
ABSTRACT

WILLIAMS, NAKEYA DENISE. Mathematical Modeling of Cardiovascular Dynamics During
Head-up Tilt. (Under the direction of Mette S. Olufsen.)

Short-term cardiovascular responses during head-up tilt (HUT) involve complex regulation

in order to maintain blood pressure at homeostatic levels. Patient specific pulsatile and non-

pulsatile models that use heart rate as an input to predict dynamic changes in arterial blood

pressure during HUT are presented in this dissertation. This study shows how mathematical

modeling can be used to extract features of the system that cannot be measured experimen-

tally. More specifically, it is shown that it is possible to develop mathematical models that

can predict changes in cardiac contractility and vascular resistance, quantities that cannot be

measured invasively, but which are useful to assess the state of the system. The cardiovascu-

lar system is pulsatile, yet predicting the control in response to head-up tilt for the complete

system is computationally challenging, and limits the applicability of the model. Therefore, a

simpler non-pulsatile model is developed that can be interchanged with the pulsatile model,

which is significantly easier to compute, yet it still is able to predict internal variables. The

pulsatile and non-pulsatile models contain five compartments representing arteries and veins

in the upper and lower body of the systemic circulation, as well as the left ventricle. A physi-

ologically based sub-model describes gravitational pooling of blood into the lower extremities

during HUT. For both the pulsatile and non-pulsatile models, cardiovascular regulation models

adjust cardiac contractility and vascular resistance to the blood pressure changes during HUT.

In addition, an optimal control approach involving a direct transcription method, is explored to

predict changes in cardiac contractility and vascular resistance during HUT and head-down tilt

(HDT). Head-down tilt for our purposes is defined as tilting the patient back to supine position

after head-up tilt.

The model is rendered patient specific via the use of parameter estimation techniques.

This process involves sensitivity analysis, prediction of a subset of identifiable parameters, and

nonlinear optimization. The approach proposed here was applied to analysis of carotid blood

pressure (carotid and aortic for the pulsatile model) and heart rate HUT data from healthy

young subjects. Results showed that it is possible to identify a subset of model parameters that

can be estimated allowing the models to predict changes in arterial blood pressure observed at

the level of the carotid bifurcation. It is also shown that a simpler non-pulsatile model can be

used in conjunction with other physiological models, yet still portray the same dynamics as the

pulsatile model. We also show that an optimal control approach is useful for controlling quanti-

ties that effect the cardiovascular system during HUT in comparison to numerical optimization

with piece-wise linear splines. Moreover, the model estimates physiologically reasonable values



for arterial and venous blood pressures, blood volumes, and cardiac output for which data are

not available.
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Chapter 1

Introduction

Orthostatic intolerance (OI) occurs when the act of standing upright causes an imbalance in

blood pressure and flow in the body. It effects an estimated 500,000 Americans and generally

affects young women (female-to-male ratio at least 5:1), typically less than 45 years of age [113].

The majority of these patients experience an exaggerated increase in heart rate (more than 30

beats/minute) when they stand. This boost in heart rate is an indication that the cardiovascu-

lar system is working hard to maintain blood pressure and flow to the brain in the presence of

deficient cardiovascular regulation. Other than hypertension, OI is the most common disorder

associated with blood pressure regulation. It is also the most frequently experienced dysau-

tonomia, the reason for the majority of patients referred to centers specializing in autonomic

disorders. The cause of OI is generally unknown. In fact, it is so poorly understood that over

the years it has been given at least 18 different titles, including neurocirculatory asthenia,

mitral valve prolapse syndrome, postural orthostatic tachycardia syndrome (POTS), and hy-

peradrenergic orthostatic tachycardia. It is now officially known as orthostatic intolerance by

the American Autonomic Society [113].

Considering that the etiology of OI is abstruse, the symptoms are vague and plentiful. They

include lightheadedness, dizziness, anxiety, and fatigue. The most common symptom is syncope,

the clinical term for fainting. A vital characterization is that symptoms are worsened by upright

posture, and are relieved when lying down. When a human stands, approximately 750 ml of

thoracic blood is translocated downward due to gravity (Figure 6.7), reducing the venous return

and cardiac filling [64, 121]. This reduces the blood volume in the heart by 20% over about

15 seconds and lowers central venous pressure. Consequently, the fall in cardiac contractility,

mediated by the Frank-Starling mechanism [80], lowers the stroke volume. This reduces the

pulse pressure and also the mean arterial pressure. Baroreceptor reflexes normally accommo-

date for the decrease in pressure very rapidly. Baroreceptor nerve signals located in the carotid

sinuses sense the drop in blood pressure causing sympathetic nervous system activation and
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Figure 1.1: The HUT test: The subject depicted is tilted to an angle of 60 degrees at a constant
speed of 15 degrees per second. Upon HUT blood is pooled in the lower extremities.

parasympathetic withdrawal, modulating the release of norepinephrine and acetylcholine. This

in turn leads to an increased heart rate, cardiac output, and vasoconstriction. If the autonomic

nervous system is faulty, as in patients with chronic orthostatic hypotension, there is a gradual

decrease of blood pressure until the brain is no longer sufficiently perfused, causing a gradual

loss of consciousness, invoking syncope [113].

Diagnosis of patients with orthostatic intolerance include procedures stimulating the car-

diovascular and nervous systems. Some of these are designed to look at specific parts of these

systems, e.g. the valsalva maneuver and transcranial doppler tests, and others are intended to

evoke patient symptoms in a controlled setting where doctors can monitor the physiology re-

sponsible. Head-up tilt (HUT) testing has become the standard method to diagnose syncope and

other symptoms of OI [64, 88]. Measurements taken include echocardiogram (ECG) recorded

using standard precordial leads and blood pressure recorded using photoplethysmography (Fi-

napres Medical Systems B.V.). The test is simple, it involves a motorized table, with a foot

support raising the patient from supine to approximately 60-70 degrees upright (Figure 1.1)

without the use of the patient’s own muscles. The patient is tilted to an upright position until

systolic blood pressure drops to 70 mmHg or the appearance of orthostatic symptoms such as

dizziness, lightheadedness or syncope. The purpose is to hopefully reproduce the patient’s prob-

lem in a controlled laboratory setting and gain knowledge on what cardiovascular mechanisms

are effected. However, these tests are unable to give clinicians information on aspects of the

cardiovascular system that are affected by HUT, including cardiac contractility and vascular

resistance.
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Diagnosis of OI is ambiguous. Patients can undergo extensive clinical evaluation without

identification of a specific abnormality, and therefore a large number of patients remain un-

diagnosed [113]. Another problem in the diagnosis is its overlap with other conditions such

as Chronic Fatigue Syndrome (CFS), Neurally Mediated Syncope (NMS), and physical de-

conditioning (deterioration of heart and skeletal muscle due to sedentary lifestyle, debilitating

disease, or prolonged bed rest. Treatment of OI also represents a real challenge. The causes and

pathophysiology vary between patients. Because of this, not all patients will respond the same

way to a treatment. Therefore, treatment plans must be tailored to each patient for maximum

efficacy. Unfortunately, there are no trials to advise clinicians on treatment options. Two typical

approaches are to try to increase blood volume and to promote vasoconstriction [113]. Volume

expansion can be improved by increasing salt intake. Ideally, this can be done with diet alone,

but when this is unsuccessful, prescription 1g sodium chloride (salt) tablets can be given to

supplement sodium intake. This should be accompanied by an increase in water intake.

Drugs that affect the sympathetic nervous system have also been advocated to adjust blood

volume and promote vasoconstriction. Some experts have justified the use of drugs that pre-

vent central sympathetic outflow, due to the belief that increased central sympathetic outflow

will tend to reduce blood volume over the long term. However, drugs have side affects and

are not always effective for every patient. Desmopressin (DDAVP) is an synthetic derivative

of vasopressin that acts to decrease urine formation by increasing water reabsorption in the

kidneys leading to plasma volume expansion. Clonidine (Catapres) and methyldopa (Aldomet)

act on the brain to decrease sympathetic nervous system tone, stabilizing heart rate and blood

pressure. Both have been advocated, but without convincing evidence that they are reliable

treatment [113]. Another, and contradictory, approach has been to use drugs such as midodrine

and phenylpropanolamine. They cause vasoconstriction (increase peripheral vascular resistance

and decrease venous capacitance) and help to decrease venous pooling. Beta blockers, like Pro-

pranolol, have also been suggested for use in patients with OI. These block the receptors that

are responsible for the effects of epinephrine and norepinephrine, but as with all the other drugs,

evidence for their effectiveness is lacking.

OI can be gravely disabling and can be progressive in nature, particularly if it is caused

by an underlying condition which is deteriorating. As mentioned, this disorder is difficult to

diagnose and treat, and not all patients respond the same to treatments. Therefore, improving

characterization of the underlying circulatory responses may lead to a clarification of some of

the issues, and may facilitate the discovery of the pathophysiology of this disorder. Under-

standing cardiovascular regulation during HUT is difficult and involves complex measurements

that are experimentally difficult to achieve, hence mathematical modeling is a great alterna-

tive to study cardiovascular dynamics. Moreover, the patient specific models may be used to

learn about the impact on treatment of disease. The goal of this study is to develop pulsatile

3



and non-pulsatile patient specific compartmental models that predict changes in arterial blood

pressure during HUT and study quantities that impact dynamics. To counteract the response

of the cardiovascular system when the tilt occurs, i.e., the drop in blood pressure, quantities

representing vascular peripheral resistance and cardiac contractility are made time-varying by

use of piece-wise linear splines and an optimal control approach.

1.1 Summary of the dissertation

My work focused on three aims: (1) development of a patient-specific pulsatile model that mod-

els the effect on the cardiovascular control system for patients suffering from OI during head-up

tilt (HUT) (2) development of a non-pulsatile model that can accurately be interchanged with

the pulsatile model and predict dynamics for HUT and head-down tilt (HDT)1; and (3) ana-

lyzing a piecewise method and an optimal control method to regulate peripheral resistance and

cardiac contractility in response to the HUT by allowing these quantities to vary with time.

Several papers have been or will be submitted for publication on this work. This dissertation

will consist of general information pertinent to all papers given in chapters 2, 3, and 4, as well

as the individual papers themselves given in chapters 5, 6, and 7. Therefore, there may be some

repetition and overlap throughout this manuscript.

For aim (1), a compartmental pulsatile model analogous to an electrical circuit was devel-

oped, along with a physiologically based sub-model describing gravitational pooling of blood

into the lower extremities. Furthermore, a model predicting regulation through the use of piece-

wise linear splines and estimated using least-squares optimization [99] was developed. For aim

(2), a simpler non-pulsatile model that can be interchanged with the pulsatile model to de-

scribe cardiovascular dynamics during HUT and HDT was developed, which is significantly

easier to compute, yet it still is able to predict internal variables [4]. For aim (3), the least

square optimization cardiovascular regulation model using piecewise linear splines is compared

to an optimal control method using a collocation method to adjust peripheral resistance and

cardiac contractility [98].

Newly developed methodologies for sensitivity analysis, parameter subset selection, and pa-

rameter estimation [104] were used to choose model parameters that are to be estimated, while

the technique developed in [75] was utilized for the least squares numerical optimization of

model parameter values. The methodology for the optimal control approach to regulate model

parameters was developed and implemented using the general pseudo-spectral optimal control

software, GPOPS [11].

• Chapter 2 introduces the physiological background necessary for developing the models

1For our purposes head-down tilt (HDT) is the process of tilting the patient back to supine position after
HUT.
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given in Chapters 4, 5 and 6. The chapter contains general descriptions of the cardiovascu-

lar system, including the heart and vasculature. Moreover, regulation of the cardiovascular

system is described including autonomic regulation and arterial blood pressure regulation.

• Chapter 3 reviews previous efforts to model blood pressure and flow dynamics, along with

discussion of the advantages and disadvantage of those methods.

• Chapter 4 presents model analysis and techniques used throughout this thesis, including

bases for model development, sensitivity analysis, subset selection, and optimal control.

This chapter discusses how models were rendered patient specific using a gradient-based

optimization algorithm minimizing the least squares error between data and the model

presented in chapters 5 and 6. Also, discussed are optimization schemes used to predict

time-varying parameters based on linear piecewise splines and on an optimal control

method discussed in Chapter 7 to regulate peripheral resistance and cardiac contractility.

• Chapter 5 presents a pulsatile compartment cardiovascular model designed to predict

blood pressure and flow dynamics during HUT as well as peripheral resistance and car-

diac contractility using a piecewise linear approach. This published study shows how to

estimate constant parameters and time-varying quantities allowing the model to fit data

measured at the level of the carotid artery. We also show how carotid pressure can be

calculated from data measured at the level of the aorta and that similar parameter esti-

mates are obtained comparing model outputs against the measured and calculated carotid

pressures [99].

• Chapter 6 introduces a comparison between a non-pulsatile model that can predict dy-

namics during HUT and HDT and the pulsatile model given in Chapter 5. Although a

pulsatile model for the cardiovascular system is beneficial for numerous problems, it can be

adequate to analyze the system with the simpler non-pulsatile model. The non-pulsatile

model development is described in detail illustrating advantages and disadvantages in

comparison to the pulsatile model. This study showed that results predicted with the

non-pulsatile model can be incorporated in the pulsatile model in the study of HUT dy-

namics using the least-squares optimization method to predict time-varying quantities.

We also describe how the non-pulsatile model can be used for longer time scales to include

HUT/HDT dynamics. This work has been published in a conference proceedings [4] and

is being prepared for submission for publication in a journal.

• Chapter 7 shows that optimal control can be used with the non-pulsatile model to predict

the time-varying quantities, peripheral resistance and cardiac contractility. Model results

were compared to the piecewise linear spline approach presented in Chapters 6 and 7.
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The implementation of the optimal control approach results into the pulsatile model are

also discussed. Tel can be used for longer time scales to include HUT/HDT dynamics.

This work has been published in a conference proceedings [98] and is being prepared for

submission for publication in a journal.

• Chapter 8 provides some simulations illustrating the pulsatile model predicting the ef-

fect of the drugs (Desmopressin, midodrine and phenylpropanolamine) that are used as

treatments for OI.

• Finally, Chapter 9 will include the closing remarks and summarize the results of the

dissertation, including ideas for future work.
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Chapter 2

Physiological Background

This chapter presents an overview of the physiology involved in modeling the cardiovascular con-

trol system. General information comes from Burton [21], Levick [80], and Smith and Kampine

[130]. Section 2.1 discusses the relevant features of the cardiovascular system (CVS), while Sec-

tion 2.2 discusses aspects of autonomic regulation of blood pressure within the cardiovascular

system.

2.1 The cardiovascular system

The primary responsibility of the cardiovascular system (CVS) is the transportation of nutri-

ents (i.e. oxygen, amino and fatty acids, and vitamins) to the tissues; and removing of gaseous

wastes (i.e carbon dioxide and urea) from the body. The CVS is a control system that dis-

tributes hormones to the tissues, and secretes bioactive agents (i.e. peptides, renin, and nitric

acid) [80]. The system consists of two main components that form a closed network, the larger

systemic division composed of the aorta, arterial branches, capillaries, veins, and vena cavae;

and the much smaller pulmonary division consisting of the pulmonary artery, capillaries, and

the pulmonary veins. The systemic vessels supply and drain all the tissues and organs of the

body, while the pulmonary vessels facilitates the primary exchange of oxygen and carbon diox-

ide. Although the systemic and pulmonary divisions function in a similar manner, they have

some vital differences; the systemic division has a much higher volume, its vessels are longer

and thicker, and it operates under higher pressure and with more resistance to flow. Blood is

driven through the systemic and pulmonary divisions by a blood pressure differential generated

by the heart, see Figures 2.1 and 2.2. Figure 2.1 depicts the blood flow through the systemic

and pulmonary circuits, while Figure 2.2 shows the distribution of pressure and the pressure

differentials for the various vessels in the two circuits.

Veins serve primarily as storage vessels, although they do have some regulation properties
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Figure 2.1: Blood flows from the left ventricle through the systemic arteries and veins to
the right atrium. It is expelled from the right ventricle and pumped through the pulmonary
circulation back to the left atrium. Systemic artery and pulmonary veins contain blood high
in O2 and low in CO2, while systemic veins and pulmonary arteries are low in O2 and high in
CO2.

and the arteries function to distribute blood flow and pressure throughout the body. The dis-

tensibility of vessels (i.e. the ability of the vessel to stretch) results in changes in vessel volume

in response to pressure changes. The total blood volume in a typical 70 kg man is about 5.5

liters [80]. Also, total blood volume consists of stressed and unstressed blood volume as proposed

by [30]. Unstressed volume is the volume needed to fill the circulation to the point where the

pressure starts to rise. The stressed volume is the volume in the circulation minus the unstressed

volume. Volumes and percentages for an individual with a total blood volume of 4544 ml are

given in Table 2.1. Total blood volume percentages are illustrated in Figure 2.3. Due to their

distensibility and size, veins and venules contain about two-thirds of the total blood volume,

while one-sixth is on the arterial side. However, the pressure distribution is quite different, being

a nearly inverse relation to the volume distribution, see Figure 2.4 which illustrates total blood

volume percentages in conjunction with pressure value through out the systemic circulation.

The relationship between pressure, volume and flow will be discussed further in Section 2.1.2.
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Figure 2.2: The distribution of intravascular pressures in the systemic and in the pulmonary
circuits. The attenuation of the pulse pressure (systolic minus diastolic) is indicated. The num-
bers on the curves are mean pressures. Note, mean pressure decreases exponentially in systemic
circulation and linearly in the pulmonary circulation. Reprinted w.p. from [21].

Figure 2.3: Approximate distribution of 5.5 liters blood in a supine, resting man. On standing,
the percentage of blood in the lungs falls by about one-third, as does the volume in the heart,
while the volume in the peripheral veins increases. Reprinted w.p. from [41].

2.1.1 The circulation of blood

The heart propels the blood through both divisions of the CVS system. It consists of four

chambers, two for the right and two for the left side of the heart, which supply the pulmonary

and systemic systems, respectively. Each side of the heart is comprised of an atrium and a

ventricle. The right ventricle propels deoxygenated blood through the pulmonary artery to the
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lungs, see Figures 2.1 and 2.5. Pulmonary veins then return oxygenated blood from the lungs

to the left side of the heart, completing the short, low pressure pulmonary circulation. The left

ventricle pumps oxygentated blood to the tissues of the body. The tissues absorb a portion of

the oxygen, and the semi-deoxygenated blood returns via the superior and inferior vena cavae,

to the right atrium. This completes the high pressure systemic circulation. The two sides of

the heart eject the same volume of blood per unit time, called the cardiac output (CO). Valves

at the inflow and outflow of the ventricles allow pressure to build up within the ventricles

and prevent blood from flowing backwards. Atrioventricular valves separate the atria and the

ventricles and semilunar valves are located at the exit of the ventricles. In the left ventricle

these are named the mitral and aortic valves, and in the right ventricle they are the tricuspid

and pulmonary valves, see Figure 2.5.

The left and right sides of the heart each consist of a pump, distributing system, exchange

system, and a collecting system. The pumps are the right and left ventricles. Typically the

two ventricles are in nearly identical phase and rhythm because they are composed mainly of

myocardium (i.e. cardiac muscle), which compresses both chambers simultaneously. The my-

Table 2.1: Blood volumes and percentage of total blood volume, from Beneken and Dewit [30].
Volumes are scaled to a total blood volume of 4544 ml.

Vessel Volume (ml) Stressed volume % Total %

Ascending aorta 82.0 1.80 35.4
Thoracic arch 91.0 2.00 33.0
Thoracic aorta 89.0 1.96 33.7

Abdominal aorta 78.0 1.72 25.6
Intestinal arteries 23.0 0.51 26.1

Leg arteries 75.0 1.65 16.0
Head arteries 87.0 1.91 22.4
Arm arteries 244 5.36 7.40

Pulmonary arteries 119 2.62 58.0
Abdominal veins 315 6.93 3.20
Intestinal veins 649 14.3 6.50

Leg veins 295 6.49 12.9
Head veins 353 7.78 7.60
Arm veins 244 5.36 7.40

Inferior vena cava 530 11.7 7.90
Superior vena cava 530 11.7 7.90

Left ventricle 125 2.75 –
Right ventricle 125 2.75 –

Left atrium 80.0 2.72 –
Right atrium 80.0 1.95 –
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Figure 2.4: Pressure and volume distribution in the systemic circulation. Illustrating the inverse
relationship between internal pressure and volume in different portions of the circulatory system.
Reprinted w.p. from [130].

ocardium of the left ventricle is generally 8 to 10 mm thick, while that of the right ventricle is

about 2 to 3 mm [130]. Because the heart is a muscle, it has the ability to contract and relax.

The cardiac cycle describes this process and is comprised of the phases, systole (i.e. ventricular

contraction) and diastole (i.e. ventricular relaxation) based on the position of the inlet and

outlet valves. During systole, the internal ventricular pressures rise quickly to a peak. In the

left ventricle, which is a high-pressure pump, typical systolic pressures reach 120 mmHg, while

in the right ventricle, the low-pressure pump, systolic pressures would be about 25 mmHg, see

Figure 2.2. Following contraction is diastole where the internal pressures fall quickly to near

zero and the ventricles fill with blood [130].

At a rate of 75 beats per minute (bpm), the complete cycle for filling and emptying of the

chamber would take 0.8 sec, see Figure 2.7. At the beginning of diastole, at a ventricular volume

of about 60 ml, the aortic valve is closed while the mitral valve is open, allowing blood to fill

the left ventricle at a low pressure, see Figures 2.6 and 2.7. At the end of ventricular filling, at

about 120 ml, the ventricular muscle contracts while the ventricular volume is constant (iso-

volumetric contraction), to increase the pressure inside the ventricle [80]. As the ventricular

pressure exceeds that of the atrium, the mitral valve closes. Ventricular contraction continues

to raise ventricular pressure until it exceeds pressure in the aorta, causing the aortic valve to
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Figure 2.5: The four chambers of the heart and connecting vessels and valves. Reprinted w.p.
from Wikimedia Commons [3].

open and blood to be ejected into the aorta.The aortic valve closes when the pressure in the

aorta exceeds that in the ventricle. At this time the majority of the blood has been ejected.

After a period of ventricular relaxation (i.e., iso-volumetric relaxation) at low ventricular vol-

ume the cardiac cycle is completed (Figures 2.6 and 2.7). It should be noted that for healthy

individuals at no time are both valves open. The dynamics of the right ventricle mirrors that

of the left ventricle except the systolic pressure is about 25 mmHg.

The distributing system of blood circulation involves the arterial system. The arteries

are hollow cylindrical, branch-like structures, see Figure 2.4. Arterial pressure is pulsatile,

meaning the heart ejects blood intermittently (systole), with rests in between (diastole). The

pulmonary artery pressure is typically about 25/10 mmHg. The first number indicating systolic

pressure and the second diastolic pressure. This pressure decreases to about 10 mmHg at the

beginning of the lung capillaries, see Figure 2.2. In the systemic circulation, the aorta and its

arterial branches are long and rather thick-walled. They transport blood to the smaller arteries

and arterioles. Their internal pressure falls from approximately 120/80 mmHg at the beginning

of the aorta to a constant mean pressure of about 25 mmHg at the arteriolar level of the capil-

laries.

Capillaries are the most important factor in the exchange system. They are tiny micro-

scopic tubes that form a mesh-like structure, see Figure 2.4. Their large surface area facilitates

the diffusion of O2, CO2, water, electrolytes, and nutrients through their walls. They have in-

ternal pressures that range from values of about 25 mmHg on the arterial side to approximately
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10 mmHg on the venous side, see Figure 2.2. Although the capillaries have an immense total

cross-sectional area, their combined volume is rather small in comparison to other vessels, see

Figure 2.4.

The smallest venules to the largest terminal veins in the vena cavae comprise the collect-

ing system of the circulation. It is responsible for draining blood back to the atria. Veins are

thin-walled cylindrical structures that have a large capacity to hold blood. Veins below the

heart have one-way valves that prevent back flow and hence aid in the transport of blood back

to the heart. They have a low internal pressure ranging from approximately 10 mmHg near the

capillaries to about 0 mmHg at the heart entrance, see Figure 2.2. In the upright individual,

the vascular pressures in the lower extremities are increased due to the effect of gravity. This

will be discussed in subsequent chapters.

Figure 2.6: Pressure-volume loop for human left ventricle. Includes the phases of the cardiac
cycle and the opening an closing of valves. As the ventricle contracts, the mitral valve closes;
as ventricular pressure increases and exceeds aortic pressure, the aortic valve opens. Upon
completion of ejection, ventricular pressure falls below aortic pressure, and the aortic valve
closes. As ventricular pressure falls below atrial, the mitral valve opens and diastolic filling
continues until the ventricle contracts again. Reprinted w.p. from [80].

2.1.2 Vasculature

The cardiovascular system is composed of a network of blood vessels. All blood vessels have

an endothelial lining and consist of varying proportions of elastin, smooth muscle cells, and
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Figure 2.7: Changes in pressure, volume and flow in aorta, left ventricle and left atrium during
human cardiac cycle. Right side (not shown) has similar patterns but lower pressures. Reprinted
w.p. from [80].

collagen, see Figure 2.8. Table 2.2 gives percentages of compositions of varying blood vessel

walls. As mentioned previously and seen in Figure 2.4 the pressure distribution in blood vessels

is quite different to the volume distribution. This disposition of pressure and volume is in large

part due to the composition and comparable elasticity of the arteries and veins, in particular,

to their pressure-volume relations. Although it is accurate that the entire arterial tree serves as

a distributing conduit, not all arteries are alike. From an anatomical and functional perspective

they may be divided into two main groups that differ structurally and functionally from each

other, and both in turn differ prominently from veins. Figure 2.9 shows the various types of

blood vessels and their structures.

Table 2.2: Composition of the blood vessel wall (%) from [80].

Endothelium Smooth muscle Elastin tissue Collagen

Elastic artery 5 25 40 27
Arteriole 10 60 10 20
Capillary 95 0 0 5
Venule 20 20 0 60

Large arteries including the aorta are the most distensible as a result of their high elastin
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Figure 2.8: The structure of the wall of a blood vessel. Reprinted w.p. from [80].

Figure 2.9: Different types of blood vessels, seen in cross-section and en face. Reprinted w.p.
from [80].

content [130]. They are capable of substantial expansion and recoil and are known as the

”pressure storers” of the circulation. All arteries consist of elastin, but the amount decreases as

the arteries decrease in diameter. The arterioles have the ability to contract, as a consequence of

their high content of circular smooth muscle cells causing them to constrict, thereby increasing

the resistance to blood flow. Hence, these vessels are usually called the ”resistance” vessels

[130]. Their pressures typically range from 60 to 90 mmHg in the small arteries from 40 to
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60 mmHg in the arterioles. Both arteries and veins branch in a bifurcating tree-like structure

before reaching the capillary bed for a given tissue. The number of vessels and the total cross-

sectional area of the vasculature increases exponentially as blood travels toward capillaries, see

Figure 2.10. Table 2.3 shows a comparison of the number and size of different types of blood

vessels in a dog.

Figure 2.10: Branching of a typical vascular bed with changes in blood pressure, velocity, and
the area of the arteries, capillaries, and veins within the circulatory system. The top graph
shows the drop in mean pressure across the main arteries (dashed line) is only 2 mmHg. The
large pressure drop across the terminal arteries and arterioles shows that they are the main
resistance vessels. Low pulmonary pressure profile is also shown. The middle graphs depicts the
pulsation of blood velocity (red line) and change in mean velocity across circulation (black line).
The blood flow passes each vertical dashed line per minute, namely the cardiac output. Mean
velocity is blood flow divided by the cross-sectional area of the vascular bed. The bottom graph
depicts the increase in total cross-sectional area of the circulation in microvessels. Reprinted
w.p. from [80].
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Table 2.3: Comparison of number and size of different types of blood vessesl in a dog mesentry
from [80] with permission.

Vessel Number Length(mm) Diameter(mm) Total
cross-sectional
area (mm2)

Main artery 1 60 3 7
Arteriole s and small arteries 1,380,000 1.5-2 0.024-0.031 739
Capillaries 47,3000,000 0.4 0.008 2378
Venules 2,100,000 1.0 0.026 1151
Small veins 180,000 1-1.4 0.075-0.28 1019
Large veins 61 39-60 1.5-6 174

Blood is acquired from the arterioles for distribution throughout the systemic capillaries.

Their vessel walls mostly consist of endothelial cells and are very thin. A single capillary is just

wide enough to supply individual red blood cells (about 2-5 µm) carrying metabolites, with

the blood flowing at a relatively slow rate. This combination of characteristics allows for the

easy diffusion of metabolites between the capillaries and tissues [80]. Unlike the arteries, the

network of capillaries forms a mesh-like structure, see Figure 2.10.

The veins are very thin-walled and consist primarily of collagen, a non-elastic connective

tissue protein that slightly stretches. They have the ability to store a large volume of blood while

incurring only minimal pressure change [130]. They grow into a branching structure reversed

from that of the arterial tree, see Figure 2.10. Their pressures are low, ranging from about 10

mmHg at the ends of the capillaries to about 2 mmHg at the entrance of the vena cavae to the

heart. As depicted in Figures 2.3 and 2.4, the venous system generally contains about four times

more blood than the arterial system; yet, if more blood is infused into the vascular system, 90%

of the new fluid will be taken up the veins due to their great distensibility. Consequently, the

veins are known as the ”volume storers” of the circulation [130].

2.2 Regulation of the cardiovascular system

There are two primary objectives of cardiovascular regulation: (1) the conservation of a sufficient

and relatively constant arterial pressure; and (2) an adequate regulation of blood flow through

local tissues to guarantee proficient metabolism, capillary exchange of gases and nutrients, and

temperature balance. This study focuses on the first objective.

Arterial blood pressure is perhaps the most essential regulated component in the cardio-

vascular system. The nucleus solitary tract (NTS), the site of the most critical cardiovascular

control centers in the body, regulate the arterial pressures primarily via adjustment of cardiac

contractility and peripheral resistance. However, the medullary cardiovascular centers are them-
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selves influenced by impulses from higher neural centers via parasympathetic and sympathetic

activity and by several sensors throughout the body, most notably arterial baroreceptors.

2.2.1 Arterial blood pressure regulation

The mechanism by which arterial pressure is controlled is dependent upon whether long-term

or short-term adjustments are needed. Long-term arterial pressure modifications (weeks and

months) are generally produced through changes in extracellular fluid and blood volume and

renal mechanisms. The latter are heavily influenced by neurohormonal factors that control water

and sodium excretion by the kidneys and are not discussed in more detail here.

Carotid
sinus

BR

BR

SA 
node

Blood vessel

Heart

NTS

Figure 2.11: The aortic and carotid sinus baroreceptors and their central connections. The
baroreceptors respond to alterations in blood vessel wall distention, which decrease their nerve
firing rate. The sympathetic and parasympathetic nervous systems are then signaled allowing
for changes in peripheral resistance, heart rate, and cardiac contractility.

On the other hand, short-term modifications (over seconds to hours) are intended to remedy

temporary imbalances of pressure such as those caused by postural change, hemorrhage, or

exercise. The response to the cardiovascular disturbance is a combination of adjustment of

the local blood vessels to the altered volumes and pressures; and autonomic neural responses

mediated via the parasympathetic and sympathetic nervous systems intended to return the
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Figure 2.12: Baroreceptor control loops. A decrease in blood volume (hypovolemia) results in
a decrease of venous filling pressure which leads to a decrease in cardiac output. This decrease
causes a decrease in arterial blood pressure, which is sensed by the baroreflexes and chemore-
flexes in the carotid and aortic sinuses. These sensors could also be activated by the decrease in
venous filling pressure. The signaling of those receptors are mediated by the central nervous sys-
tem resulting in parasympathetic withdrawal and sympathetic activation. Vascular resistance,
venous tone, contractility and heart rate are all increased due to increased sympathetic activ-
ity, while parasympathetic withdrawal also increases heart rate. The increase of venous tone
leads to an increase in right atrial pressure and that change in conjunction with the change in
contractility causes the stroke volume to increase. The rise in heart rate as well as the rise in
stroke volume causes the cardiac output to increase, which along with the change in vascular
resistance leads the arterial blood pressure to return to homeostasis.
Copyright ©2007 Society for Industrial and Applied Mathematics. Reprinted with permission
from [66]. All rights reserved.

arterial pressure to homeostasis. This work will focus on short-term adaptation of arterial

blood pressure.

2.2.2 Arterial baroreceptors and short-term regulation

Short-term regulation of blood pressure refers to control mechanisms that respond in seconds

or minutes to stabilize blood pressures and it is important for the prompt control of orthostatic

stress [66]. Short-term control depends primarily on the baroreflex response, which stabilizes

pressure by means of neural negative feedback. The baroreceptors, located in the carotid si-

nus and the aortic arch, see Figure 2.11, respond to changes in vessel wall distention due to

changes in arterial pressure. Decreased arterial pressure decreases vessel wall distention, which
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decreases the baroreceptor nerve firing rate sent to the medulla The medulla generates a signal

and disperses it through the sympathetic and parasympathetic systems of motor neurons. The

sympathetic system is stimulated in response to decreased baroreceptor firing rate. Increased

sympathetic outflow gives rise to an increase in norepinephrine, which in turn leads to vessel

constriction, decreased peripheral resistance, increased heart rate, and increased cardiac con-

tractility after a delay within 5-10 cardiac cycles. As a consequence, stroke volume and cardiac

output increase, resulting in an increase in blood pressure. The decrease in baroreceptor firing

rate also decreases the activity to the parasympathetic nerve channels. Parasympathetic with-

drawal leads to a decrease in the release of acetylcholine, which speeds up cardiac electrical

conduction leading to an increased heart rate within 1-2 cardiac cycles [130]. The short-term

neural baroreflex feedback loop response is given in Figure 2.12.

In this study, the systemic circulation is modeled, while the pulmonary circulation is not

considered. The afferents of the control of the baroreflex is not directly modeled. Instead we

focus on predicting the impact on the vascular targets of heart rate, cardiac contractility, and

vascular resistance.
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Chapter 3

Cardiovascular Models

The cardiovascular system is a complex structure and its regulation makes it difficult to model

the system as a whole. Simplifying assumptions are made depending on the objective of the

study. Blood pressure and flow can be modeled using approaches ranging from detailed three-

dimensional models of local structure and flow patterns to system level models designed to

model global features. Furthermore, the cardiovascular control can be modeled using anything

from empirical models down to elaborate molecular models.

A large number of previous studies have analyzed cardiovascular regulation of heart rate

from a medical, statistical, and modeling point of view. These studies can be separated in two

groups: multi-dimensional models and global system level models. Multi-dimensional models

are useful for examining local flow behavior on a small scale. This is beneficial when model-

ing fluid dynamics of a specific artery or the heart itself. For example, Peskin and Mcqueen

[112] developed a three-dimensional model for blood flow in the heart, using the immersed

boundary method and Viscardi et al. [38] developed a model to test the effect of bicuspid

aortic valve geometry on ascending aorta flow using two and three dimensional fluid dynamic

models. Though these models give excellent insights into a distinct portion of the body, their

use is restricted to localized investigations. Additionally, these models are often formulated as

open-loop input/output models which do not accurately describe the closed-loop features of the

cardiovascular system.

Global models are commonly developed to gain qualitative insight of the system. They can

more easily integrate closed-loop phenomena and feedback controls to the models. In system-

level models, several regions of the body are often lumped together in compartments. Generally,

these models predict blood pressure and flow in and between compartments representing lo-

cations in the cardiovascular system using electrical circuits with capacitors, resistors, and

inductors. Lumped parameter compartmental models can have states that represent quantities

that pulse with cardiac dynamics (pulsatile models), e.g., [92, 93, 118, 138] or mean values aver-
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aged over the timespan of an entire cardiac cycle (non-pulsatile models), e.g., [55, 73, 85, 105].

Pulsatile models are advantageous when analyzing dynamics within heart beats and can be

used to understand how modulation of the system effects pulsatility. Non-pulsatile models tend

to be simpler and have the advantage of being able to analyze dynamics over longer time-scales,

as well as being able to couple with more complex models.

Kappel and Peer [73] developed a compartmental model to predict mean pressures during

baroreflex response under a submaximal workload. In this study, the blood flow was non-

pulsatile, which made it easier to use optimal control techniques. Despite the simplicity of the

Kappel and Peer model, it gives a rather satisfactory description of the regulation process act-

ing on the cardiovascular system in response to a submaximal workload by a single input/single

output control system. Ottesen’s baroreflex model [105] is another example which involves non-

pulsatile flow and averaged state quantities over several cycles. His model is an open-loop model

that predicts the nonlinear baroreflex-feedback mechanism involving time-delay based on phys-

iological theory and empirical facts. Though the model is easily analyzed in the same manner as

the model by Kappel and Peer, the open-loop feature disregards effects of regulatory responses

produced by the circulation.

Patient specific models combine models with data, allowing for patient specific estimation

of model parameters. Estimating model parameters involves solution of an inverse problem, i.e.

given a model and data one has to estimate the model parameters to allow the model to fit

the data [59]. In general, this problem is difficult to solve, and typically, no unique analytical

solution can be found [125]. Some studies have successfully developed patient specific models

of the cardiovascular system, but most of these do not include pulsatility [55, 67, 85]. There

are a few models that include pulsatility [93, 131], though the model by Olufsen et al. [93]

estimated too many model parameters and the model by Pope et al. [131] only addressed how

to estimate parameters for a subject in supine position. Other contributions include the study

by Ten Voorde et al. [134] who developed a model predicting short term blood pressure and

heart rate variability for a healthy young male, and studies by Ursino et al. who modeled heart

rate regulation [8, 138, 139]. The latter studies compared the model output with experimental

data but did not address parameter estimation. Another example, is the recent model by [129],

which computes heart rate regulation in rats. This study does address parameter estimation,

but does not address parameter identifiability.

3.1 Lumped compartmental models

Lumped parameter pulsatile and non-pulsatile models can be constructed analogously to an

electrical circuit. In these models, transmural pressure p(t) (mmHg) is analogous to voltage

and time-dependent volume V (t) (ml) to charge, while volumetric flow rate q(t) (ml/s) repre-
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sents the electrical current. Each compartment has a compliance component C(t) (ml/mmHg),

similar to electrical capacitance, representing the change in volume given a change in pressure

for that compartment, i and the hydrodynamic inertia of the blood flow is analogous to an

inductance denoted by L(t). For each of these compartments, blood pressure pi (mmHg), also

called transmural pressure, is defined as the difference between intravascular pressure pint and

extravascular pressure pext, i.e. pi = pint − pext. Extravascular pressure is typically constant at

atmospheric pressure, so the convention is to set pext = 0. However, extravascular pressure can

be non-constant due to the significance of tissue pressure with respiration as done in a model

of cardiovascular and respiratory dynamics in congestive heart failure by [83].

Blood flow from high to low arterial pressure is opposed by resistance represented by prop-

erties of both the vessel and the fluid. This relationship is described by the physiological corre-

spondence of Ohm’s law for a given vessel group

q =
∆p

R
, (3.1)

where ∆p = pi,in − pi,out (mmHg) is the pressure differential between the inlet i, in and outlet

i, out of compartment, i and R (mmHg · s/ml) is the resistance of the vessel to blood flow.

The nominal values for the models are obtained by calculating mean pressures. The perfusion

of tissues can be regulated by adjusting arteriole resistance to enforce changes in blood flow

to tissues as required, i.e. lowering R increases q. We use Ohm’s law for hemodynamics as the

fundamental relationship for building our models.

In a rigid cylindrical tube with Newtonian fluid, Ohm’s law is equivalent to laminar flow

and can be described by an adaptation of Navier-Stokes equations called Poiseuille’s law given

by

q =
∆pπr4

8Lν
,

which encompasses an explicit form for resistance

R =
8νL

πr4
,

where r is the radius of the vessel, ν is the viscosity of the blood, and L is the length of the

cylindrical vessel, leading to equation (3.1). Actually, blood flow is unsteady and for smaller

vessels, viscosity is dependent upon the flow rate, hence the flow is neither Newtonian nor

laminar. However, for larger vessels, viscosity is relatively constant, and flow is generally laminar

away from the vessel opening. Consequently, Poiseuille’s law is justifiable for a system-level

model [103, 130]. However, since there are no explicit measures of viscosity, vessel length or

vessel radius in our models, we do not utilize this law explicitly. Instead we use it as a qualitative

assumption for development of models for vessel dynamics.
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In lumped compartment models, stressed volume Vi,str(t) (ml) is given by

Vi,str(t) = Vi(t)− Vi,unstr = Ci(t)(pi(t)− pext), pext = 0, (3.2)

where Vi,unstr (ml) is the unstressed volume, i.e. the volume at zero transmural pressure. From

this point forward, ”pressure” will refer to the transmural pressure across the vascular wall and

”pressure differential” refers to the perfusion between two locations in a vessel. Flows between

adjacent compartments have a resistance component, R (mmHg · s/ml). Using Ohm’s law, we

have the net change in volume for each compartment

dVi(t)

dt
= qin(t)− qout(t), qin(t) =

pi−1(t)− pi(t)
Rin

, qout(t) =
pi(t)− pi+1(t)

Rout
. (3.3)

The notations i−1 and i+ 1 refer to the anterior and posterior compartments, respectively.

A representative compartment is shown in Figure 3.1.

Figure 3.1: Representative vascular compartment of the cardiovascular system. V : volume
(ml); p: transmural pressure (mmHg); pext: extravascular pressure = 0 (mmHg); C: compliance
(ml/mmHg); R: resistance (mmHg · s/ml); qin, qout: volumetric blood flow rates into and out
of the vascular compartment (ml/s).

A system of differential equations is obtained by differentiating (3.2) and equating with (3.3)

giving

dVi(t)

dt
= Ci(t)

dpi(t)

dt
+ pi(t)

dCi(t)

dt
= qin(t)− qout(t). (3.4)

An equation of this form is associated with each vascular compartment for both the pulsatile

and non-pulsatile lumped compartmental model mentioned previously. For pulsatile models,

the heart compartment equations can be derived from (3.3) as
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dVv(t)

dt
=

pf − pv
Rvalve,in

− ph − pa
Rvalve,out

, (3.5)

where Vv is the ventricular volume, pf is the ventricular filling pressure, pv is the ventricular

pressure, pa is the arterial pressure at the outflow of the ventricle, and Rvalve,in and Rvalve,out

are the inflow and outflow valves of the ventricular, respectively. The non-pulsatile model heart

compartment, however, involves functions depicting the averaged cardiac cycle, e.g. Starling’s

law given in Kappel et al. [73].

A component that is not present in models discussed in this thesis, but is used by others [20,

108] is inductance, generally denoted by L. It is used to reduce the errors in the low frequency

range that arise in compartment models, however due to its difficulty to estimate it is often

omitted. Equations involving inductance can be included in the heart compartment and are of

the form
dqi
dt

=
1

Li
(pi − pi+1).

Inductance in a cardiovascular model, depicts the inertial effects of blood in the ventricle. It

can contribute to modeling the ejection phase of the cardiac cycle. The inertial effects of blood

in the ventricle tend to lower root aortic pressure in early systole increase pressure in late

systole. Inertial effects were taken into account in Danielsen and Ottesen [28] and Beregovaya

and Korenovskaya [86] for this purpose.

From this point forward all pressures, volumes and flows are assumed to be time-dependent

quantities and they are to be denoted by p, V , and q except where noted otherwise. The

parameters R and C can be set as constants or modeled as functions of time, pressure, or other

relevant physiological quantities.

3.2 Cardiac models

As discussed in Section 2.1.1, the right side of the heart generates pressure for the pulmonary

circulation and the left side for the systemic circulation. The same mathematical ventricular

function could be used for each heart chamber within a given cardiovascular model, the dif-

ferences being only in parameter values that represent the model function. Various complex

nonlinear models have been developed to describe the pulsatile pumping of the heart. One ap-

proach is to utilize a time-varying elastance model first developed by Suga et al [54] where the

ventricular pressure plv (mmHg) is defined as

pv(t) = Ev(t) [Vv(t)− Vd] , (3.6)
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where Vd is the unstressed volume of the ventricle and Ev is the elastance, which can be

represented by various functions. One such function by Danielsen [28], shown in Figure 3.2, is

given by

Ev(t) = Emin(1− φ(t)) + Emaxφ(t), (3.7)

where

φ(t) =

aφ sin( πttce )− bπ sin(2πttce
) for0 ≤ tce,

0 fortce ≤ t ≤ th.
(3.8)

Parameters Emin and Emax are minimal diastolic and maximal systolic values of ventricular

elastance function, respectively, th is the heart period and tce the time for onset of constant

elastance. The relation between heart period th and tce is given by

tce = K0 +K1th, (3.9)

where K0 and K1 are constant parameters. This model is simple with only three unknown

parameters. Several researchers have used this model [27, 61, 97, 102, 118, 135, 140], affording

several sources for model validation.

Another function for elastance based on the model by Suga et al. [54], but modified by

Ellwein [34] is given as

Ev(t) =



Emax − Emin
2

[
1− cos

(
πt

TM

)]
+ Emin, 0 ≤ t ≤ TM

Emax − Emin
2

[
cos

(
π (t− TM )

TR

)
+ 1

]
+ Emin, TM ≤ t ≤ TM + TR

Emin, TM + TR ≤ t ≤ T

(3.10)

where parameters TM , and TR are the time for maximum (systolic) elastance, and remaining

time to relaxation, respectively. These can be expressed as fraction of the length of the cardiac

cycle T (s), thus allowing for a variable heart rate H. This function is simple, easy to imple-

ment, and most importantly smooth so as to be used with parameter estimation techniques.

Furthermore, a change in contractility of the heart, i.e. during cardiovascular regulation, could

be represented by a change in parameters representing the maximum elastance or the timing

of the elastance function. This elastance time-varying function is shown in Figure 3.2.

Another approach for modeling the pumping of the heart proposed by Danielsen and Otte-

sen [26, 107] that originates from a model developed by Mulier [96] given by

pv(Vv, t) = a(Vv − b)2 + (cVv − d)f(t), (3.11)
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Figure 3.2: Ventricular pressure modeled using (A) the time-varying elastance (3.10); and (B)
Muiler’s isovolumic model (3.11).

where pv is ventricular isovolumic pressure, a(Vv− b)2 and cVv−d are the diastolic and systolic

components of pressure, respectively. The parameter a represents the ventricular elastance dur-

ing relaxation and b represents the ventricular volume at zero diastolic pressure. The parameters

c and d relate to the volume dependent (contractility) and volume independent components,

respectively. The function f(t) is the normalization of g defined as

f(t) =



1−e−( t
τc )

α1−e
−
(
tp
τc

)αe−
(
tp−tb
τr

)α , 0 ≤ t ≤ tb,

1−e−( t
τc )

α

e
−
(
t−tb
τr

)α
1−e

−
(
tp
τc

)αe−
(
tp−tb
τr

)α , tb < t < th.

(3.12)

where the time constants τc and τr characterize the contraction and relaxation process, respec-

tively, while α is a measure of the overall rate of onset of these processes. The constant tb is

the time when the relaxation process begins to evolve and is given by

tb = tp

1−
(
τr
τc

) α
α−1

 e
−
(
tp
τr

)α
1− e−

(
tp
τc

)α


1
α−1

 . (3.13)

This method was based on the Frank-Starling mechanism and involved a function that could in-

crease pressure through cardiac muscle contractions without injection-induced volume decrease

(i.e. isovolumic heart). Further details can be found in Muiler [96]. The model is depicted in

Figure 3.2. Although, this is not the actual behavior of a pumping heart, it has been shown

that this function does mimic both isovolumic and ejecting properties of the heart throughout

the cardiac cycle when it is used with a cardiovascular system model [26, 107]. However, this
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method does not allow the ventricular pressure to return to diastolic pressure and there is no

definite end to the contraction.

The left heart function not only needs to describe the pressure in the left atrium and ven-

tricle, but also the control of flow between the heart and the surrounding vessels. The human

heart uses valves to direct and restrict blood flow as described in Section 2.1.1. This movement

of the valves introduces semi-discrete behavior into the model (diode), since the flow out of the

heart is either negligible (when the valve is closed) or a non-zero function of the pressure drop

between the heart and the aorta. An approach used for modeling the succession of opening and

closing of the valves as a resistance that varies with pressure was introduced by Rideout [118]

and later used by Olufsen et al. [93]. This is done using a small baseline resistance to define the

”open” valve and a resistance that is several orders of magnitude larger to define the ”closed”

valve. The resistance of a valve is then defined by the smooth sigmoidal function

Rvalve = Rvalve,closed −
Rvalve,closed −Rvalve,open

1 + e−β(pin−pout)
, (3.14)

where pin and pout denote the pressures in compartments on either side of the valve and β

describes the speed of the transition from open to closed. For pin > pout, Rvalve → Rvalve,open

(the valve is open), and when pout > pin the valve closes. Values in the exponent are chosen

to ensure that the valve closes efficiently and that the flow is virtually zero while the valve is

closed. It is important to note that this function is smooth to guarantee differentiability during

gradient-based optimization.

Another method to account for the valves is including an ”on-off switch” prompted by

pressure changes. Olufsen et al. [91] uses this method where they set the closed switch value

to zero and the open value to one, permitting the flow function to be stimulated. Nonetheless,

the physical behavior of a valve is not discrete as this model depicts. Furthermore, the model

is not smooth, which is not useful for parameter estimation analysis.

In work presented in this thesis, equations are developed using the information given in

Section 3.1 with the exception of the inductance component. The cardiac model used in this

work is from Ellwein given in 3.10, while the valves are modeled as in refeq:Rv.
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Chapter 4

Model Analysis

Physiological models that are complex in nature, such as those discussed in the previous chap-

ter frequently include an abundance of parameters. While physiological ideas can be used to

establish values for some of these parameters, some parameters can only be estimated based

on observations from experimental data, and several parameters cannot be determined at all.

Models using nominal parameter values may produce intuition for the overall model dynamics

and the behavior for a given group of patients, but since physiological components are known to

vary substantially between individuals, such simulations cannot render patient specific knowl-

edge.

The most rudimentary method for parameter identifiability is to manually adjust parame-

ters to predict established or observed model outputs, see e.g., Kappel et al. [37], Spronck et

al. [14], and Olufsen et al. [94]. This method may become unmanageable and may not provide

optimal solutions for large models with numerous states and for multiple patient-specific subject

studies. Nonlinear optimization techniques provide a more manageable approach for identify-

ing parameters. These techniques estimate a set of model parameters that minimize the least

squares residual between computed and measured quantities, i.e. solving the inverse problem.

For example, Olufsen et al. [93] used the Nelder-Mead algorithm [101] to estimate parameters

in a model developed to predict blood flow variations during postural change from sitting to

standing. Although the model was developed to predict dynamics in individual subjects, this

approach was done on only one subject due to the size of the model (11 differential equations

and 111 parameters). In another study, Ellwein et al. [84] used a multi-step process involving

gradient-based optimization for estimating patient-specific values for the 44 parameters given

in 32 differential equations to predict cardiorespiratory response to hypercapnia for a patient

with congestive heart failure. The estimation process took several hours for the one subject,

a time frame not reasonable for clinical applications. In physiological studies, these techniques

have mostly been used for simpler problems with a small number of parameters or for problems
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where most of the internal states can be determined.

Complex nonlinear problems have an abundance of states and parameters, where many

states are unobservable. These problems may use optimization techniques that give rise to so-

lutions that are not unique and frequently result in numerical defects, since the differential

equations may be stiff, contain delays, or be ill-posed. Hence, the use of numerical optimiza-

tion techniques compel necessary scrutiny. Any given set of optimal parameters only represent

a local solution to the minimization problem. Parameters that determine this local minimum

may or may not be within physiological range, and there may be several sets of parameters that

characterize the same model states. Therefore, it is important to compute nominal (initial)

parameter values using a priori information such as the subject’s height and weight, details

from literature, or experimental data [34]. Furthermore, the solution can be insensitive to some

of the model parameters, i.e., a small change in some parameters may give rise to essentially

no change in the output states. Also, if the insensitive parameters are physiologically impor-

tant, additional experiments may be required to estimate these parameters. Moreover, model

parameters that are sensitive may be correlated. For example, two resistances may run parallel

to one another in the circuit model and thus both parameters will be sensitive to the model,

but only one can be identified. To this end, sensitivity analysis and subset selection are used as

methods for estimating vital parameters given limited experimental data.

Sensitivity analysis methods can be devised either using a deterministic or stochastic ap-

proach, investigating global or local behavior. Our model contains only deterministic compo-

nents, hence we disregard the stochastic approaches. Furthermore, examining only local behav-

ior is appropriate since we begin with knowledge about each of our nominal parameters close

to where we want to know our model behavior. This analysis has not been used substantially

for the investigation of physiological models to our knowledge. A previous study by Wu et

al. [147], compared local sensitivity analysis approaches using a direct method involving partial

derivatives and an automatic approach to compute derivatives to understand what parameters

had the largest impact on biological models with time-delays. Another study by Glover and

Levan [48] uses local sensitivity analysis to parameterize models of adsorption bed behavior

including fixed-bed adsorbers for solvent recovery. Morio [89] discusses both local and global

methods used for a simple physical system.

In a physiological study, Olansen et al. [65] used invasive pressure measurements from dogs

along with sensitivity analysis and a nonlinear least-squares optimization method to parameter-

ize a cardiopulmonary circulation model. However, in their study it was not clear how param-

eters were ranked. Classical sensitivity analysis [36, 44] is used to rank parameters according

to sensitivity [99, 4]. We adopted a similar procedure as in [34] where we use the sensitivity

ranking results to shorten the parameter identification computational time and simplify the

model. This ranking was used to separate parameters into two groups: sensitive and insensitive.
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We also attempt to identify dependencies between parameters in the models using methods

from Olufsen and Ottesen [104]. Parameter interdependencies can cause issues with numerical

optimizers due to near singularities of the Jacobian matrix used in gradient-based optimization.

Several combinations of parameters leading to the same solution may inhibit the optimization

method from settling on an optimal parameter set.

The general equations for calculating nominal values for model parameters is presented in

Section 4.1. The least squares optimization method is discussed in Section 4.2. Section 4.3 dis-

cusses the method used for sensitivity analysis. Two classes of subset selection and their use

in these studies are given in Section 4.4. Finally, in Section 4.5 we present the optimal control

method used to render quantities time-varying in Chapter 7.

4.1 Nominal parameter values

Literature values were used in conjunction with subject specific information to determine nom-

inal values for all model parameters (resistances, compliances, cardiac, and HUT parameters),

as well as to predict initial conditions for all state variables. Nominal parameter values were

obtained by considering mean values for all pressures, flows, and volumes in the system ob-

tained while the subject was in supine position (before HUT). The mean pressure in the upper

arteries, p̄au, was estimated from data as the average pressure over the ”steady” portion of the

pressure-time series (in supine position). The resistance between any large arteries in the body

is small (in supine position), thus the mean pressure in the lower arteries, p̄al, was estimated

as 98 percent of p̄au. The same applies to the resistance between upper and lower body veins,

consequently we set the upper body venous pressure p̄vu = 3.5 [80], while the mean pressure in

the lower body veins, p̄vl = 3.75 [80].

Values for the total blood volume Vtot (ml) can be estimated using a number of formulas

that are functions of height, weight, and/or body surface area [5, 57, 60, 90]. In the studies in

the subsequent chapters, blood volumes within each compartment were obtained as fractions

of the total blood volume, which for healthy subjects, were predicted from [128]

Vtot =

{
(3.47 · BSA− 1.954) 1000, Female

(3.29 · BSA− 1.229) 1000, Male
(4.1)

where BSA =
√
l w/3600 denotes the body surface area, l (cm) denotes the height and w (kg)

the weight of the subject studied. The total volumetric blood flow, or cardiac output (CO), was

estimated from the assumption that the total blood volume is circulated in the body within one

minute [34], CO = Vtot/60 (ml/s). Alternative estimates for cardiac output could be derived

based on measurements of arterial blood pressure as discussed in recent studies by [70]. The

disadvantage of these studies is that their models must be validated against actual cardiac
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output measurements.

Average flows between the upper and lower body, were estimated utilizing the assumption,

that for a subject in supine position 90% of the blood flows between upper body arteries and

veins, while 10% of the blood flow supports the vasculature in the lower extremities [30]. Several

studies provide information on blood flow to the different regions of the body, e.g. [18, 30, 87]. For

our studies, blood volume and blood flow distributions are taken from Beneken and DeWit [30],

where they are given by organ and volumes are expressed as both stressed volume (the blood

volume which generates the intravascular pressure) and unstressed volume (the blood volume

necessary to fill the blood vessels without generating an intravascular pressure). Total volume

can be given by the sum of the stressed and unstressed volumes, Vtot = Vstr + Vunstr. Table 2.1

gives these volumes and percentages for an individual with a total blood volume of 4544 ml.

These values are scaled according to the subject being studied. The values from Beneken and

Dewit are scaled using the subject’s blood volume to estimate average blood flow rates q̄i for

each compartment.

Utilizing estimates for blood flow, pressure and volumes, nominal values for model resistors

and compliances can be found by rewriting the Ohm’s law (3.1) and the pressure-volume (3.2)

relations as

R =
p̄in − p̄out

q̄
,

C =
V̄ − V̄unstr

p̄
=
Vstr
p̄
,

where p̄, q̄, V̄ denote mean values for the respective blood pressures, flow, and volumes.

For the heart model, parameters representing minimum and maximum elastance as well as

timing of the pump function must be estimated. The minimum left ventricular elastance can be

obtained from the pressure-volume relation (3.2), noting that when the left ventricular volume

equals the end-diastolic volume (VED) we have

p̄pv = Emin (VED − Vlh,un),

where p̄pv denotes the pulmonary venous pressure. This pressure is not appearing elsewhere

in the model. We assumed that pulmonary venous pressure is slightly higher (4 mmHg) than

its systemic counter-part [51, 136]. Similarly, the maximum left ventricular elastance can be

predicted by assessing the same relation at the end-systolic phase. For this case

plh,sys = Emax (VES − Vlh,un),

where plh,sys denotes the maximal systemic arterial pressure (obtained from the data) and VES
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Table 4.1: Model parameters: The nominal parameter values and equations used for predicting
them. p̄au includes data from the supine portion of the blood pressure (bp) time-series (t <
180s), and N denotes the number of points within this period. pau,sys includes the systolic
blood pressure values for the M periods found for t < 180. Values for venous blood pressure
are from [1].

Name Definition Equation Value Units

Vtot total blood volume Eqn (5.10) 5377 ± 549 ml
l height 183 ± 8 cm
w weight 80 ± 10 kg

CO cardiac output Vtot/60 90 ± 9 ml/s

p̄au upper body mean arterial bp
1

N

N∑
i=1

pau(i) 68 ± 11 mmHg

p̄al lower body mean arterial bp 0.98 p̄au 67 ± 11 mmHg
p̄vu upper body mean venous bp 3.5 mmHg
p̄vl lower body mean venous bp 3.75 mmHg
q̄up upper body flow 0.9 CO 81 ± 8 ml/s
q̄low lower body flow 0.1 CO 9.0 ± 0.9 ml/s
Ri,op small resistance, open valve 0.001 mmHg s/ml
Ri,cl large resistance, closed valve 20 mmHg s/ml

Raup upper body peripheral resistance
p̄au − p̄vu

q̄up
0.81 ± 0.19 mmHg s/ml

Ralp lower body peripheral resistance
p̄al − p̄vl
q̄low

7.1 ± 1.6 mmHg s/ml

Ral upper body arterial resistance
p̄au − p̄al
q̄low

0.15 ± 0.03 mmHg s/ml

Rvl lower body venous resistance
p̄vl − p̄vu
q̄low

0.028 ± 0.003 mmHg s/ml

Cau upper body arterial compliance 0.19 V̄au/p̄au 1.7 ± 0.4 ml/mmHg
Cal lower body arterial compliance 0.05 V̄al/p̄al 0.26 ± 0.06 ml/mmHg
Cvu upper body venous compliance 0.05 V̄vu/p̄vu 51 ± 5 ml/mmHg
Cvl lower body venous compliance 0.16 V̄vl/p̄vl 4.3 ± 0.4 ml/mmHg
p̄pv mean pulmonary venous bp 4 mmHg

p̄lh,sys mean max systemic arterial bp
1

M

M∑
i=1

pau,sys(i) 102 ± 13 mmHg

VED end-diastolic volume 125 ml
VES end-systolic volume 70 ml
Vlh,un unstressed ventricular volume 10 ml

Emin min elastance
p̄pv

VED − Vlh,un
0.03 mmHg/ml

Emax max elastance
p̄lh,sys

VES − Vlh,un
1.7 ± 0.2 mmHg/ml

TR max elastance to relaxation 0.18/T 0.20 ± 0.01 N.D.
TM time of max elastance data 0.11 ± 0.01 N.D.

T length of ith cardiac cycle data 0.90 ± 0.07 s
S mean left heart contractility 15.3034 mmHg
α contractility parameter 0.0013006 sec−2

β contractility parameter 0.01985 mmHg/sec
γ contractility parameter 0.0149367 sec−1

c contractility parameter 6 N.D.
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denotes the end systolic volume. For both parameters we assumed that the unstressed value

of the ventricular volume Vlh,unstr = 10 ml, which was used in previous studies, e.g. [34]. The

nominal value for the contractility of the left heart, S, and parameters associated with S (α,

β, γ) used in Chapters 6 and 7 come from Batzel et al. [66].

The timing of the pump is achieved via parameters TM , TR and T . For this study we es-

timated TM from data (for each cardiac cycle we let TM be the time at which the pressure

wave reached its maximum, while TR was defined relative to the length of the cardiac cycle as

TR = 0.19/T [34],[107]. Table 4.1 specifies parameter values for all model parameters.

Initial values for all differential equations, i.e., for all arterial and venous pressures, as well

as the left ventricular volume were set as average values predicted as described above. These

values can be found in Table 4.1 along with values for all nominal parameters. In general, model

parameters are assembled into a vector which we denote as θ, the components of which are de-

noted by θk . The pressures and volumes comprise the states of the model, denoted by xj and

written together as the vector x. Physiological data, or observations, are denoted as y, and may

represent one state or a combination of states in the model. With these monikers we set up the

computational elements of the parameter estimation problem.

4.2 Least squares optimization

The models can be described by a system of coupled nonlinear ODEs as discussed in Chapter

3 that may be written as
dx

dt
= F (x, t; θ), (4.2)

where F : R1+n+q → Rn, x ∈ Rn denotes the state vector, t ∈ R demotes time, and θ ∈ Rq

denotes the parameter vector. Corresponding to the available data, we assume an output vector

y ∈ Rm associated with the states. It is assumed that this output can be computed as a function

of the states, time and the model parameters, i.e.

y = g(x, t; θ), (4.3)

where g : R1+n+q → Rm. It is assumed that for each component of the model output y, there

is an associated set of data D sampled at time ti. To solve the inverse problem we assume

that the data and corresponding model outputs can be evaluated at times where the data are

sampled [104]. These are given by

D = (D1(t11), D1(t12), . . . , D1(t1k1), . . . , Dm(tm1), Dm(tm2), . . . , Dm(tmkm))T , (4.4)
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y = (y1(t11), y1(t12), . . . , y1(t1k1), . . . , ym(tm1), ym(tm2), . . . , ym(tmkm))T , (4.5)

where Di and yi denote the ith component of the vectors D and y, respectively, i = 1, . . . ,m,

and k denotes the sampling points for each component in the output vector.

Nonlinear optimization was utilized to estimate a set of model parameters that minimize

the least squares error between the measured data and the model. This formulation relies on

the assumption that the measurements, Di, can be described fully by the underlying model

output, yi, plus an error term, εi, representing the measurement noise, i.e., we assume that

Di = yi + εi, i = 1, 2, . . . ,m. (4.6)

To satisfy the statistical model we assume that the errors εi are independent identically dis-

tributed (iid) random variables with mean E[εi] = 0, covariance cov(εi, εj) = 0, and constant

variance var[εi] = µ2 [24, 59]. Given this form of the statistical model, the least squares error j

is given by

J(θ) = RTR =
1

k − q

m∑
i=1

|yi −Di|2, (4.7)

where R = (r1, r2, . . . , rk)
T with ri = (yi −Di)/

√
k − q is the model residual for the ith obser-

vation and q is the number of parameters.

A gradient-based local optimizer, specifically the Levenberg-Marquardt algorithm [75] is

utilized to estimate parameters. Gradient-based optimization is useful if the cost function is

easily differentiable and if we have knowledge of our system. This method uses the gradient of

the cost function to determine where the cost is at a minimum instead of using a derivative-

free algorithm such as the direct-search algorithm, Nelder Mead [101]. Levenberg-Marquardt is

of benefit when we start far from the minimizer. That is, the theory supporting this method

predicts rapid convergence when the initial parameter estimates are near the solution, and

satisfactory convergence when they are far away from the solution.

4.3 Sensitivity analysis

The first step in identifying a subset of parameters to be estimated given available data, is

to conduct sensitivity analysis and rank parameters from the most to the least sensitive. To

perform sensitivity analysis on the models, we start with considerable knowledge about each of

our nominal parameters, near which we want to know the behavior of our models. The analysis

described by Eslami [36] and Frank [44] is used to derive sensitivity equations for the system

equations (4.2). The dynamic sensitivity matrix, S, expresses the sensitivity of the model output
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y to the model parameters, θ and is defined as

S =
∂y

∂θ
=



∂y1/∂θ1(t11) . . . ∂y1/∂θq(t11)
...

...
...

∂y1/∂θ1(t1k1) . . . ∂y1/∂θq(t1k1)
...

...
...

∂ym/∂θ1(tm1) . . . ∂y1/∂θq(tm1)
...

...
...

∂ym/∂θ1(tmkm) . . . ∂y1/∂θq(tmkm)


, (4.8)

For a given θi and yi, sensitivities Si, i = 1, . . . , q (represented by columns in matrix (4.8))

indicate how sensitive the model output is to a given value of the ith parameter at the times of

measurements. Since model output and parameter units vary, it is beneficial to compute relative

sensitivities defined as

S̃ =
∂y

∂θ

θ

y
, y 6= 0. (4.9)

Sensitivities can be computed analytically [24], using automatic differentiation [34], or by

using finite differences [131]. Computing them analytically can be laborious and susceptible

to errors for large systems. Automatic differentiation [42] uses operators that calculate exact

derivatives to machine precision. Thus, it is the most accurate method for computing sen-

sitivities, however computation time is lengthy and too slow for use with the gradient-based

optimization algorithms. In our work we chose to derive sensitivities using finite differences. This

method is simple to implement, cheap and gives a numerical approximation to the derivatives

within an increment δ defined by the user. We used the forward difference approximation

∂yk
∂θi

=
yk(t, θ + δei)− yk(t, θ)

δ
, (4.10)

where ei = [0 . . . 0
i

1̂ 0 . . .]T is the unit vector in the i’th component direction, and δ =
√
χ

is the step-size where χ = 10−8 is the integration tolerance used for solution of the dynamical

system. A scaled 2-norm, as described in [104], is used to get the total sensitivity, S̄i, to the ith

parameter

S̄i = ||Si||2 =

 1

K

K∑
j=1

S2
i,j

1/2

. (4.11)

The resulting ranked sensitivities can be sorted from the most to least sensitive, thus param-

eters may be divided into two groups: ρ sensitive and q − ρ insensitive parameters. Insensitive

36



parameters are not to be estimated, hence, the subset of identifiable parameters is decreased

to only the sensitive parameters. Olufsen et al. [104] analyzed the computational accuracy of

dividing the parameters into sensitive and insensitive. Since the differential equations are solved

numerically with an absolute error O(10−ν) and sensitivities are computed using finite differ-

ences as done in our work, then the error of the sensitivities are O(10−ν/2) [131]. Parameters

with sensitivities smaller than this bound are included in the set of insensitive parameters. It

should be noted that this analysis is local, i.e results depend on the actual nominal values of

the parameters. Hence the better the initial estimates of the parameters, the more accurate the

analysis. Consequently, we also employed an additional analysis, subset selection, to determine

which parameters were identifiable.

4.4 Subset selection

There are two main identifiability analysis methodologies for nonlinear ODE models. They

include structural identifiability analysis and practical identifiability analysis [52]. Structural

identifiability techniques verify system identifiability by exploring the system structure (i.e., the

model itself). There are two basic assumptions for which structural identifiability analysis rely:

model structures are completely accurate and there are no measurement errors. However, these

two assumptions are obviously not valid in practice. For instance, in biomedical research, both

model uncertainty and measurement error are usually large. Thus, even when structural iden-

tifiability analysis advocates that model parameters can be uniquely identified, the estimates

of model parameters may still be uncertain. Thus, it is necessary to assess whether structurally

identifiable parameters can be estimated with sufficient accuracy from noisy data. This is so-

called practical identifiability analysis. Note that structural identifiability analysis determines a

theoretical ground for practical identifiability analysis. If the structural analysis advocates that

a model is not theoretically identifiable, the practical analysis is not necessary since theoretical

unindentifiability must imply practical unindentifiability. Thus, only theoretically identifiable

models need further practical identifiability analysis, a few of which will be discussed in detail

here.

In the studies in the subsequent chapters, two practical identifiability methods are explored

to test the models for parameter correlations analyzed by Olufsen et. al [104]. The goal of prac-

tical identifiability is to predict a subset of parameters that can be identified given the model

and available data. It is essential since only a limited amount of data is available for ”real-

world” models. The results from a subset selection is a set of identifiable parameters and a set

of parameters that should remain constant at nominal parameter values during optimization.

This differs from sensitivity analysis, which finds individual parameters to which the system is

independently sensitive.
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The first method, also discussed by Pope et al. [131], to determine identifiable parame-

ters uses singular value decomposition of the sensitivity matrix S followed by QR factorization

(SVD-QR). The sensitivity matrix defined in (4.8) was decomposed as S = UΣV T , where U is

the left hand singular vector, Σ is a diagonal matrix containing the singular values σi of S, and

V is the associated right hand singular vector. The number of identifiable parameter values can

be found by predicting the numerical rank ρ of S by using the singular values. Given a tolerance

ε, the numerical rank of the matrix is the largest k such that the singular values σn−k+1 > εσn.

For our study, similar to the sensitivity analysis, ε =
√
χ, the square root of the integration

tolerance χ. Using ρ, the matrix of eigenvectors V can be written as [Vρ Vn−ρ].

The identifiable parameters, which are the parameters associated with the ρ eigenvalues

that correspond to the highest eigenvectors are then found using QR-decomposition with col-

umn pivoting. It should be noted that the QR decomposition is not unique, but differ with

the concrete implementation of the algorithm. However, for a given ρ the algorithm will return

a set of ρ identifiable parameters. Independent of the exact algorithm, the subset is found by

V T
ρ P = QR, where Q is an orthogonal matrix, and the first ρ elements of R form an upper

triangular matrix with diagonal elements in decreasing order. The permutation matrix P can

be used to reorder the parameter vector θ̂ = P T θ. Finally, the partition θ̂ = {θ̂ρ, θ̂n−ρ}, where

θ̂ρ contains the first ρ identifiable elements, while the vector θ̂n−ρ contains parameters that

cannot be identified, thus these were kept at their nominal parameter values. The latter does

introduce bias in the computations, but reduces the variance. At the same time estimation of

only sensitive parameters make the estimation algorithm more robust ([31, 60]).

The second method used in our studies is based on structured analysis of correlations com-

puted from the covariance matrix. This analysis gives parameter sets that are pair-wise cor-

related. We use the model Hessian [56] (a positive definite symmetric matrix also known as

the Fisher information matrix [6] defined by H = STS, where S is the sensitivity matrix de-

fined in (4.8)). Using the model covariance matrix C = H−1, the correlation matrix c can be

computed as

ci,j =
Ci,j√
Ci,iCj,j

. (4.12)

The correlation matrix is symmetric with 1’s in the diagonal. All off-diagonal elements have

values between −1 ≤ ci,j ≤ 1, values in the range y ∈ [0.85, 0.95] indicate that parameters are

correlated [104]. Moreover, it should be noted that all analysis methods presented here are local

and only valid in a region close to the parameter values investigated, i.e., results may change as

the parameters change. To ensure that optimized parameters were not correlated, this analysis

along with the sensitivity analysis can be repeated for the optimized parameter values as well.
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4.5 Optimal control problem

Optimal control is a topic that appears in many branches of mathematics and engineering.

In aerospace engineering, it is used in various applications including trajectory optimization,

altitude control, and vehicle guidance [115, 122, 126]. In mathematical biology, optimal control

techniques are utilized in mathematical models predominately for treatment of disease (i.e.

cancer and HIV). For example, Neilan and Lenhart [100] present an SEIR (Susceptible, Exposed,

Infected, Recovered) model with control acting as a rate of vaccination and an optimal control

problem formulated to include an isoperimetric constraint on the vaccine supply. The goal of

the study was to minimize the number of infectious individuals and the overall cost of the

vaccination over a specific number of years. Zarei et al. [57] consider a mathematical model

of HIV dynamics that includes the effect of antiretroviral therapy. They perform analysis of

optimal control regarding maximizing the CD4+ T-cell counts and minimizing both the viral

load and cost of drugs. De Pillis and Radunskaya [114] presented an analysis of a mathematical

model of tumor growth with an immune response and chemotherapy. They used optimal control

to describe treatment protocols which have the potential to be more efficient than standard

periodic protocols already in use.

An optimal control problem consists of a cost functional that is a function of state and

control variables. It contains a set of differential equations that describe the paths of the control

variables that minimize the cost functional [81]. The objective of a standard optimal control

problem is to find a control function u(t) to minimize a cost functional

J(u(t)) = Φ(x(t0), t0, x(tf ), tf ) +

∫ tf

t0

L(x(t), u(t), t) dt (4.13)

subject to the first-order dynamic constraints

ẋ(t) = f(x(t), u(t), t), (4.14)

the boundary conditions

φ(x(t0), t0, x(tf ), tf ) = 0, (4.15)

and the inequality path constraints

C(x(t), u(t), t) ≤ 0. (4.16)

Here x(t) is the state, t0 is the initial time, and tf is the terminal time. Furthermore, f defines

the right-hand side of the dynamic constraints, C defines the path constraints, and φ defines

the boundary conditions.
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For illustration, we consider the following example from Lewis and Syrmos [81]. The example

involves the control of temperature in a room where the goal is to heat the room using the least

possible energy. The room temperature is modeled using Newton’s law of cooling,

θ̇(t) = −a(θ(t)− θα) + bu(t),

where θ(t) is the temperature in the room with respect to time, θα is a constant representing

the ambient air temperature outside of the room, and u(t) is the control representing the heat

supply to the room. If we let x(t) = θ(t)− θα, then the state equation becomes

ẋ(t) = −ax+ bu. (4.17)

where the constants a and b depend on the room insulation. The objective is to control the

temperature to be around 10 at t = tf with the least supplied energy. Thus the cost functional

is given by

J =
1

2
s(x(tf )− 10)2 +

1

2

∫ tf

0
u2 dt (4.18)

for some weight coefficient s.

If the control variable u(t) is unconstrained, the necessary conditions for the optimal solution

(x∗, u∗) are given in terms of the Hamiltonian, H,

H(x, u, λ, t) = L(x, u, t) + λT f(x, u, t).

The following equations, including the original dynamics and initial conditions represent

necessary conditions for optimality known as the Euler-Lagrange equations. These equations

are used to design the control u(t) that minimizes the cost function using Pontryagin’s principle,

ẋ∗ = ∂H/∂λ = f(x∗, u∗, t), x∗(t0) = x0, (4.19)

−λ̇∗ = ∂H/∂x(x∗, u∗, λ∗, t),

0 = ∂H/∂u(x∗, u∗, λ∗, t),

with transversality condition

(Φx − λ)T

∣∣∣∣∣
tf

dx(tf ) + (Φt +H)T

∣∣∣∣∣
tf

dtf = 0. (4.20)

However, if the control u(t) is constrained to lie in an admissible region (e.g., in our case, the

control is bounded above and below by some constants), the stationarity condition ∂H/∂u = 0
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is replaced with the more general condition

H(x∗, u∗, λ∗, t) ≤ H(x∗, u, λ∗, t).

for all admissible controls u(t) [81]. Also, note that in the transversality condition, since dx(tf )

and dtf are not independent, we cannot simply set the coefficients of those quantities to zero.

If dx(tf ) = 0 (fixed final state) or dtf = 0 (fixed final time), the transversality condition is

simplified.

Considering the temperature control example from above, the Hamiltonian is

H =
u2

2
+ λ(−ax+ bu). (4.21)

The optimal control u(t) is determined by solving:

ẋ = −ax+ bu, (4.22)

λ̇ = aλ, (4.23)

0 = u+ bλ. (4.24)

From the stationarity condition (4.24), the optimal control is given by

u(t) = −bλ(t), (4.25)

thus to determine u∗(t) we need to only find the optimal costate λ∗(t). Substituting (4.25) into

(4.22) yields the state-costate equations

ẋ = −ax− b2λ (4.26)

λ̇ = aλ (4.27)

In this example, the final time is fixed (i.e. dtf = 0) and the final state is free (i.e. dx(tf ) is

free). Thus, from the transversality condition (4.20), we have

λ(tf ) =
∂Φ

∂x

∣∣∣∣∣
tf

= s(x(tf )− 10).

So the boundary condition of x and λ are specified at t0 and tf , respectively. This is so called the

two-point boundary value (TPBV) problem. Assuming that λ(tf ) is known, from the solution
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of (4.27) we have

λ(t) = e−a(tf−t)λ(tf ).

Hence

ẋ = −ax− b2λ(tf )e−a(tf−t)

and solving the above ODE, we have

x(t) = x(0)e−at − b2

a
λ(tf )e−atf sinh(at).

Now we have the second equation about x(tf ) and λ(tf ),

x(tf ) = x(0)e−atf − b2

a
λ(tf )e−atf sinh(atf ).

Assuming x(0) = 0, λ(tf ) can be solved as

λ(tf ) =
−10as

a+ sb2e−atf sinh(aT )
.

Now the costate equation becomes

λ∗(t) =
−10aseat

aeatf + sb2 sinh(aT )

and finally we obtain the optimal control

u∗(t) =
−10abseat

aeatf + sb2 sinh(aT )
.

TPBV problems are difficult to solve even for the simplest optimal control problems as illus-

trated in the given example. In most cases, we rely on numerical methods and optimal control

software packages utilizing indirect and direct methods.

4.5.1 Indirect methods

As summarized by Betts, Garg, Stryk et al. and Rao [9, 15, 46, 144], indirect methods employ

the calculus of variations and Pontryagin’s principle to determine the first order necessary con-

ditions for an optimal solution of the problem given in (4.13), thus transforming the optimal

control problems into a Hamiltonian boundary-value problem (HBVP). The most common indi-

rect methods are the indirect shooting method, indirect multiple-shooting method, and indirect

collocation method.

The most basic indirect method is the shooting method [74, 81, 144]. Typically, an initial
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guess is made of the unknown boundary conditions at one end of the interval. Using this guess,

in addition to the known initial conditions, the Hamiltonian system Eq. (4.20) is integrated

to the other end. Upon reaching the terminal time, the terminal conditions obtained from the

numerical integration are compared to terminal conditions given in Eqs. (4.15) and (4.20). If

the integrated terminal conditions digress from the known terminal conditions by more than a

specified tolerance ε, the unknown initial conditions are modified and the process is repeated

until the difference between the integrated terminal conditions and the required terminal con-

ditions is less than some specified threshold.

While the shooting method is attractive due to its simplicity, it introduces significant nu-

merical instabilities due to ill-conditioning of the Hamiltonian dynamics. It is particularly prob-

lematic when the time interval of interest is lengthy in comparison to the time-scales of the

Hamiltonian system in a neighborhood of the optimal solution. To overcome the numerical is-

sues, a modified method called the multiple-shooting method was developed [49, 81, 132]. In a

multiple-shooting method, the time interval is divided into subintervals. The shooting method

is then utilized over each subinterval with the initial values of the state and adjoint of the inte-

rior intervals being unknowns that need to be determined. This method introduces additional

variables into the problem (i.e., the values of the state and adjoint at the interface points). Al-

though size of the problem is increased due to the extra variables, the multiple-shooting method

is an advancement over the standard shooting method because the sensitivity to errors in the

unknown initial conditions is diminished because integration is performed over significantly

smaller time intervals. However, even multiple-shooting can present problems if a sufficiently

good guess of the co-state is not given.

In an indirect collocation method, the state and co-state are parameterized using piecewise

polynomials as described with the direct collocation method below. The collocation procedure

leads to a root-finding problem where the vector of unknown coefficients consists of the coeffi-

cients of the piecewise polynomial. This system of nonlinear equations is then solved using an

appropriate root-finding technique.

4.5.2 Direct methods

In direct methods for solving optimal control problems, the continuous state and/or control

functions of time and cost are approximated and the problem is transcribed into a finite-

dimensional nonlinear programming problem (NLP). The NLP is solved using well developed

algorithms and software [17, 110, 111, 117]. The direct methods have the advantage that the

optimality conditions do not need to be derived, the initial guess does not to be highly ac-

curate, a guess of the co-state is not necessary, and the problem can be reformulated fairly

easily if needed. On the downside, direct methods are not as accurate as indirect methods due

43



to their basis on numerics rather than theory, they require more work to verify optimality,

and many do not provide knowledge of the co-state. There are several direct methods that

have been established, including the two earliest developed methods: direct shooting and direct

multiple-shooting [19, 78, 148]. Both of these methods parameterize the control using a specified

functional form and the dynamics are integrated using explicit numerical integration (e.g., a

time-marching algorithm). However, these methods are computationally expensive as a result

of the numerical integration and require a priori knowledge of the switching structure of path

constraints. POST [47] and STOPM [5] are well-known computer software for direct shooting

methods.

Another direct method is based on collocation where both the state and control are param-

eterized via a set of basis functions and a set of differential algebraic constraints are enforced

at a finite number of collocation points. Unlike the shooting methods, this approach does not

require a priori knowledge of path constraints and is less sensitive to the initial guess. In direct

collocation methods, the time interval is divided into subintervals and a fixed polynomial is

used for approximation in each subinterval. The convergence of the numerical discretization is

achieved by increasing the number of subintervals. The most common discretization methods

are: Runge-Kutta methods that use piecewise polynomials and orthogonal collocation methods

that use orthogonal polynomials. Direct collocation leads to a sparse NLP with many of the

constraint Jacobian entries as zero. Although sparsity in the NLP increases the computational

efficiency, the convergence to the exact solution is at a polynomial rate and often a large num-

ber of subintervals are needed for accurate approximation of the solution. Some examples of

direct collocation computer softwares are SOCS [16], OTIS [58], DIRCOL [143], DIDO [120]

and GPOPS [11, 12].

A particular class of collocation methods called pseudo-spectral methods have been stud-

ied in recent years. In a pseudo-spectral method, the basis functions are generally Lagrange

polynomials and the collocation points are obtained from Gaussian quadrature rules. These

methods are based on spectral methods and generally have exponentially faster convergence

rates that then the other methods mentioned for a small number of discretization points [46].

The three most commonly used sets of collocation points are Legendre-Gauss (LG), Legendre-

Gauss-Lobatto (LGL), and Legendre-Gauss-Radau (LGR) points, leading to the Gauss pseudo-

spectral method (GPM), Lobatto pseudo-spectral method (LPM), and the Radau pseudo-

spectral method (RPM), respectively. All three sets of points are obtained from the roots

of a Legendre polynomial and/or linear combinations of a Legendre polynomial and its deriva-

tives [23]. There are defined on the domain (-1,1), however they differ significantly in that LG

points include neither of the endpoints, the LGL points include both of the endpoints, and the

LGR points include one of the endpoints.

Although direct methods have many advantages, most of them do not give any informa-
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tion about the co-state. The co-state is important for verifying the optimality of the solution,

mesh refinement, sensitivity analysis, and real time optimization [46]. Co-state estimates have

recently been established for pseudo-spectral methods by relating the Karush-Kuhn-Tucker

(KKT) conditions of the NLP to the continuous co-state dynamics as demonstrated by Sey-

wald and Stryk [127, 142]. For the GPM and RPM, the KKT conditions are found to be exactly

equivalent to the discretized form of the first-order necessary conditions of the optimal control

problem. This is not true for the LPM, thus this property allows for a co-state estimate that is

more accurate for GPM and LPM than the one obtained from the LPM. However, the GPM

initial and final point is not achieved due to the dynamics not being collocated at the end-

points. Hence, the RPM seems the most reasonable collocation method to employ to solve an

optimal control problem. In work discussed in Chapter 7, we utilize the optimal control software

GPOPS, which employs the RPM.

4.5.3 GPOPS (General Pseudo-spectral Optimal Control Software)

GPOPS solves multiphase optimal control problems utilizing the Gauss Pseudo-spectral Method

(GPM). All the following information comes from [11, 12]. Given a set of P phases, i.e. separate

time intervals on which the problem is solved, (where p ∈ (1, . . . , P )), the general cost function

to be minimized is of the form

J =
P∑
p=1

[
Φ(p)(x(p)(t0), x

(p)(tf ), t
(p)
f ; q(p)) +

∫ t
(p)
f

t
(p)
0

L(p)(x(p)(t), u(p)(t); q(p)) dt

]
(4.28)

subject to the dynamic constraints

ẋ(p) = f (p)(x(p), u(p), t; q(p)), (4.29)

the inequality path constraints

C
(p)
min ≤ C

(p)(x(p), u(p), t; q(p)) ≤ C(p)
max, (4.30)

the boundary conditions

φ
(p)
min ≤ φ

(p)(x(p)(t0), t
(p)
0 , x(p)(tf ), t

(p)
f ; q(p)) ≤ φ(p)max, (4.31)
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and the linkage constraints

L
(s)
min ≤ L

(s)(x(p
(s)
l )(tf ), t

(p
(s)
l )

f ; q(p
(s)
l ), x(p

(s)
r )(t0), t

(p
(s)
r )

f ; q(p
(s)
r )) ≤ L(s)

max,

pl, pr ∈ [1, . . . , P ],

s = 1, . . . , L.

(4.32)

where x(p)(t) ∈ Rnp , u(p)(t) ∈ Rmp , q(p) ∈ Rqp and t ∈ R are the state, control, static

parameters, and time in phase p = [1, . . . , P ], respectively, L is the number of pairs of phases to

be linked, and (p
(s)
l , p

(s)
r ) ∈ [1, . . . , P ], s = 1, . . . , L, are the ”left” and ”right” phase numbers,

respectively.

The discretization of the multi-phase optimal control problem is done via the the RPM.

RPM is an orthogonal collocation method based on using global polynomial approximations

to the dynamic equations at a set of Legendre-Gauss-Radau (LGR) collocation points. The

theory of the RPM can be found in [11, 23, 46]; however, no knowledge of the RPM is required

for using GPOPS. The optimality conditions of the nonlinear programming problem (NLP)

are equivalent to the discretized optimality conditions of the continuous control problem. This

feature is not prevalent in other pseudo-spectral methods.

GPOPS is organized as follows. For a complete review of the usefulness of GPOPS, see [11,

12]. Note that the user must specify the optimal control problem to be solved by writing

MATLAB functions that define the following functions in each phase of the problem:

G1 the cost functional

G2 the right-hand side of the differential equations and the path constraints (i.e. the differential-

algebraic equations)

G3 the boundary conditions (i.e. event conditions)

G4 the linkage constraints (i.e. how the phases are connected)

Moreover, the user must specify the lower and upper limits on every component of the following

elements:

G5 initial and terminal time of the phase

G6 the state at the following points in time:

• at the beginning of the phase

• during the phase

• at the end of the phase

G7 the control
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G8 the static parameters

G9 the path constraints

G10 the boundary conditions

G11 the phase duration (i.e. the total length of phase in time)

G12 the linkage constraints (i.e. phase-connect conditions)

Note that each of the functions must be defined for each phase of the problem. Our prob-

lem does not necessarily have all the components mentioned, i.e. we have only one phase thus

there are not linkage constraints. GPOPS utilizes third party solver SNOPT (Sparse Nonlinear

Optimizer) to solve the NLP problem.

SNOPT is a package for constrained optimization. It can be used to solve both linear and

nonlinear functions subject to bounds on the variables and sparse linear or nonlinear constraints.

It is applicable to large-scale linear and quadratic programming problems, linearly constrained

optimization, and general nonlinear problems. It employs a unique sequential quadratic pro-

gramming (SQP) algorithm [111] that exploits sparsity in the constraint Jacobian and maintains

a limited-memory quasi-Newton approximation to the Hessian of the Lagrangian. The algorithm

applies to constrained optimization problems of the form

min
x∈Rn

f(x) (4.33)

subject to l ≤

 x

c(x)

Ax

 ≤ u, (4.34)

where f(x) is a linear or nonlinear objective function, c(x) is a vector of nonlinear constraint

functions with sparse derivatives, A is a sparse matrix, and l and u are vectors of lower and upper

bounds. It is assumed that the nonlinear functions are smooth and that their first derivatives

are obtainable.

Search directions for the optimization problem are attained from quadratic programming sub-

functions that minimize (or maximize) a quadratic model of the Lagrangian function subject

to linearized constraints. The Lagrangian function is reduced along each search direction to

guarantee convergence from any starting point. More information on SNOPT and SQP methods

can be found in [111].
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Chapter 5

Patient Specific Pulsatile Model of

HUT

©[2013] Reprinted from [Mathematical Medicine and Biology: A Journal of the IMA by Nakeya

D. Williams, Andrew A. Wright & REU Program, Jesper Mehlsen, Johnny T. Ottesen, and

Mette S. Olufsen.]

Abstract

Short term cardiovascular responses to head-up tilt (HUT) involve complex cardiovascular regu-

lation in order to maintain blood pressure at homeostatic levels. This chapter presents a patient

specific model that uses heart rate as an input to fit the dynamic changes in arterial blood pres-

sure data during HUT. The model contains five compartments representing arteries and veins

in the upper and lower body of the systemic circulation, as well as the left ventricle facilitat-

ing pumping of the heart. A physiologically based sub-model describes gravitational pooling of

blood into the lower extremities during HUT, and a cardiovascular regulation model adjusts

cardiac contractility and vascular resistance to the blood pressure changes. Nominal parameter

values are computed from patient specific data and literature estimates. The model is rendered

patient specific via the use of parameter estimation techniques. This process involves sensitivity

analysis, prediction of a subset of identifiable parameters, and nonlinear optimization. The ap-

proach proposed here was applied to analysis of aortic and carotid HUT data from five healthy

young subjects. Results showed that it is possible to identify a subset of model parameters that

can be estimated allowing the model to fit changes in arterial blood pressure observed at the

level of the carotid bifurcation. Moreover, the model estimates physiologically reasonable values

for arterial and venous blood pressures, blood volumes, and cardiac output for which data are

not available.
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5.1 Introduction

The head-up tilt (HUT) test is often used to assess a patient’s ability to regulate blood pres-

sure [64, 88], in particular for patients suffering from frequent episodes of syncope, lighthead-

edness, or dizziness [88]. During this procedure quantities measured include non-invasive beat-

to-beat recordings of arterial blood pressure and heart rate. The test starts with the patient

placed on a tilt-table in supine position. After steady values for pressure and heart rate are

obtained the table is tilted to an angle of 60-70 degrees.

Upon tilting, gravity causes pooling of 500-1000 ml of blood in the lower extremities re-

ducing the venous return, cardiac filling, and cardiac output [64, 121]. The change of volume

leads to a decrease of blood pressure in the upper body (above the center of gravity), while

blood pressure in the lower body (below the center of gravity) is increased. During HUT the

baroreceptors located in the carotid sinus sense the drop in blood pressure causing sympathetic

activation and parasympathetic withdrawal. This in turn leads to an increase in heart rate,

along with changes in cardiac contractility and vascular resistance [32, 51, 136]. For most peo-

ple, the receptors located in the aortic arch sense an increase in pressure [64, 71], which in

principle should cause a decrease in heart rate. This response is contradictory to observed heart

rate increase. Thus we hypothesize that during HUT, the carotid sinus baroreceptors are the

main receptors activated leading to the observed increase in heart rate. Consequently, models

developed to analyze the dynamics of blood pressure regulation were compared with data mea-

sured at the level of the carotid sinus. However, in most tilt-table experiments blood pressure

is measured at the level of the aortic arch. In this study, we use data from both locations.

Figure 6.1(a) shows an example of blood pressure time series measured at the two locations.

Data measured at the level of the carotid sinus are used directly, while data measured at the

level of the aortic arch are first translated to the level of the carotid sinus. Figure 6.1(b) shows

an example of measured and calculated carotid blood pressures.

The baroreflex system, described above, is the main contributor to the control engaged dur-

ing HUT. However, other sensory systems also play a role in modulating the vascular targets

including inputs from cardiopulmonary sensors, the vestibular system, the central command

center, and the muscle sympathetic system [39, 124]. In this study, we do not directly model

the afferents but focus on predicting the impact on the vascular targets: heart rate, cardiac con-

tractility, and vascular resistance by allowing model parameters representing these quantities to

vary in time. The time-varying parameters are embedded in a compartmental model including

the left heart as well as arterial and venous compartments representing the upper (above the

center of gravity) and lower (below the center of gravity) parts of the body. Heart rate and the

time for end-systole are used as the model inputs, while systolic and diastolic arterial blood

pressure in the upper body (representing pressure at the level of the carotid arteries) is the
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model output. Parameter estimation techniques are used to render the model patient specific

allowing the model to fit blood pressure dynamics observed at the level of the carotid arteries.

The paper is organized as follows: The methods are outlined in section 2. This section in-

cludes a description of the data (section 2.1); the cardiovascular model, and methods used for

calculation of nominal parameter values and initial conditions (section 2.2); model analysis in-

cluding a formulation of the optimization problem, sensitivity analysis, parameter identification,

and methods used for nonlinear optimization (section 2.3). Results are presented in section 3,

and we conclude with section 4 discussing our findings.

5.2 Methods

A large number of previous studies have analyzed cardiovascular regulation of heart rate from a

medical, statistical, and modeling point of view. These studies can be separated in two groups:

studies which analyze the system dynamics using signal processing techniques and studies

that are based on mechanistic differential equations models. Signal processing based studies

(e.g. [7, 33, 53, 150]) typically analyze the frequency and magnitude components of the mea-

sured signals. Mechanistic models investigate the system dynamics using techniques developed

from physical laws. Such models are often used to describe dynamics for an average healthy sub-

ject, or to predict the impact of a given disease (e.g. [8, 10, 40, 72, 65, 79, 94, 106, 116, 118, 141]).

While the signal processing techniques typically analyze actual signals from individual subjects,

mechanistic models are most commonly developed to gain more insight into the system, i.e., they

were not adapted to display individual dynamics. Patient specific models, which use mechanistic

descriptions to predict signals recorded from individual subjects, can be obtained by combining

a general mechanistic model with patient specific estimation of model parameters. Estimating

model parameters involves solution of an inverse problem, i.e. given a model and data one has to

estimate the model parameters [59]. This problem is in general difficult to solve, and typically,

no unique analytical or numerical solution can be found [125].

One of the main obstacles in developing patient specific models, is that ”good” physio-

logically models often have a large number of variables and parameters, while the number of

quantities measured to render these models patient specific is sparse. Therefore, most studies

addressing parameter identification and/or parameter estimation use examples involving a ”cor-

rect” model, good initial parameter values, and a comprehensive set of data. For such systems,

model parameters may be estimated via solution of the associated inverse problem [6]. However,

in practice, only some parameters can be estimated given a model and available observations,

and this process works better if the model analyzed is not too complex.

The overall objective is to build a simple model including only essential elements. Some

studies have successfully developed patient specific models of the cardiovascular system, but
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most of these models do not include pulsatility [55, 67, 85]. There are a few models that include

pulsatility [93, 131], though the model by [93] estimated too many model parameters and the

model by [131] only addressed how to estimate parameters for a subject in supine position.

Other contributions include the study by [134] who developed a model predicting short term

blood pressure and heart rate variability for a healthy young male, and studies by Ursino who

modeled heart rate regulation [8, 138, 139]. The latter studies did compare the model output

with experimental data but did not address parameter estimation. Another example, is the

recent model by [129], which computes heart rate regulation in rats. This study does address

parameter estimation, but does not address parameter identifiability.

The work discussed in this paper is a simple model that uses heart rate as input and es-

timates pulsatile arterial blood pressure during HUT. To make the model patient specific, we

use sensitivity analysis and parameter identification combined with nonlinear optimization.

The study shows how to estimate constant and time-varying parameters allowing the model fit

data measured at the level of the carotid artery. Finally, we show how carotid pressure can be

calculated from data measured at the level of aorta and that similar parameter estimates are

obtained comparing model outputs against the measured and calculated carotid pressures.

5.2.1 Blood pressure and heart rate data

Data was collected at the Coordinating Research Centre at Frederiksberg Hospital, Copenhagen,

Denmark from five fit healthy young male volunteers age 30 ± 4 who had no known heart or

vascular diseases. The subjects gave informed consent to participate in the study, which was

approved by the local internal review board at Frederiksberg Hospital, Denmark. After resting

for 10 minutes in supine position, the subjects were tilted to an angle of 60 degrees at a speed

of 15 degrees per second measured by way of an electronic marker. The subjects remained tilted

for five minutes, and were then returned to supine position at the same tilt speed. For the model

based analysis, we extracted a total of 290 seconds of data: including a 180 seconds segment

recorded while the subjects were in supine position (see Fig. 5.1(e)) and a 180 second segment

recorded during HUT (see Fig. 5.1(f)). This latter segment overlaps with the supine segment

as illustrated on the figure.

Measurements include ECG recorded data using standard precordial leads and blood pres-

sure recorded using photoplethysmography (Finapres Medical Systems B.V.). For pressure mea-

surements, a sensor was placed on the index finger on each hand. The left hand was kept at the

level of the aortic arch, which is at the same level as the mitral valve, while the right hand was

kept at the level of the carotid sinus, which is at the same level as the carotid bifurcation. The

location of the mitral valve and carotid bifurcation were determined by echocardiography and

carotid ultrasound, respectively. ECG and blood pressure measurements were sampled contin-
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Figure 5.1: Graph (a) shows simultaneous measurements of aortic (cyan) and carotid (blue)
blood pressures during HUT, (b) shows measured (blue) and calculated (cyan) carotid blood
pressure, and (c) shows a zoom for t = 100 − 110 seconds. (d-f) show measured carotid blood
pressure (blue) and heart rate (cyan) for the complete data set (d), for data used to estimate the
dynamics in supine position (e) (marked with pink lines on (d)), and during HUT (f) (marked
with green lines on (d)). Note, there is an overlap between the data shown in (e) and (f).

uously at a rate of 1.0 kHz and saved digitally using an A/D-converter communicating with a

computer via Chart 5 (ADInstruments). This program allows extraction of heart rate from the

ECG measurements. By keeping the fingers with sensors at the two locations, the measured

pressures hydrostatically represents the actual pressures at the two locations. Diastolic values

measured are similar to the central pressure values, though systolic values may be overesti-

mated due to the impact of wave-reflection. Examples of peripheral and central wave-forms

can be found in the book by [45]. Figure 5.1(a-c) show the two blood pressure time series for

a representative subject, while Fig. 5.1(d-f) show heart rate and blood pressure time series

measured at the level of the carotid arteries.

To estimate the blood pressure regulation in response to HUT, blood pressure should be

measured at the level of the carotid sinus. However, many existing tilt-experiments have only

measured blood pressure at the level of aorta. For an upright subject, the main difference be-

tween the two signals is the impact of hydrostatic pressure. Thus using a simple model involving

gravity, it is possible to calculate the carotid pressure pCa,p from the pressure measured at the
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level of the aortic arch as

pCa,p = pAo − ρgh, (5.1)

where pAo is the measured aortic blood pressure data, ρ (g/ml) is the density of blood, g (cm/s2)

is the constant of gravitational acceleration, and h (cm) is the height difference between the

carotid sinus and the aortic arch. Figure 5.1(b) shows the true carotid data along with the

calculated carotid data.

5.2.2 Mathematical model

This section describes the cardiovascular model developed to estimate blood flow, volume, and

pressure in the systemic circulation during HUT. The model development is split into three parts

including: a lumped cardiovascular model estimating dynamics while the subject is in supine

position; a model estimating dynamic changes in response to HUT; and a model estimating the

impact of cardiovascular regulation on the model parameters. Following the model descriptions,

a section describing nominal parameter values and initial conditions used to solve the differential

equations is included.

Lumped cardiovascular model

The basic cardiovascular model includes 5 compartments (see Fig. 5.2) representing arteries

and veins in the upper and lower body of the systemic circulation, as well as the left heart. The

upper body compartments include arteries and veins in the head, thorax, and abdomen, while

the lower body compartments include all vessels in the legs. The model mimics an electrical

RC-circuit with voltage analogous to pressure, current analogous to flow, charge analogous to

volume, compliance analogous to capacitance, while resistance is the same in both formulations.

This model is able to estimate pulsatile blood pressure and flow in the various compartments,

while it cannot output the actual shape of the wave form.

For each compartment, a pressure-volume relation can be defined as

Vi − Vun = Ci(pi − pext), (5.2)

where Vi (ml) is the compartment volume, Vun (ml) is the unstressed volume, Ci (ml/mmHg)

is the compartment compliance, pi (mmHg) is the compartment instantaneous blood pressure,

and pext (mmHg) (assumed constant) is the pressure in the surrounding tissue. For each com-

partment, we also use a differential equation to predict the change in volume,

dVi
dt

= qin − qout. (5.3)
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Figure 5.2: Compartment model used for predicting HUT dynamics. For each compartment
an associated blood pressure p (mmHg), volume V (ml), and compliance C (ml/mmHg) are
defined. The compartments represent the upper body arteries (subscript au), lower body arteries
(subscript al), upper body veins (subscript vu), lower body veins (subscript vl), and the left
heart (subscript lh). Resistances R (mmHg s/ml) are placed between all compartments: Ral
denotes the resistance between arteries in the upper and lower body, Raup and Ralp denote
resistance between arteries and veins in the upper and lower body, respectively. The two heart
valves, the mitral valve and the aortic valve, are modeled as pressure dependent resistors Rmv
and Rav. Finally, the resistance between the lower and upper body veins Rvl is also modeled as
pressure dependent to prevent retrograde flow into the lower-body during the HUT.

where q (ml/s) is the volumetric flow. Using a linear relationship analogous to Ohm’s law the

volumetric flow q (ml/s) between compartments can be computed as

q =
pin − pout

R
, (5.4)

where pin and pout are the pressure on either side of the resistor R (mmHg s/ml). Differentiating

(5.2), using (5.3), and inserting (5.4) allows us to obtain a system of differential equations in

blood pressure of the form

dpi
dt

=
1

Ci

dVi
dt

=
1

Ci

(
pi−1 − pi
Ri−1

− pi − pi+1

Ri

)
,

where i refer to the compartment for which the pressure pi is computed, while i−1 and i+1 refer

to the two neighboring compartments. For resistances that appear between compartments, Ri−1

refer to the resistance between compartments i−1 and i, and Ri refer to the resistance between

compartments i and i+ 1. The latter equation is valid since we assume that Ci (ml/mmHg) is

constant. This formulation is utilized for the four arterial and venous compartments.

For the left heart compartment, we also use (5.3). For this compartment, pressure is pre-
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Figure 5.3: Time-varying elastance during a cardiac cycle. The maximum elastance is found
at t̃ = TM and the minimal elastance at t̃ = TM + TR, while the length of the cardiac cycle
T = 1 seconds. Values for TM and T = 1/H are obtained from data.

dicted from volume using the pressure-volume relation

plh = Elh(Vlh − Vun), (5.5)

where Elh (mmHg/ml) is the left heart elastance (the reciprocal of its compliance) and Vlh is

the left heart volume. Pumping is achieved by introducing a variable elastance function [34] of

the form

Elh(t̃) =



Emax − Emin
2

[
1− cos

(
πt̃

TM

)]
+ Emin, 0 ≤ t̃ ≤ TM

Emax − Emin
2

[
cos

(
π
(
t̃− TM

)
TR

)
+ 1

]
+ Emin, TM ≤ t̃ ≤ TM + TR

Emin, TM + TR ≤ t̃ ≤ T

(5.6)

where t̃ is the time within a cardiac cycle T = 1/H. Emin and Emax denote the minimum and

maximum elastance, respectively. For each cardiac cycle elastance is increased for 0 < t̃ < TM

and decreased for TM < t̃ < TM + TR, while during diastole TM + TR < t̃ < T elastance is

kept constant at its minimum value. Values for T and TM are obtained from data, while TR is

a model parameter. The time-varying elastance function is illustrated in Fig. 5.3.

Finally, heart valves are modeled using pressure dependent resistors for which a large re-

sistance Rcl represents a closed valve, while a small resistance Rop represents an open valve.

These are modeled as smooth sigmoidal functions of the form

Rv = Rcl −
Rcl −Rop

1 + e−β(pin−pout)
, (5.7)

where pin and pout denote the pressures in compartments on either side of the valve. For

pin > pout, Rv → Rop (the valve is open), and when pout > pin the valve closes.
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Using these relations the five differential equations can be written as

dpau
dt

= (qav − qal − qaup) /Cau,

dpal
dt

= (qal − qalp) /Cal,

dpvl
dt

= (qalp − qvl) /Cvl,

dpvu
dt

= (qaup + qvl − qmv) /Cvu,

dVlh
dt

= qmv − qav,

where

qav =
plh − pau
Rav

,

qaup =
pau − pvu
Raup

,

qal =
pau − pal
Ral

,

qalp =
pal − pvl
Ralp

,

qvl =
pvl − pvu
Rvl

,

qmv =
pvu − plh
Rmv

.

In the last set of equations the left ventricular pressure plh is predicted using (5.5), the pressure

dependent resistances used to model the valves (Rav, Rmv) are predicted from (5.7), and the

total blood volume can be computed from pressures using (5.2). These equations were solved

in Matlab using the ODE15s differential equations solver. Abbreviations (subscripts) are given

in Table 5.1.

Modeling HUT

The response to HUT is modeled by accounting for hydrostatic pressure acting on each com-

partment. During supine position, gravity does not influence the system. Upon HUT, blood

is pooled in the lower extremities leading to an increase in pressure in the lower body, while

pressure in the upper body decreases. To account for gravity, the pressure at the level of the

carotid arteries were used as a reference pressure, so an extra term is added to the arterial lower

body flow qal and subtracted from the venous flow of the lower body compartments. Figure 5.4

shows the subject tilted at an angle θ = 60o. The quantity htilt (cm) represents the distance
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between the lower and upper compartment. The gravitational effects are calculated as in [93],

and the modified flow equations are given by

q =
ρghtilt sin (θ(t)) + pin − pout

R
, (5.8)

θ(t) =
π

180


0 t < tst

vt(t− tst) tst ≤ t ≤ tst + ted

60 t > tst + ted

where ρ (g/ml) is blood density, g (cm/s2) is the constant of gravitational acceleration, htilt

(cm) is the absolute height between the upper body and lower body compartments,θ(t) is the

tilt angle (in radians), vt = 15 degrees/s is the tilt speed, while tst and ted denote the time at

which HUT is started and ended, respectively. The combined term ρghtilt sin (θ(t)) denotes the

hydrostatic pressure between the upper and lower body compartments.

Modeling effects of cardiovascular regulation

Upon HUT firing of the baroreceptor nerves are modulated by the aortic and carotid sinus

baroreceptors sensing changes in the stretch of the arterial wall. Typically, HUT leads to a

decrease in blood pressure mediating an increase in sympathetic outflow along with parasym-

pathetic withdrawal. Sympathetic stimulation elicits changes in vascular resistance and cardiac

contractility, while parasympathetic withdrawal primarily has an effect on heart rate (shown

on Fig. 5.1) and cardiac contractility. Heart rate is used as an input, thus the parasympathetic

heart rate regulation is implicitly accounted for in the model. Regulation of cardiac contractility

is modeled by controlling the minimum elastance of the left heart Emin, while regulation of vas-

cular resistance is included in the upper and lower body. The upper body compartment includes

Table 5.1: Abbreviations (subscripts) used in the compartmental model.

Abbreviation Name

au upper body arteries
al lower body arteries
aup upper body ”peripheral” vascular bed
alp lower body ”peripheral” vascular bed
vu upper body veins
vl lower body veins
lh the left heart (ventricle and atrium)
av aortic valve
mv aortic valve
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Figure 5.4: The HUT test: The subject depicted is tilted to an angle of 60 degrees at a constant
speed of 15 degrees per second. Red and yellow circles indicate the locations for the blood
pressure sensors. Each sensor is mounted on the index finger, one finger (red) is placed at the
level of the carotid artery, while the other (yellow) is placed at the level of the heart.Upon HUT
blood is pooled in the lower extremities.

abdominal and intestinal vessels, while the lower body compartment lumps vessels in the lower

extremities. Consequently, both Raup and Ralp (see Fig. 5.2) have been regulated. However,

as the compartments representing the upper and lower body arteries appear in parallel, both

resistances are not identifiable, thus we controlled Raup directly, while we let Ralp = kRaup,

where k is the ratio of the optimized supine values of Raup and Ralp.

Two quantities Raup and Emin, were controlled to counteract the effect of the tilt. We

modeled the control by defining the controlled quantities using piecewise linear functions of

time given by

X(t) =
N∑
i=1

γiHi(t), (5.9)

Hi(t) =


t− ti−1
ti − ti−1

, ti−1 ≤ t ≤ ti
ti+1 − t
ti+1 − ti

ti ≤ t ≤ ti+1

0, otherwise,

where the unknown coefficients γi, i = 1 . . . N are the new parameters that will be estimated

to estimate the control, and N is the number of nodes along the time span analyzed. The

spread of the N nodes should be specified in the model. For simulations reflecting dynamics

observed in supine position we placed N with a frequency of 6-10 seconds, but during HUT,

where dynamics change, significantly more points were added. It should be noted that the more
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points are added to the time-span, the longer the simulations.

Nominal parameter values

Literature values and subject specific information were integrated to identify nominal values

for all model parameters (resistances, capacitors, heart, and HUT parameters) as well as to

predict initial conditions for all state variables. Nominal parameter values were obtained by

considering mean values for all pressures, flows, and volumes in the system obtained while the

subject was in supine position (before HUT). The mean pressure in the upper arteries, p̄au,

was estimated from data as the average pressure over the ”steady” portion of the pressure-time

series (in supine position). The resistance between any large arteries in the body is small (in

supine position), thus the mean pressure in the lower arteries, p̄al, was estimated as 98 percent

of p̄au. The same applies to the resistance between upper and lower body veins, consequently

we set the upper body venous pressure p̄vu = 3.5, while the mean pressure in the lower body

veins, p̄vl = 3.75. Values for the total blood volume within each compartment were obtained as

fractions of the total blood volume, which for healthy subjects, can be predicted from [128]

Vtot =

{
(3.47 · BSA− 1.954) 1000, Female

(3.29 · BSA− 1.229) 1000, Male
(5.10)

where BSA =
√
l w/3600 denotes the body surface area, l (cm) denotes the height and w (kg)

the weight of the subject studied. For each compartment, we used stressed and unstressed blood

volume as proposed by [30]. Values of stressed blood volume are given in Table 5.2.

Table 5.2: For each compartment volume is estimated as fractions of the total volume Vtot ,
and the total compartment blood volume is separated between a stressed and an unstressed
volume, i.e., Vtot,i = Vstr,i + Vun,i. This table lists stressed volumes calculated as a fraction of
the total volume. Values are computed using ideas proposed by [30]. In this study the upper
body compartments contain arteries and veins in the head, thorax, and abdomen, while the
lower body compartments contain arteries and veins in the legs.

Volume Position Fraction of Total Volume Fraction of Stressed Volume

Vau Upper body arteries 0.11 0.19

Val Lower body arteries 0.66 0.05

Vvu Upper body veins 0.02 0.16

Vvl Lower body veins 0.06 0.05
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Cardiac output was estimated from the assumption that the entire volume is circulated in

the body within one minute [34]. Alternative estimates for cardiac output could be derived

as discussed in recent studies by [70]. Average flows between the upper and lower body, were

estimated utilizing the assumption, that for a subject in supine position 90% of the blood flows

between upper body arteries and veins, while 10% of the blood flow supports the vasculature

in the lower extremities [30].

Utilizing estimates for blood flow, pressure and volumes, values for model resistors and

capacitors (compliances) can be found by rewriting the pressure-volume (6.1) and pressure-flow

(5.4) relations as

R =
p̄in − p̄out

q̄
,

C =
V̄ − V̄un

p̄
=
Vstr
p̄
,

where p̄, q̄, V̄ denote mean values for the respective blood pressures, flow, and volumes. Sub-

scripts ”un” and ”str” denote unstressed and stressed volumes, respectively. The stressed vol-

ume fractions are given in Table 5.2.

For the heart model, parameters representing minimum and maximum elastance as well as

timing of the pump function must be estimated. The minimum left ventricular elastance can be

obtained from the pressure-volume relation (5.2), noting that when the left ventricular volume

equals the end-diastolic volume (VED) we have

p̄pv = Emin (VED − Vlh,un),

where p̄pv denotes the pulmonary venous pressure. This pressure is not appearing elsewhere

in the model. We assumed that pulmonary venous pressure is slightly higher (4 mmHg) than

its systemic counter-part [51, 136]. Similarly, the maximum left ventricular elastance can be

predicted by assessing the same relation at the end-systolic phase. For this case

plh,sys = Emax (VES − Vlh,un),

where plh,sys denotes the maximal systemic arterial pressure(obtained from the data) and VES

denotes the end systolic volume. For both parameters we assumed that the unstressed value of

the ventricular volume Vlh,un = 10 ml, which was used in previous studies (e.g. [34]).

The timing of the pump is achieved via parameters TM , TR and T . For this study we

estimated TM from data (for each cardiac cycle we let TM be the time at which the pressure

wave reached its maximum, while TR was defined relative to the length of the cardiac cycle as

TR = 0.19/T [34, 107]. Table 5.3 specifies parameter values for all model parameters.
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Table 5.3: Model parameters: The nominal parameter values and equations used for predicting
them. p̄au includes data from the supine portion of the blood pressure (bp) time-series (t <
180s), and N denotes the number of points within this period. pau,sys includes the systolic
blood pressure values for the M periods found for t < 180. Values for venous blood pressure
are from [1].

Name Definition Equation Value Units

Vtot total blood volume Eqn (5.10) 5377 ± 549 ml
l height 183 ± 8 cm
w weight 80 ± 10 kg
CO cardiac output Vtot/60 90 ± 9 ml/s

p̄au upper body mean arterial bp
1

N

N∑
i=1

pau(i) 68 ± 11 mmHg

p̄al lower body mean arterial bp 0.98 p̄au 67 ± 11 mmHg
p̄vu upper body mean venous bp 3.5 mmHg
p̄vl lower body mean venous bp 3.75 mmHg
q̄up upper body flow 0.9 CO 81 ± 8 ml/s
q̄low lower body flow 0.1 CO 9.0 ± 0.9 ml/s
Ri,op small resistance, open valve 0.001 mmHg s/ml
Ri,cl large resistance, closed valve 20 mmHg s/ml

Raup upper body peripheral resistance
p̄au − p̄vu

q̄up
0.81 ± 0.19 mmHg s/ml

Ralp lower body peripheral resistance
p̄al − p̄vl
q̄low

7.1 ± 1.6 mmHg s/ml

Ral upper body arterial resistance
p̄au − p̄al
q̄low

0.15 ± 0.03 mmHg s/ml

Rvl lower body venous resistance
p̄vl − p̄vu
q̄low

0.028 ± 0.003 mmHg s/ml

Cau upper body arterial compliance 0.19 V̄au/p̄au 1.7 ± 0.4 ml/mmHg
Cal lower body arterial compliance 0.05 V̄al/p̄al 0.26 ± 0.06 ml/mmHg
Cvu upper body venous compliance 0.05 V̄vu/p̄vu 51 ± 5 ml/mmHg
Cvl lower body venous compliance 0.16 V̄vl/p̄vl 4.3 ± 0.4 ml/mmHg
p̄pv mean pulmonary venous bp 4 mmHg

p̄lh,sys mean max systemic arterial bp
1

M

M∑
i=1

pau,sys(i) 102 ± 13 mmHg

VED end-diastolic volume 125 ml
VES end-systolic volume 70 ml
Vlh,un unstressed ventricular volume 10 ml

Emin min elastance
p̄pv

VED − Vlh,un
0.03 mmHg/ml

Emax max elastance
p̄lh,sys

VES − Vlh,un
1.7 ± 0.2 mmHg/ml

TR max elastance to relaxation 0.18/T 0.20 ± 0.01 N.D.
TM time of max elastance data 0.11 ± 0.01 N.D.
T length of i’th cardiac cycle data 0.90 ± 0.07 s

Initial values for all differential equations, i.e., for all arterial and venous pressures, as well

as the left ventricular volume were set as average values predicted as described above. These

values can be found in Table 5.3 along with values for all nominal parameters.
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5.3 Model analysis

The model dynamics are first analyzed while the subjects were in supine position, followed by

analysis of HUT. For the steady state analysis we first investigated the sensitivity of the carotid

blood pressure to the model parameters, we then determined a set of identifiable parameters,

and finally we used nonlinear optimization to estimate the parameters. After obtaining base

parameters representing steady state dynamics, parameters being regulated by baroreflex regu-

lation were estimated during HUT. Data analyzed for this study include continuous heart rate

and blood pressure measurements, as well as gender, age, height, and weight of the subjects.

Previous studies by [34, 131] have shown that parameter estimates obtained by minimizing

the least squares error between computed and measured values of arterial pressure, gave rise

to models that under-estimated cardiac output and total blood volume. These quantities are

typically not measured. Consequently, to obtain a set of parameters providing realistic model

estimates of cardiac output and blood volume, we used approximate values obtained using al-

lometric scaling laws estimating blood volume as a function of height, weight, age, and gender.

The total blood volume was scaled by 85% to get the volume of the systemic circulation, and

as discussed in (5.10) cardiac output was estimated by assuming that the total blood volume

is circulated in one minute.

The model developed in this study, estimates blood pressure and flow as pulsatile quan-

tities, but since the model is analogous to an RC-circuit it does not allow for prediction of

wave-propagation, consequently direct comparison of computed and measured values of blood

pressure is erroneous. To obtain adequate pulsatility, we identify model parameters that al-

low prediction of systolic and diastolic values of blood pressure. These values can be obtained

from computing the maximum and minimum pressure within each cardiac cycle. However, the

maximum and minimum functions are not smooth, consequently, we applied the smoothing

function [149]

min
ε

(x) = −ε ln

(∑
i

exp(−xi/ε)

)
for which ε > 0 represents the degree of smoothness (large values of ε gives rise to more smooth-

ing) and x represents the vector (indexed by i) to be minimized (or maximized).

The allometric data estimating cardiac output and blood volume will be included in the

model output during supine position, where these quantities are assumed approximately con-

stant. During HUT and subsequent control these quantities vary and thus model output will

only include systolic and diastolic arterial blood pressure. Consequently, the model output
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vector is given by

ysup = [pau,sys,1, ..., pau,sys,M , pau,dia,1, ..., pau,dia,M , Vst,1, ..., Vst,M , CO1, ..., COM ]T ,(5.11)

ytilt = [pau,sys,1, ..., pau,sys,M , pau,dia,1, ..., pau,dia,M ]T , (5.12)

where M is the number of cardiac cycles analyzed and subscripts sup and tilt refer to supine

and HUT simulations, respectively. Note, quantities in y do not depend continuously on time,

but represent one value for each cardiac cycle. Using y, we defined the residual vector R between

computed (yc) and measured (yd) quantities as

R =
1√
K

[
yc1 − yd1
yd1

,
yc2 − yd2
yd2

, ...,
ycK − ydK
ydK

]T
, (5.13)

where K is the length of the model output vector. For simulations representing supine dynamics

K = 4M , the model residual (5.11) has four entries of length M , while for simulations during

HUT K = 2M , here the model residual (5.12) has two entries of length M . Since pressure,

volume, and cardiac output have different units, and since the data segments analyzed may

vary in length, we scaled the residual by the value of the measurements and by the square root

of the number of samples K.

5.3.1 Sensitivity analysis

The first step in identifying a subset of parameters to be estimated given available data, was

to conduct sensitivity analysis and rank parameters from the most to the least sensitive. The

base model contains n = 12 parameters

θ = {Raup, Ral, Rvl, Ralp, Cau, Cal, Cvl, Cvu, TR, Emin, Emax, Vun,lh}.

The sensitivity matrix is defined as

S =
∂R

∂θ̃
, (5.14)

where θ̃ is log-scaled parameters and R is the residual vectors given in (5.11) and (5.12).

Sensitivities were computed using the forward difference approximation

∂yk

∂θ̃i
=
yk(t, θ̃ + hei)− yk(t, θ̃)

δ
, where ei =

[
0 . . . 0

i

1̂ 0 . . .

]T

is the unit vector in the i’th component direction, and δ =
√
χ is the step-size. χ = 10−8 is the

integration tolerance used for solution of the dynamical system. We used a scaled 2-norm to
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Figure 5.5: Ranked sensitivities ||∂R/∂θ̃||2 plotted on a log scale. Values are displayed from
the most to the least sensitive parameter. Left panel show sensitivities estimated using (5.11)
and right panel shows those estimated using (5.12).

get the total sensitivity, Si, to the i’th parameter

Si =

 1

K

K∑
j=1

S2
i,j

1/2

. (5.15)

Sensitivities are shown in Fig. 5.5.

5.3.2 Subset selection

As suggested in [104] we combined two approaches for estimating a subset of uncorrelated pa-

rameters. First, we note that the model contains two parallel circuits predicting flow in the upper

and lower body. For the supine dynamics, the model could be reformulated as an equivalent

circuit with one branch. Thus, parameters in one of the two branches will not be identifiable.

We chose to analyze parameters representing compartments in the upper body, while we kept

parameters in the lower body compartments (containing less blood volume) constant. The re-

duced parameter set include parameters θ = {Raup, Cau, Cvu, TR, Emin, Emax, Vlh,un}. Next, we

used singular value decomposition and QR factorization to identify parameters. The sensitivity

matrix defined in (5.14) was decomposed as R′(θ̃) = UΣV T , where θ̃ are the log-sacled param-

eters, Σ is a diagonal matrix containing the singular values σi of R′, and V is the associated

right eigenvector. The number of identifiable parameter values can be found by predicting the

numerical rank ρ of R′. Given a tolerance ε, the numerical rank of the matrix is the largest

k such that the singular values σn−k+1 > εσn. For our study ε =
√
χ, the square root of the

integration tolerance χ. Using ρ, the matrix of eigenvectors V can be written as [Vρ Vn−ρ]. The

parameters associated with the ρ highest eigenvectors are then found using QR-decomposition

with column pivoting. It should be noted that the QR decomposition is not unique, but differ
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with the concrete implementation of the algorithm. However, for a given ρ the algorithm will

return a set of ρ identifiable parameters.

Independent of the exact algorithm, the subset is found by V T
ρ P = QR, where Q is an

orthogonal matrix, and the first ρ elements of R form an upper triangular matrix with diagonal

elements in decreasing order. The permutation matrix P can be used to reorder the parameter

vector θ̂ = P T θ. Finally, the partition θ̂ = {θ̂ρ, θ̂n−ρ}, where θ̂ρ contains the first ρ sensitive

elements, while the vector θ̂n−ρ contains parameters that cannot be identified. In this study

these were kept at their nominal parameter values. The latter does introduce bias in the com-

putations, but reduces the variance. At the same time estimation of only sensitive parameters

make the estimation algorithm more robust [31, 60]. For this study, we performed subset se-

lection for the reduced parameter set noted above by analyzing the sensitivity matrix over the

entire 180 second interval. This analysis was repeated for all five data sets for each of the two

residuals. For the residual in (5.11), results show that independent of the data set studied four

parameters could be estimated including θ̂ρ = {Raup, Cau, Cvu, Emin}, while for the residual in

(5.12) only two parameters can be estimated θ̂ρ = {Raup, Emin}.
This parameter set was tested further, by computing pair-wise correlations. To do so we use

the model Hessian defined by H = STS, where S is the sensitivity matrix defined in (5.14).

Using H the correlation matrix c can be computed as

ci,j =
Ci,j√
Ci,iCj,j

, C = H−1.

The correlation matrix c is symmetric with 1’s in the diagonal. All off-diagonal elements have

values between −1 ≤ ci,j ≤ 1, values close to 1 indicate that parameters are correlated [104].

Moreover it should be noted that c cannot be computed if H is singular. The aim here was

to investigate correlations among parameters chosen by subset selection. For this subset H is

not singular, and thus c can easily be computed. For either parameters, the entries ci,j are not

close to 1, indicating that all parameters in the subsets are identifiable. It should be noted that

all analysis methods presented here are local and only valid in a region close to the parameter

values investigated, i.e., results may change as the parameters change. To ensure that optimized

parameters were not correlated, this analysis should be repeated for the optimized parameter

values.

5.3.3 Parameter estimation

Nonlinear optimization was employed to estimate a set of model parameters that minimize the

least squares error between the measured data and the model. This formulation relies on the

assumption that the measurements can be described fully by the underlying model plus an error
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term representing the measurement noise, i.e., we assume that

yd,i = ym(ti; θρ, θn−ρ) + εi, i = 1, 2, . . . ,K

where K denotes the number of elements in the output vector. For formulation of the statistical

model we assume that the errors εi are independent identically distributed (iid) random variables

with mean E[εi] = 0, covariance cov(εi, εj) = 0, and constant variance var[εi] = µ2. Given this

form of the statistical model, the objective function can be defined using the sum of least squares

errors

θopt,ρ = arg min
θρ

J(θ), J(θ) = RTR =
1

K

K∑
i=1

∣∣∣∣y(ti; θρ, θn−ρ)− yi
yi

∣∣∣∣ . (5.16)

The scaling with yi is included to ensure that all quantities in the output vector can be com-

pared. Note, only parameters in the subset θρ will be estimated, while parameters that are not

identifiable θn−ρ remain constant at the nominal parameter values. The identifiable parameters

θρ were estimated using the Levenberg-Marquadt optimization algorithm [75]. Upper and lower

bounds were set for all model parameters. For simulations presented here we allowed parameters

to increase or decrease by a factor of 4 from nominal parameter values.

As outlined below, model parameters were estimated first in supine position, and then during

HUT.

1. First one value for each of the identifiable parameters during supine position for t = 0−180

seconds was estimated. For this simulation, the minimization problem in (5.16) was solved

using the residual defined in (5.11) providing optimal values θ̂ρ = {R̂au, Ĉau, Ĉvu, Êmin}.

2. Second, over the same interval time-varying parameters were estimated as described in

(5.9). As in step 1, I solved (5.16) using the residual defined in (5.11) providing op-

timal values θ̂ρ = {γ̂Rau,i, γ̂Cau,i, γ̂Cvu,i, γ̂Emin,i}. To understand the impact of varying

parameters in time, we repeated this simulation three times, including one value for each

parameter for each 6, 8, and 10 seconds of data, i.e., we estimated 4 × η parameters for

η = (18, 23, 30).

3. Then the gravitational pooling of blood in the legs was simulated occurring as a response

to HUT. Initial values for this simulation were assigned to the optimal values predicted

in step 1. HUT simulations were compared against 180 seconds of data for t = 110− 290

seconds. Note this interval overlaps with the interval used for predicting supine dynamics.

4. Finally, I modeled blood pressure regulation by varying parameters representing vascular

resistance and cardiac contractility in time as discussed above and in step 2. For this

optimization problem (5.9) was used to make parameters time-varying and I solved (5.16)
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using the residual defined in (5.12). This optimization determined optimal values θ̂ρ =

{γ̂Rau,i, γ̂Emin,i}.

5.4 Results

Following the steps outlined above, I first show results obtained for a subject in supine position

followed by results obtained when the same subject was exposed to a HUT test.

5.4.1 Optimization during supine position

For simulations estimating the supine dynamics we used heart rate and blood pressure data

from the first 180 seconds of the time series (see Fig. 5.1(e)). The estimates of patient specific

parameters were obtained using two approaches, first one set of parameters was estimated over

the entire 180 seconds of data, second model parameters were allowed to vary slowly in time.

The latter was done using the approach outlined in section 5.3.2. Moreover, to ensure that

results were similar for measured and calculated carotid artery data, simulations were repeated

(with one parameter per 8 seconds) for both datasets. Finally, Table 5.4 gives a comparison of

mean values obtained over all five data sets.

Results comparing simulations with the measured carotid data are shown in Fig. 5.6. Results

comparing against calculated carotid data were not significantly different and are thus not

shown. Generally, we found that better results are obtained when parameters are allowed to

vary slowly in time. Compare Figs. 5.6(a) and 5.6(e). Both simulations gave the same mean

value predictions for pau, though with time-varying parameters the model was able to capture

fast and slow (likely due to respiration) oscillations. Figure 5.6(a) shows results obtained while

estimating one set of parameters of the entire 180 seconds of data, and Fig. 5.6(e) shows results

when parameters vary slowly in time. For each of the two simulations, the second column of

Fig. 5.6 shows a 5-second segment from t = 82 − 89 seconds. The third and fourth columns

of Fig. 5.6 show data versus computed values of diastolic and systolic pressures, respectively.

It should be noted that time-varying parameters are needed to accurately predict systolic and

diastolic pressures, for these simulations R2 = 0.65 and R2 = 0.77.

One limitation of results reported here is that estimated compliance values reflect that the

pulse-wave is measured in a peripheral vessel, rather than in the carotid artery. Consequently,

compliance values may be too small compared with expected values in the central vessels.

However, all other quantities (pressures, volumes, and flows) estimated by the model were

physiologically reasonable.
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Figure 5.6: Graph (a) shows the measured upper body arterial blood pressure (dark line) and
the optimized model output (light line) in supine position (over a 180 seconds time span); (b)
shows a zoomed portion of (a) for t = 82− 89 seconds. Graphs (c) and (d) show model versus
computed values for diastolic and systolic pressures, respectively, where the light line shows the
best one-to-one fit between the computed and measured values. Ideally, the dots should lie on
a straight line with slope 1. Graphs (e-h) show the same as (a-d), respectively, but obtained by
estimating time-varying parameters. With time-varying parameters (g-h) R2 = 0.65 (diastolic)
and R2 = 0.77 (systolic), compare diastolic and systolic computed outcomes to their respective
expected outcomes.

Table 5.4: Optimized parameter values found in supine position. The first three columns give
results for one representative subject, while columns 4-5 give results averaged over all five
subjects.

Parm Init Opt Opt Init Opt Unit

1 sub 1 sub (time-var) 5 sub 5 sub
Raup 0.81 0.86 0.89 ± 0.18 0.82± 0.19 0.89± 0.18 mmHg s/ml
Cau 1.64 2.3 1.4 ± 0.5 1.8± 0.4 1.4± 0.5 ml/mmHg
Cvu 53 67 69 ± 7 54± 9 69± 7 ml/mmHg
Emin 0.03 0.014 0.015 ± 0.002 0.027± 0.007 0.015± 0.002 mmHg/ml

5.4.2 HUT optimization

Figure 5.8(a) shows the measured and calculated blood pressure and the corresponding model

output for a representative subject tilted to 60o. This result represents dynamics without blood
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Figure 5.7: The graphs show the four parameters in the subset that were estimated as time-
varying parameters in the supine position including (a) upper body peripheral resistance Raup,
(b) upper body arterial compliance Cau, (c) upper body venous compliance Cvu, and (d) min-
imum ventricular elastance Emin. The ”zig-zag” lines show the results obtained with 6-sec
(blue dashed), 8-sec (cyan solid), and 10-sec (magenta solid) intervals, respectively, against the
measured carotid data, while the dashed green line shows results obtained with the calculated
carotid data. The solid horizontal lines show mean values and standard deviations for the es-
timation of the time-varying parameters, and the dashed horizontal red line show the results
obtained when estimating one value over the entire period.

pressure regulation, i.e., it was obtained by keeping all parameters constant at optimized values

obtained in supine position. Results were obtained by accounting for hydrostatic pooling of

blood in the legs as described in (6.18). The arterial blood pressure drops during HUT, and

remains low for the duration of the simulation. Figures 5.8(b) and 5.8(c) show that when

parameters Raup and Emin (shown in Figs. 5.8(e) and 5.8(h)) were controlled the model was

able to fit the observed pressure. The result in 5.8(b) was obtained by estimating the time-

varying model parameters θctr = {γRaup,i, γEmin,i}, minimizing the least squares error between

measured and modeled carotid blood pressure, while the result in Fig. 5.8(c) reflects comparison

with the calculated carotid data as given in (5.1). Results in Figs. 5.8(f) and 5.8(i) show diastolic

and systolic model predictions plotted against data. The cyan line with slope one, indicates the

unity between model and data. The top row in Fig. 5.9 show results obtained for all five subjects

comparing model results against measured carotid data. The bottom two rows (cyan line) of

Fig. 5.9 show piecewise linear predictions of peripheral resistance Raup and minimum elastance

Emin, while Fig. 5.10 show pooled predictions of Raup and Emin for all five datasets. Based on

these fits we propose to model the change in these quantities using combinations of Hill and
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polynomial functions given by

X(t) =


Xmin,ss t ≤ ttilt

Xmin,ss − (Xmin,ss −Xmin,m)
(t− ttilt)n

Xn
min,h + (t− ttilt)n

t > ttilt

Y (t) = A(t− t1)k1(t2 − t)k2 , A =
−B

(t2 − t1)/2)(k1+k2)
,

where Xmin,i, ttilt, n,B, k1, k2, t1, t2 are model parameters. The minimum elastance Emin is pre-

dicted using X(t) and the peripheral resistance by combining the expressions for X and Y .

Predictions of arterial pressure at the level of the carotid using these functions are shown in

second row of Fig. 5.9. Note the functions predict steady level and transition during tilt fairly

well, but neglect the faster variation within these periods. Hence these functions capture the

overall trend in the dynamical responses but ignore the faster variations captured by the piece-

wise linear functions.

The significance of the model was corroborated further by examining dynamics of quantities

for which data are not available. Starting at the heart, the volume and cardiac output for a rep-

resentative subject are depicted in Fig. 5.11. The ventricular volume (Figs. 5.11(a) and 5.11(b))

is within normal physiological bounds for a healthy person [63]. Moreover, consistent with liter-

ature observations [2, 62, 107], the CO is decreased slightly when the blood pressure regulation

is inhibited as depicted in Fig. 5.11(c). However when the blood pressure regulation is engaged,

CO is increased after the onset of HUT and then returns to the values before HUT as seen in

Fig. 5.11(d).

Figure 5.12 shows the lower body arterial pal and venous pvl pressure, the upper body venous

pressure pvu, as well as flow between upper and lower body on the arterial qal and venous qvl

side for a representative subject. We also show dynamics of resistance between upper and lower

body on the venous side Rvl. These figures represent dynamics observed during HUT, i.e.,

model parameters are time-varying. Immediately upon HUT flow from lower to upper body

veins stop, as the venous valve closes preventing return flow in the leg veins. As a result flow to

the lower body is reduced. These observations agree with those found in literature [71]. Similar

observations were made for all five data sets.

Simulations shown above were obtained by regulating two quantities Raup, and Emin, while

Ralp = kRaup. Results show, that similar dynamics were obtained for all five datasets. Moreover,

it should be noted (compare Figs. 5.7 & 5.10) that the parameters estimated during HUT

(Fig. 5.10) vary by orders of magnitude, while in supine position (Fig. 5.7) they only varied

slightly. Finally, it should be noted, that during HUT none of the compliance parameters were

included in the parameter estimation, these are only identifiable when cardiac output and blood

volume are included in the least squares cost (5.16). During supine position we used the residual
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Figure 5.8: Panel (a) shows the measured upper body arterial blood pressure and the model
output for a subject tilted over a 180 second time span, without parameters impacted by
cardiovascular regulation; (b) shows the same quantities as (a) where parameters impacted by
cardiovascular regulation are estimated as described in (5.9); (c) shows the same as (b) using the
calculated carotid pressure (5.1). Panels (d) and (g) show zoomed portions of (b) for t = 0− 5
seconds and t = 127− 132 seconds, respectively; Panels (e) and (h) shows optimized values for
Raup and Emin, the dark blue line shows results obtained optimizing against measured carotid
data (b) and the light cyan line against calculated carotid pressure (c). Finally, (f) and (g) show
predictions of diastolic (R2 = 0.83) and systolic (R2 = 0.87) pressure for (b). The vertical red
line indicates the onset of HUT.

in (5.11), but during HUT, the blood volume and cardiac output are expected to vary, thus

we cannot include our pseudo data estimating overall values for the subject in question. Thus

during HUT identifiability was done using the residual in (5.12) giving rise to a subset without

compliance parameters.
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Figure 5.9: Results showing computed and measured carotid blood pressure for five subjects
included in the study. Top row shows results predicting time-varying parameters using piecewise
linear functions, the second row shows results predicting arterial blood pressure using functional
expressions for Raup and Emin, the bottom two rows show predictions of Raup and Emin. For
each subject R2 values are marked on the graphs. The vertical red line (top row) marks the
onset of the tilt.
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Figure 5.10: Estimated values for upper body resistance Raup and and minimum contractility
Emin for all five subjects.

5.5 Discussion and conclusions

This study has provided an approach to examine cardiovascular regulation during HUT. This

was done by developing a five-compartment model that uses heart rate as an input to esti-
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Figure 5.11: First two graphs show ventricular volume during HUT without (a) and with (b)
cardiovascular regulation. The associated cardiac output are shown in (c) and with (d). The
vertical lines mark the onset of HUT.
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Figure 5.12: (a) Pressure in the lower body arteries; (b) pressure in the lower body veins; (c)
pressure in the upper body veins; (d) flow f from upper to lower body arteries. (e) flow from
lower to upper body veins; (f) resistance between lower and upper body veins. The vertical
lines mark the onset of HUT.

mate pulsatile values of blood flow, pressure, and volume. HUT was imposed by including

gravitational pooling of blood in the legs, and the autonomic response to HUT was included

via time-varying parameters estimating vascular resistance and cardiac contractility. Nonlin-

ear optimization minimizing the least squares error between measured and computed values of

systolic and diastolic blood pressure was used to estimate the time-varying model parameters.
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The model was compared with measured and calculated values for cardiac blood pressure for

five healthy young adults.

Results showed (see Figs. 5.6–5.9), that the model was able to fit measured and calculated

carotid blood pressures in supine position and during HUT. We noted, as expected that param-

eter variation during HUT is significantly larger than in supine position (compare Figs. 5.7 &

5.10). Based on these observations, we hypothesize that the large changes observed in Fig. 5.10

are due to cardiovascular regulation of these targets, while comparatively small variations ob-

served in Fig. 5.7 (summarized in Table 5.4) is a result of variation due to respiration [137].

During inspiration the lungs are filled with air causing the diaphragm to lower, as a result

the transmural pressure in the upper-body arteries and veins decrease. This decrease in tissue

pressure is likely to impact compliance and resistance of the vessels. Similarly, it is likely that

cardiac contractility is decreased during inspiration. However, assuming that no controls are

operating while the subject is in supine position is not realistic. The control system is continu-

ously active [32]. In addition, other quantities estimated by the model including cardiac output,

pressures in the other compartments, blood volumes, were all reasonable compared to values

reported in literature [1, 51].

To model the regulation during HUT, we varied upper and lower body resistance (Raup and

Ralp = kRaup) and minimum elastance of the left heart (Emin). These quantities were modeled

as piecewise linear time-varying functions, described using a set of nodes γ = {γRaup,i, γEmin,i} as

described in (5.9). Results showed that immediately upon HUT, peripheral resistance dropped.

This drop could be related to the muscle action [119, 146] or be a consequence of changes in

hydrostatic pressure in the compartment below the heart. The latter is more likely, since the

HUT maneuver is executed in a relaxed fashion, and no massive muscle action is provoked. After

the initial drop, arterial peripheral resistance increased due to contraction of smooth muscles

in the muscular and the elastic arteries, respectively, secondary to increased nerve traffic in the

sympathetic efferent nerves. Sympathetic nerve activation also has a positive inotropic effect

on the heart decreasing the left ventricular elastance allowing the heart to pump more blood

through the system.

Due to changes in arterial resistance, blood volume is redistributed between the lower and

upper body. Due to the increased hydrostatic pressure in the dependent regions during HUT,

blood volume increases more in the lower body than in the upper body, which results in ap-

proximately 25% reduction of ventricular blood volume as described by [123] and [130]. The

reduction in ventricular volume is paralleled by a significant drop in stroke volume as shown

by [71] and [82]. Similar results were also observed in previous modeling studies [25, 34, 93, 107].

It should be noted that we controlled Raup and Ralp. The need to control the upper body

resistance stems from the fact that vessels in the abdomen including the gut, liver and kidney

were included in the upper body. It is likely that if we had distinguished differently between
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upper and lower body, by moving these vessels to the lower body that it would be adequate

to control Ralp, though the concept presented in this study would be directly transferable to a

model with redistributed volumes.

As the model shows, through regulation of the selected quantities, blood pressure at the

carotid bifurcation returns to homeostatic levels after HUT, in line with the notion that the

carotid baroreceptors dominate the blood pressure regulation in humans [82, 90]. Another key

observation is that with regulation of the model parameters, cardiac output increases after

the onset of HUT and then returns to homeostatic levels, which would also be expected as the

metabolic demands in the passive upright position should be of the same magnitude as in supine

state. This agrees to some extent with results reported in literature. Enishi et al [71] reported a

slight decrease in cardiac output 1 minute after HUT, while [90] as well as [82] reported larger

drops in cardiac output; their results though were reported for a subject being tilted for 10 and

20 minutes, respectively. Further proof of the significance of the model is given when examin-

ing other variables in the model where the left ventricular volume decreases when the tilt is

performed in response to the decrease in filling pressure, which is also seen experimentally [71].

The estimated venous pressure (pvl) increases in the lower compartment as previously shown

by others [22, 69], while central venous pressure drops, again our results are similar to those

reported in literature [82, 90].

Moreover, we showed that by prescribing Emin and Raup by simple functions it is possible to

predict general trends in arterial blood pressure, while minor oscillations could not be predicted,

these may be a result of respiration, or the so-called Mayer-waves [105]. It should be noted that

these secondary oscillations are more pronounced while the subject is tilted than in supine po-

sition,which is in agreement with the observations reported and analyzed by [105]. The results

confirm our observations that during tilt, peripheral resistance drops, and then returns to the

value before the tilt, or is slightly increased, while the minimum elastance is reduced slightly.

One limitation of our study is that heart rate was an input to the model, and thus, the

model mainly predicts impact of sympathetic regulation via estimation of cardiac contractil-

ity and vascular resistance. In future studies one could consider including a model predicting

heart rate as was done by Olufsen et al. [92, 95] and others [104, 105, 129]. Moreover, if this

approach is used for a larger population study, the validity of values used for parameters not

estimated should be analyzed further. In this study we used ”text-book” values valid for the

healthy young male, however, they would not be valid for all population groups. For example,

values for venous pressure may be too low, while the assumption that the entire blood volume is

circulated in a minute, used to obtain an estimate for cardiac output may not hold in general.

One way to circumvent this last assumption is by including measurement of cardiac output

while the subject is in supine position.

Finally, it should be noted, that the small secondary waves present in the blood pressure
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data cannot be reproduced by our model in its present state. These waves arise from the re-

flection of the pulse-wave from the periphery, a phenomenon not included in our model. Such

effects could be included in a number of ways, either by developing a lumped parameter wave

propagation model from Womersley theory as suggested by [145], or by using empirically de-

rived nonlinear capacitors as suggested by [109], though both of these ideas lead to a more

complex model. While adding effects of wave-propagation are important for many applications,

e.g., for the study of wave propagation in normal and pathological arterial networks or for

studies designed to analyze modulating the coronary perfusion pressure, the inclusion of wave

reflections are most likely of little importance in the cardiovascular control system.
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Chapter 6

Cardiovascular Dynamics During

Head-up and Head-down Tilt

Assessed via Pulsatile and

Non-pulsatile Models

Abstract

This study presents a pulsatile and a non-pulsatile model for the prediction of head-up tilt

(HUT) and head-down tilt (HDT) dynamics for healthy young adults. In this study, HUT

refers to tilting a patient from supine position upright, while HDT refers to the process of

tilting the patient back to supine position after HUT. To explore potential deficits within the

autonomic control system, which maintains the cardiovascular system at homeostasis, many

people suffering from dizziness or light-headedness are often exposed to the head-up tilt test.

This system is complex and difficult to study in vivo. As a result, we show how mathematical

modeling can be used to extract features of the system that cannot be measured experimentally.

More specifically, we show that it is possible to develop a mathematical model that can predict

changes in cardiac contractility and vascular resistance, quantities that cannot be measured

directly, but which are useful to assess the state of the system. The cardiovascular system

is pulsatile, yet predicting the control in response to head-up tilt for the complete system is

computationally challenging, and limits the applicability of the model. In this work we show how

to develop a simpler non-pulsatile model that can be interchanged with the pulsatile model,

which is significantly easier to compute, yet it still is able to predict internal variables. The

models are validated using head-up tilt and head-down tilt data from healthy young adults.
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6.1 Introduction

Emergency rooms and syncope clinics see a large number of people who have experienced light-

headedness or dizziness. These symptoms may be associated with orthostatic intolerance: the

inability to maintain blood pressure and flow in response to active standing or head-up tilt

(HUT). Orthostatic intolerance [64] is triggered by a number of factors, the most important be-

ing dysautonomia, a disorder associated with the autonomic nervous system. This phenomenon

is difficult to diagnose not only due to the ambiguity of the disorder, but also due to the inability

to obtain clinical data for quantities pertinent to cardiovascular regulation. Consequently, we

propose the use of mathematical modeling as a tool to gain insight and knowledge to predict

quantities that can not be observed, which potentially can be used in diagnosis and treatments.

To this effect, our model can predict blood pressure and heart rate dynamics observed

during HUT and head-down tilt (HDT). The protocol starts with a subject resting in supine

position on a tilt-table. After steady oscillating values for heart rate and blood pressure have

been recorded, the subject is tilted head up to a 60 degree angle. After 5-10 minutes, the sub-

ject is tilted back to supine position. Upon HUT, blood is pooled in the lower body causing a

drop in blood pressure in the upper body, while blood pressure in the lower body is increased.

HDT elicits the opposite response. In response to HUT, for healthy subjects, the autonomic

system causes an increase in heart rate, cardiac contractility, and peripheral resistance, redis-

tributing blood volume and thereby re-establishing homeostasis. For patients suffering from

dysautonomia, these responses may be partly or completely inhibited causing chronic syncope

and constant discomfort for patients.

More specifically, this paper develops a non-pulsatile model for the cardiovascular system

that can predict HUT and HDT dynamics. We compare the non-pulsatile model with a pulsatile

model, and show that parameters estimated with the pulsatile model can be used within the

non-pulsatile model. The pulsatile model is beneficial because it enables analysis of dynamics

within beats and can be used to understand how modulation of the system affects pulsatil-

ity [104], which is useful in the study of the response immediately following HUT (within the

first minute of the tilt) and HDT. However, the pulsatile model is complex, thus if the objective

is to analyze dynamics over longer time-scales, it is adequate to analyze the system with the

simpler non-pulsatile model. For example, if the objective is to study dynamics associated with

HUT followed by HDT (10-20 min).

Besides being able to interchange the non-pulsatile and pulsatile models, in itself, the non-

pulsatile model has multiple advantages. First, since it is less complex, coupling a non-pulsatile

model with more advanced models studying larger systems such as the respiratory or renal

systems becomes feasible. The respiratory cycle is approximately a fourth of the cardiovascular

cycle, and control associated with respiratory dynamics take min-hours [51]. The renal system
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is one of the most complex physiological feedback systems, it interacts with the cardiovascular

system, and feedback associated with this system is hours-days [51].

Even if the objective is to study the impact of fainting, often analyzed using HUT tests,

it may be necessary to use a simpler model. Typically, after HUT it takes 10-20 minutes be-

fore the subject tilted experiences light headedness [64]. Finally, it should be emphasized that

computations with the non-pulsatile model are significantly faster, in particular, since it is no

longer necessary to account for the discrete events associated with opening and closing of the

heart valves. In the following, we will present both a pulsatile and a non-pulsatile model and

show that they can be used interchangeably in the study of HUT and HDT dynamics.

6.2 Methods

This section describes the pulsatile and non-pulsatile models, as well as the models required

to predict gravitational effects and autonomic regulation necessary to predict HUT and HDT

dynamics. This study includes three simulations:

(A) Steady state (before tilt) with the pulsatile and non-pulsatile models

(B) HUT for the pulsatile and non-pulsatile models

(C) HUT to HDT for the non-pulsatile model

We first discuss the data used for testing the models, then we describe the two models, the

modeling of HUT and HDT, and finally we describe the methods needed for comparing model

predictions.

6.2.1 Data

Pulsatile measurements include ECG signals recorded using standard precordial leads and blood

pressure recorded using photoplethysmography (Finapres Medical Systems B.V.). Data was

collected at the Coordinating Research Centre at Frederiksberg Hospital, Copenhagen, Denmark

from healthy young male volunteers with no known heart or vascular diseases. The subjects

were left to rest in supine position for 10 minutes. Subsequently, the subjects were tilted via a

tilt table to an angle of 60 degrees at a speed of 15 degrees per second measured by way of an

electronic marker. The subjects remained tilted for five minutes, and were then tilted back to

supine position at the same tilt speed.

For the model based analysis of the pulsatile model, we extracted a total of 290 seconds of

data: including a 180 second segment recorded while the subjects were in supine position for

simulation (A) (see the second graph in Fig. 6.1), a 180 second segment recorded during HUT
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Figure 6.1: Graphs show the measured carotid pulsatile blood pressure (blue) and heart rate
(cyan) for the complete data set. Data used to estimate the dynamics in supine position are
marked with pink lines on the first graph and data used for prediction of HUT is marked with
green lines on the first graph. The analysis of HUT followed by HDT use the entire time-series
depicted. The second graph depicts a zoomed portion of the supine position data, while the
last graph shows zoomed portion of the HUT data. Note there is an overlap between the data
shown in the second and last graphs.
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Figure 6.2: Upper body arterial and venous blood pressures, lower body arterial and venous
pressures, total blood volume, and cardiac output results obtained using optimized values from
the pulsatile model (blue) and calculated average values concatenated over each cardiac cycle
(black) in supine position.

for simulations (B) and (C) (see the last graph in Fig. 6.1). Simulation C overlaps with the

supine segment as illustrated on the first graph of the figure. Average blood pressure values were

obtained for simulations with the non-pulsatile model. For each cardiac cycle, the mean of all

pressures, cardiac output, and total blood volume outputs from the pulsatile model simulations

were calculated. Then we concatenate those averages to use as data for the non-pulsatile model,

see the black lines in Figures 6.2 and 6.3 for simulations (A) and (B), respectively. A longer
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Figure 6.3: Upper body arterial and venous blood pressures, lower body arterial and venous
pressures, total blood volume, and cardiac output results obtained using optimized values from
the pulsatile model (blue) and calculated average values concatenated over each cardiac cycle
(black) during HUT.

time scale extendend beyond 290s of the tilt portion of the data is used to include HDT for

simulation (C). We use this data, x = {paum, pvum, palm, pvlm, Vtotm, and COm}, to compare

the two models.

6.2.2 Lumped cardiovascular models

This section describes the pulsatile and non-pulsatile cardiovascular models depicted in Fig-

ure 7.1. These models are developed to estimate blood flow, volume, and pressure in the sys-

temic circulation during HUT for both pulsatile and non-pulsatile models and HDT for the

non-pulsatile model only.

Both the pulsatile and non-pulsatile models follow the same basic layout shown in Figure 7.1,

including four compartments representing arteries and veins in the upper and lower body and

a compartment representing the heart. The latter, is the only compartment that differ between

the two models. The general equations outlined below are valid for both models.

For each compartment, a pressure-volume relation can be defined as

Vi − Vun = Ci(pi − pext), (6.1)

where Vi (ml) is the compartment volume, Vun (ml) is the unstressed volume, Ci (ml/mmHg)

is the compartment compliance, pi (mmHg) is the compartment instantaneous blood pressure,

and pext (mmHg) (assumed constant) is the pressure in the surrounding tissue. Moreover, for
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Figure 6.4: Compartment model predicting cardiovascular dynamics. For each compartment
an associated blood pressure p (mmHg), volume V (ml), and compliance C (ml/mmHg) are
defined. The compartments represent the upper body arteries (subscript au), lower body arteries
(subscript al), upper body veins (subscript vu), lower body veins (subscript vl), and the left
heart (subscript lh). Resistances R (mmHg s/ml) are placed between all compartments: Ral
denotes the resistance between arteries in the upper and lower body, Raup and Ralp denote
resistance between arteries and veins in the upper and lower body, respectively. For the pulsatile
model, the two heart valves, the mitral valve and the aortic valve, are modeled as pressure
dependent resistors Rmv and Rav. Finally, the resistance between the lower and upper body
veins Rvl is also modeled as pressure dependent to prevent retrograde flow into the lower-body
during the HUT.

each compartment, the change in volume is given by

dVi
dt

= qin − qout, (6.2)

where q (ml/s) denotes the volumetric flow. Using a linear relationship analogous to Ohm’s law

the volumetric flow q (ml/s) between compartments can be computed as

q =
pin − pout

R
, (6.3)

where pin and pout are the pressure on either side of the resistor R (mmHg s/ml). Differentiating

(6.1), using (6.2), and inserting (6.3) allows us to obtain a system of differential equations in

blood pressure of the form

dpi
dt

=
1

Ci

dVi
dt

=
1

Ci

(
pi−1 − pi
Ri−1

− pi − pi+1

Ri

)
,

where i refer to the compartment for which the pressure pi is computed, while i−1 and i+1 refer

to the two neighboring compartments. For resistances that appear between compartments, Ri−1

refer to the resistance between compartments i−1 and i, and Ri refers to the resistance between
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Figure 6.5: Time-varying elastance during a cardiac cycle. The maximum elastance is found
at t̃ = TM and the minimal elastance at t̃ = TM + TR, while the length of the cardiac cycle
T = 1 seconds. Values for TM and T = 1/H are obtained from data.

compartments i and i+ 1. The latter equation is valid since we assume that Ci (ml/mmHg) is

constant. This formulation is utilized for the four arterial and venous compartments.

For the pulsatile model, (6.2) describes the change in volume of the left heart. Using a

relation similar to (6.1) we get

plh = Elh(Vlh − Vun), (6.4)

where Elh (mmHg/ml) is the left heart elastance (the reciprocal of its compliance) and Vlh is

the left heart volume. Pumping is achieved by introducing a variable elastance function [34] of

the form

Elh(t̃) =


EM−Em

2 (1− cos( πt̃
TM

) + Em), t̃ ≤ TM
EM−Em

2 (cos(
π(t̃−TM)

TR
) + 1) + Em, t̃ ≤ TM + TR

Em, t̃ ≤ T

where t̃ is the time within a cardiac cycle T = 1/H. Em and EM denote the minimum and

maximum elastance, respectively. For each cardiac cycle elastance is increased for 0 < t̃ < TM

and decreased for TM < t̃ < TM + TR, while during diastole TM + TR < t̃ < T elastance is

kept constant at its minimum value. Values for T and TM are obtained from data, while TR is

a model parameter. The time-varying elastance function is illustrated in Fig. 6.5.

Finally, heart valves are modeled using pressure dependent resistors for which a large re-

sistance Rcl represents a closed valve, while a small resistance Rop represents an open valve.

These are modeled as smooth sigmoidal functions of the form

Rv = Rcl −
Rcl −Rop

1 + e−β(pin−pout)
, (6.5)
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where pin and pout denote the pressures in compartments on either side of the valve. For

pin > pout, Rv → Rop (the valve is open), and when pout > pin, Rv → Rcl (the valve closes).

The non-pulsatile heart model is adapted from work by Batzel et al. [66], which followed

ideas put forth by Grodins [50]. To model cardiac filling, when the mitral valve is open, we

assume that the inflow to the ventricle is dependent upon the difference between the filling

pressure and the left ventricle pressure. Using an expression analogous to (6.3) gives

V̇lh(t) =
1

Rmv,op
(ppv(t)− plh(t)), (6.6)

where Vlh is the ventricular volume at time t after the filling process has started, plh is the

ventricular pressure and ppv is the venous filling pressure both assumed to be constant, and

Rmv,op is the ventricular resistance to the inflow of blood when the mitral valve is open.

For the relaxed ventricle at Elh = Em, using a volume-pressure relation similar to (6.1) we

obtain

plh(t) = Em(Vlh(t)− Vun). (6.7)

The initial value for (6.6) is given by V (0) = VES , representing the beginning of cardiac filling

where the volume of the left ventricle is at its minimum, see Figure 6.6. Substituting (6.7) in

(6.6) we have,

V̇lh(t) +
Em

Rmv,op
Vlh(t) =

ppv
Rmv,op

+
EmVun
Rmv,op

. (6.8)

Integrating (6.8) and letting t = td, the time of end-diastole, gives

VED = kVES + (1− k)

(
ppv
Em

+ Vun

)
, (6.9)

where k = exp(−tdEm/Rmv,op) and the time of end-diastole is given by td = T − TM . Note,

a similar calculation cannot be done during the ejection phase where the ventricular pressure,

plh changes with time, see Figure 6.6. Consequently, the Frank-Starling mechanism was used

to mimic this portion of the cardiac cycle.

The work in Batzel et al. does not explicitly model the pumping of the heart, but predicts

cardiac output Q as a function of venous filling pressure ppv. Their model utilized the complete

circulation, including the pulmonary division of the cardiovascular system. As a result, it pre-

dicted cardiac output as a function of pulmonary venous pressure, while our current model only

encompasses the systemic circulation. Thus, this study predicts cardiac output as a function of

systemic venous pressure pvu. The basic assumption concerning cardiac output, i.e. the outflow

of blood from the heart, for non-pulsatile flow states that: Given the heart rate H (in strokes
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Figure 6.6: Systole and diastole phases of the cardiac cycle. The top picture is of left ven-
tricular pressure, including aorta and atrium pressure waves. The bottom picture depicts the
left ventricular volume. The dotted lines represent end-diastolic (VED) and end-systolic (VES)
volumes, respectively. Stoke volume is also depicted on the figure. Adapted from [130].

per minute) the flow of the left ventricle Q generated by a ventricle is given by

Q = HVstr, (6.10)

where Vstr is the stroke volume, i.e., the volume of blood ejected during one stroke. The stroke

volume is given by

Vstr = VED − VES , (6.11)

where VED is the end-diastolic volume and VES is the end-systolic volume of the heart.

A second assumption involves expressing stroke volume Vstr as a function of the arterial and

venous pressures acting on the ventricle. During the ejection phase of the cardiac cycle the so

called Frank-Starling mechanism, also known as Starling’s Law [21], is used to account for the

fact that the stroke volume increases in response to an increase in the volume of blood filling

the heart (the end diastolic volume) when all other factors remain constant. Consequently,

increased filling of the ventricle during diastole, causes an increased contraction force during

the following systole. This phenomenon can be modeled via

Vstr =
S

pa
(VED − V un), (6.12)

where pa is the arterial pressure against which the ventricle has to eject (the afterload) and S

denotes the contractility of the left ventricle.
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Using the previous two assumptions the ventricular output Q (the cardiac output) as a

function of blood pressure is expressed. Equations (6.9), (6.11) and (6.12) constitute a system

of equations for VED, VES , and Vstr of the form

VED =
ppv
Em

+ Vun −
kppvS

Em((1− k)pa + kS)
, (6.13)

VES =
ppv
Em

+ Vun −
ppvS

Em((1− k)pa + kS)
, (6.14)

Vstr = VED − VES =
(1− k)ppvS

Em((1− k)pa + kS)
. (6.15)

Generally, ppv > pvu [130]. To compensate for the difference between the two venous pressures,

pvu is multiplied by a constant factor c, ppv = cpvu

Subsequenty, combining (6.10) and (6.15) gives the cardiac output out of the ventricle

Q = H
acpvS

Em(apa + kS)
. (6.16)

Using these relations the pulsatile and non-pulsatile differential equations can be written as

dpau
dt

= ([qav, Q]− qal − qaup) /Cau
dpal
dt

= (qal − qalp) /Cal
dpvl
dt

= (qalp − qvl) /Cvl
dpvu
dt

= (qaup + qvl − [qmv, Q]) /Cvu

dVlh
dt

= qmv − qav

where

qaup =
pau − pvu
Raup

qal =
pau − pal
Ral

qalp =
pal − pvl
Ralp

qvl =
pvl − pvu
Rvl

qav =
plh − pau
Rav

qmv =
pvu − plh
Rmv

.
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The pulsatile model terms are in blue, the non-pulsatile terms are in red, and the equations

relevant for both models are in black. In the last set of equations the left ventricular pressure

(plh) is predicted using (6.4), the pressure dependent resistances used to model the valves

(Rav, Rmv) are predicted from (6.5), and the total blood volume can be computed from pressures

using (6.1). These equations were solved in Matlab using the ODE15s differential equations

solver. Abbreviations (subscripts) are explained in Table 6.1.

Modeling HUT & HDT

As the subject is tilted head up (shown in Figure 6.7), blood is pooled in the lower extremities

leading to an increase in pressure in the lower body, while pressure in the upper body is

decreased. During HDT blood is returned to the upper body decreasing pressure in the legs

and increasing pressure in the upper body. Thus to account for gravity, a term representing

hydrostatic pressure is added to qal, but subtracted from qvl. The gravitational effects are

calculated as described by Olufsen et al. [93, 104], giving the following modified flow equations

q =
ρghtilt sin (θ(t)) + pin − pout

R
, (6.17)

θ(t) =
π

180



0 t < tus

vt(t− tus) tus ≤ t < tus + tue

60 tus + tue ≤ t < tds

−vt(t− tds) tds ≤ t ≤ tds + tde

0 t > tds + tde

where ρ (g/ml) is blood density, g (cm/s2) is the constant of gravitational acceleration, htilt

(cm) is the absolute height between the upper body and lower body compartments, θ(t) is the

Table 6.1: Abbreviations (subscripts) used in the compartmental model.

Abbreviation Name

au upper body arteries
al lower body arteries
aup upper body ”peripheral” vascular bed
alp lower body ”peripheral” vascular bed
vu upper body veins
vl lower body veins
lh the left heart (ventricle and atrium)
av aortic valve
mv aortic valve
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Figure 6.7: The HUT test: The subject depicted is tilted to an angle of 60 degrees at a constant
speed of 15 degrees per second. Red and yellow circles indicate the locations for the blood
pressure sensors. Each sensor is mounted on the index finger, one finger (red) is placed at the
level of the carotid artery, while the other (yellow) is placed at the level of the heart. Upon
HUT blood is pooled in the lower extremities.

tilt angle (in radians), vt = 15 degrees/s is the tilt speed, while tus, tue, tds, and tde denote

the time at which HUT and HDT are started and ended. The combined term ρghtilt sin (θ(t))

denotes the hydrostatic pressure between the upper and lower body compartments.

Modeling effects of cardiovascular regulation

Upon HUT/HDT firing of the baroreceptor nerves are modulated by the aortic and carotid

sinus baroreceptors sensing changes in the stretch of the arterial wall. Typically, HUT leads to

a decrease in blood pressure mediating an increase in sympathetic outflow along with parasym-

pathetic withdrawal. Sympathetic stimulation elicits changes in vascular resistance and cardiac

contractility, while parasympathetic withdrawal primarily has an effect on heart rate and cardiac

contractility. HDT elicits the opposite response. Heart rate is used as an input, consequently,

parasympathetic heart rate regulation is implicitly accounted for in the model. In the pulsatile

model, regulation of cardiac contractility was modeled by allowing the minimum elastance Em

of the left heart and vascular resistance in both the upper Raup and lower body Ralp to vary

with time. However, the compartments representing the upper and lower body arteries appear

in parallel, hence both resistances are not identifiable. Thus, Raup is controlled directly, while

we let Ralp = kRaup, where k is the ratio of the optimized supine values of Raup and Ralp.

Similar to [104] we predict Raup, Em, and S as time-varying quantities by expressing them
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as piece-wise linear functions given by

X(t) =
N∑
i=1

γiK(t), (6.18)

K(t) =


t− ti−1
ti − ti−1

, ti−1 ≤ t ≤ ti
ti+1 − t
ti+1 − ti

ti ≤ t ≤ ti+1

0, otherwise

where the unknown coefficients γi, i = 1 . . . N are the new parameters to be estimated to pre-

dict the control. N is the number of nodes along the time span analyzed. The spread of the N

nodes should be specified in the model. For simulations reflecting dynamics observed in supine

position we placed the nodes with a frequency of 6-10 seconds, but during HUT and HDT,

where dynamics change, significantly more points are added. It should be noted that the more

points are added to the time-span, the longer the simulations.

For the non-pulsatile simulations we investigate three models to regulate contractility:

(M1) Modeling contractility via the Bowditch Effect [77], which states that contractility is

proportional to heart rate. The Bowditch effect can be accounted for by introducing the

second order ordinary differential equation, of the form

S̈ + γṠ + αS = βH, (6.19)

where γ, α, and β are positive constants and H is heart rate. The second order ODE

is then written as two first order equations and those equations are added to the non-

pulsatile differential equations given previously. Raup is made time-varying via (6.18) and

Em remains constant.

(M2) Assuming contractility S is a time-varying quantity, but instead of using (6.19), we predict

S using (6.18) similar to Raup while Em remains constant.

(M3) Assuming contractility S to be a model parameter and predicting Raup and Em as time-

varying quantities using (6.18) as done in the pulsatile model.

To compare results of the pulsatile and non-pulsatile models, we modify only the heart compart-

ment parameters, while the other compartments remain identical to their pulsatile counterparts.

Comparisons are done using sensitivity analysis, subset selection, and gradient based optimiza-

tion [75]. More specifically, we estimate a set of model parameters minimizing the least squares

error between states computed by the two models. To achieve baseline parameter values while
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the subject is in supine position, only parameters that represented differences between the two

models (i.e., the heart component) are allowed to vary. Upon modeling HUT and HDT, model

parameters representing peripheral resistance and minimum elastance are varied, as was done

with the pulsatile model in [99].

Sensitivity analysis

The first step in identifying a subset of parameters to be estimated given available data was to

conduct a sensitivity analysis and rank parameters from the most to the least sensitive. For the

three models, parameter sets include

θ1 = {Raup, Ral, Rvl, Ralp, Cau, Cal, Cvl, Cvu, Em, γ, α, β, c}

θ2 = {Raup, Ral, Rvl, Ralp, Cau, Cal, Cvl, Cvu, Em, S} (6.20)

where θ1 corresponds to contractility model (M1) and θ2 corresponds to models (M2) and (M3).

The sensitivity matrix is defined as

χ =
∂R

∂θ̃
, (6.21)

where θ̃ is log-scaled parameters and the residual vector R between computed (yc) and measured

(yd) quantities is given by

R =
1√
K

[
yc1 − yd1
yd1

,
yc2 − yd2
yd2

, ...,
ycK − ydK
ydK

]T
, (6.22)

where K is the length of the model output vector defined as

yi = [xi1, xi2, xi3, . . . , xiM ] , (6.23)

where M is the number of cardiac cycles analyzed. Depending on the specific study {xi} has

several quantities. Since the model outputs may contain states with different units, and since

the data segments analyzed may vary in length, we scaled the residual by the value of the

measurements and by the square root of the number of samples K. Note quantities in y do not

depend continuously on time, but represent one value for each cardiac cycle.

Sensitivities were computed using the forward difference approximation

∂yk

∂θ̃i
=
yk(t, θ̃ + δei)− yk(t, θ̃)

δ
,
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where

ei =

[
0 . . . 0

i

1̂ 0 . . .

]T
is the unit vector in the i’th component direction, and δ =

√
ξ is the step-size. ξ = 10−8 is the

integration tolerance used for solution of the dynamical system. A scaled 2-norm

χi =

 1

K

K∑
j=1

χ2
i,j

1/2

. (6.24)

was used to get the total sensitivity, χi, to the i’th parameter. Parameters were split into two

sets: sensitive and insensitive parameters. The sensitive parameters were subsequently analyzed

using subset selection to investigate correlations among parameters.

Subset selection

The set of sensitive parameters from θ1 and θ2, were analyzed by computing pair-wise correla-

tions. To do so we use the model Hessian defined by H = χTχ, where χ is the sensitivity matrix

defined in (6.21). Using H the correlation matrix Ψ was computed as

Ψi,j =
Ci,j√
Ci,iCj,j

, C = H−1,

where it is symmetric with 1’s in the diagonal. All off-diagonal elements have values between

−1 ≤ Ψi,j ≤ 1, values close to 1 indicate that parameters are correlated [104]. It should be noted

that Ψ cannot be computed if H is singular. For the non-pulsatile model, only the parameters

corresponding to the heart compartment, (α, β, γ, c) and (S,c) for contractility models (M1)

and (M2/M3), respectively were analyzed. H is analyzed to guarantee nonsingularity, thus Ψ

can easily be computed. For either parameters, the entries Ψi,j are not close to 1, indicating

that all parameters in the subsets are identifiable. It should be noted that all analysis methods

presented here are local and only valid in a region close to the parameter values investigated,

i.e., results may change as the parameters change. To ensure that optimized parameters were

not correlated, this analysis should be repeated for the optimized parameter values.

Parameter estimation

Gradient-based optimization [75] was utilized to estimate the set of identifiable model param-

eters that minimize the least squares error between the measured data and the model. This

formulation relies on the assumption that the measurements can be described fully by the
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underlying model plus an error term representing the measurement noise, i.e. we assume that

yd,i = ym(ti; θρ, θn−ρ) + εi, i = 1, 2, . . . ,K

where K denotes the number of elements in the output vector, θρ are the parameters to be

estimated, and θn−ρ are the parameters kept at their baseline values. For formulation of the

statistical model we assume that the errors εi are independent identically distributed (iid)

random variables with mean E[εi] = 0, covariance cov(εi, εj) = 0, and constant variance var[εi] =

µ2. Given this form of the statistical model, the objective function can be defined using the

sum of least squares errors

θopt,ρ = arg min
θρ

J(θ)

with

J(θ) = RTR.

Note, only parameters in the subset θρ corresponding to the heart compartment will be esti-

mated, while the remaining θn−ρ parameters are kept constant at the nominal parameter values.

The identifiable parameters θρ were estimated using Levenberg-Marquadt algorithm [75]. Upper

and lower bounds were set for all model parameters. For simulations presented here we allowed

parameters to increase or decrease by a factor of 4 from nominal parameter values.

6.3 Results

The results are organized as follows:

• First, we show results for the supine simulation where contractility model (M1) parameters

include α, β, γ, and c and contractility models (M1) and (M2), only c and S are included

in the parameter set.

• Next are results obtained when the same subject is tilted upright to a 60 degree angle

(see Figure 6.7). During HUT the parameters estimated are (γRaup,i), (γRaup,i, γSi) and

(γRaup,i, γEm,i) for contractility models (M1), (M2) and (M3), respectively, corresponding

to the piece-wise linear spline function given in (6.18).

• Finally, we extend the time-series to include HDT allowing parameters to vary with time.

Parameters estimated are the same as during HUT.

For each event we estimate parameters minimizing the least squares error between the model

output and data. To develop two models (pulsatile and non-pulsatile) that can be interchanged,

we compute averages over each cardiac cycle and concatenate those values for the quantities x =
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{pau,m, pvu,m, pal,m, pvl,m, COm, Vtot,m} (Figures 6.2 and 6.3) using supine and HUT pulsatile

model outputs predicted in [99]. We then use those quantiities as data for the non-pulsatile

model.

6.3.1 Optimization during supine position

First we predict dynamics during supine position, as stated above. These simulations are in-

cluded to tune the model to the subject studied. For all contractility models, (M1), (M2), and

(M3) we minimize the least squares error

J =
1

N

N∑
i=1

(
xdi − xmi
xdi

)2

, (6.25)

where x denotes the states listed above, superscript d refers to the non-pulsatile model data

(obtained from the pulsatile model [99] discussed in Section 2.1, and superscript m refers to

measurements obtained with the non-pulsatile model.

It should be noted that for supine simulations, since the parameters not associated with the

heart compartment represent components common for the two models, they were kept constant

at their optimized values from the pulsatile model simulations. Results comparing the pulsatile

and non-pulsatile models during steady state are shown in Figure 6.8. This figure shows all

pressures, cardiac output, and total blood volume. Each graph shows pulsatile model results

from [99], calculated averages over each cardiac cycle predicted from the pulsatile model (black

line), computations with the non-pulsatile model using nominal parameters (cyan dashed line),

and computations with optimized parameters for the non-pulsatile model (magenta line). Note

that for all states the two models agree well. Results shown arre for the contractility model

(M1). Simulations with the other contractility models give similar results.

6.3.2 HUT optimization

Once baseline parameters were obtained, HUT was imposed by modifying flows between the

upper and lower body as described in (6.18). For these simulations, we only estimate the control

parameters γRaup,i , γEm,i , and/or γSi depending on which contractility model is used, i.e., we let

the parameters Raup, Em, and/or S vary in time as in (6.18). Three different cost functions were

surveyed to determine which gave the best fit. The first cost only included x = pau,m in (6.25),

as we did with HUT in the pulsatile model. The second cost function includes all pressures

x = (pau,m, pvu,m, pal,m, pvl,m) in (6.25). The third cost function includes x = (pau,m, pvu,m,

pal,m, pvl,m, Vtot,m, CO), the same quantities included for prediction of steady state simulations

with the pulsatile and non-pulsatile models.
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Figure 6.8: Predictions during supine position. All graphs include the pulsatile model output
(blue), the calculated mean over each pulse of the pulsatile model output (black), the non-
optimized (cyan, dashed) and optimized (magenta) non-pulsatile model output for the upper
and lower body arterial pressure pau and pal, upper and lower body venous pressure pvu and
pvl, cardiac output CO, and total volume Vtot.

For pau, Vtot, and CO, Figure 6.9 shows the pulsatile model output (blue), the computed av-

erages from the pulsatile model (black), and results using nominal (cyan dashed) and optimized

(magenta) parameter values during HUT with the three different cost functions. Figure 6.10

shows the other pressures as well as the time-varying prediction of peripheral vascular resis-

tance Raup for both the pulsatile (blue) and non-pulsatile (magenta) models comparing the

cost functions. The graphs shown use contractility model (M1). The graphs for contractility

models (M2) and (M3) gave similar results. The subject is tilted after about 80 sec and remains

upright for the duration of the simulation. The top three graphs in Figure 6.9 depict dynamics

without activating the control, i.e., for this simulation Raup, is kept at its baseline value. Note

that after about 100 sec, this part of the model deviates slightly from results obtained with

the pulsatile model. This is likely due to the fact that the non-pulsatile model results already

incorporate control of contractility (S) when using (M1), while the ”data” obtained from the

pulsatile model were obtained using constant contractility values for Em.

The remaining rows in Figure 6.9 and the graphs depicted in Figure 6.10 show pau, Vtot,

CO, pvu, pal, pvl, and Raup obtained with the non-pulsatile model using optimized parameter

values for each of the different cost functions. Note since the first cost function only includes

pau, predictions for pau are significantly closer than for the other states. In other words, no effort

was made to account for variation in the remaining states with the first cost function. Through

analyzing the comparisons between the several cost functions, we choose the most suitable for

our work to be the cost function including all pressures, cardiac output, and total blood volume
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Figure 6.9: Predictions during HUT. Pulsatile (blue), computed averages from pulsatile model
(black), non-pulsatile model with nominal (cyan dashed) and optimized (magenta) parameter
values. The top row of graphs shows pau, Vtot, and CO predicted using nominal parameter values
without cardiovascular regulation for the various cost functions. The latter graphs compare the
different cost functions for pau, Vtot, and CO with cardiovascular regulation. The rows include
the cost functions X = pau, X = (pau, pvu, pal, pvl), and X = (pau, pvu, pal, pvl, Vtot, CO),
respectively.

depicted in the last row of Figure 6.9 and the last column of Figure 6.10. For the analysis in

the remainder of this section, we use this cost function, x = (pau, pvu, pal, pvl, Vtot, CO).

Figure 6.11 depicts results including all pressures, cardiac output, total blood volume and

upper body peripheral resistance modeled by the Bowditch Effect (M1) (left), S as a time-

varying parameter with Em remaining constant (M2) (center), and S modeled as a constant

parameter with Em time-varying (M3) (right). The last graph in the right column shows Em

as a time-varying quantity in the pulsatile (blue) and non-pulsatile (magenta) models using

(M3). As before, the pulsatile model output (blue), the computed averages from the pulsatile

model (black), and results using nominal (cyan dashed) and optimized (magenta) parameter

values are shown. Recall, all simulations are now done with the cost function incorporating all
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Figure 6.10: Other pressure predictions and Raup during HUT. Again, pulsatile (blue), pulsatile
computed averages (black), and non-pulsatile (cyan, dashed) denote simulations with nominal
and (magenta) with estimated parameter values. The columns include the cost functions x =
pau, x = (pau, pvu, pal, pvl), and x = (pau, pvu, pal, pvl, Vtot, CO), respectively.

pressures, cardiac output and total blood volume. Although all three models provide accurate

predictions of pau, prediction of Raup is significantly better when Em is regulated.

The last figure, Figure 6.12 shows model results when the non-pulsatile estimated time-

varying quantities Raup and Em (i.e. using contractility model M3) are input into the pulsatile

model. The graphs show the pulsatile model output for pau, pvu, pal, pvl, Vtot, and CO with

Raup and Em estimated in the pulsatile model (blue) and those quantities estimated via the

non-pulsatile model (magenta).

6.3.3 HDT Optimization

The HUT simulations are extended on a longer time-scale including data from 110-590 sec-

onds (see the first graph of Figure 6.1) to include HDT dynamics. These simulations include

contractility model (M3) only, i.e. Raup and Em vary with time. The cost function will only
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Figure 6.11: S as a Parameter during HUT: The first column depicts simulations using con-
tractility model (M1) where S is modeled using the Bowditch effect and Raup as a time-varying
quantity. The second column shows simulations using contractility model (M2) where S and
Raup are time-varying quantities and Em remains constant. The third column shows results us-
ing contractility model (M3) where Em andRaup are time-varying and S is a constant parameter.
Again, the graphs show pulsatile (blue), pulsatile computed averages (black), and non-pulsatile
simulations with nominal( cyan) and estimated (magenta) parameter values. Graphs shown
include pau, pvu, pal, pvl, Vtot, CO, Raup and S. We also show Em as a time-varying quantity
for both the pulsatile and non-pulsatile models.

97



0 50 100 150
40

50

60

70

80

90

100

time (s)

p
a
u
 (

m
m

H
g
)

0 50 100 150
40

50

60

70

80

90

100

110

p
a
l 
(m

m
H

g
)

time (sec)
0 50 100 150

1

1.5

2

2.5

3

3.5

4

p
v
u
 (

m
m

H
g
)

time (sec)
0 50 100 150

0

5

10

15

20

25

p
v
l 
(m

m
H

g
)

time (sec)

0 50 100 150
4000

4500

5000

5500

6000

6500

7000

V
to

t 
(m

l)

time (sec)
0 50 100 150

50

100

150

200

C
O

 (
m

l/
s
)

time (sec)

Figure 6.12: Pulsatile predictions during HUT with non-pulsatile model estimates of Raup
and Em. All graphs include the pulsatile model output with the estimated quantities from the
pulsatile model (blue) and the non-pulsatile model (magenta) for the upper and lower body
arterial pressure pau and pal, upper and lower body venous pressure pvu and pvl, cardiac output
CO, and total volume Vtot.

include the upper body arterial pressure since we do not have HDT data from the pulsatile

model simulations.
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Figure 6.13: Predictions during HUT and HDT with non-pulsatile model estimates of Raup
and Em. The first graph in the top row depicts the carotid blood pressure data (red) and the
computed average of that data (black). The vertical lines show the onset of HUT and HDT. The
other two graphs in the top row show the controlled quantities Raup and Em. The remaining
graphs include pau, pvu, pal, pvl, Vtot, and CO before the control is imposed (cyan) and after
the control is implemented (magenta).

Figure 6.13 illustrates model results for HUT and HDT with the non-pulsatile model. The

clinical carotid blood pressure data (red) and the concatenated computed averages over each

cardiac cycle are shown in the first graph of the top row. The results of the controlled quantities

Raup and Em after optimization are also depicted in the first row. The latter graphs show the

results of other quantities pau, pvu, pal, pvl, Vtot before Raup and Em are regulated (cyan) and

after (magenta).

6.4 Discussion

This study has shown that it is possible to develop interchangeable pulsatile and non-pulsatile

models that can predict dynamics during HUT, and that time-varying parameters (Raup, Em)

can be predicted by both models. To our knowledge this has not been done before. We have also

shown that HUT and HDT dynamics can be predicted via the non-pulsatile model. This was

done by developing two five-compartment models that use heart rate as an input to estimate
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pulsatile and non-pulsatile values of blood flow, pressure, and volume. HUT and HDT were

imposed by including gravitational pooling of blood in the legs, and the autonomic response

to HUT and HDT was included via time-varying parameters estimating vascular resistance

and minimum elastance. Nonlinear optimization was used to estimate the time-varying model

parameters.

The non-pulsatile model was compared with calculated concatenated averages from the

pusatile model for a healthy young adult (see Figures 6.2 and 6.3). Moreover, we have shown

that it is possible to use parameter estimates obtained with the non-pulsatile model within the

pulsatile model and obtain similar results (see Figure 6.12). Note, the discrepancy between the

two pulsatile outputs after the tilt is most likely due to the discrepancy between the pulsatile

and non-pulsatile model estimates of Em (see Figure 6.11). The non-pulsatile Em estimate is

slightly larger than the pulsatile Em estimate after the tilt due to the effect of Starling’s law

providing averaged values for the non-pulsatile heart model.

Having pulsatile and non-pulsatile models that can be interchanged could be applicable to

simulations done over long time-scales (min-hours), where it may only be necessary to study

pulsatility intermittently, e.g., following given events within the system. The non-pulsatile model

is better for longer time-scales because it takes a significant less amount time to predict the

cardiac regulation in comparison to the pulsatile model. The pulsatile model took about 48

hours to complete the time-varying quantities estimations, while the non-pulsatile model took

about 4 hours. Simulations were performed on a Macbook Pro with a 2.66 GHz Intel Core 2

Duo processor. The non-pulsatile model could also be used for coupling the HUT model with

more complex models involving, respiration, renal activity, etc, model that are to be analyzed

in future work. Finally, it should be noted that compartments and parameters associated with

the arterial and venous subsystems are identical for the two models. The only difference is the

compartment predicting dynamics of the left heart.

Results showed (see Figures 6.8 and 6.11), that the non-pulsatile model was able to fit the

”data” created from the pulsatile model for the blood pressures as well as total blood volume

and cardiac output in supine position and during HUT. We also showed that we could model

contractility regulation several ways, but obtain similar results with each method. Another

option to be investigated is using the Bowditch effect to model contractility while also allowing

Em to vary with time. As the models show, through regulation of the selected quantities, blood

pressure at the carotid bifurcation returns to homeostatic levels after HUT, in line with the

notion that the carotid baroreceptors dominate the blood pressure regulation in humans [90, 82].

Moreover, we showed that by representing Em and Raup by simple functions it is possible to

predict general trends in arterial blood pressure for both the non-pulsatile and pulsatile models.

One limit of this study is the use of the Frank-Starling mechanism. Although there has been

experiments supporting the assumption that stroke volume of the heart increases in response to
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an increase in the volume of blood filling the heart, it is very difficult to actually justify this [21].

The equation given in (6.12) is an empirical equation adapted from [66]. It does not have any

real biological significance. In future work, we would like to directly integrate the pulsatile and

non-pulsatile models by use the equations involving elastance (6.4) and (6.5) utilized in the

pulsatile model, to describe not only the flow coming into the heart (Q or qmv), but the flow

coming out of the heart qav.

6.5 Conclusion

In summary, we have developed a non-pulsatile model interchangeable with a pulsatile model

and shown that it can be used to predict HUT and HDT dynamics. These models (the pulsatile

and non-pulsatile models) have many potential benefits for the study of complex models, which

contain a cardiovascular component. The advantage of results presented here is that the non-

pulsatile model can be included in applications that require analysis of data over large time-

scales and that it is simpler and faster than its pulsatile counterpart .
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Chapter 7

Modeling Head-up Tilt via an

Optimal Control Approach and a

Non-pulsatile Model

Abstract

This chapter presents an optimal control approach to modeling effects of cardiovascular reg-

ulation during head-up tilt (HUT). Many patients, who are suffering from dizziness or light-

headedness, are often exposed to the head-up tilt test to explore potential deficits within the

autonomic control system, which maintains the cardiovascular system at homeostasis. This sys-

tem is complex and difficult to study in vivo, thus we propose to use mathematical modeling to

achieve a better understanding of the cardiovascular regulation system during HUT. In partic-

ular, we show the feasibility of using optimal control to predict changes in vascular resistance

and cardiac contractility, quantities that cannot be measured directly, but which are useful

to assess the state of the cardiovascular system. A non-pulsatile and interchangeable pulsatile

model is utilized as well as a direct transcription method to regulate the cardiovascular system.

7.1 Introduction

Short-term cardiovascular responses to orthostatic stress involve complex interactions among

various mechanisms of short-term cardiovascular and respiratory blood flow and pressure con-

trol. Failure of this system has clinically significant consequences including dizziness, loss of

balance leading to collapses, and reflex mediated syncope, in particular for the elderly and for

patients with hypertension and diabetes. The underlying pathophysiology leading to regulatory

failure is difficult to analyze since the detailed physiology involved with blood flow and pressure
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control is not well understood, and it is difficult to study the complex regulatory responses

experimentally. These facts suggest that there is a need for the development of a modeling

approach to predict blood flow and blood pressure regulation.

Sit-to-stand as well as the more commonly used HUT tests are often used to assess patients

ability to regulate blood pressure, in particular for patients who suffer from frequent episodes of

syncope, lightheadedness, or dizziness [88]. During the HUT test, the patient rests on a tilt-table

in supine position. After steady values for pressure and heart rate are achieved the table is tilted

to an angle of 60-70 degrees. Upon tilting, gravity causes pooling of 500-1000 ml of blood in the

lower extremities reducing venous return, which induces a reduction in cardiac filling, pressure

and volume [64, 121]. As a response, blood pressure in the upper body decreases, while blood

pressure in the lower body increases. Baroreceptors located in the carotid sinuses sense the

drop in blood pressure causing sympathetic activation and parasympathetic withdrawal, which

in turn lead to an increase in heart rate, cardiac contractility and vascular resistance [32].

In this chapter, an optimal control approach is proposed for the regulation of vascular resis-

tance and cardiac contractility to predict dynamics during HUT. Optimal control has mostly

been used to model the regulation of drug treatments for a disease, most notably HIV and

cancer [29, 57, 100, 114]. Using optimal control to model the regulation of the cardiovascular

system is a novel approach. Only a few people have demonstrated this method, however they use

optimal control in a very different manner, employing feedback mechanisms. Batzel et al. [68]

employed optimal control to study the effects of congestive heart failure on the cardiovascular

and respiratory control systems. In this study the goal of the control problem is to model the

regulatory mechanisms of the cardiovascular and respiratory systems. The cost function consists

of the two control variables, heart rate and the ventilation rate, as well as stabilizing terms for

the mean arterial pressure and partial pressure of blood gas in arterial blood for CO2 and O2.

Previous efforts to regulate vascular resistance and cardiac contractility used piecewise linear

splines with gradient based optimization [99] and Kalman filtering [13]. This method proved

to be computationally expensive, as well as requiring a priori knowledge of the system for

placement of the nodes for the splines. The spread of the nodes were manually specified in the

model. During HUT, where dynamics change more frequently, significantly more points were

added than in supine position. It should be noted that the more points that are added to the

time-span, the longer the optimization simulations. The goal of using optimal control theory is

the specification of controlled parameters based on time dependent blood pressure data points.

A promising approach for approximating the solution to the optimal control problem is the di-

rect transcription method [35]. This method approximates the original optimal control problem

by a discrete optimization problem, an approach often referred to in the literature as ”discretize

then optimize”. In this work, we employed GPOPS (General Pseudo-spectral Optimal Control

Software) [12], a MATLAB based optimal control software that implements an adaptive Radau
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pseudo-spectral method to transcribe the optimal control problem to a nonlinear programming

problem (NLP). The NLP is then solved using either the NLP solver SNOPT or IPOPT. The

optimal control solutions from GPOPS are then compared with the results obtained from using

the piecewise linear spline approximation.

7.2 Methods

This section describes both the pulsatile and non-pulsatile cardiovascular models as well as the

optimal control formulation.

7.2.1 Lumped cardiovascular models

The pulsatile and non-pulsatile cardiovascular models depicted in Figure 7.1 are developed

to estimate blood flow, volume, and pressure in the systemic circulation during HUT with

and without a pulsating heart. Both models follow the same basic layout shown in Figure 7.1

including compartments representing arteries and veins in the upper and lower body as well

as a compartment representing the heart [99]. The latter is the only compartment that differs

between the pulsatile and non-pulsatile models.

For each compartment, a pressure-volume relation is given by

Vi − Vun = Ci(pi − pext), (7.1)

where Vi (ml) is the compartment volume, Vun (ml) is the unstressed volume, Ci (ml/mmHg)

is the compartment compliance, pi (mmHg) is the compartment instantaneous blood pressure,

and pext (mmHg) (assumed constant) is the pressure in the surrounding tissue. For each com-

partment, we also use a differential equation to predict the change in volume

dVi
dt

= qin − qout, (7.2)

where q (ml/s) is the volumetric flow. Using a linear relationship analogous to Ohm’s law the

volumetric flow q (ml/s) between compartments can be computed as

q =
pin − pout

R
, (7.3)

where pin and pout are the pressure on either side of the resistor R (mmHg s/ml). Differentiating

(7.1), using (7.2), and inserting (7.3) allows us to obtain a system of differential equations in
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Figure 7.1: Compartment model used for predicting HUT dynamics. For each compartment
an associated blood pressure p (mmHg), volume V (ml), and compliance C (ml/mmHg) are
defined. The compartments represent the upper body arteries (subscript au), lower body arteries
(subscript al), upper body veins (subscript vu), lower body veins (subscript vl), and the left
heart (subscript lh). Resistances R (mmHg s/ml) are placed between all compartments: Ral
denotes the resistance between arteries in the upper and lower body, Raup and Ralp denote
resistance between arteries and veins in the upper and lower body, respectively. The two heart
valves, the mitral valve and the aortic valve, are modeled as pressure dependent resistors Rmv
and Rav. Finally, the resistance between the lower and upper body veins Rvl is also modeled as
pressure dependent to prevent retrograde flow into the lower-body during the HUT.

blood pressure of the form

dpi
dt

=
1

Ci

dVi
dt

=
1

Ci

(
pi−1 − pi
Ri−1

− pi − pi+1

Ri

)
,

where i refer to the compartment for which the pressure pi is computed, while i−1 and i+1 refer

to the two neighboring compartments. For resistances that appear between compartments, Ri−1

refer to the resistance between compartments i−1 and i, and Ri refer to the resistance between

compartments i and i+ 1. The latter equation is valid since we assume that Ci (ml/mmHg) is

constant. This formulation is utilized for the four arterial and venous compartments.

The pulsatile heart model is the same used in previous work [98, 99]. The non-pulsatile heart

model is adapted from the work by Batzel et al. [66], which followed ideas originally proposed

by Grodins [50]. When the mitral valve is open, cardiac filling is modeled by assuming that

the inflow into the ventricle depends on the difference between the filling pressure and the left

ventricle pressure. Using an expression analogous to (7.3), we have

V̇lh(t) =
1

Rmv,op
(ppv(t)− plh(t)), (7.4)

where Vlh is the ventricular volume at time t after the filling process has begun, plh is the
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constant ventricular pressure, ppv is a constant representing the venous filling pressure, and

Rmv,op is the ventricular resistance to the inflow of blood when the mitral valve is open.

For the relaxed ventricle, a similar volume pressure relation can be derived as in (7.1),

plh(t) = Em(Vlh(t)− Vun), (7.5)

where Vun denotes the unstressed volume of the relaxed ventricle and Em denotes the minimum

elastance of the left heart. The initial value for (7.4) is given by Vlh(0) = VES . Using (7.5) in

(7.4), integrating, and letting t = td, the time of end-diastole, we obtain

VED = kVES + a

(
ppv
Em

+ Vun

)
, (7.6)

where k = exp(−tdEm/Rlh), a = 1 − k and the time of end-diastole is given by td = T − TM ,

TM being the time of end-systole.

The Batzel et al. model does not explicitly depict the pumping of the heart, but predicts cardiac

output Q as a function of venous filling pressure ppv. The original model was used with both the

systemic and pulmonary circulations. It predicted cardiac output as a function of pulmonary

venous pressure, the current model only encompasses the systemic circulation, and consequently

this study predicts cardiac output as a function of systemic venous pressure pvu.

The general assumption concerning cardiac output, i.e., the outflow of blood from the heart,

for non-pulsatile flow states that: Given the heart rate H (in strokes per minute) the flow of the

left ventricle Q is given by

Q = HVstr, (7.7)

where Vstr is the stroke volume, i.e., the volume of blood ejected during one stroke. As a result

time varying quantities in the non-pulsatile model are to be interpreted as averages over the

length of a pulse. The stroke volume is given by

Vstr = VED − VES , (7.8)

where VED is the end-diastolic volume and VES is the end-systolic volume of the heart. Another

assumption involves expressing stroke volume Vstr as a function of the arterial and venous pres-

sures acting on the ventricle. Concerning the ejection phase of the heart cycle we invoke the so

called Frank-Starling mechanism [21], which states that the stroke volume of the heart increases

in response to an increase in the volume of blood filling the heart (the end diastolic volume)

when all other factors remain constant. Consequently, increased filling of the ventricle dur-

ing diastole, causes an increased contraction force during the following systole. Frank-Starling
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mechanism is modeled as

Vstr =
S

pa
(VED − Vun), (7.9)

where pa is the arterial pressure against which the ventricle has to eject (the afterload) and S

denotes the contractility of the left ventricle.

Using the previous two assumptions we express the ventricular outputQ (the cardiac output)

as a function of blood pressure. Equations (7.6), (7.8) and (7.9) constitute a system of equations

for VED, VES , and Vstr of the form

VED =
ppv
Em

+ Vun −
kppvS

Em(apa + kS)
, (7.10)

VES =
ppv
Em

+ Vun −
ppvS

Em((1− k)pa + kS)
, (7.11)

Vstr = VED − VES =
(1− k)ppvS

Em((1− k)pa + kS)
. (7.12)

Recall that our model does not include both the systemic and pulmonary circuits, thus

we do not have a component for venous filling pressure ppv. The incoming pressure into the

ventricle in this model is the upper body venous pressure pvu. Generally, ppv > pvu [130]. To

compensate for the difference between the two venous pressures, pvu is multiplied by a constant

factor c, ppv = cpvu. Subsequently, combining (7.7) and (7.12) gives the cardiac output out of

the ventricle

Q = H
(1− k)cpvS

Em((1− k)pa + kS)
. (7.13)

7.2.2 Optimal control formulation

The objective of our control problem is to regulate vascular resistance and elastance during

HUT. For the cost functional we computed averages over each cardiac cycle of pdau, pdvu, pdal,

pdvl, CO
d and V d

tot, from the pulsatile model output predictions in Williams et al. [4], and joined

these averages together to be used as data. For the steady state, we employed the cost functional

(G1)

J = 102

[(
pmau − pdau

pdau

)2

+

(
pmvu − pdvu

pdvu

)2

+

(
pmal − pdal)

pdal

)2

+

(
pmvl − pdvl)
pvld

)2
]

+ 102
(

COm − COd

COd

)2

+ 102
(
V m
tot − V d

tot

V d
tot

)2

+R2
aup + E2

m, (7.14)

where superscript d refers to the averages (computed from the predictions of the pulsatile model)

used as data and m refers to the non-pulsatile model quantities. Here, the control variables are
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the vascular resistance Raup and the minimum elastance Em, both included in the cost. We

want the dynamics to fit the data more than we would like to minimize the control variables,

thus a weight of 102 is multiplied by the terms in the cost function involving data.

For HUT we have a cost functional of the form

J = 102
(
pmau − pdda

pdda

)2

+R2
aup + E2

m, (7.15)

where pda is the pulsatile blood pressure data gathered by clinicians used with the pulsatile

model in [99]. The superscript m is included because an average is computed over each cardiac

cycle and those values are concatenated together, the same procedure done to create the ”data”

for the non-pulsatile model using the pulsatile model simulations.

We employed GPOPS, an open-source MATLAB optimal control software that implements

the Radau pseudo-spectral method (RPM). In a pseudo-spectral method, the states and controls

are approximated using global polynomials, and collocation of the differential-algebraic equa-

tions (the right hand side of the system of ODEs) is achieved at orthogonal collocation points

(i.e. the collocation points are the roots of an orthogonal polynomial and/or a linear combina-

tion of an orthogonal polynomial and its derivatives). In particular, GPOPS approximates the

states and controls using a basis of Lagrange-Gauss-Radau points. The continuous-time opti-

mal control problem is then transcribed to a finite-dimensional nonlinear programming problem

(NLP) and the NLP is solved using well-known software tools [11]. Features of the RPM include:

(1) it is a Gaussian quadrature implicit integration scheme; (2) it has been shown to converge

exponentially fast for problems with smooth solutions; (3) the initial boundary is able to be

obtained unlike in other pseudo-spectral methods (e.g. Gauss pseudo-spectral method (GPM)

and Lobatto pseudo-spectral method (LPM)); (4) the implementation is significantly less com-

plex [12, 46]. The bounds on the states and controls for the steady-state and tilt portions for

GPOPS are given in Tables 7.1 and 7.2, respectively. These values were chosen by referencing

results from previous work [99, 4].
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Table 7.1: Steady-state bounds for GPOPS

Quantity Start

lower

bound

During

lower

bound

End

lower

bound

Start

upper

bound

During

upper

bound

End

upper

bound

pau 71.1 68 68 71.1 80 80

pvu 2.6 2 2 2.6 3 3

pal 69.7 68 68 69.7 80 80

pvl 2.9 2.7 2.7 2.9 3 3

Raup 0.75 - 0.75 0.95 - 0.95

Em 0.005 - 0.005 0.02 - 0.02

Table 7.2: Tilt bounds for GPOPS

Quantity Start

lower

bound

During

lower

bound

End

lower

bound

Start

upper

bound

During

upper

bound

End

upper

bound

pau 67.8 50 50 67.8 100 100

pvu 2.6 0.3 0.3 2.6 3.5 3.5

pal 66.4 50 50 66.4 115 115

pvl 2.9 1 1 2.9 25 25

Raup 0.2 - 0.2 1.1 - 1.1

Em 0.005 - 0.005 0.017 - 0.017

The optimal control approach is used exclusively on the non-pulsatile model with simulated

data generated from the pulsatile model as described in [4]. The pulsatile model output for

the pressures, total volume, and cardiac output where averaged over each cardiac cycle and

those values concatenated together to form data. The control variables include the upper body

peripheral resistance Raup and the minimum elastance Em, which are quantities in both the

non-pulsatile and pulsatile models. The control variables change on a slower time-scale when

compared to the time-scale of the pulsatile model, hence making it infeasible to find simulta-

neous solutions for the state equations and the control variables. Furthermore, the differences

in time-scales for the state dynamics and the control variables stem from the fact that the con-
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trols try to resolve dynamics within a single beat rather than between beats as in the pulsatile

model. As a result, with the pulsatile model, an abundance of collocation points are needed

to solve the optimal control problem effectively. The more collocation points used, the longer

the simulation. Consequently, the problem would need to be solved in several phases when us-

ing GPOPS to expedite the computation time. However, since the non-pulsatile and pulsatile

models are interchangeable, the optimal control solutions using the non-pulsatile model can

be utilized within the pulsatile model to predict Raup and Em thus eliminating the need for

piece-wise linear splines and gradient based optimization.

7.3 Results

We first show results obtained for a subject in supine position followed by results obtained when

the same subject was tilted upright to a 60◦ angle. The first set of HUT results are to validate

the optimal control method given all the data available. The second set of HUT results show

the potential of the method when used without the pulsatile model (i.e. averaged quantities of

the actual clinical data is used only). Predictions from our previous work were obtained using

a piece-wise linear spline model, hence between consecutive points, the model predictions are

given by straight lines. By adapting the control to predict results from piecewise linear splines

some bias may be introduced, since biologically, the parameters vary nonlinearly, rather than

linearly [130].

7.3.1 Steady-state

Dynamics during supine position were predicted initially to test that the method is applicable

for baseline values. The cost function in (7.14) is used.
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Figure 7.2: Predictions during supine position. All graphs include the pulsatile model output
using piecewise linear splines (magenta), and the optimal control output using GPOPS (cyan)
for upper body arterial pressure, pau, upper body venous pressure pvu, lower body arterial
pressure pal, lower body venous pressure pvl, total blood volume Vtot and the cardiac output
CO.

Figure 7.2 depicts the output from the pulsatile model (magenta) as described previously

versus the non-pulsatile dynamics from GPOPS (in cyan) for pau, pvu, pal, pvl, Vtot, and CO.

As expected, the non-pulsatile model dynamics with the optimal control agree well with the

averaged dynamics from the pulsatile model. Furthermore, the control variables, Raup and Em,

are relatively constant, following the assumption that they are inactive at rest.

7.3.2 Head-up tilt: validation

During HUT, Figure 7.3 depicts results using the same cost function as the supine simulation

in (7.14) including all available data, where the non-pulsatile dynamics with Raup and Em are

predicted from the piece-wise linear spline method (blue) and with GPOPS (cyan). This figure

includes dynamics of pau, pvu, pal, pvl, CO, Vtot. We also show Raup and Em predicted using

the piece-wise linear spline method compared with those quantities predicted by GPOPS. We

see that the results obtained with piece-wise linear splines agree well with those of the optimal

control method.
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Figure 7.3: Predictions during HUT with cost function (7.14). All graphs include the non-
pulsatile model output using piecewise linear splines (magenta), and the optimal control output
using GPOPS (cyan) for upper body arterial pressure, pau, upper body venous pressure pvu,
lower body arterial pressure pal, lower body venous pressure pvl, total blood volume, Vtot and
the cardiac output CO. Also shown are the control variables upper body peripheral resistance
Raup and Em computed from the optimal control approach via GPOPS (cyan) compared against
the piecewise linear spline approach (magenta) in the non-pulsatile model.

An eventual goal of this work is to be able to use predictions of the controlled quantities

using GPOPS in the pulsatile model. Figure 7.4 shows model results when the optimal control

predicted time-varying quantities Raup and Em, using cost function (7.14) with all available

data, are input into the pulsatile model. The graphs show the pulsatile model output for pau,

pvu, pal, pvl, Vtot, and CO with Raup and Em estimated in the pulsatile model (blue) and those

quantities estimated via the optimal control approach (cyan).

7.3.3 Head-up tilt

An aim for this study was to be able to use the non-pulsatile model and the optimal control

method without using any averaged ”data” created from the pulsatile model. We would like to

instead be able to use the clinical pulsatile blood pressure data only. Thus the cost function

7.15 is utilized.

Figure 7.5 depicts the same dynamics as Figure 7.3 but using the cost function in (7.15). As

shown, this cost functional does not yield accurate dynamics for CO. One way to rectify this

issue is to include CO in the cost functional (7.15) as in

J = 102

[(
pmau − pdda

pdda

)2

+

(
COm − COd

COd

)2

+

(
V m
tot − V d

tot

V d
tot

)2
]

+R2
aup + E2

m. (7.16)
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Figure 7.4: Pulsatile predictions during HUT with optimal control estimates of Raup and Em
with cost function (7.14). All graphs include the pulsatile model output (blue) with Raup and
Em predicted from the pulsatile model compared with those quantities predicted from the
optimal control approach (cyan) for the upper body arterial pressure, pau, the upper body
venous pressure pvu, the lower body arterial pressure pal, the lower body venous pressure pvl,
total blood volume Vtot and the cardiac output CO. Also shown are predicted quantities Raup
and Em for the pulsatile model simulation (blue) and from GPOPS (cyan).

Figure 7.6 depicts results with (7.16). It shows the same graphs as in the previous three

figures, illustrating that the optimal control approach (cyan) now follows the piece-wise linear

spline method (magenta) with cardiac output and total blood volume now in the cost functional.

As in the previous section, we want to analyze the pulsatile results with the GPOPS predicted

time-varying quantities Raup and Em. These results are depicted in Figure 7.7 with several cost

functions including (7.15) and (7.16) among them.

7.4 Discussion and conclusions

This study shows that it is feasible to use an optimal control approach to predict time-varying

quantities within cardiovascular regulation. The optimal control approach yields similar results

to previous work [4, 99] using a piece-wise linear spline approach and Kalman filtering [13],

however our method proved to be favorable in several ways. First, utilizing optimal control is

more advantageous since there is no need to have in depth knowledge of the system before hand.

Second, the computation time is significantly decreased with this method. With the optimal

control approach, we are able to specify the controlled parameters based on time dependent

blood pressure data points in less than triple the amount of time as the piecewise linear spline

approach on a Macbook Pro with a 2.66 GHz Intel Core 2 Duo processor. Third, we have also
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Figure 7.5: Predictions during HUT with cost function (7.15). All graphs include the non-
pulsatile model output using piecewise linear splines (magenta), and the optimal control output
using GPOPS(cyan) for upper body arterial pressure, pau, upper body venous pressure pvu,
lower body arterial pressure pal, lower body venous pressure pvl, total blood volume, Vtot and
the cardiac output CO. Also shown are the control variables upper body peripheral resistance
Raup and Em computed from the optimal control approach via GPOPS (cyan) compared against
the piecewise linear spline approach (magenta) using the non-pulsatile model.

shown that although the optimal control method is suitable for use with a non-pulsatile model,

results can be embedded in a pulsatile model rendering accurate dynamics. Optimal control

methods have predominately been used in mathematical models of cancer or HIV treatments [29,

57, 100, 114]. The use of optimal control to regulate time-varying quantities to study the control

of the cardiovascular system is a novel approach. To our knowledge, Batzel and Kappel [66] are

the only researchers to have used optimal control to study cardiovascular dynamics. However,

they use the method in a very different manner than what we have proposed.

Figures 7.2 and 7.3 validate that predicting Raup and Em with an optimal control approach

using GPOPS can render almost equivalent dynamics for HUT, compared to using a piece-wise

linear spline approach coupled with gradient-based optimization. As discussed, the quick time-

scale of the pulsatile model depicting beat-to-beat dynamics is incompatible with the slower

control variables modeling dynamics over an average heart beat within the optimal control

approach. However, Figures 7.4 and 7.7 illustrate that it is feasible to use optimal control with

a simple non-pulsatile model to analyze dynamics for a more complex pulsatile model and yield

accurate dynamics.

It is important to note that cardiac output data is essential to ensure accurate model

dynamics during HUT as discussed in Ellwein [34]. To ensure accurate cardiac output estimates

it is necessary to either include measurements of cardiac output in the cost function or to predict
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Figure 7.6: Predictions during HUT with cost function (7.16). All graphs include the pulsatile
model output using piecewise linear splines (magenta), and the optimal control output using
GPOPS (cyan) for upper body arterial pressure, pau, upper body venous pressure pvu, lower
body arterial pressure pal, lower body venous pressure pvl, total blood volume, Vtot and the
cardiac output CO. Also shown are the control variables upper body peripheral resistance Raup
and Em computed from the optimal control approach via GPOPS (cyan) compared against the
piecewise linear spline approach (magenta).

cardiac output from the blood pressure measurements as proposed in Wesseling et al. [76] and

Parklikar et al. [133]. Comparing Figures 7.5 and 7.6, we see that prior to cardiac output

being added to the cost function, it is over-predicted, but once it is included, dynamics appear

accurate. In future work it would be interesting to see what other data (e.g. venous upper or

lower body pressure, total blood volume) can be included to yield improved prediction of the

time-varying quantities. A preliminary analysis of this has been done by considering various

components in the tilt cost function and observing the results when input into the pulsatile

model. Considering Figure 7.7, it is clear that cardiac output is necessary to give accurate

dynamics.

Figure 7.6 shows results without using the pulsatile model. This shows that the optimal

control method has the ability to predict forward simulations without having to use a more

complex model. The significance of this is now having the option to analyze longer time-scales

for both models, thus enabling us to better understand the cardiovascular system during the

entire tilting procedure, including tilting back down to supine position. Moreover, being able

to explore longer time-scales allows the models to be coupled with larger and more complex

systems such as the respiratory or renal systems, which function at time-scales of minute-hours

rather than seconds-minutes [80].

Note that any discrepancy between model predictions involving the pulsatile model and
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GPOPS may arise due to the fact that GPOPS is utilized with the non-pulsatile model which

differs from the pulsatile when modeling the heart compartment. The use of the Frank-Starling

mechanism within the non-pulsatile model involves a cardiac contractility parameter S that is

not present with the pulsatile model. The coupling of the parameter S and Em together as in

(7.13) causes a variation in predictions of the controlled quantities. Thus, causing variations in

the outputs between the pulsatile model with piece-wise linear splines and the pulsatile model

with the GPOPS predictions. This is one limitation to our model. See Chapter 7 for a more

in depth explanation. Another limitation to this work is the sensitivity to the upper and lower

bounds on quantities needed to utilize GPOPS. A value for a specific parameter or state bound

is chosen for biological reasons, however numerically that value may disrupt the calculation

of the solution to the optimal control problem, in turn leading GPOPS to be unable to find

an optimal solution for the problem or causing the simulation time to increase. Thus, it is

important to understand the dynamics of the system and find a balance between the biological

significance and the numerical computation.
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Figure 7.7: Pulsatile predictions during HUT with optimal control estimates of Raup and Em.
The columns are with cost functions (7.15), (7.16), (7.15) with CO, (7.15) with pvu, and (7.15)
with pvu, pal, pvl, respectively.
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Chapter 8

Simulations and Predictions

This chapter presents pulsatile model predictions illustrating the effect of certain drugs men-

tioned in the Introduction used by clinicians to treat patients with OI. Recall that through

regulation of the cardiovascular control system by the baroreceptors, blood volume, arterial

blood pressure, vascular resistance, and compliance are effected during HUT. The drugs effect

the sympathetic nervous system to adjust blood volume and promote vasoconstriction, thus

having an effect on the efferents mentioned.
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Figure 8.1: Increased Total blood volume. Resulting upper body arterial pressure and upper
body venous pressure before the increase in volume (blue) and after the change in volume (red).
The top row is without control, while the bottom row is with control.
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Desmopressin increases water absorption in the kidneys leading to increased blood volume.

Recall that during HUT, upper body arterial blood pressure falls and patients with OI have

difficulty raising it back to homeostasis. When blood volume is increased, blood pressure is

increased. To simulate this with the pulsatile model, the total blood volume Vtot is increased

by increasing the blood volume in the heart Vlh. Figure 8.1 shows the results on upper body

arterial and venous pressures when total blood volume is increased with (bottom row) and

without control (top row). The dynamics before the change in volume are in blue, while those

after the change are in red. Results show the blood pressures does indeed increase when blood

volume is increased illustrating the effect of Desmopressin on the cardiovascular system.
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Figure 8.2: Increased peripheral resistance. Resulting upper body arterial pressure, upper body
venous pressure, and total blood volume before the increase in resistance (blue) and after the
change in resistance (red). The top row is without control, while the bottom row is with control.

Drugs like midodrine and phenylpropanolamine cause vasoconstriction (increase peripheral

vascular resistance and decrease venous capacitance) which help to decrease venous pooling by

increasing upper body arterial pressure. To simulate this with the pulsatile model, upper body

peripheral resistance is increased, see Figure 8.2 and lower body venous compliance is decreased,

see Figure 8.3. These figures show the increase in the upper body peripheral resistance and

decrease of compliance, respectively, resulting in an increase in upper body arterial pressure,

decrease in venous pressure, and a decrease in volume. Thus these simulations depict accurately

the effect of Midodrine and phenylpropanolamine on the cardiovascular system.

119



0 50 100 150
20

30

40

50

60

70

80

90

100

time (s)

p
a
u
 (

m
m

H
g
)

 

 

OLD
NEW

0 50 100 150
1.5

2

2.5

3

3.5

4

4.5

time (s)

p
v
u

 (
m

m
H

g
)

 

 

OLD
NEW

0 50 100 150
4000

4500

5000

5500

6000

6500

time (s)

V
to

t 
(m

l)

 

 

OLD

NEW

0 50 100 150
40

50

60

70

80

90

100

110

time (s)

p
a
u
 (

m
m

H
g
)

 

 

OLD
NEW

0 50 100 150
1

1.5

2

2.5

3

3.5

4

time (s)

p
v
u

 (
m

m
H

g
)

 

 

OLD
NEW

0 50 100 150
3500

4000

4500

5000

5500

6000

6500

time (s)

V
to

t 
(m

l)

 

 

OLD

NEW

Figure 8.3: Decreased lower body venous compliance. Resulting upper body arterial pressure,
upper body venous pressure, and total blood volume before the increase in resistance (blue)
and after the change in resistance (red). The top row is without control, while the bottom row
is with control.
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Chapter 9

Closing Remarks

9.1 General Conclusions

Chapter 5 of this work presented a pulsatile cardiovascular model constructed to predict blood

pressure and flow dynamics during HUT and regulate peripheral resistance and cardiac con-

tractility using a piecewise linear spline approach. This study showed how to estimate constant

parameters and regulate time-varying quantities permitting the model to fit data measured at

the level of the carotid artery. In addition, it is shown how carotid pressure can be calculated

from data measured at the level of the aorta and that complementary parameter estimates are

obtained comparing model outputs with the measured and calculated carotid pressures.

The work in Chapter 6 presented a comparison between a non-pulsatile model and pulsatile

model that can predict dynamics during HUT and HDT. The non-pulsatile model develop-

ment is described in detail demonstrating advantages and disadvantages in comparison to the

pulsatile model. This study showed that results predicted with the non-pulsatile model can

be integrated into the pulsatile model in the study of HUT dynamics using the least-squares

optimization method to predict time-varying quantities. We also describe how the non-pulsatile

model can be used for longer time scales to include HUT/HDT dynamics.

Chapter 7 illustrates how optimal control can be used with the non-pulsatile model to pre-

dict time-varying quantities, peripheral resistance and cardiac contractility. Model results were

compared to the piecewise linear spline approach presented in Chapters 6 and 7. The imple-

mentation of the optimal control approach results into the pulsatile model are described and

advantages and disadvantages are discussed.
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9.2 Future Work

While this work represents a novel approach to regulating time-varying quantities when studying

the cardiovascular control system during head-up tilt, future work is also of importance. This

dissertation focused on cardiovascular regulation on a short-time scale. In actuality, there is

a longer time scale to consider involving the renal system. The work done here using optimal

control can be utilized in models that invoke a longer-time scale to study the effects of tilting

on the cardiovascular system of subjects with orthostatic intolerance.

A goal of studying OI is to be able to illustrate what parameters are of importance to a

specific patient no matter the age or health of the individual. Thus, more studying can be

done on OI and HUT with data sets of various groups comparing patients’ with varying ages

and healthy anomalies. Moreover, predictions using the models presented in this thesis can be

simulated to help clinicians understand what treatments can be affective as seen in Chapter 8.

Further research can be established on the use of optimal control with only using a pulsatile

model. This proved to be difficult in our study, however, it would be beneficial to be able to

use the actual pulsatile data available to clinician to make predictions without having to alter

it in any way. Additionally, more study can be done on designing a model using optimal control

that has closed-loop properties being that the cardiovascular system is a closed network.
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