
ABSTRACT 

BREEN, MIYUKI. Predicting the Biochemical Response of Vertebrate Endocrine Systems to 

Endocrine Active Chemicals. (Under the direction of Rory Conolly and Alun Lloyd). 

 

There is international concern regarding effects of endocrine-active environmental 

contaminants and commercial products on the health of humans and wildlife. A large number 

of environmental contaminants may disrupt the endocrine system during critical stages of 

development, which can result in adverse outcomes in humans and wildlife. Endocrine active 

chemicals (EACs) are exogenous chemicals that can cause adverse health effects in intact 

organisms, affecting reproduction and development in both humans and wildlife by inducing 

adverse hormonal changes in the tightly regulated endocrine pathways. The main focus of 

research on EACs has been on vertebrate species, driven by the need for human and 

ecological risk assessments and drug development. To enhance the interpretation and 

quantitative application of measurement data in risk assessments and drug development, this 

dissertation describes mathematical computational models of vertebrate endocrine systems. 

The first project was to develop a mechanistic computational model of 

steroidogenesis in human H295R cells. We previously developed a computational model that 

describes the biosynthetic pathways for the conversion of cholesterol (CHOL) to steroids, 

and the kinetics for enzyme inhibition by the EAC, metyrapone (MET). In this work, we 

extended our dynamic model by including a cell proliferation model supported by additional 

experiments, and by adding a pathway for the biosynthesis of oxysterols (OXY). The 

extended steroidogenesis model predictions closely correspond to the measured time-course 

concentrations of CHOL and 14 steroids both in the cells and in the medium, and the 

calculated time-course concentrations of OXY from control and MET-exposed cells.  



The second project was to develop a mechanistic computational model of the 

Hypothalamic-Pituitary-Gonadal (HPG) axis for a model vertebrate, the fathead minnow 

(Pimephales promelas). A series of time-course fadrozole (FAD) exposure experiments were 

performed: the data indicate adaptive changes (i.e., compensation) in plasma 17β-estradiol 

(E2) levels occurring during exposure and “overshoot” occurring post-exposure. In the first 

part of this research, we developed a dynamic model that includes a regulatory feedback loop 

within the HPG axis that can mediate adaptive responses to FAD. The HPG axis model 

predictions closely correspond to the time-course measurements of plasma E2 for lower FAD 

test concentrations, and the model accurately predicted cytochrome P450 (CYP) 19A mRNA 

fold changes and plasma E2 dose-response from the 4-day study. The main limitation of the 

model was the large overestimation of a plasma E2 concentration for higher FAD test 

concentrations. In the second part of this research, we addressed this limitation by extending 

the model to include a pathway for protein synthesis of cyp19a. As a result, the extended 

model significantly improved the model fit for the dynamic E2 concentrations at high dose. 

These mechanistic modeling capabilities could help define mechanisms of action for 

poorly characterized chemicals and mixtures for predictive risk assessments, and to screen 

drug candidates in the early phase of drug development. These studies demonstrate the value 

of mechanistic computational modeling to examine and predict the possible dynamic 

behaviors and to formulate and test hypotheses to increase understanding of the biochemical 

responses of vertebrate endocrine systems to EACs.   
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1. INTRODUCTION AND BACKGROUND 

 

Introduction 

The endocrine system consists of a series of glands that signal each other by secreting 

chemicals called hormones into the blood. These hormones travel to target tissues to regulate 

various critical functions, which include metabolism, reproduction, growth and development. 

Exposure to endocrine active chemicals (EACs) can affect reproduction and development in 

both humans and wildlife by inducing adverse hormonal changes in the tightly regulated 

endocrine pathways. Chemicals capable of acting as EACs are ubiquitous with environmental 

sources that include household detergents, pesticides, plastics, pharmaceutical estrogens, 

industrial chemicals, and byproducts of incineration and fuel combustion. Colborn et al. 

(1993) reported that a large number of environmental contaminants may disrupt the 

endocrine system during critical stages of development, which can result in adverse 

outcomes in humans and wildlife. To identify and regulate chemicals that have the potential 

to impact the endocrine system, government programs have been established both in North 

America and Europe (Nichols et al., 2011). The main focus of research on EACs has been on 

vertebrate species, driven by the need for human and ecological risk assessments and drug 

development.  

 

Vertebrate Endocrine System 

The endocrine system regulates various processes vital for life. It is a dynamic control 

system of the body which coordinates responses of a target tissue to internal and external 

signals. The primary function of the endocrine system is to maintain a balanced physiological 
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system that can sustain a dynamic equilibrium by avoiding large fluctuations in hormone 

levels and their responses. By integrating specialized responses of individual organs, the 

endocrine system allows the desired cellular environment to be maintained. The 

physiological processes regulated by the endocrine system include short- and long-term 

metabolism, reproduction, growth, functions of the gut, kidneys, and cardiovascular system, 

and stress responses.  

The endocrine system is organized to stabilize the cellular environment by a seesaw-

type mechanism. The seesaw-type mechanism operates by feedback signals between the 

target cells and the regulating cells, with the result that secretion of a target cell-stimulating 

hormone is altered by the products of the target cells. The balance of the two sides of the 

seesaw is determined by a programmed set point, which determines the level at which each 

side of the seesaw will respond to signals from the other side. The preprogrammed set point 

represents the optimal physiological condition. The endocrine system is organs and tissues 

integrate their information using crosstalk, where signaling from hormones are shared 

between different biological pathways, and responses to hormones can activate multiple 

responses in the organism. 

The endocrine system, which originated during the early evolution of fish, is highly 

conserved across vertebrate species. Hence, the components of the endocrine system are 

fundamentally the same for all vertebrates. Specialized endocrine glands of the brain-

pituitary system in vertebrates include the hypothalamus, pituitary, thyroid, adrenal, gonads 

(testes or ovaries), pancreas, and parathyroid.  
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Glands of the endocrine system signal each other by secreting hormones into the 

blood, which travel to target tissues to regulate critical functions.  The brain initiates the 

process by sending neural signals. The hypothalamus responds to these neural signals and 

secrets hormones into the blood and transported to the pituitary. In response, the pituitary 

secretes different hormones that travel to specific downstream endocrine glands, such as the 

thyroid, adrenal gland, and gonads. In response, these glands release hormones that travel to 

target tissues to regulate specific physiological processes. Hormones produced by the thyroid 

regulate general metabolic rate, growth and possibly embryonic development. Hormones 

secreted by the adrenal gland are involved in stress responses, osmoregulation and 

carbohydrate metabolism. The hormones released by the gonads control reproduction.  To 

maintain control of these physiological processes, some hormones secreted by the 

downstream glands travel back to the hypothalamus and pituitary to form a closed-loop 

negative feedback control system. 

 

Endocrine Active Chemicals 

EACs are exogenous chemicals that cause effects by either receptor- or nonreceptor-

mediated mechanisms. Receptor-mediated EACs mimic or block endogenous hormone 

activity by acting as receptor agonists or antagonists. Agonists bind to hormone receptors and 

promote hormone activity, whereas the antagonists bind to hormone receptors and block 

hormone activity. Nonreceptor-mediated EACs inhibit the activity of enzymatic reactions for 

various biological pathways, such as steroid biosynthesis.    
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There is international concern regarding the effects of various environmental 

contaminants and commercial products on the health of humans and wildlife (Cooper and 

Kavlock 1997; Daston et al., 2003; Hutchinson et al., 2006; Zacharewski 1998). The 

feminization of male smallmouth bass in the Potomac River due to exposure to water 

pollutants is a well known example of the potential effects of EACs (Buzdar et al., 2007). 

The U.S. Environmental Protection Agency developed and implemented an endocrine 

disruptor screening program (EDSP) to screen for endocrine disrupting properties of 

chemicals in drinking water and pesticides used in food production, which is required by the 

Safe Drinking Water Act Amendments (1996) and the Food Quality Protection Act (1996). 

The EDSP is designed as a two-tiered screening and testing process to identify chemicals that 

can interact with the endocrine system (Tier 1), and to characterize their dose-response (Tier 

2). In particular, the EDSP examines the effect of chemicals that  act as agonists or 

antagonists of estrogen and androgen receptors (Chu et al., 2009; Henley and Korach 2006), 

and other EACs that can cause effects by nonreceptor-mediated mechanisms (Harvey and 

Everett 2003; Ulleras et al., 2008; Villeneuve et al., 2007).  

 

Adrenal Steroidogenesis in H295R Cells 

Steroids are a class of hormones synthesized in the gonads and adrenal glands, which 

have an important role in a wide range of physiological and pathological processes, such as 

stress response, development, growth, reproduction, metabolism, aging, and hormone-

sensitive cancers (Portier 2002; Ulleras et al., 2008). Steroids are derived from cholesterol 

through a series of biochemical reactions mediated by multiple cytochrome P450 (CYP) 
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enzymes and hydroxysteroid dehydrogenases (HSD), primarily synthesized in the ovaries, 

testes, and adrenal tissue (Miller et al., 1988; Payne et al., 2004). The activity of these 

steroidogenic enzymes and the subsequent production rate of steroids can be altered by 

various environmental and pharmacologic EACs (Sanderson et al., 2002; Walsh et al., 2000).  

The human adrenocortical carcinoma cell line H295R is the only in vitro assay that 

can be used to evaluate EAC effects across the entire steroidogenesis pathway since H295R 

cells express all the key enzymes involved in steroidogenesis and they have the ability to 

produce all the adrenocorticol steroids (Gazdar et al., 1990; Rainey et al., 1994; Staels et al., 

1993). The H295R cell line was selected as an in vitro steroidogenesis assay to detect 

chemicals that affect steroid biosynthesis in the EDSP Tier 1 battery of screening assays 

(2009). Moreover, this assay coupled with a mechanistic computational model supports the 

recommendations of the National Research Council’s report Toxicology Testing in the 21
st
 

Century (National Research Council, 2007). The report advises the use of in vitro systems to 

evaluate a broad range of chemicals and outcomes at a reduced cost, with fewer animals, and 

develop a sound scientific basis to assess effects from environmental agents.     

 

Mechanistic Computational Model of Steroidogenesis in H295R Cells 

To increase the understanding and quantitative use of data from the in vitro 

steroidogenesis assay for human and ecological risk assessments, we developed a 

mechanistic computational model of steroidogenesis in H295R cells. Our research goal is to 

better understand the dose-response behaviors of EACs. Each of these EACs can inhibit 

different steroidogenic enzymes, which alter the production rate of steroids. Laboratory 
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experiments can measure the level of steroids after chemical exposures, but measurements of 

the metabolic reaction rates for each enzyme are not feasible. However, knowledge of the 

metabolic reaction rates and steroid transport rates is essential to fully understand the 

dynamic dose-response behavior of EACs. Development of a mechanistic computational 

model of steroidogenesis, and estimation of the metabolic reaction rates and steroid transport 

rates helps us gain this essential knowledge. 

Other models of steroid synthesis have been previously reported in the literature. 

Murphy et al. (2005) developed a model for vitellogenesis, a steroid-controlled process, in 

female fish. To model steroidogenesis in ovaries, they combined all reactions occurring 

between the release of gonadotropin and the production of testosterone (T) into one Hill 

equation. Selgrade and Schlosser (1999) developed a mathematical model to predict plasma 

levels of 17β-estradiol (E2) during different stages of the menstrual cycle in women from 

luteinizing hormone (LH) and follicle-stimulating hormone (FSH) concentrations. E2 

concentrations were modeled as a weighted sum of LH concentration, growth follicle stage, 

and preovulatory stage. These models lack the ability to predict responses to EACs that 

inhibit specific steroidogenic enzymes, since they do not include any reactions in the 

metabolic pathway for steroid synthesis. Breen et al. (2007) developed a mechanistic model 

of the metabolic pathway for ovarian steroidogenesis in female fish. Metabolic reaction and 

transport rates were estimated under the assumption that the steroidogenic pathway is 

operating at steady-state. Becker et al. (1980) developed a probabilistic model of the 

metabolic pathway for testicular steroidogenesis. They estimated transition probabilities for 

the reactions in the pathway from ex vivo preparations of rat and rabbit testes. Since ovarian 



 

7 

and testicular steroidogenesis do not express all the key enzymes for steroidogenesis and lack 

the ability to produce all the adrenocorticol steroids, these computational models do not 

include the metabolic pathways for the major adrenal steroids, such as aldosterone and 

cortisol. 

In this work, we developed a mechanistic model for the synthesis and transport of 

adrenocortical steroids, and their biochemical response to the competitive steroidogenic 

enzyme inhibitor metyrapone (MET), a model EAC. Since the structure of the metabolic 

reaction pathway for steroid synthesis is well established, a mechanistic model was chosen to 

better understand the biological mechanism for the response to chemical exposures. The 

model was based on an in vitro steroidogenesis experimental design with two compartments: 

culture medium and human adrenal cells. The model describes cholesterol transport from the 

medium into the cells, conversion of cholesterol into steroids in the cells, transport of the 

steroids and EAC between the cells and medium, and inhibition of specific steroidogenic 

enzymes by the EAC. The computational model was developed and evaluated for an EAC 

using dose-response experimental data, which includes measured concentrations of 

cholesterol, 14 steroids [pregnenolone (PREG), 17α-hydroxy-pregnenolone (HPREG), 

dehydroepiandrosterone (DHEA), progesterone (PROG), 17α-hydroxy-progesterone 

(HPROG), androstenedione (DIONE), testosterone (T), deoxycorticosterone (DCORTICO), 

corticosterone (CORTICO), aldosterone (ALDO), 11-deoxycortisol (DCORT) cortisol 

(CORT), estrone (E1), and 17-beta-estradiol (E2)] in H295R cells and medium, and the EAC, 

metyrapone (MET). The data were obtained from an in vitro steroidogenesis assay using the 
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human H295R adrenocarcinoma cell line. An iterative optimization algorithm was used to 

estimate the metabolic reaction rate constants and steroid transport rate constants. 

We previously developed a mechanistic computational model that describes the 

biosynthetic pathways for conversion of cholesterol to adrenocortical steroids, and the 

kinetics for enzyme inhibition by the MET. The primary focus was on steroid synthesis 

(Breen et al., 2010). The key limitations of the previous steroidogenesis model were the large 

underestimation and overestimation of CHOL concentrations in cells and medium, 

respectively, and the potential confounding effects of cell proliferation and viability on the 

time-course concentrations of the steroids. In Chapter 2, we describe the extended model and 

additional critical experiments performed to address key limitations of the previously 

developed model. In addition, the details of the previous steroidogenesis model are provided 

in Appendix A. 

 

Computational Model of Fathead Minnow Hypothalamic-Pituitary-Gonadal Axis 

Dose-response and time-course behaviors of endocrine effects in organisms exposed 

to environmental chemicals are major determinants of health risk. The NRC report 

Toxicology Testing in the 21
st
 Century emphasizes that adaptive changes within organisms 

exposed to environmental stress can alter dose-response behaviors to minimize the effects of 

the stressors (National Research Council, 2007). As the field of toxicology evolved, 

characterization of adaptation to modern toxicology stressors became critical (National 

Research Council, 2007). Better understanding of the adaptive mechanisms is needed to 

refine descriptions of dose-response behavior for risk assessments. To increase the 
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understanding and characterization of the adaptive responses to toxicant stress, we developed 

a mechanistic computational model of the Hypothalamic-Pituitary-Gonadal (HPG) axis for a 

model vertebrate, the fathead minnow (Pimephales promelas). Our research goal is to better 

understand the dose-response behaviors and how the feedback regulatory loops in the HPG 

axis generate adaptive responses to toxicant stress.   

Other models of the HPG axis have been previously reported in the literature. 

Watanabe et al. (2009) developed a model for male fathead minnows exposed to 17α-

ethinylestradiol or 17β-estradiol (E2) to predict plasma sex-steroid hormones and 

vitellogenin (Vtg) concentrations, and Li et al. (2011) extended the model for female fathead 

minnows exposed to 17α-ethinylestradiol or 17β-trenbolone. Murphy et al. (2005) developed 

a model for female sciaenid fish exposed to PCBs and cadmium to predict Vtg 

concentrations, and Kim et al. (2006) developed a model for salmonids to describe normal 

functioning. Barton and Andersen (1998) developed a model for rats to simulate hormone 

levels in testes and blood. Pechstein et al. (2000) and Tornoe et al. (2007) developed a model 

for humans to describe changes in luteinizing hormone (LH) and testosterone (T) 

concentrations following treatment with the LH-releasing hormone antagonist, cetrorelix, and 

the gonadotropin-releasing hormone (GnRH) agonist, triptorelin, as well as the GnRH 

receptor blocker, degarelix, respectively. 

In this work, we developed a mechanistic mathematical model of the HPG axis in 

female fathead minnows to predict the dose-response and time-course behaviors for 

endocrine effects of the aromatase inhibitor, fadrozole (FAD). Fadrozole is a model EAC that 

competitively inhibits the steriodogenic enzyme, aromatase cytochrome P450 (CYP) 19A. To 
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support development of a computational dynamic model of the HPG axis to predict complex 

dose-response time-course behaviors that may occur in vivo, a series of time-course FAD 

exposure experiments were performed (Villeneuve et al., 2009, 2013). One of the 

experiments, Villeneuve et al. (2013), is described in Appendix B. Data from three separate 

experiments to characterize the response of female fathead minnows to FAD exposure were 

utilized for model development. We observed adaptive changes (compensation) in plasma E2 

levels during exposure, which resulted in a period of increased E2 production/concentrations, 

relative to controls, immediately following removal of the inhibitor (an overshoot), 

particularly at lower FAD test concentrations (Villeneuve et al., 2009). In Chapter 3, we 

describe the computational model of the HPG axis, which characterizes the adaptive 

responses to aromatase inhibition (Breen et al., 2013). In this study, we developed an HPG 

axis model that includes a regulatory feedback loop within the HPG axis that can mediate 

adaptive responses to EAC. The computational model of the HPG axis was developed based 

on knowledge of biological mechanisms, and the model consists of six tissue compartments: 

gill, brain (as an organ including hypothalamic-pituitary complex), ovary, liver, venous 

blood, and rest of body. These six compartments, which are involved in the HPG axis 

signaling and feedback control, are configured to be consistent with the cardiovascular 

system of the exposed fish. Model parameters were estimated using E2 concentrations for 

three lower FAD test concentrations by an iterative optimization algorithm.  

The focus of Breen et al. (2013) was to capture compensation and overshoot of 

plasma E2 concentration for lower FAD concentrations. The main limitation of Breen et al. 

(2013) was the large overestimation of a plasma E2 concentration for higher FAD test 
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concentrations. To address this limitation, we extended the model by Breen et al. (2013). In 

Chapter 4, we describe the extended model of the HPG axis, which includes the pathway for 

protein synthesis of cyp19a (aromatase). Model parameters were estimated using E2 

concentrations for all four FAD test concentrations and an iterative optimization algorithm. 

The extended model improved the predictability of the biochemical response to EACs.  

In our study, mathematical models were developed based on knowledge of biological 

mechanisms, and model parameters were estimated using biological data generated from 

experiments. Since many of the model parameters are not directly measurable, the estimation 

of unknown model parameters and identifiability play a central role in model development. 

In Chapter 5, we address parameter identification issues associated with the HPG axis model 

of fathead minnows.  
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ABSTRACT 

There is international concern about chemicals that alter endocrine system function in 

humans and/or wildlife and subsequently cause adverse effects. We previously developed a 

mechanistic computational model of the hypothalamic-pituitary-gonadal (HPG) axis in 

female fathead minnows exposed to a model aromatase inhibitor, fadrozole (FAD), to predict 

dose-response and time-course behaviors for apical reproductive. Initial efforts to develop a 

computational model describing adaptive responses to endocrine stress providing good fits to 

empirical plasma 17β-estradiol (E2) data in exposed fish were only partially successful, 

which suggests that additional regulatory biology processes is needed. In this study, we 

addressed short-comings of previous model by incorporating additional details concerning 

cyp19a (aromatase) protein synthesis into our previous model. Predictions based on the 

revised model were evaluated using plasma E2 concentrations and ovarian cytochrome P450 

(CYP) 19A aromatase mRNA data from two fathead minnow time-course experiments with 

FAD, as well as from a third 4-day study. The extended model provides better fits to 

measured E2 time-course concentrations, and the model accurately predicts CYP19A mRNA 

fold changes and plasma E2 dose-response from the 4-d concentration-response study.  This 

study suggests that aromatase protein synthesis is an important process in the biological 

system to model the effects of FAD exposure. 

 

Keywords: endocrine disrupting chemicals, computational model, adaptation, protein 

synthesis, toxicology, fadrozole, hypothalamic-pituitary-gonadal axis, fish 
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INTRODUCTION 

There is international concern about environmental contaminants, commercial 

products and drugs that alter endocrine system function in humans and/or wildlife and 

subsequently cause adverse effects (Cooper and Kavlock, 1997; Daston et al., 2003; 

Hutchinson et al., 2006; Zacharewski, 1998). The Safe Drinking Water Act Amendments 

(1996) and the Food Quality Protection Act (1996) require the U.S. Environmental Protection 

Agency (EPA) to screen for endocrine-active chemicals in drinking water and pesticides used 

in food production. Based on this legislation, the EPA developed and implemented a multi-

phased screening (Tier 1) and testing (Tier 2) process called the Endocrine Disruptor 

Screening Program (EDSP; U.S. EPA, 1998; U.S. EPA, 2009). Steroid biosynthesis 

inhibitors, including aromatase inhibitors, were recognized as an important class of endocrine 

disruptors and were selected for evaluation in the EDSP (Drenth et al., 1998; Sanderson, 

2006; Vinggaard et al., 2000; U.S. EPA, 1998). One of the functions of EDSP Tier 2 is to 

characterize the dose-response of chemicals that can interact with the endocrine system, 

reflecting the importance of understanding the dose-response behavior of endocrine 

disruptors. 

The dose-response and time-course (DRTC) behavior of organisms exposed to 

environmental chemicals are major determinants of health risk. In addition to factors like 

adsorption, distribution, metabolism, and elimination, physiological adaptation or 

compensation can be a major determinant of the occurrence of adverse effects. 

Understanding compensatory responses is critical to the modern practice of toxicology, 

particularly as the field evolves from traditional reliance on whole animal testing with apical 
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endpoints toward more predictive approaches anchored to an understanding of chemical 

modes of action. In recognition of this, a U.S. National Research Council report, Toxicity 

Testing in the 21
st
 Century: A Vision and a Strategy, emphasizes that adaptive changes within 

organisms exposed to environmental stress can alter dose-response behaviors to modulate 

stressor effects (National Research Council, 2007). Consequently, to improve descriptions of 

dose-response behaviors for risk assessment, a better understanding of adaptive mechanisms 

is needed. Hence, a goal of our larger research effort (Ankley et al., 2009) research has been 

to develop a computational model of adaptive mechanisms in the hypothalamic-pituitary-

gonadal (HPG) axis for a model vertebrate, the fathead minnow (Pimephales promelas).   

In initial studies, we developed a mathematical model to predict the DRTC behaviors 

in the HPG axis of female fathead minnows exposed to model aromatase inhibitor, fadrozole 

(FAD; Breen et al., 2013). Fadrozole competitively inhibits the steroidogenic enzyme 

aromatase, a cytochrome P450 (CYP) 19A, which is rate-limiting in the conversion of 

testosterone (T) to 17β-estradiol (E2) (Miller, 1988). While FAD itself is not ecologically 

relevant, there are a variety of environmental contaminants that can inhibit aromatase activity 

and elicit similar effects (Petkov et al., 2009; Vinggaard et al., 2000). The initial 

deterministic model included a feedback regulatory loop within the HPG axis to mediate 

adaptive responses to endocrine-active chemical stressors by controlling the secretion of 

luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from a generalized HP 

complex (Breen et al., 2013). In the present paper, we build upon the previously described 

model to address a key limitation in its predictive ability to improve the congruence between 

model predictions and empirical data. 
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The primary focus of our previous work was on adaptive changes (compensation) in 

plasma E2 concentrations during FAD exposure, which resulted in a period of increased E2 

production/concentration, relative to controls (an overshoot), and an “overshoot” behavior in 

E2 when the inhibitor was removed, particularly at lower FAD concentrations (Breen et al., 

2013). The main limitation of the previous HPG axis model was a large overestimation of 

plasma E2 concentrations for higher FAD test concentrations. In the present paper, we 

address this limitation by investigating protein synthesis of cyp19a. Because protein 

synthesis and degradation is responsible for amounts of cyp19a available for the conversion 

of T to E2, we extended the previous model by adding the cyp19a protein synthesis pathway.  

The contribution of this study is the extension of the previously developed HPG axis 

model (Breen et al., 2013). The extended model was evaluated with measurements of plasma 

E2 and ovarian CYP19A mRNA for eight FAD test concentrations. Comparing the model-

predicted and measured data provides insights into possible feedback control mechanisms 

embedded in the HPG axis. 

 

MATERIALS AND METHODS 

FAD exposure 

The model described in the present study incorporates data from three experiments 

with fathead minnows exposed to FAD. The first of these studies is described in detail by 

Villeneuve et al. (2009). Briefly, sexually-mature fathead minnows (5-6 month old), obtained 

from an onsite culture facility at the EPA Mid-Continent Ecology Division (Duluth, MN), 

were exposed to 0, 3, or 30 µg FAD/L. Fadrozole was delivered to 20 L tanks containing 
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10 L of test solution via a continuous flow (approximately 45 ml/min) of UV-treated, filtered 

Lake Superior water without use of a carrier solvent. Four male and four female fathead 

minnows were exposed in each tank. The experiment was initiated by transferring random 

groups of fish directly to tanks that had been receiving a continuous flow of test solution for 

approximately 48 h. Addition of fish was staggered by replicate within each treatment to 

permit all samples from a given exposure tank to be collected within 45 min of the desired 

exposure duration. Two tanks of four male and four female fish were sacrificed after 1, 2, 4, 

and 8 d of exposure. After 8 days of exposure, remaining fish were held in control Lake 

Superior water (no FAD) and sampled after 1, 2, 4, or 8 d of depuration. There were two 

replicate tanks for each unique exposure condition (i.e., combination of treatment and time 

point). Urine, plasma, liver, gonad, brain, and pituitary samples were collected and a variety 

of endocrine and toxicogenomic endpoints were examined. In total, Villeneuve et al. (2009) 

reported results for over 15 different endocrine-related variables. However, for the current 

modeling work, major endpoints of interest were plasma concentrations of E2 and ovarian 

expression of cyp19a. Notably, cyp19a protein concentrations were not measured. 

The second experiment (Villeneuve et al., 2013) was a follow-up to the study 

described above, only with extended time-course. Briefly, reproductively-mature fathead 

minnows were exposed to 0, 0.5, or 30 µg FAD/L using conditions similar to those described 

above. Fish were either exposed continuously and sampled after 1, 8, 12, 16, 20, 24, or 28 d 

of exposure or exposed for 8 d, then held in a continuous flow of clean Lake Superior water 

for an additional 4, 8, 12, 16, or 20 d. Various endpoints were analyzed, including plasma E2 

and ovarian CYP19A mRNA.  
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In a third experiment (Ralston-Hooper et al., 2013), fathead minnows were exposed 

to 0, 0.04, 0.2, 1, or 5 µg FAD/L for 4 d under conditions similar to those described above 

and various endpoints were analyzed, including plasma E2 concentrations.  

 

Mathematical Model of the HPG-axis 

The extended computational model of the HPG axis for FAD-exposed female fathead 

minnow described herein is a modification of our previously-described HPG axis model 

(Breen et al., 2013). As does the model of Breen et al. (2013), the extended model consists of 

six tissue compartments: gill, brain, ovary, liver, venous blood, and rest of body (Figure 1). 

These compartments, which are involved in HPG axis signaling and feedback control, are 

connected in a manner consistent with the cardiovascular system of fish. The model includes 

a generalized regulatory feedback loop within the HPG axis that mediates adaptive responses 

to endocrine stress from FAD. The regulatory loop controls the secretion of gonadotropins 

(LH and FSH) from the brain. The descriptions of each tissue compartment were previously 

reported by Breen et al. (2013), with the exception of cyp19a protein synthesis in the ovary 

(Figure 1D). Protein synthesis involves two major processes: transcription and translation. In 

the nucleus, transcription occurs when an RNA polymerase enzyme binds to DNA to start the 

formation of messenger RNA (mRNA). The mRNA then leaves the nucleus and enters the 

cytoplasm to bind to ribosomes. In the cytoplasm, amino acids (AA) bind to transfer RNA 

(tRNA) and are transported to ribosomes. At the ribosome, translation occurs when a series 

of tRNA molecules bind to mRNA to form a chain of AA that creates a protein (Bruce et al., 

2002; Campbell, 1996). In the extended model, the rate of protein synthesis from cyp19a is a 
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function of levels of mRNA, ribosomes, tRNA, and AA. Once CYP19A mRNA is 

transcribed for the CYP19A gene, it diffuses to a ribosome to form an mRNA-ribosome 

complex. The tRNAs bind to AA to form tRNA-AA complexes, which bind to the CYP19A 

mRNA-ribosome complex for translation of CYP19A mRNA and subsequent synthesis of 

the CYP19A protein. In the ovary compartment, the model has zero-order synthesis and first-

order degradation of AA, and translation of cyp19a is described by Michaelis-Menten 

kinetics. The time-varying concentrations of substrates are described by dynamic mass 

balances. We can express the dynamic mass balance for the substrates in the compartment y 

with volume  as:   

           (1)        

where  is the concentration of substrate x in compartment y,  is the production rate 

of substrate x in compartment y,  is the utilization rate of substrate x in compartment y, 

 is the degradation rate of substrate x in compartment y,   is the import rate of 

substrate x into compartment y, and  is the secretion rate of substrate x from 

compartment y. The first two terms in the right side of Eq. (1) represent the net metabolic 

reaction rate of substrate x. The last two terms represent the net uptake or release rate of 

substrate x in compartment y. The complete set of equations for the model is provided in the 

Supplementary Data.  
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Parameter Estimation 

The model consists of physiological and biochemical parameters, including tissue 

compartment volumes, blood flow rates, equilibrium partition coefficients, and biochemical 

reaction rates (i.e. transcription, translation, metabolism, transport, and degradation). As in 

the previous model (Breen et al., 2013), the extended model utilizes measured volumes of the 

major tissue compartments (ovary, liver, brain) and the whole body, and determined 

physiological parameter values from the literature. Based on experimental results (Villeneuve 

et al., 2013), the equilibrium tissue:blood partition coefficients for E2, and blood:water and 

tissue:blood partition coefficients for FAD were assumed to be one. In the extended model, 

there are 28 biochemical parameters affecting the dose-response and time-course behaviors 

of CYP19A mRNA and E2 in FAD-exposed animals; literature-reported values were used for 

five parameters as in the previous model, and 23 parameters were estimated using the mean 

E2 concentrations from the fathead minnow studies. We utilized measured plasma E2 data 

from the first and second experiments for parameter estimation and ovarian CYP19A mRNA 

data from the first and second experiments, along with plasma E2 data from the third 

experiment for model validation. The definitions and values of physiological constants and 

fixed biochemical parameters, and the measured E2 and CYP19A mRNA data were 

previously described in detail by Breen et al. (2013).    

The ordinary least squares method was used to estimate the following 23 biochemical 

parameters from the fathead minnow E2 time-course data (see Table 1): 15 parameters in the 

ovary compartment (ksyn_mRNA_basal, ksyn_mRNA_max, kloss_mRNA,Vmax_syn_CYP19A, Km_syn_CYP19A, 

kloss_CYP19A, Ki_FAD, Ka_syn_mRNA, krib_on, krib_off, ksyn_AA, kloss_AA, Arib_total, ktRNA_on, ktRNA_off), two 
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parameters in the liver compartment (kloss_FAD, kloss_E2), four parameters in the brain 

compartment (k0_syn_LHFSH, kloss_LHFSH, kLHFSH, Ki_E2), and two parameters in the venous blood 

compartment (kLHFSH_off, kloss_LHFSH). Let nd 
be the number of time points in the E2 time-

course data for the d
th

 FAD dose (including control); be the measured E2 plasma 

concentrations for the d
th

 FAD dose at the i
th

 time;  be the 

model-predicted concentrations of E2 in the venous blood compartment at the i
th

 time, ti, for 

the d
th

 FAD dose (including control), C
d

FAD, with parameter set 

 

for d=1,2,3,4, and i=1,…nd. Then, the least squares estimate, 

 

is the parameter vector , which minimizes the cost function 

                          (2) 

 Parameters were estimated with an iterative nonlinear optimization algorithm using 

MATLAB R2010a (Mathworks, Natick, MA, USA) software. We chose the Nelder-Mead 

simplex method for its relative insensitivity to the initial parameter values as compared to 

other common methods, such as Newton’s method, and its robustness to discontinuities 

(Nelder and Mead, 1965). We confirmed convergence to the solution after the parameter 

search terminated. 
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Sensitivity Analysis 

We performed a sensitivity analysis to examine model parameter uncertainty using a 

previously described method (Breen et al., 2013). The key purpose of sensitivity analysis is 

to identify the main contributors to the variation in the model outputs by ordering the 

parameters; parameters with high sensitivity are more important for the model output than 

parameters with low sensitivity.  Briefly, the sensitivity function relates changes of the model 

output to changes in the model parameters. We calculated the relative sensitivity functions 

 E2,blood, ikR t
 
and  mRNA,ovary, ikR t

 
with respect to the parameters ki for each of the model-

predicted concentrations CE2, blood and fold changes of CYP19A mRNA in the ovary 

compartment FmRNA,ovary, respectively. MATLAB was used to numerically solve the partial 

derivatives of  E2,blood, ikR t
 
and  mRNA,ovary, ikR t  for control and each FAD dose. To rank the 

relative sensitivities, we calculated the L2 norm across time for each relative sensitivity 

function as described by  

    (3) 

and 

          .     (4) 

 

 

 

 

   
2

E2,blood, E2,blood,L2 norm
i ik kR R t dt 

   
2

mRNA,ovary, mRNA,ovary,L2 norm
i ik kR R t dt 
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RESULTS 

Mathematical Model of HPG-axis 

Table 1 shows the estimated biochemical parameter values determined by fitting the 

model predictions to the measured mean plasma E2 concentrations for all four FAD doses 

from the two time-course studies. The time for convergence to the solution for the nonlinear 

parameter estimation was typically around 4 h on an Intel Core 2 Duo processor using 

MATLAB.  

For plasma E2 concentrations, we compared the model-predicted concentrations with 

the time-course measurements. Overall, the model-predicted E2 concentrations correspond 

closely to the mean time-course measurements for all four doses (Figure 2A-D). For the high 

FAD dose (30 g/L), the extended model performed markedly better than the previous model 

(Breen et al., 2013),  the prediction error from the previous model is reduced by 60, 32, 81, 

95, 99, 96, 27, and 14 % at 1, 2, 9, 10, 12, 16, 20, and 28 d, respectively. When compared 

with our initial model (Breen et al., 2013), the extended model also better captured the mean 

time-course behavior for the 30 g/L FAD treatment, which was substantially reduced within 

1 d of exposure to FAD, remained reduced throughout the exposure period, and rebounded at 

2 d post-exposure, before returning to control levels following 8 or more d of recovery in 

clear water (Figure 2D). For the other FAD doses, the extended model performed similarly to 

the original model (Breen et al., 2013). For example, in the 3 g FAD/L treatment, the 

extended model continued to capture the plasma E2 compensation during exposure, and the 

overshoot and return to control levels once the FAD exposure was terminated (Figure 2C).  
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Figure 3A shows the model-predicted venous E2 dose-response during FAD exposure 

on d, 1, 4, and 8. For FAD doses between 0 g/L and 10 g/L, the model predictions 

monotonically decreased across dose, with FAD exposure on d 1 having the lowest venous 

E2 concentration and d 8 having the highest venous E2 concentration, the same as the 

original model predicted. The model predictions continued to decrease monotonically across 

doses for FAD dose greater than 10 g/L, with E2 concentrations on d 1 decreasing slower 

than on d 4 and 8. As a result, FAD exposure on d 1 had the highest venous E2 concentration 

and d 4 and 8 had similar venous E2 concentrations at higher FAD treatments. In contrast, 

the previous model predictions had the lowest venous E2 concentration on FAD exposure d 1 

and the highest venous E2 concentration on FAD exposure d 8 at higher FAD doses. Figure 

4A provides a summary of model predictions for venous E2 concentrations plotted as a 

function both of FAD concentration and time. 

We also compared the model-predicted and measured ovary CYP19A mRNA fold 

changes to validate our extended model. The model-predicted ovary CYP19A fold changes 

correspond closely to the time-course measurements for all four doses (Figure 2E-H). Figure 

3B shows the model-predicted ovary CYP19A dose-response for FAD exposure on d 1, 4, 

and 8. The model predictions monotonically increased across dose, with the lowest ovary 

CYP19A mRNA predicted for FAD exposure on d 1: similar to in the original model. For d 4 

and 8, the model predicted similar ovary CYP19A mRNA fold changes as a function of FAD 

dose, whereas the previous model predicted higher ovary CYP19A mRNA fold changes on d 

4 than on d 8 (Breen et al., 2013). Figure 4B provides an integrated summary of the 
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predictions for ovary CYP19A mRNA fold changes are plotted both as a function of FAD 

concentration and time. 

Model predictions were compared to plasma E2 concentrations from the 4-d exposure 

study to further validate our model: this dataset was not used in the model development. 

Even though all five FAD doses (0, 0.04, 0.2, 1, and 5 g FAD/L) used for model validation 

differed from the FAD doses used for model calibration, the model-predicted dose-response 

curve for venous E2 corresponds closely to measured plasma E2 (Figure 3C). 

 

Sensitivity Analysis 

The relative sensitivities for modeled E2 and CYP19A mRNA, respectively, with 

respect to each of the 26 biochemical model parameters are shown for the control and three 

FAD test concentrations (0.5, 3, and 30 µg/L) during exposure and post-exposure (Figures 5 

and 6). Overall, E2 (Figures 5) and CYP19A mRNA (Figures 6) are highly to moderately 

sensitive to 17 model parameters during exposure and post-exposure; six parameters, 

k_syn_mRNA_basal, Ka_syn_mRNA, k_loss_FAD, k_loss_LHFSH, k_rib_on, k_rib_off are 

insensitive. Of these six parameters, four (k_syn_mRNA_basal, Ka_syn_mRNA, 

k_loss_FAD, k_loss_LHFSH) are also not sensitive for E2 and CYP19A mRNA in the 

original model (Breen et al., 2013).  

 

DISCUSSION 

Breen et al., (2013) developed a mechanistic mathematical model for the HPG axis in 

female fathead minnows to predict the dose-response, time-course behaviors for endocrine 
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effects of the aromatase inhibitor, FAD. The model included a regulatory feedback loop 

within the HPG axis that facilitates adaptive responses in plasma E2 concentrations and 

CYP19A mRNA to FAD. The previous model captured the adaptive changes in plasma E2 

concentrations occurring during exposure, and the overshoot observed post-exposure for the 

3 g/L FAD dose, along with the up-regulation of ovary CYP19A mRNA production 

occurring during exposure for both the low (3 g/L) and high (30 g/L) FAD treatment 

groups. However, the model did not provide good predictions of plasma E2 concentrations 

for the high dose (30 g/L FAD) treatment, which was significantly reduced throughout the 

exposure period and substantially different from the response at the lower FAD 

concentrations. These experimental data and modeling results prompted us to refine the 

model in the current study to examine the hypothesis that an additional biological mechanism 

was needed.  Since protein synthesis controls the amount of CYP19A involved in the 

conversion of T into E2, we investigated protein synthesis as a possible factor influencing 

compensation. Specifically, we extended the computational model of the HPG axis to include 

a pathway for protein synthesis to address the main limitation of the previous HPG axis 

model (Breen et al., 2013). The extended model was evaluated with measurements of plasma 

E2 data and ovarian CYP19A mRNA for eight FAD test concentrations. The results support 

our hypothesis. By including a pathway for protein synthesis of CYP19A, the extended 

model significantly improved the model fit for the dynamic E2 concentrations at high FAD 

dose (30 g/L FAD) treatment, while maintaining good model fits of dynamic E2 

concentrations for controls and the lower doses (0.5 and 3 g/L FAD), despite significant 

differences in data behavior between high and low doses. The extended model was also 
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capable of predicting the dynamic CYP19A mRNA fold changes for all four doses during the 

two time-course studies, and the venous E2 dose-response during a 4-d exposure at 0, 0.04, 

0.2, 1, and 5 g FAD/L. Moreover, our sensitivity analysis indicates that CYP19A protein 

synthesis plays an important role in the revised model, since both E2 and CYP19A mRNA 

were highly to moderately sensitive to the parameters associated with the protein synthesis. 

The extended model contributes to on going efforts to understand and simulate 

biological responses to endocrine active chemicals, including aromatase inhibitors. 

Development of a computational system model that incorporates this additional biological 

mechanism provides a better understanding of possible adaptive responses, which can refine 

descriptions of dose-response time-course behaviors that differ substantially from low dose 

to high dose regimes. The knowledge obtained from iterations in model development, 

refinement, and empirical testing can help us to better understand the biology underlying 

toxicological responses to endocrine active chemicals, and can be applied to help reduce the 

uncertainty of dose-response assessments in support of quantitative risk assessments, a need 

identified as critical to supporting new approaches to regulatory toxicology (National 

Research Council, 2007). 

 

SUPPLEMENTARY DATA 

The dynamic molecular balance equations are provided as supplementary data, available 

online. 
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Dynamic molecular balance equations 

 

Gill Compartment 

 

FAD:  

water_gill FAD_insp_water cardiac FAD_venous

FAD_gill_blood
water_gill

cardiac

FAD_water:blood

;
Q C Q C

C
Q

Q
P






   

 

Brain Compartment 

E2: 

E2_brain E2_brain

brain brain E2_arterial

E2_brain:blood

;
dC C

V Q C
dt P

 
   

 
  

 

FAD: 

FAD_brain FAD_brain

brain brain FAD_arterial

FAD_brain:blood

;
dC C

V Q C
dt P

 
   

 
  

 

LH/FSH: 

LHFSH_brain

brain 0_syn_LHFSH loss_LHFSH LHFSH_brain

LHFSH LHFSH_brain

E2_brain

i_E2

;

1

dC
V k k A

dt

k A

C

K

  




 
  

 

 

 

 

Ovary Compartment 

FAD:  



 

104 

FAD_ovary FAD_ovary

ovary ovary FAD_arterial

FAD_ovary:blood

;
dC C

V Q C
dt P

 
   

 

    

 

 

E2:  

E2_ovary E2_ovary max_CYP19A T

ovary ovary E2_arterial

E2_ovary:blood FAD_ovary

m_T T

i_FAD

;

1

dC C V C
V Q C

dt P C
K C

K

  
           

 

  

 

CYP19A:  

max_syn_CYP19A AA_tRNACYP19A
ovary loss_CYP19A CYP19A

m_syn_CYP19A AA_tRNA

;
V CdC

V k A
dt K C


  


 

 

 

Vmax of CYP19A (conversion of T to E2):  

max_CYP19A cat_CYP19A CYP19A ;V k A    

 

 

Amino Acids (AA):  

max_syn_CYP19A AA_tRNAAA
ovary syn_AA loss_AA AA

m_syn_CYP19A AA_tRNA

;
V CdC

V k k A
dt K C


   


 

 

CYP19A mRNA:   
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 syn_mRNA_max syn_mRNA_basal LHFSH_R_LHFSHCYP19A_mRNA

ovary syn_mRNA_basal

a_syn_mRNA LHFSH_R_LHFSH

loss_mRNA CYP19A_mRNA ;

k k CdC
V k

dt K C

k A


 



 
 

 

CYP19A mRNA – Ribosome Complex: 

CYP19A_mRNA_rib

ovary rib_on CYP19A_mRNA_free rib_free rib_off CYP19A_mRNA_rib;
dC

V k A A k A
dt

    
 

CYP19A_mRNA_free CYP19A_mRNA CYP19A_mRNA_rib;A A A   

rib_free rib_total CYP19A_mRNA_rib;A A A   

 

Amino Acids – tRNA Complex: 

AA_tRNA

ovary tRNA_on AA_free tRNA_free tRNA_off AA_tRNA;
dC

V k A A k A
dt

    
 

AA_free AA AA_tRNA;A A A   

tRNA_free tRNA_total AA_tRNA ;A A A   

 

Vmax of CYP19A_mRNA-rib complex (conversion of transcript (CYP19A mRNA) to 

protein (CYP19A)):  

max_syn_CYP19A cat_CYP19A_mRNA CYP19A_mRNA_rib;V k A    

 

 

Liver Compartment 
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FAD:  

FAD_liver FAD_liver

liver liver FAD_arterial loss_FAD FAD_liver

FAD_liver:blood

;
dC C

V Q C k A
dt P

 
     

 

   

 

E2: 

E2_liver E2_liver

liver liver E2_arterial loss_E2 E2_liver

E2_liver:blood

;
dC C

V Q C k A
dt P

 
     

 

    

 

 

Venous Blood Compartment 

LH/FSH-receptor complex: 

LHFSH_R_LHFSH

LHFSH_on LHFSH_venous_free R_LHFSH_free

LHFSH_off LHFSH_R_LHFSH ,

dA
k A A

dt

k A

  

 

 

where R_LHFSH_free R_LHFSH LHFSH_R_LHFSHA A A   

and LHFSH_venous_free LHFSH_venous LHFSH_R_LHFSH;A A A   

 

LH/FSH: 

LHFSH_venous LHFSH LHFSH_brain

venous loss_LHFSH LHFSH_venous_free

E2_brain

i_E2

;

1

dC k A
V k A

dt C

K


  

 
  

 

 

 

E2: 
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E2_venous E2_liver E2_ovary

venous liver ovary

E2_liver:blood E2_ovary:blood

E2_brain E2_RoB

brain RoB cardiac E2_venous

E2_brain:blood E2_RoB:blood

;

dC C C
V Q Q

dt P P

C C
Q Q Q C

P P

   
       

   

   
        

   

 

 

FAD:   

FAD_venous FAD_liver FAD_ovary

venous liver ovary

FAD_liver:blood FAD_ovary:blood

FAD_brain FAD_RoB

brain RoB cardiac FAD_venous

FAD_brain:blood FAD_RoB:blood

;

dC C C
V Q Q

dt P P

C C
Q Q Q C

P P

   
       

   

   
        

   

    

 

Rest of Body Compartment 

FAD: 

FAD_RoB FAD_Rob

RoB RoB FAD_arterial

FAD_RoB:blood

;
dC C

V Q C
dt P

 
   

 
   

E2: 

E2_RoB E2_Rob

RoB RoB E2_arterial

E2_RoB:blood

;
dC C

V Q C
dt P

 
   

 
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5. COMMENTARY ON THE PARAMETER IDENTIFICATION ISSUE 

 

Mathematical modeling of biological systems and their response to chemical 

exposures plays a key role to enhance the interpretation and quantitative application of 

biological measurement data in risk assessments and drug development. Computational 

models are considered the central element in systems biology, which allows us to better 

understand complex biological systems by means of in silico experiments, model predictions, 

and hypothesis generation (Chris et al., 2011). Since it is often not possible to measure key 

model parameters directly, these parameters need to be obtained from an estimation process 

by data fitting, and this process is a critical step in model development (Chis et al., 2011; 

Saccomani et al., 2011). However, mathematical models that describe biological systems are 

often complex nonlinear dynamic models with many unknown parameters (Saccomani et al., 

2011). Giving the complexity of biological mechanisms in combination with the limited 

amount of quantitative biological data, it is important in the model development process to 

infer how well model parameters can be determined. The mismatch between the complexity 

of the models and the limited available data can lead to ill-conditioned inverse problems 

(Burth et al., 1999). Hence, parameter estimation can be a challenging mathematical and 

computational problem (Chis et al., 2011). 

The main source of difficulties to estimate unknown parameters is the lack of 

identifiability, which is an important aspect of model development (Chis et al., 2011; Jacquez 

and Greif, 1985). For the models to be identifiable, a unique solution of the inverse problem 

for all the free parameters must exist (Chis et al., 2011; Jacquez and Greif, 1985). Therefore, 

it is not possible to assign unique values for all the unknown parameters when the model has 
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identifiability issues (Chis et al., 2011). Identifiability can be of particular importance when 

many of the model parameters have biological meaning, and these parameter values have 

implications in biological or public health contexts, e.g. estimating the basic reproductive 

number, R0, in epidemiological models (Chis et al., 2011; Eisenberg et al., 2013). Hence, 

identifiability of estimated model parameters and their uncertainties need to be addressed. 

Parameter identification issues can be classified into two types: structural (a priori) 

non-identifiability and practical (a posteriori or data-based) non-identifiability (Chis et al., 

2011; Saccomani, 2013). Structural non-identifiability arises when some model parameters 

cannot be uniquely determined in the best-case scenario of noise-free data (Chis et al., 2011; 

Eisenberg et al., 2013; Saccomani, 2013). For instance, when the model is structurally non-

identifiable, it is not possible to estimate two or more parameters in the model separately 

(Capaldi et al., 2012), but only some combination of parameters. Moreover a structural non-

identifiable model might contain unnecessary parameters. These parameters might be not 

identifiable since the model does not depend at all on the parameters. Structural 

identifiability is a necessary condition for estimating parameters in model development for 

real-life situations, which use data with inevitable noise and possibly insufficient data length 

(Eisenberg et al., 2013; Saccomani, 2013). Practical non-identifiability arises when we lack 

information in the available experimental data (Chis et al., 2011; Saccomani, 2013). We 

often encounter severe constraints on experimental design when we attempt to develop 

mathematical models of biological systems (Saccomani, 2013). To model biological systems, 

practical identifiability issues frequently occur due to estimating parameters with an 

insufficient sample size, since it is expensive and time consuming to collect large 
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experimental data, especially for in vivo studies. In addition, mathematical modeling of 

biological systems often includes complicated non-linear terms such as Michaelis-Menten 

and Hill kinetics in their model equations, which requires appropriate data to capture both an 

early exponential growth and a saturation phase. The lack of appropriate data could be 

another common source of practical non-identifiability. 

The most noticeable cause of non-identifiability is due to over-parameterization of 

models (Catchpole et al., 1997). Parameter redundancy occurs when a model has too many 

parameters (Cole et al., 2010). We could also have parameter redundancy in the practical 

sense with complicated non-linear terms such as Michaelis-Menten kinetics, max ,
m

V S
v

S K


  

e.g. the parameters maxV and mK  cannot be estimated independently when ,mS K  since 

max .
m

V
v S

K

 
  
   

For a parameter redundant model, a set of model parameters can be expressed 

in terms of a smaller set of parameters (Catchpole et al., 1997; Little et al., 2010).  

In our study, mathematical modeling of biological systems was performed by using a 

system of nonlinear ordinary differential equations. The mathematical models were 

developed based on knowledge of biological mechanisms, and model parameters were 

estimated using biological data generated from experiments. It is essential in the model 

development process to infer how well model parameters can be determined and the 

uncertainty of the estimated model parameters given the complexity of biological 

mechanisms in combination with the limited amount of quantitative biological data. Thus, the 

estimation of unknown model parameters, identifiability, and uncertainty quantification play 
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a central role in the model development. To quantify the uncertainties of estimated model 

parameters in our study, standard errors of estimated model parameters for the extended 

H295R steroidogenesis model of Chapter 2 and the first HPG axis model of Chapter 3 were 

calculated. Moreover, we examined identifiability of the first HPG axis model of Chapter 3. 

 

Standard Error and Correlation Coefficient Calculation 

To quantify the uncertainties of the estimated model parameters in our models, 

standard errors and relative standard errors of the estimated model parameters were 

calculated. In addition, we calculated the correlation matrix of the model parameters. We 

followed the development and notation laid out in Banks et al. (2009) to describe the 

standard error and correlation coefficient calculations. The statistical model is defined as 

                                          
( , ) , 1, , ,j j jY f t j n   

                                               
(1)

                        

where ( , )jf t 
 
is our deterministic model and j are the errors. The ordinary least squares 

estimator 
ˆ
  is obtained by minimizing the cost function 

1

[ ( , )] [ ( , )],
n

T

j j j j

j

y f t y f t 


   

                                        1

ˆ
arg min [ ( , )] [ ( , )].

n
T

j j j j

j

y f t y f t


  


                                   (2) 

Then, the m x p sensitivity matrix ( )jD   is given by 
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1 1 1

1 2

2 2 2

1 2

1 2

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( ) , 1, , ,

( , ) ( , ) ( , )

j j j

p

j j j

j p

m j m j m j

p

f t f t f t

f t f t f t

D j n

f t f t f t

  

  

  

   

  

  

   
 

   
 
  

 
    
 
 
   
 
    

             (3) 

where m is the number of states of the system. The estimated variance of error matrix is 

given by 

                                1

1ˆ var( ) diag [ ( , )][ ( , )] ,
n

T

j j j j j

j

V y f t y f t
n p

  


 
    

 
                 (4)

 

which is an unbiased estimator. The variance-covariance matrix is described by 

                                                             

1ˆ ,                                                                       (5) 

where 1

1

ˆ( ) ( ).
n

T

j j

j

D V D 



 
 

Using the variance-covariance matrix, we obtain the standard 

errors ˆ( )kSE   for the k
th

 element of 
ˆ
 by 

                                                 
ˆˆ( ) , 1, , ,k kkSE k p                                                    (6) 

and the correlation matrix  by  

                                                             
1 1ˆ ,M M                                                              (7) 

where ˆ( ).M diag   

Standard errors and relative standard errors for the estimated transport equilibrium 

parameters and the estimated parameters of the metabolic pathway in the extended H295R 
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model of Chapter 2 are shown in Table 1 and Table 2, respectively. Overall, relative standard 

errors for the estimated parameters of the metabolic pathway were much smaller than 

estimated transport equilibrium parameters. The relative standard errors for all the estimated 

parameters of metabolic pathway were very small, less than 3.3%, except one parameter k14. 

The model parameter, k14, had very large uncertainty. We believe the large uncertainty is due 

to the existence of two paths to create E2 in our model, namely the E1 pathway and the T 

pathway. Based on the sensitivity analysis results, the E1 pathway appears to be the preferred 

pathway for E2 synthesis, as compared to the T pathway (Breen et al., 2011). The relative 

standard errors for all of the estimated transport equilibrium parameters were also small, less 

than 15.9%, except one parameter q28 having a larger value of 65.78%. The absolute values 

of each element of the correlation matrix for the metabolic pathway are shown in Figure 1. 

Taking the absolute value of the correlation coefficient measures the strength of the 

relationship. Overall, most pairs of estimated parameters have very little or no correlation. 

The correlation matrix for the estimated transport equilibrium parameters is the identity 

matrix since transport equilibrium parameters are independent of each other, which implies 

that their covariance is zero. 

We encountered a problem when we attempted to calculate the standard errors and 

the correlation matrix of the estimated model parameters of the HPG axis model of Chapter 

3. As described earlier, existence and invertibility of the matrix   in Equation (6) is required 

in order to calculate the standard errors and the correlation matrix. However, this required 

condition is rather easily violated in practice (Banks et al., 2009). We were unable to invert 

the matrix   without a warning of potential inaccurate results using Matlab, since the matrix 
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was ill-conditioned. Hence, we were incapable of obtaining stable estimates of the standard 

errors and the correlation matrix. This result suggests that the estimated model parameters in 

the HPG axis model suffer from parameter identifiability issues. Therefore, identifiability of 

the HPG axis model of Chapter 3 was examined. 
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Identifiability Analysis 

As discussed earlier, we could encounter practical identifiability issues due to the 

insufficient data available for an inverse problem. Collecting biological data is often difficult 

and costly (Capaldi et al., 2012). Our HPG axis model is a representation of the endocrine 

system of an organism (i.e., fish) based on in vivo experimental results. The HPG model was 

developed from detailed analysis of the underlying biological system, which involves a 
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relatively large number of biologically interesting parameters. On the other hand, the data 

available from in vivo experiments are typically not large. It is the nature of in vivo studies 

that experiments are expensive and time consuming, and that biological systems at the 

organismal level are highly complex. The HPG axis model has 16 model parameters to 

estimate from 26 data points. Therefore, the ratio between the number of observables and the 

number of parameters in our HPG axis model is low. To examine the possibility of 

insufficient data, we generated a larger dataset by simulation under a best case scenario. We 

obtained computer-generated data from the model simulation without any noise for each of 

the 16 state variables, sampled every 24 hours for 34 hours, and at 3 doses, and model 

parameters were re-estimated with this dataset. These estimated parameter values did not 

change substantially from the estimated HPG axis model parameters shown in Chapter 3. 

Moreover, we were still unable to invert the matrix   in Equation (6) without a warning of 

potential inaccurate results using Matlab, since the matrix was ill-conditioned. Even though 

we used the best case scenario of a large dataset to re-estimate model parameters, we were 

still unable to obtain stable estimates of the standard errors and correlation matrix for the 

HPG axis model. 

We could also encounter structural identifiability issues. One of the potential causes 

of non-identifiability is due to over-parameterization of models, causing some of parameters 

to be unidentifiable.  Under these conditions, reduced model and combinations of parameters 

can be estimated even when individual parameters may not be estimated (Eisenberg et al., 

2013). Therefore, one way to overcome this issue is to use the subset selection method to 

reduce the number of parameters to be estimated in the model (Burth et al., 1999). To apply 
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subset selection, the model parameters are partitioned into well-conditioned and ill-

conditioned parameters: well-conditioned parameters are the parameters likely to be 

estimated reliably, whereas ill-conditioned parameters are the remaining parameters that are 

likely to be causing the inverse problem to be ill-conditioned (Burth et al., 1999). Ill-

conditioned model parameters are fixed at prior estimated values, while the remaining well-

conditioned parameters are re-estimated using the same dataset (Burth et al., 1999). This 

approach may introduce the bias by fixing the ill-conditioned parameters to prior estimates, 

but could lead to major improvements on the parameter estimation over full-order estimation 

(Burth et al., 1999). We implemented the subset selection method for our HPG axis model 

using the L2 norm results of the sensitivity analysis. Small perturbations in the highly 

sensitive parameters result in large changes in the model output, whereas substantial 

variations in the relatively insensitive parameters result in only small changes in the model 

output (Reich, 1981; Li et al, 1996). Parameters could become identifiable when insensitive 

parameters are fixed a priori (Li et al, 1996).  Thus, we selected a subset of parameters to be 

re-estimated by ordering parameters according to the L2 norm results of the sensitivity 

analysis, and fixing the insensitive parameters to prior estimates. First, we fixed four 

insensitive parameters (ksyn_mRNA_basal, Ka_syn_mRNA, kloss_FAD, kloss_LHFSH) to prior estimated 

values and then re-estimated 12 sensitive parameters (ksyn_mRNA_max,, kloss_mRNA, 

Vmax_syn_CYP19A, Km_syn_CYP19A, kloss_CYP19A, Ki_FAD, Ka_syn_mRNA, kloss_E2, k0_syn_LHFSH, kLHFSH, 

Ki_E2, kLHFSH_off). We were still unable to invert the matrix   in Equation (6) without a 

warning of potential inaccurate results using Matlab, since the matrix was ill-conditioned. 

Next, we halved the number of parameters to be re-estimated, choosing 6 parameters to be 
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re-estimated from 12 sensitive parameters and fixing the remaining 12 parameters to prior 

estimated values. We tried every combination of 6 sensitive parameters, but were still unable 

to invert the matrix . Even with this substantial reduction in the number of estimated model 

parameters, we were still unable to obtain stable estimates of the standard errors and 

correlation matrix for the HPG axis model. 

We also used a Monte Carlo approach to investigate parameter identifiability for the 

HPG axis model. First, we generated 100 data sets by adding small noise to the simulated 

hourly model output based on the published results, and model parameters were re-estimated 

using the generated data set. Then, the matrix Ω was created and we removed, in turn, row i 

and column i from the matrix (i.e., treating parameter i as if it were known.) Based on the set 

of matrices generated, we then selected which parameter to eliminate from the estimation 

process, either by finding which matrix had the largest condition number (i.e. “hardest” to 

invert) or which of the resulting variance/covariance matrices yielded the largest correlation 

between some pair of parameters. Using this approach, we could remove, one-by-one, 

“troublesome” parameters. In many instances, the matrix Ω was not positive definite until 

many parameters were removed. And in some instances, most of the parameters had to be 

removed, leaving only a set of four, five, or six parameters that were identifiable, despite the 

fact that this procedure was based on idealized scenarios. These results are in agreement with 

the subset selection analysis, which showed the inability of obtaining stable estimates of the 

standard errors and correlation matrix for the HPG axis model. Based on the results from 

several analyses to examine potential identifiability issues, we believe that our HPG axis 

model had non-identifiable parameters. Hence, we are unable to estimate all 16 parameters 
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reliably. Work is ongoing to investigate the issue of identifiability in more detail for this 

model. 

Currently, the vast majority of biological models are nonlinear and dynamic, 

including the biological models developed in this study. Ideally, one would like to establish 

the domain of validity of the identifiability algorithm. However, this may not be possible 

(Saccomani et al., 2010). Testing the identifiability of general non-linear dynamic models is 

an extremely challenging mathematical problem (Chis et al., 2011). In addition, it may also 

not be possible to distinguish between non-identifiability and lack of convergence of the 

iterative optimization algorithm used for parameter estimation (Saccomani et al., 2010), 

which could further complicate the investigation of identifiability. Moreover, we also need to 

consider designing the experiment to improve the ability to estimate the model parameters. 

An optimized experimental design is necessary to improve the estimability of the relevant 

parameters in biological models. Identifiability and optimal sampling design are linked steps 

in parameter estimation (Jacquez and Greif, 1985). 
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6. CONCLUSIONS 

 

We have developed mechanistic computational models to predict the biochemical 

responses of vertebrate endocrine systems to EACs in collaboration with government, 

academia, and industry within the United States and internationally. Specifically, we 

developed (1) a model of the metabolic network of adrenal steroidogenesis in human cells to 

predict the synthesis and secretion of adrenocortical steroids and their dynamic dose-

response to EACs, and (2) a model of the HPG axis in female fathead minnows to predict 

dose-response and time-course behaviors for endocrine effects of EACs. A variety of 

environmental contaminants and pharmaceuticals are known to act as EACs, which have the 

potential to alter endocrine homeostasis leading to adverse effects in exposed vertebrates 

including humans. In order to assess environmental risk, exposures must be linked to effects 

of EACs. It is critical to establish a causal relationship between exposures and adverse effects 

of EACs in order to understand the result of molecular and biochemical changes. The 

development of predictive mechanistic computational models allows for more accurate and 

efficient quantitative evaluations of the chemical toxicants to help overcome challenges in 

ecological and human risk assessments, and to improve quantitative risk assessments. The 

integration of mathematical and computational models with the technology of molecular 

biology and chemistry enabled us to improve the ability to predict the effects in exposed 

vertebrates. In collaboration with experimental scientists, the use of data from laboratory 

experiments allowed us to develop and evaluate mathematical models of biochemical 

signaling and metabolic pathways, which could be utilized for predicting human health and 

ecological outcomes from exposures to chemical toxicants. Moreover, the use of in vitro 
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experimental methods together with our computational model support the recommendations 

of the National Research Council report on the vision of toxicology in the 21
st
 century with 

the use of in vitro systems that can: (1) provide broad coverage of chemicals, mixtures, and 

outcomes; (2) reduce the cost and time of testing; (3) use fewer animals; and (4) develop 

more robust scientific basis to assess health effects from environmental chemicals. 

In particular, our research demonstrates the need for a close collaboration between 

modelers and biologists/toxicologists to successfully develop and evaluate mechanistic 

computational models that can predict and improve the understanding of the mechanisms for 

dose-response behavior of EACs. Data needed by the modelers (e.g., ovary volume 

measurements) were obtained experimentally. In turn, model simulations helped generate 

testable hypotheses that directed further laboratory work. The application and refinement of 

these models are proceeding in much the same way. As experimental data is generated, it 

informs the refinement of these models and its adaptation for other applications. In turn, use 

of these models for those applications leads to additional hypotheses that can be tested to 

inform our understanding and the impact of chemical stressors on important biological 

processes. Our dose-response models for human adrenal cells and fish exposed to EACs 

support both human health and ecological risk assessments by advancing our understanding 

of the biological effects of chemicals considered harmful to the public and ecosystems, which 

include many EACs. Both of these models and the approaches taken for their development 

represent innovative and highly transferrable products that address critical needs for 

improved predictive risk assessments related to EACs.    
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The mechanistic computational models developed in our research have several 

potential applications. First, these models will help to improve our understanding of the 

biochemical responses to EAC, and could be used to identify predictive biomarkers 

indicative of adverse effects. Second, these models could be used as a basis to predict the 

potentially adverse effects of environmental EAC that interact with components of the 

modeled biological pathways. Furthermore, the mechanistic information incorporated in the 

models could help to more accurately extrapolate dose-response curves from high dose data 

to lower doses that are often  more environmentally relevant. These applications can help 

overcome challenges in both ecological and human risk assessments since the modeled 

biological pathways are conserved across vertebrates (e.g., human, fish). 

There are some limitations to our mechanistic computational models. In particular, 

our model of the HPG axis had some parameter identification challenges. Mathematical 

models are simplified representations of the systems and processes in which we are 

interested. Even though the use of an in vivo experimental method linked to our 

computational model provided us with valuable biological information, we had limited data 

available due to the expense and time constraints of the in vivo study. The small sample size 

used for parameter estimation could contribute to the uncertainty in the parameter values.  

In our study, the primary use of models is to make predictions. The ability to forecast 

the unseen outcome under different situations provides us with vital information. However, 

the meaning and relevance of the model parameters may be compromised under parameter 

identification issues. It is a requirement for parameter estimation that all parameters in a 

model are identifiable on the basis of the observed data. The absence of identifiable 
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parameters implies that we cannot distinguish between different values of parameters on the 

basis of the observed data. Even though it is possible to estimate parameter values even when 

not all parameters are identifiable, the estimated parameters may not be reliable. The simplest 

way to solve the problem of parameter estimation with non-identifiable parameters is to 

predetermine the values of other parameters in the model which could influence the 

parameters being estimated by other means, and hold these parameters to be predetermined 

fixed values. However, even this simplest approach requires additional data or knowledge in 

order to predetermine these parameter values soundly. The exploration of identifiability is a 

major task, which needs to be addressed in future research. 
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Appendix A 

 

COMPUTATIONAL MODEL OF STEROIDOGENESIS IN HUMAN H295R CELLS 

TO PREDICT BIOCHEMICAL RESPONSE TO ENDOCRINE-ACTIVE 

CHEMICALS: MODEL DEVELOPMENT FOR METYRAPONE 

 

Michael S. Breen, Miyuki Breen, Natsuko Terasaki, Makoto Yamazaki, Rory B. Conolly 

 

Published in Environmental Health Perspectives: 2010; 118: 265-272 

 

Publication of this article lies in the public domain 

 

Miyuki Breen was primarily responsible for assistance of model development, simulation, 

analysis of results, and manuscript writing. 
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Appendix B 

 

DEVELOPING PREDICTIVE APPROACHES TO CHARACTERIZE ADAPTIVE 

RESPONSES OF THE REPRODUCTIVE ENDOCRINE AXIS TO AROMATASE 

INHIBITION: I. DATA GENERATION IN A SMALL FISH MODEL 

 

Daniel L. Villeneuve, Miyuki Breen, David C. Bencic, Jenna E. Cavallin, Kathleen M. 

Jensen, Elizabeth A. Makynen, Linnea M. Thomas, Leah C. Wehmas, Rory B. Conolly, 

Gerald T. Ankley 

 

Published in Toxicological Sciences: 2013; 133: 225-233 

 

Reprinted with permission from Oxford University Press 

 

Miyuki Breen was primarily responsible for assistance of experiment design based on the 

computational model of HPG axis preliminary results, and coordination of manuscript 

writing and submission as a companion paper of part II. Computational Modeling. 
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