whe(s)ds — [/0 <Ne(h)>cos{9 +/0 u(s)ds]

Ame? [H dme? B 4me? Ny Ame? B (2130)
= [ vmyan+ ST [T s)as = TETE L [ g,
where the new definition of the TEC is [cf. formula (2.54)]
Ny & /0 H(Ne(h))dh. (2.131)

In the case of a horizontally inhomogeneous ionosphere (Section 2.5), for the group travel

time Ty, we can write following (C.20) and taking into account (2.9):

R R 2
= ds R, 1 z 4me
To(x, 2, w) = ~ = 4+ — N, + d

2<Ne<£1(h)uh)>dh+ % 0 mewg

_R. 1 " gre? 1 [ dme?
oc 2ccosf Jo mew
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which is slightly modified from (D.15) to account for the horizontal inhomogeneity. Similarly,
for the phase travel time T}, we can use (C.21) and (2.9) to modify (D.16):

R ds R, 1 [F: 4gxe?
Ty, 2,0) = [ SE L ((N(s)) + u(s))ds
o Uph(s) c 2 Mew
(2.133)
_&_ 1 H fre? < (& (h) h_/R’ de®
¢ 2ccosf Jy mew? ! mew2'u
The Taylor formula for (Ne) = (Ne(&1, h)) yields [cf. formula (2.83)]:
0
(Ne(€1, 1)) = (Ne(0, h)) + €15 (Ne(0, b)), (2.134)

96

and substituting the right-hand side of (2.134) into (2.132), we arrive at the same formula
(2.87) as in Section 2.5, but with the new definitions of some of the expressions that it is

comprised of. Namely, the quantity J)ge enters into formula (2.87) through the average velocity

Tph(w) = ¢ (1 +3 w";), see (2.50), and according to (2.132), it should now be evaluated as
follows [cf. formula (2.130)]:

dre® [1 (7 R Are® Ny | 4me* =

_9 H

= = ))dh + —— = —= ds, (2.135
wpe |:H/0 < ( —"_ / :| H + meRz 0 lu’<8) 87 ( )

Me Mme

so that the TEC is re-defined again, this time via (N¢(0, h)) [cf. formula (2.131)]:

H

Ny d—ef/ (N (0, h))dh. (2.136)
0

Moreover, the first moment Q(z", z) that also enters into formula (2.87) is re-defined in the

presence of turbulence according to (2.134) [cf. formula (2.88)]:

def 1 H 47T€ 0

0 = - -
o) o | i, > g, (Ne(0. 1) (2.137)

In doing so, we emphasize that the factor w - appears in the second term on the right-hand
side of (2.87) only for the convenience of notation. In fact, this second term does not depend
on @ge because this quantity also appears in the denominator in (2.137). Hence, randomness
contributes only to the first term on the right-hand side of (2.87) via (2.135).

Along with the travel times, turbulent fluctuations may impact the contraction and rate
of the propagating pulse. Specifically, formulae (2.52) and (2.64) will remain unchanged, but
the expression for 67 will now depend on &3, given by (2.130) or (2.135). Altogether, the new
quantities will affect the dispersive propagator (2.38), (2.40), and through it, both the range
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and azimuthal factor of the GAF, see formulae (2.60) and (2.61).

It turns out that the overall effect of turbulent fluctuations on the performance of the SAR
sensor in range is small. More precisely, even though the quantity w - that determines the shape
of the propagating pulse (2.52), (2.64), as well as the displacement of the target in range (2.73),
contains a stochastic component ~ fo s)ds, see (2.130), (2.135), this component is small

because p is ergodic and (u) = 0. Indeed, let

R,
W:Au@w (o) = 0, (2.138)

denote the random contribution to the eikonal (up to a constant factor). Then, following
[RKT89b, Chapter I], in the case of a homogeneous plasma we obtain with the help of (2.17)
and (2.15):

(pg) =R, /°° V(g)qdq = 7R, _Ca
0 0 2(k — 1)

VTl (k) _Rurg, o
20T (k — 3)(k—1) 2 ).

=R, <N2>

For the inhomogeneous plasma, we can write following [RKT89b, Chapter I] and using (2.11):

ro [, ro, o [T 2
=y [ ulends =P [ vo)2ds
0 0 2.139)
ro M? (1 def To M? @
~ 2 cosh (Ne(€1(R), h))*dh = 2 cosh >

where according to [ArmO05], the value of Ny for high altitudes H is between 9.3 - 1018cm =5

and 9.9 - 102%c¢m~?, with the average of about 5 - 101%¢m 5.
Next, we return to formula (2.132) for the travel time in the turbulent ionosphere and
realize that the second term on its right hand side accounts for the contribution of the baseline,

i.e., deterministic, dispersion, whereas the third term is responsible for that of the turbulent

47re

fluctuations. The magnitude of the second term is ~ l > N, while the magnitude of the
1 4me? ( 2>

third, random, term shall be estimated via its standard dev1at10n which yields ~ oz V ($0)-

Hence, the ratio of the third term to the second one is

{eg)  My/roNon

Nu Nu

< 1. (2.140)
Indeed, the ratio (2.140) is approximately between 2-10~% and 7-10~* for the typical parameters

listed in Table 1.1, including the correlation length ro that ranges between 10°cm and 10%cm.

Similarly, to see what the role of randomness is in determining the shape of the propagating

50



pulse we need to compare the standard deviation 1/(d72) to the mean (67), where o7 is defined
by formula (2.52) and nge is defined by formula (2.135). It is easy to see that the ratio %T;)
evaluates to the same quantity as given by formula (2.140). We therefore conclude that the
contribution of turbulent fluctuations to travel times, as well as to the change of the pulse
duration and rate in the course of its propagation in the ionosphere, is much smaller than that
of the baseline dispersion.

To evaluate the azimuthal factor (2.61) of the GAF, we denote similarly to (2.138)

R,
On = /0 w(s)ds, (2.141)

and instead of (2.75) obtain:

N/2 i 2
/ 21w (R‘I"n"‘% 4#6290’”)
0

ew

Wi(y,z)= > e° " , (2.142)
n=—N/2

where [cf. formula (2.89)]

_yat | Ame® Ny (21)° 9,
H

U, =
" 4R? 2w

. 2.143
R? Mews Q1 ( )
Formula (2.143) is written under the same assumptions of z; = 0 and y3 = z3 as in Section 2.4,
and the TEC Ny is given by (2.136). Again, we note that the last term on the right-hand side
of (2.143) does not depend on @2, because of the definition of Q (2.137).

Due to the central limit theorem [CHO6, Chapter 2], each eikonal ¢,, of (2.141) is a Gaussian

random variable with zero mean, (p,) = 0. Hence, the mean of each term of (2.142) is
2iwg RU +l 4me? > 2iwn R oo iwg 4me? _ §2
<e N ( "2 mewd o = ewTOW"il e mﬁ“’gge 2<<P%>df

27 () J—oo (2.144)

The variances of all individual ¢, can be assumed approximately equal to one another
because the variation of the integration distance R, in (2.141) with respect to n is small
compared to R, see (2.76):

2
W} [ 4me? (P2)~ 0%  n=-N/2,...,N/2.
2 \ mewd "
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Then, as shown in [Tsy09al, we have:

N2
(Wi, 0)) o« e/ 3 e e, (2.145)
n=—N/2

where U, is given by (2.143) or, equivalently, (2.89) in the non-turbulent case. The factor e~/
in front of the sum on the right hand side of (2.145) represents the phenomenon of extinction,
see [RKT89b, Chapter I]. The value of o2 for the typical parameters we have chosen, see
Table 1.1, is 02 ~ 0.058 if rg = 1km, and o2 ~ 0.58 if ry = 10km. Other than the extinction,
the sum on the right hand side of (2.145) is the same as that in (2.75); it controls the SAR
performance in azimuth in the case of a non-fluctuating ionosphere.

While formula (2.145) shows that the mean value of the azimuthal factor of the GAF
essentially coincides with its deterministic counterpart, the ionospheric turbulence still manifests
itself through the presence of random eikonals ¢, in the exponents on the right-hand side of
(2.142). The effect of randomness on the azimuthal resolution is stronger than that on the
range resolution. The reason is that the range resolution is basically determined by a single
look, and because of the ergodicity the contribution of turbulent fluctuations into the radar
reading averages out, see formulae (2.138)—(2.140). On the contrary, azimuthal resolution is
built using multiple looks, n = —N/2,..., N/2, and whereas the contribution of randomness
into each individual reading is still small, it can get amplified when those readings are summed
up.

To quantify this “un-averaging” effect [Tsy09a], one needs to estimate the variance of the
sum (2.142). Each term in this sum is a random variable with a logarithmically normal distribu-
tion [Gne97], and as long as those variables are uncorrelated, they are also independent [Tsy(09a,
Appendix F]. Therefore, the covariance of the received signals will also provide a measure of
independence for the random variables in the sum (2.142). If the fluctuations of the phase are
small, which is the case for our study, then the correlation function of the field is approximately
equal to the correlation function of the electron number density (2.10), see [RKT89b, Chapter
I]. Therefore, the correlation length ry given by formula (2.15) also provides a characteris-
tic scale of how rapidly the received field decorrelates along the synthetic antenna. Roughly
speaking, for the locations that are further apart than ry the received pulses will be uncorre-
lated and hence independent, whereas for the locations that are closer than ry they will not be
independent.

Therefore, we follow the argument given in [Tsy09al: the variances of the individual terms
in the sum (2.142) are close to one another. Thus we can artificially split the synthetic array
into several clusters of elements with the length rg, and assume that the random variables from

the sum (2.142) that belong to a given cluster are identical, whereas for different clusters they
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are independent, see the argument between (2.144) and (2.145). An estimation for the total
length of the array, Lg4, is given in Table 1.1 at 50km. Therefore the number of clusters is

~ Lr%, and the number of elements in each cluster is

) 70

Ne=(N+1)—~ —.
o~ (N + )LSA Amy
This yields the variance of (2.142):
L
0% = ZIAN2,2 o 10 (N 11202, (2.146)
T Lgsa

and as also shown in [Tsy09a], the corresponding relative change of the azimuthal resolution is

2\ Lsa~
and 17% if ro = 10km. It may get even higher if the instantaneous values for M and Ny 7, see

For the typical parameters (see Table 1.1), this quantity is about 1.7% if ro = 1km,

(2.11) and (2.139), happen to be larger than their typical averages.

The fact that the performance of the SAR system in range is only weakly sensitive to
turbulent fluctuations indicates that the ionospheric turbulence will basically not affect any of
the considerations of Sections 2.8 and 2.9 related to reconstructing the TEC with the help of
formula (2.94), improving the robustness of reconstruction by means of the image registration,
and assessing the quality of the image obtained with the corrected filter. At the same time, as
the random contribution to individual travel times averages out, the proposed filter correction
is essentially based on deterministic quantities only. As such, we do not expect that it will
provide an efficient means for reducing the ionospheric distortions of the image that are due to
the turbulence.

It is also to be noted that the conditioning of formula (2.110) may be better than that of
formula (2.94) because the individual quantities ygl) and y£2) may not be as large compared to
the azimuthal shift Ay;. There may, however, be a potential difficulty of a different nature in
evaluating Q by formula (2.110), because unlike the range resolution, the azimuthal resolution
of a SAR system is sensitive to the turbulent fluctuations of the ionosphere, see formula (2.146).
This sensitivity may induce larger errors in y%l) and in). Addressing the accuracy considerations

for @ will be a subject of future study.

2.11 Chapter Summary

In this chapter, we have seen how the Earth’s ionosphere can affect the performance of a satellite
based SAR system operating in the P-band. The analysis was conducted for the simplest case of
a scalar interrogating field propagating in an isotropic ionosphere. It was shown that the images

generated by the system will be distorted in a number of ways due to a mismatch between the
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received signal and the matched filter. Then, we have introduced and analyzed a method of
probing the target, and hence the ionosphere, on two distinct carrier frequencies [ST11]. It can
provide an accurate estimate of the ionospheric TEC, which subsequently helps correct the
filter. However, this method appears poorly conditioned, meaning that small errors in the input
data may result in large errors in the estimate of the TEC. The use of image registration can
alleviate this issue and make the procedure both accurate and robust [GST13a]. There is no
perfect reconstruction method for the TEC though, and thus we investigated how the errors
of the reconstruction affect the performance of the corrected matched filter. We concluded this
chapter with quantifying the effect of the ionospheric turbulence on spaceborne SAR images,
which was done in the statistical sense. We saw, in particular, that turbulence mainly affects
the azimuthal performance of the system. This analysis may help develop the future mitigation
strategies for image distortions due to the ionospheric turbulence.

In the following chapter, we extend our approach to the case of polarized SAR signals

propagating in an anisotropic (gyrotropic) ionosphere.
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Chapter 3

Single-polarization SAR imaging in

the presence of Faraday rotation

3.1 Introduction

This chapter is based on [GST13b].

As we have already seen, the Earth’s ionosphere may have an adverse effect on spaceborne
synthetic aperture radar (SAR) imaging. In [Tsy09a] and the previous chapter, it was shown
that this adverse effect shall be attributed to the mismatch between the actual radar signal
affected by the dispersion of radio waves in the ionospheric plasma, and the matched filter used
for signal processing. Accordingly, to improve the image one should correct the filter, which
requires knowledge of the total electron content (TEC) in the ionosphere along the signal path.
The TEC, in turn, can be reconstructed by probing the ionosphere on two distinct carrier
frequencies and exploiting the resulting redundancy in the data.

The analysis in [Tsy09a] and Chapter 2 was done under the assumption that the inter-
rogating field is scalar, and that it propagates in an isotropic medium. In reality, however,
the electromagnetic field is represented by vector quantities, and the ionospheric plasma is
anisotropic (gyrotropic) due to the magnetic field of the Earth. The primary effect of gyrotropy
on a linearly polarized electromagnetic wave is the Faraday rotation (FR). The FR is a slow
rotation of the polarization plane due to the accumulating phase difference between the doubly
refracted circularly polarized waves that form the original linear polarization. The phase differ-
ence accumulates because the two circularly polarized waves propagate with slightly different
phase speeds in a gyrotropic plasma [Gin64, LL84].

The Faraday rotation may have both a positive and negative effect on the transiono-
spheric SAR imaging. If the full polarimetric data are available, then one can reconstruct

the FR angle for the radar pulse round-trip between the antenna on the orbit and the
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target on the ground. The latter, in turn, can be used to obtain the TEC, see, e.g.,
[Gai98, WQWHO03,FS04, MN08, JRZ109] and [LP09, Section 10.4], although the resulting value
of the TEC will be subject to ambiguities in the FR angle that can only be determined up
to a constant multiple of 2. If the full polarimetric data are not available, then, according
to [WQWHO03,FS04], an explicit a priori estimate of the Faraday rotation is required for under-
standing how the ionosphere affects the image. For single-polarization imaging, the FR yields
an additional mismatch between the received signal and the filter. This mismatch can cause
an adverse effect if, e.g., the returned linear polarization is (nearly) perpendicular to the emit-
ted polarization, and hence perpendicular to the field direction that the antenna can receive
efficiently. The previous scenario is by no means impossible, because the rotation angle in the
P-band! can be quite large.

Even if the emitted and received polarizations are not close to perpendicular, the FR may
still be detrimental for imaging. Indeed, the rotation angle may vary substantially along the
radar chirp, in which case one can qualitatively think of the received signal as “twisted.” This
happens, in particular, when the carrier frequency is low (P-band) and the bandwidth is high
(for better resolution). To the best of our knowledge, the twisting phenomenon has not received
any attention in the previous studies of the Faraday rotation for SAR, see [Gai98, WQWHO03,
FS04, MNO08, JRZ 09, LP09]. It is, however, very important, as it can cause substantial image
artifacts, such as split intensity peaks, see Section 3.5.

To quantify the overall effect of the Faraday rotation on a spaceborne SAR image, we first
notice that the impact of the magnetic field of the Earth on the dispersion of radio waves in the
ionosphere is negligible, and therefore, the dispersive propagation and the Faraday rotation can
be studied independently. Moreover, it turns out that the matched filter corrected for dispersion
in the scalar framework, see [Tsy09a] and Chapter 2, will still eliminate the dispersion-induced
distortions in the presence of gyrotropy, while leaving the FR effect intact. Hence, the latter
can be analyzed regardless of the dispersion, i.e., as if the rotation accompanied a plain non-
dispersive propagation (see Appendix K).

In the current chapter, we use the image autocorrelation analysis to quantify the effect
of the Faraday rotation on a single-polarization spaceborne SAR image, and correct for the
corresponding distortions. The presentation is organized as follows.

We briefly revisit the SAR ambiguity theory in Section 3.2. Section 3.3 describes the modi-
fication of the radar ambiguity function due to the FR. In Sections 3.4 and 3.5, we discuss how
one can use the information from a given SAR image in order to detect the Faraday rotation
and characterize its variation over the frequency band of the radar. Subsequently, the SAR fil-

ter can be corrected to match the actual received signal in the presence of the Faraday rotation

'Recall that P-band is the range of frequencies that partially overlaps with VHF and UHF, and which may
be of interest for a number of SAR applications that require, say, some ground and/or foliage penetration.
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and thus improve the quality of the image (Section 3.6). As in Chapter 2, a number of lengthy
derivations have been moved to Appendices. Specifically, the FR of a chirped signal is analyzed
in Appendix J, and the properties of the SAR ambiguity function in the presence of both the
dispersion and FR are studied in Appendix K and Appendix L. Appendix A is also revisited.

3.2 Review of the SAR ambiguity theory

Referring back to Chapter 2, we recall that the sum (2.31) is called the generalized ambiguity
function (GAF) of the SAR. The constant t" in (2.30) can be removed by changing the in-
tegration variable (shifting). Then, noticing that the dependence of m and A(u}) on n is
through ™ and is therefore weak, we can pull these terms out of the summation over n, so that

the GAF (2.31) can be factorized (see [ST11, GST13a,Che01, Cut90]):

W(y,Z) %WAQI/?Z) 'WR(y,Z)- (31)
In formula (3.1),
N/2
WA(:% z) — Z 62iwo(RZ—R2)/c7 (32)
n=—N/2
Wr(y,z) = | A(ul)A(u3)dt, (3.3)
X

and the superscript “0” refers to formulae (2.30) for z = x°. We emphasize that representa-
tion (3.1)—(3.3) is only approximate. The error of the factorization is analyzed in Appendix A
and is shown to be small, of the order of w%, see formula (A.19). Moreover, this error becomes
even smaller (insignificant) if the target z and the reference point y have either the same range
coordinate or the same azimuthal coordinate.

The range factor Wg of (3.3) is expressed as

0 0
RO — RY
Agr

™

Wgr(y, z) = Twy(§) = Twy (7r ), where Ap = B (3.4)

The quantity Ag in formula (3.4) is the range resolution, and

- T/2
wp(§) = ! / A(uf) A(ug) dt ~ 1/ e du = sinc €,
o o (3.5)
b:w gzbl:ﬂ.Rg_Rgxﬁ(yQ—zz)siné?
c ' 2 Ap AR :
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The function wy(§) of (3.5) defines the shape of the GAF in the range direction. Also note that

wy(€) = Lwy (%), where wp was used in the previous chapter and defined in (2.69).

Remark. In formula (3.5) [as well as in (3.18) below], we use £7/2 as the integration limits.
In Appendix A, more accurate expressions for these limits are introduced: £7°/2, where 70 =
T — 2|RY — RJ|/c [see formulae (A.4)-(A.5)]. Since for the high range resolution chirp we are

assuming Bt > 1 [CW05, JWET96], one can show that

T -7 _2ARy R} Ag _ 7
T cT cT Bt

so the difference is insignificant.

3.3 Ambiguity function in the presence of the Faraday rotation

The propagation of radar signals in the ionospheric plasma affects the SAR imaging in two ways.
First, the temporal dispersion of radio waves alters the envelope and phase of the received signal,
see [Tsy09a] and Chapter 2. Second, the magnetic field of the Earth causes the Faraday rotation,
see [Gin64, WQWHO03, DS02]. These distortions, if not accompanied by the proper corrections
of the filter, lead to image deterioration due to the filter mismatch.

In Appendix J, we consider the effect of the FR on the chirped signals. For an antenna
operating on a single linear polarization, the effective antenna signal in the presence of the

rotation is related to the non-rotated signal ¥ (¢, z) of (2.25) as

Yp(t,x) = 1(t, x) cos pp(w), (3.6)

where pp is the rotation angle [see the top row of (J.18)]. For the two-way propagation in a
magnetized plasma, the angle ¢pp depends on the instantaneous frequency as

R w2 Qcos
. R wpoftcos § o w2 (3.7)

Pr(w) = 2¢c w?

[see also (J.19)], where R is the distance from the target to the orbit (300-1000 km), wp. is the
Langmuir frequency, €2 is the electron cyclotron frequency, and ( is the angle between the ray
path and the magnetic field. For the actual ionosphere, the quantity wgeQ cos 8 in (3.7) should
be averaged over the ray path. Formula (3.7) shows that the low frequency and high frequency
parts of the chirp (2.18) will be rotated by different angles and, according to (3.6), attenuated
by different factors when received by the antenna.

Next, we approximate cos ¢ in (3.6) by the first two terms of its Taylor expansion w.r.t.
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u=1t—2R/c, and, using (2.20), obtain:

2q

cos pp(u) = cospp(w(u)) ~p+ —u (3.8)
where
p = cospr(wo),
= ZLCOS@F(UJ ) = T sin —dSOFd—w(w )
1= 2 du 0/7 79 vE dw du° (3.9)
BR wQeQ cosf3 | B )
~ 7p73 sinpp(wp) = —@r(wo) sin pp(wp).
c wy wo

Thus, the FR manifests itself by an additional attenuation of the signal received by the antenna,
with the attenuation coefficient, cos ¢, varying over the chirp [see (3.6) and (3.8)]. Two non-
dimensional constants, p and ¢, are introduced in (3.8), (3.9) to describe this effect. If we take
the amplitude of the non-rotated antenna signal as 1, then, with the FR present, the amplitude
at the center of the chirp is p, while the end-to-end variation over the chirp is 2¢g. We have
|p| < 1 by definition, and |¢| < 1 as a condition of applicability of the Taylor linearization,
see (3.8).

Of course, the use of linear approximation in (3.8) is justified only if the variation of cos pp
over the chirp is small, i.e., |¢| < 1. The Faraday rotation angle for wy/2r < 0.5GHz may
reach /2 for ionospheric propagation, see [DS02]. Taking B/wy ~ 5%, we have about 0.1 - /2
variation of the Faraday rotation angle over the chirp, see (3.9), which we consider sufficiently
small for linearization.

As mentioned in Section 3.1, the cause of the FR is double circular refraction in a gyrotropic
medium [LL84, Chapter XI], which results in different propagation speeds for two circular waves
that form the original linear polarization, see also Appendix J for detail. In the dispersive
yet rotation-less case, see [T'sy09a] and Chapter 2, correcting the filter for dispersive effects
helps remove the corresponding image distortions, and the expression for the GAF becomes
similar to that for the non-dispersive case. In Appendix K, we show that in the presence of
both the dispersion and gyrotropy, such a filter will still eliminate the dispersion-related part
of distortions, leaving the rotation effect intact. For that reason, for the rest of this chapter
we assume that the FR accompanies a plain non-dispersive propagation of the radar signals
described in Chapter 2. In a comprehensive setting, this means that the compensation of the
Faraday rotation in the SAR filter discussed in Section 3.6 should be applied on top of the

dispersion correction.
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In the presence of the Faraday rotation, the imaging formula (2.29) transforms into

nww—/Pa—mm—mmwaamﬁ

(3.10)
— [ o)Wy, )iz,
where g (t, ) is given by (3.6) and the kernel Wg(y, z) takes into account (3.8):
Wily,2) = | Play)Plus) cospr(us) di
X , (3.11)
= pW(y, 2z) +a-Wq(y, 2).
In formula (3.11), W(y, z) coincides with that of (2.29), and
W,(y, z) = / Pluy)us Plus) dt. (3.12)
X

Remark. In the rest of this chapter, we will be using the subscript “¢” to denote contributions

due to the Faraday rotation, as in (3.12); in the isotropic case (i.e., when there is no magnetic
field), these terms vanish. The subscript “F” will be used to denote the characteristics affected
by the Faraday rotation, i.e., having both rotational and non-rotational “components,” as on
the left-hand side of (3.11); in the isotropic case, these expressions reduce to their isotropic

counterparts, e.g., Wr(y, z) in (3.11) reduces to W(y, z) in (2.29).

For the sequence of emitted and received signals, definition (2.31) is replaced by (K.4) with

primes dropped:
N/2

WF(’y,Z) = Z W}T%(yvz% (313)
n=—N/2

where Wi(y, z) is given by the first line of (3.11). Using approximation (3.8), we can write:
n n 2 D, n\,, " n
Wiy, z) =pW"(y, 2) +q— | Plup)uzP(u)dt, (3.14)
X

where W"(y, z) is the same as in (2.30). An approximate factorization of the GAF (3.13),
(3.14) similar to (3.1) is also possible:

We(y,z) = Wa(y, z) - Wrr(y, 2), (3.15)

60



where the azimuthal factor W4 (y, z) does not change and is still defined by (3.2), and

2
Wir(y. 2) = Wa(y, 2) + 4~ Wyn(y. 2). (3.16)

In formula (3.16), Wg(y, z) is given by (3.3), and

Won(y, z) = / A)ud A(ul) dt. (3.17)

Thus, the effect of the Faraday rotation results in a modification of the range factor in the
approximate formula (3.15) compared to (3.1): Wgrr(y, z) of (3.16), (3.17) replaces Wg(y, z)
of (3.3). It is shown in Appendix L that the error due to the factorization (3.15) is small — of
the same order as that for (3.1), i.e., about w%, see formula (L.5).

Introducing a new dimensionless function

_ T2
wq(&) def % / A(ug)ugA(ug) dt ~ % ue™ du
it Jy it2 ) 1 )0

(3.18)

= 2 = () = i

= Sag 77—/26 u = dgwp = —wy(§),

we can represent Wgrp of (3.16) as

Wrr(y,2) = Wrr(§) = 7(pwp(§) + iqwg(§)), (3.19)

where wy, b, and £ are given by (3.5).

Remark. When integrating in (3.18), we have replaced 70 with 7, similarly to how we did it
for wy, see formula (3.5) and the subsequent remark. This introduces a small error. The formulae

with no simplification can be found in Appendix L, see (L.4).

3.4 Detection of the Faraday rotation

The Faraday rotation affects the GAF Wg(y, z) via the range factor (3.19). It is to be noted
that while the real part of the range ambiguity function Wrp in (3.19) is an even function of
its argument, see (3.5), the imaginary part is proportional to w, = —wz’) and is therefore an odd
function, see Figure 3.1 (the singularity of w, at £ = 0 is removable by setting wy(0) = 0). As
far as the relative contribution of w, and w, into Wgp, there are several qualitatively different
regimes determined by the range of variation of the attenuation coefficient cos@r over the

bandwidth, see (3.8).
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Figure 3.1: Components of the range factor (3.19) in the presence of the Faraday rotation.

(a) |g| < |p|: This is the case of nearly uniform attenuation where all possible pf’s lie in a
narrow range of angles, see Figure 3.2(a). In essence, it is this case that has been previously
assumed in the literature when studying the Faraday rotation for SAR applications [Gai98,
WQWHO03, FS04, MN08, JRZ109, LP09]. As the relative contribution of w, is small, the
correction for the Faraday rotation is not necessary. This is also the case where the detection

of the Faraday rotation by a single-polarization instrument is difficult.

(b) |p| < |g|: The case of an intermediate range of ¢, see Figure 3.2(b), that presents a
challenge — the image is both attenuated and distorted by the Faraday rotation; yet if p # 0,
the “double peak” feature of wy(§) is smeared out by the pw,(£) term in (3.19) and may

not be easily observable.

(c) |g| 2 1: The range of pr is wide, see Figure 3.2(c), which is the opposite to case (a). The
correction is required; however, the linearization of cos pp(u) in (3.8) is not valid. We do

not consider this case hereafter.

The foregoing three cases can be very roughly discriminated by means of the sub-band
processing. Assume that the entire bandwidth B of the signal is split, say, into three sub-bands
of bandwidth B/3 each. The average of cospp over a sub-band will be approximately the
same for all sub-bands for case (a) and will vary substantially from one sub-band to another

for cases (b) and (c), see Figure 3.2. Lower resolution images can be obtained by sub-band
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Figure 3.2: Examples of possible ranges of ¢ for the chirp propagating through a gyrotropic
medium shown in a plane normal to the direction of propagation. The thick arrow indicates the
polarization of the emitted field. The ranges for ¢p for B/3 sub-bands are shown by dashed
lines according to (3.8), while the values of cos ¢ averaged over the sub-bands are indicated
by triangles on the horizontal axis.

processing as seen in Appendix I, and a substantial variation between their intensities can be
indicative of the presence of a significant Faraday rotation.

All subsequent analysis in this chapter applies primarily to the intermediate case (b).

3.5 Evaluation of the Faraday rotation effect

If the reflectivity of the target is not known, then in the problem of reconstruction of the

Faraday rotation parameters from the image Ir we have one equation [cf. (2.29)]:

Ip(y) = / Wr(y, 2)7(2)dz (3.20)

with two unknowns: Wr of (3.15) and ©. The information about the Faraday rotation is con-
tained in Wp, but in order to retrieve this information from (3.20), we should make certain
assumptions about the other unknown, i.e., . Specifically, we adopt the model of a homogeneous
distributed scatterer for 7(z), and subsequently employ the image autocorrelation analysis. Al-
ternatively, see Section 2.8, one can use point scatterers: U(2) =Y Vn0(z — zpy) so that (3.20)
yields: Ir(y) = >, vmWF (¥, zm). Considering Ir(y) at sufficiently many reference locations
y as given data, and taking into account that w, and wg in (3.19) are known analytically, one

can obtain an overdetermined system of equations and solve it in a weak sense with respect to
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p and ¢. In a practical setting, however, the problem with dominant point scatterers is their
availability. That’s why we subsequently focus on the approach suitable for distributed scatter-
ers. Our goal is to find the parameters p and g that characterize the Faraday rotation, see (3.8)
and (3.16). It turns out that only the ratio of those parameters can be obtained, but it proves
sufficient to correct the filter, see Section 3.6.

We first notice that imaging in azimuth is not affected by the Faraday rotation, see (3.1)
and (3.15), (3.16). Hence, we can exploit the decoupling between azimuth and range due to the
factorization of the GAF. In other words, we can process the image in azimuth ahead of time
and subsequently focus on the one-dimensional imaging with respect to the range coordinate

only. To do so, we recast (3.20) as
o
I(yl,yz) = // WA(yl,Zl)WRF(Rg,Rg)ﬂ(zl,ZQ)dzleQ, (3.21)

where W4 is given by (3.2), (2.37), Wgr is given by (3.16), (3.3), (3.17), and the arguments
of W4 and Wgp in (3.21) emphasize their dependence on the azimuthal and range variables,
respectively. We also assume that the function (21, 29) in (3.21) already accounts for the
transition from the volumetric reflectivity (z) = (21, 22, 23) to the single layer 7(z1, 22)d(23)
on the surface z3 = 0, see Section 4.3 below.

The difference Rg - RY

A

which enters the argument of Wrp via (3.19) and (3.5), does not
depend on either y; or z1, see formula (A.11) for 2} = 0. Therefore, equation (3.21) transforms
into:
oo o
Hn) = | Warls) [ Waln2)0(e1,20)d2 da, (3.22)
— 00 —00

vr(y1,22)
where vg(y1, 22) is already an image in the azimuthal direction, but still retains the meaning of
a ground reflectivity in the range direction. Equation (3.22) can be considered independently
for each yi, which effectively implies one-dimensional imaging in range only. As such, we will
henceforth use the plain non-indexed variables (y, z) instead of (y2, 22), and also drop y; from

the arguments of I and vg. Then, formula (3.22) yields:
I(y) = / Wrr(y, 2)vr(2)dz, (3.23)

where Wgp is, in fact, a single variable function: Wrp = Wrp(y — 2), see (3.19), (3.5).

To model a homogeneous distributed scatterer, we assume that vr(z) has a rapidly decaying
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autocorrelation function (ACF) that we approximate by the delta function:
def [ _
Vi(z) = / vr(y — 2)vr(y)dy = 05(2). (3.24)

The quantity o2 in formula (3.24) is the average backscattering intensity. The approximation
in (3.24) shall be understood in the sense of distributions, so that for any appropriate test
function ¢(z) we have [V, (2)¢(z)dz ~ o24(0). The assumption that the ground reflectivity
has a short range autocorrelation function is common in the literature, see, e.g., [Que90,0Q98].
In practice, it means that the characteristic scale of the ACF of (3.24) is much shorter than the
range resolution Apg.

With the help of (3.24), we can easily compute the ACF of the image I(y) of (3.23):

/Z I(y)I(y + h)dy

- /_oo /_00 Wrr(y — 2)vg(z)dz /_00 Wre(y + h — 2)op(2)dZ dy

— /_OO /_OO Wrr(2)vr(y — 2)dz /_OO Wge(2' + h)or(y — 2')d2 dy

— // - Wre(2)Wrr(Z + h)vr(y — 2)vr(y — 2/)dzdZ'dy

- //OO Wer(2)Wrr (2 + ) /oo vr(y — 2)UR(y — 2)dydzdz’

= //OO Wre(2)Wrp(Z + W)V, (2 — 2')dzd?’

=0’ /OO Wrr(2)Wrr(z + h)dz. (3.25)
Next, introduce a shorthand notation

def

wn s = (o ruz) O [ w(@uale + O de,

where w; 2 denote any of the functions w), or wgy, and ¢ = Bhsinf/c. Then, using (3.19), we

can transform the integral on the right-hand side of (3.25) as follows:

/ Wre(2)Wrrp(z+h)dz = 72 <p2wp*wp+q2wq*wq—l—ipq(wq*wp—wp*wq)). (3.26)

c
Bsin 6

Using contour integration on the complex plane, one can show that the function w, * w, from
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(3.26) takes the form

Wy * Wy = /_oo 812§Wd§ = 7sinc (, (3.27a)

while for the remaining three terms on the right-hand side of (3.26), we have:

—Wp ¥ Wy = Wy * Wy = CTC(wp * Wp) , (3.27b)
and
d d?
Wy * Wy = —d—c(wq * Wwp) = —d—cz(wp * Wp). (3.27¢)

Substituting (3.26)—(3.27) into (3.25), we arrive at

/ I(y)I(y + h)dy = nD7> 5 SC, 5 (sine ¢ +2iQ sinc’ ¢ — Q*sinc” ¢), (3.28)
oo n
where

D=p%2 and Q= %.

The left-hand side of equation (3.28) represents the data. For any given value of h, the ACF
of I(y) can be evaluated directly from the image, although in practice the integration limits
are, of course, finite. The right-hand side of equation (3.28) is rather a function of h defined
by an analytic expression (recall, { = Bhsinf/c); this function also depends on two unknown
parameters, D and ). By choosing sufficiently many distinct values of h, we can obtain an
overdetermined system of equations that can be solved with respect to D and @ in a weak
sense. For example, one can use an appropriate form of nonlinear least squares, see [Kel99]. We
leave the issues of conditioning of the aforementioned overdetermined system and robustness
of its least squares solution for the future study. Instead, in this chapter we show how the
reconstructed parameters of the Faraday rotation p and ¢ can help correct the matched filter
and thus improve the image. It is to be noted that the individual values of p and ¢ can only be
determined from D and () up to a common factor ~ % However, knowing their ratio Q) proves

sufficient for implementing the filter correction, see Section 3.6.

3.6 Reducing image distortions due to the Faraday rotation

In the presence of the Faraday rotation, the filter P(t — 2|x — y|/c) does not match the received
signal ¥ p(t, ) in (3.10). The distortions created by this mismatch can be reduced by using
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the filter Pp(t — 2|z — y|/c) that will match ¢ (t,x). The expression for Pr(t) involves the
parameter ) = % that characterizes the Faraday rotation (see Section 3.5), and is given by

[cf. (2.18)]
Pp(t) = Ap(t)e™*, where Ap(t) = x, ()it (1 + ?t) (3.29)

Using formulae (3.6) and (3.8), the factorization (3.15), and the corrected filter given by the
conjugate of (3.29), we obtain the following expression for the new range ambiguity function
[cf. (3.3) and (3.16), (3.17)]:

War(y,2) = [ Ae(liacd) (p+ 2a2) . (3.30)
X

Knowing that ¢,, = 0 for n = 0 and performing the integration in (3.30), we get instead of (3.19):

Wrr(€) = pr((1+ Q2)wy(€) + 2iQuq(€) — 2Q%wyq (€)),
where the new dimensionless function wgq(&) def wq(§)/€ has a removable singularity at £ = 0
if we set wqq(0) =1/3.
To demonstrate the superiority of the corrected ambiguity function WRF over its unmodified

form (3.19), we plot the corresponding normalized range intensity PSFs

[Wrr(§)]? and [Wrr(€)]?

s (3.31)
maX’WRF‘Q maX|WRF|2

for several values of @@ = q/p, see Figure 3.3. The dashed vertical lines indicate a 3dB drop of
intensity from the maximum. It can be readily seen that the resolution is improved in all cases,

however, a more significant improvement is observed for larger (), as expected.

3.7 Discussion

In the current chapter, we have introduced a mathematical model and analyzed the effect of
the Faraday rotation on single-polarization transionospheric SAR imaging. Unlike in all other
studies of the Faraday rotation in the SAR literature (that exploit either single-polarization
or polarimetric framework), our analysis takes into account the variation of the rotation angle
along the interrogating chirp, and offers a venue for correcting the matched filter in those cases
where the impact of the Faraday rotation on the image is deemed detrimental. Specifically, we
first propose an approach to rough detection of the Faraday rotation based on sub-band image
processing. Then, we employ the image autocorrelation analysis to relate the parameters of the

Faraday rotation defined within our mathematical model to certain observable quantities. This
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Figure 3.3: The original and corrected range intensity PSF curves (3.31) and -3dB resolution
for different values of Q.

allows us to reconstruct the foregoing parameters and subsequently correct the matched filter.
The corrected filter is shown to reduce the distortions of the image due to the Faraday rotation.
This correction is applied on top of the corrections developed previously for the dispersive
propagation, see [Tsy09a] and Chapter 2.

Another important aspect of the system is the anisotropy of the target. Scattering of the
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polarized radio waves off an anisotropic target material is the topic of Chapter 4.
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Chapter 4

A linearized inverse scattering
problem for polarized waves and

anisotropic targets

4.1 Background

This chapter is based on [GST12]. Its objective is to analyze the scattering of the linearly
polarized electromagnetic waves off anisotropic targets in the framework of the first Born ap-
proximation. This analysis will help relate the observable quantities, i.e., the characteristics
of the scattered field, to the physical properties of the target, such as the permittivity and
conductivity of its composition material. Hence, it will generalize to the vector case the rela-
tions between the received field and the ground reflectivity function obtained in Chapter 2 for
the scalar setting. In the future, the results of this chapter may help build a full-fledged SAR
ambiguity theory for multi-channel imaging.

Appendices M through Q correspond to Chapter 4.

4.1.1 Direct and inverse scattering problems

Maxwell’s equations of electromagnetism in CGS units [LL75, LL84]:

187H+VXE:0, V-H =0,
cor VX H=——"(j+j),  v.D=0,

govern the electromagnetic field driven by the extraneous electric current with the density

3 = () (g t). In system (4.1), c is the speed of light in vacuum, E and H denote the
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vectors of the electric and magnetic field, respectively, and D is the vector of electric induction,
which is related to the electric field via the permittivity tensor € = e(x) (hereafter, the dot “-”
denotes the tensor convolution):

D=¢-E. (4.2)

The total current in system (4.1) is a sum of 7 and the conductivity current j given by
j=o0-E. (4.3)

The quantity o in (4.3) denotes the conductivity tensor, which may also vary in space: o =
o(x). We are assuming that the current 5 does not lead to the accumulation of the extraneous
electric charge, so that the second steady-state equation in system (4.1) (the Gauss law of
electricity) is homogeneous. The magnetic permeability is assumed equal to one (for the range
of phenomena of interest) so that there is no need to distinguish between the magnetic field
and magnetic induction.

Let E(™) and H® denote the incident fields that satisfy system (4.1) in vacuum:

18}[6(:1‘3) LV x B = g, v . H) —

&

t (4.4)
18Ea(t ) V¥ x H(inc) _ _41j(ex)’ vV - E(inC) = 0.

&

Then, the total fields that solve (4.1) can be represented as
E=E™) L EC) and H = H™) 4 g6, (4.5)

where the corrections E®9) and H ¢ shall be attributed to the variation of € and o against the
background vacuum values € = 7 (identity tensor) and o = 0, respectively. Those corrections
are referred to as the scattered fields. The direct electromagnetic scattering problem is the
problem of determining the scattered fields E®® and H®® if e = ¢(z) and o = o(z) are
given. The inverse electromagnetic scattering problem rather consists of determining the variable
electric permittivity e = e(z) and conductivity ¢ = o(z) under the assumption that the
scattered fields E®®) and H () are available. The region of space where ¢ = e(z) and o = o' ()
are to be reconstructed is called the target. The inverse scattering problem may have multiple

solutions.

4.1.2 The first Born approximation

In the literature, the foregoing scattering problems are often studied using second order govern-

ing equations for the individual fields. Moreover, the inverse scattering problem can be simplified
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by means of the linearization based on the first Born approximation, see [BW99, Chapter XIII].
It is typically used when the scattered field is much smaller than the incident field, i.e., when
the scattering is weak. This, in turn, can be expected to be the case when the deviation of the
material parameters at the target from the background parameters in vacuum is small. In Ap-
pendix M, we show that when the target material is isotropic, i.e., when both the permittivity
and conductivity tensors are spherical, the governing equation for the scattered electric field

under the first Born approximation becomes [see equation (M.8)]:

1 92 E(sc) 2 g (inc) 4 E (inc)
R AN T _ Amo 9B (4.6)
2 ot? ot? 2 ot
where the scalar quantity v is the ground reflectivity function [see formula (M.7)]:
1 1
== — —3- 4.7
Y@ = 3 o (47)

In formula (4.7), v = v(x) is the local propagation speed in the material. More rigorously, a solu-
tion by means of the first Born approximation can be obtained by truncating the corresponding
Neumann series after its linear term [CB09, Chapter 6].

In the literature, the Born approximation (named after Max Born) is often discussed along
with another approximation, named after Sergei Mikhailovich Rytov, see, e.g., [BW99, Chapter
XIII} and [Ori85,LF92]. It is known that the Rytov approximation better describes the trans-
mitted waves, i.e., the field inside the target material, whereas the Born approximation is better
suited for the reflected waves, i.e., for the scattered field in vacuum (see, e.g., [LF92, Mar06]
and references therein). We will focus on the first Born approximation for the rest of this chap-
ter because it provides a linearized scattering model for the field reflected off the target into
the vacuum region, which is convenient for SAR applications.

We also note that in the Cartesian coordinates the vector equation (4.6) decouples into three
independent scalar wave equations for the individual field components. This enables studying
the scattering problems in the scalar formulation [Che01], provided that the polarization of the

field is not important.

4.1.3 Scalar vs. polarimetric SAR

As seen in Chapter 2, many currently operating SAR sensors use linear chirps in the form given
by (2.18),
P(t) = A(t)eiWOta where A(t) = X,[_(t)eiat27

as interrogating waveforms [CheO1]. In this formula, wy is the carrier frequency, x,(t) is the

indicator function of the interval [—7/2,7/2], and the modulating function A(t) is varying slowly
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compared to the fast oscillation e™of.

Let us first disregard the polarization and identify the pulse (2.18) with the right-hand side
of the scalar counterpart of equation (M.5). This right-hand side shall be interpreted as the time
derivative of a given Cartesian component of the electric current at the emitting SAR antenna,
which is taken as a point source! located at € R3. Then, the corresponding component of the
incident field due to the emitted chirp (2.18) is given by the standard retarded potential of the

d’Alembert operator:

. 1 P(t—|z—=|/c
E(mc)(%t)zﬂ ( ‘z|_$‘ |/ )’ (4.8)
which is (2.21) using new notation. It should be noted that we ignore the units of the electric
field and currents because the governing equations are linear in E. When substituting £ of
(4.8) into the right-hand side of equation (4.6), we can leave A(-) out of the differentiation w.r.t.
t, because A( - ) varies slowly. Subsequently, a solution of equation (4.6) can be obtained with
the help of the Kirchhoff integral (2.23). In particular, the scattered field back at the antenna

x is given by the following expression, a modification of (2.25):

E6O)(z,t) ~ — 1gi2 /// mP(t—Zlm—zl/c)dz

|lz—z|<ct

L

w2 5(z) (4.9)
= — 0 _\"7 _ _ iwo(t—2|z—2z|/c)
1602 /// |w—z|2A(t 2le — z|/c)e dz,
|z—z|<ct
where )
v(z) def v(z)+i mo(2) (4.10)

woc?
which differs from (M.7) due to the right hand term in (4.6). According to (4.9), the scattered
field EG9) can be interpreted as the result of application of a Fourier integral operator (FIO), see,
e.g., [CN04,NC04,CB08,CB09], to the complex reflectivity function ©(z) of (4.10) that combines
the variation of the propagation speed ¢, see (4.7), and the variation of the conductivity o. As
discussed in Section 2.3.1, this FIO can be approximately inverted by applying a matched filter
to £ and accumulating the information due to multiple interrogating pulses (2.18) emitted
from and received by the antenna at different locations along its trajectory. This is the procedure
of SAR signal processing [Che01,CB09, FL99]; it allows one to reconstruct v(z), i.e., to obtain
the image. Mathematically, this procedure is similar to application of the adjoint operator,
which would have coincided with the true inverse of the FIO (4.9) if the latter were a genuine
Fourier transform.

In general, ¥(z) is a function of three variables, because z € R3. As, however, the synthetic

! Actual SAR antennas have a special structure that enables narrowly directed radiation patterns [CB09].
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antenna is aligned with the flight trajectory or orbit, which is one-dimensional, the conventional
SAR data collection algorithm (in the case of a monostatic non-interferometric sensor) can
generate only two-dimensional datasets, see [CB09]. At the same time, the primary task of all
practical SAR systems is imaging of the surface of the Earth from aircraft or from satellites.
The introduction of the Earth’s surface as the geometric location (i.e., locus) of all the targets
naturally eliminates the third coordinate (i.e., fixes the altitude) and hence makes the dimension
of the dataset equal to that of the desired image. Mathematically, this corresponds to considering

the reflectivity function (4.10) in the form
v(z) = v(z1, 22, 23) = (21, 22)0(23), (4.11)

i.e., in the form of a single layer on the surface, where z; and z, are the two horizontal coordinates
and z3 is the vertical coordinate [Che01]. The resulting image then reconstructs o(z1, 22), i.e.,
yields the complex reflectivity function (4.10) on the surface of the Earth as a function of the
two horizontal coordinates.

In real applications, however, disregarding the polarization may not be appropriate, as the
field is always polarized, and its polarization may change due to the interaction with the target.?
Even in the simplest possible scenario, when a linearly polarized incident wave impinges on a
plane interface between the vacuum and an isotropic target material, the polarization angle,
generally speaking, tilts. A more sophisticated target material gives rise to a broader variety
of the possible changes in polarization of the scattered field, see Section 4.2. Mathematically,
scattering off interfaces corresponds to a non-smooth permittivity e(z) and/or conductivity
o(x), when the regions of their regular behavior (the vacuum and the target) are separated by
a surface, at which these quantities (tensors) undergo jumps. Special boundary conditions are
required at this surface for a proper description of the scattering mechanism.

The methodology of SAR imaging that takes into account the polarization of interrogating
waves is known as polarimetric SAR, see [Mot07,LP09]. As the antenna is typically far away
from the target, by the time the incident pulse reaches the target it can be sufficiently accurately
approximated by a transverse plane wave. Likewise, the scattered field can be effectively thought
of as a transverse plane wave by the time it reaches the antenna. Therefore, even though the
field vectors in R? are three-dimensional, it is sufficient to consider only their two transverse
components if the third coordinate axis is chosen parallel to the direction of propagation.
Accordingly, there are two independent linear polarizations for either incident or scattered
wave.

At its current state, the theory of polarimetric SAR imaging is different from the scalar

It may also change due to the propagation in a chiral medium, e.g., the magnetized ionosphere, which is
considered in Chapter 3.
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theory in that it exploits a completely phenomenological framework; the polarimetric SAR
literature has been dominated by the phenomenological approach since the dissertation by
Huynen [Huy70]. Namely, the vector of the incident electric field that has two (transverse)
components and the vector of the scattered electric field that also has two components are

considered related by means of a formal 2 x 2 matrix S:
E®) = SE(inc), (4.12)

called the Sinclair scattering matrix. The entries of the scattering matrix S are usually not
related to any physical characteristics of the target; they are rather introduced as the coeflicients

of the transformation between E(1¢) and E(°)

. This is precisely what the phenomenological
nature of the approach of [Huy70] means.

Note also that as the incident and scattered waves propagate in different directions, they
will be represented in different coordinate systems in formula (4.12), and hence the scattering
matrix S incorporates not only the transformation of the field per se, but the change of the
coordinates as well. Moreover, as both fields related by (4.12) are assumed transverse plane
waves, they are attributed to different spatial locations — the target for the incident field and
the receiving antenna for the scattered field. In the time domain, which is common for SAR
applications [CB09], this would have also implied that the incident and scattered field were
evaluated at different moments in time.

Note that using formula (4.9) one can also obtain a scalar counterpart of relation (4.12).
Consider a point scatterer of complex magnitude  located at zy so that (z) = 0d(z — 2p).
Then, instead of (4.9), we can write [with the help of (4.8)]:

2 A~
Wy 14

E®) (2, 1) ~ B (2.t — |z — 20| /c). (4.13)

Ar |z — 2
———
S

However, unlike the reflectivity function (4.10) that enters into (4.13) and (4.9), the entries
of the scattering matrix S of (4.12) do not directly represent any physics-based scattering
mechanism or material characteristics of the target; they are introduced just as the coefficients of
a linear transformation. Subsequently, various target decomposition techniques, see Section 4.4
and [LP09, Chapters 4, 6, 7] for more detail, attempt to attribute some physical properties
of the target (e.g., its symmetry, convexity, etc.) to certain combinations of the entries of the
observed matrix S.

For SAR applications, one often considers two basic cases of a linearly polarized incident
field: horizontal polarization corresponds to the electric field vector normal to the plane of

incidence, whereas vertical polarization corresponds to the electric field vector parallel to the
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plane of incidence. All other polarizations can be obtained as linear combinations of these two.
Accordingly, the entries of the scattering matrix (that are also referred to as channels) are

commonly denoted as

S = (4.14)

Sun  Sav
Svi Svv |’

where for each matrix entry, the first and second letter of the subscript denote the polarization
of the scattered and incident field, respectively. In formula (4.14), Spp and Syv are the co-
polarized channels, and Syy and Syy are the cross-polarized channels. Fully polarimetric SAR
sensors produce four different images — one per channel.?

In the frequency domain, the components of the electric field vector become complex, and
instead of the retarded time, as in formula (4.13), the solution acquires the corresponding phase
factor. The Sinclair matrix can then be represented as follows:

iso | |Smum|  [Suvl|etnv

S=e |Svnle!VE | Syyletovy (4150)

where ¢¢ is the common phase (also called absolute phase) that basically yields the distance
(or time) that the scattered wave travels between the target and the receiving antenna, and
ouv, ¢vu, and ¢yy are the relative phases. In particular, ¢vv is called the co-polarized phase
difference (CPD). The absolute phase ¢y is the principal quantity of interest in the case of the
SAR imaging by means of a scalar field, see Chapter 2.

In the vector case, representation (4.15a) clearly shows that the complex-valued Sinclair
scattering matrix offers a total of seven additional degrees of freedom — four amplitudes and
three relative phases — on top of the scalar case. Consequently, eight independent quantities
(147) associated with every location yield as much information as one can obtain from a
polarimetric SAR image (i.e., four complex-valued images, one per channel) regardless of what
the actual target is.

We should also mention that extracting the common phase ¢y the way it is done in formula
(4.15a) removes a certain degree of arbitrariness that otherwise exists in the definitions. Indeed,
the scattering mechanism at the target can be such that every polarization undergoes a phase

shift upon reflection, see Section 4.2. In this case, instead of (4.15a) we would have

i ‘SHH ’eﬁ;HH ’SHV‘QM;HV

it ~ def Jido &
Synle®n [Syyledv | C (4.15b)

S=¢

where the entries of the matrix represent the actual complex reflection coefficients, and qzo

3In some inversion algorithms, the processing is not done channel-by-channel, but rather couples the channels,
which may provide additional benefits, see, e.g., [VCY13].
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accounts for the travel distance. The relation between the phases in (4.15a) and (4.15b) is
obvious: ¢g = gz~50 + QEHH, but having only the overall matrix S as an observable, one cannot tell
unambiguously how to split ¢g into ggo and <f~>HH Therefore, it is common in the literature to

adopt normalization (4.15a) that keeps the HH entry of the matrix real.

4.1.4 Objectives of the chapter

Our primary objective is to build a material-based linearized scattering model for the case of
vector propagation. In other words, using the first Born approximation we would like to relate
the entries of the scattering matrix S to the material properties of the target (its permittivity
and conductivity), similarly to how one defines the ground reflectivity function in the scalar
case, see formulae (4.7), (4.10), and (4.13).

Note that in the framework of the first Born approximation, one can formulate both a
direct and inverse scattering problem. The direct problem consists of obtaining the scattered
field E¢%) given the incident field E("®) and the material parameters € and o, and assuming
that the scattering is weak (see Section 4.1.2). Of our primary interest is the corresponding
linearized inverse scattering problem, which consists of defining the channels (4.14) as functions
of the material parameters, Syg = Suu(e, o), Svv = Syv(e, o), Suv = Suv(e, o), and Sypg =
Svu(e, o), so that € and o can subsequently be reconstructed given the fields E(n¢) and E60)
in formula (4.12), and again, assuming that the scattering is weak.

The desired linearized scattering model shall be minimally complex in terms of the structure
of the tensors € and o. This means that it should not aim at more than recovering the four
complex reflection coefficients contained in the matrix S of (4.15b), which is a total of eight
degrees of freedom, because what the polarimetric SAR methodology is capable of detecting is
even one degree of freedom less, see formula (4.15a).

Availability of such a model may help develop the radar ambiguity theory for the polari-
metric case similarly to how it is done in the scalar case, see [Che01], [CB09, Chapters 5 and
11], and Chapter 2. Besides, it may prove useful for the material identification SAR (miSAR)
applications.

The application of the first Born approximation in the vector case is similar to that in the
scalar case (discussed in Section 2.3.1). Replacing the total electric field E by the incident
field E(™) on the right-hand side of equation (M.4) and taking into account the Gauss laws
V-D =0 and V- E(") =0, we obtain:

1 PE) w  €—T &E™)  4rg QE™)
PR _AE®O — v e B T (4.16)

The main difference between this equation and its counterpart for the isotropic case, equation
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(4.6), is that the material characteristics in equation (4.16) are tensors rather than scalars. This
implies that generally speaking, the vector equation (4.16) cannot be decoupled into the inde-
pendent scalar equations for the individual field components. Moreover, studying the scattering
of electromagnetic waves off interfaces requires special boundary conditions in addition to the
governing equations themselves. Those boundary conditions, mentioned earlier, play a key role
in the construction of the first Born approximation for the case of vector fields, see Section 4.2.

In Section 4.2, we carefully develop and analyze the first Born approximation as it applies
to scattering off a hierarchy of target materials. Starting with the simplest case of an isotropic
dielectric, we gradually increase the complexity of the material by allowing for the anisotropy of
e and including the weak conductivity o (anisotropic as well) so that finally we reach the same
number of the degrees of freedom as in (4.15a). The resulting material is a uniaxial crystal (i.e.,
a birefringent medium) with the conductivity tensor that is also uniaxial, and with both axes
allowed to have arbitrary directions with respect to the incidence plane and with respect to
one another. We prove that the scattered field in vacuum obtained in this linearized framework
approximates the true reflected field that one can obtain with no use of the Born approximation.
We also obtain a necessary and sufficient condition for the existence of a solution to the foregoing
linearized inverse scattering problem. Under this condition, the scattering matrix (4.15a) can
be obtained by appropriately choosing the permittivities, conductivities, and angles that define
the material and the orientation of its optical axis with respect to the plane of incidence.

The second objective of the current chapter is related to the first one. Namely, in the
linearized framework that we have adopted for describing the scattering, a formal mathematical
justification is needed for the possibility of taking the ground reflectivity function in the form
of a single layer on the surface, see formula (4.11).

As of yet, the transition from the entire half-space occupied by the target material to the
target material concentrated only on the surface has been motivated by the mere convenience
of having the third coordinate removed from the radar dataset,* see the discussion around
equation (4.11). This, however, is not a rigorous argument. One rather needs to prove that the
linearized scattering off a material half-space can be equivalently reformulated as the linearized
scattering off a layer of monopoles at its surface only.

In other words, we arrive at the following inverse source [Isa90] problem: for the linearized
scattering off a half-space, find an equivalent surface reflectivity function of type (4.11) that
would yield the same scattered field in the vacuum region. In Section 4.3 of the paper, we solve

this inverse source problem and show that in the scalar case the resulting “density” (z1, 22)

4Tt is also supported by physical reasoning in the literature. For the microwave carrier frequencies wo, the
penetration depth of the radar signals into the ground is very small, and all the reflections must be those off the
surface. However, the first Born approximation may lead to a certain inconsistency for the ground reflectivity
function in the form (4.11). Indeed, the single layer radiates in both directions, vacuum and material, which
means that the scattered field actually penetrates into the ground.
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indeed appears proportional to the target reflectivity function (4.10) on the surface. Moreover,
we formulate and solve a similar inverse source problem in the vector case as well. With the
polarization taken into account, the scattered field in the vacuum region can also be represented
as a single-layer surface potential with tensor densities proportional to the jumps of the material
characteristics at the interface. These topics are addressed in Section 4.3, whereas in Section 4.4
we discuss the relation between our analysis and polarimetric target decomposition.

The main notations that will be used hereafter are explained in Table 4.1.

4.2 Hierarchy of scattering models
4.2.1 Roadmap

In Section 4.2, we present a detailed derivation of the first Born approximation for the scattering
of a linearly polarized electromagnetic wave off a material half-space. We consider several types
of materials: a perfect isotropic dielectric, a perfect birefringent (uniaxial) dielectric, and lossy
isotropic and birefringent dielectrics. In each case, our first goal is to determine the number of
degrees of freedom associated with a given material in the linearized direct scattering problem.
This number is determined by the functional dependence of the reflection coefficients on the
material parameters.

In Section 4.2.3, the scattering coefficients are derived for the isotropic case. First, the
Maxwell equations are transformed to the frequency domain, and the dependence of their solu-
tion on the tangential variables is factored out using the uniformity of the formulation along the
interface. Then, the equations are linearized and reduced to a second-order ordinary differen-
tial equation (ODE) that governs the propagation of the scattered field in the direction normal
to the interface. This equation is supplemented by the radiation conditions at infinity and the
matching conditions at the interface. It turns out that the key difference between the horizontal
and vertical polarization is precisely in the interface conditions. For the horizontal polarization,
those conditions reduce to the continuity of the solution itself and its first derivative across the
interface. For the vertical polarization, the condition for the first derivative becomes inhomo-
geneous, and this derivative undergoes a jump across the interface. Accordingly, the reflection
coefficients are different for two polarizations, while the dielectric permittivity provides a single
degree of freedom for this setting.

We note that the first Born approximation in the scalar (i.e., isotropic) case has been exten-
sively studied in the literature, and also used in the context of SAR applications in Chapter 2.
The reason we present its detailed analysis in the current chapter is two-fold. On one hand,
it allows us to build the framework and introduce the solution methodology that subsequently

applies to the cases with anisotropy and/or Ohmic losses. On the other hand, in its own right
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Table 4.1: Key notations and their relations to be used in Chapter 4 and associated appendices.

Parameter name Notation Relations Reference
Dielectric tensor and its €,m D=e¢-E;e-n=1 (4.17), (4.50)
reciprocal
Isotropic permittivity (or g, e(z) e(z) =14+6(2)(e—1) (4.22)
dielectric constant)
Geometry and parameters of | €, ¢, Ae, | Ae=¢|—¢€, (4.47)—(4.49)
uniaxial dielectric tensor a, B,y a4+ 52 +y2 =1
Entries of the reciprocal Mij ni = 1/ei; (4.51)
dielectric tensor i, =,Y,2 | nij = —€; fori #j
Conductivity tensor o j=o0-FE (4.3)
Isotropic conductivity o j=cF (4.78)
Geometry and parameters of | o, o, Ao, | Ao =0 -0, Section 4.2.5.1
uniaxial conductivity tensor Aoy Boy Vo al+p324+42=1
Modified permittivity in 5 E=¢e+ z'4—7TO' (4.80)
frequency domain w
Small parameter for the first | s le =Z|| ~ s, |o|| ~ 2w, | (4.21), (4.24¢)
Born approximation w9 ~ se|ug|

2772 4 2
Differential operator L,r L= d /dz2 +4q (4.27)
describing scattering, q
right-hand side parameter
Electromagnetic field, its U, U = w0 4 400, (4.23)—(4.26)

components, and amplitudes wine) gy (s0), | g (ine) — o pilgz+Ka)
ug, u(z) [ ~ sefuo|

Undetermined coefficients for | A, B,C ut)(z) = (Az + (4.32)
a solution in two domains B)uge'® for z > 0;

w9 (z) =

Cuge % for z <0
Free space and material sides | (F), (M) (F)=(z=-0) (4.19),
of the interface at z = 0 (M) = (z = +0) Figure 4.1
Boundary condition R Z—u = Z—u + Rug | (4.33), (4.34)
parameter Zl(a) “lr)
Wave vector and its k. K, q k? = K% + ¢% (4.20), (4.40),
components K = ksin; Figure 4.1
Polarization ratio Q Svv = Suu@, (4.44), (4.73),

(4.74), (4.76),
(4.82),
Figure 4.2
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it helps us emphasize a very important distinction between the horizontal and vertical inci-
dent polarizations. In the case of a horizontal polarization, the linearized interface condition is
homogeneous, and this is precisely the case that has received most of the attention in the liter-
ature, see, e.g., [Ori85]. For the vertical polarization though, the linearized interface condition
becomes inhomogeneous and accordingly, the solution given by the first Born approximation is
different even though the linearized governing equation is the same as in the case of a horizontal
polarization.

In the lossless anisotropic case (Section 4.2.4), the polarizations are no longer independent,
and Maxwell’s equations reduce to a system of two coupled ODEs that govern the components
of the electric and magnetic field normal to the plane of incidence. For this system, the first
Born approximation appears very convenient to implement in two stages: first the equations are
uncoupled, and then the resulting individual equations are linearized. The end result depends on
the polarization of the incident wave. In each case (vertical or horizontal incident polarization),
one of the uncoupled equations describes the co-polarized scattering and the other describes
the cross-polarized scattering. The form of the resulting equations and interface conditions
turns out to be similar to the isotropic case, although the actual expressions for the reflection
coefficients are not the same and contain additional degrees of freedom.

In the case of a lossy material (Section 4.2.5), we show that the presence of a weak conduc-
tivity is equivalent to having a small imaginary part in the overall complex permittivity, which,
in turn, makes the small parameter of the first Born approximation complex. This observation
significantly simplifies the treatment of the lossy materials. In particular, the functional repre-
sentation of the imaginary part of the scattering matrix turns out to be the same as that of the
real part. Hence, the anisotropic conductivity yields the same number of degrees of freedom as
does the anisotropic permittivity.

In Table 4.2, we provide the number of degrees of freedom and list the independent material
parameters for each of the cases we have considered.

Having identified the degrees of freedom that characterize every material included into our
analysis, we move on toward addressing the next goal of this chapter, which is to solve the
corresponding linearized inverse scattering problem. Specifically, we would like to see whether
a given scattering matrix can be obtained by adjusting the available degrees of freedom, i.e.,
by appropriately choosing the characteristics of the target material. In Theorem 1, we furnish
a necessary and sufficient condition for the solvability of this inverse problem in the case of a
lossless birefringent material, and in Corollary 1 we extend this result to the case of a lossy

anisotropic material.
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Table 4.2: Overview of scattering models and their properties: material parameters, non-zero
reflection coefficients, and maximum number of degrees of freedom. The wavy underline in the
third column means that the values may be complex.

Model of scatterer Independent | Non-zero Max. Sec-
material reflection num- tion
parameters coefficients ber of | #

d.o.f.

Perfect isotropic dielectric € HH, VV 1 4.2.3

Lossy isotropic dielectric €,0 HH, VV 1 4.2.5.2

Perfect uniaxial dielectric, EL,€| HH, VV 2 4.2.4.5

interface in basal plane

Lossy uniaxial dielectric with | £1,¢,0 HH, VV. 3 4.2.5.3

spherical conductivity tensor,

interface in basal plane

Perfect uniaxial dielectric, ELE|, QY HH, VV, 4 4.2.4.7

arbitrary direction of optical HV, VH

axis

Lossy uniaxial dielectric, ELLE| Qs HH, VV, 8 4.2.5.5

arbitrary direction of optical T1,0|, Qg Vo HV, VH

axis

4.2.2 Problem of reflection of a plane wave by a material half-space

We consider the reflection of a monochromatic plane wave off a material half-space with per-
mittivity tensor e and conductivity tensor o. Since all the fields depend on time as e =™, where
w is the frequency, we conduct the analysis in the frequency domain. For transverse electromag-
netic waves with no extraneous currents,” the unsteady equations of system (4.1) with equation

(4.3) taken into account reduce to

4
VxE=ikH and VxH=—ikD+ o E, (4.17)
C

where k = w/c. Equation (4.2) and the Gauss laws of electricity and magnetism (steady-state
equations in (4.1)) keep their form in the frequency domain.

Denote = (z,y,2) € R? and assume that the half-space z < 0 is occupied by vacuum,
whereas the half-space z > 0 is filled with the material. The plane of incidence is defined as
to contain the wave vector of the incident wave and the normal to the interface z = 0; with

no loss of generality we take it as the (x, z) plane, see Figure 4.1. The problem is essentially

5The excitation in the problem will be provided by incident plane waves.
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K

plane of incidence

k= (K,0,q)

interface

c= (aa/B7’Y) \\\\\\‘ free space

(0% material
zZ
\y

Figure 4.1: Schematic for the scattering problem off an anisotropic half-space. The vector k =
(K,0,q) is the incident wave vector, see formula (4.20). The vector ¢ = («, 3,7) is a unit vector
along the optical axis, see Section 4.2.4. Note that «, §, and v denote the direction cosines
rather than the actual angles.

two-dimensional, as the wave vectors of the incident, reflected, and transmitted waves all belong
to the plane of incidence. Hence, the electromagnetic fields do not depend on the y coordinate
(although the vectors may have y components).

Then, system (4.17) takes the form:

ok, . oH, . =
—782 = ZkHa;, 82 — Zka7
8Ex 8EZ . aHx aHz . a
% 0w ikH,, % s ikD,, (4.18)
OE, 0H ~
——Y —ikH, Y = _ikD,,
o ikH,, 9 ik

where D,, Dy, and D, are components of the vector D = e- E + (4mi/w)o - E. In the free space
(vacuum), we have e =7 and o = 0.

At the interface z = 0, the following boundary conditions are imposed on the tangential
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components of the electric and magnetic field [LL84, Che83|:

Ex‘(F) - Ex|(M)7 Ey|(F) = Ey|(M)a (4.19&)
Hyl gy = Helary Hyl () = Hyl(a - (4.19b)

The subscripts (F') and (M) in formulae (4.19) denote the free space (z = —0) and material
(z = +0) side of the interface, respectively.

The incident field in formulae (4.5) is chosen as a plane wave:
( E(inc)7 H(inc)) = ( Eo(mc), Ho(inc)) ei(qz-&-Ka:)’ (4.20)
where K is the common horizontal wavenumber for all plane waves in the problem, and
g= (k- K2)1/2

is the vertical component of the incident wave vector, see [LL84, Che83, Lek91].

In addition to the interface conditions (4.19) for the total field, the scattered field
(E®) H®)) should also satisfy the radiation conditions as z — 00, see formulae (4.28).

In the textbook approach to problem (4.18)—(4.19) (see, e.g., [BW99,LL84]), the incident
field (4.20) is restricted to the free space, while system (4.18) is solved with respect to the scat-
tered field, and its solutions are found separately for the vacuum and material half-spaces. These
solutions, called the reflected and transmitted field, respectively, are combined with the incident
field, and then matched at the interface using boundary conditions (4.19). A comprehensive ac-
count of this approach can be found, e.g., in [Che83]. For the particular case of a perfect isotropic
dielectric, amplitude and direction of the reflected and transmitted field are given by the clas-
sic Fresnel’s equations and Snell’s law; these expressions (see, e.g., [BW99,LL84]) are valid for
arbitrary values of €. Besides this, various simplifications can be considered depending on the
specific structure of € and o [Lek91].

As indicated in Section 4.1.4, our goal is to analyze the linearized scattering case. Therefore,

in the material domain z > 0 we assume that
le =Z|| ~ 3 and |o]| ~ sw, (4.21)

where s is a small parameter, so that the scattering is weak. To study the existence of a solution
to the resulting inverse scattering problem, we will use the first Born approximation to obtain
a series of direct scattering solutions for a hierarchy of settings, starting from the simplest
case, i.e., that of a perfect isotropic dielectric. The Fresnel and other exact solutions, linearized
according to (4.21), will be used for validation of the solutions obtained with the help of the

first Born approximation.
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4.2.3 The first Born approximation for a perfect isotropic dielectric

4.2.3.1 Governing equations.

Assume that in the material the dielectric tensor is spherical, which means that the permittivity
is scalar, and that the conductivity is zero. Since & = 0, the components of the vector D
in (4.18) can be replaced by those of D. Since € = £(z)Z in the entire space, the vectors D

and F are proportional, i.e.,
Di(x,z) =¢e(2)Ei(z,2z) for i=ux,y,z,

where

e(z)=146(2)(e —1), (4.22)

0(z) is a unit step function, and ¢ > 1 is the permittivity in the material domain z > 0,
see [BW99,LL84]. In this case, the equations for the variables E,, E., H, and for H,, H., E, in
system (4.18) are decoupled. This means that system (4.18) admits a solution with E, = E, =
H, = 0, which is called horizontal polarization, and another solution with H, = H, = E, = 0,
called vertical polarization. Each of these solutions is governed by the scalar Helmholtz equation:

0*U  0%U

e + el + £(2)k*U = 0, (4.23)

where U (z, z) represents any nonzero Cartesian component of E or H.

To build the first Born approximation for the scattering of a plane incident wave in either
of the two basic polarizations defined above, we represent the total field U in (4.23) as a sum
of the incident and scattered fields as in (4.5):

U = w9 4 y59), (4.24a)

take the incident field in the form (4.20):

inc)

uin®) = gtz +ET) (4.24b)

and assume that
|| ~ selug), (4.24¢)

where the small parameter » is introduced in (4.21). In doing so, both the incident and scattered
components of the field occupy the entire space. Substituting equality (4.24a) into (4.23) and
taking into account that u("®) satisfies the same equation (4.23) but with ¢ = 1, we arrive at

the equation for u(9):

a?u(sc) aQu(sc)
022 T o2

+ K2t = —(g(2) — 1)K (u™) 4 ¢,9)), (4.25)
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The first Born approximation consists of disregarding the second-order term (e — 1)u(sc), see
formulae (4.21) and (4.24c), on the right-hand side of equation (4.25). Moreover, as everything
in our formulation is uniform along the plane (z,y), see Figure 4.1, the dependence of the
solution on z and y must be the same in the entire space, see [LL84, Chapter X]. This, in
particular, implies that the horizontal component of the wave vector is the same for both the
incident field (4.20), (4.24b) and the scattered field, so that we can take

u) = u(z)etke, (4.26)

Equation (4.26) helps us reduce (4.25) to the following equation for u(z):

1. : 2 det 1 d?
—Lu=g(2) = —rf(2)e'*, L e

—— 41 4.27
" 22 +1, (4.27)

where 7 = (¢ — 1)k2/¢%. Note that the incident field satisfies the equation Lu(™®) = 0. The

solution u(z) of equation (4.27) should also satisfy the radiation conditions at infinity:

1d 1d
—8 =0 as 200 and ~ =0 as 2 — —co. (4.28)
iq dz iq dz

The overall solution to equation (4.27) will be obtained as the sum of the general solution
to the corresponding homogeneous equation and a particular solution to the inhomogeneous
equation (4.27). For the general solution to the homogeneous equation Lu=0 subject to the
radiation conditions (4.28) we can write:

u(h)(z) _ Buoe’q%, z >0, (4.29)
Cuge % 2 <0,
where B and C are constants. A particular solution to the inhomogeneous equation (4.27),
which accounts for the resonance between L and g(z) on the material domain z > 0, is given
by
Augze'?, 2> 0,

ulP(z) = (4.30)
0, z <0,

where the value of A is obtained by the method of undetermined coefficients:

A="1 (4.31)
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Combining (4.29) and (4.30), we obtain the overall scattering solution in the form

Az 4 B)uge'?”, z >0 (material),
ut(z) = ( . o ( ) (4.32)
Cupe "%, z <0 (vacuum),

where the constants B and C shall be determined with the help of the interface conditions
(4.19). The constant C' can be interpreted as the reflection coefficient.

In Sections 4.2.3.2 and 4.2.3.3 we will show that whereas the governing differential equation
(4.27) and the value of r on its right-hand side are the same for both polarizations, the interface
conditions (4.19), as expressed via the single unknown function w, appear different for the
horizontal and vertical polarization. Specifically, in either case the interface conditions can be

written as
du

du
U|(M) = “|(F); dz =

+ Rug, (4.33)
(F)

(M) Cdz
where the constant R depends on the polarization (it may be equal to zero). Accordingly, the
solution (4.32) also appears different for the horizontal and vertical polarization. In particular,
substituting (4.32) and (4.31) into (4.33), we can express the reflection coefficient C' via the

parameters r and R:
R

C:B:_£+%, (4.34)

which indicates that the reflection coefficient depends on the polarization via R.
Finally, let us note that equation (4.27) can also be solved by convolution with the fun-
damental solution, see, e.g., [Ori85]. As we explain in Section 4.3 though, the deficiency of
this approach is precisely in that it offers no easy way of accounting for the different interface

conditions (i.e., different values of R) that correspond to different polarizations.

4.2.3.2 Horizontal polarization.

In this case, the unknown quantity in equation (4.23) is usually taken as U = E,, with the

other two nonzero field components being H, and H,. The first equation (4.18) then implies:

i dEy
L= Ly 4.
k dz (4.35)
so that boundary conditions (4.19) reduce to:
dE dE
Eyl m = B, and v === : (4.36)
YI(F) yI(M) dz ") dz )

Boundary conditions (4.36) imply the continuity of the total field (4.24a) and its first normal

derivative at the interface. As the incident field (4.24b) and its derivative are continuous at
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z =0, so are the scattered field u>®) = Eé,sc) and its first derivative with respect to z:

B dEéSC)
 dz

dE(sc)
and Y

(sc)
Ey (M) dz

— EgSSC)

(4.37)

(F) A1)
Conditions (4.37) are used to determine the constants B and C' in (4.32). Comparison of (4.37)
to (4.33) shows that R = 0, so, according to (4.34), the co-polarized reflection coefficient for

the horizontal polarization is given by:®

def T 1k2
2 C=B=——-=--""(¢-1). 4.
Sun = C 1 4q2(€ ) (4.38)

At the same time, the Fresnel solution [BW99, Chapter I| gives the following expression for

the exact reflection coefficient in the case of horizontal polarization:

S(exact) . Sin(ei - et)

=7, 4.39
HH sin(6; + 0;) ( )
where 6; is the incidence angle and 6; is the refraction angle (defined by Snell’s law):
. . I
sinf; = sinf; = — sin 6;. (4.40)

&’ VE
Formulae (4.39), (4.40) do not involve linearization and are valid for arbitrary values of .

A comparison of the linearized solution (4.32), (4.31), and (4.38) to the Fresnel solution
(4.39), (4.40) shows the deficiency of the former: in the material, it has a component that grows
linearly as z increases, which is not physical. In addition, expression (4.32) does not provide
the correct wavenumber and propagation direction of the refracted wave, which restricts the

validity of the first Born approximation inside the material to the area [LF92]:

T . 2mq
|q_q(exact)’ ~ k2’5_ 1”

2] < 20 ~

where ¢(®¥2¢t) ig the z-component of the refracted wavenumber obtained from Snell’s law:

q(exact) — \/gk cosf; = km,

see the second equation in formula (4.40).
However, formulae (4.32) and (4.38) are useful in the vacuum region: the wavenumber and
propagation direction of the scattered field in vacuum are correct, and one can also see that

the reflection coefficient (4.38) given by the first Born approximation coincides with the linear

SHereafter, we identify the reflection coefficients with the entries of the scattering matrix S of (4.14), see
Section 4.2.3.4.

88



term in the expansion of the exact reflection coefficient (4.39) in powers of » = ¢ — 1. Indeed,

using equations (4.40) and taking into account that cos#; = ¢/k and also

]{]2
ecos®y = £ — (1 — cos® ;) = cos? b (1 + %2>,
q

we can transform expression (4.39) as follows:

Jzsin; ,— - sin 0 2/ 2Y1/2
S(exact) _ NG sin 92 COS 01 Ve COS 91 sin Qz(l + »k /q )
HH % sin 6; cos 0; + ﬁ cos 0; sin 0;(1 + »k2/q2)1/2

1— (1+ »k?/g?)'/? 1 k2 2 9
1+ (1 + sck2/q2)1/2 - _Z?%"’O(% ) = Sun + O(5c).

4.2.3.3 Vertical polarization.

In this case, we take U = H,, in equation (4.23). The first interface condition for Hy, at z = 0
is the continuity of H, itself, see (4.19). The second interface condition is obtained from the
continuity of E,, using the relation

i dH,

e(2)Ey = Yy (4.41)

that follows from (4.17), and taking into account that e = 1 for z < 0, see formula (4.22).
Altogether, this yields the following boundary conditions for H, at z = 0:

_ <5—1 %) ‘(M) : (4.42)

dH,
Hy’(p) = Hy|(M), a4

(F)

The key difference between these boundary conditions and boundary conditions (4.36) that we
have obtained for the horizontal polarization is the presence of the factor e~! in the condition
for the normal derivative (i.e., z-derivative) in (4.42). Because of this factor, for the vertical
polarization the normal derivative of the total field is no longer continuous, and rather undergoes
a jump at z = 0, which is due to the jump of e7!, see (4.42). As the derivative of the incident
field (4.24b) is still continuous, the discontinuity appears in the z-derivative of the scattered

field: (ino)
dH mc
(1 _ 1 Y
=(1-e7) dz
(F) z=0

dHl(,SC)

6_1 ngsc)
dz

dz

(M)

Multiplying both sides of this equality by e and disregarding the quadratic term (e —

(s0)
1) d}é?; = O(5?) on the left-hand side, we arrive at the inhomogeneous linearized interface

(F)
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condition for the normal derivative of HZSSC):

dH?Sinc)
== dz

) z=0

ngSSC)
dz

- ngSsc)
dz

(4.43)

Comparing (4.43) to (4.33) while taking into account (4.24b) we get R = ig(e — 1). Hence,
according to (4.34), we obtain [cf. formula (4.38)]:

def
Syv =

e—1 K? —¢*

r
C=B= ~1 + 5 = Sun®, where Q= 12 (4.44)

The true reflection coefficient for this polarization is given by the Fresnel solution [BW99,
Chapter I [cf. formula (4.39)]:
glexact) _ tan(6; — 6;)  sin6; cos O; — sin O cos 6,

= = 4.4
Vv tan(0; + 60;)  sin6; cos 0; + sin 6, cos 6’ (4.45)

where 60; and 6, are defined in (4.40). As in the case of the horizontal polarization, see Sec-

tion 4.2.3.2, reflection coefficient (4.44) derived with the help of the first Born approximation

can also be obtained by linearization of the exact reflection coefficient (4.45) with respect to s:
(exact) 5—(1+%k52/q2)1/2 B 1 k2 e—1

- i 2y — 2
Svv et (14 k212 4q2%+ 2 +0(5%) = Syv + O(sc),

where we have used the same transformations as in Section 4.2.3.2.

The plots in Figure 4.2(a) show the exact and linearized reflection coefficients for both
polarizations, as well as the polarization ratio @), calculated using the first Born approximation
and according to the Fresnel formulas. As expected, the accuracy of the first Born approximation
decreases as the value of (¢ — 1) increases. Note that typical values of the refractive index /e
are between 1 and 2 [BW99, Chapters I and II]. The method for constructing the plots in this
figure is given in point 7h of Appendix P with the code itself given in Appendix Q.

Remark. The expression for the polarization ratio ) in formula (4.44) indicates that the scat-
tered field in the vertical polarization vanishes if |K| = |g|, i.e., if the incidence angle is /4.
In other words, the Brewster angle in the linearized framework is equal to 7/4. This should be
expected for a weakly refractive material, in which the direction of the transmitted ray is close

to that of the incident one (i.e., |0; — 6;] ~ s, see formula (4.40)), and hence perpendicular to
the direction of the reflected ray (see, e.g., [BW99, Chapter I]).

4.2.3.4 Discussion of the isotropic case.

Hereafter, we restrict our analysis to the scattering of plane transverse waves off a plane in-
terface, so that the tangential components of the wave vectors for the incident, transmitted,

and reflected fields are the same. Under these assumptions the reflection angle is known, and
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(a) Isotropic; 6,=n/9 (b) Anisotropic; £,=1.05, a=0.75, =0, 6.=m/9
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Figure 4.2: Reflection coeflicients and polarization ratios for the linearized and full formulation:
(a) lossless isotropic dielectric; (b) and (c): lossless birefringent dielectric with e, and ¢ as
independent variables, respectively.

hence the reflection coefficients computed in Sections 4.2.3.2 and 4.2.3.3 (and Sections 4.2.4
and 4.2.5 for other types of scatterers) already take into account the transformation between
the coordinate systems used for representing the incident field and the reflected field, see the
discussion after equation (4.12). Moreover, as we are considering only genuine plane waves, we
can attribute both E®% and E(" in formula (4.12) to the same location right at the interface,
rather than to different spatial locations in the far field (that allow one to approximate a more
general wave form by a plane wave). Therefore, we may actually leave out the common phase
¢o, see (4.15a), that takes into account the propagation distance/time, and directly associate
the reflection coefficients we compute with the corresponding entries of the scattering matrix

S. This approach will be adopted for the rest of the chapter.
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Analysis of the reflection coefficients (4.38) and (4.44) shows that scattering off a perfect
isotropic dielectric yields only one degree of freedom in the scattering matrix S of (4.14). At
the same time, the reflection coefficients for two polarizations, Sgy and Syv, differ by a factor
of @, see formula (4.44), that does not depend on the material properties at all. Therefore,
when this type of scattering material is assumed, the only quantity that can be reconstructed
from measurements is € — 1, which also happens to be the only physical characteristic of the
target, regardless of the received polarization(s). If, however, there is a mismatch between the
observations and the predictions of the model (e.g., if the ratio of the received co-polarized
signals differs substantially from @, or if significant cross-polarized components are detected),
then the use of a more comprehensive model for the scattering material may be justified, see
Sections 4.2.4 and 4.2.5.

4.2.4 Perfect birefringent dielectric

4.2.4.1 Governing equations.

A perfect (i.e., lossless) anisotropic medium is characterized by the dielectric tensor e that

relates the components of D and E':
Dz‘ = e’:‘ijEj i,j =x,Y, %, (4.46)

while o is a zero tensor, so that D in (4.18) is still the same as D. For a birefringent material
(i.e., a uniaxial crystal), there exists a coordinate system z’,y’,2’, in which the tensor € is

diagonal and the relation (4.46) simplifies to:
Dm/ = €LEQC/, Dy/ = 8LEy/, Dz’ = {:‘”EZ/. (4.47)

Let ¢ be a unit vector along the 2’ axis, and let «, 3, and v be its z, y, and z components,

respectively (see Figure 4.1). The components of a unit vector are related by
a? + 6247 =1. (4.48)
Then, the entries of the tensor € become (see [Lek91, Che83]):

Ere =1 + a?Ac, Eyy = €1 + B Ae, e, =c, +*Ac, (4.49)
Exy = Eyx = aBAe, €z, =€z = Oé’)/AE, Eyzr = Ezy = B'YAEa
where Ae = ¢ —e. The diagonal terms in (4.49) are O(1), while the off-diagonal terms are
O(5¢) [cf. the first relation in formula (4.21)].
The isotropic case considered in Section 4.2.3 is characterized by Ae = 0. There, the off-

diagonal terms in (4.49) vanish and the two basic polarizations (horizontal and vertical) in
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system (4.18) separate. They are described individually by equation (4.23) for E, and H,,
respectively. If Ae #£ 0 though, then the two polarizations remain coupled. However, the treat-
ment of this case is greatly simplified in the presence of a small parameter s. Namely, our
assumption that the dielectric is weak implies that the coupling terms are small. For the case of
weak coupling, it still makes sense to use F, and H, as the unknowns in the problem, because
it simplifies the analysis of the Born approximation and makes the comparison to the isotropic
case [equation (4.23)] easier.
To reduce system (4.18) to two equations for E, and Hy, we will use the inverse dielectric
tensor 1) defined as:
E; =niDj, i,j=uw,y,z2. (4.50)

the entries of this tensor, accurate to O(s¢), are:

Nex = 1/€x1’7 77yy = ]‘/Eyy’ Nez = 1/EZZ7 (451)

Ney = NMyxz = —€xys  Naxz =Nz = —€xz, Tyz = Tzy = —Eyz-

which can be proven by observing that all entries of the tensor € - § — Z are o(s). Then, we

eliminate all field components except E, and H, from system (4.18) as follows:

1. The dependence (4.26) on the = coordinate is assumed for all field components, so in
system (4.18) we replace 9/0z by iK and 0/0z by d/dz, respectively. This allows us to
explicitly express the components D,, D,, H,, and H, via E,, H,, and their derivatives

with respect to z:

i dH. K
D, =———"Y, D,=-—H,, 4.52
i dz gy (4.52a)
i dE, K
"17:777 HZ:7E . 4.52b
k dz kY ( )

2. Formulae (4.52b) are substituted into the expression for D, in (4.18), which yields:

1 (dQEy

— 2
D=k E,). (4.53)

3. Equations (4.52a) and (4.53) are substituted into formula (4.50), which leads to the fol-

lowing expressions for F, and F,:

_ i dH, 1 /d*E, 9 K
E, = _nxxgﬁ - nzy?< 022 - K Ey) - an?Hy, (454&)
K i dH. 1 /d%E
Ez = - zziH - a:ziiy - zi( 4 KZE ) 4.54b
e A A P S AN v)> (4.54b)
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whereas for E, we obtain:

d? o d
(nyy@ +k* — K*ny,)E, = —k(mmy% + Kny.)H,. (4.55)

4. Expressions (4.54) are substituted into the y component of the Faraday law in (4.18) (the

equation that relates E,, E,, and H,). After simplifications, we arrive at

d? 5 dH
— — K*n..)H, — 2in,. K—~
(T’J}a} d22 + k /)722:) Yy ZT’J}Z dZ
i/ d\ (d*E, )
=~ (e =) (G5 K8, (4:56)

Note that the isotropic equation (4.23) can be derived from equation (4.55), or from equation
(4.56), by setting Ae = 0 in formulae (4.49) and (4.51). As will be seen in Sections 4.2.4.2 and
4.2.4.3, equations (4.55), (4.56) are particularly well suited for computing the scattered field
because of the way they couple the components F, and H,. Specifically, for electromagnetic
fields represented in the form (4.24a), it appears very convenient to carry out the Born approx-
imation in two stages: first decouple equations (4.55) and (4.56) from one another, and then
linearize the resulting individual equations.

System (4.55), (4.56) will also require boundary conditions at z = 0, see (4.19). The bound-
ary conditions will be obtained with the help of relations for H, and E, in formulae (4.52b)
and (4.54a). In the isotropic case, expression (4.54a) with (4.51) taken into account reduces
to (4.41), as expected. In the anisotropic case, the right-hand side of expression (4.54a) will be
responsible for the inhomogeneous boundary conditions (similar to (4.41) and (4.43) in isotropic
case) for the vertical polarization of the scattered field.”

Let us now consider the two basic polarizations of the incident wave separately. For each

one, the scattered field can also be polarized either vertically or horizontally.

4.2.4.2 Horizontal polarization of the incident wave.

In this case, the component H, is present only in the scattered field, hence H, = O(x)
(see (4.24c)). Therefore, the right-hand side of equation (4.55) appears O(3?) because ac-
cording to (4.49) and (4.51), 1y ~ Ae = O(x) and 1, ~ Ae = O(x). As such, this right-hand
side can be neglected, and the co-polarized scattering for the horizontal incident polarization

is described by
2

d
(Uyy@ + k> — Knyy)Ey = 0.

"The inhomogeneous boundary condition will apply to the co-polarized component of the scattered field when
the incident field is polarized vertically, and to the cross-polarized component of the scattered field when the
incident field is polarized horizontally.
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This equation can be transformed into

LE,=———K"—— |E 4.57
y q2 dZ2 (78] ( )

where the operator L is defined in (4.27). Linearization of (4.57) according to (4.24) yields:

1. —1)k? :
L e 2 U m DRy e (4.58)
(inc) Y 2
Eg, 4
which coincides with equation (4.27) for r = —(n,, — 1)k?/¢* and ug = E((]iync).

Since in the co-polarized case the scattered wave is also polarized horizontally, £, and H,
must be continuous at z = 0, see (4.19), where the expression for H, is given by the first
equality of (4.52b). Recalling that the incident field is continuous at the interface along with
its normal derivative, we obtain the continuity of Eg(,sc) and diiéj:

dES®
M)’ dz

B dE:[(/SC)

E(se)
4 dz

: (4.59)
(M)

so that in formula (4.33) we have R = 0. Interface conditions (4.59) are the same as (4.37) in

the isotropic case. Using (4.34) for EZ(,SC), we get the following reflection coefficient:

1k
Sun = Zqﬁ(nyy —-1). (4.60)

For Ae = 0, formula (4.60), with the help of (4.51), reduces to the isotropic expression in (4.38),
as expected.

For the cross-polarized scattering, i.e., the vertical polarization of the scattered wave, we
linearize equation (4.56) taking into account that stinc) = 0 and hence H, = HZSSC) = O(x)
according to (4.24c). Thus, on the left-hand side we may replace 7,, and 7,, by 1. The remain-
ing off-diagonal terms of 1 are O(3); hence, we drop the 7,, term on the left-hand side and
replace I, by E?f,inc) on the right-hand side. This yields:

d2 N i d dQE(inc) .
_ (s¢) — _“ (4 _ el Y 172 (inc)
<dz2 ta >Hy k (ZﬁyzK ey dz>< dz? K°E, ) (4.61)
Equation (4.61) can be transformed into
1 . k K ,
(SC) — = 19z
E(inc) LHZ/ q (nmy q UyZ)e(Z)e : (462)
Oy

As the polarization of the scattered field is vertical, H, = H{,SC) and E, must be continuous at

z =0, see (4.19). We use formula (4.54a) for E, to express the interface conditions via the y-
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components of the fields. Using Hésc) = O(x) and recalling that the off-diagonal terms of 1 are
also O(x), we can set 1)z, = 1 in the first term and drop the third term on the right-hand side
of that relation. Thus, we arrive at the following interface condition for the normal derivative
of HZSSC):

i dHS)

PdHO| i
k dz

k dz

+ oy Eg. (4.63)
(M)
It is inhomogeneous due to the second term on the right-hand side of (4.54a) [cf. (4.43)].

To define the cross-polarized reflection coefficient for this case, we use the following con-

vention: if the scattered field in vacuum is given by HZSSC) = Hésyc) eKe=iaz (see equations (4.26)
and (4.32)), then the reflection coefficient will be

def sc inc
Sve & HEO /B, (4.64)
Next, we introduce the notation
K K
Gt¥_ (%y + ;nyz> = Ae¢ (aﬁ + ;ﬁy) (4.65)

(see (4.51) for the components of 1) and match equation (4.62) to (4.27), which yields uy =
E(()ZIC) and r = kG~ /q (note the minus sign in (4.65)). We also match the interface condition
(4.63) to the second condition (4.33), which yields R = —ikn,,. Substituting these values of r
and R into (4.34), we express the cross-polarized reflection coefficient defined by (4.64) as

— Lk +

4.2.4.3 Vertical polarization of the incident wave.

We start with the co-polarized scattering again. For this case, we have E@(,inc) = 0 and, conse-
quently, E, = ésc) = O(s). As 1y, ~ gy = O(5), the right-hand side of equation (4.56) can
be dropped, making this equation homogeneous:

d? dH,

2 2 .
(nxm@ + k* — K nzz) Hy - 27177172'[(% 0.

Linearization of this equation gives

L - K? K .
(sc) — _ _ o o iqz
H(()inc) H?J ((nxx 1) + q2 (nzz 1) 277:(;z p )9(2)6 R (467)
Y

where Héiync) is the amplitude of the incident wave. The interface conditions for this co-polarized

case require continuity of Hy and E, at z = 0. Given the continuity of the incident field along
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with its normal derivative, the second equation of (4.19b) yields the continuity of HESSC), while

for E, we employ formula (4.54a) and after the linearization obtain:

_idHy
k dz

B _ingSSC)
-k dz

q in K in
+ %(nzm - 1)H(gy - ?ﬁszéy C)- (4.68)

Similarly to the isotropic case, see formula (4.43), the normal derivative of H?SSC) is discontinuous
at the interface. Comparing (4.67) and (4.68) to (4.27) and (4.33), we get:

K2

K . .
r= —<(nm —-1)+ M2z — 1) — 2773523) and R =iKng, —iq(Ne: — 1).

e
Then, using formula (4.34), we obtain:
K2
e

1

Syy = —*<(77m -1)

; (n:2 = 1)). (4.69)

For Ae = 0, formula (4.69), with the help of (4.51), reduces to the isotropic expression in (4.44),
as expected.

The cross-polarized field in this case is governed by the linearized equation (4.55):

d 2 (sc) . d (inc)
(@ +4q >Ey = _k(mzy@ + KT?yZ)Hy )

which can be transformed into

1 [ k iqz
(inc) LEZ(/SC) -2 (qm«y - Knyz)ﬁ(z)e . (4.70)
H q

Remarkably, the value of r in (4.70) and (4.62) is the same, r = kG~ /q, where G~ is defined by
(4.65). The difference between the cross-polarized case of Section 4.2.4.2 and the cross-polarized
case considered here is in the boundary conditions. Indeed, for the current cross-polarized case
we require the continuity of E, and H, at z = 0, which translates into the homogeneous
boundary conditions (4.59) by taking into account that £, = EZ,(,SC) and using the first equation
of (4.52b) for H,. Hence, R = 0, and using formula (4.34) for EZ(,SC) with ug = H(g;nc), we arrive
at the reflection coefficient

1k

which is different from (4.66). In formula (4.71), Sgv is defined similarly to (4.64):

def

Sy = E[()ZC)/ Héinc) provided that EZ(ISC) = ézc)emz*iqz for z < 0.

Y
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4.2.4.4 Scattering coefficients for perfect birefringent dielectric.

For future reference, we present here the expressions for the reflection coefficients given by (4.60),
(4.69), (4.66), and (4.71) in the following form (expressions (4.49), (4.51), and (4.65) have also

been used):
2

1k
SHE = —Z?(EJ_ -1 +ﬂ2A€),

_ 1 2 K2 2
va—z((EL—l—l-Oé As)—?(eL—l—kv A€)>,
(4.72)
1k K
Suv = —Za<a - *V)ﬂAE
1k K
Svh = Za(a“‘ 7)18A5

It should be noted that here we used the approximations 11@ ~1—eg, lgjyyy ~ 1 —¢eyy, and

1=£:: 1 —¢,, which are justified because thes diagonal entries of the permittivity matrix have

Ezz

values that are close to unity, making the numerators small.

4.2.4.5 Scattering off basal plane.

We start analyzing particular geometries by assuming that the interface between the vacuum
and material is normal to the optical axis, in which case we say that it coincides with the so-
called basal plane. Substituting o = 0, 8 = 0, and v = 1 (see Figure 4.1) into equations (4.72),

we obtain the following expressions for the reflection coefficients:

1k2
SHH = 4 ) (EJ_ — 1)
e —1
Svv = Sun@, where Q= (K2 - : q2>, (4.73)

Syvag =0, Syv=0.

Comparing the values of @ in formulae (4.73) and (4.44), we see that unlike in the isotropic
case (see Figure 4.2(a)), the ratio of the co-polarized reflection coefficients now depends on
the material properties. Indeed, while the quantity @ in (4.44) depends only on the incident
angle, in (4.73) it may assume any real value, depending on (¢, — 1) and (g — 1). Therefore,
this scattering configuration has two degrees of freedom rendered by the real-valued reflection
coefficients Syg and Svyv.

Once the co-polarized channels Spy and Syv have been defined according to (4.73), one can

look into the possibility of reconstructing the material parameters €| and ¢ while interpreting
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Sun and Syvy as the given data. It turns out that system (4.73) can be solved with respect to
€1 and ¢ for any values of the observables Syy and Syy. However, not every choice of the
input data results in a physically feasible solution. In particular, the value of @ = Syv/Sun

should satisfy the condition

e
Q+ 12 >0 (4.74)
in order for the susceptibilities to be positive:
e, —1>0 and ¢ —1>0. (4.75)

If the condition (4.74) is not satisfied, then at least one of the requirements on the material

parameters in (4.75) will not be met.

4.2.4.6 Arbitrary direction of the optical axis.

Analysis of the last two equations in (4.72) shows that the cross-polarized channels are nonzero
if 8 # 0 and 8 # 1, i.e., when the optical axis is neither parallel nor perpendicular to the
plane of incidence (note that the basal plane case considered in Section 4.2.4.5 corresponds
to B =0, i.e., optical axis is parallel to the incidence plane, and thus provides only co-polarized
scattering channels, see (4.73)). The cross-polarized channels are also proportional to Ae, which
once again shows that they vanish in the isotropic case. The ratio of the two off-diagonal entries

of the scattering matrix is given by

Suv _ ga— Ky

SvH qa+ Ky

This expression can help identify the individual effects of  and ~. If & = 0, then the off-diagonal
entries are equal. If v = 0, i.e., the optical axis is parallel to the interface, then the sum of the
off-diagonal entries is zero. In either of these two cases, the overall number of degrees of freedom
is three, otherwise, i.e., when a3y # 0, it is four.

The ratio Q of two co-polarized reflection coefficients for arbitrary direction of optical axis

differs from that given in formula (4.73), but still depends on Ae:

Svv 1 2 2
= = 2z — 1) — ez — 1
Q=g EIE— (K (n )—a°(n ))
1( QsL—1+72A5_ 25L—1+a2A5)

T k2 e — 14+ p2Ace qeL—1+B2A5

(4.76)

The plots in Figure 4.2(b) and (c) illustrate how @) depends on €, and ¢ for 0; = 7/9.
The exact formulation is made according to [Che83|. Similarly to the reflection coefficients in

Figure 4.2(a), the linearized and exact values are close if [} — 1| < 1 and |g] — 1| < 1.
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4.2.4.7 Discussion of the lossless birefringent medium and Theorem 1.

Compared to the isotropic case characterized by the scalar dielectric coefficient € (Section 4.2.3),
the case of a perfect uniaxial dielectric is controlled by four parameters: ¢, €|, a, and 7 (note
that 3 is not an independent quantity due to relation (4.48)). Depending on the particular geom-
etry, this case may provide two (v = 1, Section 4.2.4.5), three (a« =0, By # 0ory =0, af # 0),
or four (afBvy # 0) degrees of freedom (Section 4.2.4.6). However, the mere availability of the
correct number of degrees of freedom does not, generally speaking, guarantee that the problem
of reconstructing the material properties from reflection coefficients has a solution for any an-
gle of incidence and any input data (i.e., any arbitrary values of the observable quantities Sy,
Svv, Sav, and Syx).

The issue of solvability of the aforementioned problem is addressed by the following

Theorem 1. Equations (4.72) can be solved with respect to €, €|, @, and 7 for the given Syp,
Svv, Suv, Svi, and 6; if and only if

(S\/V + VSHH)2 > 4V SuvSvi, (4.77)

where
q2 _ K2
k2

and 6; is the angle of incidence defined in (4.40).

V= = cos® 0; — sin® §; = cos 26;,

Theorem 1 is proved in Appendix N. Theorem 1 shows, in particular, that for the linearized
scattering off a plane interface between the vacuum and a lossless birefringent dielectric, the
inverse problem does not have a solution for all possible combinations of reflection coefficients,
see (4.77). Tt is not clear ahead of time what may be causing this limitation of solvability:
whether it is the type of the material that we have chosen or the linearization itself. We address
this question in Appendix O by conducting numerical simulations for the exact formulation of
the direct scattering problem. It turns out that even with no linearization there are still regions
in the space of reflection coefficients for which there is no solution. Moreover, if in the case of
weak scattering (when the linearization applies) neither the linearized nor the original problem
happen to have a solution, then the regions of no solution for both problems seem to coincide.
Hence, the limitation of solvability of the linearized inverse problem shall be attributed to the

type of the target material rather than to the first Born approximation.

4.2.5 Isotropic and anisotropic lossy dielectric

4.2.5.1 Modified permittivity tensor in the presence of a finite conductivity.

First, we consider the case of an isotropic lossy dielectric, i.e., € = €Z, o = ¢Z, where € > 0

and o > 0 are scalars. Then, the propagation is governed by equations (4.17) supplemented by
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the material relations
D=c¢cE and j=0E. (4.78)

Given (4.78), the second equation of (4.17) transforms into
V x H = —ikéE,

where [cf. formula (4.10)]

4 4
Emetiml =14 (e—1)+i—2, (4.79)
w w

This is equivalent to the previously considered case of a perfect isotropic dielectric (Section 4.2.3)
with a redefined dielectric constant. The applicability of the first Born approximation (see
Section 4.2.3.1) requires that the conductivity term in expression (4.79) be small, or 470 /w ~
»x < 1, see (4.21). If this condition is satisfied, then all the formulae in Section 4.2.3 remain
valid, with € replaced by €.

We will now extend this consideration to anisotropic permittivity and conductivity. For the
latter, we assume a uniaxial model described by the parameters o, o), as, 35, and 7, similarly
to the model of the dielectric tensor described in Section 4.2.4.1. Hence, the representation of the
conductivity tensor in the coordinates of Figure 4.1 will be given by formula (4.49) with (o1, 0))
substituted for (e 1,¢|) and (o, 35, 7s) substituted for (a, 3,7). Given this representation and
the linearity of relations (4.78), we can derive the following tensor counterpart of the scalar
formula (4.79):

E=e+i—o. (4.80)

Next, notice that the reflection coefficients in (4.72) are linear functions of susceptibilities
(e —1) and (1 — 1) [note that Ae = (¢ — 1) — (1 — 1)], which is in agreement with the
first Born approximation being a linear perturbation method with the susceptibilities playing
the role of small parameters. Therefore, with the conductivities taken into account, the new

scattering amplitudes can be calculated by simple substitution rules:

1k2 2
s =} (e 78]
" (4.81a)
_ 1 k2 2 Am 2
Su = _Z?((gL — 1)+ A +i—(o1 +ﬂoAU)>a
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1 9 K? )
SVV:Z (5J_—1+04AE)—?(€J_—1—|—’)/A6)
I
~ 1 K2
Svv = 4< el —1)+a’Aec — 7 ((e1 — 1) + 72 A¢) (4.81b)

4 K?
—i—zg <O'J_+C¥ Aa—q(m_—i—’yaAa)))

1 K
Suy = Lk <04 — ’V) BAe
q q

4
Sty = Lk <<oz - I;v) BAe +z4— < - K’Ya> 50A0> ,
and i K
Svi = Lk <a + 7) pAe
4q q
I (4.81d)
Svi = 1k ((a + K7> BAe +i R < Qo + K%) ﬁoA0> 7
4q q w q

where Ac = o) — 0.

4.2.5.2 Isotropic permittivity and isotropic conductivity.

The reflection coefficients (4.38) and (4.44) modified by the foregoing procedure, contain the
factor of (€ —1), see (4.79), and thus become complex. Their complexity affects the phase of the
reflected wave. However, the ratio of the reflection coefficients for the vertical and horizontal
polarization is still equal to the same quantity @) defined in (4.44). Moreover, the phase difference
between the two reflection coefficients, or CPD, remains unchanged, i.e., equal to zero. As such,
despite the changes in the values of the reflection coefficients due to a finite conductivity, this
case still has only one degree of freedom, the same as the case of a perfect isotropic dielectric
(see Section 4.2.3.4).

4.2.5.3 Anisotropic permittivity and isotropic conductivity: reflection from basal
plane.

We analyze the effect of conductivity on the scattering amplitudes obtained in Section 4.2.4.5
assuming that the conductivity is isotropic, i.e., 0, = o = 0. In this case, the value of Q
in (4.73) should be replaced by

i(KQ g — 1+ (idmo) /w B q2>.

= e — 1+ (idmo) Jw

(4.82)
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The new quantity @ defined by (4.82) depends on o provided that ¢, # . This means that
the conductivity o brings along a new degree of freedom to the scattering matrix. Qualitatively,
the difference compared to the lossless case (4.73) is that the ratio of the co-polarized scattering
amplitudes becomes complex, which introduces a phase shift between the corresponding scat-
tered waves (i.e., a nonzero CPD). In particular, if the incident wave is polarized linearly, then
the scattered field will be polarized elliptically.

Similarly to the case of zero conductivity (Section 4.2.4.5), finite conductivity may also result
in solutions that are not feasible from the standpoint of physics. For example, expression (4.82)

can be rewritten as

Q

dot K? (Q N ZZ) g — 14 (idno)/w (4.83)

17 ke ey — 1+ (idmo)jw
If we assume that the conductivity and susceptibilities are positive, i.e., 0 > 0, e, —1 > 0,
and £; — 1 > 0, then both the real and imaginary part of the numerator and denominator in

the last expression of (4.83) are positive. It means, in particular, that
Re(Q1) > 0. (4.84a)

As the imaginary parts of the numerator and denominator are equal, by comparing the absolute
values we get
Im(Ql) <0 if |Q1‘ > 1,

Im(Ql) >0 if |Q1| <1

(4.84D)

Recall that @ (and, consequently, )1) is an observable: Q = Syv/Sun. If, however, the observed
value of Q1 does not satisfy (4.84), then the assumption that the conductivity and the two

susceptibilities are positive is violated.

4.2.5.4 Anisotropic permittivity and isotropic conductivity.

Generalizing the scenario presented in Section 4.2.5.3 to any geometry, (4.82) becomes

_ K2 ((eL = D +9°A¢) —¢* ((eL — 1) + 0®Ac) + io (K2 — ¢%)

4.85
@ k2 (e — 1) + B2Ae +iiZ0) (4.85)
Similarly, (4.83) can be generalized to
2
def k2 2 el —1+92Ae + 45 (32 — o? AE—!—Z'%O’
Q= <Q+ q2) - K22( ,42 . (4.86)
K k el —1+p2Ae+ijo
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4.2.5.5 Anisotropic permittivity and conductivity.

Let P = ((e1 — 1), (g — 1), 0, 3,7) be a set of parameters defining the permittivity of the ma-
terial (Section 4.2.4.1), and C = (01,0, as, B, 7s) be the parameters of the material conduc-
tivity (Section 4.2.5.1). As shown in Section 4.2.5.1, the effect of a finite “uniaxial” conductivity
can be described by adding imaginary components to the reflection coefficients. For each coef-
ficient, the functional dependence of the imaginary part on the parameters C is similar to that
of the real part on P [as illustrated by formula (4.81a)]. For the entire matrix of reflection co-
efficients S (essentially equivalent to the scattering matrix S of (4.14), see Section 4.2.3.4), this
functional dependence may be expressed as

S=8(P,C)= (4.87)

w

Suu(P) SHV(P)]+.417T
Svu(P) Svv(P)

Sun(C) SHV(C)]
Svi(C) Swv(C)|"

In the first term on the right-hand side of (4.87), the entries Sum, Svu, Suv, and Syy of the
matrix are real-valued functions of P defined by (4.72). In the second term, the same functions
are applied to C.

It has been shown in Section 4.2.4.6 and Appendix N that for the lossless material the set
of permittivity parameters P provides up to four degrees of freedom to the scattering matrix S
of (4.87). Further, we notice that the real and imaginary parts of S depend on P and C' the
same way up to a multiplicative constant 47/w in front of the imaginary part. Hence, the
set of conductivity parameters C provides up to four additional degrees of freedom to the
matrix S. Altogether, the combination of P and C provides up to eight degrees of freedom to
the complex-valued matrix S.

The result of Theorem 1 naturally extends from the lossless material to the lossy material
via the following
Corollary 1. The permittivity parameters P and the conductivity parameters C' can be recon-

structed from the given complex-valued entries of the scattering matrix S of (4.87) if and only
if the inequalities

(RG(SV\/) + VRG(SHH))2
(Im(Syv) + VIm(Sun))?

VREI(SH‘\/)RG(S\/H)7 (4.88&)

4
4VIII1(SH\/)III1(SVH), (488b)

VoV

hold simultaneously.

Each of the inequalities (4.88a) and (4.88b) is similar to inequality (4.77) in Theorem 1. We
can notice again that the functional dependence of Re(S) and Im(S) on P and C| respectively,
is the same up to a constant factor. Thus, the proof of Corollary 1 reduces to the proof of
Theorem 1 applied independently to Re(S) and Im(S).

For this most general setting, it may also possible to formulate the criteria for a solution

104



to the inverse problem to be physical, i.e., to satisfy the conditions e, > 1, g > 1, 01 > 0,
and o > 0 (see Sections 4.2.3.4, 4.2.4.5, and 4.2.5.3 for particular cases). If so, however, the

resulting expressions are cumbersome. They may be part of a future study.

4.2.5.6 Discussion of lossy materials.

Altogether, the case of anisotropic permittivity and conductivity has eight independent mate-
rial parameters and may provide up to eight degrees of freedom to the scattering matrix. If the
hypothesis of Corollary 1 holds, then the material parameters can be successfully reconstructed
from the observables. At the same time, the particular cases of isotropic conductivity consid-
ered in Sections 4.2.5.2 and 4.2.5.3 illustrate that the introduction of a new physical effect that
modifies the scattering mechanism does not necessarily lead to an increased number of the de-
grees of freedom. Some other simplifications may also reduce the number of degrees of freedom.
For example, the assumption that the dielectric axis coincides with the conductivity axis will
reduce the number of independent parameters from eight to six.

Similarly to Sections 4.1.2 and 4.2.3.2, the first Born approximation does not provide a
physically viable solution in the material, which in the case of a finite conductivity would be
a spatially decaying wave. Indeed, in order for the transmitted wave to decay as z — 400, the
component of its wavenumber normal to the interface should have an imaginary part. However,
after the linearization, see equations (4.25) and (4.27), the only possible representation for the
scattered field is given by (4.32), where the value of ¢ is always real and is defined by the
incident field. Thus, the effect of conductivity is restricted to the changes in the amplitude and
phase of the reflected wave.

Let us also recall that even though the observed scattering matrix (4.14) or (4.87) has four
complex-valued entries, in practice it may appear impossible to distinguish between the relative
phase and the common phase that accounts for the travel distance. Hence, it is customary to
keep the HH entry of the scattering matrix real, see the discussion around equations (4.15),

which reduces the number of degrees of freedom to seven.

4.3 Convolution with the fundamental solution and surface po-
tentials

Having discussed the linearized scattering off a half-space filled with various types of materi-
als, we recall that in the context of SAR imaging the ground reflectivity function is taken in
the form of a single layer, see formula (4.11), or in other words, the target material is con-
sidered concentrated only on the surface of the half-space. In this section, we show that for
every material considered in Section 4.2, scattering off a material subspace can be equivalently

reformulated as scattering off a layer of monopoles on its surface.
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4.3.1 Lossless isotropic target

Let us return for the moment to the simplest case of a perfect isotropic dielectric. We will
provide a somewhat different interpretation of the solutions obtained in Section 4.2.3 that will
help us justify the use of the ground reflectivity function for SAR imaging in the form of a
single layer on the interface z = 0, see formula (4.11).

For the operator L of (4.27), we first define its fundamental solution £ = £(z) as a solution
to the inhomogeneous equation LE = d§(z) subject to the radiation conditions (4.28). The

fundamental solution exists, is unique, and is given by

1 .
E(z) = %e’qw. (4.89)

Recall that for the scattering solution in the form (4.32), we have B = C (see (4.34))
for the “homogeneous” part of the solution, u(®(z), see (4.29). Consequently, u™ (z) can be

represented in the form of a single layer potential:
u™(2) = £(2) * N§(2) = NE(2). (4.90)

The magnitude of the J-function at the interface, i.e., the density N of the potential, is equal

to the jump of its derivative at z =0, i.e.,

(h)
N = [dzz ] ) = 2igCuy, (4.91)
where we use the notation J 4 p
[”} e 2 (4.92)
dz |, dz (M) dz (F)

The quantity NV in (4.91) depends on the polarization. For the horizontal polarization, the

continuity of d“d(:C) at z = 0, see (4.37), implies that the jump of dqzl(zh) should be negative that
of du®) |
dz

du® du(P)
dz T | dz ’
z=0 2=0

Using (4.31), we get [cf. formula (4.38)]:

iq k?
NHH == —gqﬁ(s - 1)U() (493)

where ug is the amplitude of the incident wave for the horizontal polarization, i.e., E(()i;c).
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For the vertical polarization, formula (4.43) yields:

du® du(®) . (e
dz 70__ dz 70+(6_ ) dz |,_o

where u("®) is given by (4.24b). Consequently [cf. formula (4.44)],

Nyvy = —;f(E — I)UO + iq(zS - 1)U() = QNygu. (494)

Here, ug is the amplitude of the incident wave for the vertical polarization, i.e., Hé;nc).

In either case, (4.93) or (4.94), the solution u™(z) of (4.90) coincides in the vacuum region
z < 0 with the overall scattering solution u%(z), see formulae (4.32) and (4.29). This means
that the reflected field given by the first Born approximation for the scattering off a material
half-space can be equivalently represented as the reflected field due to the linearized scattering
off a specially chosen d-layer at the boundary of the half-space. Moreover, for both horizontal
and vertical polarization, the magnitude of the single layer is proportional to (¢ — 1)ug or
equivalently, to the scalar lossless ground reflectivity function (4.7) times the incident field at

the interface: )

N x (e = 1ug = <22 — 1>u0 = Pvuyg.
This explains why for the analysis of the reflected field in the framework of the first Born
approximation the ground reflectivity function can be chosen in the form of a single layer at
the material interface, see formula (4.11). We also note that according to the electromagnetic
equivalence theorem by Schelkunoff [Sch36], the field on a given region, regardless of its actual
sources located outside of this region, can be reproduced as the field from the specially chosen
auxiliary sources at the boundary of the region.

Given the representation (4.90) of the reflected field as a convolution with the fundamental
solution, one can formulate a natural question of whether or not the entire scattering solution
can be obtained as a convolution integral. In fact, equation (4.27) has been solved by convolution
in [Ori85]. This approach, however, suffers from two limitations. First, the convolution of the
fundamental solution (4.89) with the right-hand side g(z) of (4.27) leads to a diverging improper
integral over the interval 0 < z < oo, and the use of the limiting absorption principle in [Ori85]
for “fixing” the divergence lacks mathematical rigor. But even disregarding that, the second
limitation is more important. For a bounded continuous right-hand side g(z) in (4.27), the
convolution integral yields a C! smooth function. This implies, in particular, the continuity
of the resulting solution and its first derivative at z = 0, which corresponds to the horizontal
polarization only. In other words, a straightforward convolution-based approach cannot account

for any boundary conditions other than (4.37) and hence cannot be used for studying other
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polarizations. To analyze the vertical polarization, an additional singular term at z = 0 due to

boundary condition (4.43) should be taken into account along with the right-hand side g(z).

4.3.2 Anisotropic and lossy targets

The approach of Section 4.3.1 can be extended to include more complex cases considered in
Table 4.2. The new effects to be described are the cross-polarized components in the scattered
field and the phase shift due to a finite conductivity.

For an incident wave in one of the two basic polarizations, the presence of two components
in the scattered field (co-polarized and cross-polarized) can be described by a two-dimensional
vector d-layer. In doing so, formula (4.90) applies to each component of the vector d-layer sep-
arately. For a birefringent scatterer considered in Section 4.2.4, we can use relation (4.91) and
express the components of the vector density using reflection coefficients defined by formu-
lae (4.72):

Nun

My = [ ] = 2iqEy (4.95)

S N inc
HH My = vV :2qu(()y )
Svu Nuv

va]

VH Suv

A finite conductivity affects the density of the dé-layers given by formulae (4.93), (4.94),
and (4.95) through the modified dielectric tensor € of (4.80) and the corresponding changes in

the reflection coefficients (see Section 4.2.5.1).

4.4 Application to polarimetric target decomposition

The polarimetric target decomposition [CP96, LP09] can be viewed as a heuristic method of
solving the inverse scattering problem. Basically, the goal is to represent the scattering matrix®

as a linear combination of the basis matrices:
S =181 + 289 + 353 + €484, (4.96)

where each of S;, 7 = 1,2, 3, 4, represents a particular scattering mechanism, and ¢;,i = 1,2, 3,4,

are complex-valued coefficients to be determined. For example, the Pauli matrices

10 1 0 01 0 —i
Si = . Sy = . S = . and  Sy= .

may be associated with single-bounce and double-bounce scattering off plane surfaces with

different orientation, see [LP09, Chapter 6]. The choice of the basis S; for decomposition spec-

81n practice, the decomposition is often applied to the coherency and covariance matrices, whose entries are
second order moments of the particular combinations of entries of the Sinclair scattering matrix, see [LP09,
Chapters 3, 6]. The decomposition considered here is called the “coherent decomposition.”
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ifies the range of admissible scattering mechanisms, whereas the decomposition coefficients c¢;
determine the (relative) weights for individual mechanisms.

If some a priori knowledge about the actual scattering process is available, then it may be
beneficial to choose one (or more) of the matrices S; as the matrix of reflection coefficients
for a given scattering mechanism [see, e.g., formula (N.1)]. This choice allows one to estimate
the role of a particular mechanism in the overall scattering, and makes it easier to interpret
the results of decomposition. For example, some foliage penetration and terrain scattering
models [CP96, Section VI| involve multiple scattering channels where one of the stages is the
“mirror” reflection from the ground. The models developed in Section 4.2 may be used to
represent this “mirror reflection” stage for sufficiently large radar wavelengths that allow one
to neglect the roughness of the surface.

In the current work, we analyze the Sinclair scattering matrices built from physical princi-
ples. We can therefore expect that if an appropriate basis is chosen, then the polarimetric target
decomposition will yield the corresponding material characteristics. For a lossless material, the

matrix of reflection coefficients (4.72) can be equivalently represented as

Li2

S — _r
4 ¢?

K
((gL C1)S) 4+ AeSs + %amgsg ~ ?'yﬁAs&l), (4.97)

Sun  Suav
Sva  Svv

where the matrices S;, ¢ = 1,2, 3,4 are given by

0 0

1 0 32 0 0 1
Si=|) Kog| &= Ko, S=|0 [ ed Si=
k2 k2

Hence, we can interpret formula (4.97) as a polarimetric target decomposition of type (4.96)
with e =1 —1, co = Ae, c3 = qafAe/k, and ¢y = —K~y[FAe/k (up to a common multiplicative
factor of —i’qf—i, which can also be combined with the geometric attenuation coefficient). If we
have the decomposition (4.97), then of the four material parameters to be reconstructed, the two
permittivities are obtained directly from c¢; and cz, while the relations for c3 and ¢4 provide two
equations for two of the three directional cosines of the optical axis (with the third expressed
via (4.48)). The problem however is that the entries of the matrix So depend on the material
parameters (direction angles for the optical axis) and cannot be defined without having to solve
the inverse problem first. It is possible though to break the loop by taking any diagonal matrix

not proportional to &7 instead of Sy. For example, the following set of matrices

1 0 0 0 0 —1 0 1
81 = K2 _ q2 , Sé = K2 83 = , and 84 = (498)
0o —* 0 — 1 0 10
k2 k2

forms a basis in the space of 2x2 matrices with real entries, does not depend on the material
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properties, and hence can be used for target decomposition. The disadvantage of this set is that
the resulting value of co will, generally speaking, differ from Ae, and thus the values of £, a,
and 7 calculated from ¢y, 3, and ¢4 will also be incorrect. Still, expansion (4.96) with respect

to the basis (4.98) is capable of detecting several types of configurations (see Figure 4.1):
(i) Isotropy (¢ = 0), by observing that co = c3 = ¢4 = 0;

(ii) Optical axis being either parallel to the incidence plane (5 = 0) or perpendicular to it
(=1, a=~=0), when cg # 0, c3 = ¢4 = 0;

(iii) Optical axis being horizontal, excluding the cases in item (ii), (o # 0, 5 # 0, v = 0) when
c3 # 0, cqg = 0;

(iv) Optical axis lying in the plane normal to both the interface and the incidence plane,
excluding the cases in item (ii), (e =0, 5 # 0, v # 0) when ¢35 = 0, ¢4 # 0;

(v) Any of the “main diagonal” directions of the optical axis (|a| = |3| = |y| = 1/V/3), when
co=0,c3#0, cg #0, etc.

Thus, basis (4.98) appears suitable for the qualitative classification of birefringent targets,
although exact determination of the material parameters still requires solving a nonlinear sys-
tem (4.72) that consists of four equations. It is to be noted though that in practice, the equalities
in criteria (i)—(v) shall be replaced by thresholds that would take into account the accuracy
of the measurements and the noise levels. The questions related to noise and experimental
accuracy will be addressed in a future publication.

Lossy targets can be identified by detecting a phase shift other than 0 or 7 between the
channels. As the imaginary part of the matrix S is similar in structure to the real part [see
formula (4.87)], a complex counterpart of the set of matrices (4.98) can be used for the decom-

position of Im(S), which is equivalent to allowing the coefficients ¢; to become complex.

4.5 Chapter summary

We have analyzed the linearized scattering of a plane transverse electromagnetic wave off a
material half-space filled with a birefringent weakly conductive dielectric. Our main findings

are as follows:

e We have shown that the first Born approximation correctly predicts the scattered field

(both amplitude and phase for each polarization) in the vacuum region.

e We have demonstrated that with the polarization and anisotropy taken into account, the

linearized scattering off a material half-space can still be equivalently reformulated in the
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vacuum region as scattering off a specially chosen d-layer at the interface. This justifies
the choice of a ground reflectivity function in the form of a single layer at the surface of

a target, which is common for SAR applications.

e The corresponding inverse scattering problem consists of reconstructing the material char-
acteristics, i.e., the permittivities, conductivities, and direction angles at the target, from
the observable quantities, i.e., from the four complex-valued entries of the Sinclair scat-
tering matrix. We have provided a necessary and sufficient condition (see Theorem 1 and

Corollary 1) for this inverse problem to have a solution in the linearized framework.

As of yet, our analysis is limited to “mirror” scattering off a flat surface, and does not ac-
count for backscattering. Hence, in the context of SAR it may be useful for bistatic rather than
monostatic imaging, i.e., for the case where the transmitting and receiving antennas are two
different antennas at two different locations. Another possible application of this “mirror reflec-
tion” mechanism is to be a ground reflection component in the composite foliage penetration
and terrain scattering models [CP96, Section VIJ.

In this chapter, we have not formally considered any variation of material characteristics
along the interface; that’s why we could assume that all the waves have a common horizontal
component K of the wavenumber, see Figure 4.1. It is obvious, however, that our analysis
extends with no change to the case of slowly varying material characteristics. This means, in
particular, that we can consider ground reflectivity functions that vary along the interface,
but only if A < d, where X is the wavelength and d is the characteristic scale of material
variations defined, e.g., as d~! ~ |V£|/|é|, where & can stand for any of the actual physical
quantities that we have taken into account. The constraint A < d should not present a major
limitation for SAR applications, because the SAR resolution is typically much larger than the
wavelength anyway, see (2.71). On the other hand, our current analysis does not apply to short-
scale material variations, d ~ O()), and to include those it will need to be modified. This is
related to accounting for backscattering.

Our motivation for analyzing the first Born approximation in the case of polarized waves
and anisotropic targets was the possibility to build a polarimetric SAR ambiguity theory sim-
ilarly to how it is done in the scalar case. This, in particular, may help extend the results of
Chapter 2 from the case of scalar imaging to the case of polarimetric imaging that also involves
the Faraday rotation in the magnetized ionosphere (Chapter 3). It may also appear useful for
material identification (see Section 4.4). Our analysis shows that the polarimetric inverse prob-
lem as formulated in this chapter can be soved provided that the hypotheses of Theorem 1 and
Corollary 1 hold. It is also to be noted that the limitation of solvability of the linearized in-
verse problem imposed by Theorem 1 is apparently due to the type of the material that we

have chosen (a birefringent dielectric with weak anisotropic conductivity) rather than to the
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linearization itself, see Appendix O. Giving a physical interpretation to inequality (4.77), as
well as, perhaps, considering other materials and answering a related question of having non-
physical solutions to the inverse problem, see Sections 4.2.3.4, 4.2.4.5, 4.2.5.3, and 4.2.5.5, will
be a subject for the future study.
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Chapter 5

Summary and Topics for the Future

5.1 Isotropic ionosphere

SAR images obtained from satellites are prone to deterioration due to the temporal dispersion of
radio waves in the Earth’s ionosphere. The deterioration is stronger for lower carrier frequencies
and weaker for higher carrier frequencies. We have analyzed this phenomenon in the case of
a scalar field (for which polarization of radar pulses is not taken into account) propagating
in an inhomogeneous cold plasma. Our analysis shows that image deterioration is due to the
mismatch between the actual signals scattered off the Earths’ surface and received by the radar
antenna and the matched filter (which is a signal processing tool) designed as if the propagation
between the antenna and the ground was unobstructed.

To correct the filter, one needs to know the total electron content (per unit area) in the
layer of ionospheric plasma between the satellite and the ground. This key characteristic needs
to be known precisely at the time and place the image is taken. We have proposed to derive this
quantity by probing the terrain, and hence the ionosphere, on two distinct carrier frequencies.
We have also shown that within the accuracy of the TEC reconstruction, the resulting correction
of the filter eliminates all the distortions of the image that are due to the deterministic part of
the electron content in the ionosphere.

The correction, however, is not effective for removing the distortions due to the random
part of the charged particle content, i.e., turbulent fluctuations of the electron number density.
The reason is that the correction is essentially based on the information obtained from a single
pass of the signal back and forth between the antenna and the target. For this single pass, the
role of randomness is minimal because the effect of individual fluctuations averages out due
to the ergodicity. Nonetheless, the stochastic part manifests itself as the contributions from
multiple passes are added up along the synthetic array. Although we provide estimates for

image distortions due to the stochastic part of ionospheric disturbances, mitigating them will
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be a subject for the future study.

We have proposed to use the area-based image registration for improving the accuracy and
robustness of the reconstructed TEC in the dual-carrier probing approach. In particular, we have
related the error of the registration to that of the TEC reconstruction, and have also shown
how the error of the TEC affects the final quality of the re-processed image. The proposed
methodology leads to a multi-fold reduction of the image artifacts caused by the ionosphere
in their part which is not due to the turbulence. An important advantage of the proposed
methodology is that neither does it require the ground-based receivers (like GPS does) nor does
it need a repeat satellite pass.

In addition, Chapter 2 exploits the true Kolmogorov-Obukhov spectrum of turbulence and
includes a more accurate account of the effect of turbulent fluctuations on the image than
that in [Tsy09a,ST11]. It also accounts for Ohmic losses in the ionospheric plasma and for
the horizontal inhomogeneity of the ionosphere. In regard to the latter we note that whereas
our description predicts that the sign of the azimuthal displacement S, and that of the first
moment Q will be the same, see (2.90), other descriptions in the literature may have those signs
as opposite, see, e.g., [CZ12, LKIT03, GMS00]. We attribute this discrepancy to the difference
in the definition of S4.

In the case of an isotropic ionosphere, the issues to be addressed in the future may include:

e Studying the possibility of iterative application of registration/correction procedures.
Even if the first correction is not perfect (say, because the images are blurry and cannot
be registered well enough), the improvement of the image quality may result in a better

registration of the two corrected images.

e A more thorough analysis of the stochastic component of ionospheric distortions using
the turbulence structure function [RKT89b] rather than the correlation function. Develop-
ment of appropriate strategies of how to additionally correct the matched filter in order
to reduce the stochastic part of ionospheric distortions, assuming that the statistics of

waves are known.

e An investigation of whether the stochastic component of distortions can be tackled by any
of the general “black box” image sharpening and deblurring techniques [GWO08] developed
previously with no direct relation to spaceborne SAR. This may be warranted given that
the current mitigation strategy based on dual carrier probing is effective mostly for the

deterministic part of ionospheric distortions.
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5.2 Anisotropic ionsphere

We have shown that for single-polarization SAR, the Faraday rotation is another factor that
must be accounted for in a corrected matched filter. This can be done separately to the correc-
tions for dispersive propagation, and the filter that accounts for the FR can have new corrections
applied on top of the previous ones. We considered the case where the rotation is sufficiently
large to not be neglected, but sufficiently small so that a linearization of the effect of rotation
on the received signal could still be a valid approximation.

While it is another step towards a full-fledged SAR ambiguity theory, Chapter 3 is only
the first stage in incorporating the presence of the Earth’s magnetic field into the analysis.
Future development may include investigation of the accuracy and robustness of the proposed
algorithm for image improvement. Similarly to how we have looked into the issue of residual
distortions when correcting for the effect of the scalar dispersive propagation (Section 2.9),
this study will elucidate what kind of distortions one should still anticipate if the parameters
characterizing the Faraday rotation are not known exactly but rather obtained with some error.
The accuracy analysis will also include studying the sensitivity of the image ACF to the value
of the shift h, and mitigating the effect of this sensitivity on the proposed correction procedure.
In particular, the ACF of the image intensity can be employed instead of the ACF of the image
itself, as one can expect a better robustness of the algorithm from incorporating the quadratic
data [DJ13,JD13]. Yet another factor that contributes to the overall accuracy is the accuracy of
the solution of equations (3.28) with respect to the Faraday rotation parameter (Section 3.5).
It may also be investigated in the future.

For a radar operating on very low frequencies the case of a wide range of the Faraday rotation
angle may become important (case (c) on page 74 that is not addressed in this dissertation,
see also Figure 3.2(c)). It will require special attention in the future, because the linearization
(3.8) does not apply. Therefore, this case should be treated differently on both the parameter
estimation and filter correction stage. The sub-band processing approach (Section 3.4), if refined
and made quantitative, might provide additional estimates of the FR, parameters even in this
wide-range case.

Another issue that may be the subject of future research is analysis of the Faraday rotation
within the chirp for the fully polarimetric case.

Finally, a thorough investigation of the role of randomness for SAR imaging through a
magnetized ionosphere is also warranted. To that end, one will need to distinguish between the
randomness of the target, which we do not consider, and the randomness of the medium, i.e.,
the ionosphere itself. Randomness of the ionosphere is due to the turbulent fluctuations of the
electron number density ne, which, in turn, make the Langmuir frequency wp., see formula (J.4),

a random quantity (more precisely, a random field). In [Tsy09a] and Chapter 2, the effect of the
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turbulent fluctuations of n, on transionospheric SAR imaging in the scalar isotropic framework
has been quantified under the assumption that the scale of inhomogeneities (fluctuations) is
small. In particular, we have shown that the performance of a spaceborne SAR instrument in
azimuth is affected by turbulence much stronger than its performance in range. An even more
comprehensive study that allows for the large scale of turbulent inhomogeneities can be found
in [GS13]. According to (3.7), the Faraday rotation angle is proportional to w2 € cos (. In the
presence of turbulence, the Langmuir frequency wpe becomes random. As far as the other two
factors, 2 and cos 3, neither of them formally depends on n.. On the other hand, the external
magnetic field Hy may still fluctuate if it appears (partially) frozen into the plasma for the
particular conditions of interest. Therefore, the behavior of both €2 and cos § in the presence of
turbulence will need to be studied thoroughly so as to adequately represent the overall statistic

of pp.

5.3 Anisotropic scattering

Chapter 4 presents an analysis of the effect of the target, possibly anisotropic, on the polarization
signature. Specifically, we looked at a hierarchy of predominately dielectric scattering materials
and, assuming the scattering was weak, we were able to show that the first Born approximation
predicts the correct scattered field in a vacuum, even for a fully polarimetric imaging system.
This has allowed us to present the results of the analysis in a relatively compact analytic form.

In a fully polarimetric imaging system, the return data can be characterized by four com-
plex coefficients relating two inputs to two outputs. For convenience, these are traditionally
represented by the Sinclair scattering matrix. If the scatterer is represented as a weakly con-
ductive uniaxial crystal, then there is a necessary and sufficient condition under which all eight
degrees of freedom of the scattering matrix can be reconstructed from the observed data. This
is an important result; in the past, the scattering matrix has overwhelmingly been treated
phenomenologically, but we have shown that within the linear framework of the Born approx-
imation, its values reflect key physical properties of the scatterer such as the permittivity and
conductivity. Furthermore, we have shown that the condition needed to establish this relation
is not an artifact of the linearization process but inherent in the selection of a uniaxial crystal
as the model for the target.

As stated in Section 4.5, the scattering study was limited to mirror scattering off a flat
surface. More work will have to be done to fit this into a realistic SAR imaging scenario where
a satellite is observing the Earth by exploiting the backscattering at oblique incidence angles.
This, in particular, could include analysis of scattering of the polarized radio waves off rough
surfaces, with the goal of relating SAR imaging to a physical mechanism of backscattering at

the target.
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Additionally, future research should incorporate dispersive targets. Dispersion of the target
material is a key characteristic that may enable its identification [MPAO02]. The goal is to build
a mathematical model for SAR imaging that includes the dispersion of the target, with possible
future applications to material identification, and with the potential of distinguishing between

the target dispersion and the ionospheric dispersion.

5.4 Additional directions for future work
Additional directions for future study may include:

e Applying the proposed methodology to processing the actual experimental data.

e Approaches for reducing the noise that is always present, regardless of whether the imaging
is done through the ionosphere or not, for example, instrument noise or rough terrain noise.
As a minimum requirement, this noise may not be amplified by any of the techniques used

for mitigating the ionospheric distortions.

e Optimization of interrogating waveforms for the ionosphere, beyond the standard linear

upchirps.

e An in-depth investigation of the VHF SAR imaging through the ionosphere aimed at
determining whether the VHF frequencies (very low in the SAR context yet still above the
Langmuir frequency) may require a more comprehensive propagation model that would

include, for example, kinetic considerations [Gin64].
e Combined analysis of the medium anisotropy and target anisotropy (Chapter 4).
e More comprehensive models for the ionosphere that take into account the ions.

e Incorporation of the improved ground reflectivity models that account for the dependence

on the viewing direction [GT13| and target texture.
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Appendix A

Factorization of the SAR ambiguity

function

In this appendix, we analyze the error due to the factorization (2.34) of the GAF (2.30), (2.31).

Substituting expression (2.30) into (2.31), we can write

W(y, z) _ Z/ XT(t _ tz)e—ia(t—t;)Qe—iwo(t—t’;)XT(t _ tz)eia(t—t?)zeiwg(t—t?) dt, (Al)

n X
where QRT  9lgn oRT  9lgn
x" — " — z
ner 2y _ 22" 2yl g gt 282 | (A.2)
c c c c
Then, we introduce a new integration variable v and new constants 7":
4 " —t?  R"—R?
u=t-— vy =Y Z="Y z A3
2 2 c (A-3)

such that
t—ty=u—T" and t—t; =u+T".

The travel time between y and z is of the order of Ar/c < 7. This is equivalent to |T"| < T;
hence, the two indicator functions y, under the integral in (A.1) overlap on some interval. The
center of this interval is u = 0 and the endpoints are w = 7/2 — |T"| and u = —7/2 + |T"|, so
that its length is

™ =71 =2|T"|. (A.4)
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The phase of the integrand in (A.1) can be expressed as

—a(t —t7)? —wo(t — ) + ot — t2)* + wo(t — t7)
:a[(tH—T")Q—(u—T”)2 +w(u+T" —u+T")

=a - 4uT"™ 4+ 2w T,

so the integration can be carried out analytically:

2uu0T" 4'LaT”u 22w0T” 1 20T —12ar™T™
du = — (e —e )
n
_n /2 41T

n . n .
g eZiwoT 22 sin(2ar"T") = E 20Tt gine(2a7™T™).

Similarly to (2.34)-(2.36), let us now introduce a new function

def
W(RA)<y7 Z) = WR(y7 Z) : WA(?J, Z),

where
N/2
Waly,z)= > erinliy=R/e - §= 2iwol”
n=—N/2 n
and

Wr(y, z) = / A(ud)A(u2) dt = 7°sinc(2a7°T").
X

(A.6)

(A.8)

In formula (A.8), 70 and T° denote 7" and T™, respectively, for n = 0. Our goal is to determine
how accurately this new function Wga)(y, 2) of (A.6)—(A.8) will approximate the GAF W (y, 2)

of (A.1) or, equivalently, (A.5). To determine the accuracy of approximation, we will estimate

the error
W — Wra) = Z 20T (7 sine(2a7T™) — 70 sinc(2a7°T0)).

n

The Pythagorean theorem for R} and R} (see Figure 1.1) yields:

(R =|z — 2"’ = H* + L + (a1)” = R* + (a1)°
(Ry)? =y —a"> = H> + (L+1)* + (a1 —4n)”
= R* 4+ 201+ 1> + (2] — 1),
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where

L =12 =Rsinf and [ =1ys — 25.

For the physical distances involved, we take
R~L~105m, |27 <10%m, and |yi| ~ || < 10%m.

Then, using the Taylor formula (14 &)1/2 ~ 1 + %f for |£] < 1 we get

Ry L G2 Ry P4 (@)~ 2aiy £ o
R 2R? R 2 R? ’

which, after keeping only the leading order term that does not depend on n and the leading

term that depends on n, yields:

RZ—R;‘NLZ _x?yl

N —— . A1l
R RR R? ( )
Consequently, we have
n 1 : l‘? def 10 n
T z—(lst—yl—) lef 70 _n, (A.12)
c R
where, taking into account that z} = nAxz; = nLga /N, we have introduced
lsin6 yiAzry  yi1Lsa Y1y
T = T' = = d T" ==t =nT" A13
c ’ cR Ner® ™ cR " ( )
As |T°| < 7 and |T"| < 7, we can write using the first-order Taylor formula:
sinc(2a7™T™) ~ sinc(2a7°T°) — 2a79T" sinc’ (2a7°77), (A.14)
so that the expression in the square brackets in (A.9) evaluates to
7" sine(207™"T™) — 70 sine(207°T%) ~ T"S = Sn'T?!,
where
S = sinc(2a79T%) — 2a(7°)? sinc’ (2a7°7°). (A.15)
Hence, formula (A.9) transforms into
N/2
W — Wga) = €8 Z e~ 2woT"pn — gl ei®o Z ne’™?, (A.16)
n n=—N/2
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where
woLsa

NRe 7V
Note that ®( defined above is not quite identical to the one in formula (2.37), but the discrepancy

l
Py = QW—O sinf and ¢ = —2wo Tt = —2
c

is small, on the order of those terms neglected when deriving (A.11).

To perform the summation in (A.16), we first use the standard summation of a geometric

sequence:
N/2 .
S e = Sin(e(V + D/2) N gine V2. (A.17)
2 (o /2) 2

where the last approximate equality holds provided that |p| < 1, i.e., my1/(A4N) < 1. Then,
differentiating both sides of (A.17) w.r.t. ¢ we get
N/2 N/2 5
19 18, . Ney N2 _ Ny
> ne?=gn 3 e gas(Neine 5E) = S sind SE,

n:—N/2 TL:—N/Q

Therefore, the expression in (A.16) evaluates to

N2 ) N - 1®Dg
W = Wpa) ~ ST 2—e'® sind —2 = £ N§Y; sind’ Y,
21 2 2w
i (A.18)
=5 N (sinc(2a7T?) — 2a(7°)? sinc’(2a7°T?)) Y1 sinc’ Y1,
wo
where Y7 = —N¢/2 = 7y /A 4. Formula (A.18) provides an expression for the factorization

error (A.9) that we will now estimate. Let us first assume that
V1] <1, |sind Y| <1, and |sinc(2a7°7?) < 1,

which is reasonable to expect. Then, let us notice that as 2a(7°)? ~ Bt > 1, the second term
on the right-hand side of formula (A.15) is much greater than the first one (except for very
small TV, i.e., when y and z are nearly at the same range). Hence, we can keep only the second
(dominant) term for S and obtain using (A.7), (A.8), and (A.18):

| max(W — Wga))| N ar? = 1B

(A.19)

Formula (A.19) provides an estimate for the relative error due to the factorization (A.6)—
(A.8) or, equivalently, (2.34)—(2.36). This error may be on the order of a few percent depending
on the value of the relative bandwidth w%. It is interesting to note that according to (A.18),

the dominant term of this error vanishes if either yo = 22 or y1 = 0 (the latter is equivalent
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to y1 = z1). The key to understanding this effect is the expression for 7" in (A.12)-(A.13).
Physically, T™ is the difference between the pulse two-way travel time for the pairs (", y)
and (z", z). As a function of the satellite position n, 7™ has a constant part 7° and a part T"
which is linear in n. It is the variation of the range PSF sinc(2a7™T™) with n in formula
(A.5) that is responsible for the leading term of the factorization error. If yo = 2z, then the
constant part of 7™ vanishes and so does the PSF tangent slope given by sinc’(2a7°7°). Hence,
the leading term of the variation of the PSF magnitude disappears. If, however, y; = 0 (or
y1 = z1), then it is the leading term of the variation of 7™ with n that vanishes [T" = 0,
see (A.13)], and so does the leading term of the variation of sinc(2a7™T™) regardless of the
value of 2a79T%. Only in the general “diagonal” configuration y; # 21, yo # 22 the coupling

between the range and azimuthal terms is significant, yielding the error (A.18).
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Appendix B

Propagation of SAR signals in a

lossless homogeneous plasma

We are interested in obtaining a spherically symmetric solution similar to the retarded potential
(2.21), but for the case of a dispersive propagation governed by the Klein-Gordon equation (2.8)
with wpe = const. Let » = |z — x| denote the radial coordinate in the spherical system centered
at £ € R3, which is the location of the antenna (we are using the notations of Section 2.3),
and let ¢ = ¢(t,r) be a spherically symmetric solution of equation (2.8). Introduce a new
function ¢ = ¢(t,r), such that o(t,r) = ¢(t,r)/r. Then, ¢(t,r) satisfies the one-dimensional
Klein-Gordon equation: , )
%—02%4—%2)6(]5:0, r > 0. (B.1)
Hence, we need to look into the propagation of pulses governed by equation (B.1).
Assume that a pulse of shape P(t) is given at » = 0 (location of the antenna); for example,

it can be the high-range resolution upchirp (2.18):

1 .
P(t) = —x, (t)ei (ot 3)t, (B.2)
a7
where wyg is the center carrier frequency, B is the angular bandwidth, and 7 is the duration of
the chirp. The factor 1/47 in (B.2) accounts for the difference between the one-dimensional and

three-dimensional delta-functions d(r) and d(x1, 22, x3) that excite the pulse at the origin.
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A Fourier transform in time of the pulse (B.2) is expressed via the erf functions:

T/2 /2
~ 1 1 . Bt . 1 .9
P - - z(wo+j)t7w}t — / iot* 410t
(w) 5 / e 2 dt 52 e dt
—7/2 —7/2 (B3)

2 —ia —
— _ L ﬁ e—zf—a—&-zz erf Z(ﬁ OZT) —erf Z(B“—Oﬂ-) ,
8722 /a 2./a 2./a
B
2T
the arguments of the erf functions. Denote

where o« = 22 is the chrip rate, and § = wp—w. To simplify expression (B.3), we need to analyze

_ BEar  wy—wEB/2

Uz= NG \/W

and consider several cases. First, let w € [wg — B/2,wo + B/2| and in addition suppose that w

(B.4)

is not too close to either endpoint, wy — B/2 or wy + B/2. In other words, suppose that the
numerator on the right-hand side of (B.4) is of the same order of magnitude as the bandwidth,
ie., |wo —w =+ B/2| ~ B. Then, |ni| ~ m, and for the typical values of the parameters
involved (see Table 1.1) this quantity is approximately 35.4. We can therefore evaluate the erf
functions on the right-hand side of (B.3) by the stationary phase method. Indeed,

V—int

1
2 2v/—1 :
erf(\/ —’”’li) = ﬁ / eszdz — ﬁlni/elniuzdu =
0 0

1
2/ —1 Lo o
ne| | fs(w)e™ " du+O0(0)],
2]

where fs(u) is a specially chosen auxiliary function such that fs € C*[0, 1], fék)(l) =0
for all £ = 0,1,2,..., and fs(u) = 1 for v € [0,1 — §], where § > 0 can be arbitrarily small.
Then, assuming that 1% is sufficiently large, we can apply the Erdélyi lemma [Fed77], [BFST93,
Chapter 1] to the last integral in the previous formula, and by dropping the O(J) term and
choosing the branch of the square root such that 0 < arg (v/z) <, obtain:

1

/ Fo(u)e™ " du ~

0

2v/—i
ST N+

o/—i T({E) .- ~1/2 N+
erf(v—iny) ~ ne —22es (ni =——.
V Ve e )=
In doing so we note that in this particular case the asymptotic expansion given by the Erdélyi
lemma actually converges because all of its terms except for the leading term happen to be

exactly equal to zero. Altogether, if w is inside the interval [wy — B/2,wp + B/2] and not too
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close to its endpoints, then we have:

2 2
Plo)m o VT miiig [ e e | L VT s (B.5)
+ 5 )
-1~ In4] 82 Vo
~———
=2

since in this case n_ is always negative, and 7, is always positive.
Next, let w be outside the interval [wyg — B/2,wp + B/2] and again, not too close to either

of its endpoints. Then, we can apply the exact same reasoning as before and obtain:

: 1 ym 2= m- g
P~ —— VT, Z4a+24[—+ —0, B.6
) 82 2/ -1~ In4l (B6)
—_——
=0

because unlike in formula (B.5), now both n_ and 74 have the same sign.
Finally, we need to consider the case when w is close to one of the endpoints of the interval
[wo — B/2,wy + B/2], i.e., lwp —w — B/2| < B or |wy —w + B/2| <« B. For example, if w is
close to the left endpoint so that |wg —w — B/2| is small, then erf(/—in_), see formulae (B.3)
and (B.4), can be evaluated using the first order Taylor expansion for erf, whereas erf(y/—in, )
should still be computed with the help of the Erdélyi lemma, which altogether yields:
- 1 7 8= [ V=i

P(w):—ﬁme 10Ty NN

Expression (B.7) is valid not everywhere, but only when the term in the round brackets is small.

(wo—w—B/2)+1]. (B.7)

Hereafter, we will leave out the foregoing transient case, |wg—w—B/2| < B or |wy—w+ B/2| <
B, and evaluate the Fourier transform P(w) only by combining (B.5) and (B.6). Then the
resulting transform P(w) approximately represents the chirp at ¢ = 0 as a superposition of

sinusoidal harmonics with different frequencies:

il
P(w)% —#%6 14(%-1‘7'47 1fw€[wo—B/2,w0+B/2], (BS)
0, if w ¢ [wo — B/2,wo + B/2].

Each of the frequencies w that compose the spectrum in (B.8), or, rather, each of the harmonics
¢! propagates with its own phase velocity of (2.44). Indeed, the propagating pulse ¢(t,7)
that has covered the distance r from the origin can be written as the inverse Fourier transform
[BW99, Chapter I], which, according to (2.4), immediately leads to the introduction of the
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phase velocity vy, = w/k in the exponent:

wo+B/2 wo+B/2
/ Pw)e @tk g, = / P(w)e™t=/vn) gy (B.9)
wo— B/2 WO_B/2

In (B.9), the phase velocity vpn and wavenumber k£ are assumed to be the functions of the

frequency w defined by the dispersion relation (2.3). Introducing

1 k

1 dk
and = —
wo Ugro dw wo

’Upho w

(B.10)

and using (2.3) and (2.44), we can approximately represent (wt — kr) in (B.9) by means of the
Taylor formula:

r

Uph (w)

= w0<t — U;Zl ) + b8 — rbyf3?,
0

7+ﬂ _—t =

wt — kr = w(t —
Uph dwvpn 2 dw? vpp

)%(wo-l-ﬁ) (1 d 1 62d21>

WJ (B.11)

where
r d 1 r
b=t— — —wgr ——| =t-— ,
Uphy dw vph |, Vgrq (B.12)
p_ 41 wy d? 1 1 whe '
27 dw Uph 2 dw? vy o 2c w3’

Substituting (B.11) and (B.12) into (B.9) and changing the integral over w to that over (3, we
get:

B/2
o(t,z) = 81§ i / —zﬁﬁ eiwo(t=r/vpng) HibB— zrbgﬁQdﬁ
—B/2
B/2
— ii % iwo (t—7/Vphg) / e*iaBQJribﬁdﬁ
8T
\F ~B/2
— LL Lelae_i%eiwo(t—’l’/vpho) erf M o erf M
7o 2va 2\/a 2Va

I

eiwo(t—r/vpho)ei% [erf (W) —erf (W)

1
" 16m/ava
(B.13)
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where )
T T lrw

= — by = — — ———F°

“TB T 2w

(B.14)

and the branch of the square root is chosen such that | arg(-)| < 7.
Using a stationary phase argument one more time, it has been shown in [ST11, Appendix A]
and (B.4)—(B.6) that the difference of the two erf functions in the last line of (B.13) is equal to

2 if the value of b is within the interval of (—aB,aB), and zero otherwise.! Introducing

b+ aB
i B.15
RS 2\/6 ) ( )
we can rewrite this difference as follows:
fexf(v/in® ) — exf(V/in' )] = 2x20(b), (B.16)
where y is the indicator function defined in (2.18), and
def r w2e B
C Wy Wo

is a new pulse length. Accordingly, the quantity

1 B B o
o &~ (1 + —T) =a+da (B.18)
T

da 20 " 2r

becomes a new chirp rate [see the second exponent in the last line of (B.13)].
Altogether, combining formulae (B.13)—(B.18), using the notation of (2.18), and recalling
that ¢(t,r) = ¢(t,r)/r, we obtain the spherically symmetric propagating pulse in the form:

1 o
ot,r) = 476wo(t—r/vpho)XT, (t — 1/ vgrg) €™ (t—7/vgrg)?
mr (B.19)

1 .

At = gyt ),

Remark. Leaving out the transients that correspond to the endpoints of the pulse and its
spectrum when using the stationary phase method is equivalent to disregarding the so-called
precursors, see [Gin64, Section 21| or [Oug06]. In other words, we are focusing on the propa-
gation of the main body of the pulse because it is the main body of the pulse that is used for

building the generalized ambiguity function in Section 2.4.

Remark. The observation that 7/ < 7 (and, consequently, o/ > «) for an upchirp [a > 0,

! Although the integral in the second line of (B.13) is algebraically of the same type as that in (2.66), the
analysis of Section 2.4 does not apply here because the QPE for (B.13) is not small: ¢4 ~ B7/8 > 1.
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see (2.18)] agrees with the formula for the group velocity in (2.43). Indeed, for an upchirp
the slower propagating low-frequency harmonics are emitted first and the faster propagating
high-frequency harmonics are emitted last. Hence, the “tail” of the chirp travels faster than its
“head,” which results in the pulse compression. The situation for the downchirp (o < 0) will
be the opposite: it will get dilated rather than compressed, 7 > 7, while its absolute rate will

become lower rather than higher, |o/| < |a| (see also [JESM10, Figure 1]).

Remark. Using expressions (B.9) and (2.35), one can represent the range factor of the GAF
as a double integral in frequency w and fast time ¢. In work [IKL199], the authors adopt this
approach and consider Gaussian pulses, which allows them to express the integrals over ¢ and
w in elementary functions. For the rectangular chirp (2.18), this method would still yield the
erf functions at the first step (integration over t), and will thus have no advantage over the one

used in the current work.
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Appendix C

Travel times in the deterministic

inhomogeneous ionosphere

In this section, the quantities N, = Nc(h) and wpe = wpe(h) are assumed to have no random

component.

=

target

locatio&\
2

target

; /Iocatlon

actual waves' path

0 z

(a) With no correction of the look angle.

Figure C.1:
geneous ionosphere.

X0

Z X
(b) With the correction of the look angle.

Schematic waves’ travel paths between the antenna and the target in the inhomo-

Suppose that the antenna is positioned at £ = 0 and has altitude H above the Earth. It
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sends a signal toward the target z on the ground, see Figure C.1(a), so that the look angle to
the target is equal to 6y and as such, R, = H/cosfy. As the medium is lossless (collisionless
dilute plasma with no Ohm conductivity, see Section 2.2), its electric permittivity is real:

2 2
wz (h 4me* Ne(h

pel ), where w?2,(h) = Ame"Ne(h). (C.1)

me

e(h)=1-

w

and we can write Snell’s law (for plane waves) in the continuous form [Gin64, Sec. 19] as follows:
n(h)sin@(h) = n(H) sin by, (C.2)

where the refraction index is given by

(C.3)

The angle §(h) in formula (C.2) is the angle that the tangent to the wave trajectory at a given
altitude h makes with the negative ordinate axis, see Figure C.1(a). Then, at every point on
the trajectory we can write with the help of equation (C.2):

dx n(h)sin@(h) ) sin Oy n(H) sin 6y

— = —tan = — __nH =
dh tan 6 (h) n(h)cosO(h)  n(h)cosO(h) \/n2 h) —n2(H)sin2 6, (C4)

Hence, the actual trajectory can be obtained by integrating equality (C.4):

h

T ) sin 6
—dh = / dh. C.5
/ dh \/n2 — n2 H)sin? 6 (6:5)

H

However, for the general dependence Ne = N, (h), the integration in (C.5) is not easy to perform.
On the other hand, we can simplify formula (C.4) by taking into account that all the ionospheric

corrections are small, and employing the first order Taylor expansion with respect to wge Jw?:

w2 (H .
dz 1— 7"6( ) sin 0o ( -3 pz(z )> sin 6o
% - = T w2, (H)sin? g—w2,(h) (CG)
\/ (1 ) sin? g \/0082 0o + 2= o2 ——
.2
_ tandg g - lwge(H) sin® 0y — w2 (h)
2 w? cos? Oy

— wpe(h)
~ pe
~ — tanf ( w2 C082 % .
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The integration of equation (C.5) yields:

i 1 W2 (H) — w2, (h)
x(h,by) = /—tan90 ( Sp— e )dh
H

2 w2cos? b
(C.7)
147me?  tané,

— (H — h) tanf + — 1 2%
( ) tan 0+2 me w2 cos?

H
(/Ne(h)dh —(H - h)Ne(H)>.

h
The shape of the curve (C.7) is determined by the profile of the electron number density
Ne = Ne(h). The curve is also parameterized by the look angle 6y at the location of the
antenna. With no variation in the electron number density, Ne(h) = No(H), formula (C.7)

yields a straight line between the antenna and the target:
x(h) = (H — h) tan 6. (C.8)

As, however, No(h) is not constant, the ray that originates at the antenna under the look angle
6y will not, generally speaking, come to the target, see Figure C.1(a). To have this ray come to
the target, we need to correct the look angle, see Figure C.1(b).

Let 0; be the new look angle. We substitute it into formula (C.7) instead of 6y, and require
that 2(0,61) = H tan 6. In other words, we require that the wave trajectory that originates at
the antenna under the new look angle 6; terminate precisely at the target z on the ground, see
Figure C.1(b). We have:!
147me? Ny — No(H)H

x(0,0,) = Htan6; + =

tanf; = H tan6 C.9
2 me  w?cos?6; ant #8505 (C.9)

where Ny is an important characteristic of the ionosphere — the integral of its electron number

density across the layer of thickness H, as defined in (2.54):

Formula (C.9) is an equation for ;. Let us now introduce a new notation K for brevity:

1 4de® Ny — N.(H)H
9 2

K (C.10)

2 Mme w

'Formula (C.9) corrects formula (D.2) from the previous publication on the subject [Tsy09a] (page 177), in
which there was an arithmetic error.
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and recast equation (C.9) as

K

Htan ) + —5——tan6, = H tan . (C.11)
cos? 01

Then, assuming that 67 = 6y + dp, where 6 < 6y, we can use the first order Taylor formula

and write:

60 1 1
tan 0 ~ tan 6 _ d ~ 1+ 2tan6yd0).
anby & tanfo + cos? 0y and s 01  cos? 00( + 2tan 6000)

Substituting these expressions into equation (C.11), we arrive at

00

+
cos?2 0y  cos?6y

00
(1 + 2tan0050) (tanQO + COSQHO> = 0.

In the previous equation, we keep only linear terms with respect to §6:

2sin? 0y + 1
HOO + K tan 0y + K 0T 250 — o,
cos? 0y
which yields:
50— K tan 6y _ Ktanfy 1 . Ktanfy <1 K2$iﬂ290+1>
- 2sin20p+1 K 2sin20p+1 H 2 ’
H+Kﬁ H 1+Fﬁ H H  cos? 6y

(C.12)
because according to formula (C.10), the quotient K/H is small, K/H ~ w2 /w? < 1. Our
subsequent analysis shows that the second term in parentheses on the right-hand side of (C.12)
can be disregarded.

Let s denote the arc length of the pulse trajectory. Then, using formula (C.4) and keeping

only first order terms in the Taylor expansion, we can write:

2 2 1 1w (h) — w2, (H
s _ |y + de " _ n*(h) —— 1+ 1wpe(h) = wpel )tan2 6o | .
dh dh n?(h) —n?(H)sin® 6y  cosfy 2 w?

(C.13)
Consequently, the total length of the trajectory which originates at the angle 6; and is shown

in Figure C.1(b) is given by

H
2Ny — w2, (H)H
S_/ds(Ql)dh 1 <H+147T6 1~ @pe(H) tan291>— 1 <1+Ktan291)-
0

dh ~ cos 0, 2 Me w? cos 04 H

(C.14)
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For the trigonometric functions in formula (C.14), we can use (C.12) and write:

1 1 1 K tan? 6, K 2sin?6y + 1 1 K tan® 6,
= 1+ tan 6y00) = 1-— 1—— ~ 1-—
cosf;  cosbp (1+ tan 8696) cos 6 [ H < H  cos? 0y )] cos 6o [ H ]
and
2 tan 0y K 2tan? 6, K 2sin?6y + 1 K 2tan? 00
tan® 0, ~ tan? 6y + ———— 06 ~ tan? @ = (1-=""———— ) ~tan?4 —
an v = talvo + 0s2 AT T Tos? 0o ( H  cos?0 AP0 T Teos? 0o

On the right-hand side of the previous equalities, we have dropped the terms of order K2/H?,
because K/H < 1, and hence the quantities quadratic with respect to K/H are negligible.
We could have arrived at the same result if we dropped the second term in parentheses on the
right-hand side of the last equality in formula (C.12) ahead of time. Substituting the previous

two expressions back into formula (C.14), we have:

H K K K 2tan? 6, H K?
S = 1——=tan?fy| - |1+ = (tan® by — =—5— || = 1+40(—= |-
cos { 7 0] [ 7 ( T H cos2 0, )] cos b [ + <H2>}
(C.15)
Formula (C.15) implies that up to the negligibly small additive terms of order K2/H?, the

length of the pulse trajectory between the antenna x and the target z, see Figure C.1(b), is

equal to the length of a straight line that connects the antenna and the target:

H
cos O

S~ =z —z|=R,. (C.16)

The travel time along the trajectory (C.5) is given by the integral

Hd 7 1
8
0 0

where v(h) = v(w,wpe(h)) can be either the group velocity (2.43) or the phase velocity (2.44),

Q.Q.

and the quantity § ds is given by equation (C.13). For the case of group velocity, formula (C.17)
yields:
T 1eEm) o 12, (h) — w2, (H)
T, ~ [ [1-2% 14 --E PE " tan® 0y | dh
w(@, 2,w) /c( 2 w? ) (30591( +2 w? an o
0 (C.18)
LT Len(h) 1wt (h) — W (H)
~——— [ 14+ B B~ tan® 0y | dh
ccos91/<+2 w? +2 w? Ao ’
0
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because we are disregarding all the terms of higher order than linear with respect to wge Jw?.
Formula (C.18), along with formulae (C.14) and (C.16), imply that

H 2
S, 11

Ta(@,2,0) » ¢ c-cosfy ] 2 w? dh
0
__H 1 - K tan® 6] 14me® Ny (C.19)
c-cosly c-cosby H 2 me w?

Q

C

_H (, 14re® Ny _R. (147’ Ny
¢ - cos by 2mew? H 2mew? H )’

where we have again dropped the terms higher than first order with respect to K/H ~ wge Jw?.
Formula (C.19) yields a final expression for the group travel time of a high frequency, w > wpe,
radar pulse between the antenna and the target in an inhomogeneous deterministic ionosphere.
Let us also recall that in our linearized framework the length of the pulse trajectory is equal
to that of a straight segment between the antenna and the target, S = R,, because all the
corrections are quadratic, see formulae (C.15) and (C.16). Hence, formula (C.19) could have

been obtained merely as [cf. formula (C.17)]

R, H

T(mzw>/ ds 1 /dh
STyl Vgr (D) ~ cos b Vgr (h)
0 0

H
1 1wpe(h) R 1 4me® Ny
I 14+ ——E¢ dh="2(1+= — |-
c-cosﬁo/< T ) c < +2mew2 H)

0

(C.20)

Q

Formula (C.20) can be interpreted in the context of the perturbation theory. Namely, the
unperturbed pulse trajectory is a straight line. To get the first order perturbation for the group
travel time, we integrate the reciprocal of the perturbed group velocity along the unperturbed
trajectory.

As concerns the phase travel time, we just need to notice that the linearized group and
phase velocities differ only by the sign of the ~ wge Jw? correction, see formulae (2.43) and
(2.44). Hence, we have:

(C.21)

R 1 4re* N
Ton(z, z,w) ~ ?Z (1 e H) :

C 2mew? H
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Appendix D

Travel times in the stochastic

ionosphere

The analysis of Appendix C indicates that we can use the geometrical optics perturbation
method (see [RKT89b, Ch. I] for more detail) to derive the travel times of radar pulses in the
turbulent ionosphere as well. In this case, the electron number density is a quasi-homogeneous

random field [see formula (2.9)]:
Ne = (Ne(h)) + p(), (D.1)

and the dependence of p on « in formula (D.1) means that p depends on all spatial coordinates,
x € R3.

Next, with no loss of generality, we can assume that the propagation plane (z,h) is fixed,
see Figure C.1, and consider only two independent spatial variables. Moreover, recall that
the random contribution to the electron number density is generally small compared to the
deterministic part, because the quantity M = +/(u2)/(Ne) introduced by formula (2.11) is
small, see [Arm05]. Consequently, we can still linearize with respect to the terms of order
wge /w? as done in Appendix C (high frequency regime), and write down the equation for the

pulse trajectory similar to equation (C.6), but with u = u(x, h) taken into account:

da Ldme? ((Ne(H)) — (No(h) + (u(0, H) — pi(a, h>>> |

— &~ —tanf (1 - (D.2)

dh "~ 2 Me w? cos? Oy

Equation (D.2) is a first order ordinary differential equation that will be solved (approximately)

by the perturbation method. First, we represent the solution in the form of a series:

z(h) = Q) + 2 () + ...,
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assuming that z(® ~ 1 and z(V) ~ w2, /w?, where w2 /w? is the small parameter for the
asymptotic expansion.! Then, from equation (D.2) we immediately obtain the zeroth order

contribution to the solution:
h
2O (h) = / —tanfgdh = (H — h) tan 6y, (D.3)
H

which is a straight line between the antenna and the target, see Figure C.1 [also see formula

(C.8)]. For the first order correction, equation (D.2) yields:

dz;l) . 0;4722 (Ne(H)) — <Ne(h)2242(§52(2;H) — @O (h), h)) (D.4)
Integrating equation (D.4) between H and h, we obtain:
H
o) = 14Tt [( [iwyan - it - h><Ne<H>>>
hH (D.5)
+ ( / u(@®) (h), hydh — (H — 1)(0, H))] '
h

If u = 0, then combining the zeroth order contribution (D.3) with the first order correction
(D.5), we arrive at the previously obtained deterministic solution (C.7). Otherwise, for the
solution z(h) = (O (h) + z(V(h) given by (D.3), (D.5) but with the adjusted look angle 8; we
can write similarly to (C.9) and (C.11):

K
$(0791) == Htan@l + mtan 9]_ = H tan 90, (DG)

where the quantities K of (C.10) and Ny of (C.9) are redefined as follows:

H

1 4me?
K= 57| (N — (Ne(H))H) + ( [ ). wyan - u(O,H)H> ] = (K)+n (D7)
(S
deterministic part 0
stochastic part
1 We do not formally introduce the second perturbation parameter, which would be of the order % v i‘f) <

u.)z
L7, because the quantity M of (2.11) is an altitude-independent constant, and hence the two parameters would
be related to one another.
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and

H
Ny % / (No(h))dh. (D.8)
0

Since \/(n?) < (K) or even 1/(n?) < (K) [see the discussion right after equation (2.11)], and
(K)/H < 1, we can employ the same argument as in Appendix C and show using equation
(D.6) that for any particular realization of u the look angle increment 66 = 6, — 6y will be given
by the same expression (C.12), but with K and N defined by (D.7) and (D.8), respectively.

The arc length along the pulse trajectory with the look angle 6 can be found by integrating
the differential equation [cf. formulae (C.13), (C.14)]:

ds — 1 <1 + 1471-62 ((NQ(H)> — <Ne(h)>) + (:U’<07H) — M(‘r? h)) tan2 91> ) (D.Q)

dh ~ cosf 2 Me w?

To integrate equation (D.9) we can again use the perturbation method. Representing s(h) in
the form
s(h) = sO(h) +sM(h) + ...,

we have the zeroth order term:
H—-h

sO(n) = —r (D.10)
and the first order term:
s (p) = 147 tan' 6 [(/H (H — h)(Ne(H )>>
2 me w2cosby
g (D.11)
( [ utat — (H — hu(0, H))
h

To obtain the full length of the trajectory we substitute h = 0 into formulae (D.10) and (D.11),

and also use formula (D.7), which yields:

H K
S = s9(0) + sV (0) = 1+ — tan?6; ). D.12
sTH0) +57(0) = oo (1 g tan (D.12)
Expression (D.12) formally coincides with (C.14), only the definition of K is different. Con-
sequently, we can repeat the argument from Appendix C and show that for every particular
realization of u the total length S of the pulse trajectory will be equal to that of a straight line

between the antenna and the target, up to the terms of order (K)?/H? that are negligible, see
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formulae (C.15) and (C.16):

5= 2 [1+O<<K>2>}z H__p. (D.13)

cos b H? cosfy

Finally, to obtain the group travel time, we need to integrate the following ordinary differ-

ential equation:

a1 ds 1 14me? (No(h)) + p(z, h)\
dh_vgr(x,h)dh_c< 2 me w? )
o (1 T ) = ) O~ D ) -—
1 1 4me? (No(h xz,h)  14me? ({(No(H)) — (No(h 0,H) — pu(x, h 9
oL (1o A O ) L (O = OGN+ (O MR ),

As according to formula (D.13) the shape of the trajectory will not contribute to the travel time
in the linearized framework, the integration of equation (D.14) by means of the perturbation

method yields:

H
H 1 4mwe? [ N 1
0

¢ - cos O 2 Mew?
R L are? (Ny 1 f P
z e H
N PRl (i ds ||
c +2mew2<H +Rz/'u(8) S)]
0

When deriving formula (D.15), we took into account that the look angle increment is small,
30 ~ (K)/H, as we did when deriving formula (C.19). We also note that the last integral in
formula (D.15) shall be interpreted as taken along the unperturbed straight trajectory.

The phase travel time, as before, is obtained by changing the sign [cf. formula (C.21)]:

R,
1 4we? [ Ny 1
1— - | == 4+ = ) D.1
2mew2( e u(S)d«S)] (D.16)

0

R
Ton(z, 2,w) = f
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Appendix E

Propagation of SAR signals in a

plasma with losses

Ohmic losses in the ionosphere are due to the collisions of particles. Let v, > 0 denote the
effective collision frequency [Gin64]. Then, the dielectric constant of the ionospheric plasma is
given by the following expression [cf. formula (2.7)]:
k202 w2
e — =12 (E.1)
w? w(w —ive)
The value of v, in the ionosphere depends on the altitude, solar activity, and the time of the
day, but generally it does not exceed 10° Hz [Mes71,Gin64], i.e., v, < w. Under this condition,

the solution k* = k*(w) to equation (E.1) will have a small imaginary part:!

o @[ 1@ i%pere
c 2w 2w?w]/’

Similarly, the expressions in (B.10), (B.12), and (B.14) will all acquire small imaginary parts

proportional to ve:

. 2
1 o 1 Z].Vewpe
x . 5. 3
Uk Uphy 2¢ wy
2
b= b e
= =,
c 2w02 (E.2)
B b 31/ewpe
2 = 2_Z§ 4
cwy
2
T 3 Vel W
af == Frby=a—iz— .
2B 2 ¢ wy

'In this Appendix, the asterisk superscript will denote the quantities that pertain to the lossy case.
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The reasoning in Appendix B that leads to formula (B.13) will hold in the lossy case with the
replacement of the variables (a, b, b2, vpn) by (a*,b*, b5, vl 0) given by (E.2). The overall effect
of complexity in (E.2) is as follows. First, it causes a gradual exponential attenuation of the

propagating wave:

1r Vew]?)e
’L'u)o(tfr/v*h ) iwo(t—’r’/v hon) T2¢ 2
e pho’ = ¢ pho/e o . (E.3)
Other than that, we can write:
2 2
. ib r YeWpe b r YeWpe
()2 ;b -((b*)ﬂﬁ) ERICE+ b2 ot
el Ia¥ — elﬁe Za¥ 1a) ~ elEC 4a c QWS’ ) — 61562ac QWS)

)

and using (B.16), (B.17): |b| < 7//2 = aB, conclude that the second exponent in the previous
equality satisfies:
b T Ve(.dge

2
br Lrvsh B
2a ¢ 2w8

T de Wi owy

The corresponding exponential function may be either decreasing or increasing, but either way
the rate of its amplitude change will be much slower than that in (E.3) because of an additional
small factor w% < 1 in the exponent.

Using (B.4), we can also introduce it by substituting the corresponding complex quantities

from (E.2), and define dny o Nt — n+, where

1 [2Brvew?
Ss| ~ oy 2T e g
971 2V 7 ¢ 2w <

Then, for the difference between the erf functions of the complex argument 1%} and the real

argument 77+ we have:

2

2 2
‘erf(\[i(ﬁi +0n4)) — erf(ﬂni)‘ ~ ‘ﬁe_“& Aidny| = ﬁ|5ni|.

Consequently, the total variation of the quantity [erf(v/in*) — erf(v/in?)] that appears in the
“lossy” counterpart of (B.13) will not exceed %\Mﬂ by absolute value, which is a negligible
contribution compared to the value of 2 in the lossless case.

Altogether, using (E.3) and disregarding other effects of complexity, we obtain the following
form of the propagating signal in the case of a lossy plasma [cf. formula (B.19)]:
r vewdo

2

e g (E.4)

_1
2

1 .
PUET) & L At gyl e
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Appendix F

Time integration for the range

component of the ambiguity function

When calculating the range component of the ambiguity function, one deals with the integrals
of the following type (see (2.35))

Wg(y, z) = /A(t — 2|y — x9)/c)A(t — 2|z — z°|/c)dt. (F.1)

Here we provide a detailed account of how this integration is done and the corresponding

resolution obtained. We first do it in the non-dispersive case, and then in the dispersive case.

F.1 Non-dispersive case

Introduce

2y — | 2|z — 2
=" "2y A2 F.2
=2l 2 (F2)
and rewrite (F.1) with the help of (2.18) as
Waly, z) = / ettty (4 g )it () dt, (F.3)

The integration interval in (F.3) is determined by the intersection of the supports of the two x,
functions in the integrand. Assume, for definiteness, that ¢, > ¢, and introduce new constants

and a new integration variable

>0; u=t—ty (F.4)
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such that the integration limits in (F.3) become symmetric about zero:

/2
Wr(y, 2) :/ e du (F.5)
—717/2
where
r=1—2T; b=4Tca. (F.6)

It should be noted that (F.5) is, accurate to notation differences, a special case of the integral

appearing in (A.5) for n = 0. Performing integration in (F.5) we get !

Wr(y, z) = 7psinc (%) (F.7)

In order to determine the resolution, we find the first positive root of Wpg, which corresponds
v brr  4Ta(r — 2T)
T T —
— = =T, F.
5 5 ™ (F.8)
We will determine 7" from (F.8). Although this is only a quadratic equation in 7', we will solve

it by iterations assuming that 7' < 7 (the solution 7"~ 7 is not relevant). So,
T=T1+15.

In order to find 77 we disregard 27 in the brackets in (F.8) to get

_ 2T o
VY 4ar B’

and, indeed, |T7| < 7. This same relation can also be written as

T Lty =t Ry—R, _mc
BNT— 2 == c :Ry_RZNB_AR

which also corresponds to [Che01, Equation(46)]. The second iteration is

(5 1) 25) =

if the T22 term is dropped which gives

272 1 72 2 2
i S (F.9)

T,=— 0 ot T
> 7(B?—4am) 7 B2 BBr Bt

'Formula (F.7) corrects [Che01, Equations (45-46)] in that it eliminates a bogus phase multiplier i (RE—Ry) /e
(for |Ry — R.| ~ ¢/B, this phase is about R/(c7) > 1 by absolute value) and replaces 7 with 7r. The latter of

these corrections can be disregarded, as the subsequent analysis shows that |T'| < 7.
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and demonstrates that |T5| < |T7| because BT > 1.

We see that in the non-dispersive case, setting the integration interval in (F.5) to (-3, 3)

results in a “standard” expression for the the width of the main lobe of the ambiguity function,
while introducing a relative error of about 27 /(B7) compared to the more accurate calculations

with the (-7, ) interval.

F.2 Dispersive case

The dispersive case differs from the non-dispersive case of (F.3) in the following:
1. The propagation speed is different from c;
2. The chirp rate of the incoming chirp is different from that of emitted, and
3. The incoming chirp duration is different from that of emitted.

These differences are expressed by the equation (2.60):

Whiy.2) = [ A2y — 01/ Ayt — 212 — 2°] /)i (F.10)

where the group velocity is taken at w = wp. Accordingly, equations (F.2)—(F.4) turn into:

L 2y-a’ , 2z-a)

y=— 3 =
¢ Uar (o) (F.11)
ty + 1 ty —t

t/]W: y;—z’ T/: y2 Z; U/:t_tlju

and

Whiy,2) = [ ey (¢ — 1, 007 (e — 1) dt

min " ! (F12)
/ {T/2+t?/7 T /2+tz} e—i()é(t—ty)2ei04”(t_tlz)2 dt
max{—7/2+ty, -7 /2+t,}
(see (2.63)). The dispersive version of (F.5) is thus
min{7 /24T, 7" /2—T"}
W]/%<y7 Z) / ei(au_a)(U/)QeiQT,(all+a)u/ei(a”_a)(T/)Qdul_ (Fl?))
max{—7/2+T", —7"" /2—-T"}

Before proceeding with (F.13) we make a remark about the integration limits, in other

words — about the relation between the ends of the support intervals of x,(t—ty) and x,»(t—t’,)

in (F.12). In the non-dispersive case, see (F.3), the two intervals have equal lengths, so one

interval can contain the second only if these two intervals coincide, i.e., t, = t. In the dispersive
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case, as the chirps have different lengths, one chirp may contain the other for some ¢, # t/,.

The condition for this is
[r— 1

[ty —t,| < — = |67].

In distance terms, it corresponds to

1
AR =~ 5057 ~ 10m ~ Ag

so, technically, in the analysis of resolution, this may lead to several different sets of expressions

for the ends of the integration interval:

() ~Lr+t, < —T+ty<T+ty <+t
(i) —T 4ty < —T 4t <ITdt,<T 4+t
(i) —T 41, < T4ty <+t <I4t,
(iv) —T 4ty < —T 4+t < T4+t < T4ty

We avoid considering these cases separately by analyzing the error due to the “symmetriza-
tion” of the integration interval. In this symmetrization, we assume that the length of the
received chirp is 7 rather than 7 (as in the non-dispersive case). In so doing, we shift the
7”2_7’ = |07]|. As the integrand in (F.12) is one by ab-

solute value, the change of the value of the integral due to these shifts does not exceed 2|47|.

limit(s) of integration by no more than

This is negligible compared to the height of the main lobe in (F.7), which is about 7 > 2|07|;
the relative error is 08
ern = 2L ~0.3% (F.14)
T
for the parameter values given in Table 1.1. It turns out that this relative error is also small

compared to the parameters used to evaluate smearing of the main lobe in (2.72):

<1

-1

w1br 261 212 20a 272 8m?
e ~ — = — = —
R T T30 a 1720a BTt

|w0|b§:0

so, for the analysis in this dissertation, the integration limits can be made symmetric as in (F.5).
Thus, the integral in (F.13) simplifies to

/2

Wé(y, Z) _ / 6i(o/’foz)(u’)Qeib’u’ei(o/’foc)(T/)Qdu/ (F15)

77'{,1/2
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where we have assumed once again that 77 > 0 and
rp=1=2T" V=2T"(a+d") (F.16)

[cf. (2.65-2.66)].
The first exponent in the integrand in (F.15) contains a quadratic in «’ phase; this term
results in the smearing of the main lobe of W, see Section 2.4. The phase in the third exponent
is independent of «’; assuming |T”| ~ 1/B, this phase is about
da da « or B/2t o1 1
= — <

WolT'|* =233 =2 " =23 = T 57

i.e., infinitisemal. With the first and third exponents in (F.15) dropped, the form of equa-
tions (F.15-F.16) is similar to that of (F.5-F.6), so the analysis of resolution may follow the
same pattern as that in the non-dispersive case. In particular, the maximum of Wy, is achieved
at 7" = 0, which corresponds to (see (F.11))

R, R w2
20— Ry = R~ Ro (14 7%
c Ugy Ugr 2wy
thus giving a shift in range, see (2.73).
To analyze resolution in the dispersive case, we solve
b/T/
—3221%a+dMT—ﬂﬁ=W (F.17)

[cf. (F.8)] with respect to T = T + T3 by iterations. First, we get

T =—=T

=

and then,

(%+Té>(a+a”)(7—2%) = .

Using o’ = a + 2da we get

2
Tyat + %Téa — 2a<%) =0

which gives

,_271'72 71'5047 1(2777_5:)

ozt o
27 7rB2 Ba Br 1

Notice that the first term in (F.18) is equal to 7% in the non-dispersive case, see (F.9), so

(F.18)

5
=TT . (F.19)
T
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Thus, the second term in (F.19) could be considered as the effect of dispersion on range resolu-
tion; this term also coincides with that in (2.71). This second term however is of the same order
as those ignored at the symmetrization of the integration limits in (F.13), see (F.14), and is
also not bigger than T5. Note that 75 is usually ignored in the expression for range resolution.

Therefore the choice of integration limits for (2.63) is inconsequential to our analysis.

Remark. As it turns out, the case (i) on page 181 that is used in the main body of the dissertation
is invalid for the linear upchirps that we use. This can be easily proven: We know from (2.64)
that 7 < 7. Now suppose that 7 + 1, < %ﬁ + t’,. Then

r 7 T '
R R R A A

T

2

However, as we have demonstrated, it is acceptable for our purposes. We choose to use it because

it results in the least cumbersome expressions.
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Appendix G

Conditioning of the TEC found by

dual carrier probing

In this appendix, we investigate conditioning of formula (2.94). If the quantity f depends on
x, then the conditioning of f(z), i.e., the sensitivity of f to the perturbations of x, is naturally
defined as the maximum ratio of the relative error in f over the corresponding relative error in
the input z, see [RT07, Chapter 1]:

0f/f1

su ~ ,CL' m

I

In formula (2.94), the dependent quantity f is @ge, and the input data are Rg,l) and Rgf). Due

to the obvious symmetry, it is sufficient to estimate the conditioning with respect to either of

the two, and hereafter we will interpret Rg,l) as the independent variable x. Then,

awﬁe 2w%w§ (1 n w%(Rél) — Rgf)) )

oRY)  W2RY —w2RM | w2RP — w2RY)

and hence the condition number of (Dge with respect to Rg(ll) is given by

owt, R | R N iRy
N2 | | p 2 2 !
R e |~ R RY T W3RD — W3R (@)
Ry wiRy

<
A 1 2 2 1),"
Ry - RY| 3Ry - wiRy|

The first term on the right hand of (G.1) is large, because the ranges R(yl) and R;Q) are

close to one another and the difference between the two is much smaller than each of them. The
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second term is not too large, because according to (2.93), the denominator w%Rgf) - w%Rg,l) =
R, (w3 —w?), and consequently, the entire fraction is of the order w}/(w3 — w?), which is about

5 when the difference between wy and wq is 10%.

2
pe’

Y1, Y2, Y3, . . ., or features, instead of only one. Assume that we have computed @ge(yl), wge(yg),

To improve the overall conditioning of @Z2,, one can use several reference locations:
ey wge(yK) for K different reference locations according to formula (2.94), and that we evaluate

wge by plain averaging:
| X
(‘Dge = K Z(Dge(yk)' (G.2)
k=1

Note that as @1:2)6 is a scalar quantity, formula (G.2) is equivalent to the least squares fit,
see [RT07, Chapter 7].
Let us now interpret @Z,(yx) as independent random variables with means (@2.(yx)) and

variances UQ(Qge(yk)), k=1,2,...,K. Then (see, e.g., [CHO6, Chapter 2]),

g 1 o, 2/_2 1 o= 9,2
<wpe> - E Z<wpe(yk)> and o (wpe) - ﬁ ZU (wpe<yk))' (GS)
k=1 k=1

Assume in addition, and with no loss of generality, that the errors associated with computing the
individual (Dge(yk) are approximately equal to the corresponding standard deviations a(c‘uge(yk),
and that these errors are roughly the same for all k = 1,2,..., K. Then, the second equality in
formula (G.3) indicates that the overall error of evaluating @2, according to (G.2) will decrease

1/2

proportionally to K~/* as K increases.
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Appendix H

Accuracy analysis of area-based

image registration

In this Appendix, we show how one can reduce the error of the area-based image registration
due to the discrete Fourier transform and due to noise. Possible misregistration due to different
terrain reflectivity on two different carrier frequencies belongs to neither of these two categories
and is not discussed hereafter. Note also that while we are proposing to use the area-based
image registration for correcting the matched filter in SAR signal processing, it is otherwise
used routinely for SAR interferometry, see, e.g., [BE05]. Our subsequent discussion focuses
on one-dimensional signals for simplicity; the extension to two dimensions can be found, e.g.,
in [FZB02,SOCMO1].

The phase correlation method is based on formula (2.111), which is written for two contin-
uous one-dimensional signals u(x) and v(x) defined on —co < z < co. In practice, however, the
signals are discrete rather than continuous, and their length is finite. Let us therefore introduce
two sequences of length L: {ul}lL;OI and {Ul}lL;()l, and interpret them as traces of two continuous
functions, u(z) and v(x) = u(x — s), assuming s > 0, on a uniform grid of size T:! u; = u(x;)
and v; = v(x;), where ; = [T and [ = 0,1, ..., L— 1. Clearly, the lower bound for T is the pixel
size, whereas the upper bound for L is the total number of pixels in those fragments of each
image that are employed for registration. Instead of (2.111), we will use the discrete Fourier
transform (see, e.g., [RT07, Section 5.7]) of u; and v; (which assumes, in particular, that both

sequences are L-periodic):

U = 1 Lz_:lule_ikzz}zl - L Lz_lule_iszl (H.1a)
\/Z =0 \/Z =0

In the image registration literature, the grid size T is often called the sampling rate, and accordingly, the
grid dimension (length of sequence) L is referred to as the number of samples, see, e.g., [MM93].
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and

U = L Lz:lv e~ R TFT — 1 Lilu(x s)efik%xl
= VDg
1= 2z o o
=— Z u(xy — s)e RTT(@=9) L e TRITS o gy e R ITS, (H.1b)
VLS

Note that the last equality of (H.1b) is only approximate rather than exact because of the
error that may appear if the shift s is not a multiple of the grid size 1. For smooth periodic
functions though, this error can be shown to decay rapidly as L increases (see, e.g., the analysis
in [RT07, Sections 3.1 and 4.1]), and we therefore disregard it hereafter.

Next, we build a discrete function similar to that of (2.112):

L—-1
e—ik%seik’%xl — \/1Z Z eik%r(lf%), <H2)
k=0

To analyze &; of (H.2), we consider two cases: # is an integer and # is not an integer. First, let

# =m € N. Then, from (H.2) we can derive:

o LN e VR e

VL = T gy =0, i U#Em,

In other words, if the shift s happens to be a shift by the integer number m of grid cells, then the

function &; of (H.2) has a peak value of V'L precisely at | = m, and is equal to zero everywhere

else on the grid. Hence, in this case the discrete version of phase correlation will yield the value
of the shift exactly.

If % is not an integer, then using (H.2) and assuming that [ is close to 7 we obtain:

e—im(l=5) _ gim(l=%) (1—sysin (I — %)
) _ \/Zewr(l—7>7T’
—im (I — %) ™ (- %)

which means that the maximum absolute value of 0; is ~ v/L, and it is attained at the grid

node [ closest to 4. At all other grid nodes, generally speaking, &, # 0. Therefore, if 7 is not
an integer, the best accuracy of reconstructing the shift s that one can achieve by looking for
the maximum of 0; of (H.2) is roughly T/2, i.e., at most half size of the pixel. Extension of

this method to the accuracies on the order of a fraction of one pixel may involve a certain
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interpolation procedure, see, e.g., [Abd99], and also [MM93, GSTF08]. The effects of aliasing
and aperiodicity can be reduced by filtering, see [FZB02,SOCMO1].

Another approach to further improving the accuracy of phase correlation is based on ana-
lyzing the phase of 4y and 9y of (H.1). Namely, it is easy to see from (H.1b) that

2
g, — O, = k——s. H.
arg Gy, — arg Oy kLTS (H.3)

Speaking formally, the value of s can be obtained from (H.3) by merely dividing the left-hand
side of the equality by /{:% for any non-zero k:

LT arg iy — arg 0y
§=———.

27 k (H4)

This formula, however, is prone to inaccuracies due to errors in the data argd, — arg vg. The
way to improve the accuracy is to obtain s by the method of least squares using all k’s rather
than only one as in (H.4), see [SOCMO01, MM93]. Namely, s shall be sought for as a solution to
the following quadratic minimization problem (see, e.g., [RT07, Chapter 7]):

[ o 2
min Z [ks — (argay — arg o) | - (H.5)
S

The stationary point of the functional in (H.5) can be found by requiring that its first derivative

with respect to s be equal to zero, which yields:

LT 25;11 k(arg dy, — arg Oy)
§=— )

H.
2m STl k2 (16)

Let us now interpret the data {arg 4y —arg o}, k = 1,2,..., L—1, as independent identically

distributed random variables? with variances

Var(arg uy — arg o) e ((arg dy, — arg Oy, — (arg iy, — arg v3))?) = o>
The actual errors in the data may be due to the terrain noise, as well as measurement errors,
instrument noise, etc. In all those cases, it is convenient to use the description in the form of

random variables. Then, Var(k(arg iy — arg9y)) = k%02, and according to (H.6) we can write

2The requirement of independence is important. However, the requirement that all random variables be
identically distributed can be alleviated.
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(see, e.g., [CHO6, Chapter 2]):

o(s) — i Bo?
Varls) = <2ﬂ) (ST

B (LT>2 2521 B2 (IQDQ (L- 1>6LU<22L —1)

From formula (H.7), one can easily deduce that for sufficiently large L the standard deviation

(H.7)

of the shift s determined by the least squares fit according to (H.6) is

o(s) = +/Var(s) ~ (H.8)

=4

In other words, the error of obtaining the shift by phase correlation scales as the inverse square
root of the number of samples L. While formula (H.8) describes the asymptotic behavior of the
error, the practical values of the registration accuracy can be as low as only a few percent of a
pixel, see [TH86,SOCMO01, GSTF08, FZB02, Abd99], i.e., a few percent of the resolution cell.
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Appendix 1

Split bandwidth setup for dual

carrier probing

Linear chirps of Section 2.3 represent a natural waveform for the split bandwidth approach.

Indeed, partitioning such a chirp in time causes a proportional partition in frequency, and

the other way around. For example, the chirp (2.18) given by P(t) = e ¢t on the inter-

val [—7/2,7/2] with the rate o = £ and angular bandwidth B centered around wy can be

considered as a combination of two successive sub-chirps:
PU(t) = elot giwol for t ¢ [—7/2,0] and P®@(t) = elot giwol for t ¢ [0,7/2].

Obviously, the frequency intervals for sub-chirps P (t) and P@(t) are [wy — B/2,wo)
and [wo,wo + B/2], respectively. Next, consider a new half-length envelope:

def iat? 1, te[-71/4,7/4],

AT/2(t> = XT/Q(t)e ,  where XT/2(t) =
0, otherwise.

Then, it is easy to show that

22
PU(t) = 55 T W0T Py(t + 7/4), (L1)
22 )
PO(t) =TT 0T Py(t — 7/4),

where
def w1, 2t B
PLQ(t) = AT/Q(t)e 1,2 y, W12 =wo + Z, and te€ [—T/4, 7/4]. (1.2)

In other words, up to a constant factor of magnitude one, the sub-chirps P (¢) and P (¢)
are equivalent to time-shifted half-length half-bandwidth linear chirps P, and P, of (I1.2) that
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are centered around w; and we, respectively, and have the same rate o = %. Consequently, by

processing the same raw data first by means of the filter P;(t 4+ 7/4 — |z — y|/c) and then by

means of Py(t —7/4 — |z — y|/c) we will obtain two images on two frequencies, w; and wy. Due
to the ionosphere, these images will be shifted with respect to one another. Hence, they can be
used for reconstructing the TEC Ny and its first moment Q according to the methodology of
Section 2.8.

Of course, it is also possible to define sub-chirps with the sub-bandwidth b taking any value
in the interval (0, B) other than b = B/2. The expression for sub-chirp central frequencies is
then wy o = woF(B—0b)/2. If b < B/2, then the central part of the received signal and the central
frequencies of the main chirp bandwidth will not be used for any of the sub-images, whereas if
b > B/2, then those central parts will be used for both sub-images.! The accuracy of the TEC
reconstruction by means of image registration (Sections 2.8 and 2.9.2) is affected by the choice
of b in two ways. First, as the residual image displacement given by (2.122) (where b should
be substituted instead of B) are proportional to the sub-image resolution 5¢, the increase of b
reduces the distortions. Second, as the sub-bands are limited by the bandwidth of the original
chirp, the frequency separation factor given by (2.121) with (I1.2) decreases as b increases:

|w17w2| _B*b

Z(b) = (L3)

wo wo

This, in turn, increases the distortions. The value of b minimizing the residual shift given
by (2.122) in the split bandwidth setting is therefore
mc (R 1 B

=argmin ——— = —.

b 2Z(b) b b(B—b) 2

b* = arg mbin Sp(b) = arg mm

In other words, it corresponds exactly to the partition of the original chirp into two half-
bandwidth chirps P; and P given by (I.1).2 The actual minimum value is given by formula
(2.122) with the substituted bandwidth b* = B/2 and the frequency separation factor Z(b*) =

B/(2wyp), see (1.3): prec
~ meCRw

Similarly to (2.122), expression (I.4) does not depend on the ionospheric parameters.

(L.4)

By matching the residual range shift of (I.4) and the original range shift of (2.73) we get
the sensitivity threshold of the split band implementation to the ionospheric TEC:

Hme

Np = CR (I.5)

'Tt is also possible to use sub-bands with different bandwidths, as suggested in [REST11].
2A similar yet not equivalent optimization formulation is analyzed in [BEO5].
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Formula (I.5) yields about 8 TECU for the parameters in Table 1.1 and, according to (1.4),
corresponds to Sp &~ 70m. When the background value of the TEC is lower than that given by
formula (I.5), it is not practical to use the split band version of dual carrier correction described
in this appendix. This limitation, however, does not apply to the full-fledged version of the

algorithm that employs two independent carrier frequencies with their respective bandwidths.
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Appendix J

Faraday rotation for a chirped signal

Linear time-harmonic waves
(E, H) ~ ei(wt—kr)

in a cold magnetized plasma are governed by the following equation (see, e.g., [Gin64, Ora84)):

[kZCQ (kzl-k:j

AijEj = 7]{;2

R — 5ij> + 5ij] E; =0. (J.1)

Let the constant external magnetic field Hj be aligned with the z-axis.! Then, the dielectric

tensor has the form

g1 —ig 0
e=1lig e 0], (J.2)
0 0 EH
h
o e Lo et 1.3
=l asl- gy ad 9= oy (J:3)

In (J.3), wpe and Q denote the Langmuir and Larmor frequency:

Amnee?\1/2 Ho.
wpe:(wne) and Qzeo, (J.4)

Me MeC

respectively, n, is the electron number density, and m, is the electron mass. With this definition,

the sign of Q is determined by the direction of the magnetic field. We are assuming that
W > wpe > (9], (1.5)

which allows us to neglect the contribution of the ion motion to (J.3).

'In this appendix, we use the zyz-notation for the coordinates.
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The dispersion relation for the waves governed by (J.1) is
det A =0, (J.6)

and the corresponding non-trivial solutions E are called the polarization vectors. For simplicity,

we first consider the case of a parallel propagation:

If there is no magnetic field, then € = 0, the matrices ¢ and A are diagonal, and there are
two types of polarization: longitudinal, E = (0,0, E.), and transverse, E = (E,, E,,0). For
the latter, one of the transverse polarization vectors can be chosen with F, = 0 and the other
with £, = 0, which corresponds to two linear polarizations. When Q # 0, (J.6) yields the

following dispersion relation for transverse waves (E, = 0):

(kT)2c? wge wgeQ
wz :1—(“)2:‘:?,:1—]{‘1:‘:']@2, (JS)

where we have introduced the notations

2 w2

Wie RY
fi=filw) = pr’ fo = folw) = 23 , and 1> f1 > |fo]. (J.9)

Solutions to equation (J.8) correspond to two polarization vectors:

E, 1
(Ey> N (i) 7 0

that represent two circular polarizations with opposite direction of rotation. The phase and

group velocities for these two circularly polarized waves are given by

ef W _
”;Ehd: mocl-fitf) 12, (J.11a)
vt & (d—w>i:—20V1_flif2 (J.11b)
¢ dk 2F f» '

Formulae (J.11) along with (J.5) and (J.9) indicate that the terms due to the magnetic field
Hj (i.e., proportional to fa) have a very small effect on v, and vpy. The only situation where
this effect can be seen is when the terms of order 1 and f; cancel, which happens when one
evaluates the difference between the propagation speeds for two circular polarizations: (véﬁ —vgr)
or (v;h — v;h). It is the phase speed difference that is responsible for the Faraday rotation.

The expression for the chirp (2.18)—(2.19) traveling through an isotropic ionosphere (no

167



external magnetic field and no FR) has been obtained in Appendix B by Fourier transforming
the initial pulse in time, propagating each harmonic in space with the corresponding phase

velocity, and finally making the inverse Fourier transform:

pltyr) = eI (1 — g e (o)
mr (J.12)
def TA (t r/vgro)eiWO(t_T/vphO),
r
where

B B 1)
7":7'—57':7'—5 p;— anda—oﬁ—&y——(l—i-l) (J.13)

c w§ wo 2T T

are the modified chirp parameters that account for the temporal dispersion. Hereafter, vpp,
Vgr, and ko refer to the phase and group velocities and the wavenumber for the isotropic plasma,
i.e., calculated according to (J.8) and (J.11) at w = wp with fo = 0.

For the case of a magnetized plasma, formula (J.12) can be extended to the circularly
polarized waves. Considering the form of the polarization vectors in (J.10), the expressions for

the propagating circular harmonics are

E, (U st ienl-r/i)
(E) (t.r) = <i> A= g )T g

+ and vpho are v and v oh respectively, with wg substituted for w. The total propa-

gro
gating field is a linear comblnatlon of these circular harmonics:

E, / iwo(t—r/v3;, )
(Ey> dmr Z ( ) CoA(t = r/vgeg)e™ P

1 1 + tr/vghg)? w0 (t=T /v, ),
— (L) ot e

where v

(J.14)

where Cy are the amplitudes. To make the emitted field (r = 0) linearly polarized in the xz-
plane, we set C = C_ = 1. Per our earlier discussion, in the argument of x,» on the second
line of (J.14) we leave out the effect of polarization on the chirp boundaries.

Introduce the “chirp time” variable
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For the retarded group travel time in (J.14), we have:

def T 1 1 1 2:Ff2
== — u—i—r( —)—u—i—r( _
& Viro Vgrg U3 VI—F 20/I-fitfo

)
f2=0

Q

1 1 d 2F f2
e <m TR (zm)
=uxr <2_fl3f2> .
2c(1 = f1)2
From (J.9), we know 1 > f;, and therefore
th~ut Efz. (J.15a)
For the retarded phase travel time, we can write:

+ def r 1 1 1 1 1 1
th =t——F—=u+r - =u+r — +r| ———F
Ubhg Vgrg  Uph Ygrg  Uphg Ypho  Uphy/ (J.15b)

!
~ ot rso ot

where the dispersive term

def 1 1
S =

Ugrg  Uphg

is the same for both polarizations and U;Eho is defined similarly to vétro. Substituting (J.15)
into (J.14), we get

(Eac) (t,r) x XT’(U) Z < 1 ) eia’(u2 + 2u%f2)eiw0(u +1rsoF &fZ)

E, — \+i
LY iwo(u + rso) + ia/u? i
= o) K 0 e TIPF, (J.16)
I 1
where
LR W R ol I ’-@id
or =5 fo =200z fo = 5owpeQ) 7 + 20w (o—— ol (J.17)

Per our definitions of u and sg, we see that the phase in the first exponent of (J.16) is equivalent
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to the one in the isotropic dispersive propagator (J.12):

1 1
wo(u +7sg) + /u* = wo[t— 4 +r< —7”4-0/(75—
Ygrg Vgrg  Uphg

The quantity ¢ in the last exponent of (J.16) is the Faraday rotation angle which is equal to

one half of the difference between the phases of the helical harmonics:

E, .
<E ) (t.r) ~ ( SOF) At — 1 vgeg)e 0T o), (1.18)

Y sinpp

Note that this shows that when the propagation is parallel to the external magnetic field,
Faraday rotation occurs clockwise [Dul63]. The expression in the square brackets in (J.17)
may be interpreted as the function f(w) = ﬁ evaluated at the instantaneous frequency w =
wo + 2d’u, cf. formula (2.20), by means of a first order Taylor formula. Except for the small
difference between o/ and «, the expression for the Faraday rotation as a function of the
instantaneous frequency in (J.17) coincides with the intuitive formula (3.7) for » = 2R and
8=0.

For oblique propagation, i.e., when |k,|] < |k| and 8 # 0, a careful analysis shows
(see [Gin64]) that except in a very narrow range of nearly transverse propagation angles [,
viz. |cos ] < 9 " the results obtained for the parallel case (J.7) extend to the oblique case once

Nw07

2 is replaced by € cos 3, which, again, transforms (J.17) into (3.7). Thus,

2
r wpeS2cos 3

5 (J.19)

QOF(W) - 2c w

is an expression for the Faraday rotation angle of different parts of a linear chirp parameterized

by the instantaneous frequency w.
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Appendix K

Faraday rotation and

dispersion-compensated matched
filter

In this appendix, we show that the effect of dispersive propagation on SAR imaging analyzed
in [Tsy09a] and Chapter 2 can be separated from that of the Faraday rotation. Given the form
(J.12)—(J.13) of the radar pulse propagating in an isotropic plasma, the matched filter focused
at the reference point y and corrected for dispersion (but not the Faraday rotation) should be

taken as

A (t — 2Ry/vgr0)eiwo (t—2Ry /vpn)

K.1
— XT’(t _ 2Ry/,Ugro)efia’(thRy/vgrO)ze*iwo(thRy/vpho), ( )

where the travel distance 2R, accounts for the round-trip. Let us also introduce the following
“dispersive” quantities that replace those of (A.2), (A.3), and (A.4):

n n n/ n/
nl __ 2Ry nl __ 2Rz u/_ _tZ +ty
- J z ? - Y
vgro UgTO 2 (K 2)
tn/ —tn/ v :
T
™ =Y 2 =7 2T, wj= £10 .
2 Uphg

Applying the filter (K.1) to the dispersive propagator (J.12)—(J.13), and using the primed
variables of (K.2) and (J.13) instead of their non-primed counterparts, we will arrive at a
primed equivalent of (A.1). Then, performing the integration we obtain the same functional

expression for the generalized ambiguity function as given by (A.5) in the non-dispersive case:
T /2

- ] mn/ N Ly al N N
W’(y, Z) _ § :e2zw0T E / e4zaT U du’.
n n -

™! /2
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Hence, in the case of a dispersive isotropic medium and the filter corrected accordingly, one
can drop the primes and use the non-dispersive expressions for the GAF, see (2.30)—(2.31).
Factorization (3.1)—(2.35) can also be used, because the reasoning of the rest of Appendix A
applies with no changes. There will only be minute numerical discrepancies in the final results
(e.g., the resolution) between the dispersive (primed) and non-dispersive (non-primed) case that
are due to different values of the parameters in (J.13), (K.2) and in (2.18), (2.19), (A.2), (A.3).
Those discrepancies are referred to as the residual image distortions when the matched filter
has been fully corrected for the ionosphere ( [Tsy09a] and Chapter 2).

Let us now see how the filter corrected for dispersion acts on a linearly polarized chirp that
propagates in a medium that is both dispersive and gyrotropic, see Appendix J. From (J.18), we
get the following relation between the actual signal ¥z (¢, ) and the hypothetical signal ¥ (¢, z)

obtained if there were no Faraday rotation:

Yp(t,x) =(t, x)cospp. (K.3)

If the reflected field in (K.3) is due to a scatterer at z, then the application of the filter (K.1)
yields the following expression instead of (A.1):

n/

Wr=3" / At =t A (¢ — (e ) cos p(t — £27) dt,  (K.A)
n X

where t' = tupp,/vgry and @ is given by (J.17) with r = 2R,. The terms wyt’ in the exponents in
(K.4) cancel out. Apart from those, the difference between (K.4) and (A.1) is two-fold: equation
(K.4) involves the primed constants of (J.13) and (K.2), and it also involves the amplitude
factor cosppr that varies over the chirp. As far as the primed vs. non-primed constants, we
have indicated that all the functional dependencies in the GAF remain exactly the same, and
there may only be a small numerical difference between the two cases. Therefore, we can drop
the primes in (K.4), which yields equation (3.13), and henceforth focus only on the effect of
the FR on imaging, which manifests itself through the magnitude variation cos@p. This is
basically equivalent to thinking that the FR goes together with the otherwise undistorted, i.e.,

non-dispersive, propagation.
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Appendix L

Factorization of the SAR ambiguity
function in the presence of the

Faraday rotation

Our goal here is to perform the analysis similar to that in Appendix A, but taking into account
the FR, i.e., evaluate the error due to the factorization (3.15) of the GAF (3.13)-(3.14). In (K.4),
we drop the primes and linearize cos ¢p(u) around u = 0 [cf. (3.8)]:
ny a1 24, m

cos pp(ul) ~p+7u (L.1)

where p and ¢ are defined in (3.9). This yields the GAF (3.13)-(3.14), which we write as
2
Wr(y,z) =pW(y, 2) +a_Wq(y, 2),

where W(y, z) is given by (A.1), and

Woly,z)=>_ / X (=t ettt emiwo(t=t)y (¢ g eialt=t)? o=t (1 _ymy gy, (L.2)
n X

It is the last factor (¢t — t7) under the integral that distinguishes W, of (L.2) from W of (A.1).
Using the substitutions from (A.2) and (A.3), we transform (L.2) into [cf. (A.5)]

Wq _ Zemon /Tn/2 eliaT 'u(u + T”) du = qu + Wq27 (L3)

where the terms Wy and Wy originate from u and 7™ in the round brackets, respectively.
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The term Wy can be evaluated as follows:

T"/2 1 ) /2
L= § :e2zon" 4iaT"uu du = 2 :€2ion" Y e4iaT"u du
q 7—77,/2 4ZTn 80[ _ n/Q

worn 10
= ;G2ZWOT W%[T" sinc(2a7™T™)| = =5 Z ZiwoT™ 2 sinc/ (27" T™),

so that [Wy| ~ NQTQ. The second term in (L.3) is estimated similarly to (A.16)—(A.18):

T

2

§ : 20w T™ Tn/ / 4iaT”u dul =
™ /2

— 3 n

§ :Tne 2iwo T

n

Wl = Z 2ol T sine (2™ T™)

~ 79sinc(2a77?) < 7ON|max(T™)| < [Wal,

and we see that it is negligible compared to the first term because |T"| < 7.

Thus, we will compare W, ~ W, against the expression [cf. (A.6)]

def
Wq(RA)(:yaz) - WA('y,Z) 'Wq (yvz)v

where Wa(y, 2z) is given by (2.36), and for the factor Wyr(y, z) we have [cf. (3.17), (3.18)]:

(7_0)2 (7_0)2
Wor(y, 2 / A(u)u A(ud) dt = Tw;(mTOTO) =5 sind (2a7°TY). (L.4)
1 7
Similarly to (A.9), we write

2i(Wy — Wymay) = Y _ 7" [(77)? sind (207"T™) — (7°)* sinc’ (2a7°T7)).
n
Then, using the Taylor formula to approximate sinc’(2a7™T™) [cf. (A.14)]:
sinc/ (2a7"T™) = sinc’ (2a19T?) — 2a79T" sinc” (2a7°T7),
we obtain

’ iN
, _ i 0 —2iw T 0 ;
i(Wy — Wymay) = €"7°(=27°5,) E T"e™ =10 —27°S,e 2 0Y1 sinc’ Y7,

n

where Y] is introduced right after equation (A.18), and

S, = sinc’(2a7°T°) + a(7%)? sinc” (2a7°T?).
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The second term in the expression for S, dominates because at? > 1. Then, the error due to

the factorization of W, can be estimated similarly to (A.19):

-
| max(Wy — Wymra))| 2 vis,~ 2y 22 B (L.5)
-

| max Wq(RA)‘ U.)QTO

which is of the same order of magnitude as the error of the factorization of W, see (A.19).

Hence, for the overall factorization error in (3.15) we have the same estimate: (’)(w%).
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Appendix M

Governing equations for scattered
fields and the first Born

approximation

By subtracting equations (4.4) from respective equations (4.1) and using (4.3), we obtain the

following governing equations for the scattered fields:

(sc)
lafgt +V x Bt =g, V- HE) =0,
&
c ot = p € ot ToO , . = — ( _ )

Note that the scattered field E®® appears both on the left-hand side and on the right-hand
side of the second pair of equations of (M.1). Differentiating the Ampere law in (M.1) with
respect to time, we have:

O*E OFE

2 1n(sc)
16°E ) xH(SC):—l[(s—I)

o T aY c

and taking the curl (i.e., Vx) of the Faraday law in (M.1), we obtain:

10
-z (sc) (sc)
catVXH +VxVxE (M.3)
_L0G  HE AR vy B — g,
c ot

The operation VV- on the right hand side of equation (M.3), see also (M.4) and (M.6), means

gradient of the divergence of the corresponding vector. Substituting the time derivative of
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V x H® from equation (M.3) into equation (M.2), and also taking into account the Gauss
law of electricity in (M.1), we arrive at
e—-1 O*E 4ro OE

2 om AEY =G Gy g TVV- (DB, (M)

where on the left-hand side we have the standard constant coefficient d’Alembert operator
acting on E®9) and on the right-hand side we have additional occurrences of the scattered field
via equations (4.2) and (4.5). Similarly, the incident electric field that provides the the source
terms for (M.4) is governed by the d’Alembert equation:

1 92 g (inc) AE(inC) B _41 dj (ex)

2 o 2 ot (M.5)

If the target material is isotropic, i.e., if € = %I, where v = v(x) is the local propagation

speed, and o = 0Z, then equation (M.4) simplifies, and we have:

1 ?E™) w O*E  4no OE c?
where the scalar quantity
(2) def 1 1 (M.7)
N v(x)? ’

is known as the (target) reflectivity function, see, e.g., [CB09, Chapter 6].

In the context of inverse scattering, equation (M.6) shall be interpreted as an equation for
v and o, whereas E®9) provides the data. A key difficulty, however, is that the scattered field is
not known at the target. For example, for the SAR applications, E®° is known at the receiving
antenna, which is airborne or spaceborne, whereas at the target, i.e., on the ground, it is not
known. This makes the inverse problem nonlinear, because the unknown material characteristics
v and o are multiplied on the right-hand side of (M.6) with the unknown scattered field.

A well-known remedy is to assume that the scattering is weak, and employ the first Born
approximation, see [BW99, Chapter XIII]. Under this assumption, the total field E on the
right-hand side of equation (M.6) is replaced with the incident field E(inc) only, which makes the
inverse problem linear. The rationale is that in the case of weak scattering both the deviations of
the material parameters from the vacuum values are small, and the scattered field E®°) is also
small, so their products on the right hand side of equation (M.6) can be neglected. Moreover,
the last term on the right-hand side of (M.6) drops as well because we first invoke the Gauss law

of electricity from system (4.1) in the form V - %E = 0 and then the Gauss law of electricity
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for the incident field from system (4.4). Altogether this yields:

1 9?E®) PE™)  Aro 9E )
-z (s¢) — .
2 gz AF Yo 2z ot

(M.8)

The first Born approximation can also be given another equivalent interpretation based on
perturbation theory. In this framework, the zeroth order solution is the incident field governed
by equation (M.5), and the equation for the first order perturbation is obtained from equation
(M.6) by replacing the total solution on its right-hand side by the zeroth order solution, which
yields equation (M.8). Again, considering no more than first order perturbations is justified
only if the scattering is weak, i.e., if |v| < 1/¢? and 0/w < 1, where w is the typical frequency.
These two requirements are equivalent to treating the difference between the complex electric
permittivity and one as a small parameter; it is used for deriving the first Born approximation

for a hierarchy of scattering problems in Section 4.2, see formulae (4.21) and (4.24).
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Appendix N

Proof of Theorem 1

Reflection coefficients obtained with the help of the first Born approximation for a lossless
birefringent target are given by formulae (4.72). Introducing the new variable £ = e, — 1 and

denoting ( = Ae, we rewrite these formulae as follows:

k:2
SHH = —iqg(ﬁ + 820),

2
sw =3 ((€+a%) = o6+ 4%0),
(N.1)
Sy = _411];(& - I;v)(@

Svu = %E(a + E’Y)Cﬂ-
q q
These expressions can also be obtained by linearization of the exact reflection coefficients given
in [Che83|; for a special case of v = 0, formulae (N.1) can be obtained by linearization of the
results of [Lek91] as well.
Formulae (N.1) define four functions of the arguments &, (, a, and v (with 8 expressed

via (4.48)). Therefore, we can introduce the Jacobian:

0(Suu, Svv, Suv, Svh)
(&, ¢, ,)

_ ‘KkA(Kz(aQ — 1) — q2(72 — 1>)C2 ) (NQ)

128¢7

One can see that the right-hand side of (N.2) is nonzero at least for some values of the argu-
ments. Indeed, if ¢ # 0 (i.e., if the material is anisotropic), then we can choose independent

directional cosines o and 7 so that the numerator on the right-hand side of (N.2) is nonzero.
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Thus, in the vicinity of such points in the parameter space, the transformation from (¢, ¢, «, )
to (Sum, Svv, Suv, Svi) is locally non-degenerate, and preserves the number of degrees of free-
dom. This local non-degeneracy, however, does not guarantee that system (N.1) can be resolved
for (&,(, a,7y) given arbitrary scattering data (i.e., the left-hand side of system (N.1)).

To find out when system (N.1) has a solution, we denote Z = K/q = tan#0;, and transform

the last two equations of the system to:

St =1¢8, S =ach, (N.3)

where

2

2
W(SVH + SHV) and S_ = 7(SVH — SHV)

St =
N

Next, we introduce

D= ;: - % (N.4)
which, together with (4.48), yields:
3% =1-~%*1+D?. (N.5)
We can eliminate £ from the first two equations of (N.1) to get
S =W, (N.6)
where _
§ = 4(Svv + Sz ). o
W= (22 -1) —l—’y2<D2 22+ (1- 291 +D2)>.
Using equations (N.5), (N.6), and the second equation of (N.3), we arrive at
P*?D?*(1 —+*(1+ D?)) = W?, (N.8)

where P = 5/S~. As W in formula (N.7) is linear w.r.t. 42, equation (N.8) is biquadratic w.r.t.
7. A solution for 72 exists if and only if the corresponding discriminant is nonnegative, which

can be shown to be equivalent to

(D - 2%)(22 - 1)
D2

P?>4 . (N.9)

Condition (N.9) can be transformed into (4.77) using equations (N.3), (N.7), and (N.8).
It should also be noted that whereas the right-hand side of (N.8) is always nonnegative, the
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left-hand is nonnegative only if
1
2

< (N.10)

0<y

This means that if condition (N.9) for the existence of a solution to (N.8) with respect to >
is satisfied, then this solution, i.e., 72, satisfies (N.10). If (N.9) has two solutions, then both
should satisfy (N.10). The second inequality in (N.10), together with equations (N.4) and (N.5),
also ensures that 0 < a? < 1and 0 < 32 < 1 (see (4.48)).

If condition (N.9) (or its equivalent (4.77)) is satisfied, then 72 can be found by solving
(N.8), and the sign of v can be chosen arbitrarily because the system (N.1) is invariant w.r.t.
the transformation («, 3,7) — (—a, —3,—7). Then, the value of « is obtained from (N.4), ¢
from (N.6), § from any of the equations (N.3), and £ from the first equation of system (N.1).

With that, all the material parameters are determined, which completes the proof of Theorem 1.
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Appendix O

Numerical study of the exact
formulation for the problem of
scattering off an interface of a

half-space

Theorem 1 indicates that the linearized inverse problem has a solution only for certain com-
binations of the reflection coefficients Sy, Svv, Suv, Svi, and the incidence angle 6;. For
example, if @ = 0 then Spyv = Svn, see formulae (N.1), and the right-hand side of inequality
(4.77) is negative provided that 6; > 7/4. Hence, inequality (4.77) holds automatically, and the
linearized inverse problem always has a solution for §; > 7/4. On the other hand, for 6; < 7/4
inequality (4.77) puts an additional constraint on the values of the reflection coefficients and
thus implies a limitation of solvability of the linearized inverse problem.

While inequality (4.77) may be given a physical interpretation later on, currently we would
like to try and answer the question of whether the foregoing limitation of solvability (Theorem 1)
is due to the type of the target material that we have chosen (a birefringent dielectric with
weak anisotropic conductivity) or to the linearization itself. Expressions for the exact (i.e., not
linearized) reflection coefficients can be found, e.g., in [Che83, equation (6.61)]. However, that
system [unlike the linearized system (N.1)] has proven too complicated for analytical inversion.
Instead, we employ a numerical approach. First, we sample the domain of feasible material
parameters (typically, ¢ and e are taken between 1 and 5) with a sufficiently high rate, and
calculate the exact reflection coefficients for every sample, i.e., solve the direct problem exactly
with the help of [Che83]. In doing so, we obtain a cloud of points in the three-dimensional space

of coefficients Sgy, Svv, and Sgy = Syg. Areas of no solution would correspond to the regions
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with no points inside the cloud, i.e., to the voids. To see whether or not there are any voids we
plot several cross-sections of the cloud normal to the Syy axis. As, however, the cloud consists
of discrete points, we rather take slices of finite thickness in Syp and collapse all the points
inside each slice onto the (Syp, Svv) plane for plotting.

The visualization we have described reveals distinct voids in the cloud of the results for the
exact formulation of the direct scattering problem. Those voids can, in particular, be clearly
seen in Figure O.1, where we are showing the values of ¢ as they depend on Sum, Svv, and
Svu. Inside the voids the solution to the original (i.e., not linearized) inverse problem does not
exist, because the corresponding values of the reflection coefficients cannot be obtained using

any choice of the material parameters.

0=2m/9, &

SHV=O‘OO604 SHV=O.01 81 SHV=0.0302

SHV=O.O786
0.6 5 5
0.4f 4 4
0.2 o 3 3
0 Po— 2 2
02— 1 . . 1
-0.4 -0.2 0 -0.4 -0.2 0 -0.4 -0.2 0

Figure O.1: ¢ as a function of the exact reflection coefficients for a = 0 and ¢; = 27/9. The
value of g| is indicated by color. The horizontal axis is Sy and the vertical axis is Svyv, as
indicated in the middle plot. The approximate ranges for the cloud of the results are —0.5 <
Sun <0, —0.2 < Syy < 0.6, and 0 < |Syy| < 0.11. The gap between two red lines corresponds
to the region for which inequality (4.77) does not hold, i.e., for which the linearized inverse
problem has no solution.
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Moreover, as 0; = 27/9 < 7/4 in Figure O.1, the linearized problem may have no solution
according to Theorem 1. The region where the linearized solution does not exist [see inequality
(4.77)] is bounded by two straight red lines on each of the plots in Figure O.1. We see that when
the scattering is weak, i.e., when all the reflection coefficients Sy, Svv, and Syp are small,
those red lines appear tangential to the apparent boundaries of a given void that corresponds
to the exact formulation. This is precisely the behavior that would be natural to expect in the
case when both the linearized and the original inverse problem have regions with no solution.
This tangential behavior can be observed more clearly in Figure O.2, which is a zoom-in of the

middle plot in the top row of Figure O.1.

S,,,/=0-0181
0.5r 5
047 4.5
4
0.3-
r 13,5
02+
2 L s
7))
0.1
F H425
O_
2
01" T 15
_02 1 1 L 1 ] 1
-0.5 -0.4 -0.3 S 0.2 -0.1 0 %
HH

Figure O.2: Zoom-in of the middle plot in the top row of Figure O.1.

Let us also note that whereas for larger values of the incidence angle, 8; > 7/4, the linearized

inverse problem has a solution, the original, i.e., not linearized, inverse problem may still have no
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Figure O.3: ¢ as a function of the exact reflection coefficients for « = 0 and 6; = 7/3. The value
of g is indicated by color. The horizontal axis is Syg and the vertical axis is Syv, as indicated
in the middle plot. The approximate ranges for the cloud of the results are —1 < Sppg < 0,
—0.4 < S\/V < 0.4, and 0 < |SVH| < 0.2.

solutions. We illustrate that in Figure O.3, which is similar to Figure O.1 in every respect except
that 6; = 7/3 and the computed ranges for Sy, Syv, and Syg appear somewhat different.
From Figure O.3 it is apparent that when all three coefficients Sy, Svv, and Sy are small,
which is basically equivalent to the linear regime (weak scattering), there are no voids in the
cloud of the results and the solution exists, as expected. As, however, the scattering becomes
stronger so that Sy increases, a void appears again indicating a limitation of solvability.!
Altogether, our rigorous analysis of the first Born approximation along with the simulations
conducted for the unabridged formulation indicate that for the weak scattering regime when the
two formulations are supposed to be close, the linear and nonlinear problems indeed have or do
not have a solution simultaneously. In particular, the full nonlinear problem will have no solution
for the same combinations of parameters for which the linearized problem has no solution. This

means that the linearization is apparently not the reason for the loss of solvability, and that the

!The voids we discuss here provide additional constraints, beyond the general limitations on the solvability
of the inverse problem that come, e.g., from the conservation of energy.
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result of Theorem 1 should most likely be attributed to the properties of the target material

that we have taken for our analysis rather than “blamed” on the first Born approximation.
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Appendix P

Instruction manual for Matlab code

used in Chapter 4 and Appendix O

This purpose of this appendix is to allow the reader to reproduce the results given in Figures 4.2,
0.1, 0.2, and O.3. We give a description of how to use the Matlab programs used to generate
the figures and describe what these programs were designed to do in general. While the main
focus is on the plots in Appendix O due to their complexity, other smaller programs used during
the development are covered, as well. It is presented in an outline format to make it easier to
find specific information than if this was written as paragraphs or even as comments in the

code.

1. What you need to get started: To generate the plots seen in Appendix O, you need
the following:

(a) Matlab

(b) Files:
i. scatterer4d.m
ii. ourlin.m
iii. ourlinn.m
iv. refcoef.m
v. refcoefn.m

vi. lin.m (not used in the appendix, but does generate Figure 4.2 — see 7h)
2. Useful terminology

(a) Optical Axis: This is the axis that the optical properties of the uniaxial material are

symmetric around. A unit vector along this axis is represented by («, 3, 7).
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0;: the incidence angle (in radians).

e : the perpendicular permittivity (associated with the ordinary wave).
g|: the parallel permittivity (associated with the extraordinary wave).
k: the wave number.

Suu, Suv, Svi, Svv: the four elements of the scattering matrix. In the subscript the
first letter stands for the polarization of the transmitted wave, and the second stands
for the polarization of the received wave (This is different than the notation used in
Chapter 4). It should be noted that in the code G is used instead of S.

3. Purpose of the functions

(a)

ourlin.m

i. Compute the four reflection coefficients off a uniaxial crystal within a linearized
framework.

ii. Assumption: § > 0.

ourlinn.m

i. Compute the four reflection coefficients off a uniaxial crystal within a linearized
framework.

ii. Assumption: § < 0.

refcoef.m

i. Compute the four reflection coefficients off a uniaxial crystal using the general
formulas as seen in [Che83].

ii. Assumption: 8 > 0.

refcoefn.m

i. Compute the four reflection coefficients off a uniaxial crystal using the general
formulas as seen in [Che83].

ii. Assumption: 8 < 0.

scattererd.m

i. Assuming a = 0, plot the scattering coefficients generated by the other functions
for a specified range of values of £, ¢, and 7.

ii. Optionally, plot the asymptotes seen when the cross-polarized scattering coeffi-
cient is zero, projecting it along all of the values of that coefficient for compar-
ative purposes.

iii. Optionally, plot the diagonal swath of points where the parallel permittivity is

low when the cross-polarized coeflicient is zero.
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iv. Save certain predetermined figures as eps files. This will be elaborated upon

when discussing the example used in Appendix O.

4. Function syntax: Using Matlab’s syntax of [output]=functionname(input), the I/O pa-

rameters are as follows, in the order that they are given.

(a) ourlin and ourlinn
i. Input
A. 0;
B. ¢,
C. g
D. «
E. ~
F. k
ii. Output
A. Sun
B. Spv
C. Svu
D. Syv

(b) refcoef and refcoefn

i. Input: The input to these functions is in the form of two structures. The first is
called material while the second is called wave. While the variables used for the
individual elements inside the structures can be arbitrary, it is important that
each field be verbatim what is given here (typed in Matlab inside single quotes).
A. material
e ’pe’: this represents € .
e 'pa’: this represents .
e ’alpha’: this represents a.
e ’gamma’: this represents ~.

B. wave
e ’k’: this represents k, the value of which is arbitrary.
e ’theta’: this represents 6;.

ii. Output
A. Sun
B. Suv
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C.
D.

Svu

Svv

(c) scattererd

i. Input

A.

[ﬂ €1

. ETm is the minimum value of £, to be used, usually 1.

min max]

° Erfax

|:€T|mn Eﬁnax]

° 5hnin is the minimum value of €| to be used, usually 1.

is the maximum value of €| to be used.

max

* g is the maximum value of g| to be used.

min max]

[y™in,

e 7™ js the minimum value of v to be used.

max

¥ is the maximum value of v to be used.

[—1,1] is the maximum range this parameter can be set at for it to make

physical sense.

. p: this can be one of three things:

e 'pe’ means that the color in the plots will vary over € .
e 'pa’ means that the color in the plots will vary over ¢.

e ‘norm’ means that the color in the plots will vary over ,/Z 2.

. func: this can be one of two things:

e @ourlin means that the scattering coefficients in the linearized framework
will be computed and plotted.

e Qrefcoef means that the scattering coefficients according to [Che83] will

be computed and plotted.

ii. Output

A.
B.

C.

N/A since the only outputs are plots.

The function will generate a certain number of figures, specifically 2 LgJ,
where d is defined in the code.

Half of these figures will contain nine subplots whereas the other half will

only contain one plot. For each angle the entire range of Syy is represented

in the nine subplots.

iii. Example used in Appendix O

To get the results seen in Figures O.1, 0.2, and 0.3, the following command

should be typed in the command line:
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o scatterer4([1 5],[1 5],[-1,1],'pa’,@Qrefcoef)
e Note that this generates five additional plots that were not used in Ap-
pendix O.

5. Options within the code: There are several options within the scatterer4 code that

must be manually turned on and off by adding and removing the % symbols. Most of

these are easily identifiable in the code from the lines of code that are commented out (as

opposed to actual comments).

(a)

(b)

The variable sorp can be changed to whatever letter represents the scattering matrix.
The default is S.

d determines the incidence angle(s) that the function will look at when plotting. It

is best to let d be an odd number.
i. Angles plotted will be “F, where n = 1,2,3,... L%J
ii. For Appendix O, d = 9.
The wave number can be completely arbitrary. The default is 3.

Given the minimum and maximum values of the permittivities, 100,000 different
permittivities are chosen within this range. They can either be evenly spaced or

logarithmically spaced. The latter is the default.

The points that are generated are symmetric with respect to Sy = Syu. The default
is to disregard the points with negative cross-polarization amplitudes when plotting.
Thus it is the default to only be concerned with one of the extrema: the maximum.
However, if the negative points are also accounted for, the code can keep track of

the minimum and use it when needed.

There was a strange glitch for the example in Appendix O when saving figures to
eps files. Thus several dimensions of figure windows were tested. The default setting

produces the best results, but the other dimensions are left in the code as options.

The default for the actual plotting part of the code is to plot the points generated
by the other functions and two thick red lines representing the boundaries of the
area of nonexistence in the linearized framework. This can be used to compare the
linearized framework to that of the general formulas. There are two additional things
that can be plotted:

i. A thick blue dashed line can be used to represent the main asymptotes seen in
the plots. These lines produce a “box” that contains almost all of the points
when Spy = 0. It is visible in all plots for comparison on how those points relate
to those at the “base.”
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ii. A thick yellow dashed curve represents what initially appeared to be anomalous
behavior of some points with low values of . This was used to corroborate
some analysis and thus is turned off by default. Like the previous “box”, it is
projected onto all subplots for comparison purposes.

(h) In order to avoid clutter, in the figures that contain nine subplots only the middle
subplot is properly labeled. Late in the development of the code it was decided that
the axis labels looked nicer as text boxes than by using Matlab’s zlabel and ylabel

commands. If those commands are desired, however, the option is still there.
i. The default positions for these text boxes are specified to the example used in
the paper. Another option is to have them appear at the axis extrema.
(i) There are a few different options for the amount of information given in the figure
titles. The default is minimal information.
(j) In the figures with one plot, the zlabel and ylabel commands work the best. If con-

sistency is desired, however, the option to use text boxes remains.

6. The example used in Appendix O: Many of the default settings in the code are
specifically set for the example used in Appendix O. As described at the end of the
section on function syntax, this example considered permittivity values from one to five
with the full range of gamma. It also uses the color axis to measure £ and uses the general

formulas for the computation. Again, to run the code
scatterer4([15],[15],[—1,1], pa’, @refcoef);

must be typed in the command line. The function will not produce any output vari-
ables, but it will display eight figure windows. In addition to this, the third, fourth, and
fifth figure windows will be saved as eps files named paggap9c.eps, paggaplc.eps, and
pagno9c.eps, respectively. If run correctly, the figures that are saved should look like Fig-
ure O.1, Figure 0.2, and Figure 0.3 As noted in Appendix O, Figure 0.2 (Figure 4 of
Matlab’s output) is the top middle subplot of Figure O.1 (Figure 3 of Matlab’s output).

Although the code can easily be used for other applications without many changes, it
should be noted, as described above, that some changes will have to be made for different
applications. The computations will all still be done correctly, but the output will not

work out as nice.

7. Other functions: In order to ensure that the coded versions of the scattering coefficient
formulas (both linearized and general) were correct, several other programs were created

to test various aspects of them. These will be listed here.

192



(a) fresnel.m
i. Input: a known permittivity [optional]. If no input is given, the default is set at

1.7

ii. Output: a figure with a plot showing the Fresnel curves for that permittivity.
The Fresnel curves are Sy and Syv plotted with respect to the incidence angle
(in degrees). The Brewster angle is also computed and represented on the graph

as well as given numerically.
(b) basal.m

i. Input: The inputs are in the form of structures again.

e material
— ’pe’: this represents ¢ | .
— ’pa’: this represents ¢|.
— ’alpha’: this represents a. IT MUST BE 0.
— ’gamma’: this represents . IT MUST BE 1.

® wave
— ’k’: this represents k, the value of which is arbitrary.
— ’theta’: this represents 6;.

e variable: 'pe’, 'pa’, or 'theta’: this is the variable that will serve as the x-axis

in the plot output. Note that the value given in the material structure for

the variable chosen here will be ignored.
ii. Output:
® Sun
e Spy (should always be zero)
e Svp (should always be zero)
e Syy
o 14 the reflection coefficient of the same name given in (51) of [Lek91]
e 1, the reflection coefficient of the same name given in (51) of [Lek91]

iii. This function generates a plot in a figure comparing the reflection coefficients
off a basal plane given by the code based on [Che83] and those found in [Lek91].

The code for them is given in rppcheck.m.

iv. It should be noted that [Lek91] uses a different convention for the direction of

the z-axis than [Che83], and this difference is accounted for in the plot.

(c) par.m
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i. Input: same as basal.m except a new fourth option for the variable is ’alpha’.
Also, the only requirement for the value of the material parameters is that now
v MUST BE 0.

ii. Output:
e Sun
e Suv
e Svh
* Svv
o 7,5: see Section 5.2 in [Lek91] for this and the following three
[ ]
® Tps
°
iii. This function does the same thing as basal.m except for the special case where

the reflecting plane is parallel to the optic axis. It uses the file Lekpar.m for the
formulas given by [Lek91].

iv. Due to the different convention used in [Lek91], two of the reflection coefficients
had to be slightly modified to match the results from [Che83|. This affects the

figure and not the actual computation.
(d) rppcheck.m (used in basal.m)
i. Input:
o 0;
® £
[ ] EH
o k
ii. Output:
® Tss
[ Tpp

iii. Calculates the reflection coefficients for a basal plane as given in [Lek91], using

the notation of that paper.
(e) Lekpar.m (used in par.m)
i. Input:
e 0
® £

|
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°
o k
ii. Output:
® Ty
® Ty
® Tps
® Tpp
iii. Calculates the reflection coefficients for when the reflecting plane is parallel to
the optic axis as given in [Lek91], using the notation of that paper.
(f) gen.m
i. Input: same as par.m except for a new fifth option for the variable 'gamma’.
There are no requirements for the values of the material parameters this time.

ii. Output: same as par.m except that the values of the reflection coefficients as

given by [Lek91] come from Section 4 of that paper.

iii. This function was designed as a generalization of basal.m and par.m, making
them obsolete. It uses Lekgen.m to compute the reflection coefficients given
by [Lek91] in the most general case. With the right input (i.e. the requirements

given for the above programs), gen.m will duplicate their results.

iv. This code was used to test the code for the formulas based off of [Che83] for
another special case mentioned in [Lek91]: when the optic axis is in the plane of

incidence. This is the special case when § = 0.
(g) Lekgen.m (used in gen.m)
i. Input:
e 0
°
° g
° «
*
o k
ii. Output: same as Lekpar.m

iii. Calculates the reflection coefficients for any arbitrary geometrical relationship
between the incoming wave and crystal as given in [Lek91], using that paper’s

notation.

(h) lin.m: the function used to generate Figure 4.2
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i. Input: same as gen.m except for new sixth and seventh options, 'pp’, and ’3’,
and the value of theta must be in single quotes. Also, a third element of the wave
sctructure, thetap, is used. Its value is the IATEXversion of theta. For example,
if theta is 'pi/9’, then thetap needs to be *\pi/9’.

ii. Output

® Sun
* Suv
e Svi
o Syv
* Shn
* Shy
o Sin
o Siv

iii. Similarly to gen.m, this function computes the reflection coefficients as given
by [Che83] over a range of values for the desired variable, where all the other
input parameters are fixed. It then plots the results. However, instead of com-
paring the results to [Lek91], this uses the aforementioned ourlin.m to compute
the reflection coefficients given by the linearized framework. These results are
then plotted on the same axes as the reflection coefficients given by [Che83]
so that the general and linearized reflection coefficients can be compared and
contrasted.

iv. Note: If 'pp’ is the input variable, the program will assume the value entered
for £, is the only permittivity, making the medium isotropic. Because they are
zero, it will not plot the cross-polarized terms.

v. Note: If ’3’ is the input variable, the program will generate a plot that combines
elements from the 'pe’; 'pa’, and pp’ options. This is really more for plotting
purposes, and the numerical output will be the same as that for the 'pa’ option.

vi. To get the results seen in Figure 4.2, the actual command is (all typed in one

line)

[Ghh, Ghv, Gvh, Gvv, Ghhl, Ghol, Gvuhl, Guvl] =
lin(struct(’pe’,1.05,’pa’,1.05’,’alpha’,.75,’gamma’,0),
struct(’k’,3,’theta’,’pi/9’,thetap’,’\pi/9’),’3’);

(i) Ghvmax.m is a short function for analyzing the differences for the @ = 0 case of

Siv” for different values of 6.
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Appendix Q

Matlab code used in Chapter 4 and
Appendix O

Q.1 Appendix O code: scatterer4.m

Here is the main function used to generate the plots in Appendix O, scattererd.m:

function scatterer4 (pemm,pamm, gammamm,p,func)

#scattererd ([epsilonperpmin epsilonperpmaz],[epsilonparallelmin
zepstlonparallel maz], [gammamin gammamaz],’pe’, ’pa’, or ’norm’,Q@ourlin
Zor @refcoef)

#It calls the ezternal functions @ourlin, Q@ourlinn, @refcoef, and
%@refcoefn.

sorp=’S’;
Zsorp=’\Gamma ’; Jalso sometimes used in the literature
alpha=0;
Atheta=pi/7;, JIf just one plot is meeded, this is a good ezample.
d=9;
for ia=1:floor(d/2)
#The last number should be the last whole number such
Zthat 1a/d<1/2.

theta=ia*pi/d;

K=3; JThis isn’t ksin(theta) but just regular k.

Ape=pemm (1) :range (pemm)/(10°5-1) :pemm (2);

Apa=pamm (1) : range (pamm)/(10°5-1) : pamm (2) ;
pe=logspace(loglO(pemm(1)),logl0(pemm(2)) ,10°5); Jgenerates better
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Zspaced dots

pa=logspace(loglO(pamm (1)) ,logl0(pamm(2)) ,1075);
gamma=gammamnm (1) : range (gammamm) /(10°5-1) : gammamm (2) ;
#The nezxt two lines randomize the input (sort of).
rng (374); Jseeds the random number generator
pa=pa(randperm(length(pa)));

rng (583); Jdifferent seed just for the fun of it

gamma=gamma (randperm(length (gamma))) ;

Ghh=zeros (2xlength(pe) ,1); Ghv=Ghh; Gvh=Ghh; Gvv=Ghh;

if isequal (func,@ourlin)==
for i=1:length(pe)
[Ghh (i) ,Ghv (i) ,Gvh(i),Gvv(i)]=func(theta,pe(i),pa(i),...
alpha, gamma (i) ,K);
[Ghh (i+length(pe)),Ghv(i+length(pe)),Gvh(i+length(pe)),...
Gvv(i+length(pe))]l=ourlinn(theta,pe(i),pa(i),alpha,...
gamma (i) ,K) ;

end
else
for i=1:1length(pe)

[Ghh (i) ,Ghv (i) ,Gvh(i),Gvv(i)]=func(struct(’pe’,pe(i),...
’pa’,pa(i),’alpha’,alpha,’gamma’,gamma(i)), ...
struct(’k’,K, ’theta’,theta));

[Ghh (i+length(pe)),Ghv(i+length(pe)),Gvh(i+length(pe)),...
Gvv (i+length(pe))]=refcoefn(struct(’pe’,pe(i),’pa’,...
pa(i),’alpha’,alpha,’gamma’,gamma(i)), ...
struct(’k’,K,’theta’,theta));

end
end
#The next two lines are needed for both signs of beta.
pe=[pe pel;
pa=[pa pal;

Ahmin=min (Ghv); Needed if using whole range of Ghv

hmax=max (Ghv) ;
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Afigure(’OuterPostition’, [680 431 955 718])
Afigure (’OuterPosition’, [680 399 694 750])
figure(’OuterPosition’,[680 396 922 753])

for k=1:9 JEach k corresponds to a subplot.

clear bounddown boundup bottom top left right xtreme ytreme

j=find (Ghv>(k-1)*hmax/9 & Ghv<=k*hmax/9);
Aj=find (Ghv>hmin+(k-1)* (hmaz-hmin)/9 & Ghu<=hmin+k*...
% (hmaz-hmin)/9) ;

Ghhs=Ghh (j); Gvvs=Gvv(j);
Gh=min (Ghhs):.001:max (Ghhs);

Gv=min (Gvvs):.001:max(Gvvs);

GHV=(k-1)*hmax/9;
AGHV=hmin+(k-1)* (hmaz-hmin)/9;
4if GHV<O

VA GHV=hmin+k* (hmaz -hmin)/9;
send

sbp(k)=subplot (3,3,k);

for i=1:1length(Gh)
bounddown (i)=-sqrt (4*cos (2*theta)*GHV~"2) -cos (2*xtheta)*Gh (i) ;
boundup (i)=sqrt (4*cos (2*theta)*GHV"2) -cos (2*xtheta)*Gh (i) ;
bottom(2)=0;
top(i)=(pemm(2)*cos (theta)-sqrt (pemm(2)-sin(theta) "2))/...
(pemm (2)*cos (theta)+sqrt (pemm(2)-sin(theta) "2));

BRI

end

Afor i=1:1length (Gu)

VA left(t)=(cos(theta)-sqrt (pamm(2)-sin(theta) "2))/...
VA (cos(theta)+sqrt(pamm(2)-sin(theta) "2));

% right (i)=0;

Zend

Afor i=1:1length(pe)

VA ztreme (i)=(cos(theta)-sqrt(pe(i)-sin(theta) "2))/...
VA (cos(theta)+sqrt(pe(i)-sin(theta) "2));

A ytreme (i)=(pe(i)-sqrt(pe(t)))/(pe(i)+sqrt(pe(i)));
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send

if isequal(p,’pe’)
callScatterc (Ghhs,Gvvs ,pe(j));
pp=’, \epsilon_\perp ’;
elseif isequal(p,’pa’)
callScatterc (Ghhs, Gvvs, pa(j));
pp=’, \epsilon_{II|} ’;
elseif isequal(p,’norm’)
callScatterc (Ghhs, Gvvs, sqrt(pe(j).*pa(j)));
pp=’, norm,’;
end
hold on
A1 think the last condition <s all that %s needed,

Abe thorough just in case.

but I want to

if isreal (bounddown)==1 && isreal (boundup)== && ia/d<1/4
plot (Gh,bounddown,’r’,Gh,boundup,’r’,’LineWidth’,2)

end

Aplot (Gh,bottom, ’b--",Gh,top,’b--",left,Guv, ’b--",...

4 right ,Gu, ’b--’, ’LineWidth ’,2)
Aplot (ztreme,ytreme, ’y--’, ’LineWidth ’,2)
set (gca,’FontSize’ ,15)
colorbar
if isequal(p,’pe’)
caxis ([pemm (1) pemm(2)])
elseif isequal(p,’pa’)
caxis ([pamm (1) pamm(2)]1)

elseif isequal(p,’norm’)

caxis ([sqrt(pemm (1)*pamm (1)) sqrt(pemm(2)*pamm(2))])

end

if k==

Axlabel ([sorp,’_{HH}’], ’FontSize’,15)

Aylabel ([sorp,’_{VV}’], ’FontSize’,15)

a=axis;

if ia==
text (-.06,-.16,[sorp,’ _{HH}’1)
text (-.49,.53,[sorp,’_{VV}’])

elseif ia==
text(-.14,-.36,[sorp,’ _{HH}’])
text (-.99,.34,[sorp,’ _{VV}’])
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else
text (a(2),a(3),[sorp,’ _{HH}’1)
text (a(l) ,a(4),[sorp,’_{VV}’1)
end
if isequal(p,’pe’)
xlabel (colorbar,’\epsilon_\perp’,’FontSize’,15)
elseif isequal(p,’pa’)
xlabel (colorbar,’\epsilon_{||}’,’FontSize’,15)

elseif isequal(p,’norm’)

xlabel (colorbar,’sqrt{\epsilon_\perp\epsilon_{|[}}’,...

>FontSize’ ,15)
end
end
hold off
if isequal (func,@ourlin)==
Jdtitle ([num2str ((k-1)*hmazx/9), ’<=Ghu<=’, ...
Anum2str (k*hmax/9), ’:linearized °])
AIf you want detailed titles for each subplot use this.

title([sorp,’_{HV}=’,num2str ((2*k-1)*hmax/18,°%5.3g’)]1)

annotation(’textbox’,[0 .9 1 .1],’String’,[’\theta=’,...
num2str (ia), ’\pi/’,num2str(d) ,pp,’, ’,’max(’,sorp,...
>_{HV})=’,num2str (hmax,’%5.3g’),’, Linearized’],...
’EdgeColor’,’none’,’HorizontalAlignment’,’center’,...
>FontSize’ ,18)

Zannotation (’textboz’, [0 .9 1 .1],°String’,[’\theta=",...

% mnum2str(ia), ’\pi/’,num2str(d),pp, "min(Ghv)=",...

2 num2str (hmin),’, °’,’mazxz (Ghv)=’,num2str (hmaz), ...

%4 7, Linearized’], ’EdgeColor’,’none’, ...

% ’HorizontalAlignment ’, ’center’, ’FontSize ’,18)

else

Jdtitle ([num2str ((k-1)*hmazx/9), ’<=Ghu<=’, ...

Anum2str (k*xhmaz/9),’: Chen’])
title([sorp,’_{HV}=’,num2str ((2*k-1)*hmax/18,°%5.3g’)]1)
annotation(’textbox’,[0 .9 1 .1],’String’,[’\theta=’,...

num2str (ia),’\pi/’,num2str (d),ppl,’EdgeColor’,...
’none’,’HorizontalAlignment’,’center’,’FontSize’ ,18)
Zannotation (’textboz’,[0 .9 1 .1],°String’,...
% [’\theta=’,num2str (ia), ’\pi/’,num2str(d),pp,’, ’,...
% ’maz(’,sorp,’_{HV})=’,num2str (hmaz, °7%5.39°),°,...

% Chen’],’EdgeColor’,’none’, ’HorizontalAlignment ’, ...
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4 ’center’,’FontSize’,18)

Zannotation (’textboz’,[0 .9 1 .1],’String’,...

% [’\theta=’,num2str (ia), ’\pt/’,num2str(d),pp, ...
‘min (Ghv)="’,num2str (hmin),’, ’,’maz (Ghv)=",...

num2str (hmaz),’, Chen’],’EdgeColor’, ’none’, ...

BN

’HorizontalAlignment ’, center’, ’FontStze ’,18)
end
end
set (gcf , ’PaperPositionMode’,’auto’)
if ia==
if isequal(p,’pe’)
if isequal (func,@ourlin)==
print -depsc2 pelgap9c
elseif isequal (func,@refcoef)==
print -depsc2 peggap9c
end
elseif isequal(p,’pa’)
if isequal (func,@ourlin)==
print -depsc2 palgap9c
elseif isequal (func,@refcoef)==
print -depsc2 paggap9c
Aprint -djpeg paggap9c
end
end
elseif ia==
if isequal(p,’pe’)
if isequal (func,@ourlin)==
print -depsc2 pelno9c
elseif isequal (func,@refcoef)==
print -depsc2 pegno9c
end
elseif isequal(p,’pa’)
if isequal (func,@ourlin)==
print -depsc2 palno9c
elseif isequal (func,@refcoef)==
print -depsc2 pagno9c
end
end
end
#The rest of the code is for plotting the second subplot of each
Ziteration separately. Note that which subplot ts plotted can be
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Zchanged in the argument of sbp.
figure (2xia)
cop=copyobj (sbp(2) ,2xia);
colorbar
if isequal(p,’pe’)
caxis ([pemm (1) pemm(2)])
elseif isequal(p,’pa’)
caxis ([pamm (1) pamm(2)]1)
elseif isequal(p,’norm’)
caxis ([sqrt(pemm (1)*pamm (1)) sqrt(pemm(2)*pamm(2))])
end
set (cop,’Position’,’default’)
set (gca,’FontSize’ ,15)
xlabel ([sorp,’_{HH}’],’FontSize’,18, ’FontWeight’, ’bold’)
ylabel ([sorp,’_{VV}’],’FontSize’,18, ’FontWeight’, ’bold’)
Ja=azxis;
Atext (a(2),a(3),[sorp, ’_{HH}’])
Atext (a(1),a(4),[sorp,’_{VV}’])
if isequal(p,’pe’)
xlabel (colorbar,’\epsilon_\perp’,’FontSize’,15)
elseif isequal(p,’pa’)
xlabel (colorbar,’\epsilon_{||}’,’FontSize’ ,15)
elseif isequal(p,’norm’)
xlabel (colorbar,’sqrt{\epsilon_\perp\epsilon_{|I|}}’,...
>FontSize’ ,15)
end
if ia==
if isequal(p,’pe’)
if isequal (func,@ourlin)==1
print -depsc2 pelgaplc
elseif isequal (func,@refcoef)==
print -depsc2 peggaplc
end
elseif isequal(p,’pa’)
if isequal (func,@ourlin)==
print -depsc2 palgaplc
elseif isequal (func,@refcoef)==
print -depsc2 paggaplc
end
end

end
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end

end 7 main function

function callScatterc(h,v,c)
scatter(h,v,.1,c,’filled’)

end

The following four functions are needed for scatterer4.m to run:

Q.1.1 ourlin.m

function [Ghh,Ghv,Gvh,Gvv]=ourlin(theta,pe,pa,alpha, gamma,b k)
K=kx*sin (theta); q=k*cos(theta);
beta=sqrt(l-alpha”2-gamma~2);

xi=pe-1; zeta=pa-pe;

Ghh=-(1/4)*(k"2/q"2)*(xi+beta"2*zeta);
Gvv=(1/4)*((xi+alpha~2*zeta)-(K"2/q"2)*(xi+gamma~2*zeta));
Gvh=-(1/4)*(k/q)*(alpha-(K/q)*gamma)*zeta*beta;
Ghv=(1/4)*(k/q)*(alpha+(K/q)*gamma)*zeta*xbeta;

Q.1.2 ourlinn.m

function [Ghh,Ghv,Gvh,Gvv]=ourlinn(theta,pe,pa,alpha,gamma,k)
K=kx*sin (theta); q=k*cos(theta);
beta=-sqrt (l1-alpha”2-gamma~2); /beta is negative

xi=pe-1; zeta=pa-pe;

Ghh=-(1/4)*(k"2/q"2)*(xi+beta"2*zeta);
Gvv=(1/4)*((xi+alpha~2*zeta)-(K~2/q~2)*(xi+gamma ~2*zeta));
Gvh=-(1/4)*(k/q)*(alpha-(K/q)*gamma)*zeta*beta;
Ghv=(1/4)*(k/q)*(alpha+(K/q)*gamma)*zeta*beta;

Q.1.3 refcoef.m

function [Ghh,Ghv,Gvh,Gvv]=refcoef (material, wave)
k = wave.k;

theta = wave.theta;
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pe = material.pe;
pa = material.pa;
alpha = material.alpha;
gamma = material.gamma;

Ztheta,pe,pa,alpha, gamma

Zpe is epsilon perp and pa is epsilon parallel
Zebar=[pe 0 0;0 pe 0;0 0 pal;

Zadj=[pe*pa 0 0;0 pe*pa 0;0 0 pe~2];
q=1[0;0;1];

a=[0;-k*sin(theta) ;0];

b=[k*sin(theta);0;0];

Zhat{c} = [alpha;beta; gammal]
c=[alpha;sqrt(l1-alpha”“2-gamma”~2); gammal;

#This assumes beta is postitive...

ebar=pex*xeye (3)+(pa-pe)*(c*c’);

adj=pex*(pa*xeye (3)+(pe-pa)*(c*xc’));
ac=sqrt(l-alpha”“2-gamma~2)*k*sin(theta); /So does this.
bc=alpha*k*sin(theta);

Za_dot_c = ac

Ab_dot_c be

%q_dot_c = gamma

a2=k"2x(sin(theta)) " 2;

gi=k#*cos(theta);

gp=k*sqrt (pe-(sin(theta))~2);

z=sqrt (k" 2*pexpa*q’*ebarxq-a’*adj*a);
qu=(-b’*ebarxq+z)/(q’*ebar*q) ;

gm=k*sqrt (pe-(pe/pa)*(sin(theta)) "2); basal
X=k"2*qi*pe*(-a2*gamma+qp*bc)*(-a2*gamma+qm*bc) ;
Y=k "2*(-a2*gamma+qp*bc)*(qp " 2*bc-qm*a2*gamma) ;
U=k"4*pex*xqp*ac”2;

Z=k"4*xpe~2*xqi*ac”2;

V=k "3*pexqi*qgp*acx*bc;

L=k~ 3*pexqgi*a2*ac*gamma;
deltal=(qi+qp)*(X+Y)+(qi+qm)*(U+Z) ;
Ghh=((qi-gp)*(X+Y)+(qi-qm)*(U+Z))/deltal;
Ghv=(2*%(qp-qm)*(V-L))/deltal;
Gvh=(2*x(qm-qp)*(V+L))/deltal;
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Gvv=((qi+qgp)*(X-Y)+(qi+qm)*(Z-U))/deltal;

Q.1.4 refcoefn.m

function [Ghh,Ghv,Gvh,Gvv]=refcoefn(material, wave)

k = wave.k;
theta = wave.theta;
pe = material.pe;

pa = material.pa;
alpha = material.alpha;
gamma = material.gamma;

Ztheta,pe,pa,alpha,gamma

#pe is epsilon perp and pa is epsilon parallel
sebar=[pe 0 0;0 pe 0;0 0 pal;

Zadj=[pe*pa 0 0;0 pe*pa 0;0 0 pe~2];
q=[0;0;11;

a=[0;-k*xsin(theta);0];

b=[k*sin(theta);0;0];

Zhat{c} = [alpha;beta;gammal]
c=[alpha;-sqrt(l-alpha”2-gamma”~2) ; gammal;

#This assumes beta %is negative...

ebar=pex*eye (3)+(pa-pe)*(c*xc’);

adj=pex(paxeye (3)+(pe-pa)*(c*xc’));

ac=-sqrt (l-alpha”2-gamma~2)*k*sin(theta); /So does this.
bc=alpha*k*sin(theta);

fa_dot_c ac

Ab_dot_c be

%q_dot_c = gamma

a2=k"2x(sin(theta)) " 2;

gi=k#*cos(theta);

gp=k*sqrt (pe-(sin(theta)) ~2);

z=sqrt (k" 2*pexpa*xq’*ebarxq-a’*xadj*a);
qn=(-b’*ebarxq+z)/(q’*ebar*q) ;

Aqm=k*sqrt (pe-(pe/pa)*(sin(theta)) "2); basal
X=k"2*qi*pex*(-a2*gamma+qgp*bc)*(-a2*gamma+qm*bc) ;
Y=k "2*(-a2*gamma+qgp*bc)*(qp " 2*xbc-qm*a2*gamma) ;
U=k~"4*pexqgp*ac”2;
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Z=k " 4*pe 2%qi*ac"2;
V=k"3*pexqgi*qgp*ac*bc;

L=k~ 3*pexqgi*a2*ac*gamma;
deltal=(qi+qp)*(X+Y)+(qi+qm)*(U+Z);
Ghh=((qi-qp)*(X+Y)+(qi-qm)*(U+Z))/deltal;
Ghv=(2*x(gqp-qm)*(V-L))/deltal;
Gvh=(2*(gqm-gp)*(V+L))/deltal;
Gvv=((qi+gp)*(X-Y)+(qi+qm)*(Z-U))/deltal;

Q.2 Code for Figure 4.2: lin.m

To generate the plots seen in Figure 4.2, we used lin.m (See 7h in Appendix P for details):

function [Ghh,Ghv,Gvh,Gvv,Ghhl,Ghvl,Gvhl,Gvvl]=...
lin(material ,wave,variable)
#It calls the ezternal functions @refcoef and Qourlin.
k = wave.k;
theta = wave.theta;

thetap = wave.thetap;

pe = material.pe;
pa = material.pa;
alpha = material.alpha;
gamma = material.gamma;
if strcmp(variable,’theta’)==
theta=0:.01:pi/2;
Ghh=zeros (length(theta) ,1);
Ghv=Ghh; Gvh=Ghh; Gvv=Ghh; Ghhl=Ghh; Ghvl=Ghh; Gvhl=Ghh; Gvvl=Ghh;
for i=1:1length(theta)

[Ghh (i) ,Ghv (i) ,Gvh(i),Gvv(i)]=refcoef (struct(’pe’,pe,’pa’,pa,...

’alpha’,alpha,’gamma’,gamma),struct(’k’,k,...
>theta’,theta(i)));

[Ghh1(i),Ghv1(i),Gvhl(i),Gvvl(i)]l=ourlin(theta(i),pe,pa,...
alpha,gamma ,k);

end

plot (theta,Ghh,’b-*’,theta,Ghv,’g-*’,theta,Gvh,’y-*’,theta,Gvv,...
’c-x’ ,theta,Ghhl,’r’,theta,Ghvl,’k--’,theta,Gvhl,’k’,theta, ...
Gvvl,’m’)

xlabel (’Incidence angle’,’FontSize’ ,15)
ylabel (’Reflection coefficient’,’FontSize’,15)

title([’Exact vs. linearized:’,’ \epsilon_\perp=’,num2str(pe),...
>, \epsilon_{||}=’,num2str(pa),’, \alpha=’,num2str (alpha),...
>, \gamma=’,num2str (gamma)],’FontSize’ ,18)
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legend(’Shh’,’Shv’,’Svh’,’Svv’,’Shh lin’,’Shv 1lin’,’Svh 1lin’,...
’Svv 1lin’,’Location’,’SouthWest’)
elseif strcmp(variable,’pe’)==
pe=1:.01:5;
Ghh=zeros (length(pe) ,1);
Ghv=Ghh; Gvh=Ghh; Gvv=Ghh; Ghhl=Ghh;
Ghvl=Ghh; Gvhl=Ghh; Gvv1l=Ghh;
Q=Ghh; Q1=Ghh; z=Ghh;
for i=1:1length(pe)

[Ghh (i) ,Ghv (i) ,Gvh(i),Gvv(i)]l=refcoef (struct(’pe’,pe(i),’pa’,...

pa,’alpha’,alpha,’gamma’,gamma),struct(’k’,k,’theta’,...
str2num (theta)));

[Ghhl1(i),Ghv1(i),Gvhl(i),Gvvl(i)]l=ourlin(str2num(theta),...
pe(i) ,pa,alpha,gamma,hk);

Q(i)=Gvv(i)/Ghh(1i);

Q1(i)=Gvv1l(i)/Ghhl(i);

end
figure(’0OuterPosition’,[680 396 922 753])

subplot(2,1,1)

plot (pe,Ghh,’b-’,pe,Ghv,’g-’,pe,Gvh,’y-’,pe,Gvv,’c-’,pe,Ghhl ,’r’,...

pe,Ghvl,’k--’,pe,Gvhl,’k’,pe,Gvvl,’m’,pe,z,’k:’)

Zhold on

Jo=axis;

Aplot(pe,Q,’b:’,pe,Ql,’r:’,21,2z,°k:"’)

Zazis ([o(1),0(2),min(@(length (Q)),QL(length(QL))),0(4)]1);

xlabel (’\epsilon_{\perp}’,’FontSize’,15)

ylabel (’Reflection coefficient’,’FontSize’,15)

title([’Exact vs. linearized:’,’ \epsilon_{I||}=’,num2str(pa),...
>, \alpha=’,num2str (alpha),’, \gamma=’,num2str (gamma),...
>, \theta_i=’,thetap],’FontSize’,18)

legend(’Shh’,’Shv’,’Svh’,’Svv’,’Shh 1lin’,’Svh 1lin’,’Shv 1lin’,...
’Svv 1lin’,’Location’,’BestOutside’)

subplot(2,1,2)

plot(pe,Q,’b:’,pe,Ql,’r:’)

xlabel (’\epsilon_{\perp}’,’FontSize’ ,15)

ylabel (’Polarization ratio’,’FontSize’,15)

title([’Exact vs. linearized:’,’ \epsilon_{||}=’,num2str(pa),...
>, \alpha=’,num2str (alpha),’, \gamma=’,num2str (gamma),...
>, \theta_i=’,thetap],’FontSize’,18)

legend(’Q’,’Q lin’,’Location’,’BestOutside’)
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print -depsc2 linvgenpare
elseif strcmp(variable,’pa’)==
pa=1:.01:5;
Ghh=zeros (length(pa),1);
Ghv=Ghh; Gvh=Ghh; Gvv=Ghh;
Ghhl=Ghh; Ghvl=Ghh; Gvhl=Ghh; Gvv1l=Ghh;
Q=Ghh; Q1=Ghh; z=Ghh;
for i=1:1length(pa)
[Ghh (1) ,Ghv (i) ,Gvh(i),Gvv(i)]=refcoef (struct(’pe’,pe,...
’pa’,pa(i),’alpha’,alpha,’gamma’,gamma),...
struct (’k’ ,k, ’theta’,str2num(theta)));
[Ghh1l (i) ,Ghv1(i),Gvh1(i),Gvvl(i)]l=ourlin(str2num(theta),pe,...
pa(i),alpha,gamma,bk);
Q(i)=Gvv(i)/Ghh(i);
Q1(i)=Gvv1l(i)/Ghhl(i);
end
figure(’0OuterPosition’, [680 396 922 753])

subplot(2,1,1)

plot (pa,Ghh, ’b-’,pa,Ghv,’g-’,pa,Gvh,’y-’,pa,Gvv,’c-’,pa,...
Ghhl,’r’,pa,Ghvl,’k--’,pa,Gvhl,’k’,pa,Gvvl,’m’,pa,z,’k:’)

Zhold on

Jo=axis;

Aplot(pa,Q,’b:’,pa,Ql,’r:’,21,2,°k:")

Zazis ([o(1),0(2),min(Q@(length(Q)),Ql(length(QL))),0(4)]1);

xlabel (’\epsilon_{||}’,’FontSize’ ,15)

ylabel (’Reflection coefficient’,’FontSize’,15)

title([’Exact vs. linearized’,’ \epsilon_\perp=’,num2str(pe),...
>, \alpha=’,num2str (alpha),’, \gamma=’,num2str (gamma) ,...
>, \theta_i=’,thetap],’FontSize’,18)

legend(’Shh’,’Shv’,’Svh’,’Svv’,’Shh 1lin’,’Svh 1lin’,’Shv 1lin’,...
>’Svv lin’,’Location’,’BestOutside’)

subplot (2,1,2)

plot(pa,Q,’b:’,pa,Ql,’r:’)

xlabel (’\epsilon_{||}’,’FontSize’ ,15)

ylabel (’Polarization ratio’,’FontSize’,15)

title([’Exact vs. linearized:’,’ \epsilon_\perp=’,num2str(pe),...
>, \alpha=’,num2str (alpha),’, \gamma=’,num2str (gamma) ,...
>, \theta_i=’,thetap],’FontSize’,18)

legend(’Q’,’Q lin’,’Location’,’BestOutside’)

print -depsc2 linvgenpara
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elseif strcmp(variable,’alpha’)==
al=-1:.01:1;
j=1;
for i=1:length(al)
if 1-al(i)"2-gamma~2>=0
alpha(j)=al(i);
=i+l
end
end
Ghh=zeros (length(alpha) ,1);
Ghv=Ghh; Gvh=Ghh; Gvv=Ghh; Ghhl=Ghh; Ghvl=Ghh; Gvhl=Ghh; Gvvl=Ghh;
for i=1:1length(alpha)

[Ghh (i) ,Ghv (i) ,Gvh(i),Gvv(i)]=refcoef (struct(’pe’,pe,’pa’,pa,...

>alpha’,alpha(i),’gamma’,gamma),...
struct(’k’ ,k, ’theta_i’,str2num(theta)));
[Ghh1(i),Ghv1(i),Gvhl(i),Gvvl(i)]l=ourlin(str2num(theta),...
pe,pa,alpha(i),gamma, k);
end
plot (alpha,Ghh,’b-%*’,alpha,Ghv,’g-*’,alpha,Gvh,’y-*’,alpha,Gvv,...
’c-*’,alpha,Ghhl,’r’,alpha,Ghvl,’k--’,alpha,Gvhl,’k’,...
alpha,Gvvl,’m’)
xlabel (’\alpha’,’FontSize’ ,15)
ylabel (’Reflection coefficient’,’FontSize’,15)
title([’Exact vs. linearized’,’ \epsilon_\perp=’,num2str(pe),...
>, \epsilon_{||}=’,num2str(pa),’, \gamma=’,num2str (gamma),...
>, \theta=’,thetap],’FontSize’,18)
legend(’Shh’,’Shv’,’Svh’,’Svv’,’Shh 1lin’,’Shv 1lin’,’Svh 1lin’,...
’Svv 1lin’,’Location’,’SouthWest’)
elseif strcmp(variable,’gamma’)==
ga=-1:.01:1;
i=1;
for i=1:length(ga)
if 1-alpha”2-ga(i)~2>=0
gamma (j)=ga(i);
j=i+1;
end
end
Ghh=zeros (length(gamma) ,1);
Ghv=Ghh; Gvh=Ghh; Gvv=Ghh; Ghhl=Ghh; Ghvl=Ghh; Gvhl=Ghh; Gvv1l=Ghh;
for i=1:1length(gamma)

[Ghh (i) ,Ghv (i) ,Gvh(i),Gvv(i)]=refcoef (struct(’pe’,pe,’pa’,pa,...

210



’alpha’,alpha,’gamma’,gamma(i)),...
struct (’k’ ,k, ’theta_i’,str2num(theta)));
[Ghh1 (i) ,Ghv1(i),Gvhl(i),Gvvl(i)]l=ourlin(str2num(theta),...
pe,pa,alpha,gamma (i), k);
end
plot (gamma ,Ghh,’b-*’,gamma ,Ghv,’g-*’,gamma ,Gvh,’y-*’,...
gamma ,Gvv,’c-*’,gamma ,Ghhl,’r’,gamma,Ghvl,k--",...
gamma ,Gvhl,’k’,gamma,Gvvl,’m’)
xlabel (’\gamma’,’FontSize’,15)
ylabel (’Reflection coefficient’,’FontSize’,15)
title([’Exact vs. linearized’,’ \epsilon_\perp=’,num2str(pe),...
>, \epsilon_{||}=’,num2str(pa),’, \alpha=’,num2str (alpha),...
>, \theta=’,thetap],’FontSize’,18)
legend (’Shh’,’Shv’,’Svh’,’Svv’,’Shh lin’,’Shv 1lin’,’Svh lin’,...
>Svv lin’,’Location’,’SouthWest’)
elseif strcmp(variable,’pp’)==
pe=1:.01:3;
Ghh=zeros (length(pe) ,1);
Ghv=Ghh; Gvh=Ghh; Gvv=Ghh;
Ghhl=Ghh; Ghvl=Ghh; Gvhl=Ghh; z=Ghh; Gvvl=Ghh;
Q=Ghh; Q1=Ghh;
for i=1:1length(pe)

[Ghh (i) ,Ghv (i) ,Gvh(i),Gvv(i)]l=refcoef (struct(’pe’,pe(i),’pa’,...

pe(i),’alpha’,alpha, ’gamma’,gamma),...
struct (’k’,k, ’theta’,str2num(theta)));
[Ghh1(i),Ghv1(i),Gvhl1(i),Gvvl(i)]l=ourlin(str2num(theta),...
pe (i) ,pe(i),alpha,gamma,bk);
Q(i)=Gvv(i)/Ghh (i) ;
Q1(i)=Gvv1l(i)/Ghhl(i);
end
plot (pe,Ghh,’b-’,pe,Gvv,’c-’,pe,Ghhl,’r’ ,pe,Gvvl,’m’,pe,Q,’b:’,. ...
pe,Ql,’r:’,pe,z,’k’)
xlabel (’\epsilon’,’FontSize’ ,15)
ylabel (’Reflection coefficient, Ratio’,’FontSize’,15)
title([’Exact vs. linearized:’,’ \theta_i=’,thetap],’FontSize’,18)
legend(’Shh’,’Svv’,’Shh 1lin’,’Svv 1in’,’Q’,’Q 1lin’,...
’Location’,’NorthWest’)
print -depsc2 linvgeniso
elseif strcmp(variable,’3’)==1
p=1:.01:3;
Ghh=zeros (length(p),1);
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Ghv=Ghh; Gvh=Ghh; Gvv=Ghh;
Ghhl=Ghh; Ghvl=Ghh; Gvhl=Ghh; z=Ghh; Gvv1l=Ghh;
Q=Ghh; Q1=Ghh;
for i=1:length(p)
[Ghh (i) ,Ghv (i) ,Gvh(i),Gvv(i)]l=refcoef (struct(’pe’,p(i),’pa’,...
p(i),’alpha’,alpha,’gamma’,gamma), ...
struct (’k’ ,k, ’theta’,str2num(theta)));
[Ghhl1 (i) ,Ghv1(i),Gvh1l(i),Gvvl(i)]=ourlin(str2num(theta),p(i),...
p(i),alpha,gamma,k);
Q(i)=Gvv(i)/Ghh (i) ;
Q1(i)=Gvv1l(i)/Ghhl(i);
end
#scrsz=get (0, ’ScreenSize ’);
Afigure(’Position’,[1 scrsz(4) scrsz(3) scrsz(4)])
figure(’0OuterPosition’, [680 396 922 753])
subplot (2,2,[1 3])
Apl=plot (p,Ghh,’b-.’,p,Gvv,’b:’,p,Ghhl, ’m-.",p,Guvl, ’m:’,...
4o op,Q,°9--7,p,QL,°k-=",p,z,°k:’);
pl=plot(p,Ghh,’b--’,p,Ghhl,’b’ ,p,Gvv,’n--’,p,Gvvl,’m’,p,Q,’r--",...
P>QLl,’k’,p,z,’k:);
set (pl1(1),’LineWidth’,2);
set(p1(2),’LineWidth’,2);
set(p1(3),’LineWidth’ ,4);
set (p1l(4),’LineWidth’ ,4);
set(p1(5),’LineWidth’,6);
set(pl1(6),’LineWidth’ ,6);
set (gca,’FontSize’ ,14,’LineWidth’,2,’YTick’,-1:.2:.5);
xlabel (’\epsilon’,’FontSize’ ,22)
ylabel (’Polarization ratio, Reflection coefficient’,’FontSize’ ,18)
title([’(a) Isotropic;’,’ \theta_i=’,thetap],’FontSize’,18)
legl=legend (’S_{HH} {exact}’,’S_{HH}’,’S_{VV}~{exact}’,’S_{VVl}’,...
’Q~{exact}’,’Q’,’Location’,’NorthWest’);
set (legl,’FontSize’ ,14)
p=1:.01:5;
Ghh=zeros (length(p),1);
Ghv=Ghh; Gvh=Ghh; Gvv=Ghh; Ghhl=Ghh;
Ghv1l=Ghh; Gvhl=Ghh; Gvv1l=Ghh;
Q=Ghh; Q1=Ghh; z=Ghh;
for i=1:length(p)
[Ghh (i) ,Ghv (i) ,Gvh(i),Gvv(i)]=refcoef (struct(’pe’,p(i),’pa’,...

pa,’alpha’,alpha,’gamma’,gamma) ,...
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struct(’k’ ,k, ’theta’,str2num(theta)));
[Ghh1 (i) ,Ghv1(i),Gvh1(i),Gvvl(i)]=...
ourlin(str2num(theta),p(i),pa,alpha,gamma,k);
Q(i)=Gvv(i)/Ghh(i);
Q1(i)=Gvv1(i)/Ghhl (i);

end

subplot (2,2,2)

Ap2=plot(p,q,’g--’,p,QL,’k--");
p2=plot(p,Q,’r--’,p,Q1l,’k’);
set (p2(1),’LineWidth’ ,6);
set(p2(2),’LineWidth’ ,6);
set (gca,’FontSize’,14,’LineWidth’ ,2);
xlabel (’\epsilon_{\perp}’,’FontSize’ ,22)
ylabel (’Polarization ratio’,’FontSize’,18)
title([’(b) Anisotropic;’,’ \epsilon_{Il|}=’,num2str(pa),...
>, \alpha=’,num2str(alpha),’, \gamma=’,num2str (gamma),...
>, \theta_i=’,thetap],’FontSize’,18)
leg2=legend(’Q"{exact}’,’Q’,’Location’,’SouthEast’);
set(leg2,’FontSize’ ,14)
p=1:.01:5;
Ghh=zeros (length(p) ,1);
Ghv=Ghh; Gvh=Ghh; Gvv=Ghh; Ghhl=Ghh;
Ghv1l=Ghh; Gvhl=Ghh; Gvv1l=Ghh;
Q=Ghh; Q1=Ghh; z=Ghh;
for i=1:length(p)
[Ghh (i) ,Ghv (i) ,Gvh(i),Gvv(i)]=refcoef (struct(’pe’,pe,...
’pa’,p(i),’alpha’,alpha,’gamma’,gamma) ,...
struct (’k’ ,k, ’theta’,str2num(theta)));
[Ghh1l (i) ,Ghv1(i),Gvhl(i),Gvvl(i)]l=...
ourlin(str2num(theta) ,pe,p(i),alpha,gamma,k);
Q(i)=Gvv(i)/Ghh(i);
Q1(i)=Gvv1l(i)/Ghhl(i);

end

subplot (2,2,4)

Ap3=plot(p,Q,’g--",p,QL,  k--");
p3=plot(p,Q,’r--’,p,QLl,’k’);
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set(p3(1),’LineWidth’,6);
set (p3(2),’LineWidth’ ,6);
set (gca,’FontSize’ ,14,’LineWidth’ ,2);
xlabel (’\epsilon_{||}’,’FontSize’ ,22)

ylabel (’Polarization ratio’,’FontSize’,18)
title([’(c) Anisotropic;’,’ \epsilon_\perp=’,num2str(pe),...
>, \alpha=’,num2str (alpha),’, \gamma=’,num2str (gamma),...

>, \theta_i=’,thetap],’FontSize’,18)
leg3=legend (’Q"{exact}’,’Q’,’Location’,’NorthEast’);
set (leg3,’FontSize’ ,14)
set (gcf ,’PaperPositionMode’,’auto’)
print -depsc2 linvgen3

end

It should be noted that ourlin.m and refcoef.m from the previous section are also called within

lin.m.

Q.3 Other useful code

There were other programs written over the course of the research that the reader may find
useful. These did not contribute directly to any results in the dissertation, but they helped in
the development of the code that did.

Q.3.1 fresnel.m

Plot the Fresnel curves Sg g (6;) and Sy (6;) for a given permittivity. Also, display the Brewster

angle numerically and graphically.

function fresnel (perm)
if “exist(’perm’, ’var’)
perm = 1.7;

end

theta=0:.01:pi/2;
Ghh=zeros (numel (theta) ,1);
Ghv=Ghh; Gvh=Ghh; Gvv=Ghh;

for i=1:1length(Ghh)
[Ghh (i) ,Ghv (i) ,Gvh(i),Gvv(i)]=refcoef (struct(’pe’,perm,...
’pa’,perm, ’alpha’,0.3,’gamma’ ,0.4),...
struct(’k’,3,’theta’,theta(i)));

end
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theta_deg = rad2deg(theta);
plot (theta_deg ,Ghh,theta_deg,Gvv)

theta_b = atan(sqrt(perm)); /7 Brewster angle

theta_b_deg = rad2deg(theta_b);

hold on; plot(theta_b_deg, 0, ’rs’); hold off

hold on; plot([min(theta_deg), max(theta_deg)]l, [0 0], ’r’)

xlabel (’Incidence angle, degrees’)

ylabel (’Reflection coefficient’)

title(sprintf (’Fresnel curves; Brewster = 76.3f deg’, theta_b_deg))
legend (’Ghh’,’Gvv’)

end

Q.3.2 Dbasal.m

Plot the reflection coefficients off the basal plane of a uniaxial crystal from both [Che83] and

[Lek91] for compare/contrast purposes.

function [Ghh,Ghv,Gvh,Gvv,rss,rppl=basal(material ,wave,variable)

Ztheta,pe,pa,alpha, gamma)

k = wave.k;
theta = wave.theta;
pe = material.pe;

pa = material.pa;
alpha = material.alpha;

gamma = material.gamma;

if strcmp(variable,’theta’)==

Ghh=zeros(length (0:.01:pi/2),1);

Ghv=Ghh; Gvh=Ghh; Gvv=Ghh; rss=Ghh; rpp=Ghh;

theta=0:.01:pi/2;

%qi=k*cos (theta)

for i=1:1length(Ghh)

[Ghh (i) ,Ghv (i) ,Gvh(i),Gvv(i)]=refcoef (struct(’pe’,pe,’pa’,pa,...

>alpha’,alpha,’gamma’,gamma),struct(’k’,k,...
>theta’,theta(i)));

215



Arss(i)=(k*xcos (theta(i))-k*sqrt(pe-(sin(theta(z)))"2))/...
A (kxcos (theta(i))+k*sqrt (pe-(sin(theta(i)))"2));

[rss (i) ,rpp(i)]=rppcheck(theta(i),pe,pa,k);

end

plot (theta,Ghh,’b-*’,theta,Gvv,’c-*’,theta,rss,

xlabel (’Incidence angle’)

ylabel (’Reflection coefficient’)

title (’Chen vs. Lekner: Basal’)

legend (’Ghh’,’Gvv’,’rss’,’-rpp’)
elseif strcmp(variable,’pe’)==

pe=0:.1:5;

Ghh=zeros (length(pe) ,1);

Ghv=Ghh; Gvh=Ghh; Gvv=Ghh; rss=Ghh;

for i=1:1length(pe)

’r’ ,theta,-rpp,’m’)

rpp=Ghh;

[Ghh (i) ,Ghv(i),Gvh(i),Gvv(i)]l=...
refcoef (struct(’pe’,pe(i),’pa’,pa,...

>alpha’,alpha,’gamma’,gamma),struct(’k’,k,’theta’,theta));
Arss(i)=(k*cos (theta)-k*sqrt(pe(i)-(sin(theta)) 2))/...
A (k*cos (theta)+k*sqrt(pe(i)-(sin(theta)) "2));
[rss (i) ,rpp(i)]=rppcheck (theta,pe(i),pa,k);

end

plot (pe,Ghh, ’b-*’,pe,Gvv,’c-*’,pe,rss,’r’,pe,-rpp,’m’)

xlabel (’Epsilon perp’)

ylabel (’Reflection coefficient’)

title (’Chen vs. Lekner: Basal’)

legend (’Ghh’,’Gvv’,’rss’,’-rpp’)
elseif strcmp(variable,’pa’)==

pa=0:.1:5;

Ghh=zeros (length(pa) ,1);

Ghv=Ghh; Gvh=Ghh; Gvv=Ghh; rss=Ghh;

for i=1:1length(pa)

[Ghh(i),Ghv (i) ,Gvh(i),Gvv(i)]=..

rpp=Ghh;

refcoef (struct(’pe’,pe,’pa’,pa(i),...

’alpha’,alpha,’gamma’,gamma),struct(’k’,k,’theta’,theta));
Arss(i)=(k*cos(theta)-k*sqrt (pe-(sin(theta))"2))/...
VA (k*cos (theta)+k*sqrt (pe-(sin(theta)) "2));
[rss (i) ,rpp(i)]=rppcheck (theta,pe,pa(i), k);

end
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plot (pa,Ghh, ’b-*’,pa,Gvv,’c-*’,pa,rss,’r’,pa,-rpp,’m’)
xlabel (’Epsilon parallel’)

ylabel (’Reflection coefficient’)

title(’Chen vs. Lekner: Basal’)

legend (’Ghh’,’Gvv’,’rss’,’-rpp’)

end

Q.3.3 rppcheck.m (used in basal.m)

Calculate the reflection coefficients for a basal plane of a uniaxial crystal as given in Section 5.1
of [Lek91].

function [rss,rppl=rppcheck(theta,pe,pa,k)

qu=k*sqrt (pe-(pe/pa)*(sin(theta)) "2);
K=k*sin(theta); q=k*cos(theta); qp=sqrt(pexk”"2-K~2);
%Eo=[0;-1;0]; Ee=Nex[qm;0;-(pe/pa)*K];

Ne=sqrt (qm~2+((pe/pa)*K)"2);

Eo=[0;-1;0]; Ee=Ne*x[-qm;0; (pe/pa)*K];
A=(gp+g+K*tan(theta))*Eo (1) -K*Eo (3);

B=(gm+g+K*tan (theta))*Ee (1) -K*Ee (3);
D=(q+qm)*A*Ee (2) -(q+qp)*B*Eo (2);

qt=q+K*tan(theta);
rpp=(2*xqt/D)*((gq+qm)*Eo (1) *Ee (2) -(q+qp)*Ee (1) *Eo (2)) -1;
rss=((q-qm)*A*xEe (2) -(g-qp)*B*Eo0 (2))/D;

Q.3.4 par.m

Plot the reflection coefficients off a plane parallel to the optic axis of a uniaxial crystal from

both [Che83] and [Lek91] for compare/contrast purposes.

function [Ghh,Ghv,Gvh,Gvv,rss,rsp,rps,rppl=par(material ,wave,variable)
ANote that for this one, gamma=0.
k = wave.k;

theta = wave.theta;

pe = material.pe;
pa = material.pa;
alpha = material.alpha;

gamma = material.gamma;

if strcmp(variable,’theta’)==
theta=0:.01:pi/2;

217



Ghh=zeros (length(theta) ,1);
Ghv=Ghh; Gvh=Ghh; Gvv=Ghh; rss=Ghh; rsp=Ghh; rps=Ghh; rpp=Ghh;
for i=1:length(theta)

[Ghh (i) ,Ghv (i) ,Gvh(i),Gvv(i)]=refcoef (struct(’pe’,pe,’pa’,pa,...

’alpha’,alpha,’gamma’,gamma),struct(’k’,k,...
>theta’,theta(i)));
[rss (i) ,rsp(i),rps(i),rpp(i)]=Lekpar (theta(i) ,pe,pa,alpha,k);
end
plot (theta,Ghh,’b-*’,theta,Ghv, ’g-*’,theta,Gvh,’y-*’,...

theta ,Gvv,’c-*’,theta,rss,’r’,theta,-rsp,’k--’,theta,rps,’k’,...

theta,-rpp,’m’)
xlabel (’Incidence angle’)
ylabel (’Reflection coefficient’)
title (’Chen vs. Lekner: Parallel’)
legend (’Ghh’,’Ghv’,’Gvh’,’Gvv’,’rss’,’-rsp’,’rps’,’-rpp’,...
’Location’,’SouthWest’)
elseif strcmp(variable,’pe’)==
pe=0:.1:5;
Ghh=zeros (length(pe) ,1);
Ghv=Ghh; Gvh=Ghh; Gvv=Ghh; rss=Ghh; rsp=Ghh; rps=Ghh; rpp=Ghh;
for i=1:1length(pe)
[Ghh (i) ,Ghv (i) ,Gvh(i),Gvv(i)]=...
refcoef (struct(’pe’,pe(i),’pa’,pa,...
’alpha’,alpha,’gamma’,gamma),struct(’k’,k,’theta’,theta));
[rss(i),rsp(i),rps (i), rpp(i)]l=Lekpar (theta,pe(i),pa,alpha,k);
end
plot (pe,Ghh, ’b-*’,pe,Ghv, ’g-*’,pe,Gvh,’y-*’ ,pe,Gvv,’c—*’,...
pe,rss,’r’,pe,-rsp,’k--’,pe,rps,’k’,pe,-rpp,’'m’)
xlabel (’Epsilon perp’)
ylabel (’Reflection coefficient’)
title(’Chen vs. Lekner: Parallel’)
legend (’Ghh’,’Ghv’,’Gvh’,’Gvv’,’rss’,’-rsp’,’rps’,’ -rpp’,...
’Location’,’SouthWest’)
elseif strcmp(variable,’pa’)==1
pa=0:.1:5;
Ghh=zeros (length(pa) ,1);
Ghv=Ghh; Gvh=Ghh; Gvv=Ghh; rss=Ghh; rsp=Ghh; rps=Ghh; rpp=Ghh;
for i=1:1length(pa)
[Ghh (i) ,Ghv(i),Gvh(i),Gvv(i)]l=...
refcoef (struct(’pe’,pe,’pa’,pa(i),...

’alpha’,alpha,’gamma’,gamma),struct(’k’,k,’theta’,theta));
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[rss(i),rsp(i),rps(i),rpp(i)]=Lekpar (theta,pe,pa(i),alpha,k);

end

plot (pa,Ghh,’b-*’,pa,Ghv,’g-*’,pa,Gvh,’y-*’ ,pa,Gvv,’c-*’,...
pa,rss,’r’,pa,-rsp,’k--’,pa,rps,’k’,pa,-rpp,’'m’)

xlabel (’Epsilon parallel’)

ylabel (’Reflection coefficient’)

title (’Chen vs. Lekner: Parallel’)

legend (’Ghh’,’Ghv’,’Gvh’,’Gvv’,’rss’,’-rsp’,’rps’,’ -rpp’,...
’Location’,’SouthWest’)

elseif strcmp(variable,’alpha’)==

alpha=-1:.01:1;

Ghh=zeros (length(alpha) ,1);

Ghv=Ghh; Gvh=Ghh; Gvv=Ghh; rss=Ghh; rsp=Ghh; rps=Ghh; rpp=Ghh;

for i=1:1length(alpha)

[Ghh (i) ,Ghv (i) ,Gvh(i),Gvv(i)]=refcoef (struct(’pe’,pe,’pa’,pa,...
’alpha’,alpha(i),’gamma’,gamma),struct(’k’,k,...
’theta’,theta));

[rss(i),rsp(i),rps(i),rpp(i)]l=Lekpar (theta,pe,pa,alpha(i), k);

end

plot (alpha,Ghh, ’b-%’,alpha,Ghv,’g-*’,alpha,Gvh, ’y-*’,...
alpha,Gvv,’c-*’,alpha,rss,’r’,alpha,-rsp,’k--’,alpha,rps,’k’,...
alpha,-rpp,’m’)

xlabel (’Alpha’)

ylabel (’Reflection coefficient’)

title (’Chen vs. Lekner: Parallel’)

legend (’Ghh’,’Ghv’,’Gvh’,’Gvv’,’rss’,’~-rsp’,’rps’,’-rpp’,...
’Location’, ’SouthWest’)

end

Q.3.5 Lekpar.m (used in par.m)

Calculate the reflection coefficients for a plane parallel to the optic axis of a uniaxial crystal as
given in Section 5.2 of [Lek91].

function [rss,rsp,rps,rppl=Lekpar(theta,pe,pa,alpha,k)
K=kx*sin (theta); q=k*cos(theta);

beta=sqrt(l-alpha“2);

gp=sqrt (pe*k~2-K~2);

gqm=sqrt (qp~2+((pa-pe)/pe)*(pexk~2-alpha”2*K~2));

No=1/sqrt ((-betax*qgp) "2+ (alpha*qp) "2+(beta*kK)"2);

Ne=1/sqrt ((alpha*qp~2) "2+(beta*pe*k~2) "2+ (-alpha*qm*K) ~2);
Eo=No*[-betax*qp;alpha*qp;betax*K];
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Ee=Ne*[alpha*qp~2;beta*pexk”~2;-alpha*qm#*K];
A=(gp+q+K*tan(theta))*Eo (1) -K*Eo (3);
B=(gm+g+K*tan(theta))*Ee (1) -K*Ee (3);
D=(q+qm)*A*Ee (2) -(q+qp)*B*Eo (2);

qt=q+K*tan (theta);
rss=((q-qm)*A*xEe (2) -(gq-qp)*B*Eo(2))/D;
rsp=2xk*(A*Ee (1) -B*Eo (1)) /D;
rps=2*xk*(qm-qp)*Eo (2)*Ee (2)/D;
rpp=(2*xqt/D)*((g+qm)*Eo (1) *Ee (2) -(gq+qp)*Ee (1) *Eo (2)) -1;

Q.3.6 gen.m

Plot the reflection coefficients off a uniaxial crystal for any geometrical configuration from

both [Che83] and [Lek91] for compare/contrast purposes.

function [Ghh,Ghv,Gvh,Gvv,rss,rsp,rps,rppl=gen(material ,wave,variable)

k = wave.k;

theta = wave.theta;

pe = material.pe;
pa = material.pa;
alpha = material.alpha;

gamma = material.gamma;

if strcmp(variable,’theta’)==
theta=0:.01:pi/2;
Ghh=zeros (length(theta) ,1);
Ghv=Ghh; Gvh=Ghh; Gvv=Ghh; rss=Ghh; rsp=Ghh; rps=Ghh; rpp=Ghh;
for i=1:length(theta)

[Ghh (i) ,Ghv (i) ,Gvh(i),Gvv(i)]=refcoef (struct(’pe’,pe,’pa’,pa,...
’alpha’,alpha,’gamma’,gamma),struct (’k’,k,...
>theta’,theta(i)));

[rss(i),rsp(i),rps(i),rpp(id)]=...
Lekgen(theta (i) ,pe,pa,alpha,gamma,hk);

end

plot (theta,Ghh,’b-*’,theta,Ghv,’g-*’,theta,Gvh,’y-*’,...
theta ,Gvv,’c-*’,theta,rss,’r’,theta,-rsp,’k--’,theta,rps,’k’,...
theta,-rpp,’m’)

xlabel (’Incidence angle’)

ylabel (’Reflection coefficient’)

title(’Chen vs. Lekner: General’)
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legend (’Ghh’,’Ghv’,’Gvh’,’Gvv’,’rss’,’-rsp’,’rps’,’-rpp’,...
’Location’,’SouthWest’)
elseif strcmp(variable,’pe’)==
pe=0:.1:5;
Ghh=zeros (length(pe) ,1);
Ghv=Ghh; Gvh=Ghh; Gvv=Ghh; rss=Ghh; rsp=Ghh; rps=Ghh; rpp=Ghh;
for i=1:1length(pe)
[Ghh (i) ,Ghv (i) ,Gvh(i),Gvv(i)]=...
refcoef (struct(’pe’,pe(i),’pa’,pa,...
’alpha’,alpha,’gamma’,gamma),struct(’k’,k,’theta’,theta));
[rss(i),rsp(i),rps(i),rpp(idl=...
Lekgen (theta ,pe(i),pa,alpha,gamma, k);
end
plot (pe,Ghh,’b-*’,pe,Ghv,’g-*’ ,pe,Gvh,’y-*’,pe,Gvv,’c—*’,...
pe,rss,’r’,pe,-rsp,’k--’,pe,rps,’k’,pe,-rpp,’'m’)
xlabel (’Epsilon perp’)
ylabel (’Reflection coefficient’)
title (’Chen vs. Lekner: General’)
1egend(’th’,’Ghv’,’th’,’va’,’rss’,’—rsp’,’rps’,’—rpp’,...
’Location’, ’SouthWest’)
elseif strcmp(variable,’pa’)==
pa=0:.1:5;
Ghh=zeros (length(pa),1);
Ghv=Ghh; Gvh=Ghh; Gvv=Ghh; rss=Ghh; rsp=Ghh; rps=Ghh; rpp=Ghh;
for i=1:1length(pa)
[Ghh (i) ,Ghv (i) ,Gvh(i),Gvv(i)]=...
refcoef (struct(’pe’,pe,’pa’,pa(i),...
>alpha’,alpha,’gamma’,gamma),struct(’k’,k, ’theta’,theta));
[rss(i),rsp(i),rps(i),rpp(id]l=...
Lekgen (theta,pe,pa(i),alpha,gamma, k);
end
plot (pa,Ghh,’b-*’,pa,Ghv,’g-*x’,pa,Gvh,’y-*’ ,pa,Gvv,’c-*’,...
pa,rss,’r’,pa,-rsp,’k--’,pa,rps,’k’,pa,-rpp,’'m’)
xlabel (’Epsilon parallel’)
ylabel (’Reflection coefficient’)
title(’Chen vs. Lekner: General’)
legend (’Ghh’,’Ghv’,’Gvh’,’Gvv’,’rss’,’-rsp’,’rps’,’-rpp’, ...
’Location’, ’SouthWest’)
elseif strcmp(variable,’alpha’)==
al=-1:.01:1;
j=1;

221



for i=1:1length(al)
if 1-al(i)"2-gamma~2>=0
alpha(j)=al(i);
j=i+1;
end
end
Ghh=zeros (length(alpha) ,1);
Ghv=Ghh; Gvh=Ghh; Gvv=Ghh; rss=Ghh; rsp=Ghh; rps=Ghh; rpp=Ghh;
for i=1:1length(alpha)

[Ghh (i) ,Ghv (i) ,Gvh(i),Gvv(i)]l=refcoef (struct(’pe’,pe,’pa’,pa,...

’alpha’,alpha(i),’gamma’,gamma),struct(’k’,k,...
’theta’,theta));
[rss(i),rsp(i),rps(i),rpp(id]l=...
Lekgen (theta,pe,pa,alpha(i),gamma,k);
end
plot (alpha,Ghh,’b-%*’,alpha,Ghv,’g-*’,alpha,Gvh,’y-*’,...

alpha,Gvv,’c-*’,alpha,rss,’r’,alpha,-rsp,’k--’,alpha,rps,’k’,...

alpha,-rpp,’m’)
xlabel (’Alpha’)
ylabel (’Reflection coefficient’)
title(’Chen vs. Lekner: General’)
legend (’Ghh’,’Ghv’,’Gvh’,’Gvv’,’rss’,’-rsp’,’rps’,’-rpp’,...
’Location’, ’SouthWest’)
elseif strcmp(variable,’gamma’)==
ga=-1:.01:1;
=1
for i=1:1length(ga)
if 1-alpha”2-ga(i)~2>=0
gamma (j)=ga(i);
J=j+1;
end
end
Ghh=zeros (length(gamma) ,1);
Ghv=Ghh; Gvh=Ghh; Gvv=Ghh; rss=Ghh; rsp=Ghh; rps=Ghh; rpp=Ghh;
for i=1:1length(gamma)

[Ghh (i) ,Ghv (i) ,Gvh(i),Gvv(i)]=refcoef (struct(’pe’,pe,’pa’,pa,...

’alpha’,alpha,’gamma’,gamma(i)),struct(’k’,k,...

>theta’,theta));
[rss(i),rsp(i),rps(i),rpp(id)]l=...

Lekgen (theta,pe,pa,alpha,gamma (i), k);

end
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plot (gamma ,Ghh,’b-*’,gamma ,Ghv,’g-*’,gamma ,Gvh, ’y-*’,...
gamma ,Gvv,’c-*’ ,gamma ,rss,’r’,gamma,-rsp, ’k--’,gamma,rps,’k’,...
gamma ,-rpp,’m’)

xlabel (’Gamma’)

ylabel (’Reflection coefficient’)

title (’Chen vs. Lekner: General’)

legend (’Ghh’,’Ghv’,’Gvh’,’Gvv’,’rss’,’~-rsp’,’rps’,’-rpp’,...
’Location’, ’SouthWest’)

end

Q.3.7 Lekgen.m (used in gen.m)

Calculate the reflection coefficients off a uniaxial crystal for any geometrical configuration as

given in Section 4 of [Lek91]

function [rss,rsp,rps,rppl=Lekgen(theta,pe,pa,alpha, gamma,b k)

K=kx*sin (theta); q=k*cos(theta);

beta=sqrt(l-alpha”2-gamma~2);

gp=sqrt (pe*xk~2-K"2);

d=pex(pa*(pe+tgamma 2% (pa-pe))*k~"2-(pa-beta~2*(pa-pe))*K~2);

gqm=(sqrt (d)-alpha*gamma*K*(pa-pe))/(pe+gamma~2*(pa-pe));

No=1/sqrt ((-betax*qp) "2+ (alpha*qp-gamma*K) "2+ (beta*kK)"2);

Ne=1/sqrt ((alpha*qp~2-gamma*qm*K) "2+ (beta*xpe*k”~2) " 2+...
(gamma*(pa*k~2-qm~2) -alpha*qm*K) "2);

Eo=No*[-beta*qp;alpha*gp-gamma*K;beta*K];

Ee=Nex*[alpha*qp 2-gamma*qm*K;beta*pexk~2; gamma* (pe*xk~"2-qm~2) —alpha*qm*K];

A=(gpt+tgq+K*tan(theta))*Eo (1) -K*Eo (3);

B=(gm+g+K*tan (theta))*Ee (1) -K*Ee (3);

D=(qg+qm)*A*Ee (2) -(q+qp) *B*Eo (2) ;

gt=q+K*tan (theta);

rss=((q-qm)*A*xEe (2) -(g-qp)*B*Eo (2))/D;

rsp=2xkx (A*Ee (1) -B*Eo (1)) /D;

rps=2*k*(qm-qp)*Eo (2)*Ee (2)/D;

rpp=(2*xqt/D)*((gq+qm)*Eo (1) *Ee (2) -(q+qp)*Ee (1) *Eo (2)) -1;

Q.3.8 Ghvmax.m

Analyze the differences for the o = 0 case of Sp{* for different values of ;.

gamma=-1:.0001:1;
for i=1:4
theta=i*xpi/9;
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for j=1:length(gamma)
Ghv (j)=(sin(theta)*gamma (j)*sqrt(l-gamma(j)~2)...
*((1+4*gamma(j)~2)...
xcos (theta)-sqrt (5+20*xgamma (j) "2-(1+4*gamma (j) "2) *. ..
(sin(theta))"2)))/((1-gamma(j) "2x(cos(theta)) "2)*...
(cos(theta)*(1+4*xgamma (j) ~"2)+sqrt (5+20*xgamma (j) ~2-...
(1+4*xgamma (j) "2)*(sin(theta)) ~2)));
end
if i==
p(1)=plot (gamma,Ghv,’r’);
elseif i==
p(2)=plot (gamma ,Ghv,’b’);
elseif i==
p(3)=plot (gamma,Ghv,’g’);
elseif i==
p(4)=plot (gamma ,Ghv,’y’);
end

hold on
end
xlabel (’\gamma’,’FontSize’ ,15)
ylabel (’S_{HV}’,’FontSize’,15)
title(’\epsilon_\perp=1 and \epsilon_{||}=5’,’FontSize’ ,18)
legend (p,’\theta=\pi/9’,’\theta=2\pi/9’,’\theta=3\pi/9’,’\theta=4\pi/9’)
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