
ABSTRACT

HENDRIX, ANGELEAN OEDRA. Modeling the Effects of Androgens on Hormonal
Regulation of the Menstrual Cycle. (Under the direction of James F Selgrade.)

Mathematical models of the hypothalamus-pituitary-ovarian axis in women were first

developed by Schlosser and Selgrade in 1999, with subsequent models of Harris-Clark

et al. (2003) and Pasteur (2011). These models produce periodic in-silico representation

of Luteinizing Hormone (LH), Follicle Stimulating Hormone (FSH), Estradiol (E2), Pro-

gesterone (P4), Inhibin A (InhA), and Inhibin B (InhB). Polycystic Ovarian Syndrome

(PCOS), a leading cause of cycle irregularities, is seen as primarily a hyper-androgenic

disorder. Including androgens into the model is therefore necessary to produce simulations

relevant to women with PCOS. As Testosterone (T) is the dominant female androgen

we focus our efforts on modeling pituitary feedback and intra-ovarian follicular growth

properties as functions of circulating total T levels. Optimized parameters simultaneously

simulate LH, FSH, E2, P4, InhA, and InhB levels of Welt et al. (1999) and total T levels

of Sinha-Hikim et al. (1998). The resulting model is a system of 16 ordinary differential

equations, with at least one stable periodic solution. Maciel et al. (2004) hypothesized

that retarded early follicle growth contributes to PCOS etiology. We present our in-

vestigations of this hypothesis revealing a period doubling cascade resulting in chaotic

menstrual cycle behavior. Our belief that this is the first model to simulate chaotic men-

strual cycles is supported by the Derry and Derry (2010) analysis of longitudinal cycle

length data. We conclude this study with an investigation for biologically significant

parameters m2, t3 and κ. Studying bifurcation diagrams of these parameters suggest a

balance of pituitary feedback and follicular growth rate is necessary for successful ovula-

tion. Hopf, saddle-node, torus, and period doubling bifurcations are examined. A unique



interval of parameters is identified for a stable periodic solution that represents irregular

cycles within normal frequency that may be more representative of natural observations.

A second non-ovulatory but periodic solution is presented that resembles serum hormone

levels consistent with polycystic ovarian patients, often non or oligo-ovulatory. The new

model may allow investigators to study possible interventions returning acyclic patients

to regular cycles and guide development of individualized treatments for PCOS patients.
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Chapter 1

Introduction

The human menstrual cycle in normally cycling women is the result of carefully balanced

endocrine signaling between the hypothalamus, pituitary, and ovaries. A normal dura-

tion of 26 to 32 days is often viewed in two phases, follicular and luteal. Menstruation

marks the beginning of the cycle and the follicular phase, named so for the rapid growth

of ovarian follicles during this 14 day period. The follicular phase is characterized by

low frequency hypothalamic gonadotropin-releasing hormone (GnRH) production that

stimulates anterior pituitary synthesis and release of follicle stimulating hormone (FSH).

Ovarian follicles are a central component of female reproductive physiology. Each follicle

contains a single oocyte, or immature ovum, surrounded by spherical layers of specialized

gonadotropin sensitive cells. Hormonally active, theca and granulosa cells, comprise the

outer and inner layers of the follicle respectively. Separated by a single membrane known

as the basal lamina, theca cells are the ovaries main producer of androgens while gran-

ulosa cells produce a significant portion of circulating estrogens. As the follicular phase

comes to its conclusion, granulosa cells convert androgens to estrogens in response to FSH

stimulation. The rise in estradiol (E2), the dominant estrogen, signals the hypothalamus
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to shift to a low amplitude/high frequency GnRH secretion stimulating anterior pitu-

itary synthesis of luteinizing hormone (LH). During the transition from follicular phase

towards ovulation, unknown mechanisms determine the selection of a dominant follicle

by the rapid appearance of LH receptors in the outermost layer of the follicle. Theca

cells, responding to this increase in LH receptors, increase production of testosterone

(T), the dominant female androgen, for conversion to E2. Simultaneously, granulosa cells

increase inhibin-A (InhA) and inhibin-B (InhB) production to suppress FSH synthesis by

the pituitary. At the time of ovulation, the dominant follicle can be upwards of > 20 mm

in diameter, a stark contrast to its size of < 2 mm at the time of its activation. Of

the ≈ 20 follicles activated in each wave, over 90% undergo atresia, or programmed cell

death, with each wave of activation corresponding to a wave of atresia. As day 14 ap-

proaches, the large amounts of E2 stimulated LH releases into circulation. At this time

the high frequency LH pulses produced by the pituitary in response to the high frequency

GnRH pulses dramatically increase in amplitude. This interval of enhanced LH secretion

is known as the LH surge. This surge in LH triggers the dominant follicle to rupture and

release its ovum for possible fertilization.

Ovulation marks the beginning of the luteal phase. The follicular tissue remaining

after ovulation, transforms in appearance and function to become the corpus luteum

(CL). For the remainder of the cycle, the CL produces large amounts of E2, InhA, and

progesterone (P4) which prevents the secretion of LH. High levels of E2 and P4 also

assist in preparing the uterus for fertilization and implantation. In the event that im-

plantation does not occur by approximately day 22, the CL begins its slow regression,

transforming into a much less active corpus albicans and E2, InhA, and P4 begin to

decline. This removal of ovarian hormone supported endometrial proliferation allows the

onset of menstruation in preparation for the next menstrual cycle.
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Mathematical studies of the hypothalamus-pituitary-ovarian axis have revealed rich

and complex dynamics. In 1999, Schlosser and Selgrade developed a system of 4 delay

differential equations that predicted the hypothalamically controlled pituitary synthesis

and release of LH and FSH [71]. They followed this work with a compartmental model

of follicular growth from which, E2, P4, and total inhibin were predicted. The two mod-

els were merged in 2003 [33] and were further expanded in 2006 to included both InhA

and InhB [58]. For each model, stable periodic solutions were identified that accurately

predicted serum levels of circulating reproductive hormones as reported in the literature.

Analysis of the Harris-Clark merged model in 2003 also revealed an additional stable pe-

riodic solution which collaborators in reproductive endocrinology identified as consistent

with the most common cause of infertility, polycystic ovarian syndrome (PCOS).

PCOS affects approximately 8− 10% of reproductive age females making it the most

common endocrine abnormality in this population. Clinically, patients present with ir-

regular or absent menses and elevated androgens which may result in acne, excessive hair

growth, and often insulin resistance (IR) associated with increased risks of Type II dia-

betes and cardiovascular disease [4,27]. While heterogeneous in nature, current diagnosis

standards recommend confirmation of two of the following three manifestations: 1. oligo-

or anovulation, 2. hyperandrogenism, 3. visual appearance of polycystic ovaries on ultra-

sound. Once rare adrenal, pituitary and thyroid conditions that may present similarly to

PCOS are ruled-out, treatment focuses on management of the symptoms as the etiology

is not completely understood. As research begins to reveal associations between elevated

androgens, IR and sub-fertility, focus has begun to shift towards classifying PCOS as a

predominantly hyperandrogenic disorder. Therefore, to gain a better understanding of

PCOS and the complexity of the female menstrual cycle, we focus our modeling efforts

on introducing androgens into the most current model of the hypothalamus-pituitary-
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ovarian axis and expanding the models representation of follicular growth and maturity.

This study presents a combination and expansion of the previous models presented

by Harris-Clark [33] and Pasteur [58]. Pituitary and ovarian physiology are thoroughly

reviewed as are new insights into follicular growth regulation and androgenic feedback

(Chapter 2. Details of model development and mathematical theory to support this new

model are subsequently discussed (Chapter 3). We follow our presentation of the model

with a discussion of the current clinical data available for parameter identification, and

present an estimated parameter set with methodology and statistical analysis in Chapter

4. We then present three biologically relevant bifurcations in key parameters, discussing

the possible implications of the dynamics in leading to a further understanding of the

underlying complexities in the etiology of PCOS. We conclude our study with a discussion

of the implications of our findings and future directions for this work.
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Chapter 2

Physiology

2.1 The Ovary

2.1.1 Ovarian and Follicular Physiology

The ovaries are two ovoidal organs typically located on either side of the lateral wall of the

pelvis in human females. Approximately 24 cm3, they are attached to the uterus via ovar-

ian ligaments and are the gonadal organs in females responsible for the growth and release

of ova. Research suggests that at birth, a female can have upwards of 2 million oocytes,

in suspended mitosis occupying the epithelium of each ovary [31,88]. This arrested state

can be maintained for 13 to 50 years during which inactivated oocytes are surrounded by

a single layer of flattened granulosa cells [88]. Histological samples of ovarian tissue reveal

a complicated cellular composition that includes multiple types of stroma and connective

tissue surrounding these supportive structures known as primordial follicles.

Of the original 2 million primordial follicles present at birth only 50% remain at

puberty, from which approximately 20 are activated each month. The once flattened
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Figure 2.1: Schematic representation of ovarian mass and follicular development. Four
stages of follicular maturity corresponding to previous modeling classifications are identi-
fied: Primordial, Preantral, Small Antral, and Recruited. Ovulation and CL progression
is represented as well as the epithelium and medula, significant structures in this study.

granulosa cells become cuboidal and have been recently found to exhibit mRNA expres-

sion for androgen receptor (AR) [64]. As the granulosa layer multiplies, a membrane, the

basal lamina forms and adjacent stroma cells differentiate in form and function to com-

pose the follicular theca. During the first three weeks of reactivated growth, theca cells

fill with lipid droplets and become highly vascularized reflecting an increase in hormonal

activity [31]. Rapid growth of the granulosa layer during this period is thought to be reg-

ulated by several intra-ovarian factors including; growth differentiation factor-9 (GDF-9),

kit ligand (KT), nerve growth factor (NGF), neurotrophin 4/5 (NT-4/5), brain-derived

neurotrophic factor (BDNF) [54], and androgens [81]. Secondary or preantral follicles at

this stage range from .025 mm to 0.150 mm in diameter [31]. Small cavities of fluid

begin to appear within the granulosa cell layers that, once consolidated, form the antrum
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around the maturing oocyte.

The appearance of the antrum coincides with that of FSH receptors on the surface

of the granulosa cell layer [64]. As FSH sensitivity rapidly increases, all but 6-10 follicles

degenerate through the programmed cell death process called atresia, while the remainder

enter a recruitment phase. This developmental period coincides with the beginning of the

follicular phase and the beginning of gonodotrophin stimulated growth [88]. During this

fourteen day period, evidence suggests FSH must rise above a threshold level for five days

during which a select subgroup of small antral follicles experience rapid growth. This time

in the menstrual cycle is referred to as the FSH window [23]. Recruited follicles can grow

from 2 mm to approximately 15 mm in diameter during this time [31]. Circulating

FSH stimulates aromatase conversion of androgens to estrogens within the granulosa

cells [31] to E2. As the recruitment period concludes, FSH begins to decline and a single

follicle is selected from this cohort by its acquisition of LH receptors for impending

ovulation. The dominant follicle can grow up to 20 mm in diameter. Remaining follicles

succumb to atresia without the necessary receptors to shift to LH dependent growth.

Just prior to mid cycle, the increased androgen production facilitates increased secretion

of E2, promoting pituitary LH production. On approximately day 14, the ever increasing

stores of synthesized LH are released into circulation. The resulting LH surge initiates

localized lysis in the follicular wall allowing the extrusion of the oocyte, now competent

for fertilization, to travel towards the fallopian tubes [54,88].

Transition towards the luteal phase of the cycle coincides with a dramatic transforma-

tion of the tissue remaining after ovulation. Referred to as the corpus luteum (CL), the

tissue develops a yellow appearance and rapidly increases in mass. Its production of high

levels of E2, P4 and InhA regulate luteal phase pituitary hormone synthesis through

their influence on GnRH amplitude and frequency. Luteal ovarian steroid production
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peaks approximately 7 days after ovulation. In the absence of pregnancy, the CL begins

its regression, declining in size and activity during the remainder of the menstrual cycle.

Now hormonally quiescent, the CL becomes a corpus albicans and slowly declines in mass

as the subsequent cycle begins [54, 88].

2.1.2 Ovarian Mass

Each follicular development/atresia cycle is often viewed as a discrete event, however,

histological studies, reveal numerous follicles of diverse sizes from 1 mm to 20 mm in

diameter during most of the menstrual cycle [31]. As current ultrasound technology is

best at identifying follicles greater than 2 mm [36], it is common to consider this as

the point of primary follicle activation. Waves of follicular activation have been recently

documented by Baerwald et al. [6]. In their study each wave of follicular activation co-

incides with an atretic wave of older follicles. A slight elevation in ovarian mass can

be observed with the appearance of the dominant follicle [41] with the peak in ovar-

ian mass occurring at approximately day 19 of the cycle [41] due to CL development.

In normal ovaries, total ovarian mass remains within ±10%. Extended estrogen-based

contraception and reproductive disorders like PCOS can affect the average size of each

ovary over months years, but have not been shown to be significantly related to fluctua-

tions in mass within a single cycle. These findings supports the possibility of a signaling

mechanism that maintains a total ovarian mass steady state. At this time, extra-ovarian

endocrine regulation preventing unbounded ovarian mass has not been identified. Local

factors identified during follicular fluid analysis are commonly accepted as major con-

tributors in this regulation. It is hypothesized that follicles in a more advanced growth

stage regulate activation of a new wave of follicles through the use of insulin like growth
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factors [43], transforming growth factor (TGFβ1) [39], granulosa-theca cell factors [55],

anti-Müllerian hormone [77], and androgens [64]. While, follicular fluid content of growth

factors significantly affects ovarian mass and follicular maturation, these factors are dif-

ficult to quantify in serum. Furthermore, as our goal is to further understand clinically

accessible markers relating to PCOS etiology, modeling relatively inaccessible follicular

fluid content transcends our current scope.

2.1.3 Androgenic Follicular Growth Regulation

Alterations in the ovarian follicular growth cycle have been implicated in investigations

of cycle irregularities and infertility. Studies of women with PCOS report stockpiling of

follicles with diameters ≤ 0.2 mm [44] and unregulated follicle growth [20]. Elevated

serum androgens are a common endocrine feature of PCOS and animal models suggest

these androgens may contribute to its etiology [28,32,83,90]. The most common of these

androgens implicated in PCOS is T, the classical male hormone that is elevated in a

significant portion of patients with PCOS [2, 65]. AR have been found in all follicular

cell types, including oocytes. AR-knockout mice display increased granulosa cell apop-

tosis, a decreased number of antral follicles, are subfertile, have fewer CL and ovulate

less frequently than normal mice [72]. Women exposed to exogenous androgens, as seen

in gender reassignment studies and in women with congenital adrenal hyperplasia, are

observed to have enlarged ovaries, theca-interna hyperplasia, and an increased number

of large “cystic” follicles [29, 56, 76]. This morphology is consistent with that of many

PCOS women, raising the possibility of gender reassignment patients serving as a human

model of the disorder [56]. Studies of theca cells from classical PCOS patients suggest an

abnormality in local insulin receptor dynamics of larger antral follicles, where stimulation
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results in up to a four fold increase in T production [51]. This becomes problematic as

granulosa cells of developing follicles as small as 0.2 mm stain positive for AR [64]. While

not completely understood, these findings call for a further understanding of intra-ovarian

androgen signalling as a possible component in PCOS etiology.

2.2 Hypothalamus and Pituitary

2.2.1 Physiology

The pituitary is a lobular gland connected to the base of the hypothalamus that is divided

into three distinct lobes: anterior, intermediate, and posterior [31, 54, 88]. Hypothalamic

control of gonadotrophin synthesis and release is well established [88], and there are both

direct and indirect feedback loops within the hypothalamic-pituitary-ovarian axis. Pitu-

itary receptors for ovarian hormones estrogens, progestogens and androgens are found

in highest concentration in the gonadotroph cells of the anterior lobe [79]. Responsible

for reproductive endocrine activity, the gonadotrophs comprise 7% to 15% of all ante-

rior pituitary cells. Immunohistochemical studies indicate positive staining for both LH

and FSH in approximately 70% of gonadotrophs, suggesting that each cell is capable of

synthesizing LH and FSH contingent on GnRH stimulatory patterns. It has been found

that GnRH pulse frequency is positively correlated with mean LH levels, while inversely

related to serum FSH [88].

Knobil and colleagues first documented this complicated relationship in rhesus mon-

keys with hypothalamic lesions. Their further studies laid the foundation for much of

what we know about ovarian steroid feedback on both the hypothalamus and pituitary

(see Figure 2.3). In 1982, the Knobil lab was the first to suggest a bi-phasic response
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Figure 2.2: Diagram of hypothalamus-pituitary physiology noting the location of the
hypothalamus, anterior pituitary, and posterior pituitary.

of gonadotropins to serum E2 [35]. Estrogen responsive GABA neurons are thought to

play a major role in negative feedback of E2 within the preoptic area of the hypothala-

mus. In postmenopausal and ovariectomized women, low doses of E2 administration are

well known to inhibit gonadotropin secretion [88]. The negative effects of E2 on LH are

believed to be predominantly secondary to the inhibition of GnRH, while preovulatory

positive E2 feedback is considered to be through direct stimulation of estrogen receptors

in the pituitary which in turn increases GnRH receptor numbers [88]. P4 has been demon-

strated to inhibit both glslh and FSH via the beta-endorphin system at the hypothalamus

level. It is hypothesized that a significant proportion of the negative feedback of E2 is

through up-regulation of the progesterone receptor [31,79,88]. Further negative feedback,

specifically on pituitary FSH, can be observed in inhibin-sensitive gonadotrophs, where

it is believed they interfere with GnRH mediated baseline synthesis.
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2.2.2 Androgenic Pituitary Feedback

Recently much attention has been focused on investigations of androgen feedback on

the pituitary, as elevated levels significantly correlate with reproductive cycle disruption

found in patients with PCOS [3, 13, 27]. In human females elevated T is significantly

correlated with elevated basal LH levels and diminished LH surge [24,80]. Immunohisto-

chemical staining has localized AR in rat and human female anterior pituitary sections

in concentrations similar to those in males [68, 79]. This finding suggests a direct role

of androgens in controlling gonadotroph LH synthesis. Studies also suggest the role of

androgens at the pituitary level is to prime gonadotrophs for GnRH activation through

its facilitation of LHβ mRNA expression [87]. The androgens T and DHT in females

have both been found to affect positively gonadotroph synthesis of LH. As T (but not

DHT) is a precursor to E2, the positive effect of both androgens is independent of T’s

conversion to E2 [87]. In rat pituitary cells pituitary feedback has also been shown to

occur through T’s increase of GABAergic transmission to GnRH neurons [60]. Addition-

ally, isolated rat GnRH neurons have been shown to display increase pulse frequency in

the presense of T, that would suggest a possible mode of action that could increase the

LH synthesis response [49]. The role of androgens is further supported in clinical studies

of flutamide treatment in PCOS patients. Flutamide, an androgen receptor blocker has

shown promising results in restoring cyclicity in anovulatory patients during long term

clinical trials [16,18].
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Figure 2.3: Ovarian control of the GnRH modulated pituitary synthesis and release of
LH and FSH. Stimulatory and inhibitory effects are denoted by + and - signs, respectively.
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Chapter 3

Model Development

Previous models for hormonal regulation of the menstrual cycle have been constructed

using systems of ordinary differential equations where state variables represent serum

hormone levels or different stages of monthly ovarian development, e.g., Harris-Clark et

al., 2003 [33], Reinecke and Deuflhard, 2007 [63], and Pasteur and Selgrade, 2011 [59]. The

model presented here expands on the models of Harris-Clark et al. [33] and Pasteur and

Selgrade [59] by expanding representation of follicular growth regulation and including

the effects of the androgen T on the brain and ovaries.

The development of the follicle which releases its ovum in a specific menstrual cycle

begins at least 60 days before that cycle [52]. Abnormal development during this period

of early growth may result in cycle irregularities consistent with PCOS [1, 5, 77, 88]. In

fact, Maciel et al. [44] reported a “stockpiling” of preantral follicles in women with PCOS

as compared to normally cycling women. While the development of preantral follicles is

gonadotropin independent, intra-ovarian factors [44, 62, 75] influence the early growth

and transition to the antral stage. Androgen receptors have been shown to appear on

follicles during the earliest stages of maturity, before gonadotropin receptors [64]. In
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this study we consider the effects of T and intra-ovarian factors on preantral and early

antral follicles and its positive feedback on the pituitary by presenting an expansion of

the Harris-Clark [33] and Pasteur [58] models that reflects the latest findings in early

follicular development and androgenic pituitary feedback.

3.1 Ovarian Modeling Technique

3.1.1 Foundation

Early attempts in modeling preovulatory follicular growth under the previous compart-

mental model approach revealed deficiency in the ability to model simultaneous growth

among stages. As our goal includes intra-ovarian influence for the first time we first

had to identify an appropriate method to represent this relationship. We begin by di-

viding the follicular growth and regression process into 12 stages of maturity; PrA1

(preantral follicle 1), PrA2 (preantral follicle 2), SmAn (small antral follicle), RcF (re-

cruited follicles), OvF (ovulatory follicle), CLi : i = 1 . . . 2 (corpus luteal development),

and Luti : i = 1 . . . 4 (luteal phase). Stage specific receptor dynamics are schematically

represented in figure 3.1, with positive and negative influence identified by + and −

respectively. Using existing equations for OvF through Lut4, we focus our attention on

the dynamics of preovulatory growth within a bounded system. Mathematical theories

of mass action kinetics, often used in chemistry, presented a possible approach to this

challenge. Used to describe chemical reactions where the total mass or volume of a system

remains constant while the individual components change dynamically, the mass action

approach allows us to reflect total mass steady state regulation while reflecting the in-

dividual shifts in mass through maturity stages. The corresponding model equations are
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built to reflect this interdependent shift of mass through three stages of maturity, pre-

antral 1 and 2, and small antral, with state variables PrA1, PrA2, and SmAn. This

approach captures the intra-ovarian effects on early follicular development reviewed in

section 2.1.1.

Observations suggest primordial follicles migrate from the epithelium to the medula

upon activation, and return to the epithelial layer as maturation progresses [25]. This

implies that any intra-ovarian signaling may be spatially determined and correlate with

maturity level. Transitions through these stages, therefore, depend on the masses of

adjacent stages and available hormone levels. We assume that proximity between follicles

determines the magnitude of interfollicular signaling with the most significant effects

coming from the subsequent maturity levels as the follicles migrate towards the outer

cortex of the ovary. This allows us to emulate intra-ovarian signaling when follicular fluid

levels of growth factors cannot be quantified.

3.1.2 Quantifying Follicular Development

We begin our modeling attempts at the point of reactivated mitosis with our first equation

for preantral follicle growth. The growth term in our first stage, PrA1, has a constant

rate, m1, of primordial follicle recruitment as suggested by Gougeon [31]. We introduce

a T dependent transfer term that scales the product of the current mass (PrA1) with

the mass of the next stage of maturity (PrA2). This term reflects the appearance of

androgen receptors before gonadotropin growth begins [64] and contains an exponential,

η, introduced to control the rate of stimulatory response to T . The equation for PrA1

becomes:
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Figure 3.1: State variables representing 12 stages of follicular development are shown.
Follicle growth begins with the PrA1 stage and continues in a clockwise direction for a
complete cycle. The pie chart indicates the timing of the regulatory effects of luteinizing
hormone (LH) and follicle stimulating hormone (FSH) on follicular development.

d

dt
PrA1 = m1 −m2 · T η · PrA1 · PrA2 (3.1)

In this equation, our introduction of T coincides with the time at which AR are

found on the granulosa cells of the follicles. The product term PrA1 · PrA2 prevents

both stages from growing simultaneously, given the assumption that an increased mass
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in PrA2 must be a result of a diminishing mass of PrA1 maturity stage follicles. This

product also quantifies the intra-ovarian growth factor influence from the most adjacent

neighbor. Consistent with models of this type, our transfer term

m2 · T η · PrA1 · PrA2

becomes the growth term for our next stage of maturity PrA2.

As reviewed in chapter 2.1.1, FSH receptors are the next to be found on granulosa

cells once the antrum begins to develop. We use this fact to shift our mass from PrA2

utilizing an FSH dependent threshold term (e.g., see Zeleznik [89])

m3 ·
FSHν

Kmν
FSH + FSHν

.

This gradual acquisition of receptors and saturation behavior is translated mathemati-

cally through a Hill function whose product with the current stage, PrA2, and following

stage, SmAn, again allows us to represent intra-ovarian factors.

d

dt
PrA2 = m2 · T η · PrA1 · PrA2−m3 ·

FSHν

Kmν
FSH + FSHν

· PrA2 · SmAn (3.2)

As the mass of PrA2 is dependent on that of SmAn, there exists an indirect effect of

SmAn on our first stage, PrA1. This assumes that migration, from the medula region,

increases the distance from SmAn follicles to the PrA1 follicles and, therefore, the inter-

follicular signaling between the two decreases. The last stage of mass action dependence,
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SmAn, provides the small antral follicle mass available for recruitment whose growth is

partially regulated by follicles in PrA2, and indirectly by follicles in PrA1 through its

inclusion in the equation for PrA2.

d

dt
SmAn = m3 ·

FSHν

Kmν
FSH + FSHν

· PrA2 · SmAn− b · FSH% · SmAn ·RcF (3.3)

For the decay term we assume that the rate of FSH receptor acquisition rapidly increases

to a point directly proportional to the natural rise in follicular phase FSH at the begin-

ning of the follicular phase [31], rather than a threshold response used in the previous

stage. Similarly, the transfer of mass from SmAn is affected by the existing mass in the

subsequent stage RcF whose growth is affected by SmAn directly (see eq. 3.3) and by

PrA1 and PrA2 indirectly (see eqs. 3.2, 3.1).

To reflect the increasing ovarian mass as we approach ovulation and the luteal phase

of the cycle, linear growth and decay terms are employed in 9 different stages which

represent ovarian development as originally presented in Schlosser and Selgrade [69].

RcF represents recruited follicles available to respond to the impending FSH window

and therefore necessitates an additional FSH dependent growth term. The compartmental

portion of our model permits total ovarian mass to increase as the ovaries approach the

time at which a dominant follicle is selected. DmF and OvF represent the dominant and

ovulatory follicle. CL1 and CL2 portray the transition to the corpus luteum. The luteal

phase consists of the four stages Luti : i = 1 . . . 4 representing the regression of the CL

and conclusion of the current monthly cycle (Figure 3.1). These 9 stages correspond to
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the ovarian model of Harris-Clark et al. [33], with growth and decay terms as indicated

in the following differential equations:

d

dt
RcF = b · FSH% · SmAn ·RcF + (c1 · FSH − c2 · LHα) ·RcF (3.4)

d

dt
DmF = c2 · LHα ·RcF + (c3 · LHβ − c4 · LHξ) ·DmF (3.5)

d

dt
OvF = c4 · LHξ ·DmF − c5 · LHγ ·OvF (3.6)

d

dt
CL1 = c5 · LHγ ·OvF − d1 · CL1 (3.7)

d

dt
CL2 = d1 · CL1− d2 · CL2 (3.8)

d

dt
Lut1 = d2 · CL2− k1 · Lut1 (3.9)

d

dt
Lut2 = k1 · Lut1− k2 · Lut2 (3.10)

d

dt
Lut3 = k2 · Lut2− k3 · Lut3 (3.11)

d

dt
Lut4 = k3 · Lut3− k4 · Lut4 (3.12)

3.1.3 Serum Hormones

Follicular growth and hormonal clearance rates can exist on very different time scales. In

our study, changes in follicular development and hormonal activity are best understood

over days, while total body clearance for the hormones produced by the ovaries occurs

over minutes and hours [8]. This allows us to assume that circulating levels of the ovarian

hormones are maintained at a quasi-steady state as in Bogumil et al. [12] and is thor-

oughly reviewed in Keener and Sneyd [37]. Implementation of this approach allows us to
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estimate serum levels of ovarian hormones as linear combinations of the active follicular

mass at the time of production. In our case, linear combinations of the 12 ovarian stages

(see eqs. 3.1 - 3.12) result in the following four auxiliary equations for serum E2, P4,

InhA, and InhB:

Auxiliary Equations (A)

E2 = e0 + e1 ·DmF + e2 · Lut4 (A1)

P4 = p1 · Lut3 + p2 · Lut4 (A2)

InhA = h0 + h1 ·OvF + h2 · Lut2 + h3 · Lut3 (A3)

InhB = j1 + j2 · PrA2 + j3 · SmAn+ j4 ·RcF + j5 · CL1j6 (A4)

To construct the equation for circulating T, we began with a linear combination of

the ovarian stages (see eq: 3.2 - 3.12) as no evidence exists to support hormonal activity

during our first stage of development (PrA1). Parameter fitting to data, as covered in

detail in section 4.3, reveals little to no synthesis of T from the ovarian stages CL1, Cl2,

Lut2, and Lut4. The final equation for circulating T becomes:

T = t1 + t2 · PrA2 + t3 · SmAn+ t4 ·RcF + t5 ·DmF

+ t6 ·OvF + t7 · Lut1 + t8 · Lut3. (A5)
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3.2 Hypothalamus-Pituitary Model

GnRH produced by the hypothalamus, on a time scale of minutes and hours, stimulates

pituitary gonadotroph synthesis of LH at higher pulse frequencies and FSH at lower

pulse frequencies [11]. Original modeling efforts by Schlosser and Selgrade (2000) [69]

combined the ovarian hormone stimulation of both the hypothalamus and the pituitary

in a system of four differential equations for the synthesis, release and clearance of the

gonadotropin hormones. This coupling of hypothalamus and pituitary action allows the

system to predict gonadotropin levels on a time scale consistent with published clinical

data (McLachlan et al. [47] and Welt et al. [84]). Moreover, their model utilizes find-

ings that the pituitary-ovarian feedback loop responds to average daily blood levels [53].

It therefore becomes advantageous for our purposes to track the average daily serum

concentrations of FSH and LH as a reflection of overall hypothalamic-pituitary function.

3.2.1 Quantifying Gonadotropin Synthesis and Release

State variables RPLH and RPFSH represent the amounts of synthesized hormones in

the pituitary via GnRH signaling; LH and FSH represent the blood concentrations of

these hormones. To begin, a baseline synthesis rate is assumed to be constant for both

hormones. This is reflected with the constant terms v0 and vFSH in both equations RPLH

and RPFSH . Through changes in GnRH pulse frequency and amplitude, LH exhibits a

biphasic response to E2 [42], so to account for this the model assumes that the effect of

E2 on LH synthesis is different than the effect on LH release. To model this relationship,

the denominator of the second term for RPLH (see eq. 3.13) reflects E2’s inhibition of

LH secretion, while at high levels E2 promotes LH synthesis in a dose dependent fashion

by the utilization of a Hill function in the numerator of our equation for RPLH (see eq.
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3.13). The effect of P4 on GnRH modulated LH and FSH synthesis are inhibitory, while

P4 has been shown to promote LH release from the pituitary. Our P4 term appears in

the denominator of our synthesis term and in the numerator of both release terms for LH

and FSH (see eqs. 3.13 and 3.16). For FSH synthesis, a constant production is assumed

which is down regulated by InhA and InhB (see eq. 3.16). Discrete time-delays, dE, dP ,

dInhA and dInhB, were assumed for the effects of E2, P4, InhA and InhB on gonadotropin

synthesis to reflect the underlying biochemical process involved in hormone synthesis.

Circulating levels of FSH and LH, as measured clinically, will depend on three factors:

1) synthesized quantities of each hormone, 2) blood volume, 3) whole body clearance

rates. Our equations for serum levels therefore become functions of the release terms

from each reserve pool equation, scaled by average blood volume v, and clearance rates

rLH and rFSH derived from literature [14, 38] (see eqs. 3.16 and 3.14).

In our attempt to reflect androgenic feedback actions of T on the pituitary, reviewed

in 2.2.2, we remind the reader that androgens have been found to modulate GnRH LH

synthesis independent of aromatase conversion to E2. To that end, we construct the term

with time delay dT and exponent κ to allow us to manipulate the timing and response rate

to T. The original model of Schlosser and Selgrade [69] assumed a baseline LH synthesis

rate v0 independent of E2. Motivated by Yasin et al. [87], our model assumes that this

baseline rate, v0, depends on T (t−dT )κ, see eq. 3.13 becoming the introduction point for

reflecting androgenic feedback. The revised equations for our pituitary states variables

are detailed in equations 3.13 through 3.16.
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d

dt
RPLH =

v0 · T (t− dT )κ + v1 ·
E2(t− dE)a

(Kma
LH + E2(t− dE)a)(

1 +
P4(t− dP )

KiLH

) (3.13)

− kLH ·
(
1 + cLHp · P4δ

)
(1 + cLHe · E2)

·RPLH

d

dt
LH =

1

v
· kLH ·

(
1 + cLHp · P4δ

)
(1 + cLHe · E2)

·RPLH − rLH · LH (3.14)

d

dt
RPFSH =

vFSH

1 +

(
InhA(t− dInhA)

KiFSHa

)
+

(
InhB(t− dInhB)

KiFSHb

) (3.15)

− kFSH ·
(1 + cFSHp · P4)

(1 + cFSHe · E2ζ)
·RPFSH

d

dt
FSH =

1

v
· kFSH ·

(1 + cFSHp · P4)

(1 + cFSHe · E2ζ)
·RPFSH − rFSH · FSH (3.16)
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Chapter 4

Parameter Identification and

Statistical Analysis

4.1 Formulating a Statistical Model

Modeling biological systems, especially in humans, can present unique challenges. Of the

70 parameters used to develop our model three are currently identifiable in the literature.

� v: average blood volume in liters

� rFSH : metabolic clearance rate of FSH

� rLH : metabolic clearance rate for LH

For the remaining parameters the challenge then becomes to find a solution to the as-

sociated inverse problem using parameter estimation techniques. Additionally one must

consider the certain degree of error intrinsic in any biological measurement. In our case,

the data available for parameter estimation can be assumed to be further perturbed

through the data extraction process as well as natural variability. While the focus of this
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model prioritizes qualitative agreement, this magnification presents challenges when esti-

mating the remaining parameters and determining the effectiveness of these estimates. To

investigate this issue we first look at the intrinsic statistical model that results from the

assumption that the biological dynamics can be captured mathematically. A statistical

model of the form:

Φ(ti) = Ψ(ti; θ) + ε̄i. (4.1)

is generated such that i reminds the reader of variation in error between each time

measurement. In this model Φ represents the quantified biological dynamics, Ψ is the

mathematical model of this behavior, θ ∈ Rn is our unknown “true” parameter vector,

and ε̄ represents the intrinsic measurement error. At this point we assume that our

measurement errors, εi, are independent, identically distributed (IID) random variables

with zero-mean and constant variance. Furthermore, as θ is unknown, Ψ becomes:

Ψ(ti; θ) = Ψ(ti; θ̂) + ε̂i, (4.2)

such that θ̂ ∈ Rn denotes the estimates for parameters that are not experimentally

verifiable, and ε̂i quantifies errors occurring through the estimation process. If we assume

that this error too is IID, we can combine both measurement and estimation error into

a single vector ε and analyze the resulting statistical model

Φ(ti) = Ψ(ti; θ̂) + εi. (4.3)

This equation provides a closed form measurement for our residual for use in parame-

ter estimation. Further assumption that the underlying model dynamics are continuously
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differentiable allows us to invoke standard non-linear regression approximation theory to

investigate the sampling distribution for the resulting θ̂ [22, 26]. First though, we must

examine the available data and determine θ̂.

4.2 Clinical Data

The preceding model of Pasteur [58] utilized daily serum levels as reported by Welt et

al. [84]. This data set, detailed in Appendix A.2 Table 5, provides mean daily serum

hormone levels for LH, FSH, E2, P4, InhA, and InhB. The Welt et al. study included 23

normally cycling women between the ages of 20 and 34 [84]. For our purposes it became

necessary to identify a similar data set that included serum T for normally cycling women.

While data sets that meet our criteria may exist, a thorough literature search on PubMed

did not identify a suitable published data set. We were able to identify serum T levels

for 37 normally cycling women between the ages of 20 and 45 in a study by Sinha-Hikim

et al. [73]. Their study presented mean serum levels for 9 days over an average cycle, 4

follicular phase, 1 at ovulation, and 4 during the luteal phase that were extracted from the

literature using the graphical digitizing software DigitizeIt © 1. To construct a complete

data set that was sufficient for our purposes, linear extrapolation via MATLAB’s interp

function [46] was used to generate 28 days of serum T data. For comparison purposes we

converted the Sinha-Hikim data from nmol/L to ng/dL. This conversion (see Appendix

A.4) takes the range of values from (.7, 1.6) to (20, 47). This becomes mathematically

advantageous as it allows our simulated values to remain strictly greater than 1. The

resulting vector combined with the data of Welt et al. [84] composed the clinical data

matrix used for parameter estimation, detailed in Appendix A.1 Table 5 and represented

1Copyright 2008, Digitize It Now, Inc. All rights reserved
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in Figure 4.1.
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Figure 4.1: Clinical data as extracted from Welt et al. and Sinha-Hikim et al. Data
points of greatest biological significance designated by ?
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4.3 Parameter Estimation

One object of this study is to predict serum levels of circulating endocrine hormones for

use in in-silico experimentation. To this end it becomes necessary to identify biologically

consistent parameters for the model described in Chapter 3.

To begin we first formulate an initial set of parameters that reasonably produce

predictions within ±30% of the mean serum levels of existing data sets for each hormone.

This initial parameter vector, θ̂I ∈ <n, consists of the previously identified parameters

for the ovarian compartmental equations as reported in Harris-Clark et al. [33] and the

pituitary and auxiliary parameters from Pasteur 2008 [58]. The remaining parameters

were initially estimated with a manual ad hoc technique that focused on parameters for

equations 3.1 through 3.4, as the stability of this portion of the system is of the utmost

importance.

For our inverse algorithm we initially employ a Nelder-Mead direct approach via

MATLAB’s fminsearch function [46]. This approach was chosen, not only for its simplic-

ity, but for its effectiveness in identifying a global minimum, an obstacle using available

gradient method packages in our particular circumstances. To ensure our parameters re-

main positive and therefore biologically relevant, we implement our algorithm on the log

transform of our parameter space. The Nelder-Mead approach attempts to minimize the

difference, or “cost”, between the model predictions and clinical data.

The traditional least squares function of residuals returned an appropriate initial cost

function:

CostI =
7∑
j=1

28∑
i=1

(
yi,j
Dj

− Ψi,j

Dj

)2

. (4.4)
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We note here that our clinical data is reported daily, with a total of 28 data points

per hormone. Our solution output is evaluated at a frequency of .1 time steps per day. To

reconcile this inconsistency, we find it appropriate to sample our solution daily to remain

consistent with the data. To distinguish between the two, natural vectors of daily values

will be denoted using i as indices and î will be used to inform the reader should the full

solution vector be utilized. For our cost function, j denotes the 7 hormones predicted, Dj

is the mean for each reported hormone level across the cycle, yi,j is our matrix of clinical

data, and Ψi,j is our sampled solution matrix.

Within our context, the number of parameters (n = 70) can be considered large when

compared to the number of data points available for estimation. This presents risks of

over-parameterization, ill-conditioning and the possibility of sacrificing important quali-

tative behavior given the variations in output scales. Moreover, outputs of low biological

significance, low amplitude variations in LH during the luteal-follicular phase transition

for example, can skew the focus from the points of greatest concern. To address these

issues, 2 methods were utilized in constructing additional cost functions: weighted least

squares and non-random re-sampling.

Optimizations were maximized at 1000 iterations per run. Using our traditional least

squares function, CostI (see equation 4.4), goodness of fit was assessed qualitatively

after each optimization run. It become apparent that for our periodic solution, outputs

with large means and range in oscillations dominated the optimization protocol through

their increased contribution to the overall cost. To overcome this challenge, weights were

assigned to increase the effect of lower amplitude oscillatory outputs on the cost function

that held the most biological significance. Qualitative analysis for each Ψ:,j vs. Φ:,j proved

to be the most accurate and efficient means of identifying the location and magnitude of

each weight. Early attempts at multiple weights produced less than satisfactory results
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leading to the use of a single weight per optimization run using the following weighted

cost function:

CostW =
7∑
j=1

[
wj ·

28∑
i=1

(
yi,j
Dj

− Ψi,j

Dj

)2
]
. (4.5)

where wj represents the aforementioned weight assigned to the appropriately determined

output j. For each application of the Nelder-Mead algorithm, a θ̂k was identified, with k

used as a counter for the iterative application. Relative changes,

RCk =
|θ̂k − θ̂k+1|
|θ̂k|

, (4.6)

were calculated between each run for use in identifying which subset θ̂s ∈ θ̂k experienced

the greatest adjustment during minimization of the weighted cost. Many times sorting

RCn by amplitude revealed a sharp decline in values that determined the number of

parameters in θ̂s. At times a natural cut off point was not apparent, the subset θ̂s was

defaulted to 10 values. For run k+2 we reutilize the weighted cost function from equation

4.5, fixing θ̂k+1|θ̂s within θ̂k+1 and proceed until the net change in the residual between

iterations met a tolerance level of 10−2.

This approach accomplished two important goals:

1. Overcoming the dominance of cost measurements for outputs of high oscillation

2. Allowing qualitative influence on the cost calculation

Unfortunately due to the natural fluctuation seen in the clinical data, this approach

fell short in capturing all of the most biologically significant behavior simultaneously.

Furthermore, the repeated application of a computationally expensive algorithm proved

inefficient.
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Recently, much attention has been focused on the benefits of “Bootstrapping” in

parameter estimation. Bootstrapping is a statistical method that alternates the cost

function between optimization runs by measuring the residual against a subset of data

randomly sampled with replacement. After each iteration, goodness of fit is measured,

and the parameter set that generates a solution with the least residual across the entire

data set is used for the following iteration [19]. If we look at our clinical data (see

Figure 4.1), we can see that a random sampling approach may only capture data during

times of little dynamical change. Focused resampling of our data during optimization

has the opportunity to ensure the most significant biological behavior is captured. Ten

points of greatest significance were identified: LH surge levels, FSH mid follicular crest,

E2 preovulatory surge and mid-luteal crest, P4 crest, InhA peak and luteal crest, InhB

mid-follicular crest, T preovulatory elevation and descent (see Figure 4.1). The times

associated with these events were used to generate a time sequence i∗ for sampling

purposes. The resulting subset of clinical data is used to formulate a further variation of

least squares with the aforementioned weights to obtain:

CostWS =
7∑
j=1

[
wj ·

10∑
i∗=1

(
yi∗,j
Dj

− Ψi∗,j

Dj

)2
]
. (4.7)

With this newly constructed cost function further optimization runs were conducted

in the aforementioned manner. The vector θ̂, subsequently referred to as our “Best Fit

Parameter Set”, is the parameter vector identified through iterative optimizations that

minimizing our costs (see equations 4.4 and 4.3) while capturing significant qualitative

behavior. The best fit parameter set is presented in detail in Appendix A.1 Tables 1

through 4.
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4.4 Sensitivity Analysis and Confidence Intervals

Constructing a mechanistic model that most accurately represents the actual physical

system necessitates an analysis of each parameter’s influence on the model presented in

Chapter 3. As the true values of θ are unknown, we evaluate our estimated parameter set

θ̂ to determine each parameter’s influence on the overall system dynamics. Biologically

the surge in LH and magnitudes of E2 and T peaks hold the most significance in pre-

dicting ovulation and overall health. We use these three markers to assess the impact of

perturbations to our parameters and designate the vector of their values as ω. Implemen-

tation of this approach requires the assumption of local linearity to utilize the derivatives

and therefore Jacobian matrix in our calculations. We make this assumption at this time

based on the apparent smoothness of the numerical approximations to our solution with

the intent to revisit this assumption at such time as any unforeseen singularities are

identified in our investigations.

To avoid errors in derivation of the Jacobian matrix, especially in the presence of

multiple delays, we choose the finite-difference method to calculate the partial derivatives

of model outputs with respect to parameters. To remain consistent, each perturbation

(εn) is calculated as a percentage of the optimized parameter value previously identified.

The local approximation to the derivative is then scaled by the quotient

θ̂n

Ψ(ω, θ̂)
(4.8)

to obtain the relative sensitivities for use in rankings. The resulting equation for our

sensitivity coefficients becomes:
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S(ω, θ̂) =
θ̂

ε
·

(
Ψ(ω, θ̂ − ε)−Ψ(ω, θ̂)

Ψ(ω, θ̂)

)
. (4.9)

This method becomes advantageous when verifying results and investigating system be-

havior.

To get a full sense of the accuracy of our estimates, we must invoke a method that

allows us to calculate a full sensitivity matrix that quantifies the relative change in

our system to perturbations in our parameters. For this task we first investigate the

application of inverse statistical methodology and sensitivity theory as formally presented

in Frank 1978 [26] and Eslami 1994 [22] and summarized by Banks et al. 2007 [9].

To begin, one must calculate the Jacobian for the system in question such that each

entry is of the form:

JM(θ; t)j,n =
∂Ψ(t)j
∂θn

, (4.10)

which denotes the partial derivative of each state variable with respect to the parame-

ters. For delay differential equations, this construction becomes problematic and highly

susceptible to errors. We can utilize the results from our original sensitivity analysis that

show our delay parameters, dP , dIHA, and dIHB, have been found to be approximately 1

with sensitivity coefficients � 1. An analysis of the system behavior when these delays

are removed (covered more extensively in Chapter 6), reveal that the non-delay system

maintains similar dynamics with only a slight reduction in period length. The analytical

Jacobian after removal of the 3 delay parameters is calculated as in equation 4.10 and

further denoted as ĴM .

Evaluated at θ̂, we get a (j× n× i) matrix from which a (j× n) matrix is derived by
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taking the 2-norm across our time dimension (i). We refer to the evaluated Jacobian as

SM(Ψ(θ̂); θ̂)j,n, which is, by definition, our full sensitivity matrix.

We now need an estimate of the variation in our system with regards to the clinical

data which is provided by Eslami 1994 [22] in the closed form:

σ2
0(θ̂) =

1

n− np

7∑
j=1

28∑
i=1

|Ψ(t(i, j); θ̂)− y(i, j)|2. (4.11)

Our theory states that a covariance matrix can be constructed from the values of

σ2
0(θ̂) and SM(Ψ(θ̂); θ̂)j,n, from which the variance and standard error for each of our

parameters can be extracted from the diagonal entries. The covariance matrix is of the

form:

cov[θ(y)] ≈ Σθ = σ2[STM(θ̂)SM(θ̂)]−1, (4.12)

with one standard deviation for our parameter estimates as:

θ̂ ± SDi(θ̂) =

√
Σii(θ̂), (4.13)

given the assumptions detailed above (continuity and error IID).

One may quickly see the challenge of our current situation in implementing this

approach. A closer examination of our sensitivity matrix SM(Ψ(θ̂); θ̂)j,n, indicates that

since j < n then

det[STM(θ̂)SM(θ̂)] = 0

and [STM(θ̂)SM(θ̂)]−1 does not exist. In fact, matrix theory tells us that for any given ma-

trices A and B, rank(AB) ≤ min [rank(A), rank(B)]. Therefore the maximum number
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of parameters (N) that can be analyzed through this method is bounded by

N ≤ rank(SM(Ψ(θ̂); θ̂)j,n) ≤ j.

Overdetermined systems of this type are common in biological applications. The attempt

to capture the complexity of human physiology, in particular, can lead to the develop-

ment of dynamical systems with much greater dimensions than the one presented in this

study. While subset selection can lead to reasonable parameter ranges, the information

is incomplete at best.

We can however get a good estimate for the confidence in our parameter estimates by

returning to a statistical method briefly reviewed in section 4.3, “Bootstrapping”. When

used for parameter estimation, a random sample, with replacement, of data is used with

an original parameter set θ̂0 in an ordinary least squares setting to generate a second

set of estimates θ̂1. The residual for each parameter set is then calculated. For the next

iteration, θ̂0 is chosen to be the parameter set that minimizes the residual, and the process

is repeated until subsequent iterations do not improve on the model’s predictions [19].

Should one anticipate a conflict in dimensionality, the series of θ̂k can provide confidence

intervals for the parameter estimates. This method has been shown to converge, at a

rate proportional to k [19], to the analytical values arrived at through the evaluation

of Σθ without the challenges found in over parameterized systems. The downfall of this

method is that is can be computationally burdensome and time consuming, as many

reports suggest k >> 500 to achieve optimal results. For our purposes, we generate a

reasonable sample size, with k = 50, as the increase in accuracy relative to the time per

iteration begins to diminish for k > 50. Standard deviations for each parameter estimate

θ̂n were then derived via MATLAB std function [46] and reported in full aside the values
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for θ̂ in tables 1 through 4 in Appendix A.1.

37



Chapter 5

Results

5.1 Numerical Simulations: Normally Cycling Women

Given the parameters detailed in Appendix A.1 Tables 1 through 4, Figures (5.1)-(5.2)

represent 60-day serum concentrations of LH, FSH, E2, P4, InhA, and InhB as predicted

by the model, with daily data for mean serum levels from Welt et al. for comparison.

Two complete 29 day cycles are presented for each hormone to support the stability

conclusion.

Predicted serum T concentrations for a 30 day simulation follow in Figure 5.3. Ap-

proximated T levels increase from a day 3 level of 30 ng/dL to a maximum level of 44 ng/dL

on day 11 of the cycle. After ovulation, T slowly declines, plateauing from day 17 to 22

at approximately 34 ng/dL. At the end of the luteal phase, levels continue to decline before

a slight rebound in circulating levels is observed during the luteal to follicular transition.

Figure 5.3 presents data extracted from Sinha-Hikim et al. [73] against model predictions
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for comparison.

One can ready observe the qualitative similarities to clinical observations for all seven

hormones. The solution presented remains oscillatory and stable. At this time, the solu-

tion presented is the only stable periodic solution identified for the Best Fit Parameter

set θ̂. This is contrary to the findings of Harris-Clark [33], who identified 2 stable pe-

riodic solutions for the original merged delay system. In subsequent expansions of the

Harris-Clark model, Pasteur [58] and Margolskee [45] report a single stable periodic so-

lution. While we do not discount the existence of a second solution at this time, we do

acknowledge the very narrow basin of attraction identified for the second Harris-Clark

solution and the possibility that if the solution persists given the current expansion, it

has at this time, eluded our detection.
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Figure 5.1: Two 29-day cycles for (a) LH data from Welt et al. (◦)and (b) FSH data
from Welt et al. (◦) are presented with current model simulation (solid curve).
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Figure 5.2: Two 29-day cycles for (a) E2 data from Welt et al. (◦) , (b) P4 data from
Welt et al. (◦) , (c) InhA data from Welt et al. (◦), (d) InhB data from Welt et al. (◦)
are presented with model simulations (solid curve).
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with current model simulation (solid curve)
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5.2 Modeling Predictions: Stockpiling of Follicles

Irregularities in cycle length are commonly seen in patients with PCOS. As a com-

mon cause of infertility, PCOS affects up to 10% of reproductive age women and sig-

nificantly correlates with increased risk of Type II diabetes and its associated morbid-

ity [1, 5, 57]. Common phenotypes of PCOS also include elevated androgens and the

appearance of polycystic ovaries on ultrasound [4], both significant components in the

etiology of PCOS [34, 48, 65]. Histological studies of tissue samples taken from clinically

diagnosed PCOS patients, recently reported by Maciel et al. [44] suggests a “stockpil-

ing” of preantral follicles when compared to controls. Their findings show a significantly,

(P = .001), increased number of follicles comprised of an oocyte and a single layer of

cuboidal granulosa cells, typically classified as primary follicles. It is hypothesized that

the increase in primary follicle numbers is due to slower growth during this stage, repre-

sented by PrA1 in our model. We investigate m2 as a possible model parameter to test

this hypothesis. As a measurement of mass transfered out of the primary stage, decreas-

ing m2 should delay primary follicle maturation, permitting additional growth of primary

follicles.

For comparison, we begin by presenting LH concentrations from the stable periodic

solution that best fits data from Welt et al. and Sinha-Hikim et al. in Figure 5.4. Using

the parameters listed in Appendix A.1 Tables 1 through 4, our best fit solution over 7

months has an average cycle length of approximately 29 days. This is consistent with

reports from Baerwald et al. and Gougeon et al. that report an average cycle length of

27-32 days [6, 31]. We assume ovulation coincides with the LH surge given a follicle of

sufficient size is available for rupture. As the exact surge level of LH necessary to induce

ovulation is unique to each woman, we identify (by thick horizontal lines) LH levels
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at 75% and 50% of the mean maximum LH level reported by Welt et al. for possible

threshold references. While the ovarian mass values for PrA1 through SmAn (Figure 5.4)

are unitless we note that the first preantral follicle mass peaks at approximately 20 units

before transferring to the second androgen dependent preantral follicle mass. Follicular

mass during this time is presented to demonstrate the interaction between the mass of

developing follicle and ovulation assuming that surge levels of LH are indicative of the

existence and timing of ovulation.

Figure 5.5 demonstrates the effect of reducing m2 by approximately 50% of the best

fit value in Table 3. Analysis of the resulting behavior, over 8 months, reveals an LH

surge exceeding 150 IU/L followed by a surge approximately 20 IU/L lower. While each

peak surge occurs monthly, the pattern of alternating surge levels takes over two months

to repeat. Similarly the first preantral follicle mass begins to oscillate with a maximum

mass of 30 units that results in lower mass transfer to the second preantral mass. In the

normal case, our cycle length and the time for LH levels to return to the peak level of

the previous cycle were the same. Reducing the transfer rate from PrA1 approximately

doubles the time between peaks of the same magnitude, a phenomenon known as a period

doubling event (the period of the solution to our model equations is now ∼ 64 days).

Identification of this behavior is mathematically significant for systems of this size and

complexity. Although period doubling often occurs in systems of non-linear equations, it

has rarely been demonstrated in a physiological model which predicts data in literature.

Demonstrated in Figure 5.6, reducing m2 to 30% of the best fit value in Table 3, results

in LH surges of four distinct values. In this simulation the pattern of peak variation

now repeats every 5.5 months with an average time between surges of approximately

40 days (another period doubling has occurred). Examination of the resulting follicular

mass reveals a distinct pattern of elevated PrA1, stockpiling or preantral follicles, that
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completes its transfer to subsequent stages over a period of approximately 80 days sug-

gesting correlation between preantral growth and irregular menstrual cycles consistent

with the hypothesis of Maciel et al. [44]. Mathematically this behavior highly suggests

the existence of a period doubling cascade, or a doubling in the duration necessary for

LH to return to its initial value.
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Figure 5.4: (a) Simulated serum LH IU/L over 8 months with reference lines for 75% and
50% of mean Welt surge levels (b) First 3 stages of follicular development (PrA1, PrA2,
and SmAn)

Complex dynamical systems with period doubling cascades are often associated with

chaotic behavior [67]. Investigating this phenomenon motivated numerical experiments

with additional decreases in m2 to identify behavior consistent with chaotic attractors.

Reducing of m2 by an additional 5% causes the disappearance of the stable 4 cycle shown

in Figure 5.6 and the appearance of a chaotic attractor as demonstrated in Figure 5.7.
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Figure 5.5: (a) Serum LH level results after a 50% reduction in parameter m2 from best
fit value in Table 3 (b) Note the increase in PrA1 from Figure 5.4
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Figure 5.6: (a) Serum LH level results after a 70% reduction parameter m2 best fit value
in Table 3 (b) First three stages of follicular development.

Verification that the apparent attractor was formally chaotic was achieved by the identi-

fication of a 3 cycle that exists in a very narrow range of m2 values near 26% of the value
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reported in Table 3. (Due to the lack of biological relevance of the 3 cycle solution, the

results are not presented, merely noted.) If one assumes an LH threshold at 75% of the

reported mean, as demonstrated by the top horizontal line, the solution presented would

ovulate approximately 5 times per year given the availability of a dominant follicle at the

time of LH surge. Reducing the threshold assumption to 50% increases the frequency of

ovulation to an average 8 cycles annually over the three year window presented. These

frequencies are consistent with a clinical diagnosis of oligomenorrhea, infrequent menstru-

ation with 4-8 menstrual cycles per year, a primary phenotype of PCOS. The appearance

of low amplitude peaks that do not exceed threshold values observed in Figure 5.7 may

be consistent with non-ovulatory LH surges discussed in Baerwald et al. 2012 [7].
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Figure 5.7: Chaotic serum LH levels observed over 3 years as m2 is reduced to 25% of
the best fit value best fit in Table 3. If ovulation occurs for an LH surge over 90 mg/L
(75 % of the normal LH surge) then ∼ 5 ovulations occur per year. If ovulation occurs
for an LH surge over 60 mg/L then ∼ 8 occur per year.
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5.3 Model Predictions: Pharmacodynamics

In the development of any mathematical model in a biological setting, it is important,

yet sometimes difficult, to validate the model’s ability to reproduce real life observations.

For our model, we are fortunate that much is known about the effects of combined oral

contraceptives on the menstrual cycle. The necessity of an LH surge in inducing oocyte

release is widely accepted [42,82,88] and a common pharmacological target. Suppression

of this surge has historically been achieved by the administration of synthetic estrogens

and progestins that disrupt the normal cyclic pattern of LH. It is advantageous to use

this knowledge as a benchmark for the validity of any model of the female menstrual

cycle.

5.3.1 Combination Oral Contraceptives

We have chosen to investigate the simulation of estrogen / progestin based oral con-

traception. To simulate an oral contraception’s (OC) effect we must first consider of

the pharmacodynamics of the component drugs. Many contraceptives currently on the

market in the U.S. contain a combination of ethinyl estradiol (EE) and Levonorgestrel

(LNG). Dosages for each compound range between 20− 35 µg and 0.1− 0.15 mg respec-

tively, and are traditionally referenced as a ratio of progestin/EE. Effectiveness of the

compound products may vary due to differences in absorption, distribution, metabolism,

and excretion (ADME), not only for individual patients, but for each compound. Phar-

macokinetic (PK) studies provide information that helps us determine the biological

impact of synthetic hormones in relation to their natural cousins. Dose response curves

help quantify ADME for each drug so that we may determine how much, if any can be

detected in the serum and at what rate clearance occurs. In a 2010 study by Westhoff et
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al. [85], 30 women of varied BMI were recruited for a 24 hour PK study of a monophasic

1.5/30 combination oral contraceptive. Participants completed 2 − 3, 21 day cycles of

treatment before a 24 hour PK study conducted within day 15 − 21 of the study cycle.

Results show EE serum levels range between 35 pg/mL to 115 pg/mL with an area under

the curve (AUC) of 1413.7 pg·h/mL, with LNG ranging between 2.5 ng/mL and 7.0 ng/mL

with an AUC of 85.8 ng·h/mL [85]. Once in circulation hormones have bioactivity that can

be quantified and reported as a relative binding affinity, or RBA. For the compounds

we wish to simulate, we must take into consideration that LNG has a 323% RBA for

the progesterone receptor and a 58% RBA for the AR when compared with progesterone

and testosterone respectively [74], while EE is reported to have an RBA of 190% when

compared to E2 [10]. To simulate the use of OC within the framework of our system we

must take into account both the pharmacokinetics and RBA of both LNG and EE.

We begin by constructing a function that will turn on and turn off a dose of hormone.

MATLAB’s heaviside, or step function, will allow us to perturb our system in a time

dependent manner that reflects the typical OC pattern of 21 days on and 7 placebo. This

function acts as a switch, where the only two values are 0 or 1. We acknowledge this

function does not accurately capture the dose response curve that we see in PK studies,

yet given the time scale of our system and the intent to utilize the results for validation

purposes only, we feel it is sufficient at this time. The magnitude of the perturbation is

calculated as a function of the dose response levels and the RBA.

We know that 0.15 mg dose of LNG translates to an average serum level of 3.5 ng/mL,

and a 30 mg dose of EE results in a mean serum level of 58.9 pg·h/mL [85]. We must adjusts

these estimates to reflect any reduction of bioavailability. For LNG, current studies show

that 100% of the compound remains unbound, while EE has a 97% bioavailability. In

estimating the magnitude of the step function, we therefore set the magnitude of our step
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function to 3.5 and 57 respectively.

The question now becomes at which point in our model do we introduce this function.

The obvious points of entry would be at the baseline production rate of our auxiliary

equations, but we know that these compounds have varying, and multiple receptor affini-

ties that must be considered. To account for these variations, we scale each of the above

magnitudes by the reported RBA for each the the respective sex steroid receptors and

create an additional step equation to reflect androgenic activity of LNG. We now have

three magnitude coefficients:

� mEE = 57 · 1.90 = 108.3

� mLp = 3.5 · 3.23 = 11.375

� mLt = 3.5 · 0.58 = 2.03

that are used to simulate the systemic affects of LNG and EE at auxiliary coefficients

e0, p0 and t0 respectively. We begin the simulation at day 7 of the third cycle to insure

the system is on the stable periodic orbit. In Figures 5.8 and 5.9 we demonstrate the

behavior of the system before and after administration of the simulated OC. In Figure

5.8 we present serum levels of LH (a.), E2 (b.) and T (c.) as predicted by the model

using the best fit parameter set θ̂ over an eight month period. Additionally, we present

the model predictions of ovarian mass for the dominant follicle (DmF ), ovulation (OvF ),

and the second stage of CL, development (CL2) in panel (d.).

In Figure 5.9, we present model predictions of the above hormones and ovarian stages

during a three month period of OC administration simulated by the dose curve in panel

(e.) of figure 5.9.
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Figure 5.8: Serum level predictions for (a.) LH , (b.) E2 , and (c.) T are presented
over an 8 month period for the best fit parameter set. (d.) Follicular mass predictions for
ovarian growth stages DmF , OvF , and CL2 are shown to demonstrate the rapid increase
in follicular growth that coincides with ovulation.

In Figure 5.9 we notice what appears to be surges in LH at the first day of OC

administration. Should this be due to a “shock” to the system, it occurs on day seven

of the cycle, as panel (d.) suggests, there is not a viable dominant follicle for rupture.

This may though, simply be an abnormality in the numerical algorithm underlying the
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delay differential equation solver we are utilizing in response to the shape of the heaviside

function. Regardless of this abnormality if one looks at panel (a.) from both figures, it

is apparent serum LH experiences a major reduction in surge levels during the time of

OC administration, and begins to return to normal cyclicity upon the removal of the

stimulus. The profile for E2 in both panels (b.), shows decreasing levels of E2 in the

system during OC use, as in T as represented in panel (c.) of both figures. We also note

the return of both to their normal levels once the OC is removed from the system. In the

(d.) panels it of interest to note that the mass of the dominant follicle before and during

ovulation has significantly diminished, possibly reflecting the absence of a viable follicle

for ovulation.

As a validation tool, the above simulation increases our confidence in the model

presented in chapter 3. We can see that under well documented circumstances the model

predicts the suppression of the LH surge and follicular development during OC use.

Moreover, model predictions of a return the regular cyclicity in approximately 3 months

after termination of treatment is within the range reported by Gnoth et al. and Wiegratz

et al. that observed a return to normal cyclic function, determined by cycle length or

successful pregnancy respectively, occurring between 1 to 9 months [30,86].
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Figure 5.9: Serum level predictions for (a.) LH , (b.) E2, and (c.) T are presented over
an 8 month period for the best fit parameter set with the introduction of a simulated
three month monophasic dose of a combination .15/30 OC. (d.) Follicular mass predictions
for ovarian growth stages DmF , OvF , and CL2 are shown demonstrating the reduction
in follicular growth during OC administration. (e.) Graphic representation of EE serum
levels as introduced into the model. LNG introduction not graphically represented.
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Chapter 6

Bifurcation Analysis

Here we investigate in more depth the dynamical behavior of this new model. We study

the stability and instability of periodic solutions, bifurcations resulting from variations in

sensitive parameters, and the existence and significance of hysteresis curves in bifurcation

diagrams.

Normalized sensitivity coefficients for the system (eqs. 3.1 - 3.12), computed in Chap-

ter 4, estimate the amounts of variation in system outputs with respect to small variations

in system parameters. In a mathematical sense, a normalized sensitivity coefficient is a

partial derivative of the state variable equations with respect to the parameters, normal-

ized so that comparisons may be made. The only nonzero time-delay parameters were

of duration 1 day for the inhibitions of P4, InhA, and InhB in eqs. 3.13 and 3.16. The

normalized sensitivity coefficients for these delay parameters, dP , dInhA and dInhA, were

at most 0.1 and quite small when compared with sensitivities of 1 or larger (see Appendix

A.3 Table 7). Thus, for this study, we set the time-delays equal to zero and refit system

parameters to the data of Welt et al. [84] and of Sinha-Hikim et al. [73] to obtain the

values in Tables 10 through 13 in Appendix A.5, further referred to as θ̃. Figure 6.1
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compares the solutions for both parameter sets, θ̂ and θ̃ against our clinical data. One

can see that removal of the delays shortens the period of the stable solution, but does

little to affect the overall behavior of the system or qualitative agreement with the data.

Henceforth, we study equations (3.1-3.12) with the parameter set θ̃ and zero time-delays.

LH and E2 simulations for this model exhibit two locally asymptotically stable peri-

odic solutions (Figure 6.2). One solution (the dashed curves in Figure 6.2) approximates

well the data of Welt et al. [84], has a period of 27 days, and represents a menstrual

cycle for which ovulation occurs. The other periodic solution (the solid curves in Figure

6.2) has a period of approximately 23 days and represents an anovulatory cycle due to

the lack of LH surge. We refer to these solutions as the normal and the abnormal cycle,

respectively. Notice that E2 levels for the abnormal cycle vary slightly over the month

and remain below 150 ng/dL. On the other hand, the follicular E2 of the normal cycle

exceeds 230 ng/dL a level which elicits an LH surge. For the abnormal cycle FSH and

P4 concentrations are lower than those of the normal cycle (results not shown). These

characteristics are present in many PCOS individuals (see Yen (1999) and Marshall et al.

(2001)). Bistability of this type has been observed for similar hormone control models by

Harris-Clark et al. [33] and Selgrade et al. [70]. As illustrated in [33], the abnormal cycle

may be perturbed to the normal cycle by the administration of exogenous P4 during the

luteal phase and the normal cycle may be perturbed to the abnormal by exogenous E2.

Moreover, small variations in sensitive parameters may result in bifurcations which re-

move the abnormal cycle, producing a model with a unique asymptotically stable solution

that represents an ovulatory menstrual cycle. Motivated by the findings of Harris-Clark

et al. [33], and the identification of two stable periodic solutions for our zero time-delay

parameter set θ̃, we seek to identify similar behavior that may lead to increased un-
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Figure 6.1: For comparison purposes, model predictions are presented with (black lines)
and without delays (grey lines) against clinical data (·) from Welt et al. and Sinha-Hikim
et al..

derstanding of conditions similar to PCOS. In this chapter we look at the parameters

identified as “highly” sensitive and explore the biological significance of the associated
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Figure 6.2: E2 and LH model simulations for (eqs. 3.1-3.12) with zero time-delays for 3
months. The dashed curves depict normal cycles and the solid curves, abnormal cycles.

bifurcations. Many of the parameters identified in our analysis were thoroughly analyzed

by Harris-Clark et al. [33], therefore we choose to focus on the parameters associated

with the current model expansion and/or PCOS. We begin with a formal study of the

period-doubling bifurcation introduced in Chapter 5 for m2, followed by an extensive

investigation of multiple bifurcations associated with κ and varying follicular production

rates of T.

6.1 Bifurcation Theory: A Brief Overview

The term bifurcation and its study were first introduced in 1885 by Henri Poincaré [61],

as a way to study changes in topological structures. To fully understand dynamical sys-

tems and bifurcation analysis is a task for which a single life time can not begin to tackle.

Poincaré himself left many unsolved problems including his most famous, the Poincaré

Conjecture about 3-manifolds whose solution afforded Russian mathematician Grigori

Perelman the Fields Medal in 2006, almost one hundred years after it was posed. With

that in mind, a basic understanding of the terminology and theory utilized in our subse-
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quent sections is well within our grasp and an appropriate discussion before we proceed.

To begin let us review the definitions intrinsic to our study.

� Dynamical System: A mathematical formulation of a deterministic process. The

set of all possible states and the law that governs their evolution through time.

� Phase Space: All possible states of a dynamical system. A continuous state space.

� Equilibrium: An element in the function’s domain that is mapped to itself by the

function, also referred to as a fixed point.

� Limit Cycle: A trajectory in the domain of the function such that the function

value returns to that point after a finite number of iterations.

� Bifurcation: The division of something into 2 paths or branches.

� Poincaré Map: The intersection of a periodic orbit with a lower dimensional

subspace (return map).

We defined our dynamical system in Chapter 3. We have identified a single periodic

solution, or limit cycle, that satisfies the conditions determined by our system (see Figure

6.2). Now we would like further understanding of the phase space in which our solutions

reside. To begin, we first calculate the Jacobian (J) of the system. This allows us to

apply well established methods from linear algebra, for an efficient exploration of our

phase space. Unlike in Chapter 4 where the entries used are the partial derivatives of our

system equations in respect to the parameters ĴM , for the current analysis, we construct

the entries of the current Jacobian as the partial derivatives of our system equations in

respect to each of the state variables, and denote it as J̃M . This approach provides a
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linear approximation for the gradient in a small neighborhood of each element in our

phase space. Once calculated, we evaluate J̃M at a point of interest in our phase space.

The eigenvalues (λj) of the evaluated J̃M reveal the direction of the gradient around that

point.

Equilibria are classified based on the values of λj for their respective evaluated J̃M .

Many types of equlibria have been well studied in three dimensional space, and are

often analogous to higher dimensions. For our purposes, we will not review them in their

entirety, but briefly mention two of immediate relevance; saddles and nodes. For nodes,

all the corresponding λj will be either positive or negative, denoting an unstable or stable

fixed point respectively. Saddle nodes are much more interesting. For a saddle node to

occur in a system, it first must be of dimension j ≥ 2, and secondly, it must have a set of

three λj such that there is a single zero value, a positive value, and a negative value. The

eigenvector associated with + λ determines the direction solutions travel from the point,

whereas the eigenvector associated with − λ gives us the direction from which solutions

travel to it.

We are interested in bifurcations of the system for three main reasons:

� Bifurcations are points where small changes in a parameter can result in large

changes in our system dynamics.

� The bifurcation parameter and value provide important information about how

trajectories change or can be changed to direct a system in a new direction.

� Pure mathematical curiosity and wonder.

We track these occurrences by monitoring the behavior of the eigenvalues. Should

a complex conjugate pair of eigenvalues exists associated with an equilibria, their path
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through the imaginary axis suggest the existence of a Hopf bifurcation [40, 78]. Hopf

bifurcations often signal the transition from non-oscillatory solution to a periodic limit

cycle. The limits cycles themselves may undergo bifurcations, saddles node bifurcations,

torus bifurcations and period doubling bifurcations to name a few.

The analysis of higher dimensional bifurcations, in phase spaces of many dimensions,

with a significant number of parameters can efficiently be conducted using numerical

packages. Previously, most of our work has been conducted using numerical solver pack-

ages available through MATLAB [46]. For this purpose, we have found it more efficient

and user friendly to switch our tool of choice to the AUTO package available through

XPP [21]. In tracking bifurcations with respect to a candidate parameter, XPPAUT ap-

proximates a solution to the given system and analyzes the eigenvalues of the linearized

Jacobian near that solution to determine the direction to perturb the parameter in search

for changes in the eigenvalues, or bifurcations. It designates the type of solution found

graphically as a function of a chosen output (y-axis) and the parameter (x-axis). In the

output graph equlibrium solutions are represented with single dots (·), while limit cycles

are circles (◦) on the graph. For all of the following investigations, the height of the LH

peak is chosen as an easily identifiable and biologically significant output to monitor.

6.2 Bifurcation Analysis for Parameter m2

In Chapter 5 we showed how varying the sensitive parameter m2 produced significant

changes in model behavior. Decreasing m2 delays the growth of preantral follicles and

results in a “stockpiling” of these small follicles as observed by Maciel et al. [44] in

PCOS women. Figures 5.4 through 5.7 illustrate a period-doubling cascade of bifurcations

resulting in apparent chaotic menstrual cycle behavior. Here we examine the bifurcation
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diagram with respect to m2 using the software XPPAUT [21], which is appropriate for

systems without time-delays. The XPPAUT solver uses an adaptive Newton method with

a default tolerance of 1e−3 which approximately equals the best-fit value m2 = 0.000868.

To avoid scaling conflicts, we investigate the log transform for this parameter l2 = log(m2)

where log is the natural logarithm function. This transformation brings the scale of our

bifurcation parameter to −1e+ 1, well away from the tolerance of our integrative solver.

Our bifurcation diagram (Figure 6.3) plots maximum LH along a periodic or equilibrium

solution against l2.

We address the findings of our bifurcation diagram from max to min on the x-axis

to agree with the perturbation direction for l2. For values of l2 larger than −5.66, the

only stable solution is an equilibrium (the solid line in the lower right of Figure 6.3),

which represents an anovulatory cycle due to the insufficient LH surge. A saddle-node

bifurcation (upper SN) of periodic solutions occurs at l2 = −5.66 resulting in a line of

stable limit cycles (upper curve) and unstable cycles (lower curve) as l2 decreases. The

stable cycles are ovulatory and continue through the value of l2 = −7.05 that corresponds

to the normal cycle (large ♦ in Figure 6.3) presented in Figure 6.2. At l2 = −6.81, the

stable equilibrium undergoes a Hopf bifurcation (HB) which results in a stable periodic

solution (solid curve) and an unstable equilibrium (the lighter line that continues to the

left from HB). This stable anovulatory cycle exists until l2 = −7.17 where it coalesces

with the unstable cycle and both disappear via a saddle-node (lower SN). For l2 between

−7.54 and−7.17, the only stable solution is the ovulatory cycle along the upper portion of

the figure. At l2 = −7.54, a period-doubling bifurcation (PD) causes the stable ovulatory

cycle to destabilize and a stable solution of twice the period to appear (curve branching

off below first PD). It is believed to correspond to a 2-cycle solution similar to the one

identified in the delay model (see Figure 5.5). More period-doublings occur as l2 decreases
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through −7.72 and through −7.74. The period-doubling cascade and implications are

discussed in full in Chapter 5, Section 5.2.

Figure 6.3: Bifurcation diagram with respect to l2 = log(m2) for eqs. 3.1-3.12 with
remaining parameters from zero time-delay set θ̃. HB, SN an PD denote Hopf, saddle-
node and period-doubling bifurcations. The large ♦ indicates the position of the normal
cycle for the parameter set θ̃.

The sigmoid shaped curve in the right half of Figure 6.3, which contains stable and

unstable cycles, is referred to as a hysteresis curve or loop. For each l2 value within the
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Figure 6.4: The first preantral follicular stage PrA1 is plotted for l2 = −7.13 (grey
curve) and for l2 = −7.3 (black curve). A slight increase in preantral follicular mass
occurs as l2 decreases.

branch of the hysteresis curve between SN (l2 = −7.17) and HB (l2 = −6.81), there

is a stable normal cycle (large amplitude LH) and a stable anovulatory cycle (small

amplitude LH). A woman whose cycle is represented by one of these stable anovulatory

cycles may be perturbed to a normal cycle by decreasing her l2 parameter below −7.17,

which effectively increases the stockpiling of her preantral follicles. However, additional

stockpiling where l2 becomes less than−7.54 results in irregular or chaotic cycling because

of the period-doubling cascade. Figure 6.4 plots the first preantral follicular stage for

l2 = −7.13 (dashed curve) and l2 = −7.3 (black curve) showing a slight increase in

follicular mass as l2 decreases. This observation suggests a curious biological hypothesis

that a woman, who is anovulatory with insufficient LH, may benefit from additional

preantral follicular mass but only up to a point after which too much mass may lead

to irregular cycling. This suggestion is indicative of the delicate balance necessary to

maintain normal reproductive function.

62



6.3 Bifurcation Analysis for Parameter κ

The parameter κ in eq. 3.13 modulates the affect of T on baseline LH synthesis via the

term T κ. Since the best-fit parameter value κ = 0.9176 is positive but less than one,

this synthesis rate increases with T and with κ but is slightly sublinear. Values of κ > 1

magnify this affect and reduce the inhibitory effect of P4 on LH synthesis, as it appears

in the denominator of our equation RPLH (see eq. 3.13). Here we examine the bifurcation

diagram (Figure 6.5) which plots maximum LH along a periodic or equilibrium solution

against κ. As in the previous section we conduct our study along the direction of the

parameter perturbation, this case along the x-axis from min to max.

For values of κ less than 0.883, the only stable solution is an equilibrium (the solid

curve labeled ‘st. eq.’ in the lower left of Figure 6.5), which represents an anovulatory cycle

since LH peaks below levels necessary for ovulation. At κ = 0.883, a Hopf bifurcation

(HB) occurs which results in a stable periodic solution (solid curve) and an unstable

equilibrium (the lighter curve that continues to the right from HB). This anovulatory

stable cycle exists until κ = 0.924 where it coalesces with an unstable cycle and both

disappear via a saddle-node (lower SN). The unstable cycle originates from a saddle-node

(upper SN) at κ = 0.899, which also produces the stable ovulatory cycle that continues

to the normal cycle (large ♦). The system maintains the stable ovulatory cycle as κ

increases to 1.065, where a torus bifurcation (TR) occurs. This bifurcation is a Naimark-

Sacker bifurcation [50, 66] of the return map of the periodic solution which destabilizes

the periodic solution and surrounds it with an attracting invariant torus. Solutions on

the torus approximate the periodic solution but, generally, may be periodic or irregular.

Between the two TR’s, i.e., for 1.065 < κ < 1.197, the only attractor for the system in

eqs. 3.1 - 3.12 is the invariant torus. For parameters just to the left of the left TR, the
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Figure 6.5: Bifurcation diagram with respect to κ for eqs. 3.1 - 3.12 with remaining
parameters from θ̃. HB, SN an TR denote Hopf, saddle-node and torus bifurcations (?).
The large ♦ indicates the position of the cycle for the parameters of Appendix A.5 Tables
10 through 13.

stable ovulatory cycle (see Figure 6.6 for κ = 1.05) has a period of about 27 days and is

similar to the stable cycle (Figure 6.2) for the parameter set θ̃. For parameters just to

the right of the left TR, the stable periodic solution on the torus (Figure 6.6) at κ = 1.1

has a period of approximately 78 days and represents three ovulatory menstrual cycles of

differing LH surge heights. When κ = 1.15, the stable solution on the torus (Figure 6.7)

is not periodic but LH reaches at least 75% of normal surge height every 23 to 27 days.
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Such irregular cycles may still be ovulatory and may be a more realistic representation

of a woman’s menstrual cycles. At κ = 1.197 the TR is a reverse torus bifurcation where

the attracting torus shrinks to a periodic solution. This stable cycle, which is plotted in

Figure 6.8 for κ = 1.21, has a period of about 20 days and LH levels ranging between 50

IU/L and 92 IU/L.
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Figure 6.6: LH model simulations for eqs. 3.1 - 3.12 with zero time-delays. (a) κ = 1.05
and cycle has a period of about 27 days. (b) κ = 1.1 and the solution has a period of
about 78 days which represents 3 menstrual cycles.
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Figure 6.8: LH model simulations for κ = 1.21. The cycle has a period of 21 days and
LH levels ranging between 50 IU/L and 92 IU/L.
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6.4 Bifurcation Analysis for Parameters κ and t3

To this point we have not identified a stable solution that exhibits a similar hormonal

profile to that of classical PCOS, namely anovulatory and hyperandrogenic. In our sen-

sitivity analysis parameters it is interesting to note, though they did not appear in our

rankings, t3 an t4 have coefficients > 1. These represent the T produced by small antral

(SmAn) and recruited (RcF ) follicles in our auxiliary equation for T. In 1998, Nestler et

al. showed that isolated theca cells from PCOS women demonstrated an approximately

four fold increase in insulin stimulated T biosynthesis when compared with theca cells

from normally cycling women [51]. Follicles harvested for their study ranged from be-

tween 4 mm an 12 mm in diameter, a range consistent with small antral and recruited

follicle classifications. To investigate the possibility that multiple mechanisms of action

may contribute to the etiology of classical PCOS, we again look at the bifurcation dynam-

ics of κ, this time with varying rates of T production by small antral follicles (SmAn).

The combined sensitivities of both t3 and κ present a highly unpredictable 2-parameter

analysis, given the numerical constraints of current software. Anticipating this challenge

we begin our study using XPPAUT [21] as before, refining the mesh and step size to in-

crease the accuracy of the analysis. First we look again at our κ bifurcation diagram with

a slight increase in the value of t3 from 0.67 to 0.75. The refined approach immediately

reveals another significant bifurcation.

In contrast to the bifurcation diagram presented in Section 6.3, we notice an ad-

ditional Hopf bifurcation appear within the line of unstable equilibria in Figure 6.9 at

approximately κ = 1.17. This is the results of having two negative eigenvalues in addi-

tion to a complex pair that crosses the imaginary axis and results in the appearance of

a line of unstable limit cycles. For reference we will further refer to the hysteresis loop
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Figure 6.9: Bifurcation diagram with respect to κ, with t3 = 0.75 for eqs. 3.1 - 3.12 with
remaining parameters from θ̃. HB, SN, TR and PD denote Hopf (�), saddle-node (�),
torus (?) and period doubling (◦) bifurcations. Periodic solutions are represented in black
with equilibria in gray. Stable solutions are presented with solid lines with dashed lines
reflecting unstable solutions.

in Figure 6.5 as the “top branch” while any further solutions appearing from this new

Hopf bifurcation will be referred to as on the “bottom branch”. As before, this is a result

of a pair of complex eigenvalues for the Jacobian within the neighborhood of κ = 1.17

crossing the imaginary axis. Initially, the newly found branch of unstable solutions begin

to show an increased level of LH surge that travels left as κ decreases. We then identify

a period doubling (PD) bifurcation. Briefly addresses in Chapter 5 Section 5.2, this is

the first appearance of this phenomenon in regards to the parameter κ. These bifur-
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cations occur when an eigenvalue of the return, or Poincaré map crosses the value −1

from above. Many times this behavior is referred to as leaving the unit circle. From this

point, at approximately κ = 1.1, we notice two additional branches of unstable cycles

emanate. The first branch, that tracks a quickly increasing LH level. The exact trajectory

of this branch, as we approach the torus of our top branch, becomes suspect as it is not

customary to observe such behavior. We will address this shortly.

On the lower amplitude branch of unstable period solutions, slightly further to the

left, we encounter a Torus bifurcation. Analogous to the Hopf bifurcation for equilibria,

a torus bifurcation occurs when the complex pair of eigenvalues for the return map of

periodic cycles, cross the unit circle in the complex plane. If we continue to the left we

quickly encounter an additional PD bifurcation, at κ ≈ 1.088 that spawns two branches

of unstable equilibria. One of which turns downward from the PD point and terminates

in a narrow neighborhood of stable periodic solutions. The other branch turns upward,

tracing values of κ that slowly begin to increase with the magnitude of the peak. This

branch seems to reach a value of LH of approximately 110U/L, until κ surpasses 1.3 where

it takes a sharp turn parallel to the line of unstable equilibria at the lower right portion

of the graph. During this plateau, we encounter two additional TR at κ = 1.07 and 1.18.

We reach the point in the diagram where it appears to display various crossings of un-

stable manifolds from our current perspective, when in fact each variation in dash patterns

designate separate trajectories. An exact explanation for this is still being determined

and requires much future work. One may speculate, that we are getting an indication

to the shape of the torus from the top branch. For our current purposes though, the

importance lies in the behavior of these trajectories as we increase the amount of T in

the system on the lower branch of the diagrams.
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Figure 6.10 presents the diagram for κ that results from increasing the value of t3

from 0.75 to 1.0. Stable solutions are shown in black, unstable in gray, with solid lines

representing limit cycles and dashed lines reflecting equilibria. With this 25 % increase,

we can begin to see a distinct change in the dynamics that stem from our second HB

point. We no longer encounter a PD-TR-PD triplet of bifurcations at levels of LH around

50 U/L. This branch of unstable periodic solutions encounters a SN bifurcation, where it

encounters a line of stable period cycles now both κ and LH begin to increase. We see a

triplet now of all PD bifurcations that encase two short lines of stable periodic solutions.

The top branch we saw in the original diagram persists, as does a stable periodic solution
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that may be ovulatory. We examine a sample LH profile from a solution located at

κ = 0.94 (A) in the diagram in Figure 6.11, panel (a). For comparison, we present the

LH profile for a solution on the second branch of the diagram (see location (B)) in panel

(b). As one can see, the increasing sensitivity to T begins to elevate our baseline LH and

dampens the surge levels.
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Figure 6.11: Serum LH predictions for Varying κ values with t3 = 1.00. Panel (a) and (b)
correspond to solutions at locations (A) and (B) respectively as identified in Figure 6.10,
demonstrating the effects of increased sensitivity to T combined with elevated ovarian T
production.

If we further increase our value for t3 to 1.25 and analyze our κ dynamics we observe

dramatic changes in the diagram. In Figure 6.10, given this new value for t3, we notice

the second Hopf bifurcation we first identified in Figure 6.9, was a degenerate and has

split into two separate Hopf points. Instead of two branches of solutions that seem to

intertwine, we notice a distinct line of stable equilibria between the remaining paths.
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Refined examination of values of t3 ∈ (1, 1.25) have yet to definitively determine whether

the top branch contracted, disappear, or joined with the smaller path. The appearance

of a TR-TR-TR pattern of bifurcations seems to suggest we are looking at the remnants

of a collapse in the top branch towards the line of unstable equilibria as it originally

displayed that same pattern of bifurcations. Until further study resolves this debate, we

focus on the resulting behavior of the remaining stable solutions.

Figure 6.12: Bifurcation diagram with respect to κ, with t3 = 1.25 for eqs. 3.1 - 3.12 with
remaining parameters from θ̃. HB and TR denote Hopf (�) and torus (?) bifurcations.
Labeled points (C) and (D) designate location of solutions corresponding to LH profiles
in Figure 6.11 (c) and (d) respectively
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In Figure 6.13, we present LH profiles for solutions on both remaining paths of stable

cycles. At κ ≈ 0.95 (C) in Figure 6.12, we can see in Figure 6.13 panel (c) that sufficient

surge levels for serum LH are not obtained. We observe low amplitude oscillations with

a period of about 25 days. Our second point of interest in the bifurcation diagram is

at κ ≈ 1.12 (D) in Figure 6.12. Again the LH profile for this solution is presented for

comparison in Figure 6.11 panel (d). Within the section of stable limit cycles, we can

see the our baseline LH continues to increase with the values of t3 while the range of LH

values begins to contract.
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Figure 6.13: Serum LH predictions for Varying κ values with t3 = 1.25. Panel (c) and (d)
correspond to solutions at locations (C) and (D) respectively as identified in Figure 6.12,
demonstrating the effects of increased sensitivity to T combined with elevated ovarian T
production.

Increasing t3 one additional time to 1.5, produces a κ bifurcation profile as represented
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in Figure 6.14. We can see only small changes from the diagram for t3 = 1.25. The range

of κ for which solutions exist is slowly narrowing and our branch of stable limit cycles

are expanding. The most significant change can not be seen on through the bifurcation

diagram alone. If we take another look at a stable solution to the right of the TR at

κ ≈ 1.11, we can see that between t3 = 1.25 and t3 = 1.5 a significant change has taken

place. In Figure 6.15, we present the serum hormone predictions for t3 = 1.5, κ = 1.12

(see location (E) in Figure 6.14).

Figure 6.14: Bifurcation diagram with respect to κ, with t3 = 1.5 for eqs. 3.1 - 3.12 with
remaining parameters from θ̃. HB and TR denote Hopf (�) and torus (?) bifurcations.
Labeled point (E) designates location of solution corresponding to LH profiles in Figure
6.15.

For this solution, LH and T levels are consistently elevated. E2 and P4 levels are
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suppressed reflecting a reduction in ovarian follicular activity. The elevation in circulating

T is consistent with hyperandrogenic disorders. We can also take a brief look at the

follicular dynamics for this solution in comparison to the normal cycle presented in Figure

6.1.
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Figure 6.15: Serum LH predictions forκ = 1.1 with t3 = 1.5. Predictions corresponds
to solution at locations (E) as identified in Figure 6.14, demonstrating the effects of
increased sensitivity to T combined with elevated ovarian T production.

In Figure 6.16 we present the predictions for ovarian mass of preantral (PrA1) and

small antral (SmAn) follicles with a view of CL development (Lut1) for both the normal

cycle (dashed lines) and the solution presented in Figure 6.15 (solid lines). One can see
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that the mass of developing follicles for both classifications is significantly elevated, a case

which may manifest in the appearance of polycystic ovaries on ultrasound. The CL, in

this case is diminished, suggesting the absence of ovulation for the previous cycle. These

predictions are the first we have seen through our investigations that reflect anovulatory

and hyperandrogenic states simultaneously. These findings suggest multiple mechanisms

may be implicated in disorders of this nature.
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Figure 6.16: Ovarian mass predictions for κ = 1.1 values with t3 = 1.5 (solid lines)
compared with normal solution (dashed lines). Demonstrated is the significant increase
in preantral and small antral follicular mass vs. normal, with decreased CL development.
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Chapter 7

Summary and Future Directions

7.1 Commentary

After a short review of the physiological context of our study (Chapter 2), we have

presented a nonlinear mechanistic model for the endocrine regulation of the human men-

strual cycle which consists of 16 delay differential equations and 5 auxiliary equations,

with 70 parameters, identified using data from literature (see Chapter 3). Using weighted

least squares residuals and specialized data sampling, we have estimated 67 of our pa-

rameters that were not available in the literature (see Chapter 4). The complete model,

with time delays for ovarian feedback, is shown to have a single stable periodic solution

predicting serum levels of LH, FSH, E2, P4, InhA, InhB and T that is consistent with bi-

ological data [73,84]. The asymptotically stable periodic solution resulting from the best

fit parameter set (Appendix A.1 Tables 1 through 4) has a period of 29 days, consistent

with current literature. Moreover, increases in qualitative accuracy are obtained through

the use of mass action kinetic theory to describe preantral follicular through early antral

follicular stage growth. We believe this is the first model of its type to be able to pre-
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dict serum T levels in a mathematical context that allows analysis of bifurcations and

multiple stable periodic solutions.

A benefit of this approach, is the identification of stable solutions that may resemble

hormonal profiles consistent with some of the 16 PCOS phenotypes as defined in the Rot-

terdam consensus document [15]. While it is generally agreed that T plays an important

role in PCOS, only 8 of the 16 PCOS phenotypes present with elevated androgens [15]. It

is hypothesized that retarded preantral follicular development could play an important

role in explaining the appearance of polycystic ovaries [44], a significant criterion in euan-

drogenic patients. Our approach of reflecting intra-ovarian follicular growth regulation

systemically allows researchers to investigate effects of preantral growth abnormalities on

menstrual cycle frequency. In our investigation, observations from increasing preantral

follicle growth duration support the hypothesis presented by Maciel et al. [44] that a delay

in early follicular maturation may be significant in the etiology of PCOS (see Chapter 5).

Figures 5.4 through 5.7 reinforce this conclusion by demonstrating the reduction of m2,

that delays the transfer from preantral growth to androgen dependent growth, results in

irregular cyclicity and a visible “stockpiling” of follicular mass in the preantral stages of

development [44].

Furthermore, the identification of a period doubling cascade of bifurcations leading

to chaotic behavior, may actually increase accuracy in representing clinical findings of

women with PCOS and/or oligomenorrhea over previous models (see Chapter 5). A recent

paper by Derry and Derry [17] presents a time series analysis of longitudinal menstrual

cycle length data for 40 women over 20-40 years. They concluded that the human “men-

strual cycle is the result of chaos in a nonlinear dynamical system” [17]. They further

referenced specifically the model of Harris-Clark et al. [33] with the assertion that “any

model producing only perfectly periodic menstrual cycles is, at best, incomplete” [17].
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It is our belief that our current approach, meets their criteria for a model of the human

menstrual cycle that displays biologically relevant random behavior independent of exter-

nal interference. It also shows that follicular dynamics cannot be abandoned in the quest

for accuracy, rather it is the interplay between intra-ovarian mass and endocrine regu-

lation that explains this behavior. A formal bifurcation analysis of the period doubling

bifurcation with respect to m2, in Chapter 6 Section 6.2, suggests careful manipulation of

preantral follicle growth may contribute to restoring ovulation in women with decreased

LH profiles. Using XPPAUT, we confirm the existence of a period doubling cascade

consistent with the existence of a chaotic attractor for the system without time delays.

Further investigations of bifurcation dynamics for the parameter κ are presented. Our

first investigation reveals a hysteresis loop of limit cycles that coalesces with an invariant

torus. Solutions on the torus resemble ovulatory cycles that become increasingly irregu-

lar, suggesting the existence of an additional chaotic attractor that may more accurately

represent an average, normally cycling woman. As a hyperandrogenic and anovulatory

solution was yet to be identified, we present a series of bifurcation diagrams with respect

to κ. Each diagram presented is evaluated for increasing levels of t3 to represent an in-

creased production of T by small antral follicles as reported by Nestler et al. [51]. Through

these diagrams, we present the changes in dynamics that result from perturbations in

two parameters and the effects on serum hormone level predictions at sample limit cy-

cles. This investigation cumulates in the presentation of a hormone profile that is both

hyperandrogenic and anovulatory. This may suggests that for women with classic PCOS,

as reviewed in Chapter 2, that abnormalities in multiple physiological mechanisms may

be intrinsic to the etiology of PCOS.
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7.2 Future Work

We anticipate the emerging collaborations with clinical endocrinologists and experimen-

talists will soon provide essential data necessary to refine additional parameter sets that

can simulate additional PCOS phenotypes. We are currently working on a merger of

the presented model with previous work in glucoregulatory modeling, with the goal to

increase our understanding of the relationship between disorders of reproduction and

glucose metabolism. Funding opportunities are being sought to identify a model from

glucose regulation and reproductive function in old world primates, from which our col-

laborators hope to find new areas of research for applications in infertility, obesity and

Type II diabetes.

On an immediate note, during our investigations for this work, an additional chaotic

attractor was identified at κ = 1.09 with t3 = 1. This is within the “unknown” area of

our κ bifurcation study.

The solution presented in Figure 7.1 is capable of producing ten ovulatory cycles

per year. This may be an irregular solution on the invariant torus or a unique chaotic

attractor, additional investigations are necessary to determine the exact nature of the

state space in that region. With an average cycle length of 33 days for the 50 % threshold

level, this profile may more accurately reflect what real women experience and could

clinically be considered “normal”. Mathematically, it is desirable to analyze the state

space of this region as the opportunities to study the potential destabilization of a torus

bifurcation to chaos through what seems to be a period doubling cascade.
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Figure 7.1: LH serum profile over 3 years is presented for an apparently chaotic attractor
that may ovulate normally given the ovulatory follicle’s sensitivity to LH

7.3 Conclusion

The basic assumption that the hypothalamic-pituitary-ovarian axis is in itself a closed

autonomous dynamical system presenting stable yet chaotic behavior has led us to the

development and presentation of our current model of endocrine regulation in female

reproduction. Our model reflects pituitary synthesis and release of LH and FSH. Using

an innovative combination of mass action and linear effects, we are able to mimic ovarian

follicular growth patterns from which we approximate ovarian hormones. Numerical ap-

proximation of a stable periodic solution can be conducted in a matter of a few minutes

as compactness was a major consideration in model development. These attributes make

82



it a prime candidate for in-silico investigations of cycle regularity. We have shown that

modeling biological mechanisms, while considering clinical challenges and computational

costs can lead to mathematically rich dynamics that present new model-derived insights

that may guide future development of innovative individualized therapeutic interven-

tions for women with PCOS. Furthermore, the implications of the presented bifurcation

analysis suggest directions for pharmaceutical interventions that may lead to new treat-

ments for PCOS. This type of analysis would not have been possible for systems of much

higher dimensions than our own. As we move on towards further understanding of sys-

tems physiology, overcoming the temptation to unnecessarily complicate models serves

an important purpose. It is our complete intention to continue on this path, building

efficient models in systems physiology that maintain a balance between capturing the

most significant mechanisms at play while maintaining the ability to analyze the phase

space in the search of new frontiers.
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A.1 Best Fit Parameters (θ̂)

Table 1: LH Subsystem Parameters

Parameter Value Unit

v0LH
33.3 ±2 µ/day

v1LH
160.8 ±3.2 µ/day

KiLH 13.6 ±.2 L/nmol

KmLH 47.33 ±1.52 ng/L

kLH 19.99 ±.48 1/day

cLHP
0.982 ±7.2E − 05 L/nmol

cLHE
0.9 ±4E − 04 L/ng

dP 1 ±4.6E − 05 days

κ 0.917 ±3.6E − 04 dimensionless

a 6.066 ±1.2E − 01 dimensionless

δ 2 dimensionless

rLH 14 1/day

v 2.5 liters

Estimated parameter values for LH subsystem parameters, corresponding to best fit
solution, reported with estimates of standard deviation and units.
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Table 2: FSH Subsystem Parameters

Parameter Value Unit

vFSH 283.99 ±2.8 µ/day

KiFSHa 6.380 ±0.089 µ/day

KiFSHb
3000 ±227.9 L/nmol

kFSH 3.646 ±0.0429 1/day

cFSHp 1.265 ±1.245E − 0.3 L/nmol

cFSHe 0.055 ±1.723E − 03 L/ng

ζ 1 dimensionless

dInhA 1 ±1.8E − 05 days

dInhB 1 ±2.9E − 05 days

rFSH 8.210 1/day

Estimated parameter values for FSH subsystem parameters, corresponding to best fit
solution, reported with estimates of standard deviation and units.
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Table 3: Ovarian Subsystem Parameters

Parameter Value Unit

α 0.710 ±1.3E − 03 dimensionless

β 0.693 ±1.2E − 03 dimensionless

γ 2E − 04 ±4.2E − 06 dimensionless

η 1.162 ±1.1E − 03 dimensionless

ν 8.000 ±1.7E − 01 dimensionless

% 0.450 ±5.3E − 03 dimensionless

ι 0.950 ±2.6E − 04 dimensionless

b 0.019 ±7.4E − 04 L/day

c1 0.087 ±1.4E − 03 L/µg

c2 0.125 ±2.0E − 03 1/day

c3 0.053 ±1.6E − 03 1/day

c4 0.037 ±1.7E − 03 1/day

c5 0.481 ±2.9E − 03 1/day

d1 0.705 ±9.1E − 04 1/day

d2 0.649 ±1.3E − 03 1/day

k1 0.709 ±1.3E − 03 1/day

k2 0.871 ±4.9E − 04 1/day

k3 1.038 ±1.3E − 04 1/day

k4 1.052 ±1.9E − 04 1/day

m1 0.927 ±1.1E − 03 1/day

m2 1.34E − 03 ±9.9E − 05 1/day

m3 0.150 ±5.7E − 03 1/day

KmFSH 7.530 ±2.7E − 01 1/day

Estimated parameter values for ovarian subsystem parameters, corresponding to best fit
solution, reported with estimates of standard deviation and units.
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Table 4: Auxiliary Equations Parameter Set

Parameter Value Unit

e0 38.250 ±2.9E + 00 ng/L

e1 2.300 ±8.4E − 02 1/kL

e2 2.724 ±2.4E − 02 1/kL

h0 0.053 ±6.4E − 04 U/L

h1 0.025 ±1.5E − 03 nmol/L/µg

h2 0.063 ±5.6E − 04 U/L

h3 0.158 ±5.1E − 03 U/L

p1 0.255 ±3.1E − 03 nmol/L/µg

p2 0.128 ±2.0E − 03 nmol/L/µg

j0 27.21 ±1.3E − 03 pg/L

j1 1.885 ±2 1/L

j2 3.738 ±6.7E − 03 1/L

j3 3.411 ±1.3E − 01 1/L

j4 2.06E − 05 ±1.1E − 01 1/L

j5 3.000 ±1.6E − 06 1/L

j6 0.001 ±4.8E − 02 1/L

t0 21.920 ±3.4E − 05 ng/dL

t1 0.372 ±7.3E − 01 1/dL

t2 0.296 ±5.7E − 03 1/dL

t3 0.454 ±1.9E − 03 1/dL

t4 0.041 ±2.3E − 03 1/dL

t5 0.703 ±4.7E − 04 1/dL

t6 3.31E − 08 ±1.5E − 03 1/dL

t7 0.046 ±5.3E − 04 1/dL

t8 0.200 ±1.7E − 03 1/dL

Estimated parameter values for auxiliary equation parameters, corresponding to best fit
solution, reported with estimates of standard deviation and units.
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A.2 Clinical Data

Table 5: Daily Serum Hormone Levels From Literature

Welt et al. Sinha-Hikim et al.
LHµ/day FSHµ/day E2ng/L P4nmol/L/µg IHAU/L IHBpg/L T ng/dL

12 11.4 51 1.1 1 79 33.2
14 11.6 55 0.6 1.1 109 32.5
15 11.7 53 0.6 1 116 32.0
14 12.4 59 0.6 1.1 123 31.1
17 12.6 60 0.6 1.1 140 30.3
17 11.3 62 0.6 1 135 31.6
19 12.1 66 0.6 1.1 140 33.4
18 11.3 72 0.6 1.2 144 35.0
17 10 95 0.6 1.7 147 37.5
17 8.7 119 0.6 2.3 130 40.7
17 8.6 138 0.6 3.2 113 43.4
25 8.2 188 0.6 4.5 98 42.6
50 10.4 237 0.7 7.4 83 41.4
123 19.6 215 1.2 9.3 147 39.9
41 12.1 127 2 7.7 167 38.4
22 9.2 91 5 8.1 106 36.6
20 8.7 102 8.9 10.1 57 34.9
20 8.6 119 11.2 8.9 44 34.6
18 7.4 140 15.6 9.5 43 34.4
16 7.2 133 17.3 11.5 38 34.3
12 6.1 152 17.9 9.1 32 33.4
9 5.4 142 17.2 8.7 30 32.3
11 5.2 140 14.4 7.5 29 31.1
10 5.4 155 12.6 6.6 36 32.0
11 5.3 133 10.3 5.7 30 33.2
11 6.1 114 8.1 4.1 37 33.9
11 6.7 70 4.3 2.2 35 34.4
11 8.3 55 1.9 1.7 55 34.0

Daily values for serum hormones over a single 28 day cycle as extracted using Digitizeit
from Welt et al. [84] and Sinha-Hikim et al. [73].
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A.3 Sensitivities

Table 6: Top 10 Most Sensitive Parameters

Parameter Average E2 Peak LH Peak T Peak

β 7.8 6.4 13 3.9

c1 2.9 2.9 3.7 1.9

κ 2.7 4 2.2 2

VFSH 2.3 2.6 2.7 1.7

kLH 1.9 1.6 3.1 0.98

cLHE
1.7 1.3 2.7 0.88

c3 1.6 0.8 3.1 0.85

ι 1.4 2. 1.4 0.059

α 1.2 1.9 0.037 1.

p1 1.1 0.79 1.9 0.5

Highest ranking parameter in regards to average sensitivity for three biologically signifi-
cant data points; E2 peak, LH peak, and T peak.
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Table 7: Pituitary System Sensitivity Coefficients For Best Fit Solution

Parameter E2 peak LH peak T peak

v0LH
1.04 1.04 0.51

v1LH
1.3E − 01 0.26 6.0E − 02

KiLH 0.20 0.78 0.16

KmLH 0.26 0.37 0.15

kLH 1.55 3.07 0.98

cLHP
0.38 0.74 0.25

cLHE
1.35 2.73 0.88

dP 8.0E − 02 0.16 5.4E − 02

kappa 3.99 2.17 2.00

a 3.9E − 02 5.0E − 02 2.3E − 02

delta 0.31 1.15 0.19

VFSH 2.56 2.73 1.70

KiFSHa 0.27 1.03 0.18

KiFSHb
8.2E − 02 6.4E − 02 5.6E − 02

kFSH 0.78 1.32 0.54

cFSHP
0.30 0.51 0.23

cFSHE
0.81 1.40 0.55

zeta 4.83 8.26 3.91

dIHA 2.1E − 02 4.3E − 02 2.5E − 02

dIHB 7.9E − 04 2.8E − 02 4.5E − 04
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Table 8: Ovarian System Sensitivity Coefficients For Best Fit Solution

Parameter E2 peak LH peak T peak

alpha 1.9 3.7E − 02 1.7

beta 6.4 13.1 3.9

gamma 1.0E − 03 1.1E − 02 3.8E − 04

eta 0.14 0.25 0.96

nu 1.7E − 02 7.4E − 02 9.7E − 03

varrho 0.15 0.18 7.4E − 02

iota 2.8 1.4 5.9E − 02

b 0.14 0.17 6.7E − 02

c1 2.9 3.7 2.0

c2 1.0 0.21 0.93

c3 0.79 3.1 0.85

c4 0.79 0.96 0.20

c5 0.35 0.80 0.26

d1 0.20 0.35 0.11

d2 0.20 0.39 0.11

k1 0.24 0.50 0.15

k2 0.25 0.61 0.15

k3 0.23 0.53 0.15

k4 5.2E − 02 0.25 4.4E − 02

m1 0.41 0.36 0.19

m2 1.6E − 02 0.09 1.4E − 02

m3 7.2E − 02 0.17 4.6E − 02

KmFSH 0.31 0.86 0.23
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Table 9: Auxiliary Sensitivity Coefficients for θ̂

Parameter E2 peak LH peak T peak

e0 0.21 0.20 4.5E − 02

e1 1.3 1.2 0.28

e2 2.0E − 02 2.2E − 02 4.4E − 03

h0 2.0E − 02 6.8E − 02 1.2E − 02

h1 7.5E − 03 0.11 2.5E − 03

h2 4.8E − 02 0.19 0.04

h3 8.0E − 02 0.37 6.9E − 02

p1 0.79 1.90 0.50

p2 0.23 0.67 0.16

j1 2.0E − 02 6.1E − 02 1.2E − 02

j2 3.0E − 03 1.2E − 02 1.7E − 03

j3 4.3E − 02 6.0E − 02 2.6E − 02

j4 3.2E − 02 5.3E − 02 2.4E − 02

j5 2.1E − 03 1.6E − 02 1.1E − 03

j6 3.5E − 02 7.0E − 02 2.5E − 02

j7 7.8E − 05 7.0E − 04 5.3E − 05

t1 0.65 0.31 0.17

t2 3.8E − 02 6.4E − 02 2.7E − 02

t3 0.21 0.34 0.12

t4 0.29 4.6E − 02 7.9E − 02

t5 1.5E − 02 0.10 7.6E − 02

t6 9.0E − 02 0.44 0.20

t7 4.4E − 04 1.1E − 02 1.1E − 04

t8 3.9E − 02 8.1E − 02 4.3E − 02

t9 8.0E − 02 0.23 7.1E − 02
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A.4 Testosterone Unit Conversion

The original data set identified for serum total T levels across the menstrual cycle was

obtained from Sinha-Hikim et al. [73], reporting total serum testosterone levels between

0.8 and 1.8 nmol/L. For conversion to ng/dL we first identify the molecular formula of T:

C19H28O2.

The molecular weight is then calculated by:

Molecular Mass of C19H28O2 = (#Atoms of C× Atomic Weight of C)

+ (#Atoms of H× Atomic Weight of H)

+ (#Atoms of O× Atomic Weight of O)

= (19× 12.0110) + (28× 1.0079) + (2× 15.9994)

= 288.4290 g/mol (1)

We scale the Sinha-Hikim data by a factor of 28.84290 to allow the use of ng/dL for

our units, avoiding values less than 1, and allowing comparison of blood hormone levels

with data from Welt.
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A.5 Non-Delay System Parameters θ̃

Table 10: LH Zero Delay Subsystem Parameters

Parameter Value Unit

v0LH
39.75 µ/day

κ 0.9176 dimensionless

v1LH
153.7 µ/day

a 7.396 dimensionless

KiLH 13.64 L/nmol

KmLH 52.07 ng/L

kLH 18 1/day

cLHP
0.9824 L/nmol

cLHE
0.8082 L/ng

δ 2 dimensionless

rLH 14 1/day

vFSH 287.3 µ/day

KiFSHINHA
6.3 µ/day

KiFSHINHB
3000 L/nmol

kFSH 3.863 1/day

cFSHP
1.261 L/nmol

cFSHE
2.50E − 04 L/ng

ζ 2 dimensionless

aFSH 8.21 1/day

v 2.5 L
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Table 11: FSH Subsystem Zero Delay Parameters

Parameter Value Unit

vFSH 287.3 µ/day

KiFSHa 6.300 µ/day

KiFSHb
3000 L/nmol

kFSH 3.870 1/day

cFSHp 1.260 L/nmol

cFSHe 2.50E − 04 L/ng

ζ 2.000 dimensionless

dInhA 0.000 days

dInhB 0.000 days

rFSH 8.210 1/day
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Table 12: Ovarian Subsystem Zero Delay Parameters

Parameter Value Unit

alpha 0.69 dimensionless

beta 0.693 dimensionless

gamma 0.002 dimensionless

eta 1.162 dimensionless

nu 8 dimensionless

varrho 0.45 dimensionless

iota 0.952 dimensionless

b 0.017 L/day

c1 0.087 L/µg

c2 0.115 1/day

c3 0.534 1/day

c4 0.368 1/day

c5 0.482 1/day

d1 0.706 1/day

d2 0.6515 1/day

k1 0.695 1/day

k2 0.872 1/day

k3 1.039 1/day

k4 1.052 1/day

m1 0.927 1/day

m2 8.680E − 04 1/day

m3 0.09 1/day

KmFSH 6.53 1/day
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Table 13: Auxiliary Equations Zero Delay Parameter Set

Parameter Value Unit

e0 37.400 ng/L

e1 2.300 1/kL

e2 2.720 1/kL

h0 0.053 U/L

h1 0.026 nmol/L/µg

h2 0.064 U/L

h3 0.160 U/L

p1 0.255 nmol/L/µg

p2 0.133 nmol/L/µg

j0 0.001 pg/L

j1 1.720 1/L

j2 50.03 1/L

j3 4.323 1/L

j4 1.19E − 03 1/L

j5 2.250 1/L

j6 0.001 1/L

t0 13.14 ng/dL

t1 0.041 1/dL

t2 0.667 1/dL

t3 0.744 1/dL

t4 0.000 1/dL

t5 0.097 1/dL

t6 0.00 1/dL

t7 0.210 1/dL

t8 0.093 1/dL
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