
ABSTRACT

CUFFNEY, LAURIE ANN. A Comparison of Threshold Parameters in Deterministic SIS and
SI1I2S Models and Stochastic SIS and SI1I2S Models. (Under the direction of John Franke.)

Epidemic models are used to predict disease spread through a population. Accurate predic-

tion of disease spread is important in the management of outbreaks and treatment of disease.

Deterministic SIS models carry with them the inherent assumption that the infection rate,

α, and the recovery rate, σ, are constant throughout the population and throughout time. In

reality this assumption is flawed. There are many factors which can influence the rate at which

infection spreads through out a population. Over the course of time environmental changes

may cause variation in the rate of infection and ability of infected individuals to recover. To

account for variation in infection rate and recovery rate over time we want to add stochasticity

into our epidemic model. In this paper we outline a method to introduce stochasticity into an

epidemic model where each parameter is drawn from some distribution and attempt to establish

a threshold parameter for this model.
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Chapter 1

Introduction

Epidemic models are used to predict disease spread through a population. Accurate prediction

of disease spread is important in the management of outbreaks and treatment of disease. De-

terministic discrete and continuous time models have a rich history of study and their behavior

is well known [1, 3, 10, 15]. A simple deterministic discrete time SIS model with constant

population is given by

S(t+ 1) =

(
1− αI

N

)
S + σI

I(t+ 1) =
αI

N
S + (1− σ)I (1.1)

where α is the infection rate and σ is the recovery rate. The threshold parameter for this model

comes from the basic reproduction number,

Rd0 =
α

σ
. (1.2)

When Rd0 is less than one the disease is eradicated and the model goes to a disease free equilib-

rium. If Rd0 is greater than one the disease persists and spreads through the population [1, 5, 4].

The model (1.1) carries with it the inherent assumption that the infection rate, α, and the

recovery rate, σ, are constant throughout the population and throughout time. In reality this

assumption is flawed.

There are many factors which can influence the rate at which infection spreads throughout

a population. Attributes such as age and overall health play a role in the susceptibility of

individual members of the population. In the case of influenza children under 5 years old and

seniors 65 years old and up are classified by the CDC as high priority during vaccination season

due to their high susceptibility. If a child under 5 comes into contact with an individual infected

with influenza the probability the child contracts influenza is higher than if a middle aged
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individual comes into contact with the same individual. Similarly an individual who is already

sick has a higher likelihood to contract influenza when in contact with someone carrying the

virus.

Discrete time epidemic models measure the spread of an epidemic at distinct time intervals

i.e. days, months, or years. Over the course of time environmental changes may cause variation

in the rate of infection and ability of infected individuals to recover. Changes in season and

weather can cause a change in the rate of infection and ability to recover from illness. Thus the

rate of infection and recovery are not constant.

To account for variation in infection rate and recovery rate over time we add stochasticity

into our epidemic model. There are several approaches to introduce stochasticity into epidemic

models. To introduce stochasticity the SIS model can be considered a Markov chain process

where S and I are random variables [2, 3, 11]. Non-Markovian models have also been used to

produce a stochastic epidemic model. In non-markovian models it may be the infectious rate

and the infectious duration which generate stochasticity with in the model [6].

In this paper we will review a branching process model employed by Allen and Driessche

[4] in chapter 2. We then outline a different method to introduce stochasticity into an epidemic

model in chapter 3. In our model the parameters governing infection rate and recovery rate

vary at each time step. The parameters follow a given distribution and are assumed to be i.i.d.

We consider parameters which follow a uniform or Poisson distribution for numerical examples.

Through numerical simulations we observe similar behavior to other stochastic epidemic models.

When the deterministic threshold Rd0 is greater than one, but close to one, we expect the disease

to persist. However, the disease instead is effectively eradicated from the population. Through

out this paper we make the consideration that if the disease is present in a very small portion

of the population we will say the disease has been eradicated. If the number of infected is on

the order of 10−5 or smaller we will consider this a disease free state.

To understand the behavior of our stochastic epidemic model we define a stochastic threshold

parameter

Rs0 = E
(

ln(α+ 1− σ)
)

for the stochastic SIS epidemic model. The form of this threshold parameter is adapted from a

similar form for thresholds in populations models [7, 8, 9]. In chapter 4 we begin to expand this

process into a high dimension epidemic model such as SI1I2S and discuss the effect of multiple

stages on the threshold parameter.
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Chapter 2

Literature Review

In this chapter we discuss a stochastic threshold and the threshold theorem introduced by

Allen and van den Driessche [4]. We consider the discrete-time multi-stage model SI1 . . . InS

with constant population,

S(t+ 1) =

1−
n∑
j=1

αjIj(t)

N

S(t) + σnIn(t)

I1(t+ 1) =

 n∑
j=1

αjIj(t)

N

S(t) + (1− σ1)I1(t)

Ij(t+ 1) = (1− σj)Ij(t) + σj−1Ij−1, j = 2, . . . n. (2.1)

In the multi-stage epidemic model we assume that individuals transition through stages follow-

ing the scheme Ij → Ij+1 for j = 1, ...n− 1 and In → S. Over one time step it is also assumed

that an individual transitions only one stage further i.e. an individual in Ij at time t can only

stay in Ij or transition to Ij+1.

Multi-stage models such as this can be used to model diseases that exhibit multiple con-

tagious stages with different infection rates. An intermediate noncontagious stage can also be

modeled by allowing the corresponding αi to be zero. We are interested in the behavior of the

model near the disease free equilibrium. Linearization about the disease free equilibrium yields

I(t+ 1) =



α1 + 1− σ1 α2 · · · · · · αn

σ1 1− σ2 0 · · · 0

0 σ2 1− σ3 0 · · ·
...

...
. . .

. . .
...

0 0 · · · σn−1 1− σn


I(t), (2.2)

3



where

I(t) =


I1(t)

...

In(t)

 .

The matrix in (2.2) is a sum of two matrices Fd, the matrix of new infections, and Td, the

transition matrix [4],

Fd =


α1 α2 · · · αn

0 0 0 0
...

...
...

...

 (2.3)

Td =



1− σ1 0 · · · 0

σ1 1− σ2 · · · 0

0 σ2 1− σ3
...

...
...

. . .
...

0 · · · σn−1 1− σn


. (2.4)

Using these two matrices we can build the next generation matrix Kd = Fd(I−Td)−1 [5]. The

spectral radius of the next generation matrix provides the deterministic threshold R0 = ρ(Kd)

for the multi-stage discrete-time epidemic model (2.1). As with the single stage SIS model if

the threshold parameter R0 is less than one the disease is eradicated. If R0 greater than one

the disease persists within the population [4, 5]. In figure 2.1 we see two examples of an SI1I2S

model with different parameters providing an example where R0 greater than one and and

example where R0 less than one. In figure 2.1a the threshold parameter is R0 = 3.8667 which

is greater than one and we see the disease is endemic as we would expect. For figure 2.1b the

threshold parameter is R0 = 0.9 which is less than one and we see the population recover from

the initial infection and the disease die away over time.

To add stochasticity into this model we define the probability that one individual in the Ij

class infects k individuals in one time step. We notate this probability as pjk. The probabilities

pjk follow some distribution over the interval [0, 1] and
∑∞

k=0 pjk = 1. For the purposes of

this paper we will generate pjk from a Poisson distribution, with mean λj = αj , or a uniform

distribution. In this method the transition parameters, σi, remain constant.

We define the offspring probability generating functions near the disease free equilibrium as

hj(u) =

∞∑
k1=0

· · ·
∞∑

kn=0

Pj(k1, . . . , kn)uk11 · · ·u
kn
n (2.5)

where Pj(k1, . . . , kn) is the probability that in one time step one individual in the jth class

4



produces k1 individuals in the I1 class, k2 individuals in the I2 class etc [4]. In this model due

to imposed restrictions on movement between classes Pj(k1, . . . , kn) = 0 when ki ≥ 2 for any

i ≥ 2. Therefore the only nonzero probabilities we can have are Pj(k1, . . . , kn) where ki = 0, 1

for i ≥ 2.

Since we only allow an individual to either stay in the class or move to the next class,

Pj(k1, . . . , kn) = 0 if ki = 1 for i 6= j, j + 1. This leaves the only potentail nonzero probabilities

Pj(k1, . . . , kn) when ki = 0 for i 6= 1, j, j + 1 and either kj = 0 and kj+1 = 1 or kj = 1 and

kj+1 = 0. Multiple new infected individuals may result from one infected individual so k1 is

allowed to range from 0 to N. In practice this means P3(k1, . . . , kn) 6= 0 for P3(k1, 0, 1, 0, . . . , 0)

and P3(k1, 0, 0, 1, 0, . . . , 0). P3(k1, 0, 1, 0, . . . , 0) represents the probability that one individual in

I3 stays in I3 and infects k1 individuals from the susceptible class successfully over one time

step. Likewise the probability P3(k1, 0, 0, 1, 0 . . . , 0) represents the individual moving from I3 to

I4 and infecting k1 individuals from the susceptible class successfully over one time step.

To further simplify these probabilities we make the observation that new infections occur

independently of transition between stages. Transmission of the disease from an infected indi-

vidual to a susceptible individual occurs at the beginning of the time interval [4]. This means

that the probabilities are independent and can be separated. Define rj(k) to be the probability

that one infected individual in the jth class infects k individuals over one time step. Notice

then rj(k) = pjk. Let qj(k2, . . . , kn) be the probability that in one time step one individual in

the jth class produces k2 individuals in the I2 class, k3 individuals in the I3 class etc. We can
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Figure 2.1: Deterministic discrete-time multi-stage SI1I2S models with initial conditions N =
100, S(0) = 50, and I1(0) = 25 = I2(0) with parameters (a) α1 = −0.2, α2 = 0.3, σ1 = 0.5 ,
σ2 = 0.6 and (b) α1 = −0.8, α2 = 0.6, σ1 = 0.3 , σ2 = 0.5. The threshold parameter R0 for
each model is; (a) R0 = 3.8667, (b) R0 = 0.9.
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now rewrite Pj(k1, . . . , kn) as

Pj(k1, . . . , kn) = pjk1 · qj(k2, . . . , kn). (2.6)

We can define the probability qj for all values of j as

qj(k2, . . . , kn) =


1− σj if kj = 1, ki = 0 for i 6= j

σj if kj+1 = 1, ki = 0 for i 6= j + 1

0 otherwise.

(2.7)

This simplifies (2.5) with respect to our model to

hj(u) = [(1− σj)uj + σjuj+1]

∞∑
k=0

pjku
k
1, j = 1, . . . , n− 1

hn(u) = [(1− σn)un + σn]

∞∑
k=0

pjku
k
1. (2.8)

To describe this process we can calculate the expectation matrix Md where,

mij =
∂hi
∂uj

∣∣
u1=···=un=1

[4].

The expectation matrix Md satisfies the relation MT
d = (Fd+Td). Allen and van den Driessche’s

[4] threshold theorem states that ρ(Md) < 1(> 1) if and only if ρ(Kd) < 1(> 1). For this

stochastic threshold when ρ(Md) less than one the process is subcritical and disease extinction

occurs with probability one. When ρ(Md) greater than one the process is supercritical and the

probability of disease extinction is less than one. This means that if the deterministic threshold

of the deterministic model with corresponding parameters to the stochastic model is less than

one we are guaranteed to see disease extinction. When the corresponding deterministic threshold

is greater then one we are not guaranteed to have an endemic. It is possible to have disease

extinction even with the threshold parameter greater than one.

Consider the one stage model 1.1. The offspring probability generating function for this

model is

h(u) = [(1− σ)u+ σ1]

∞∑
k=0

pku
k (2.9)

where pk is the probability that an infected individual produces k new infected individuals over

one time step. Let pk be poisson with mean α. Figure 2.2a shows three sample paths of this

branching process. After 2,000 time steps two of the sample paths appear to be approaching a

6



disease free state. To determine the long term average behavior of the stochastic model we run

numerical simulations for 1,000 trials at higher time steps. Figures 2.2b-d show the results of

these simulations. We see through these histograms the average of the trials decreases over time

and by the 100,000 time step have decreased to the point we will say the population is disease

free. Here we see an instance of disease extinction where the deterministic threshold parameter

is R0 = 1.003 which is greater than one.
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Figure 2.2: Parameter values α = .3, σ = .299; R0 = 1.003. Initial conditions I(0) = 1,
S(0) = 99. (a) Three sample paths of stochastic epidemic model versus deterministic model
over 2000 time steps. Histograms showing frequency of infected individuals for 500 trials after
(b) 1000 time steps; mean(I(t)) = 0.2528, (c)10000 time steps; mean(I(t)) = 0.0253 and (d)
100000 times steps; mean(I(t)) = 9.7275 · 10−6.
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Table 2.1: Branching process SIS model where pjk Poisson with λ = α infected class mean
of 1000 trails after 1000, 10000 and 100000 time steps. The deterministic R0 and approximate
deterministic endemic equilibrium or disease free state are also given.

α σ t=1,000 t=10,000 t=100,000 R0 approx. equil.

0.3 0.27 9.5599 9.7901 9.8229 1.1̄ 10
0.3 0.28 6.1755 6.4038 6.1256 1.07 6.6̄
0.3 0.29 2.8922 3.1253 3.1229 1.03 3.3̄
0.3 0.295 1.2102 1.2414 1.1722 1.01 1.6̄
0.3 0.297 0.6519 0.4646 0.6226 1. ¯010 1
0.3 0.298 0.5439 0.2407 0.1730 1.006 1.3̄
0.3 0.299 0.3571 0.0165 1.5376 · 10−9 1.003 0.6̄
0.3 0.3 0.1559 7.6995 · 10−5 1.8547 · 10−48 1 0
0.3 0.35 2.8608 · 10−23 1.6871 · 10−235 4.9407 · 10−334 0.857 0

Table 2.1 shows other sample paths for the branching process. For all sample paths in table

2.1 the parameter α is the same. For each choice of the parameter σ we ran 1,000 sample

paths and collected the mean of 1,000 sample paths after 1000, 10000, 100000 time steps. By

running the program with different σ values we can see the change in behavior of the stochastic

SIS model. For α = 0.3 and σ = 0.299 we see the stochastic model moving to a disease free

state when the deterministic model reaches an endemic equilibrium. This behavior is similar to

what occurs with our model. In our stochastic epidemic model we choose to let the parameters

themselves vary over time according to a chosen distribution.
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Chapter 3

Stochastic one-stage SIS model

Expanding on the previous work in chapter one we allow the parameters governing infection

rate and recovery rate to both follow some distribution. For simplification the model parameters

are i.i.d. and we consider only the Poisson and uniform distribution. In this chapter we will

focus on the one-stage model (1.1).

3.1 Uniform parameters

Assume that the parameters α and σ follow a uniform distribution over a given interval. In

figure 3.1a we numerically simulate three sample paths for an SIS model with both parameters

allowed to vary. At first we may assume the deterministic threshold (1.2) using the mean of α

and the mean of σ to be an accurate stochastic threshold parameter. We see in figure 3.1 two

examples of when this threshold fails to hold true in practice.

In figure 3.1a α ∈ [0, 0.3] and σ ∈ [0, 0.28] are uniform. At time t = 1600 one of the sample

paths goes to zero even though the deterministic threshold parameter Rd0 = 1.071428 is greater

than one suggesting an endemic disease. Figures 3.1b-d show the frequency of the number of

infected individuals for 500 trials at different time steps for the stochastic SIS model with

uniform parameters α ∈ [0, 0.8], σ ∈ [0, 0.7233]. As time increases the average over 500 trials

decreases and the disease presence in the population decreases to the extent we are comfortable

saying the disease has effectively been eradicated even though the deterministic threshold is

greater than one. Table 3.1 shows results for the mean of the I class after time steps 1000,

10000, and 100000 and the deterministic threshold (1.2) calculated using the mean of each

parameter.

Through numerical simulations we can make several preliminary observations. When the α

and σ intervals are non-overlapping deterministic threshold is an accurate representation of the

behavior of the stochastic epidemic model. Since the intervals do not overlap the probability

9



that the ratio α
σ is greater than one at one time step and less than one at another time step

is zero. The ratio α
σ is either always greater than one or always less than one. When the two

intervals overlap it is possible for the ratio α
σ to be greater than one at one time step and less

than one at another time step. The question then is at what point does the overlap cause the

stochastic model to become disease free when we would expect based on the means to have an

endemic disease.
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Figure 3.1: Initial conditions I(0) = 1, S(0) = 99. (a) Three sample paths of stochas-
tic epidemic model versus deterministic model over 2000 time steps with uniform parame-
ters α ∈ [0, 0.3], σ ∈ [0, 0.28]; R0 = 1.071428. (b)-(d) Uniform parameters α ∈ [0, 0.8],
σ ∈ [0, 0.7233]; R0 = 1.1058. Histograms showing frequency of infected individuals for 500 trials
after (b) 1000 time steps; mean(I(t)) = 0.1365, (c)10000 time steps; mean(I(t)) = 2.6410 ·10−27

and (d) 100000 time steps; mean(I(t))) = 0.
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To answer this question we run simulations with the α interval fixed and vary the σ interval.

For all simulations the intervals are of the form [0, αmax] and [0, σmax]. To find the smallest R0

that shows a disease epidemic we compare the mean values for 1,000 trials at the time steps

100,000 and 300,000. If the mean at 300,000 differs from the mean at 100,000 by a factor of 30

and neither mean is on the order of 1× 10−5 we say there is an epidemic. If either of the means

is less than or equal to 1× 10−5 or the means differ by more than a factor of 30 we say that the

model is approaching a disease free equilibrium. Refer to Appendix A.2 for a detailed view of

the program. This is repeated for the α endpoints 0.2, 0.3, . . . , 1. The results of this experiment

Table 3.1: Multiple trial run results for our stochastic SIS model with uniform parameters.
Infected class mean of 1000 trails after 1000, 10000 and 100000 time steps and deterministic
Rd0.

α σ Rd0 t=1,000 t=10,000 t=100,000

[0, .4] [.5, .7] 0.3̄ 1.1506 · 10−227 0 0
[.3, .4] [.1, .2] 2.3̄ 34.1231 34.3557 34.0874
[.4, .6] [.35, .55] 1.1̄ 5.5527 5.6389 5.5010
[.3, .7] [.25, .65] 1.1̄ 6.5698 6.9806 7.4433
[.2, .8] [.25, .75] 1.1̄ 2.6205 3.1808 3.9760
[.4, .6] [.3, .5] 1.25 19.1799 19.3276 19.8807
[.3, .7] [.3, .5] 1.25 18.1380 18.3112 18.1623
[0, .5] [0, .4] 1.25 13.6954 14.3214 14.3711
[0, .5] [0, .47] 1.0638 0.3614 1.4550 · 10−5 7.1654 · 10−169

Table 3.2: Approximation of the smallest value of σmax for the interval [0, σmax] which results
in an endemic disease. The parameters α and σ follow a uniform distribution and α ∈ [0, αmax].

αmax σmax

0.2 0.1906
0.3 0.2717
0.4 0.3751
0.5 0.4608
0.6 0.5411
0.7 0.6140
0.8 0.7017
0.9 0.7763
1.0 0.8452
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Figure 3.2: Linear regression describing an approximate relationship between αmax and σmax

when α and σ follow a uniform distribution. This line represents the dividing line between
epidemic and disease free parameter sets. The regression is σ = 0.8235α + 0.0365 with r2 =
0.9979.

are show in table 3.2.

From this data we find the linear regression shown in figure 3.2 given by σ = 0.8235α+0.0365.

In the deterministic case the slope of this line would be one. We see here that by adding

stochasticity into our model the behavior of the threshold parameter changes. If the α interval

and the σ interval both begin at zero and the choice for αmax and σmax give a point above the

line in figure 3.2 we should expect the disease be eradicated over time. If the choice of αmax

and σmax is below the line we expect the disease to persist.

3.2 Poisson parameters

Using the same approach as the uniform distribution we examine similar experiments for the

model (1.1) with parameters that follow a Poisson distribution. Figure 3.3 shows three sample

paths for the stochastic model with Poisson parameters α and σ. The parameter ranges are

the same as those in figure 3.1. Comparing these two images we can see that a shift has

occurred when we change from uniform to Poisson. Intervals which produced a disease free

result with uniform parameters may produce an endemic result when the parameters follow

Poisson distribution. Based on the difference between figure 3.1 and figure 3.3 we predict an

increase in the σmax endpoint of the interval [0, σmax] when we run simulations to generate a

table for poisson parameters similar to table 3.2.

We run the same simulations as before when considering uniform parameters but now with
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Figure 3.3: Three sample paths of stochastic epidemic model versus deterministic model over
2000 time steps. Parameters are Poisson with λ = .15 for α ∈ [0, 0.3] and λ = .14 for σ ∈ [0, 0.28];
R0 = 1.071428.

poisson parameters. For all simulations the intervals are of the form [0, αmax] and [0, σmax].The

approximated values for the smallest σmax in the σ interval [0, σmax] are show in table 3.3. Look-

ing at the values in table 3.3 and comparing them to the values found for uniform distributions

in table 3.2 we can see that value for σmax has increased for all αmax as we predicted.

This occurs because the Poisson distribution is concentrated near the mean and the proba-

bility of hitting a value far from the mean is small. In the uniform distribution the probability is

equal for all values in the interval. This means that the overlap for the two intervals describing

α and σ may be larger for Poisson parameters then uniform parameters before we encounter a

deterministic threshold Rd0 greater than one but see disease eradication in practice. The linear

regression, figure 3.4, σ = 0.9874α + 0.0022 with r2 = 0.9999 shows a visible increase in the

α coefficient of the regression from uniform to poisson. As before if the α interval and the σ

interval both begin at zero and the choice for αmax and σmax give a point above the line in

figure 3.4 we should expect the disease be eradicated over time. If the choice of αmax and σmax

is below the line we expect the disease to persist.

In table 3.4 we see the effect of the σ interval on the stochastic model behavior. The α

interval is fixed for each set of trial runs. We illustrate the behavior of the infected class mean

for 1,000 trials for different choices of the σ interval. The table shows us that when σmax = 0.695

the disease persists in a very small portion of the population and when σmax is increased to

0.699 the disease is eradicated. This indicates at some point between 0.695 and 0.699 the model

changes behavior. If we look at table 3.3 we approximated σmax = 0.6958 when α ∈ [0, 0.7]

which is between 0.695 and 0.699 as we expected.
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Table 3.3: Approximation of the smallest value of σmax for the interval [0, σmax which results
in an endemic disease. The parameter α ∈ [0, αmax and α and σ follow a Poisson distribution.

αmax σmax

0.2 0.1986
0.3 0.2988
0.4 0.3977
0.5 0.4966
0.6 0.5943
0.7 0.6958
0.8 0.7876
0.9 0.8923
1.0 0.9899

Table 3.4: Multiple trial run results for our stochastic SIS model with poisson parameters.
Infected class mean of 1000 trails after 1000, 10000 and 100000 time steps and deterministic
Rd0 are shown.

α λα σ λσ mean R0 t=1,000 t=10,000 t=100,000

[0, .7] .35 [0, .6] .3 1.6̄ 13.8054 13.6855 13.6347
[0, .7] .35 [0, .675] .3375 1.037 2.9662 2.9247 2.9111
[0, .7] .35 [0, .695] .3475 1.0072 0.0879 0.0434 0.0248
[0, .7] .35 [0, .699] .3495 1.00143 0.417 · 10−4 40.1212 · 10−28 0.75 · 10−62
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3.3 Stochastic threshold parameter

It is apparent that the deterministic threshold does not accurately predict the behavior of our

stochastic model . To descibe the long term behavior of our stochastic model we must establish

a new stochastic threshold. We adapt the ideas of Lewontin and Cohen[12] from population

models to epidemic models to build our stochastic threshold. The linearization of (1.1) is

I(t+ 1) = (α+ 1− σ)I(t). (3.1)

In the deterministic model we can rewrite this linearization as

I(n) = (α+ 1− σ)nI(0). (3.2)

In our stochastic model the parameters α and σ vary over time and the coefficient (α+ 1− σ)

is different at each time step. Thus the linearization for the stochastic model is

I(n) =
(
α(n) + 1− σ(n)

)
· · ·
(
α(1) + 1− σ(1)

)
I(0) (3.3)

where α(i) and σ(i) are the values of the parameters α and σ at time i. The parameters α and σ

are assumed to be i.i.d. and have finite mean since 0 ≤ α, σ ≤ 1. This means that if we consider

a new parameter li = α(i) + 1− σ(i), the li are i.i.d. and also have finite mean. To show there

is disease persistence in the model we need to know the probability that limt→∞ I(t) greater
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Figure 3.4: Linear regression of approximation relationship between the α max and σ max.
This line represents the dividing line between epidemic and disease free parameter sets with
Poisson parameters. The regression is σ = 0.9874α+ 0.0022 with r2 = 0.9999.
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than zero. In our model since the population is constant we first consider the probability

Pr{A ≤ I(n) ≤ B} (3.4)

where 0 < A,B < N and N is the total population. Since the natural logarithm is a monotone

function we can say

Pr{A ≤ I(n) ≤ B} = Pr{ln(A) ≤ ln(I(n)) ≤ ln(B)} [12]. (3.5)

For our model

ln(I(n)) = ln
[((

α(n) + 1− σ(n)
)
· · ·
(
α(1) + 1− σ(1)

))
I(0)

]
(3.6)

which can be simplified to

ln(I(n)) =
n∑
i=1

ln
((
α(i) + 1− σ(i)

))
+ ln

(
I(0)

)
=

n∑
i=1

ln(li) + ln
(
I(0)

)
. (3.7)

We substitute this into (3.5) and simplify to get

Pr{A ≤ I(n) ≤ B} = Pr

{
ln

(
A

I(0)

)
≤

n∑
i=1

ln(li) ≤ ln

(
B

I(0)

)}
[12]. (3.8)

We can take the time average of the right hand side of (3.8) to get

Pr{A ≤ I(n) ≤ B} = Pr

{
1

n
ln

(
A

I(0)

)
≤ ˆln(li) ≤

1

n
ln

(
B

I(0)

)}
(3.9)

where ˆln(li) is the arithmetic mean of ln(li) over n time steps[12]. Since we have already es-

tablished the li are i.i.d. and have finite mean then ln(li) has mean µln(li) and variance ρln(li)

the Central Limit Theorem tells us that ˆln(li) over large samples is normally distributed with

mean µln(li) and variance ρln(li)[12]. Lewontin and Cohen[12] define the values

τ1 =

1
n ln

(
A
I(0)

)
− µln(li)

ρln(li)/
√
n

, τ2 =

1
n ln

(
B
I(0)

)
− µln(li)

ρln(li)/
√
n

, (3.10)

so that

Pr{A ≤ I(t) ≤ B} ≈ Pr{τ1 ≤ τ ≤ τ2}. (3.11)

The way τ1 and τ2 are defined Pr{τ1 ≤ τ ≤ τ2} is the standardized normal integral between

τ1 and τ2 [12]. When µln(li) is less than zero the value τ1 is positive and grows towards infinity.
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As τ1 grows the normal integral between τ1 and τ2 shrinks and approaches zero. This means if

µln(li) is less than zero the model approaches a disease free equilibrium. If µln(li) is greater than

zero the disease persists over time with in the population[12]. We use these results by Lewontin

and Cohen[12] to build a stochastic threshold parameter for our model.

We define this new threshold as

Rs0 = E(ln(α+ 1− σ)). (3.12)

IfRs0 is less than zero we expect our stochastic SIS model to approach a disease free equilibrium

If Rs0 is greater than zero we expect the disease to persist over time. This type of threshold

parameter has been employed previously in work on populations models but has yet to find

prominence in the application to disease models [9, 7, 12, 13]. This new threshold parameter

allows us see a clearer picture of the behavior of the stochastic model over time.

Table 3.5 demonstrates the improvement over the deterministic threshold Rd0 by using the

new stochastic threshold parameter Rs0. One important example given in table 3.5 is when

α ∈ [0, .8] and σ ∈ [0, .71224]. In this example Rd0 is greater than one which tells us that the

disease may remain in the population. The numerical simulation in table 3.5 show the model

goes to what we consider a disease free state. In table 3.5 we see that Rs0 is less than zero

which agrees with what we see numerically. Using this new threshold parameter we can more

accurately predict the behavior of our stochastic model.

Table 3.5: Stochastic epidemic model infected class mean of 1000 trails after 1000, 10000 and
100000 time steps with uniform parameters from various intervals. The deterministic Rd0 and
stochastic threshold Rs0 are given.

α σ t=1,000 t=10,000 t=100,000 Rd0 Rs0
[0, .5] [0, .5] 2.3919 · 10−4 1.6118 · 10−71 4.9407 · 10−324 1 -0.00549
[0, .2] [0, .213] 0.0051 4.3004 · 10−34 5.6389 · 10−83 0.9389 -0.01016
[0, .2] [0, .1813] 6.4936 6.4995 6.5383 1.1031 0.00635
[0, .3] [0, .2717] 5.1390 5.0421 5.3456 1.6547 0.00731
[0, .4] [0, .3739] 1.3223 0.4341 0.2723 1.0698 0.00042
[0, .8] [0, .71224] 0.4525 0.0059 9.2660 · 10−54 1.1232 -0.01338
[0, .2] [0, .199] 0.4147 3.2471 · 10−5 1.9081 · 10−35 1.00502 -0.00284
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Chapter 4

Multi-Stage stochastic epidemic

model

4.1 Overview

To further expand this model we now incorporate our stochastic parameters into the multi-

stage model (2.1). In this model each parameter αi and σi for, i = 1, . . . , n, is i.i.d. and follow a

uniform distribution. If we wish to apply our threshold parameter from chapter 3 we consider

the linearization (2.2). In the one stage model the form of the I(t) coefficient allowed us to

simplify (3.1) to (3.2). In the multistage SI1 · · · InS model linearization (2.2) the I(t) coefficient

is

L =



α1 + 1− σ1 α2 · · · · · · αn

σ1 1− σ2 0 · · · 0

0 σ2 1− σ3 0 · · ·
...

...
. . .

. . .
...

0 0 · · · σn−1 1− σn


. (4.1)

This raises several questions. If we approach building a new threshold parameter in the

same way we have

Rs0 = E(ln(Ln · · ·L1)). (4.2)

This would result in a matrix valued threshold parameter. This does not provide us the infor-

mation we desire so we have to adapt the threshold parameter to the multi-stage model. We

would like to adapt the threshold parameter in a way that preserves the integrity of the our

threshold parameter for the single stage model (3.12).

We begin by considering a simplified example to demonstrate the same behavior from one
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stage models carries over into multi-stage models. Here we consider the two stage SI1I2S model

S(t+ 1) =

(
1− α1I1(t)

N
− α2I2(t)

N

)
S(t) + σ2I2(t)

I1(t+ 1) =

(
α1I1(t)

N
+
α2I2(t)

N

)
S(t) + (1− σ1)I1(t)

I2(t+ 1) = σ1I1(t) + (1− σ2)I2(t). (4.3)

The linearization of the two stage SI1I2S model is

I(t+ 1) =

(
α1 + 1− σ1 α2

σ1 1− σ2

)
I(t). (4.4)

The deterministic threshold parameter R0 = ρ(Kd) for (4.3) is

Rd0 =
α1

σ1
+
α2

σ2
. (4.5)

For the two stage model the matrix L is

L =

(
α1 + 1− σ1 α2

σ1 1− σ2

)
. (4.6)

Unlike before the linearization does not simplify nicely. Because we are now dealing with ma-

trices it is important to realize that at each time step the entries within matrix L change and

as a result Li may not commute with Li+1 for any i. We can write our model as

I(n) = LnLn−1 · · ·L1I(0) (4.7)

where Li is the matrix (4.6) at time i. Where we were previously able to simplify the natural

logarithm we can not because the matrices do not commute and ln(AB) = ln(A) + ln(B) only

if the matrices A and B commute.

4.2 Numerical simulations

To begin our analysis of muti-stage models we look at numerical simulations of the SI1I2S

model (4.3). In the two stage model we have four parameters α1, α2, σ1 and σ2 which vary over

time. The four parameters each follow a uniform distribution over some interval. Let α1 and α2

be chosen from the same interval and σ1 and σ2 from the same interval. We create a program

in MATLAB to run 1,000 trials of our SI1I2S model and calculate the mean for the I1 and

I2 class at certain time steps. Refer to appendix A.3. Table 4.1 shows the results for different
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interval choices and also provides the deterministic threshold calculated using the parameter

means.

As we would expect the our stochastic model may go to a disease free equilibrium when the

deterministic threshold based on parameter means is greater than one. An interesting obser-

vation we can make from these numerical examples is that when σmax approaches twice αmax

we have a deterministic threshold greater one but in practice the model goes to a disease free

equilibrium. The deterministic threshold (4.5) simplifies to

Rd0 = 2
µ(α1)

µ(σ1)
(4.8)

Table 4.1: Numerical examples of a stochastic SI1I2S model where α1 is uniform over the same
interval as α2. Similarly the parameter σ1 is uniform over the same interval as σ2. The table
contains the two infected class means of 1000 trails after 1000, 10000 and 100000 time steps
with initial conditions S(0) = 99, I1(0) = 1, and I2(0) = 1. The deterministic Rd0 is calculated
using the means value of each parameter.

α1, α2 σ1,σ2 t=1,000 t=10,000 t=100,000 Rd0
[0, 0.2] [0, 0.35] 5.2626 5.2272 5.3399 1.14286
[0, 0.2] [0, 0.39] 0.1602 0.4413 · 10−5 0.5925 · 10−92 1.02564
[0, 0.3] [0, 0.5] 6.9422 6.9458 7.0635 1.2
[0, 0.3] [0, 0.59] 0.1362 1.0224 · 10−4 8.0984 · 10−119 1.01695
[0, 0.3] [0, 0.6] 0.0280 1.2046 · 10−12 6.1544 · 10−270 0.9836
[0, 0.4] [0, 0.75] 0.9871 0.8282 0.9618 1.06̄
[0, 0.4] [0, 0.78] 0.0719 5.9337 · 10−13 1.5511 · 10−215 1.0256
[0, 0.4] [0, 0.8] 0.0015 0.2566 · 10−42 0 1

(a) I1

α1, α2 σ1,σ2 t=1,000 t=10,000 t=100,000 Rd0
[0, 0.2] [0, 0.35] 5.3874 5.2678 5.2922 1.14286
[0, 0.2] [0, 0.39] 0.1616 0.3554 · 10−5 0.5125 · 10−92 1.02564
[0, 0.3] [0, 0.5] 6.9852 6.9737 6.9994 1.2
[0, 0.3] [0, 0.59] 0.1386 9.8186 · 10−5 5.8915 · 10−119 1.01695
[0, 0.3] [0, 0.6] 0.0250 1.7066 · 10−12 2.6788 · 10−270 0.9836
[0, 0.4] [0, 0.75] 0.9576 0.7957 0.8449 1.06̄
[0, 0.4] [0, 0.78] 0.0777 1.2560 · 10−12 9.3813 · 10−216 1.0256
[0, 0.4] [0, 0.8] 0.0013 0.2468 · 10−42 0 1

(b) I2
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since α1 and α2 are over the same interval they have the same mean, µ(α1). The same can be

said of the parameters σ1 and σ2. Thus for the deterministic threshold Rd0 to equal one µ(σ1)

must be greater than or equal to twice µ(α1). Since we expect to see disease extinction when

the deterministic threshold is greater one is is not surprising to see the shift happen when σmax

close to twice αmax.

For our next set of numerical simulations we assign an interval to each parameter and observe

the behavior of each infected class over time. These simulations are shown in table 4.2. We see

that more most of our simulations the deterministic threshold Rd0 is a good indicator of the

model behavior. The simulations of interest in table 4.2 are the last three simulations. In these

simulations the parameters α1, σ1 and σ2 are uniform over the same interval for all three trials.

The σ1 interval is the only change between simulations. Looking at these three simulations we

see the deterministic threshold Rd0 decrease and the behavior of the model switch from disease

persistence to disease extinction. When σ1 ∈ [0, 0.55] the deterministic threshold is greater than

one but the model goes to a disease free state.

4.3 Commuting matrices

To simplify our analysis we now consider the rare case where the matrices Li do commute.

Commuting matrices provide a simple example since (4.2) can now be simplified to,

Rs0 = E

(
n∑
i=1

ln(Li)

)
. (4.9)

If we follow the same basic argument and take the time average we can express the threshold

parameter more simply as

Rs0 = E
(

ln(L)
)
. (4.10)

This Rs0 is matrix valued and does not provide the information we want for the model. To cope

with this issue we observe the eigenvalues for the matrices.

First we must find commuting matrices that satisfy the conditions on the parameters αi

and σi, 0 ≤ α1, α2, σ1, σ2 ≤ 1. Choose a matrix B,

B =

(
0.7 0.2

0.8 0.5

)
(4.11)

where α1 = 0.5, α2 = 0.2, σ1 = 0.8 and σ2 = 0.5. If we consider this matrix in the deterministic

model Rd0 = 1.025 which means the disease is endemic. Fixing this matrix we find matrices

with valid entries which commute with B.
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The first commuting matrix we chose is

A1 =

(
0.3 0.2

0.8 0.1

)
(4.12)

where α1 = 0.1, α2 = 0.2, σ1 = 0.8 and σ2 = 0.9. If we consider this matrix in the deterministic

model Rd0 = 0.34722 and the disease is eradicated. We now have two commuting matrices with

different deterministic Rd0 values. The product of these two matrices

BA1 =

(
0.37 0.16

0.64 0.21

)
(4.13)

has a deterministic Rd0 = 0.2181566.

We use these two matrices to generate a simple stochastic SI2I2S model by randomly

Table 4.2: Numerical examples of a stochastic SI1I2S model. Parameters α1, α2, σ1 and σ2
are uniform over the interval given. The table contains the two infected class means of 1000
trails after 1000, 10000 and 100000 time steps with initial conditions S(0) = 99, I1(0) = 1, and
I2(0) = 1. The deterministic Rd0 is calculated using the means value of each parameter.

α1 α2 σ1 σ2 t=1,000 t=10,000 t=100,000 Rd0
[0.2, 0.3] [0.3, 0.4] [0, 0.2] [0, 0.2] 41.6579 41.5514 41.5605 6
[0, 0.2] [0, 0.2] [0.6, 0.8] [0, 0.5] 0.1150 · 10−49 0 0 0.54285
[0, 0.1] [0, 0.5] [0, 1] [0, 1] 5.3272 · 10−61 0 0 0.6
[0, 0.2] [0.4, 0.6] [0, 0.25] [0, 0.8] 38.0228 38.3215 38.1930 2.05
[0, 0.2] [0.4, 0.6] [0, 0.6] [0, 0.8] 19.8131 19.8854 19.7090 1.583̄
[0, 0.2] [0, 0.6] [0, 0.6] [0, 0.8] 1.9263 1.9943 2.0670 1.083̄
[0, 0.2] [0, 0.55] [0, 0.6] [0, 0.8] 0.1454 2.4367 · 10−5 2.7525 · 10−151 1.02083
[0, 0.2] [0, 0.4] [0, 0.6] [0, 0.8] 8.5438 · 10−16 2.0028 · 10−176 0 0.83̄

(a) I1

α1 α2 σ1 σ2 t=1,000 t=10,000 t=100,000 Rd0
[0.2, 0.3] [0.3, 0.4] [0, 0.2] [0, 0.2] 41.4177 41.4582 41.4795 6
[0, 0.2] [0, 0.2] [0.6, 0.8] [0, 0.5] 0.6163 · 10−49 0 0 0.54285
[0, 0.1] [0, 0.5] [0, 1] [0, 1] 6.4059 · 10−61 0 0 0.6
[0, 0.2] [0.4, 0.6] [0, 0.25] [0, 0.8] 12.1596 11.6508 11.8227 2.05
[0, 0.2] [0.4, 0.6] [0, 0.6] [0, 0.8] 14.7394 14.8360 15.1986 1.583̄
[0, 0.2] [0, 0.6] [0, 0.6] [0, 0.8] 1.4257 1.5367 1.5173 1.083̄
[0, 0.2] [0, 0.55] [0, 0.6] [0, 0.8] 0.1028 4.7676 · 10−5 2.8302 · 10−151 1.02083
[0, 0.2] [0, 0.4] [0, 0.6] [0, 0.8] 8.9781 · 10−16 2.4334 · 10−176 0 0.83̄

(b) I2
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choosing which of the two matrices to apply at each time step. Each of the two matrices has

equal probability, 1
2 , of being applying at any time step. Figure 4.1a shows two sample runs

of the model (4.3) with the commuting matrices A1 and B. In the case of these choices for

commuting matrices the model goes disease free.

We can calculate the expected value for the matrix L at each time step. In this case there

are only two possibilities each of equal probability, 1
2 , i.e. at each time step L = B or L = A1.
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Figure 4.1: Initial conditions S(0) = 99, I1(0) = 1, I2(0) = 1 . Two sample paths of a stochastic
SI1I2S epidemic model 50 time steps. With commuting matrices B and (a)A1, (b) A2, and (c)
A3.
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Table 4.3: Comparison of the deterministic threshold Rd0 and eigenvalues for matrix B and our
choices for a commuting matrix; A1, A2, A3.

Matrix ρ Rd0
B 1.01231 1.025
A1 0.612311 0.34722
BA1 0.619848 0.2181566
1
2(B +A1) 0.812311 0.66071
A2 0.992311 0.98461
BA2 1.00453 1.0077
1
2(B +A2) 1.00231 1.0046
A3 0.987811 0.97569
BA3 0.999971 0.99995
1
2(B +A3) 1.00006 1.001219

The expectation matrix is E(L) = 1
2(A1 +B),

E(L) =

(
0.5 0.2

0.8 0.3

)
. (4.14)

If we consider this matrix for a deterministic model the parameters are α1 = 0.3, α2 = 0.2,

σ1 = 0.8 and σ2 = 0.7 with R0 = 0.6671.

To investigate the threshold parameter we calculate the eigenvalues for the matrices B, A1,

BA1, and E(L). We see in table 4.3 for B the deterministic threshold Rd0 is greater than one

and the spectral radius ρ(B) = 1.01231 is greater than one. Similarly we see for matrices A1

and BA1, Rd0 is less than one and the spectral radius for these matrices is also less than one.

For this example the behavior of the stochastic model aligns with the deterministic threshold

for the product matrix BA1 and the deterministic threshold for the expectation matrix.

Consider a different commuting matrix

A2 =

(
0.68 0.2

0.8 0.48

)
(4.15)

where α1 = 0.48, α2 = 0.2, σ1 = 0.8 and σ2 = 0.52. The deterministic model for A2 is disease

free with Rd0 = 0.9846 less than one. Again the commuting matrices B and A2 have different
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deterministic behavior. Their product

BA2 =

(
0.636 0.236

0.944 0.4

)
(4.16)

Rd0 = 1.0077 so the disease is endemic. With this choice of commuting matrices we have two

matrices with different deterministic behavior whose product results in a model with endemic

behavior. The previous choice for a commuting matrix also had different deterministic behavior

than B but the product resulted in a disease free model. This shows that it is possible to mix

matrices with different deterministic behavior and get either a disease free or epidemic result.

We can calculate the expected value for the matrix L at each time step. In this case there

are only two possibilities each of equal probability, 1
2 , i.e. at each time step L = B or L = A2.

The expectation matrix is E(L) = 1
2(A2 +B),

E(L) =

(
0.69 0.2

0.8 0.49

)
. (4.17)

If we consider this matrix for a deterministic model the parameters are α1 = 0.49, α2 = 0.2,

σ1 = 0.8 and σ2 = 0.51 with R0 = 1.00231.

Figure 4.1b shows two trial runs of (4.3) with commuting matrices A2 and B. In this case

it is harder to see the behavior of the stochastic model. To investigate the long term behavior

of the model we run a larger number trials over large time steps to determine the expected

behavior. In figure 4.2 the mean value of I1 over 1,000 trials is 0.1763 at 100,000 time steps.

After 300, 000 times steps the mean value of I1 is 0.1752. The difference between the mean at

100,000 times steps and 300,000 times steps is small enough that we say there is an epidemic.

We observe a similar variation in the I2 mean at 100,000 and 300,000. The spectral radius for

A2, ρ(A2) = 0.98461 is less than one and for the product matrix BA2, ρ(BA2) = 1.00453 is

greater than one and agrees with the deterministic threshold for A2 and BA2 as we see in table

4.3. The deterministic threshold for the expectation matrix is also greater than one.

The previous two examples give the false impression that the stochastic threshold param-

eter is equivalent to the deterministic threshold parameter of the expectation matrix or the

deterministic threshold of the product matrix. To show this does not hold for all commuting

matrices consider the matrix

A3 =

(
0.6755 0.2

0.8 0.4755

)
(4.18)

where α1 = 0.4755, α2 = 0.2, σ1 = 0.8 and σ2 = 0.5245. The deterministic model for A3

goes to a disease free equilibrium with R0 = 0.97569. As with the previous examples the two

commuting matrices B and A3 have different deterministic behavior. Figure 4.1c shows two
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trial runs of (4.3) with commuting matrices B and A3. After 50 time steps the behavior of the

stochastic model is unclear. In figure 4.3 we observe I1 and I2 after 100,000 and 300,000 time

steps and 1,000 trials. After 100,000 and 300,000 time steps there is a noticeable shift in the I2

mean from 0.0016 to 4.8823 · 10−4. After 300,000 times steps the infected class means are small

enough we say the disease has been effectively eradicated and the model goes to a disease free

state.

The product matrix for B and A3

BA3 =

(
0.63285 0.2351

0.9404 0.39775

)
(4.19)

where α1 = 0.57325, α2 = 0.2351, σ1 = 0.9404 and σ2 = 0.60225 with deterministic R0 =

0.99995.

We can calculate the expected value for the matrix L at each time step. In this case there

are only two possibilities each of equal probability, 1
2 , i.e. at each time step L = B or L = A3.

The expectation matrix is E(L) = 1
2(A3 +B),

E(L) =

(
0.68775 0.2

0.8 0.48775

)
. (4.20)

If we consider this matrix for a deterministic model the parameters are α1 = 0.48775, α2 = 0.2,

σ1 = 0.8 and σ2 = 0.51225 with R0 = 1.001219.

In this example we encounter the first disagreement between the deterministic threshold

for the product matrix and the deterministic threshold for the expectation matrix. The deter-

ministic threshold for the product matrix points to the stochastic model approaching a disease

free state. The expectation matrix threshold predicts an endemic disease state for the model.

In our numerical examples we observe that the model with commuting matrices A3 and B goes

to a disease free state. This tells us that the expectation matrix is not a good indicator of the

behavior of the stochastic model.

In this overly simplified model it appears as though an appropriate threshold would be

Rs0 = E(ρ(AB)). (4.21)

There are several problems with this threshold. The first issues is that when we apply this to

our one stage model we would have a threshold parameter R0 = E(α + 1 − σ). We know this

type of parameter does not give an accurate representation of the behavior of the model based

on our findings in chapter 2. This means we should not use (4.21) as our threshold parameter.

Consider the application of the method in one stage models to multi-stage that gave (4.10).
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Table 4.4: Eigenvalues of natural logarithms of commuting matrix products.

Matrices λ1 λ2

ln(BA1) −0.4782 + 7.6478 · 10−10i −3.2267 + 3.14159i
ln(BA2) 0.0045 -3.458608
ln(BA3) -0.0000029 -3.4858101

In the deterministic model we utilize the spectral radius to describe the overall behavior of the

model. In a similar fashion we look at the eigenvalues of the product matrix BAi and look at the

maximum eigenvalue instead of the maximum absolute value. Let λ1 and λ2 be the eigenvalues

of the matrix L. We can rewrite (4.10) as

Rs0 = E (max{Real(λ1),Real(λ2)}) . (4.22)

where Real(λi) is the real part of λi. Table 4.4 shows the results for this threshold parameter

with our three choices of commuting matrices. We see based on the table that when the real

part of the largest eigenvalue is less than zero the model goes to a disease free state and when

it is greater than zero the disease persists within the population. Now that we have an idea for

the two-stage model in a simplified case we investigate the reliability of the threshold in a more

complex setting.

4.4 Non-commuting matrices

Consider now the case where we are not guaranteed that any of the matrices Li commute.

Our argument for the threshold parameter (4.22) now breaks down since we can no longer

simplify the natural logarithm of the product Ln · · ·L1. Through numerical simulations we can

see that the inability to simplify the natural logarithm nullifies the usability of the threshold

parameter (4.22). In the SI1I2S model we now choose each parameter randomly at time t based

on a distribution. This changes the way we calculate the expected value. First we calculate the

eigenvalues of ln(L) in the two-stage model,

λ1,2 = ln

(
1

2

(
r + 1− σ2 ±

√
(σ2 − 1− r)2 − 4(r − rσ2 − α2σ1)

))
. (4.23)

Calculating the expected value for the eigenvalues can become difficult very quickly. Here in the

two-stage model we already see a large increase in computational difficultly from the one-stage

model.

27



To simplify our calculations we consider the case where the parameters α1, σ1, and σ2 are

fixed and we allow only α2 to vary over time. In table 4.5 we see the mean of the I1 and I2

classes as time progress in comparison to both the deterministic threshold, calculated using the

parameter means, and our theoretical stochastic threshold (4.22). In this table we see that (4.22)

correctly predicts the model behavior for most cases including several which have deterministic

threshold greater than one but go to a disease free equilibrium. The case of interest is when

α2 ∈ [0, 0.85] where the numerical simulation shows the disease persisting in the population but

Rs0 is less than zero. This occurs because our choice of Rs0 require that the matrices commute

which is not true.

We see that when the deterministic threshold is close to oneRs0 is not reliable. The threshold

Rs0 passes zero and changes sign earlier then it should. Since Rs0 is an increasing function we

can conclude that it accurately predicts behavior when the deterministic threshold is less than

1. Once the deterministic threshold is greater than 1 Rs0 may become inaccurate. However as

the deterministic threshold increases from 1 there is a higher likely hood that Rs0 describes the

model.

While this is an interesting observation we would like to determine a stochastic threshold

parameter that does not rely on the deterministic threshold and is accurate for all parameter

choices. This requires more research. In special case where the determinate of the matrix is one

matrix norms have been used to establish a threshold parameter Watkins[14]. The determinate

for the matrix L is not one and the matrix norm approach raises more questions and requires

the calculations of random Liapounov characteristics which are known to be computationally

complex. More analysis is required to further understand the stochastic model and determine

an accurate stochastic threshold to predict disease epidemics and eradication.
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Table 4.5: Numerical examples of a stochastic SI1I2S model. The parameters α1, σ1 and σ2 are
fixed and parameter α2 is uniform over the given interval. The table contains the two infected
class means of 1000 trails after 1000, 10000 and 100000 time steps with initial conditions
S(0) = 99, I1(0) = 1, and I2(0) = 1. The deterministic Rd0 is calculated using the means value
of each parameter. Rs0 is the expectation of the maximum of the real part of the eigenvalues of
L.

α1 α2 σ1, σ2 t=1,000 t=10,000 t=100,000 Rd0 Rs0
0 .4 [0, 0.2] σ1 = .4, σ2 = .5 9.2080 9.1498 9.1775 1.2 0.010518
0 .4 [0, 0.3] σ1 = .4, σ2 = .5 12.7051 12.6299 12.6808 1.3 0.02727
0 .4 [0, 0.5] σ1 = .4, σ2 = .5 18.2603 18.2938 18.3252 1.5 0.671718
0 .4 [0, 1] 0.8 4.0182 4.1669 4.3129 1.125 0.01537
0 .4 [0, 0.85] 0.8 0.3812 0.3066 0.2653 1.03125 -0.02198
0 .4 [0, 0.81] 0.8 0.0062 0.1062 · 10−22 0 1.00625 -0.03056
0 .4 [0, 0.8] 0.8 0.0020 0.1523 · 10−39 0 1 -0.03260
0 .4 [0, 0.6] 0.8 0.5248 · 10−32 0 0 0.875 -0.06462
0 .4 [0, 0.4] 0.8 0.2801 · 10−71 0 0 0.75 -0.07662

(a) I1

α1 α2 σ1, σ2 t=1,000 t=10,000 t=100,000 Rd0 Rs0
0 .4 [0, 0.2] σ1 = .4, σ2 = .5 7.3653 7.3293 7.3444 1.2 0.010518
0 .4 [0, 0.3] σ1 = .4, σ2 = .5 10.1958 10.1139 10.1380 1.3 0.02727
0 .4 [0, 0.5] σ1 = .4, σ2 = .5 14.6418 14.6588 14.6361 1.5 0.671718
0 .4 [0, 1] 0.8 3.9519 4.1401 4.3308 1.125 0.01537
0 .4 [0, 0.85] 0.8 0.3922 0.3078 0.2648 1.03125 -0.02198
0 .4 [0, 0.81] 0.8 0.0060 0.0851 · 10−22 0 1.00625 -0.03056
0 .4 [0, 0.8] 0.8 0.0020 0.1339 · 10−39 0 1 -0.03260
0 .4 [0, 0.6] 0.8 0.6083 · 10−32 0 0 0.875 -0.06462
0 .4 [0, 0.4] 0.8 0.3726 · 10−71 0 0 0.75 -0.07662

(b) I2
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Figure 4.2: Histogram of infected class means of 1,000 trial runs after 100,000 (a) and (b) and
300,000 (c) and (d) of the SI1I2S model with commuting matrices B and A2. After 100,000
times steps and 1,000 trials the mean µ(I1) = 0.1763 and µ(I2) = 0.2766. At 300,000 times
steps the means are µ(I1) = 0.1752 and µ(I2) = 0.2748. Initial conditions S(0) = 99, I1(0) = 1,
I2(0) = 1.
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Figure 4.3: Histogram of infected class means of 1,000 trial runs after 100,000 (a) and (b) and
300,000 (c) and (d) of the SI1I2S model with commuting matrices B and A3. After 100,000
times steps and 1,000 trials the mean µ(I1) = 9.9738 · 10−4 and µ(I2) = 0.0016. At 300,000
times steps the means are µ(I1) = 3.1260 · 10−4 and µ(I2) = 4.8823 · 10−4. Initial conditions
S(0) = 99, I1(0) = 1, I2(0) = 1.
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Chapter 5

Conclusion

Stochastic epidemic models are important in providing a more realistic model of disease spread

in populations. The infection rate and recovery rate in practice are not constant and change

over time as a result of many factors. The environment is in a constant state of change and

effects a population’s ability to fight an infectious disease. To account for variation in infection

rate and recovery rate over time we add stochasticity into our epidemic model. There are

several approaches to introduce stochasticity into epidemic models. We have chosen to introduce

stochasticity by allowing the individual parameters which govern infection rate and recovery rate

to vary over time according to a distribution. We can limit the interval over which the parameter

varies. This means given data we can determine an approximate range and distribution for each

parameter and build a model.

We aimed to determine a threshold parameter for this stochastic model. In the one-stage

SIS model we were successful. The stochastic threshold Rs0 = E
(

ln(α + 1 − σ)
)

determines

the expected behavior of the stochastic model. If Rs0 is less than zero the disease is eradicated

and the population reaches a disease free equilibrium. If Rs0 greater than zero then the disease

persists in the population. The parameter was derived from a similar threshold for populations

models.

When we try to expand this stochastic threshold parameter into multi-stage models we

encounter issues with random matrices. The random matrices for our model do not commute

and the stochastic threshold expanded into multi-stage models breaks down. It is possible that

the expansion of our one-stage threshold parameter breaks down at the start and we have

approach the multi-stage model in a entirely different way. More research into a stochastic

threshold for these models is required.
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Appendix A

Programs

A.1 SIS Uniform

t = 50;

trials = 2;

alpha = [0 0.4];

sigma = [0 0.9];

for n = 1:trials

W = RandStream(’mt19937ar’,’Seed’,’shuffle’);

RandStream.setGlobalStream(W);

alpha = alpha(1)+(alpha(2)-alpha(1)).*rand(W,t,1);

sigma = sigma(1)+(sigma(2)-sigma(1)).*rand(t,1);

N= 100;

I = 1;

S = N-I;

PredI(1) = I;

for i =2:t

Snew = (1-Ich(i)*I/N)*S + sigma*I;

Inew = (Ich(i)*I/N)*S + (1-sigma)*I;

S = Snew;

I = Inew;
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PredI(i) = I;

end

figure(1)

plot(1:1:t, PredI,’r--’,’LineWidth’,2)

hold on

xlabel(’Time’)

ylabel(’Infected’)

end

%Deterministic Model

I = 1;

S = N-I;

DetI(1)=I;

alpha = (alpha(2)-alpha(1))/2;

sigma = (sigma(2)-sigma(1))/2;

for i =2:t

Snew = (1-alpha*I/N)*S + sigma*I;

Inew = (alpha*I/N)*S + (1-sigma)*I;

S = Snew;

I = Inew;

DetI(i) = I;

end

plot(1:1:t,DetI,’LineWidth’,2)

hold off

A.2 Regression

A.2.1 Endpoint search

%seed [S0 I0]

s = [50 50];
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%time

N1 = 100000;

N2 = 300000;

%trials

R = 1000;

%alpha

a = 0.5;

b= 0.2;

%sigma

c = 0.5;

cprime =0.5;

for b=0.5:0.1:1

b

d=1;

i = 1;

clearvars endpoints

while 3<4

SIS = histmean(s,N1,N2,R,a,b,c,d);

endpoints(i,:) = [d, SIS(1), SIS(2)];

i = i+1;

if min(SIS)<= 0.00001

dnew = (cprime+d)/2;

dfe = 0;

if abs(dnew - d) <= 0.001

break

end

d = dnew;

else

cprime=d;

dnew = (d+b)/2;

endemic = 1;

if abs(d-dnew) <= 0.001

break

end

d = dnew;
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end

end

endpoints

end

A.2.2 histmean function

function[Means] = histmean(s,N1,N2,R,a,b,c,d)

close all;

matlabpool 2

%s is the seed (input an ordered pair [S(0) I(0)])

%N = number of iterations

%R = number of trials, or realizations

B=zeros(1,R);

C=zeros(1,R);

A=zeros(N2,R);

parfor r=1:R

W = RandStream(’mt19937ar’,’Seed’,’shuffle’);

RandStream.setGlobalStream(W);

S0=s(1);

I0=s(2);

alpha=a+(b-a).*rand(W,N2,1);

A(:,r)=alpha;

sigma=c+(d-c).*rand(N2,1);

for ic=1:N2

S1=(1-alpha(ic).*I0./sum(s)).*S0+sigma(ic).*I0; %loop function, generates orbits

I1=alpha(ic).*I0./sum(s).*S0+(1-sigma(ic)).*I0;

S0=S1;

I0=I1;

if ic == N1

B(r) = I1;

end

end
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C(r)=I1;

if mod(r,50)==0

r

end

end

M1 = mean(B);

M2 = mean(C);

Means = [M1 M2];

matlabpool close

end

A.3 SI1I2S Uniform

t = 70

trails = 2;

%alpha intervals

a1 = 0;

b1 = .2;

a2 =0;

b2= .4;

% sigma intervals

c1 = 0;

d1 = 0.8;

c2 =0;

d2 =0.85;

for j = 1:n

W = RandStream(’mt19937ar’,’Seed’,’shuffle’);

RandStream.setGlobalStream(W);

N= 100;

I1 = 1;

I2 =1;
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S = N-I1-I2;

yInit = [N-I1 I1 I2]; %initial size of each group [S I1 I2]

PredY(:,1)=yInit;

alpha1 = a1+(b1-a1)*rand(W,t,1);

alpha2 = a2+(b2-a2)*rand(W,t,1);

sigma1 = c1+(d1-c1)*rand(t,1);

sigma2 = c2+(d2-c2)*rand(t,1);

for i =2:t

Snew = (1-(alpha1(i)*I1/N+alpha2(i)*I2/N))*S + sigma2(i)*I2;

I1new = (alpha1(i)*I1/N+alpha2(i)*I2/N)*S + (1-sigma1(i))*I1;

I2new = sigma1(i)*I1 + (1-sigma2(i))*I2;

S = Snew;

I1 = I1new;

I2 = I2new;

PredY(:,i) =[S I1 I2];

end

PredS = PredY(1,:);

PredI1 = PredY(2,:);

PredI2 = PredY(3,:);

figure(k)

plot(1:t, PredI1, ’g--’,’LineWidth’,2)

hold on

plot(1:t, PredI2, ’b--’,’LineWidth’,2)

hold on

xlim([1 t])

xlabel(’Time’)

ylabel(’Number of Infected’)

legend(’I1’,’I2’)

end

%Deterministic Model

N= 100;
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I1 = 1;

I2 = 1;

S = N-I1-I2;

Det(:,1) = [N-I1 I1 I2];

for i =2:t

Snew = (1-((b1+a1)/2*I1/N+(b2+a2)/2*I2/N))*S +(d2+c2)/2*I2;

I1new = ((b1+a1)/2*I1/N+(b2+a2)/2*I2/N)*S + (1-(d1+c1)/2)*I1;

I2new = (d1+c1)/2*I1 + (1-(d2+c2)/2)*I2;

S = Snew;

I1 = I1new;

I2 = I2new;

Det(:,i) =[S I1 I2];

end

DetS = Det(1,:);

DetI1 = Det(2,:);

DetI2 = Det(3,:);

plot(1:t, DetI1, ’g’,’LineWidth’,2)

hold on

plot(1:t, DetI2, ’b’,’LineWidth’,2)

hold off

A.4 Commuting Matrices

t = 300000;

trials = 1000;

alpha1 = [.5 .48];

alpha2 = [.2 .2];

sigma1 = [.8 .8];

sigma2 = [.5 .52];

for n= 1:trials

N= 100;

I1 = 50;
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I2 = 0;

S = N-I1-I2;

for i =1:t

k = randi([1,2]);

Snew = (1-(alpha1(k)*I1/N+alpha2(k)*I2/N))*S + sigma2(k)*I2;

I1new = (alpha1(k)*I1/N+alpha2(k)*I2/N)*S + (1-sigma1(k))*I1;

I2new = sigma1(k)*I1 + (1-sigma2(k))*I2;

S = Snew;

I1 = I1new;

I2 = I2new;

end

I1trial(n) = I1;

I2trial(n) = I2;

end

I1mean = mean(I1trial)

I2mean = mean(I2trial)
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