ABSTRACT
BREEN, MIYUKI. Predicting the Biochemical Response of Vertebrate Endocrine Systems to
Endocrine Active Chemicals. (Under the direction of Rory Conolly and Alun Lloyd).

There is international concern regarding effects of endocrine-active environmental
contaminants and commercial products on the health of humans and wildlife. A large number
of environmental contaminants may disrupt the endocrine system during critical stages of
development, which can result in adverse outcomes in humans and wildlife. Endocrine active
chemicals (EACs) are exogenous chemicals that can cause adverse health effects in intact
organisms, affecting reproduction and development in both humans and wildlife by inducing
adverse hormonal changes in the tightly regulated endocrine pathways. The main focus of
research on EACs has been on vertebrate species, driven by the need for human and
ecological risk assessments and drug development. To enhance the interpretation and
quantitative application of measurement data in risk assessments and drug development, this
dissertation describes mathematical computational models of vertebrate endocrine systems.

The first project was to develop a mechanistic computational model of
steroidogenesis in human H295R cells. We previously developed a computational model that
describes the biosynthetic pathways for the conversion of cholesterol (CHOL) to steroids,
and the kinetics for enzyme inhibition by the EAC, metyrapone (MET). In this work, we
extended our dynamic model by including a cell proliferation model supported by additional
experiments, and by adding a pathway for the biosynthesis of oxysterols (OXY). The
extended steroidogenesis model predictions closely correspond to the measured time-course
concentrations of CHOL and 14 steroids both in the cells and in the medium, and the

calculated time-course concentrations of OXY from control and MET-exposed cells.



The second project was to develop a mechanistic computational model of the
Hypothalamic-Pituitary-Gonadal (HPG) axis for a model vertebrate, the fathead minnow
(Pimephales promelas). A series of time-course fadrozole (FAD) exposure experiments were
performed: the data indicate adaptive changes (i.e., compensation) in plasma 17p3-estradiol
(E2) levels occurring during exposure and “overshoot” occurring post-exposure. In the first
part of this research, we developed a dynamic model that includes a regulatory feedback loop
within the HPG axis that can mediate adaptive responses to FAD. The HPG axis model
predictions closely correspond to the time-course measurements of plasma E2 for lower FAD
test concentrations, and the model accurately predicted cytochrome P450 (CYP) 19A mRNA
fold changes and plasma E2 dose-response from the 4-day study. The main limitation of the
model was the large overestimation of a plasma E2 concentration for higher FAD test
concentrations. In the second part of this research, we addressed this limitation by extending
the model to include a pathway for protein synthesis of cyp19a. As a result, the extended
model significantly improved the model fit for the dynamic E2 concentrations at high dose.

These mechanistic modeling capabilities could help define mechanisms of action for
poorly characterized chemicals and mixtures for predictive risk assessments, and to screen
drug candidates in the early phase of drug development. These studies demonstrate the value
of mechanistic computational modeling to examine and predict the possible dynamic
behaviors and to formulate and test hypotheses to increase understanding of the biochemical

responses of vertebrate endocrine systems to EACs.
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1. INTRODUCTION AND BACKGROUND
Introduction

The endocrine system consists of a series of glands that signal each other by secreting
chemicals called hormones into the blood. These hormones travel to target tissues to regulate
various critical functions, which include metabolism, reproduction, growth and development.
Exposure to endocrine active chemicals (EACs) can affect reproduction and development in
both humans and wildlife by inducing adverse hormonal changes in the tightly regulated
endocrine pathways. Chemicals capable of acting as EACs are ubiquitous with environmental
sources that include household detergents, pesticides, plastics, pharmaceutical estrogens,
industrial chemicals, and byproducts of incineration and fuel combustion. Colborn et al.
(1993) reported that a large number of environmental contaminants may disrupt the
endocrine system during critical stages of development, which can result in adverse
outcomes in humans and wildlife. To identify and regulate chemicals that have the potential
to impact the endocrine system, government programs have been established both in North
America and Europe (Nichols et al., 2011). The main focus of research on EACs has been on
vertebrate species, driven by the need for human and ecological risk assessments and drug

development.

Vertebrate Endocrine System
The endocrine system regulates various processes vital for life. It is a dynamic control
system of the body which coordinates responses of a target tissue to internal and external

signals. The primary function of the endocrine system is to maintain a balanced physiological



system that can sustain a dynamic equilibrium by avoiding large fluctuations in hormone
levels and their responses. By integrating specialized responses of individual organs, the
endocrine system allows the desired cellular environment to be maintained. The
physiological processes regulated by the endocrine system include short- and long-term
metabolism, reproduction, growth, functions of the gut, kidneys, and cardiovascular system,
and stress responses.

The endocrine system is organized to stabilize the cellular environment by a seesaw-
type mechanism. The seesaw-type mechanism operates by feedback signals between the
target cells and the regulating cells, with the result that secretion of a target cell-stimulating
hormone is altered by the products of the target cells. The balance of the two sides of the
seesaw is determined by a programmed set point, which determines the level at which each
side of the seesaw will respond to signals from the other side. The preprogrammed set point
represents the optimal physiological condition. The endocrine system is organs and tissues
integrate their information using crosstalk, where signaling from hormones are shared
between different biological pathways, and responses to hormones can activate multiple
responses in the organism.

The endocrine system, which originated during the early evolution of fish, is highly
conserved across vertebrate species. Hence, the components of the endocrine system are
fundamentally the same for all vertebrates. Specialized endocrine glands of the brain-
pituitary system in vertebrates include the hypothalamus, pituitary, thyroid, adrenal, gonads

(testes or ovaries), pancreas, and parathyroid.



Glands of the endocrine system signal each other by secreting hormones into the
blood, which travel to target tissues to regulate critical functions. The brain initiates the
process by sending neural signals. The hypothalamus responds to these neural signals and
secrets hormones into the blood and transported to the pituitary. In response, the pituitary
secretes different hormones that travel to specific downstream endocrine glands, such as the
thyroid, adrenal gland, and gonads. In response, these glands release hormones that travel to
target tissues to regulate specific physiological processes. Hormones produced by the thyroid
regulate general metabolic rate, growth and possibly embryonic development. Hormones
secreted by the adrenal gland are involved in stress responses, osmoregulation and
carbohydrate metabolism. The hormones released by the gonads control reproduction. To
maintain control of these physiological processes, some hormones secreted by the
downstream glands travel back to the hypothalamus and pituitary to form a closed-loop

negative feedback control system.

Endocrine Active Chemicals
EACs are exogenous chemicals that cause effects by either receptor- or nonreceptor-
mediated mechanisms. Receptor-mediated EACs mimic or block endogenous hormone
activity by acting as receptor agonists or antagonists. Agonists bind to hormone receptors and
promote hormone activity, whereas the antagonists bind to hormone receptors and block
hormone activity. Nonreceptor-mediated EACs inhibit the activity of enzymatic reactions for

various biological pathways, such as steroid biosynthesis.



There is international concern regarding the effects of various environmental
contaminants and commercial products on the health of humans and wildlife (Cooper and
Kavlock 1997; Daston et al., 2003; Hutchinson et al., 2006; Zacharewski 1998). The
feminization of male smallmouth bass in the Potomac River due to exposure to water
pollutants is a well known example of the potential effects of EACs (Buzdar et al., 2007).
The U.S. Environmental Protection Agency developed and implemented an endocrine
disruptor screening program (EDSP) to screen for endocrine disrupting properties of
chemicals in drinking water and pesticides used in food production, which is required by the
Safe Drinking Water Act Amendments (1996) and the Food Quality Protection Act (1996).
The EDSP is designed as a two-tiered screening and testing process to identify chemicals that
can interact with the endocrine system (Tier 1), and to characterize their dose-response (Tier
2). In particular, the EDSP examines the effect of chemicals that act as agonists or
antagonists of estrogen and androgen receptors (Chu et al., 2009; Henley and Korach 2006),
and other EACs that can cause effects by nonreceptor-mediated mechanisms (Harvey and

Everett 2003; Ulleras et al., 2008; Villeneuve et al., 2007).

Adrenal Steroidogenesis in H295R Cells
Steroids are a class of hormones synthesized in the gonads and adrenal glands, which
have an important role in a wide range of physiological and pathological processes, such as
stress response, development, growth, reproduction, metabolism, aging, and hormone-
sensitive cancers (Portier 2002; Ulleras et al., 2008). Steroids are derived from cholesterol

through a series of biochemical reactions mediated by multiple cytochrome P450 (CYP)



enzymes and hydroxysteroid dehydrogenases (HSD), primarily synthesized in the ovaries,
testes, and adrenal tissue (Miller et al., 1988; Payne et al., 2004). The activity of these
steroidogenic enzymes and the subsequent production rate of steroids can be altered by
various environmental and pharmacologic EACs (Sanderson et al., 2002; Walsh et al., 2000).
The human adrenocortical carcinoma cell line H295R is the only in vitro assay that
can be used to evaluate EAC effects across the entire steroidogenesis pathway since H295R
cells express all the key enzymes involved in steroidogenesis and they have the ability to
produce all the adrenocorticol steroids (Gazdar et al., 1990; Rainey et al., 1994; Staels et al.,
1993). The H295R cell line was selected as an in vitro steroidogenesis assay to detect
chemicals that affect steroid biosynthesis in the EDSP Tier 1 battery of screening assays
(2009). Moreover, this assay coupled with a mechanistic computational model supports the
recommendations of the National Research Council’s report Toxicology Testing in the 21°
Century (National Research Council, 2007). The report advises the use of in vitro systems to
evaluate a broad range of chemicals and outcomes at a reduced cost, with fewer animals, and

develop a sound scientific basis to assess effects from environmental agents.

Mechanistic Computational Model of Steroidogenesis in H295R Cells
To increase the understanding and quantitative use of data from the in vitro
steroidogenesis assay for human and ecological risk assessments, we developed a
mechanistic computational model of steroidogenesis in H295R cells. Our research goal is to
better understand the dose-response behaviors of EACs. Each of these EACs can inhibit

different steroidogenic enzymes, which alter the production rate of steroids. Laboratory



experiments can measure the level of steroids after chemical exposures, but measurements of
the metabolic reaction rates for each enzyme are not feasible. However, knowledge of the
metabolic reaction rates and steroid transport rates is essential to fully understand the
dynamic dose-response behavior of EACs. Development of a mechanistic computational
model of steroidogenesis, and estimation of the metabolic reaction rates and steroid transport
rates helps us gain this essential knowledge.

Other models of steroid synthesis have been previously reported in the literature.
Murphy et al. (2005) developed a model for vitellogenesis, a steroid-controlled process, in
female fish. To model steroidogenesis in ovaries, they combined all reactions occurring
between the release of gonadotropin and the production of testosterone (T) into one Hill
equation. Selgrade and Schlosser (1999) developed a mathematical model to predict plasma
levels of 17p-estradiol (E2) during different stages of the menstrual cycle in women from
luteinizing hormone (LH) and follicle-stimulating hormone (FSH) concentrations. E2
concentrations were modeled as a weighted sum of LH concentration, growth follicle stage,
and preovulatory stage. These models lack the ability to predict responses to EACs that
inhibit specific steroidogenic enzymes, since they do not include any reactions in the
metabolic pathway for steroid synthesis. Breen et al. (2007) developed a mechanistic model
of the metabolic pathway for ovarian steroidogenesis in female fish. Metabolic reaction and
transport rates were estimated under the assumption that the steroidogenic pathway is
operating at steady-state. Becker et al. (1980) developed a probabilistic model of the
metabolic pathway for testicular steroidogenesis. They estimated transition probabilities for

the reactions in the pathway from ex vivo preparations of rat and rabbit testes. Since ovarian



and testicular steroidogenesis do not express all the key enzymes for steroidogenesis and lack
the ability to produce all the adrenocorticol steroids, these computational models do not
include the metabolic pathways for the major adrenal steroids, such as aldosterone and
cortisol.

In this work, we developed a mechanistic model for the synthesis and transport of
adrenocortical steroids, and their biochemical response to the competitive steroidogenic
enzyme inhibitor metyrapone (MET), a model EAC. Since the structure of the metabolic
reaction pathway for steroid synthesis is well established, a mechanistic model was chosen to
better understand the biological mechanism for the response to chemical exposures. The
model was based on an in vitro steroidogenesis experimental design with two compartments:
culture medium and human adrenal cells. The model describes cholesterol transport from the
medium into the cells, conversion of cholesterol into steroids in the cells, transport of the
steroids and EAC between the cells and medium, and inhibition of specific steroidogenic
enzymes by the EAC. The computational model was developed and evaluated for an EAC
using dose-response experimental data, which includes measured concentrations of
cholesterol, 14 steroids [pregnenolone (PREG), 17a-hydroxy-pregnenolone (HPREG),
dehydroepiandrosterone (DHEA), progesterone (PROG), 17a-hydroxy-progesterone
(HPROG), androstenedione (DIONE), testosterone (T), deoxycorticosterone (DCORTICO),
corticosterone (CORTICO), aldosterone (ALDO), 11-deoxycortisol (DCORT) cortisol
(CORT), estrone (E1), and 17-beta-estradiol (E2)] in H295R cells and medium, and the EAC,

metyrapone (MET). The data were obtained from an in vitro steroidogenesis assay using the



human H295R adrenocarcinoma cell line. An iterative optimization algorithm was used to
estimate the metabolic reaction rate constants and steroid transport rate constants.

We previously developed a mechanistic computational model that describes the
biosynthetic pathways for conversion of cholesterol to adrenocortical steroids, and the
kinetics for enzyme inhibition by the MET. The primary focus was on steroid synthesis
(Breen et al., 2010). The key limitations of the previous steroidogenesis model were the large
underestimation and overestimation of CHOL concentrations in cells and medium,
respectively, and the potential confounding effects of cell proliferation and viability on the
time-course concentrations of the steroids. In Chapter 2, we describe the extended model and
additional critical experiments performed to address key limitations of the previously
developed model. In addition, the details of the previous steroidogenesis model are provided

in Appendix A.

Computational Model of Fathead Minnow Hypothalamic-Pituitary-Gonadal Axis
Dose-response and time-course behaviors of endocrine effects in organisms exposed

to environmental chemicals are major determinants of health risk. The NRC report
Toxicology Testing in the 21% Century emphasizes that adaptive changes within organisms
exposed to environmental stress can alter dose-response behaviors to minimize the effects of
the stressors (National Research Council, 2007). As the field of toxicology evolved,
characterization of adaptation to modern toxicology stressors became critical (National
Research Council, 2007). Better understanding of the adaptive mechanisms is needed to

refine descriptions of dose-response behavior for risk assessments. To increase the



understanding and characterization of the adaptive responses to toxicant stress, we developed
a mechanistic computational model of the Hypothalamic-Pituitary-Gonadal (HPG) axis for a
model vertebrate, the fathead minnow (Pimephales promelas). Our research goal is to better
understand the dose-response behaviors and how the feedback regulatory loops in the HPG
axis generate adaptive responses to toxicant stress.

Other models of the HPG axis have been previously reported in the literature.
Watanabe et al. (2009) developed a model for male fathead minnows exposed to 17a-
ethinylestradiol or 17p-estradiol (E2) to predict plasma sex-steroid hormones and
vitellogenin (\Vtg) concentrations, and Li et al. (2011) extended the model for female fathead
minnows exposed to 17a-ethinylestradiol or 17B-trenbolone. Murphy et al. (2005) developed
a model for female sciaenid fish exposed to PCBs and cadmium to predict Vtg
concentrations, and Kim et al. (2006) developed a model for salmonids to describe normal
functioning. Barton and Andersen (1998) developed a model for rats to simulate hormone
levels in testes and blood. Pechstein et al. (2000) and Tornoe et al. (2007) developed a model
for humans to describe changes in luteinizing hormone (LH) and testosterone (T)
concentrations following treatment with the LH-releasing hormone antagonist, cetrorelix, and
the gonadotropin-releasing hormone (GnRH) agonist, triptorelin, as well as the GnRH
receptor blocker, degarelix, respectively.

In this work, we developed a mechanistic mathematical model of the HPG axis in
female fathead minnows to predict the dose-response and time-course behaviors for
endocrine effects of the aromatase inhibitor, fadrozole (FAD). Fadrozole is a model EAC that

competitively inhibits the steriodogenic enzyme, aromatase cytochrome P450 (CYP) 19A. To



support development of a computational dynamic model of the HPG axis to predict complex
dose-response time-course behaviors that may occur in vivo, a series of time-course FAD
exposure experiments were performed (Villeneuve et al., 2009, 2013). One of the
experiments, Villeneuve et al. (2013), is described in Appendix B. Data from three separate
experiments to characterize the response of female fathead minnows to FAD exposure were
utilized for model development. We observed adaptive changes (compensation) in plasma E2
levels during exposure, which resulted in a period of increased E2 production/concentrations,
relative to controls, immediately following removal of the inhibitor (an overshoot),
particularly at lower FAD test concentrations (Villeneuve et al., 2009). In Chapter 3, we
describe the computational model of the HPG axis, which characterizes the adaptive
responses to aromatase inhibition (Breen et al., 2013). In this study, we developed an HPG
axis model that includes a regulatory feedback loop within the HPG axis that can mediate
adaptive responses to EAC. The computational model of the HPG axis was developed based
on knowledge of biological mechanisms, and the model consists of six tissue compartments:
gill, brain (as an organ including hypothalamic-pituitary complex), ovary, liver, venous
blood, and rest of body. These six compartments, which are involved in the HPG axis
signaling and feedback control, are configured to be consistent with the cardiovascular
system of the exposed fish. Model parameters were estimated using E2 concentrations for
three lower FAD test concentrations by an iterative optimization algorithm.

The focus of Breen et al. (2013) was to capture compensation and overshoot of
plasma E2 concentration for lower FAD concentrations. The main limitation of Breen et al.

(2013) was the large overestimation of a plasma E2 concentration for higher FAD test

10



concentrations. To address this limitation, we extended the model by Breen et al. (2013). In
Chapter 4, we describe the extended model of the HPG axis, which includes the pathway for
protein synthesis of cypl9a (aromatase). Model parameters were estimated using E2
concentrations for all four FAD test concentrations and an iterative optimization algorithm.
The extended model improved the predictability of the biochemical response to EACs.

In our study, mathematical models were developed based on knowledge of biological
mechanisms, and model parameters were estimated using biological data generated from
experiments. Since many of the model parameters are not directly measurable, the estimation
of unknown model parameters and identifiability play a central role in model development.
In Chapter 5, we address parameter identification issues associated with the HPG axis model

of fathead minnowvs.
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The human adrenocortical carcinoma cell line H295R is being
used as an in vitro steroidogenesis screening assay to assess the
impact of endocrine active chemicals (EACs) capable of altering
steroid biosynthesis. To enhance the interpretation and quantita-
tive application of measurement data in risk assessments, we are
developing a mechanistic computational model of adrenal
steroidogenesis in H295R cells to predict the synthesis of steroids
from cholesterol (CHOL) and their biochemical response to EACs.
We previously developed a deterministic model that describes the
biosynthetic pathways for the conversion of CHOL to steroids and
the kinetics for enzyme inhibition by the EAC, metyrapone
(MET). In this study, we extended our dynamic model by (1)
including a cell proliferation model supported by additional
experiments and (2) adding a pathway for the biosynthesis of
oxysterols (OXY), which are endogenous products of CHOL not
linked to steroidogenesis. The cell proliferation model predictions
closely matched the time-course measurements of the number of
viable H295R cells. The extended stercidogenesis model estimates
closely correspond to the measured time-course concentrations of
CHOL and 14 adrenal steroids both in the cells and in the medium
and the calculated time-course concentrations of OXY from
control and MET-exposed cells. Our study demonstrates the
improvement of the extended, more biologically realistic model to
predict CHOL and steroid concentrations in H295R cells and
medium and their dynamic biochemical response to the EAC,
MET. This mechanistic modeling capability could help define
mechanisms of action for poorly characterized chemicals for
predictive risk assessments.

Key Words: endocrine disrupting chemicals; mechanistic
computational model; in vitro toxicology; metyrapone; H295R
cells; steroid biosynthesis.

The Safe Drinking Water Act Amendments (1996) and the
Food Quality Protection Act (1996) require screening for

endocrine disrapting properties of chemicals in drinking water
and pesticides. This legislation addresses the concern that
various environmental chemical contaminants may alter the
endocrine system of humans and wildlife with subsequent
adverse outcomes and disease. Based on this legislation, an
endocrine disruptor screening program (EDSP) was developed
by the U.S. Environmental Protection Agency (U.S. EPA,
1998). The EDSP is designed as a two-tiered screening and
testing process to identify chemicals that can interact with the
endocrine system (Tier 1) and to characterize their dose-
response (Tier 2). In the EDSP Tier 1 battery of screening
assays (U.S. EPA, 2009), the human adrenocortical carcinoma
cell line H293R was selected as an in vitro steroidogenesis
assay to detect chemicals that affect steroid biosynthesis.

As a screening tool, the in vitro H295R steroidogenesis
assay has several strengths. This assay can be used to evaluate
the effects across the entire steroidogenesis pathway because
H295R cells express all the key enzymes for steroidogenesis
and have the ability to produce all the adrenocortico steroids
as well as sex steroids (Gazdar er al., 1990; Rainey ef al.,
1994; Staels et al., 1993). The screen is rapid and inexpensive
and can detect chemicals that either inhibit or induce
steroidogenesis (U.S. EPA, 2009). Furthermore, this assay
coupled with a mechanistic computational model supports the
recommendations by the National Research Council (NRC)
report regarding a vision and strategy for toxicology testing in
the 21st century (NRC, 2007). The NRC report recommends
the use of in vitro systems to assess mechanisms of action for
a large number of chemicals while reducing the number of
animals and testing cost for in vive assays {Andersen and
Krewski, 2010).

To increase the understanding and quantitative use of data
from the in vitrro H295R steroidogenesis assay for human
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and ecological risk assessments, we are developing a mech-
anistic computational model of steroidogenesis in H295R
cells. We previously developed a deterministic model that
describes the biosynthetic pathways for conversion of
cholesterol {(CHOL) to adrenocortical steroids and the
kinetics for enzyme inhibition by the competitive steroido-
genic enzyme inhibitor, metyrapone (MET), a model
endocrine active chemical (BEAC) with a well-characterized
mechanism of action (Breen er al., 2010). Metyrapone is
used as a clinical diagnostic test for pituitary adrenocorti-
cotropic dysfunction. In the present paper, we extended the
model and performed additional critical experiments to
address key limitations of the previously described model.

The primary focus of the previous work was on steroid
synthesis (Breen er al, 2010). The main limitation of the
previous steroidogenesis model was the large underestimation
and overestimation of CHOL concentrations in cells and
medium, respectively. In the present paper, we addressed this
limitation by investigating CHOL utilization. Because CHOL
metabolism is responsible for the biosynthesis of steroids and
oxysterols (OXY) (Bjorkhem, 2002; Javiit, 2008; Nishimura
et al., 2005; Schroepfer, 2000), we extended the previous
model by adding the pathway for OXY biosynthesis. We
examined the hypothesis that metabolism of CHOL into OXY
may reduce the large discrepancy between measured and
model-predicted concentrations of CHOL in cells and mediom.

The OXY, similar to steroid hormones, are endogenous
products of CHOL. The OXY are formed in many tissues,
including adrenal tissue, through CHOL oxygenation reactions
mediated by different cytochrome P450 enzymes or reactive
oxygen species (Adams er al, 2004; Bjorkhem, 2002;
Schroepfer, 2000). The OXY possess potent regulatory
functions in a broad range of biological mechanisms, including
CHOL homeostasis, apoptosis, calcium uptake, and cell
differentiation (Bjorkhem, 2002; Javitt, 2008; Nishimura
et al., 2005; Schroepfer, 2000).

Another key limitation of the previous steroidogenesis
model is the potential confounding effects of cell pro-
liferation and viability on the time-course concentrations of
the steroids. Because the proliferation of H295R cells can be
substantial {Logic er al., 1999), we addressed this limitation
by performing additional experiments and developing a cell
proliferation model. Cell proliferation and viability experi-
ments for confrol and EAC-exposed H295R cells were
performed, and the data were used for parameter estimation
and model evaluation. The cell proliferation model was then
linked with the steroidogenesis model fo control for this
confounding.

The contribution of this study is the extension of a previously
developed steroidogenesis model (Breen et al., 2010) by
including (1) a pathway for OXY biosynthesis and (2) cell
proliferation model. The extended model was evaluated with
measurements of CHOL and 14 steroids in H295R cells and
medium, measurements from an H295R cell proliferation and

viability assay, and OXY concentrations determined from
a molecular balance formulation.

MATERIALS AND METHODS

We first describe the H295R cell proliferation and steroidogenesis
experiments and the calculation of OXY concenfrations. Then, we present
the mathematical models for cell proliferation, pathways for OXY and steroid
biosynthesis, and procedures for parameter estimation and sensitivity analysis.

H295R cell proliferation assey. We performed a cell proliferation study
following the experimental method as the previously described H295R
steroidogenesis assay for control and two concentrations of MET (1 and
10pM) (Breen ez al., 2010). The MET concentrations were selected based on
cytotoxicity and clinical data. Using a cell viability assay, no significant
cytotoxicity was observed at these two concentrations after treatment for
3 days. Clinical observations show mean plasma peak concentrations of 2.2 and
163pM at 4 and 1 h following administration of 750 mg MET, respectively
(www.pharma. us.novartis.com).

For the cell proliferation assay, 6 X 10° cells were initially incubated for 72 h
(prestimuli incubation period). At poststimuli incubation periods of 0, 24, 48,
and 72 h, all cells were separated and removed from six replicate wells. The
number and percentage of viable cells in each well were then determined using
a cell analyzer (Vi-CELL XR; Beckman Coulter, Fullerton, CA).

For statistical analysis of the cell viability data, two-way ANOVA test was
used to determine differences befween the mean numbers of viable cells across
treatments (MET doses), using sampling times as a blocking factor to control
variability due fo differences across sampling time. Differences were
considered significant at p < 0.05.

Steroidegenesis assay with H295R cells. We performed in vitro experi-
mental studies with H295R cells: a control study with samples collected at five time
points (0, 8, 24, 48, and 72 hy and a MET study with two MET concentrations (1 and
10pM) with samples analyzed at four time points (8,24, 48, and 72 h). The start time
of the experiments was after changing the medium, adding stimuli for activation of
steroidogenesis, and including the concentrations of MET. The details were
previously described (Breen e af., 2010). Briefly, the medium and cells were
separately removed from four replicate wells af each time point. The cells
were sonicated in 100 pl of distilled water to produce a cell lysate, which included all
the cellular membranes. The CHOL concentrations in the medium and cell lysate
were measired using a commercial kit (Wako Pure Chemical Industries, Ltd, Osaka,
Japan) based on a CHOL oxidase method. Steroid concentrations in the medium and
cell lysate were measured using liquid chromatography/mass spectrometry for 12
steroids (pregnenolone [PREG], 17a-hydroxy-pregnenolone [HPREG], delydroe-
piandrosterone  [DHEA), progesterone [PROG), 170-hydroxy-progesterane
[HPROG], androstenedione [DIONE], testosterone [T], deoxycorticosterone
[DCORTICO], corticosterone [CORTICO], aldosterone [ALDO], 11-deoxycortisol
[DCORT], and cortisol [CORT]) and ELISA for fwo addifional steroids (estrone
[E1] and 17P-estradiol [E2]). The steroid concentrations were adjusted for
the recovery of each steroid, with a recovery range between 81.7 and 94.1%. The
quantitative ranges for CHOL and each steroid in cells and medium are provided
in Supplementary Table S1.

Oxysterols calculated from measurements of cholesterol and steroids.
Because no OXY measurements are available, all OXY molecules were lumped
together, and the OXY concentrations were calculated based on a molecular
balance formulation. To determine OXY concenfrations, we made four
assumpfions. First, we assumed no degradation of CHOL, OXY, and steroids.
This assumption is supported by other studies reporting little or no degradation
of various steroids across 72 h, our experimental duration (Evans ez /., 2001;
Garde and Hansen, 2005; Wickings and Nieschlag, 1976). Second, we assumed
no de novo synthesis of CHOL because CHOL is abundant in our experiments
and is unlikely to be synthesized. Third, because OXY data are unavailable, we
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assumed no OXY transport between cells and medium. Fourth, we assumed
that the sum of number of CHOL, OXY, and steroid molecules is conserved
across time. We defermined OXY concentrations from the molecular balance
equation, which equates the quantity of molecules (i.e., CHOL, OXY, and
steroids) at the initial time to those at later times, as described by

i c di c di 14 c 4. v c di “ c ai
cett | Corioneent T Cokveen Zl ceett | Vined | Coiormed Z] xmed
= =
i1 { i1 da=1 M di=
=V (CCIJIOL,ce]l + Coxyeen + Z} Crcen )
=
di=1 Ll di=1
+Vined (CcﬁOLmeA + 21 Cmed ) .
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where C‘Cd}‘I’OL‘Cell and Ccdz:;OL‘m@d are the measured concentrations of CHOL in
cells and medium at the ith time and dth MET dose (including control) for 4 =
1,2,3(0,1,10uM)and i =1, ..., 5 (0, & 24, 48, 72 h), respectively; Cf‘cieﬂ
and Cffmd are the measured concentrations of steroid x in cells and medium at
the il time and dth MET dose, respectively; C‘é}’{Y o @re the calculated
concentrations of QXY in cells at the ith time and dth ‘MET dose; Vcie,ll is the
volume of cells at the ith time, as predicted by the cell proliferation model
described below; and Vipeq is the volume of medium. To solve Equation (1) for
qu};éy el the inifial OXY concentrations in cells are assumed fo be zero:
Cog‘cdl = 0. We calculated OXY for one experiment because medium
concentrations of El and E2 at time equals zero were below blank sample
concentrations in replicate experiments. We obtained the equation for Cg’,‘;&& 1 88
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Mathematical model of cell proliferation. To predict the number of
viable H295R cells per well across time, N..p(i), we developed a cell
proliferation model. We assumed an exponential cell population growth as
described by

Nean(£) = Nean( — 72)&’ (472) (3)

where Nen(—72) is the initial mumber of viable cells and £, is the proliferation
rate. The least squares method was used fo estimate k, with time-course data
from the control experiments. By taking logs of Equation (3), we obfained
a least squares estimate for &, as
" ,
k=[r'1]

'7'x, (4

where k; is the least squares estimate of &, X is a 25-clement vector, and

=0 72 9% 120 144 72 96 120 144]. The vector X is
defined as
NCEH(I:O,)’: 1)) (Ncen(l’:24,r: 1))
X=0 In In
= { ( Neen{ —72) Nen{ — 72)

]D(Nccll(r:487r:1)) ]_n(Nce]J(r:72>r:1))
Nean{ — 72) Nean{ — 72) o

NEEELIE ] .

fort=0,24,48, 72, and r = 1, 2, ..., 6, where N,y (2, 7) is the measured

number of viable cells at time ¢ and replicate ». Negative time denotes time
before stimuli added fo initiate steroid biosynthesis (prestimuli). Positive time
denotes incubation time with stimuli (poststimuli).

The cell proliferation model was used to estimate the volume of viable cells.
From Equation (3), we determined the volume of viable cells per well across
time, Ven(?), as

Vean(t) = Veer( — 72)5’(?0*72), 6)

where V_g(—72) is the initial volume of viable cells per well. The V p(—72) is
obtained by multiplying Ng(—72) by the overall mean volume of an
individual H295R cell from control and the two MET concentrations (1 and
10pM), which was previously determined to be 1499 pm® (Breen et al., 2010).
The overall mean volume was used since the mean volumes changed only
slightly between controls and the two MET concentrations.

The Vien(Z) was used to compensate for steroid dilution in the cell lysate. We
determined the concentration of steroid x in cells, Ceex(2), by

Coneld) = Corans 2 (Vl—(‘)) )

Veert (2)

where Clygare »(2) 15 the measured concentration of steroid x in the cell lysate
at time # and is the volume of cell lysate at time z. The Viysue(?) is the sum of
Veen(t) and the volume of distilled water. This V_.,(z) was also used in the
dynamic molecular balance equations to determine the time-course

concentrations of CHOL, OXY, and the 14 steroids.

Overview of math ical model for bolic and transport pathways. The
computational model is based on the experimental design with two compart-
ments: culfure medium and H295R cells (Fig. 1). The model includes two
distinct metabolic pathways originating from CHQOL: OXY biosynthesis and
steroid biosynthesis. The OXY biosynthesis pathway includes conversion of
CHOL into OXY. The steroid biosynthesis pathway includes the conversion of
CHOL into 14 steroids (PREG, HPREG, DHEA, PROG, HPROG, DIONE, T,
DCORTICO, CORTICO, ALDO, DCORT, CORT, El, and E2) and the
inhibition of the steroidogenic enzymes by MET.

The transport pathways for the model include cellular uptake of CHOL and MET
and imiport and secretion of the steroids. The transport of OXY between the cells and
medium is not included in the model because no data are available. The details
and supporting literature data for the biclogical pathways of steroid biosynthesis and
transport were previously described (Breen ez al., 2010). Below, we first describe the
details of the metabolic and transport patinways. Then, the dynamic molecular balance
equations, which couple the metabolic and transport pathways, are described. The
complete set of equations is provided in the Supplementary data.

Metabolic pathways. I the extended model the conversion of CHOL into
OXY is described by a first-order rate equation (Fig. 1B). The metabolic pathway
that converts CHOL info the 14 steroids consists of 17 enzymatic reactions catalyzed
by nine different profeins (Fig. 1A) (Payne and Hales, 2004). As deseribed in the
previous model (Breen ez 4l., 2010), we assumed that the substrate concentration is
much less than the Michaelis constant (substrate concentration that yields a half-
maximal reaction rate). Thus, the rate of product formation increases linearly with
substrate concentration as described by a first-order rate equation (Fig. 1B).

Various EACs can inhibit the enzymes in the steroidogenesis metabolic
pathway. In this study, we examined the response of H295R cells exposed to
the EAC, MET, which is a competitive inhibitor of cytochrome P450 11[-
hydroxylase (CYP11B1) (Harvey and Bverett, 2003; Harvey ei al., 2007). For
the two CYP11B1 enzymatic reactions competitively inhibited by MET:
conversion of DCORTICO to CORTICO and conversion of DCORT to CORT
(Fig. 1A), the kinetic parameters X1 and %y, are divided by ocormicolt) = 1 +
(Cuereen(ffar) and ocorr(®) = 1 + (Cypreen(i)/kaz), Tespectively, where £y
and k4o are MET inhibition constants (Fig. 1B).

Transport pathways. The model used for the transport of CHOL and the
steroids befween cells and medium was previously described (Breen ez «l.,
2010). Briefly, we model the transport rate of CHOL from the medium as
a first-order process (Fig. 1B). We model the secretion and uptake rates for each
steroid as reversible first-order processes (k,, and k_, for secretion and uptake
of steroid x, respectively) (Supplementary Fig. 51).
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FIG. 1. (A) Graphical representation of the two compartment model (culture
medium and cells) for biosynthesis of OXY and steroids in H295R cells, and enzyme
inhibition by MET. Cell uptake of CHOL from medium is depicted by the broad gray
arrow labeled with the steroidogenic acute regulatory protein (StAR). Irreversible
metabolic reaction for biosynthesis of OXY from CHOL is depicted by white arrow
labeled with OXY enzymes (OE). Irreversible metabolic reactions for biosynthesis of
14 steroids (PREG, HPREG, DHEA, FROG, HPROG, DIONE, T, El, E2,
DCORTICO, CORTICO, ALDO, DCORT, and CORT) from CHOL are depicted by
arrows, with each pattern representing a unique enzyme. Enzymes labeled next to
metabolic reactions they catalyze are: CYP450 side-chain-cleavage (CYP11A),
CYP450c17o-hydroxylase  (CYP17H), CYP450c1720-lyase  (CYP17L),
3f-hydroxydehydrogenase type 2 (3HSD2), 17p-hydroxydehydrogenase type
1 (17BHSDI1), CYP450 aromatase (CYP19), CYP450 2lo-hydroxylase
(CYP21A), CYP450 11[-hydroxylase type 1 (CYP11B1), and aldosterone synthase
(CYP11B2). Bidirectional thin gray arrows depict reversible steroid transport
between medium and cells. The EAC, MET, is shown as enzyme inhibitor of
CYP11B1. (B) Graphical representation of model parameters, which consists of first-
order rate constants for CHOL uptake into cells, &y, and for each metabolic process,
ko, ky—kiz. For quasi-equilibrium analysis, equilibium constants are ¢jo—gs0.
Partition coefficient for MET is gu40. Enzyme inhibition constants for MET are k4 and
kyn for CORTICO and CORT pathways, respectively.

As described in the previous model (Breen e @l, 2010), we assume no
degradation of MET, and MET diffuses into the cells and reaches equilibrium
with the MET concentration in the medium

CueTcen () = a0CMeT,med (1), (8)

where guq is the equilibrium coefficient, and Cyer cen(?) and Coer mealt) are the

cell and medium MET concentrations at time #, respectively (Fig. 1B). To
calculate Cyppr cen(i), we need to account for the Vg (i) and Vieq. We obtained
the equation for Cypr.cen(t) by solving the molecular balance equation

V() O, cen(?) + Vinea Cutemmealt) = Veen (1) Cupreen(0)
+ Vined OMET mea(0),

{9)

for CuETmeal?) and substituted into Equation (8) with Cysrcen(0) = 0 to yield

a0

onen®) = ( T v vs

) Crizr mea(0). (10)

Dynamic melecular balances. The time-course of the steroids, CHOL,
and OXY are described by dynamic molecular balance equations (Supplemen-
tary data). The general dynamic molecular balance equations for the steroids in
cells and medium are

ar = Px‘cdl(f) - Ux‘ce]l(ﬂ + Ix,ceu (f) - Sx.ceu (")s

(1)

and

Vined = x,cdl(t) - z,:e]](r)» (12]

dC, x‘med([)

dr
where C, ;.4(f) is the concentration of steroid x in medium at time #; P, .(f) and
Uy cen?) are the production and utilization rates of steroid x in cells at time ¢,
respectively; J, c.n(7) and §, ..n(7) arethe cell import and secretion rates of steroid xat
time #, respectively. The first two terms on the right side of Equation (11) represent
the net metabolic reaction rate of steroid x and the last two terms represent the net
cellular uptake or release rate of steroid x. The time-courses of CHOL and OXY are
calculated in the same manner as the time-courses of the steroids.

Quasi-equilibrivun analysis. Based on the evidence that steroid transport
between the cells and medium is rapid and reversible, as described in the
previous model (Breen et al., 2010}, we assume the steroid concentrations in
the cells and medium are operating near equilibrium. Because the steroids are
involved in the larger network consisting of the mefabolic pathway of
steroidogenesis, this is considered as quasi-equilibrium.

For quasi-equilibrium, the reversible fransport rates (k;, and k_, for
secretion and import of steroid x, respectively) are assumed to be much greater
than the metabolic reaction rates. The concentration of steroid x in the cells and
medium rapidly reaches equilibrium to yield

Cr. med (':) k+x
—_ ==y, 13
Cx‘ceIl (") k x 4 ( )

where g, is the equilibrium constant of steroid x transport. By solving Equation (13)
for Cy mea(?), we obtain an algebraic equation for each steroid in the medium as

(14)

Crmed (r) = qxCreell (’:J .

To determine the dynamic molecular balance equations for the steroids in
cells for quasi-equilibrium, we sum the molecules of steroid x in the cells and
medium based on Equations (11 and 12) and substitute Equation (14) for
Cyamealt) t0 vield

A{Veer(6) Cren (1) + VineaCrmea(s)) _ d (Veerr(e) + Vineagi) oo (1]
y dt
= Pyeatt (1) — Ugceni{2)-

(15)

We obtain a system of equations consisting of a differential equation for
each steroid in the cells from Equation (15) as
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dC, ) 1 AVean(r)
. = Preet(t) — Upeant(t) — Creant{t)————= |,
dr Vean () + Vigoaths \ 1) = Ureon(s) = Cronlt) =
(16)
where
Ve
T’;m = Ve = 7206207 = L Vo (2). (17)

Equation (17) was obtained by differentiating Equation (6) with respect fo
time. The quasi-equilibrium assumption reduces the number of the model
parameters to 36 parameters: 14 transport equilibrium constants (g1, g2g, .- - »
g32), 18 metabolic rate constants (ko, k2, &, ... , kig), CHOL import rate (k), 2
enzyme inhibition constants for MET (ky; and %y,), and the partition coefficient
for MET (g.4). These dynamic molecular balance equations for quasi-equilibrium
and the 36 parameters are used in all subsequent analysis (Supplementary data).

FParameter estimation. The parameters for the transport and metabolic
pathways were independently estimated using the mean concentrations from
replicate experiments. For the transport pathway, the equilibrium constants
(§19, G20, - - - » §32) Were estimated with the time-course data from the control
and MET studies using the least squares method. From Equation (14), we
obtained a least squares estimate for g, as

(18)

*_ , 1 .
4, = [Qx,ce]l Qx,ceﬂ Cocett’ Comeds

where gi is the least squares estimate of the equilibrium constant for steroid

d=1,i=1 d=14=2 d=3=5
x transport, and Cxcell [Cmeu CIccll C“eu and
d=1:=1 d=14=2 d=34=5
Qx‘md = [meed CJC el med }HIC the measured concentra-

tions in the cells and medium at the fth time and dth MET dose (including
control), respectively.

For the metabolic pathway, the parameters (kg, k1, ko, . .. , k18, Ka1, Kap) Were
estimated with the fime-course data from the confrol and MET studies. The
weighted least squares mefhod was used to estimate these parameters instead of
the least squares method to account for CHOL and all the steroids concentrations
that vary by several orders of magnitude. Lef Cepor,cen I,,CMH med> &) and
Coxy cett | 13 C‘]fdh—r meds & be the model-predicted concentrations of CHOL and
OXY in the cells at the /™ time, #, for the dth MET dose (including control),
Cl‘\i/ﬂ;‘r‘mod’ with parameter set k= (Ko, £1, &2, . . ., K15, kg1, kap) ford=1,. .., 3, and
i=1, , 5, respectlvcly, Crcent | %5 CdMET med: & ] be the model—pred&cted
Concentratlons of steroid x in the cells at time #, for the MET dose, Cipp meds With
parameter set k; CdCHOL cent A Céxy cett be the mean measured concentration of
CHOL and calculated concentration of OXY in the cells across time, respectively;
C: 11 De the mean measured concentration of steroid x in the cells across time.
Then, the weighted least squares estimate, k' = (kﬁ,kl,kz, . klg,k“,qu)
the parameter values %, which minimizes the cost function

3 5 2
di .
J{k) = di_l CH:LM i=§ I(CCHIOLMH — Cero cen (h‘s Cﬁmmwk))

3 5 2
a .
e (Cixomn = Comvonn (8 Gllzzmanrk) ) (19)

F3 5 (0 O (1 Gk )

x=1d=1"zedl i=]

Parameters for the mefabolic pathway were estimated with a nonlinear
optimization algorithm using MATLAB R2010a (Mathworks, Natick, MA)
software. The Nelder-Mead simplex method was used due fo its relative insensitivity
to the initial parameter values as compared with other common methods, such as
Newton'’s method and its robustmess to discontinuities (Nelder and Mead, 1965).

Sensitivity analysis. We performed a sensitivity analysis to examine
parameter uncertainty using the method previously described (Breen et al.,

2010). Briefly, the sensifivity function relates changes of the model output to
changes in the model parameters. We calculated relative sensitivity functions
Rimed s, (z) andRymed g, (r) with respect to parameters k; and ¢y, respectively, for
each of the model-predicted concentrations in the medium, C meq, and sach
MET dose (including confrol). MATLAB was used to numerically solve the
partial derivatives in Rymedy, (r) and  Rimedg, (r) To rank the relative
sensitivities, we calculated the L2 norm across time for each relative sensitivity
function as described by

L2 norm(R; wedss ) = / |R et (1) Pt (20)
and
L2 notm(Remeag) = 4/ f |Regmen (1)t (21)

RESULTS

Cell Proliferation—Estimated Parameter and Model
Evaluation

The time-course measurements for the number of viable cells
per well (Supplementary Fig. S2A) and percentage of viable
cells per well (Supplementary Fig. S2B) are shown for each
MET dose. The percentage of viable cells per well across all
measurements was 91.8 + 2.3% (mean + SD). The mean
number of viable cells measured across MET doses (control, 1,
and 10uM) was not statistically different (p = 0.41). Therefore,
control data were used to estimate the value of k,, which was
determined to be 0.00878/h. The model-predicted number of
viable cells was compared with time-course measurements
from the conirol experiments (Fig. 2). The model predictions
closely correspond to the mean time-course data.

Calculated Oxysterols

x10° 10°
|==Model- Predlcted
e Measured

Number of Viable Cells

0 . . . 1 A
-72 -48 -24 0 24 48 72
Time (h)

FIG. 2. Time-cowrse of measured and model-predicted number of viable
cells. Measurements were plotted at 72 h prestimuli and four poststimuli
incubation periods of 0, 24, 48, and 72 h {(mean + SD) for control experiments.
Negative time denotes time before stimuli added to initiate steroid biosynthesis
(prestimuli). Positive time denotes incubation time with stimuli (poststimuli).
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FIG. 3. Left column shows time-course of total (sum in cells and medium) number of measured CHOL and steroid molecules in control (A), 1uM (C), and 10puM
(E) MET-exposed cells. Right column shows time-course for number of calculated OXY molecules for control (B), 1pM (D), and 10pM (F) MET-exposed cells. To
calculate OXY concentrations, measured concentrations of CHOL and each steroid are needed. Because medium concentrations of two steroids (E1 and E2) at time
t = 0 were considered valid (i.e., above blank sample concentrations) only in one experiment, the single experiment was used to calculate OXY concentrations.

Figure 3 shows the time-course for the sum of measured
number of CHOL and steroid molecules and the calculated
number of OXY molecules at each MET dose (control, 1, and
10puM). For each MET dose, the calculated number of OXY
molecules monotonically increased across time. The number of
OXY molecules showed no apparent pattern with increasing
MET dose (Supplementary Fig. S3).

Transport Pathways for Steroids

I'able 1 shows the estimated transport equilibrium parameters.
As described in the previous model (Breen er al., 2010),
the MET transport equilibrium, ¢4, could not be determined
from the data becanse MET was not measured in the cells.
Therefore, g4 was set equal to g.z, the CORTICO transport
equilibrium, because the partition coefficients for MET
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TABLE 1
Estimated Transport Equilibrium Parameters (dimensionless)
from Model Fit of Stercids Corresponding to Given g Parameter

Parameter Value
10 0.013
g0 0.005
421 0.041
g2z 0.056
g3 0.091
foen 0.061
gas 0.021
G 0.042
o) 0.068
gas 0.038
Gao 0.040
910 0.027
g1 0.044
412 0.035
qan 0.056*

*Metyrapone fransport equilibrium (g40) set to CORTICO transport
equilibrium (g2;); see text for details.

{(XLogP = 2.0) and CORTICO (XLogP = 1.9) are similar
{PubChem database).

Metabolic Pathways for OXY and Steroid Biosynthesis

Table 2 shows the estimated parameters for the metabolic
pathways. The convergence time for the nonlinear parameter
estimation was typically around 10 min on an Intel Core 2 Duo
processor using MATLAB.

TABLE 2
Estimated Parameters of Metabolic Pathway

Parameters Value Units
ko 0.014 Perh
k1 0.016 Per h
ks 0.011 Perh
ks 0.757 Perh
ka 1.268 Perh
ks 0.814 Perh
e 11.153 Per h
ks 7.217 Perh
kg 0.177 Perh
ko 1.754 Per h
k1o 0.048 Per h
ku 6.479 Perh
ka2 12,188 Per h
ki3 0.595 Per h
kg 0.001 Perh
ks 0.091 Perh
kig 0.637 Perh
k1 0.247 Perh
kg 0.122 Per kb
kay 63.560 oM

ko 25.208 nM
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FIG. 4. Model evaluation of CHOL and OXY for control and MET-exposed
cells. Time-course of model-predicted concentrations were plotted and compared
with concentrations (mean = SD) measured at five sampling times for CHOL in
medium (A), CHOL in cells (B), and calculated for OXY in cells (C). To calculate
OXY concentrations, measured concentrations of CHOL and each steroid are needed.
Because medium concentrations of two steroids (E1 and E2) at time ¢ = (} were
considered valid (i.e., above blank sample concentrations) only inone experiment, the
single experiment was used to calculate OXY concentrations.

For CHOL and OXY, we compared model-predicted
concentrations with time-course data from control and MET-
exposed cells (Fig. 4). Model-predicted concentrations corre-
spond well to the mean time-course data for CHOL both in the
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cells and in the medium and OXY in cells. For MET-exposed
cells, model-predicted and measured concentrations of CHOL
and calculated concentrations of OXY remained approximately
unchanged from confrols as MET increased.

For CHOL in medium and cells, the extended model
performed remarkably better than the previous model (Breen
et al., 2010). For CHOL in medium, the extended model
overestimated the mean measurements by 9, 13, and 11% at 24,
48, and 72 h, respectively, whereas the previous model
overestimated the mean measurements by 43, 96, and 153%
at 24, 48, and 72 h, respectively. For CHOL in cells, the
extended model overestimated the mean measurements by 2, 4,
and 5% at 24, 48, and 72 h, respectively, whereas the previous
model underestimated the mean measurements by 52, 53, and
47% at 24, 48, and 72 h, respectively.

Forthe 14 steroids, we compared model-predicted concentrations
with time-course measurements from control and MET-exposed
cells. Overall, model-predicted concentrations correspond closely
to the mean time-course measurements in cells (Supplementary Fig.
S$4) and medium (Fig. 5) for control cells. As compared with the
previous model (Breen er al., 2010), the extended model better
captured the mean time-course behavior for the five steroids
(PROG, HPROG, DHEA, HPREG, and PREG), which increased
until 48 h and then sharply decreased at 72 h (Figs. 5B, 5C, and 5E).
For these five steroids, the extended model predictions increased
until 40-50 h and then decreased (Figs. 5B, 5C, and 5E}), whereas
the previous model predictions monotonically increased across time
{Breen er al., 2010). For the other steroids in control cells, the
extended model performed similar to the previous model. A detailed
evaluation was reported previously (Breen ef al., 2010).

For MET-exposed cells, we compared model-predicted
steroid concentrations with time-course measurements. For
three steroids (ALDO, CORTICO, and CORT) downstream
from the enzyme inhibited by MET (CYP11B1), the model-
predicted concentrations correspond well to the mean time-
course measurements both in the cells (Supplementary Fig. S5)
and in the medium (Figs. 6A—C). For two steroids (DCOR-
TICO and DCORT) immediately upstream from CYPL1BI1, the
model-predicted concentrations correspond closely to the mean
time-course data both in the cells (Supplementary Fig. S5) and
in the medium (Figs. 6D and 6E), which remained approxi-
mately unchanged at 8, 24, and 48 h as MET increased and
slightly increased at 72 h as MET increased. For the other nine
steroids further upstream from CYP11B1, model-predicted and
measured concentrations remained approximately unchanged
from controls as MET increased {data not shown). For five
steroids (ALDO, CORTICO, CORT, DCORTICO, and
DCORT), the extended and previous models showed similar
results for MET-exposed cells.

Sensitivity Analysis

Figures 7 and 8 show the relative sensitivities for the four
primary steroids: ALDO, CORT, T, and E2. For ALDO, k3 was
highly sensitive at each MET dose, and eight parameters were

moderately sensitive: parameters associated with transport path-
ways {ki, gz1, and gz2), metabolic pathways (kz, ks, and ki), and
MET-mediated enzyme inhibition {g4p and &4;). For CORT, ¢27
and ky; were highly sensitive, and two parameters associated with
MET-mediated enzyme inhibition {g40 and ky;) were moderately
sensitive. For steroids T and E2, the parameters associated with
MET (g40, k41, and ko) were not sensitive, and the sensitivity of all
parameters was unchanged with increasing MET dose. For T, k10
was highly sensitive, and six parameters were moderately
sensitive: parameters associated with transport pathways (k; and
2¢9) and metabolic pathways (k;, ks, ks, and k). For E2, six
parameters were moderately sensitive: parameters associated with
transport pathways (gz9, ¢30, and gsg) and metabolic pathways {(kz,
k5, and ky5). The E1 pathway appears to be the preferred pathway
for E2 synthesis because E2 was sengitive to the E1 pathway (k5
and k;5) and not sensitive to the T pathway (k)o and ky4). This
preferred pathway result is consistent with our previous study of
ovarian steroidogenesis (Breen ef al., 2007). The sensitivity
analysis orders the inputs by importance, identifying main
contributors to the variation in the outcome of amodel. Parameters
with high sensitivity are more important and significant for the
model output than parameters with low sensitivity.

DISCUSSION

We extended a computational model of adrenal steroido-
genesis to include (1) a cell proliferation model to account for
time-varying number of viable cells and (2) a metabolic
pathway for biosynthesis of OXY to examine the hypothesis
that metabolism of CHOL into OXY improves the model fit for
CHOL. Experiments were designed and performed to evaluate
the cell proliferation model. The extended model and cell
proliferation experiments addressed key limitations of the
previous model (Breen er al, 2010) by (1) removing the
confounding effects of cell proliferation from the steroidogen-
esis model, (2) reducing the large discrepancy between the
measured and model-predicted concentrations of CHOL both
in the medium and in the cells, and (3) allowing the
steroidogenesis model to more accurately capture the observed
dynamic behavior. Furthermore, the model’s predictive ability
improved considerably with only a slight increase in the model
complexity by adding one parameter for cell proliferation and
one parameter for OXY biosynthesis.

Metabolic Pathway for Qxysterols

In the previous steroidogenesis model, we developed
a steroidogenesis model and evaluated its ability to predict
only the steroid concentrations for MET-exposed H295R cells
(Breen et al., 2010). The present study was initiated after we
discovered that (1) the differences between the model-predicted
and measured CHOL concentrations both in the medium and in
the cells were large and (2) the sum of the number of measured
CHOL and steroids molecules was not conserved across time.
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FIG. 5. Model evaluation of steroids for control cells. Time-course of model-predicted concentrations in medium were plotted and compared with
concentrations (mean = SD) measured at five sampling times for ALDO, E2, and T (A); PROG, HPROG, and DHEA (B); HPREG, DIONE, and E1 (C);

CORTICO and DCORTICO (D); and PREG, CORT, and DCORT (E).

To explain the lack of a molecular balance in the data, we
examined the hypothesis that other metabolic pathways were
needed in the model. The literature shows that OXY
biosynthesis is a primary pathway for CHOL metabolism,
and the pathway is present in adrenal tissue. To test this
hypothesis, we (1) included the OXY metabolic pathway in the
extended model, (2) calculated OXY concentrations, {3)
estimated model parameters, and (4) evalvated the model-
predicted concentrations of CHOL, OXY, and all 14 steroids
both in the cells and in the medium.

The results support our hypothesis. By including the OXY
metabolic pathway, the extended model significantly improved the
model fit for CHOL both in the medium and in the cells as
compared with the previous model. Moreover, the model-predicted
and calculated OXY concentrations closely correspond. Close
correspondence of model-predicted and measured CHOL and 14
steroids supports our model assumption of no degradation of
CHOL, OXY, and steroids.

Besides the pathway for conversion of CHOL to OXY, we
examined alternative biologically realistic hypotheses to allow for
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Model evaluation of steroids for MET-exposed cells. Time-course of model-predicted concentrations in medium were plotted and compared with

concenfrations (mean = SD) measured at five sampling times for ALDO (A); CORTICO (B); CORT (C); DCORTICO (D); and DCORT (E). For controls, model-

predicted and measured concentrations are same as shown in Figure 5.

amolecular balance. One alternative hypothesis is an unaccounted
form of CHOL because CHOL is distributed in various cell
membranes and compartments with a high abundance in the
plasma membrane, endocytic recycling compartment, and Golgi
complex (Ikonen. 2008). Another alternative hypothesis is
a pathway for conversion of CHOL to CHOL esters because
CHOL is a biosynthetic precursor of steroid hormones, OXY, and
CHOL esters in all cells (Ikonen, 2008). However, in this study,
the assay used to measure CHOL concentrations in cells includes
CHOL esters and all the cellular membranes and compartments
that can contain CHOL and CHOL esters. Because this CHOL

measurement accounts for free, membrane-bound, and esterified
CHOL, these alternative hypotheses are not supported.

Dynamic Steroid Behavior

For the previous model, the dynamic steroid predictions for
all 14 steroids had the same qualitative behavior, increasing
monotonically across time (0—80 h). Although the mean
measured concentrations for nine steroids increased mono-
tonically, the mean measurements for five steroids (PROG,
HPROG, DHEA, HPREG, and PREG) increased until 48 h and
then decreased at 72 h. This was a key limitation of the
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FIG.7. Relative sensitivities for model-predicted ALDO (A) and CORT (B) plotted for 36 model parameters (k—k15. G1o—G32. G40, k41—k42) for control and
MET-exposed cells. Each bar represents L2 norm of relative sensitivities across time (0—80h) and indicates the degree to which changes in parameter values lead to

changes in model outputs.

previous model. By including cell proliferation, the extended
model captures this observed time-course behavior for each
steroid. One possible factor responsible for this behavior is the
increasing number of enzymes due to cell proliferation. This is
further evidence that the more biologically realistic features of
the extended model allow for a better representation of the
observed time-course behavior of steroidogenesis.

Future Applications of Extended Model

There are several potential applications for the extended
model. First, the model’s better ability to predict the time-course

of CHOL concentrations both in the medium and in the cells will
be critical for EAC that affect upstream metabolic (e.g.,
inhibition of steroidogenic enzyme CYPI1A) or signaling
processes, which may affect CHOL levels. Second, the more
biologically realistic model may improve the accuracy for low
concentration extrapolations of concentration-response curves
for other EACs with environmental concentrations below
experimental levels. Environmental concentrations of MET are
unknown. Third, the model can be simply modified with EAC-
specific enzyme inhibition constants to predict the biochemical
response for other EACs that competively inhibit steroidogenic
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enzymes. Fourth, our in vitro model could be extended to predict
the in vivo response. The steroidogenesis model would need to be
linked to a multiorgan systems model, which includes the
regulatory feedback of the hypothalamus-pituitary-adrenal axis,
and refined based on additional experiments. This extension of
the current model would require a significant research effort.
Finally, with further model refinement and evaluation, the model
can be used to help identify mechanisms of action for EACs by
predicting the enzyme inhibition constants for poorly character-
ized EACs and for screening assays that typically measure only
a few steroids in the medium.

Limitations

There are some limitations to our extended model based on
the model structure and assumptions and data available for
model evaluation. First, the extended model structure and
parameter values are based on MET concentrations at or below
10uM. At higher MET concentrations, the proliferation rate and
viability of the cells can be altered and inhibition of additional
steroidogenic enzymes can occur. Therefore, the extended model
may not accurately exfrapolate at higher MET concentrations
without including a cell proliferation model and enzyme
inhibition constants that are dose dependent. Second, our model
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assumption of first-order enzyme kinetics, which reduced the
model complexity while maintaining the model’s predictive ability,
is only applicable for nonsaturable enzyme kinetics. For highly
concentrated or potent EACs, first-order enzyme kinetics may need
to be replaced by saturable enzyme kinetics {e.g., Michaelis-
Menten). Third, transport of OXY between the cells and medium is
not included in the model because the OXY data are unavailable.
This may result in the overestimation of OXY in the cells.
Experiments that measure the time-course of OXY are needed to
further evaluate the OXY metabolic and fransport pathways.
Finally, the extended model structure is based on EACs that are
competitive enzyme inhibitors. For EACs with different mecha-
nisms of action (e.g., activating or antagonizing steroid hormone
receptors and inducing steroidogenic enzymes), model refinements
will be needed (Sanderson, 2006). These refinements may require
additional model-guided experiments for other pathways, sach as
gene regulation and upstream signaling pathways.

Conclusions

We extended a previous steroidogenesis model by including
a cell proliferation model and a pathway for OXY biosynthesis.
The cell proliferation model, which was independently evaluated
with experimental data, removed the confounding of cell
proliferation from the steroid biosynthesis and its biochemical
response o EAC. The inclusion of the metabolic pathway for
OXY biosynthesis significantly improved the model fit for
CHOL and allowed the model to capture the dynamic behavior of
steroids both in the medium and in the cells. Our study
demonsfrates the significant improvement of the extended, more
biologically realistic model to estimate CHOL and adrenal
steroid concentrations both in H295R cells and in medium and
their dynamic biochemical response to the EAC, MET. This
mechanistic modeling capability could help define mechanisms
of action for poorly characterized chemicals and mixtures for
predictive risk assessments and to screen drug candidates based
on steroidogenic effects in the early phase of drug development.
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1. Dynamic molecular balance equations in cells and medium

CHOL in cells:

PealOCuwearl) iy (015, )V () o 0

Conorean (0)=1.01x10" M

OXY in cells:
dI/cell (t) gtoXY’ceH ( ) k I/cell ( )CcHOL,cell (t)’

COXY,cell (0) = 0

PREG in cells:
av._ (t)C
et usecsll) g (1) (1)U o W)t () K 1)
C oz (0) = 5.07x10° nM
HPREG in cells:
av

CHIPREG Cél
= ( ) dt = ( ) kSI/cell ( )CPREG,cell ( ) (k + k + k+24 ) cell ( )CHPREG,cell ( )+ k 24VmedCHPREG,med (t)’

CHPREG,Cell (0) =0

DHEA 1in cells:
ar t
cell ( ) dI;HEA)CeH ( ) k4Vce11 ( )CH:PREG,cell ( ) (k + k+28 ) cell (I)CDHEA,cell ( )+ k—ZBVmedCDHIEA,med (t).’

Coneaca (0)=1.87x10° nM

PROG in cells:
v, (t)C t
aJComnesa ) 3 (01 g (1) (B () o () 4o

Coroaea (0)=17.09 1M

HPROG in cells:
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av._, (t)C t
W =k (t) Crrprege (t)+ LA (I ) Crzo.c (t) - (ks thy ks ) Vea (t) Crrroo.at (t) ko esCrapnosaes (t);

Corrosoen (0) =5531nM

DIONE in cells:

w =kV o
't
CDIONE,CeI] (0) =1.25x10° nM

T in cells:

dar_(6)C t
M = kIOVCell (I)CDIONE,Cen (I) - (k” + k+31 )Vcen (I)CT,cell (I) + k,ﬂVmedCT,med (I);

CT,cell (0) = 0

E1 in cells:
dl/‘:e ! C ce t
H ( )thL : ( ) B k”V““ (t)CDIONEsce“ (t) - (kls +k+30 )Vceu (I)CEl,cell (t) +k—30VmedCE1,med (t);

Copo (0)=1.12x10° nM

E2 in cells:
darv_. (t)C t
w =V (D Coea () iV e (1) Crroan (1) = F Ve (O C ks () ¥ meiCrpmea (1)

Cryem (0)=228.70 1M

DCORTICO in cells:
dVCe t C Ce) t
1 () oeomncoca )y yen ) (e (6 Coronmeona (1) K asCoconmoone (1)
dr aCORTICO

Crcormicoea () = 448.95 nM

CORTICO 1n cells:

(t)CDHEA,cell (t) +hV o (r) CHPROG,CEII (r) - (klo ths ko, ) Ve (t) CDION'E,cell (t) + k—Z9VmechIONE,med (I) :
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dV, (0)C, el E
L ( ) CORTICO) ( ) = b Ve (f)CDCORnco,cen (t)_ (le +hy, )Vcen (r)CCOR'nco,ceu (f)"‘ k 13V edCeorticoma (r);

dt aC ORTICO

=1.22x10° nM

C

CORTICO,cell (0 )

ALDO in cells:

AV () st pocan L
= 18" cell CORTICO,cell T3 cell ALDO,cell —23" med " ALDO,med 5
“()df;wo» () _y (1)C (1) -k (0)C (1) + k€ (1)

C'ALDO,cell (0) =0

DCORT in cells:

dav

1\C { i
cell( ) Cl;tCORT,cell( )=k12VCeu(f)CmROG,cell(t)—[ 17

o

CORT

Cheorteet (0) =4.06x10" nM

CORT in cells:

AV (1) C comrean (1 k,
“( ) d;ORT) : ( ) =—"Vea (t )CDCORT,ceu (t )_k+27Vcell (f )CCORT,veH (f)+k*27VmEdCC°RT’med (f);
aCORT

Coorrea (0)=1.84x10° nM

CHOL in medium:

dcc%?ed(t) = _kICCHOL,med (t); CCHOL,med (0) =8.11x10" nM

PREG m medium:

dC t
Vmed PRE;;ned ( ) - k+19Vce11 (t )CPREG,cell (t ) - k—lQVmedCPREG,med (t ); CPREvaed (0) =0.850M

HPREG in medium:

dC t
Vinea ngmEd ( ) =k ean (t )CHPREG,cell (t ) — K 24V et CrprEG mea (t ); CrREG et (0) =69.45nM

+ k+26 J T/cell (t) CDC ORT,cell (t) + k726VmedCDCORT,med (t) ;
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DHEA in medium:

dC )
Ved DHEA+€C‘() = Kpoel e (t ) CDHZEA,cell (t ) - k—stmedCDm,med (t )5 CDHEA,med (0) =0

PROG in medium:

dC med (I
Vmed %‘i() = k+20Vce11 (t ) CPROG,cell (t ) - k—ZOVmedCPROG,med (t ); CPROG,med (0) =0.03nM

HPROG in medium:

dC
Vmed %med(t) = k+25Vcell (t ) CHPROG,cell (t ) - kfziVmedCHPROG,med (t ); CHPROG,med (O) =0

DIONE in medium;:

dC. {
Vinea DION;med ( ) =KoV can (f ) CDION'E,cell (‘t ) B k—29VmedCD10NE,med (t ); CDIONE,med (0) =0.80nM

T in medium:

dC.,.. (7)

Vmed T = k+31]7ce11 (t)CT,cell (t) - k—31VmedCT,med (t)’ CT,med (0) = 080 HM
El in medium:
dc,, (1
Vmed Ele() = k+30I/cell (t)CEl,cell (t) - k730VmedCE1,med (t)7 C'El,med (O) =0.11nM
E2 in medium:
dc,, . (t
Vmed Esz() = k+32Kell (t) CEZ,cell (t) - k&ZVmedCEZ,med (t)’ CEZ,med (O) = 121 HM
DCORTICO in medium:
dC t
Vmed DCOR’I;(;O’med ( ) = k+211/::ell (I)CDCORT[CO,cell (f) - k—ZIVmedCDCORTICO,med (t)’ CDCORTICO,med (0) = 0 nM
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CORTICO in medium:

dc me: t
Vmed CORH;; = ( ) = k+22Vce11 (t )CCORT[CO,cell (t ) - k—uVmeaCCORnco,med (t ); CCORTICO,med (O) =0.11nM

ALDO in medium:

V dCALDO,med (t) — k V

med T +237 cell (t )CALDO,cell (t ) - k—23VmedCALDO,med (t ); CALDO,med (0) =091nM
DCORT in medium:
dC t
Vned %ﬂmd() =k a6V et (t ) C bCoRT cel (t ) — K 36 1edCcoRT med (t ); ChcoRT med (0) =0nM
CORT in medium:
dC t
Ve COR;}med ( ) = k¥ (t ) Ccorrcet (t ) —k 27V neaC cor.med (t ); Coorrmed (0) =0.030M

2. Molecular balance equations for quasi-equilibrium

CHOL in cells:

7 G— 1
CHOL cell ( ) = [ J[lemedCCHOL’med (1‘) - (ko +k, + kp ) Ve (t) Cenoreat (t)il >

dt Vea (7)
Cononea (0)=1.01x10" nM

OXY 1in cells:

& {
%ﬂl() = k,Coror cen (t ) - kpCOXY’““ (t);

COXY,cell (0) = 0
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PREG in cells:

4Cp o (1 |
) A0 O (5 Y0 0]

Coragean (0)=5.07x10° nM

HPREG in cells:
ACpeeear (# 1
msca(!) _ [V ey ][m (1) Comasen ()= b+ W () Comra (1))

CHPREG,cell (0) =0

DHEA in cells:
dCDHEA cell (t) ]-
. = kY C —k+ k)W, C, ;
dt I—/;en (t)+Vmedq28 I: 47 cell (t) HPREG,cell (t) ( 7 + p) cell (t) DHEA,cell (t)i|7

Coppancer (0) =1.87x10° nM

PROG in cells:
AC oo (1 1
el ) (05, a0 an (0]

Corosear (0)=17.09nM

HPROG in cells:
AC, oo (£ 1
H:PR;:;, 11 ( ) — { Vceu (f)+ Vmedqzs }[kchen (t)CH:PREG’cell (f)+ kSV;eﬂ (f)CPROG,call (t) - (k9 + k12 + kp)Vcell (I)CHIPROG,cell (t)} ;

Crpros,cd (0) =5531nM

DIONE in cells:

dC, o (1 1
DIOI;;F: . ( ) = [ Vcen (f) + Vmedng ][k'f’yvcell (t)CDH:EA,cell (t) + kQI/ccll (I)CHPROG,cell (t) - (klO + kl3 + kp )Vc:eﬂ (I)CDION'E,cell (t):|’
Comonpea (0) =1.25x10° nM
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T in cells:

A can (7 1
T,cell ( ) — ( J[klol/ceu (t)CDIONE,cell (t) - (k14 + kp )V;ell (I)CT,cell (f)],

dt I/t:ell (t) + VmequI
CT,cell (0) = 0
E1 in cells:
dCp, .t 1
Ela,itll ( ) — [Vceu (I) +deq30 J[kwyce]l (t)CDIONE,cell (t) - (kls + kp )Vcell (t)CEl,cell (t):| >
CEl,cell (O) =1.12x10° nM
E2 in cells:
dC il 1
el 00 ()55 008 o 0]
CEZ,Ceu (0) =228.70 nM
DCORTICO in cells:

k,

dC (1 1
DCORTICO,cdl ( ) = [ J|:klchell (I)CPROG,cell (t)_ {$+ kpj Vear (I)CDCORTICO-““ (t)] ’

dt Vcell (t) + Vmedqzl CORTICO
CDCORTICO,cell (0) =448.95 nM

CORTICO in cells:
dC, car |7 1 k

CORT;’CIQ = ) [ Vear ()4 ¥ ean J{acojﬂco Ve (6) Coconrico.en (1) = (klg +ky ) Vear (1) Coonnco can (£ )} >
CCOR'HCO,ce]l (0) =1.22x10° nM
ALDO in cells:
dC g pocen 1

ALDCZ H ( ) ) (Vcell (t) s J [kISVCSH (I)CCORTICO’“” (t) - ka““ (t)CALDo,cell (t)] g
CALDo,cell (0) =0
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DCORT in cells:

ACheonrea (7 !
DCOZ'II“, 1l ( ) — [V ]|:k12]/;ell (I)CH:PROG,CCH (t) _[

cell (t) + Vmequ

CDCORT,cell (0) =4.06x10* nM
CORT in cells:
dCCORT,cell (f ) _ 1 |: k., V
B cell
dt I/ce“ (t) +Vmedq27 &Rt

Ceonreen (0) =1.84x10° nM

k

aCORT

(t)CDCORT,cell (t) - kacen

(‘)CTCORT;dl(t)};

174 kp ]V;eu (I)CDCORT,ceH (I):|’
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Supplemental Material, Table 1. Quantitative ranges for

cholesterol and steroids in cells and medium

Quantitative range (nM)

Steroid Cells' Medium

CHOL 2.4x10° — 3.9x107 4.0x10% - 6.5x10°
PREG 6.8x10%°-6.8x10° 15.8 - 1.6x10°
HPREG 6.4x10%—6.4x10° 15.0 - 1.5x103
DHEA 7.4x10%-7.4x10° 17.3-1.7x103
PROG 1.4x103-6.8x10° 3.2-1.6x103
HPROG 1.3x10%- 6.4x10° 3.0-1.5x103
DIONE 1.5x103-7.5x10° 3.5-1.7x103
T 1.5x103-7.5x10° 3.5-1.7x103
E1 8.2x102-8.1x104 5.5 - 5.5x102
E2 2.6x102-5.4x103 5.5-1.1x10°
DCORTICO 6.5%x10%— 3.2x10° 15.1 - 7.6x103
CORTICO 6.2x10%- 3.1x108 14.4 -7.2x103
ALDO 1.1x103-6.0x10° 2.8 -1.4x103
DCORT 6.2x10%- 3.1x108 14.4 - 7.2x103
CORT 5.9x10%- 3.0x108 13.8 - 6.9x10°

1 Based on estimated volume of viable cells per well attime=0h

39



( H295R Cells A

E= \
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Supplementary Figure $1. Graphical representation of the
parameters for the mathematical H295R steroidogenesis model.
First-order rate constant for cholesterol uptake into the cells is k; .
First-order rate constants for metabolic processes are: k;, k- ky5 .
Reversible first-order rate constants for transport processes (k,,
and k_ for secretion and import of steroid x; respectively) are k,4-
ks,. Enzyme inhibition constants for MET are k,, and k,, for
CORTICO and CORT pathways, respectively.
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Supplementary Figure S2. From cell viability experiments,
measured number (A) and percentage (B) of viable H295R cells
(mean £ SD) were plotted at four post-stimuli incubation periods of
0, 24, 48, 72 h for control and two MET concentrations.
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Supplementary Figure S3. Time-course of number of calculated
OXY molecules for control, 1uM, and 10 pM MET-exposed cells.
Results shown for one experiment since medium concentrations of
E1 and E2 at time t = 0 were below sample concentrations in

replicate experiments.
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Supplementary Figure S4. Model evaluation of intracellular
steroids for control cells. Time-course of model-predicted
concentrations in cells were plotted, and compared to
concentrations (mean + SD) measured at five sampling times for
ALDO, E2, T (A); PROG, HPROG, DHEA (B); HPREG, DIONE, E1
(C); CORTICO, DCORTICO (D); PREG, CORT, DCORT (E).
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Supplementary Figure S5. Model evaluation of intracellular
steroids in MET-exposed cells. Time-course of model-predicted
concentrations in cells were plotted, and compared to
concentrations (mean + SD) measured at five sampling times for
ALDO (A); CORTICO (B); CORT (C); DCORTICO (D); DCORT
(E). For controls, model-predicted and measured concentrations
are same as shown in Supplementary Figure S4.
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Endoerine-disrupting chemicals can affect reproduction and
development in humans and wildlife. We developed a computa-
tional model of the hypothalamic-pituitary-gonadal (HPG) axis in
female fathead minnows to predict dose-response and time-course
(DRTC) behaviors for endocrine effects of the aromatase inhibi-
tor, fadrozole (FAD). The model describes adaptive responses to
endocrine stress involving regulated secretion of a generic gonado-
tropin (LH/FSH) from the hypothalamic-pituitary complex. For
model development, we used plasma 17B-estradiol (E2) concentra-
tions and ovarian cytochrome P450 (CYP) 19A aromatase mRNA
data from two time-course experiments, each of which included
both an exposure and a depuration phase, and plasma E2 data
from a third 4-day study. Model parameters were estimated using
E2 concentrations for 0, 0.5, and 3 pg/l FAD exposure concentra-
tions, and good fits to these data were obtained. The model accu-
rately predicted CYP19A mRNA fold changes for controls and
three FAD doses (0, 0.5, and 3 pg/l) and plasma E2 dose response
from the 4-day study. Comparing the model-predicted DRTC with
experimental data provided insight into how the feedback control
mechanisms in the HPG axis mediate these changes: specifically,
adaptive changes in plasma E2 levels occurring during exposure
and “overshoot” occurring postexposure. This study demon-
strates the value of mechanistic modeling to examine and predict
dyvnamic behaviors in perturbed systems. As this work progresses,
we will obtain a refined understanding of how adaptive responses
within the vertebrate HPG axis affect DRTC behaviors for aro-
matase inhibitors and other types of endocrine-active chemicals
and apply that knowledge in support of risk assessments.

Key Words: endocrine disruptors; biological modeling; non-
mammalian species; dose response; biomarkers.

There is international concern regarding effects of endocrine-
active environmental contaminants and commercial products on
the health of humans and wildlife (Cooper and Kavlock, 1997,
Daston ef al., 2003; Hutchinson ef al., 2006; Zacharewski,
1998). The dose-response and time-course (DRTC) behaviors
of those chemicals are major determinants of health risk. In
addition to adseorption, distribution, metabolism, and elimina-
tion, physiological adaptation (compensation) can affect DRTC
behaviors. Characterization of adaptation is critical to modern
toxicology as the field evolves from reliance on whole animal
testing with apical endpoints toward predictive approaches
anchored in understanding modes of action (National Research
Council, 2007). The main goal of our current research was to
develop a computational model of adaptive mechanisms in the
hypothalamic-pituitary-gonadal (HPG) axis for a model verte-
brate, the fathead minnow (Pimephales promelas).

Several computational models of the HPG axis have been
described. For example, models have been developed to
predict plasma sex-steroid concentrations and/or vitellogenin
(egg yolk protein) concentrations in male fathead minnows
exposed to estrogenic chemicals like 17a-ethinylestradiol or
17B-estradiol (E2) (Watanabe ef al., 2009), in female fathead
minnows exposed to 17a-ethinylestradiol or 17f-trenbolone
(Liefal.,2011), and in female sciaenid fish exposed to PCBs and
cadmium (Murphy ef ., 2005). Kim ef al. (2006) developed
a computational model to describe normal functioning of the
HPG axis in salmonids. Barton and Andersen (1998) developed
a model of the HPG axis in rats to simulate hormone levels
in testes and blood. HPG axis models for humans have been
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developed to describe changes in luteinizing hormone (LH)
and testosterone (T) concentrations following treatment
with the gonadotropin-releasing hormone (GnRH) agonist,
triptorelin, and the GnRH receptor blocker, degarelix, (Tornge
et al., 2007), as well as the LH-releasing hormone antagonist,
cetrorelix (Pechstein ef ai., 2000).

To increase our understanding of mechanisms of compensa-
tion and recovery, we developed a computational model of the
HPG axis in female fathead minnows to predict DRTC behav-
iors for effects of the aromatase inhibitor, fadrozole (FAD).
FAD is a model endocrine-active chemical that competitively
inhibits the steriodogenic enzyme, aromatase cytochrome
P450 (CYP) 19A. Although FAD is not ecologically relevant,
there are a variety of environmental contaminants that can
inhibit aromatase activity and elicit similar effects (Petkov
et al., 2009; Vinggaard ef @l., 2000). Our model includes a
feedback regulatory loop within the HPG axis that mediates
adaptive responses to endocrine-active chemical stressors
by controlling the secretion of LH and follicle-stimulating
hormone (FSH) from a generalized hypothalamic-pituitary
complex.

In developing our model, we drew upon data from three sep-
arate experiments in which responses of female fathead min-
nows to FAD exposure were characterized. In the first study
(experiment 1), fathead minnows were exposed to FAD via
water at 0, 3, or 30 pg/l for 8 days followed by an 8-day recov-
ery phase, with samples collected for various endpoints, includ-
ing plasma E2 and ovarian CYP19A mRNA (Villeneuve ef al.,
2009). To increase our understanding of adaptive responses,
an additional follow-up experiment was conducted (experi-
ment 2, companion study). Fathead minnows were exposed to
0, 0.5, or 30 ug FAD/1 for 8 days followed by 4, 8, 12, 16, or
20 days of recovery in control water, and various endpoints,
including plasma E2 and ovarian CYP19A mRNA, were ana-
lyzed (Villeneuve ef al., 2013—companion paper). Plasma E2
and ovarian CYP19A mRNA data from these two experiments,
including recovery, were used for parameter estimation and
model evaluation. Experimental design for experiments 1 and
2 are shown in Figure 1. To further evaluate our model, model
predictions were tested against plasma E2 data from a third
experiment (experiment 3) in which fathead minnows were
exposed to 0, 0.04, 0.2, 1, or 5 ug FAD/ for 4 days (Ralston-
Hooper et ai., 2013).

The measurements from experiments 1 and 2 indicated
adaptive changes (compensation) in plasma E2 levels during
exposure, which resulted in a period of increased E2 production/
concentrations, relative to controls, immediately following
removal of the inhibitor (an overshoot), particularly at lower
FAD test concentrations (Villeneuve ef ¢l., 2009). This type of
behavior is not limited to FAD, but it is commonly observed with
other endocrine-active chemicals that impact a variety of other
pathways: inhibition of CYP11A, CYP17, 3p-hydroxysteroid
dehydrogenase, and, even, agonism of the androgen receptor
(Ankley ef al., 2009, 2011, 2012; Ekman ef al., 2011). Moreover,
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FIG. 1, Overview of design for (A) experiment 1 (Villeneuve ef al., 2009)

and (B) the portion of experiment 2 (Villeneuve ef al., 2013—companion
paper). Boxes indicate periods of exposure to FAD. Periods with no box indi-
cates exposure to control water. Vertical dashed lines represents sampling times
(days). This figure can be viewed in color online.

although our experimental model was a fish species, due to the
significant conservation of the HPG axis structure and function,
our model should be broadly extrapeolatable to any vertebrate
species. The model is intended to aid characterizing how
regulatory feedback loops within the vertebrate endocrine axis
mediate adaptive responses to endocrine-disrupting chemicals.

MATERIALSAND METHODS

Mathematical model of HPG axis. The computational model of the HPG
axis for FAD-exposed female fathead minnows was developed based on knowl-
edge of biological mechanisms. The model consists of six tissue compartments:
gill, brain (as a tissue including hypothalamic-pituitary complex), ovary, liver,
venous blood, and rest of body (Figs. 2 and 3). The configuration of the com-
partments involved in HPG axis signaling and feedback control is consistent
with the cardiovascular system of the exposed fish. However, because an arte-
rial blood compartment is not essential for this model, it was not included. The
model includes a generalized regulatory feedback loop that mediates adaptive
responses to endocrine stress within the HPG axis. This negative regulatory
loop controls the secretion of gonadotropins (LH and FSH). The time-vary-
ing concentrations of substrates are described by dynamic mass balances. We
express the dynamic mass balance for the substrates in compartment y with
volume V as

ac, ,
v, =F,,-U,,-D,,+1,-5., n
dt
where C, ; is the concentration of substrate x in compartment y, F,, is the

production rate of substrate x in compartment y, U, , is the utilization rate
of substrate x in compartment y, D, is the degradation rate of substrate x
in compartment y, I, is the import rate of substrate x into compartment y,
and S, is the secretion rate of substrate x from compartment y. The first two
terms on the right side of Equation 1 represent the net metabolic reaction
rate of substrate x. The last two terms represent the net uptake or release rate
of substrate x in compartment y. The complete set of equations is provided
in the Supplementary data. The model code can be obtained from RC at
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FIG. 2. Graphical representation of physiological model of HPG axis for
FAD-exposed female fathead minnows. The physiological model consists of
water flow through gill lamellae and blood flows between six compartments:
gill blood, brain, ovary, liver, rest of body, and venous blood. The parameter
values for water and blood flows are shown in Table 1.

conolly.rory@epa.gov. The model for each tissue compartment is desciibed
in detail below.

Gill comparmment. The gill serves as the major route for uptake of FAD
from water by fish. There are no data on FAD uptake into skin. However, the
rate of uptake into skin and from skin into the systemic circulation is likely to
be much slower than via the gills because the gills provide a well-perfused,
intimate interface between tank water and fish blood. The computational model
thus reflects this assumption that uptake via the gills is the main route of FAD
entry into the fish, with skin being at most a minor route that is not quantita-
tively important. The gill compartment is broken into two subcompartments:
gill lamellae and gill blood. The gill lamellae are gas-exchange units with thin-
walled, sac-like structures. FAD enters the gills via inspired water with uptake
into the venous blood compartment, and FAD is removed from the gills via
expired water with release from arterial blood. To determine the FAD concen-
tration in the gill blood, we assume a rapid equilibrium for FAD between water
in the gill lamellae and gill blood. No metabolism of substrates is included in
the gill compartment. The gills’ uptake and elimination of FAD are described
by an algebraic expression for the mass balance of FAD entering and leaving
the gills based on the method by Ramsey and Andersen (1984).

Brain compartment. 'We represent the brain-pituitary system as a general-
ized brain compartment. The brain-pituitary system communicates with hor-
mone messengers, and endocrine glands produce and secrete the hormones to
subsequent target tissues and glands. The brain initiates the process by sending
neural signals. The hypothalamus responds to these neural signals by releas-
ing GnRH, which is transported to the pituitary (Levavi-Sivan ef &!., 2010). In
response to GnRH, the pituitary secretes LH and FSH into the blood that travel
to the ovaries and initiates synthesis and secretion of hormones such as T and
E2 via G protein—coupled receptor (GPCR) signaling. As part of a closed-loop
negative feedback control system, specific hormones secreted by the ovaries
(e.g., E2) are transported in the blood to the hypothalamus and pituitary to
inhibit secretion of the initial hormone messengers (GnRH, LH, and FSH)
(Chang et al., 2009; Levavi-Sivan efal., 2010; Trudeau, 1997).

Because empirical data for the peptide hormone messengers are unavailable,
GnRH is not included in our model, and LH and FSH are represented as a gen-
eralized gonadotropin (LH/FSH) in our model. The model has zero-order syn-
thesis, first-order release, and first-order degradation of LH/FSH in the brain

compartment. The release of LH/FHS from the brain can be inhibited by E2
secreted from ovary (Chang ef al., 2009; Levavi-Sivan ef al., 2010; Trudeau,
1997). We model this negative feedback system, which controls the secretion of
LH/FSH, by using the Hill function for a repressor with the Hill coefficient set
to one. The E2 and FAD are imported into the brain compartment and secreted
into the venous blood compartment by blood flow-limited kinetics.

Ovary compartment. The pituitary secretes LH and FSH into the blood
that travels to the target ovary tissue, where LH and FSH bind to LH and FSH
receptors to regulate steroidogenesis in the ovary. In our simplified model, LH/
FSH in the venous blood compartment reversibly binds to LH/FSH receptors
at the ovarian cell surface to control the synthesis of CYP19A mRNA, which
in tum regulates E2 production in the ovary compartment. The model has zero-
order synthesis of CYP19A mRNA (basal rate), and CYP19A mRNA synthesis
is stimulated by LH/FSH-receptor complex. Synthesized CYP19A mRNA is
translated to cyp f 9z (aromatase) by Michaelis-Menten kinetics. Both CYP19A
mRNA and cyp] 9z are degraded in the ovary by first-order clearance.

Estradiol and FAD are absorbed into the ovary compartment and secreted
into the venous blood compartment by blood flow-limited kinetics. Because
intermediate steroid hormone concentrations are unavailable, we did not
include a detailed metabolic pathway for steriodogenesis in the present model.
Instead, the model includes the conversion of T into E2 by ¢yp/ 9z and competi-
tive inhibition of cypl 9z by FAD. The concentration of T was set to a literature-
reported constant value (Watanabe ef al., 2007). The metabolism of T to E2 and
the FAD inhibition of c¢yp/9a are described by Michaelis-Menten kinetics for
competitive inhibition.

Liver compartineni. Estradiol and FAD are absorbed into the liver com-
partment and secreted into the venous blood compartment by blood flow—
limited kinetics. The model has first-order degradation of E2 and FAD in the
liver compartment.

Venous blood comparsment. E2 and FAD from all the tissue compart-
ments enter the venous blood compartment, as described by blood flow—limited
kinetics, and are transported into the gill blood compartment. The LH/FSH
ate transported into the venous blood compartment and degraded by first-order
kinetics. Because LH/FSH are proteins, they do not enter any tissues; however,
they will bind to the LH/FSH receptors at the ovarian cell surface to stimulate
the synthesis of CYP19A mRNA in the ovary compartment. Free LH/FSH, free
LH/FSH receptors at the ovarian cell surface, and LH/FSH—receptor complex
dynamics are described in the model.

Rest of body compartment. The rest of body compartment includes all
tissues except gill, brain, ovary, and liver. E2 and FAD are absorbed into this
compartment and secreted into the venous blood compartment by blood flow—
limited kinetics.

Parameter estimation.  The model utilizes physiclogical and biochemical
parameters including tissue compartment volumes, blood flow rates, equilib-
rum partition coefficients, and biochemical reaction rates (i.e., transcription,
translation, metabolism, transport, and degradation). Volumes of the major tis-
sue compartments (ovary, liver, brain) and the whole body were measured in
this study. The other physiological parameter values were calculated based on
the literature (Table 1). Cardiac output and blood flows were based on meas-
urements from rainbow trout (Nichols ef ai., 1990, 2004) and were allometri-
cally scaled as described elsewhere (Li ef l, 2011, Watanabe et «/., 2009).
However, cardiac output and blood flows were not scaled for differences in
temperature (i.e., 12°C typical for rainbow trout vs. 25°C for fathead minnow).
The equilibrium tissue:blood partition coefficients for E2 and blood:water and
tissue:blood pattition coefficients for FAD were assumed to be one based on
our experimental results, which validated our model assumption that plasma
concentrations of FAD were likely similar to water concentration. There were
21 biochemical parameters affecting the DRTC behaviors of CYP19A mRNA
and E2 for the endocrine effects of FAD: five parameters were obtained from
the literature, and 16 parameters were estimated using the mean E2 concen-
trations from fathead minnow studies. To capture adaptive changes in plasma
E2 levels occurring during exposure and a subsequent “overshoot” behavior
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FIG. 3. Graphical representation of biochemical processes within the six compartments of the model: venous blood (A), gill blood (B), brain (C), ovary (D),
liver (E), and rest of body (F). In the venous blood (A), processes include uptake and release of LH/FSH, E2, and FAD: degradation of LH/FSH. In the gill (B),
processes include uptake and release of LH/FSH, E2, and FAD; FAD transport from gill lamellae to gill blood. In the brain (C), processes include uptake and
release of FAD and E2; LH/FSH synthesis, release, and degradation; E2-mediated inhibition of LH/FSH release into venous blood. In the ovary (D), processes
include uptake and release of FAD and E2: reversible binding of LH/FSH in blood to LH/FSH receptors on cell membrane (surface); LH/FSH receptor-mediated
activation of CYPI9A_mRNA synthesis; translation of CYPI9A_mRNA into cypl!9a; degradation of CYPI9A_mRNA and eypl9a: conversion of T into E2
catalyzed by cypi9a; enzyme inhibition of cypl9a by FAD. In the liver (E), processes include uptake and release of E2 and FAD; degradation of E2 and FAD. In
the rest of body (F), processes include uptake and release of FAD and E2.
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TABL

E1l

Physiological Constant for Weights, Volumes, Blood Flows, and Partition Coefficients (PC)

Parameter description Symbol Compartment Value Reference

Weight of whole body Wt_body Whole body 9451 x 104 kg Measured

Volume of whole body V_body ‘Whole body 9470 x 10741 Measured

Cardiac output Q_cardiac Whole body 1.110 x 102 L/h 2.06 Wt_body" based on Nichols ef af. (2004),
‘Watanabe ef al. (2009), Li ef al. (2011)

Weight of gills Wt_gill Gill 1.578 x 10 kg Nichols et al. (1996)

Volume of gills V_gill Gill 1.578 x 10°1 Assumed gill density is 1 kg/l (water density)

Water flow through gills Q_water_gill Gill 5714 x 10 h 10.6 Wt_body*” based on Nichols ef al. (2004),
‘Watanabe ef @l. (2009), Li ef al. (2011)

Weight of ovary Wt_ovary Orvary 1488 x 10" kg Measured

Volume of ovary V_ovary Ovary 1440 % 1041 Weight/density (1.02 kg/l) from Breen ef al.
(2007)

Blood flow to ovary Q_ovary Ovary 6292 x 10° /h 3.6 Q_cardiac(Wt_ovary/Wt_body) based on
Nichols ef @i, (1990), Watanabe ef al. (2009),
Lieted. (2011)

Weight of liver Wit_liver Liver 2305 % 10 kg Measured

Volume of liver V_liver Liver 2400 % 10°°1 Measured

Blood flow to liver Q_liver Liver 6.500 % 10 I/h 2.4 Q_cardiac(Wt_liver/Wt_body) based on
Nichols ef @i, (1990), Watanabe ef al. (2009),
Lieted. (2011)

Weight of brain Wt_brain Brain 1.004 x 107 kg Measured

Volume of brain V_brain Brain 1200%107°1 Measured

Blood flow to brain Q_brain Brain 4247 x 1074 1/h 3.6 Q_cardiac(Wt_brain/Wt_body) based on
Nichols et al. (1990), Watanabe et af. (2009),
Lietel (2011)

Weight of venous Wt_venous Venous blood 2448 x 10° kg Nichols ef el (1996), Robinson ef @l (1992)

Volume of venous V_venous Yenous blood 2448 x 10°1 Weight/density of water (1 kg/l)

Volume of rest of body V_RoB Rest of body 7267 x 1041 V_body — Volume of other organs

Blood flow to rest of body Q_RoB Rest of body 3738 x 10% L/h Q_cardiac — Blood flow to other organs

‘Water:blood PC for FAD P_FAD_water:blood Gill 1 Assumed

Ovary:blood PC for FAD P_FAD_ ovary:blood Ovary 1 Assumed

Ovary:blood PC for E2 P_E2_ovary:blood Ovary 1 Assumed

Liver:blood PC for FAD P_FAD_liver:blood Liver 1 Assumed

Liver:blood PC for E2 P_E2 liver:blood Liver 1 Assumed

Brain:blood PC for FAD P_FAD brain:blood Brain 1 Assumed

Brain:blood PC for E2 P_E2 brain:blood Brain 1 Assumed

Rest of body:blood PC for FAD P_FAD RoB:blood Rest of body 1 Assumed

Rest of body:blood PC for E2 P _E2 Rob:blood Rest of body 1 Assumed

occurring postexposure for 3 ug/l FAD dose, model parameters were estimated  ford=1.2, 3, and i = 1, ..., n,. Then, the least squares estimate,

using E2 concentrations for 0, 0.5, and 3 pg/l FAD doses. The CYP19A mRNA
data were not used to estimate model parameters because we validated our
model predictions using this dataset. We incorporated measured data from
both experiments described above in both parameter estimation and model
evaluation.

Using the least squares method, eight parameters in the ovary compart-
ment (ksyn_mRNA_ha.szl’ ksyn_mRNA_max’ klcss_mRNA’ szx_.syn_CY'PwA' Km_.syn_CYPlQA' klns.s_CY'Pl9A’

Ki_FAD’ Kﬂ_syn_mgN ) bwo parameters in the liver compartment (km_F . 1as_E2)’

four parameters in the brain compartment (kojyn,LHFSH’ km,LHFSH’ A ‘,Ez)=
and two parameters in the venous blood compartment (£ o o K 1 gy WETE
estimated with the time-course data of E2 from the fathead minnow studies. We
let 7, be the number of time points in the time-course data of E2 for the dth
FAD dose (including control); C&\_; be the measured E2 plasma concentra-
tions for the ath FAD dose at the ith time; Cgy (5 C2 ,Iz) be the model-
predicted concentrations of E2 in the venous blood compartment at the ithtime,
t, for the dth FAD dose (including control), C:;m’ with parameter set
k= (ksyn_mRNA_hasalvksyn_mRNA_maxs klc\s.s_mRNA!
Voo _ssn_cvpioa- K _sn_avpiseius_evpivas

k,

Ki,FAD ’ Ka,syn,mRNA’ klcuss,FAD * kluss,El *™0_syn LHESH?

klc\sj_LHFSH'kL]-EFSH!Ki_EZ!kL]-H?SH_aff'klass_Ll-H:SH)

T ep ® *
k' =k wmis_vasarKon nmna_maxr Ko nrna-
+ o -
Vmﬂ_syn_CYPlQA'Km_syn_CYPlQA'klms_CYPIQA-
- o - ¥ -
K pen K7 n_nrvias Kioss pans Kias_g2-K0_n_LiRSH:

.

- 1 . .
klcnss,Ll-D"‘SH’kLHFSH’Kz,E’kLPD:SH,Uff’klcs,LHFSH)’

is the parameter values &, which minimizes the cost function

3 g _
Tk = E E [Cl‘iiii,hlm‘l 7C152,b1:.c.ﬂ (t ;CgAD'k)]z' 2)

=1 =1

Parameters were estimated with a nonlinear optimization algorithm using
MATLAB R2010a (Mathworks, Natick, MA) software. The Nelder-Mead sim-
plex method was used due to its relative insensitivity to the initial parameter
values compared with other common methods, such as Newton’s method, and
its robustness to discontinuities (Nelder and Mead, 1965).

Sensitivity analysis. 'To examine model parameter uncertainty, we per-
formed a sensitivity analysis on 25 parameters: 6 cardiovascular parameters
in Table 1 and 19 biochemical parameters in Tables 2 and 3. The sensitivity
function relates changes of the model output (plasma E2 concentrations and
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TABLE 2
Fixed Biochemical Parameters

Parameter description Symbol Compartment Value Reference
Catalysis rate for CYP19A [p— Ovary 6.0003 x 107*/h Zhao et al. (2001)
Michaelis constant for T Kmi-r Ovary 0.0096 pmal/l Zhao et al. (2001)
Concentration of T CT_ Ovary 1.4146 x 107 umol/l ‘Watanabe et al. (2007)
Total amount of LH/FSH receptor i M Ovary 2.88 x 107 umol Miwa et al (1994)
Binding rate of LH/FSH (blood) to LH/FSH receptor (ovary) ku;rsn,m; Venous blood 0.2 % 107%(pmol/h) ‘Watanabe ef al. (2009)
TABLE 3

Estimated Parameters
Parameter description Symbol Compartment Value
Basal synthesis rate of CYP12A mRNA ksyn MENA bl Ovary 1.474 » 1077 pmol/h
Maximum synthesis rate of CYP19A mRNA L Ovary 9250 x 107" umol/h
Degradation rate of CYP194A mRNA I Ovary 1.494 x 107%h
Maximum synthesis rate of CYP10A Vm; . CTRIA Ovary 3.149 % 107 pmol/h
Michaelis constant for synthesis of CYP19A K j;“ I Ovary 6.537 x 10* umol/l
Degradation rate of CYP19A LA COvary 1.374 % 10%h
Inhibition constant of FAD K o Ovary 1.981 x 107 pmol/l
Activation constant for synthesis of CYP19A mRNA K;Syﬂ - Ovary 2.278 x 1072 pmol/
Degradation rate of FAD K en Liver 4.698 x 10'/h
Degradation rate of E2 B e Liver 1.167 x 10'/h
Zero-order synthesis rate of LH/FSH k, S;n Laren Brain 1.726 % 107 umol/h
Degradation rate of LH/FSH k| aren Brain 3407 x 10'/h
Releasing rate of LH/FSH ke Brain 1.534 » 10-%h
Inhibition constant of E2 K . Brain 5.311 % 107° pmolA
Releasing rate of LH/FSH (blood) from LH/FSH receptor (ovary) kLI:EFSH " Venous blood 8.004 x 10-/h
Degradation rate of LH/FSH km,w;sa Venous blood 1.831 x 10%h
ovarian expression of CYP19A mRNA) to changes in the model parameters. RESULTS
We calculated relative sensitivity functions Ry, (£) and Ropy grus (O
with respect to parameter &, for each of the model-predicted concentrations  F4 ) Exposure Data
Co wiog @nd fold changes of CYP19AmRNA in the ovary compariment . .
F respectively, as described by Exposure to 0.5 pg FAD/1 had no considerable effect on either

mRNA avary’

K 3 £
R e, ()= { ! J M

Come® | 3K 3
and

RmRNA,avnry,&i =

k ¢ FmRNA,:waxy O] ) 4
Froriaovay (£) dk, “

MATLAB was used to numerically calculate the partial derivatives in
Btz (£) and R gyga s, (£) (Bquations 3 and 4) for control and each FAD
dose. To rank the relative sensitivities, we calculated the L? norm across time
for each relativity sensitivity function as described by

B
L2 norm(REz,hluc.ﬂ,g): J“REHmd},(t)‘ di (3

L? norm(R gys crayn) = \JJ‘RmRNA.wary)c, (f)‘zdt . (6)

Magnitudes of the relative sensitivities relate the degree to which changes in
parameter values lead to changes in model outputs. The sensitivity analysis
orders the inputs by importance, identifying the main contributors to the varia-
tion in the model outcome. Parameters with high sensitivity are more important
for the model output than parameters with low sensitivity.

and

E2 concentrations or CYP19A mRNA expression (Fig. 4). For
the 3 pg/l FAD group, E2 concentrations were greatly reduced
after 2 days of exposure but recovered to the control level
between 2 and 8 days of exposure, exceeded those of controls at
1 day postexposure, and returned to control levels after 2 days
postexposure (Fig. 4A). Expression of CYP19A mRNA was
greatly elevated after 4 or 8 days of exposure and returned to
control levels postexposure period (Fig. 4B). As one would pre-
dict, exposure to 30 ug FAD/1 had the most considerable effect
on E2 concentrations and CYP19A mRNA abundance. The E2
concentrations were greatly reduced within 1 day of exposure
to FAD, remained greatly reduced throughout the exposure
period, and then rebounded back to the control level during
recovery (Fig. 4A). Expression of CYP19A mRNA was greatly
elevated at 2 days of exposure and thereafter, but returned to
control levels during depuration (Fig. 4B).

Mathematical Model of HPG Axis

The physiological constants for tissue weights, tissue vol-
umes, blood flows, and partition coefficients are shown in
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FIG. 4. Measurements of plasma E2 (A) and ovary CYP19A_mRNA (B) for control and three FAD concentrations (0.5, 3, and 30 pg/l). Measurements
(mean + SD) of E2 concentrations and CYP19A_mRNA fold changes relative to controls were plotted from two experiments: control data includes four sampling
times during exposure and seven sampling times postexposure; 0.5 pg/l—two sampling times during exposure and five sarmpling times postexposure; 3 ug/l—four

sampling times during exposure and four sampling times postexposure; 30 pg/l—four sampling times during exposure and seven sampling times postexposure.
1= 16 for most conditions (combination of treatment and time point) with two experiments (control and FAD concentration of 30 ug/l at d1, d8, d12, and d16) and
1 =8 for most conditions with one experiment. Vertical dashed line indicates period of FAD exposure. This figure can be viewed in color online.

Table 1. The five literature-derived biochemical parameters
and the biochemical parameters estimated by fitting the model
predictions to the measured mean plasma E2 concentrations
for 0, 0.5, and 3 pg/l FAD doses are shown in Tables 2 and 3,
respectively. The time for convergence to the solution for the
nonlinear parameter estimation was typically around 3 h on an
Intel Core 2 Duo processor using MATLAB.

We compared the model-predicted concentrations of venous
E2 with time-course measurements of plasma E2. For the FAD
doses used for parameter estimation (0, 0.5, and 3 ug/l), the
model-predicted B2 concentrations correspond closely to the

mean time-course measurements (Figs. 5A-C). For the 3 pg
FAD/I treatment, the model captured the plasma E2 compensa-
tion during exposure and the overshoot and return to control level
postexposure (Fig. 5C). For the high FAD dose (30 pg/1), which
was not included for parameter estimation, the model-predicted
E2 concentrations during exposure also correspond closely to
the mean time-course measurements (Fig. 5D). However, the
model overpredicted E2 concentrations postexposure (Fig. 5D).
Figure 6A shows the modeled venous E2 dose response during
FAD exposure on days 1, 4, and 8. The model predictions mono-
tonically decreased across dose, with FAD exposure on day 1
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FIG. 5. Model evaluation for control and three FAD concentrations (0.5, 3, and 30 pg/l). Model predictions were plotted as a function of days during pre-
exposure (—15 to 0 days), exposure to FAD (0-8 days), and postexposure (8-33 days) and compared with measurements {mean + SD) for plasma E2 concentrations
(A-D) and ovary CYP19A_mRNA fold changes relative to controls (E-H). Model predictions were compared with measurement data from two experiments: con-
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sampling times postexposure. Vertical dashed lines indicate period of FAD exposure.

having the lowest venous E2 concentration and day 8 having the
highest venous E2 concentration. Additionally, the model pre-
dictions are plotted as a function of FAD concentration and time
for venous E2 concentrations (Supplementary fig. S1A).

For model validation, we compared the model-predicted
and measured ovary CYP19A mRNA changes. Although

the measurements were not used for parameter optimization,
measured ovary CYP19A mRNA fold changes correspond well
to the time-course data for control and the three FAD doses
(Figs. SE-H). Figure 6B shows the modeled ovary cypl%a
dose response during FAD exposure on days 1, 4, and 8. The
model predictions monotonically increased across dose, with
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FAD exposure on day 4 having the highest ovary CYP19A
mRNA and day 1 having the lowest ovary CYP19A mRNA.
Additionally, the model predictions are plotted as a function of
FAD concentration and time for ovary CYP19A mRNA fold
changes (Supplementary fig. S1B).

To further validate our model, we tested model predictions
against plasma E2 data from the 4 days exposure study that was
not included in our model development. The model-predicted
dose-response curve for venous E2 corresponds well to plasma
E2 measurements, even with all five FAD doses (0, 0.04, 0.2, 1,

A

and 5 pg FAD/D) different from the FAD doses used for model
calibration (Fig. 6C).

Sensitivity Analysis

Figs. 7A, B and 8A, B show the relative sensitivities for
modeled E2 and CYP19A mRNA, respectively, plotted as a
function of the 19 biochemical model parameters for control
and three FAD test concentrations (0.5, 3, and 30 ug/l) during
exposure and postexposure, respectively. Overall, E2 (Figs. TA
and B) and CYP19A mRNA (Figs. 8A and B) were highly to
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FIG. 7. Relative sensitivities for modeled E2 plotted as a function of the 19 biochemical model parameters for control and three FAD concentrations (0.5, 3,
and 30 pg/1). Each bar represents the L? norm of the relative sensitivities across time during exposure (0-8 days; A) and postexposure (8-33 days; B). The values
indicate the degree to which changes in parameter values lead to changes in model outputs. This figure can be viewed in color online.
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moderately sensitive to the model parameters during exposure

and postexposure, except for a few parameters (ksyn_mR.N T
Ka_syn_mR.NA’ klo&s_FAD’ kloss_LHFSH)'

Supplementary figures 2SA,B and 3SA,B show the relative
sensitivities for modeled E2 and CYP19A mRNA, respectively,
plotted as a function of the six cardiovascular model param-
eters for control and three FAD test concentrations (0.5, 3, and
30 pg/l) during exposure and postexposure, respectively. Both
E2 (Supplementary figs. 2SA and B) and CYP19A mRNA
(Supplementary figs. 3SA and B) were most sensitive to

cardiac output (Q_cardiac) and highly sensitive to blood flow

to ovary (Q_ovary) and rest of body (Q_RoB) during exposure
and postexposure.

DISCUSSION

To predict the DRTC behaviors for endocrine effects of the aro-
matase inhibitor, FAD, we developed a mechanistic mathemati-
cal model and estimated biochemical parameters for the HPG
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axis in female fathead minnows. Experimental gene expression
and steroid data were used to develop the computational model.
To examine the adaptive responses to FAD, aregulatory feedback
loop within the HPG axis that can mediate adaptive responses
to endocrine-active chemicals was included in the model.
Sensitivity analysis indicates that the regulatory feedback loop
plays an important role in our model because E2 and CYP19A
mRNA were highly to moderately sensitive to the parameters
(ke K, ,) associated with the feedback control loop. The
model closely fits the dynamic E2 concentrations for baseline,
0.5, and 3 ug/l FAD test groups. The model also predicts dynamic
CYP19A mRNA fold changes for baseline and three (0.5, 3, and
30 pg/M) FAD concentrations and venous E2 dose response during
FAD exposure (0, 0.04, 0.2, 1, and 5 ug FAD/1) on day 4.

Our HPG axis model with one negative feedback loop was
capable of simulating several important DRTC phenomenon
observed empirically. The model predicts declining estradiol
concentrations following initial exposure to HAD. Through the
feedback loop incorporated into the model, declining E2 con-
centrations stimulate increased release of a generalized gonado-
tropin (LH/FSH), leading to increased transcription of CYP19A
mRNA and an assumed parallel increase in aromatase activity.
The increased aromatase transcription and activity confronted
with a constant level of inhibition lead to a modest increase in
the predicted venous E2 concentrations over an 8-day period of
exposure, which is particularly evident at the 3 pg/l FAD dose.
Although the model slightly underpredicts the magnitude of
increased E2 production over the course of the exposure period,
the general behavior of the model prediction was consistent with
that observed empirically. Immediately after chemical removal,
the model successfully predicts a brief period over which circu-
lating B2 concentrations in the FAD-treated fish exceed those of
controls before gradually returning to normal levels, as CYP19A
mRNA transcription and assumed activity decline back to base-
line levels. Although ovarian CYP19A mRNA data and plasma
E2 data from the 4-day exposure study were not included in model
development, the model also captures dynamic CYP19A mRNA
fold changes and venous E2 dose response during FAD exposure
on day 4. Therefore, our mechanistic model provides a reasonable
simulation of critical DRTC behaviors observed in vivo.

There are some limitations to our model based on the model
structure and assumptions and data available for model eval-
uation. First, although our feedback mechanism results in a
gradual increase in venous E2 concentrations over the course
of exposure at the 3 pg/l FAD dose, the model underpredicts
the magnitude of compensation observed in vivo. This could
suggest, for instance, that the current model underestimates
the degree of increase in aromatase activity that is currently
predicted from a specific fold-change increase in CYP19A
mRNA transcription. This is a relationship that could be
investigated via additional time-course experiments, as meth-
ods to measure both aromatase activity and CYP19A mRNA
transcripts are well developed (Villeneuve er al., 20006).
Other parameters such as the rate and magnitude of feedback
response per unit change in circulating E2 may also play a

role, but the precise mechanisms of the feedback response
are not well understood nor can specific measurements of
gonadotropin peptide concentrations be made readily for
cyprinid fish species like the fathead minnow. Similarly, it is
recognized that the ovary of an asynchronous spawning fish
species, like fathead minnow, contains a heterogeneous col-
lection of oocytes and ovarian follicles at multiple different
stages of development. It is expected that these subpopulations
of ovarian cells likely have differential sensitivity or capac-
ity to respond to endocrine feedback (e.g., mediated by FSH/
LH); thus, changes in the overall distribution of these different
populations in the ovary could also influence the relative mag-
nitudes of response. However, most experiments to date have
focused data collection on the tissue level of resolution. Data
collected at the level of specific subpopulations of oocytes
and ovarian follicles within the ovary are lacking. Second,
although our feedback mechanism results in postexposure
“overshoot” in venous E2 concentrations at the 30 ug/l FAD
dose, the model overpredicts the magnitude of postexposure
“overshoot” that was observed in vive. It is likely that there are
additional biological phenomena operating iz vive that impose
limits on the overall magnitude/strength of the compensatory
response and the corresponding “overshoot” that occurs when
the inhibitor is abruptly removed from the system. Thus, we
explored whether the compensatory response may be limited
by electron transfer because aromatase and other microsomal
type II cytochrome P450 enzymes depend on electron transfer
from P430 oxidoreductase for their function (Miller, 2005).
We hypothesized that unless the redox partners for aromatase
were also induced as part of a compensatory response, elec-
tron transfer efficiency could become the limiting rate of estra-
diol synthesis, even if aromatase transcription and presumably
translation continued to increase. We extended our model to
evaluate whether such a mechanism could improve the ability
of the model to fit the empirical data; however, that was not the
case. (Dynamic molecular balance equations for the extended
model are provided in the Supplementary data.) Another pos-
sible explanation is that E2 production becomes substrate lim-
ited. Specifically, T is the C19 steroid precursor that undergoes
aromatization to form E2. Within the ovary, T production is
localized within the theca cells, whereas aromatization to E2
takes place in the granulosa cells (Yaron, 1995). Some of the
key proteins that are rate limiting for T production include
StAR and CYP11A (Miller, 1988, Stocco, 2001). It is notable
that whereas targets thought to be directly involved in stimulat-
ing E2 production by granulosa cells (cypi 92 and FSHR) were
robustly induced in both experiments (Villeneuve ef al., 2009,
2013—companion paper), CYP11A and StAR expression was
either transiently induced (Villeneuve ef al., 2009) or not at all
(Villeneuve ef al. 2013—companion paper). This suggests the
possibility that the availability of T could impose limits on the
degree of compensatory E2 production that could be achieved
by increasing cypl9a transcription and translation. In the pre-
sent experiments, plasma volumes were insufficient to allow
for quantification of both E2 and T.
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To better understand adaptive responses to endocrine stress,
we further investigated another potential feedback regula-
tory loop within the HPG axis. Based on the observation of
an apparent tight, parallel coupling between plasma E2 con-
centrations and CYP19A mRNA expression in fish exposed to
30 pg FAD/1, we hypothesized an autocrine feedback whereby
the internalization of LH/FSH receptors could be stimulated
by E2 in ovary to provide a more rapid feedback response to
alterations in E2 synthesis rates. This hypothesis was based on
the knowledge that many GPCRs go through cyeling to and
from the cell membrane (McArdle ef al. 2002). There is suf-
ficient characterization to support the idea that LHR and FSHR
undergo this type of cycling (Krishnamurthy ef al., 2003).
Therefore, we extended our model to include such an additional
autocrine feedback loop, which regulates LH and FSH recep-
tor recycling in the ovary. (Dynamic molecular balance equa-
tions for the extended model are provided in the Supplementary
data.) We hypothesized that the LH/FSH receptors cycle
between the ovarian cell surface and cytosol, and the receptors
must be at the cell surface to be activated by reversible bind-
ing of LH/FSH. However, the extended model with an addi-
tional feedback regulatory loop did not improve the model fit
for plasma E2 or ovary CYP19A mRNA considerably. This is
another example of how the model can be used as a preliminary
hypothesis testing tool before proceeding with more expensive
and time-consuming experimentation.

There are several potential extensions and applications for
our model. First, investigations of other regulatory mechanisms
for different test concentrations/doses could be guided by this
work. For example, in future studies, we plan to investigate other
possible regulatory mechanisms for higher treatment groups
using genomic (€.g., microarray) technologies in combination
with targeted experiments to quantitatively define the relation-
ships among key events. Second, the model can be extended to
endocrine-active chemicals that impact other pathways, includ-
ing endocrine-active chemicals with multiple modes of action.
For instance, in future studies, we plan to extend our model to
other aromatase inhibitors with multiple modes of action, such
as Prochloraz, an antifungal pesticide with relevance for human
risk assessments. Thus, our approach can be expanded to other
chemicals that interact with the HPG axis to ultimately pro-
vide a generic capability for generating useful predictions of
DRTC for disruptions of the HPG axis in fish. Third, our fish
model could be modified for other vertebrate species including
humans. The endocrine system, which originated during the
early evolution of fish, is highly conserved across vertebrate
species. Hence, the components of the endocrine system are
fundamentally the same for all vertebrates. With the appropriate
in vive aromatase inhibition data from other vertebrate species,
our model could be modified and reparameterized. Because the
modeling approach taken is extendable to other chemicals that
interact with the HPG axis and other vertebrate species, it could,
with substantial further development, provide a generic capabil-
ity for generating useful predictions of DRT'C for disruptions of
the HPG axis for both human and ecological risk assessments.

Comparing model-predicted DRTC with experimental data pro-
vided insight into how the feedback control mechanisms embed-
ded in the HPG axis mediate the dynamic dose-response changes.
This study demonstrates the value of mechanistic computational
modeling to examine and predict the possible dynamic behaviors
and to formulate and test hypotheses. As this work progresses,
we will obtain a refined understanding of how adaptive responses
within the vertebrate HPG axis can affect DRTC behaviors for
aromatase inhibitor and other types of endocrine-active chemicals
and apply that knowledge in support of risk assessments.
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Figure S1. Model predictions plotted as a function of FAD concentration and time during pre-
exposure (-15 — 0 days), exposure to FAD (0 — 8 days), and post-exposure (8 — 33 days) for venous
E2 concentrations (A) and ovary CYP19A mRNA fold changes relative to controls (B).
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Figure S2. Relative sensitivities for modeled E2 plotted as a function of the 6 cardiovascular model
parameters for control and three FAD concentrations (0.5, 3, and 30 pug/L). Each bar represents the
L* norm of the relative sensitivities across time during exposure (0-8 days; A) and post-exposure (8-
33 days; B). The values indicate the degree to which changes in parameter values lead to changes in
model outputs.
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Figure $3. Relative sensitivities for modeled CYP19A mRNA plotted as a function of the 6
cardiovascular model parameters for control and three FAD concentrations (0.5, 3, and 30 ug/L).
Each bar represents the L” norm of the relative sensitivities across time during exposure (0-8 days;
A) and post-exposure (8-33 days; B). The values indicate the degree to which changes in parameter
values lead to changes in model outputs.
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ABSTRACT

There is international concern about chemicals that alter endocrine system function in
humans and/or wildlife and subsequently cause adverse effects. We previously developed a
mechanistic computational model of the hypothalamic-pituitary-gonadal (HPG) axis in
female fathead minnows exposed to a model aromatase inhibitor, fadrozole (FAD), to predict
dose-response and time-course behaviors for apical reproductive. Initial efforts to develop a
computational model describing adaptive responses to endocrine stress providing good fits to
empirical plasma 17p-estradiol (E2) data in exposed fish were only partially successful,
which suggests that additional regulatory biology processes is needed. In this study, we
addressed short-comings of previous model by incorporating additional details concerning
cypl9a (aromatase) protein synthesis into our previous model. Predictions based on the
revised model were evaluated using plasma E2 concentrations and ovarian cytochrome P450
(CYP) 19A aromatase mRNA data from two fathead minnow time-course experiments with
FAD, as well as from a third 4-day study. The extended model provides better fits to
measured E2 time-course concentrations, and the model accurately predicts CYP19A mRNA
fold changes and plasma E2 dose-response from the 4-d concentration-response study. This
study suggests that aromatase protein synthesis is an important process in the biological
system to model the effects of FAD exposure.

Keywords: endocrine disrupting chemicals, computational model, adaptation, protein
synthesis, toxicology, fadrozole, hypothalamic-pituitary-gonadal axis, fish
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INTRODUCTION

There is international concern about environmental contaminants, commercial
products and drugs that alter endocrine system function in humans and/or wildlife and
subsequently cause adverse effects (Cooper and Kavlock, 1997; Daston et al., 2003;
Hutchinson et al., 2006; Zacharewski, 1998). The Safe Drinking Water Act Amendments
(1996) and the Food Quality Protection Act (1996) require the U.S. Environmental Protection
Agency (EPA) to screen for endocrine-active chemicals in drinking water and pesticides used
in food production. Based on this legislation, the EPA developed and implemented a multi-
phased screening (Tier 1) and testing (Tier 2) process called the Endocrine Disruptor
Screening Program (EDSP; U.S. EPA, 1998; U.S. EPA, 2009). Steroid biosynthesis
inhibitors, including aromatase inhibitors, were recognized as an important class of endocrine
disruptors and were selected for evaluation in the EDSP (Drenth et al., 1998; Sanderson,
2006; Vinggaard et al., 2000; U.S. EPA, 1998). One of the functions of EDSP Tier 2 is to
characterize the dose-response of chemicals that can interact with the endocrine system,
reflecting the importance of understanding the dose-response behavior of endocrine
disruptors.

The dose-response and time-course (DRTC) behavior of organisms exposed to
environmental chemicals are major determinants of health risk. In addition to factors like
adsorption, distribution, metabolism, and elimination, physiological adaptation or
compensation can be a major determinant of the occurrence of adverse effects.
Understanding compensatory responses is critical to the modern practice of toxicology,

particularly as the field evolves from traditional reliance on whole animal testing with apical
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endpoints toward more predictive approaches anchored to an understanding of chemical
modes of action. In recognition of this, a U.S. National Research Council report, Toxicity
Testing in the 21% Century: A Vision and a Strategy, emphasizes that adaptive changes within
organisms exposed to environmental stress can alter dose-response behaviors to modulate
stressor effects (National Research Council, 2007). Consequently, to improve descriptions of
dose-response behaviors for risk assessment, a better understanding of adaptive mechanisms
is needed. Hence, a goal of our larger research effort (Ankley et al., 2009) research has been
to develop a computational model of adaptive mechanisms in the hypothalamic-pituitary-
gonadal (HPG) axis for a model vertebrate, the fathead minnow (Pimephales promelas).

In initial studies, we developed a mathematical model to predict the DRTC behaviors
in the HPG axis of female fathead minnows exposed to model aromatase inhibitor, fadrozole
(FAD; Breen et al., 2013). Fadrozole competitively inhibits the steroidogenic enzyme
aromatase, a cytochrome P450 (CYP) 19A, which is rate-limiting in the conversion of
testosterone (T) to 17B-estradiol (E2) (Miller, 1988). While FAD itself is not ecologically
relevant, there are a variety of environmental contaminants that can inhibit aromatase activity
and elicit similar effects (Petkov et al., 2009; Vinggaard et al., 2000). The initial
deterministic model included a feedback regulatory loop within the HPG axis to mediate
adaptive responses to endocrine-active chemical stressors by controlling the secretion of
luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from a generalized HP
complex (Breen et al., 2013). In the present paper, we build upon the previously described
model to address a key limitation in its predictive ability to improve the congruence between

model predictions and empirical data.
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The primary focus of our previous work was on adaptive changes (compensation) in
plasma E2 concentrations during FAD exposure, which resulted in a period of increased E2
production/concentration, relative to controls (an overshoot), and an “overshoot” behavior in
E2 when the inhibitor was removed, particularly at lower FAD concentrations (Breen et al.,
2013). The main limitation of the previous HPG axis model was a large overestimation of
plasma E2 concentrations for higher FAD test concentrations. In the present paper, we
address this limitation by investigating protein synthesis of cyp19a. Because protein
synthesis and degradation is responsible for amounts of cyp19a available for the conversion
of T to E2, we extended the previous model by adding the cyp19a protein synthesis pathway.

The contribution of this study is the extension of the previously developed HPG axis
model (Breen et al., 2013). The extended model was evaluated with measurements of plasma
E2 and ovarian CYP19A mRNA for eight FAD test concentrations. Comparing the model-
predicted and measured data provides insights into possible feedback control mechanisms

embedded in the HPG axis.

MATERIALS AND METHODS
FAD exposure
The model described in the present study incorporates data from three experiments
with fathead minnows exposed to FAD. The first of these studies is described in detail by
Villeneuve et al. (2009). Briefly, sexually-mature fathead minnows (5-6 month old), obtained
from an onsite culture facility at the EPA Mid-Continent Ecology Division (Duluth, MN),

were exposed to 0, 3, or 30 ug FAD/L. Fadrozole was delivered to 20 L tanks containing

80



10 L of test solution via a continuous flow (approximately 45 ml/min) of UV-treated, filtered
Lake Superior water without use of a carrier solvent. Four male and four female fathead
minnows were exposed in each tank. The experiment was initiated by transferring random
groups of fish directly to tanks that had been receiving a continuous flow of test solution for
approximately 48 h. Addition of fish was staggered by replicate within each treatment to
permit all samples from a given exposure tank to be collected within 45 min of the desired
exposure duration. Two tanks of four male and four female fish were sacrificed after 1, 2, 4,
and 8 d of exposure. After 8 days of exposure, remaining fish were held in control Lake
Superior water (no FAD) and sampled after 1, 2, 4, or 8 d of depuration. There were two
replicate tanks for each unique exposure condition (i.e., combination of treatment and time
point). Urine, plasma, liver, gonad, brain, and pituitary samples were collected and a variety
of endocrine and toxicogenomic endpoints were examined. In total, Villeneuve et al. (2009)
reported results for over 15 different endocrine-related variables. However, for the current
modeling work, major endpoints of interest were plasma concentrations of E2 and ovarian
expression of cyp19a. Notably, cyp19a protein concentrations were not measured.

The second experiment (Villeneuve et al., 2013) was a follow-up to the study
described above, only with extended time-course. Briefly, reproductively-mature fathead
minnows were exposed to 0, 0.5, or 30 pg FAD/L using conditions similar to those described
above. Fish were either exposed continuously and sampled after 1, 8, 12, 16, 20, 24, or 28 d
of exposure or exposed for 8 d, then held in a continuous flow of clean Lake Superior water
for an additional 4, 8, 12, 16, or 20 d. Various endpoints were analyzed, including plasma E2

and ovarian CYP19A mRNA.
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In a third experiment (Ralston-Hooper et al., 2013), fathead minnows were exposed
t0 0,0.04, 0.2, 1, or 5 pg FAD/L for 4 d under conditions similar to those described above

and various endpoints were analyzed, including plasma E2 concentrations.

Mathematical Model of the HPG-axis

The extended computational model of the HPG axis for FAD-exposed female fathead
minnow described herein is a modification of our previously-described HPG axis model
(Breen et al., 2013). As does the model of Breen et al. (2013), the extended model consists of
six tissue compartments: gill, brain, ovary, liver, venous blood, and rest of body (Figure 1).
These compartments, which are involved in HPG axis signaling and feedback control, are
connected in a manner consistent with the cardiovascular system of fish. The model includes
a generalized regulatory feedback loop within the HPG axis that mediates adaptive responses
to endocrine stress from FAD. The regulatory loop controls the secretion of gonadotropins
(LH and FSH) from the brain. The descriptions of each tissue compartment were previously
reported by Breen et al. (2013), with the exception of cyp19a protein synthesis in the ovary
(Figure 1D). Protein synthesis involves two major processes: transcription and translation. In
the nucleus, transcription occurs when an RNA polymerase enzyme binds to DNA to start the
formation of messenger RNA (mMRNA). The mRNA then leaves the nucleus and enters the
cytoplasm to bind to ribosomes. In the cytoplasm, amino acids (AA) bind to transfer RNA
(tRNA) and are transported to ribosomes. At the ribosome, translation occurs when a series
of tRNA molecules bind to mRNA to form a chain of AA that creates a protein (Bruce et al.,

2002; Campbell, 1996). In the extended model, the rate of protein synthesis from cyp19a is a
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function of levels of MRNA, ribosomes, tRNA, and AA. Once CYP19A mRNA is
transcribed for the CYP19A gene, it diffuses to a ribosome to form an mRNA-ribosome
complex. The tRNAs bind to AA to form tRNA-AA complexes, which bind to the CYP19A
mMRNA-ribosome complex for translation of CYP19A mRNA and subsequent synthesis of
the CYP19A protein. In the ovary compartment, the model has zero-order synthesis and first-
order degradation of AA, and translation of cyp19a is described by Michaelis-Menten
kinetics. The time-varying concentrations of substrates are described by dynamic mass
balances. We can express the dynamic mass balance for the substrates in the compartment y

with volume Vy as:

dC

Xy _
Vv, s Py U, Dty =S Q)
where C, , is the concentration of substrate x in compartmenty, P, , is the production rate

of substrate x in compartmenty, U, , is the utilization rate of substrate x in compartment y,

X,y

D, ., is the degradation rate of substrate x in compartmenty, |

X,y y Is the import rate of

X

substrate x into compartment y, and S, , is the secretion rate of substrate x from

compartment y. The first two terms in the right side of Eq. (1) represent the net metabolic
reaction rate of substrate x. The last two terms represent the net uptake or release rate of
substrate x in compartment y. The complete set of equations for the model is provided in the

Supplementary Data.
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Parameter Estimation

The model consists of physiological and biochemical parameters, including tissue
compartment volumes, blood flow rates, equilibrium partition coefficients, and biochemical
reaction rates (i.e. transcription, translation, metabolism, transport, and degradation). As in
the previous model (Breen et al., 2013), the extended model utilizes measured volumes of the
major tissue compartments (ovary, liver, brain) and the whole body, and determined
physiological parameter values from the literature. Based on experimental results (Villeneuve
et al., 2013), the equilibrium tissue:blood partition coefficients for E2, and blood:water and
tissue:blood partition coefficients for FAD were assumed to be one. In the extended model,
there are 28 biochemical parameters affecting the dose-response and time-course behaviors
of CYP19A mRNA and E2 in FAD-exposed animals; literature-reported values were used for
five parameters as in the previous model, and 23 parameters were estimated using the mean
E2 concentrations from the fathead minnow studies. We utilized measured plasma E2 data
from the first and second experiments for parameter estimation and ovarian CYP19A mRNA
data from the first and second experiments, along with plasma E2 data from the third
experiment for model validation. The definitions and values of physiological constants and
fixed biochemical parameters, and the measured E2 and CYP19A mRNA data were
previously described in detail by Breen et al. (2013).

The ordinary least squares method was used to estimate the following 23 biochemical
parameters from the fathead minnow E2 time-course data (see Table 1): 15 parameters in the
ovary compartment (Ksyn mrNA_basal, Ksyn_mRNA_max, Kioss mRNA, Vimax_syn_cyp19a, Km_syn_cypioa,

kIoss_CYP19A, Ki_FAD, Ka_syn_mRNA, krib_on, I(rib_off, ksyn_AA, I(Ioss_AA, Arib_total, ktRNA_on, ktRNA_off), two
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parameters in the liver compartment (Kioss Fap, Kioss_g2), four parameters in the brain
compartment (Ko_syn_LHrsH, Kioss_LHFsH, KLHrsH, Ki_g2), and two parameters in the venous blood

compartment (K nesH_off, Kioss LHFsH)- Let ng be the number of time points in the E2 time-

course data for the d™ FAD dose (including control); Cgéi’bmod be the measured E2 plasma

concentrations for the d"" FAD dose at the i" time; Cgy piooq (ti;C%ran, K) be the

model-predicted concentrations of E2 in the venous blood compartment at the i time, t;, for

the d™ FAD dose (including control), C%ap, with parameter set

k= (ksyn_mRNA_basaI ' ksyn_mRNA_max' kloss_mRNA'Vmax_syn_CYP19A' Km_syn_CYPl9A! I(Ioss_CYP19A' Ki_FAD’
Ka_syn_mRNA’ krib_on ' krib_off ' ksyn_AA! kloss_AA’ Aib_total ' ktRNA_on’ ktRNA_off ' I(Ioss_FADl kloss_EZl I(0_syn_LHFSH J

k|OSS_LHFSH ! I(LHFSH ! Ki_EZ' I(LHFSH_oﬁ’ ! k|OSS_LHFSH)

for d=1,2,3,4, and i=1,...nq. Then, the least squares estimate,

[ * * * * * * * *
k™= (ksyn_mRNA_basaI ’ ksyn_mRNA_max ’ kloss_mRNA'Vmax_syn_CYPlgA' Km_syn_CYPlQA' kloss_CYPlQA’ Ki_FAD’
* * * * * * * * * * *
Ka_syn_mRNA7 I(rib_on’ I(rib_oi‘f ’ ksyn_AA* I(Ioss_AA1 Aib_total* I(tRNA_om I(tRNA_of'f ’ I(Ioss_FADv kloss_EZl I(0_syn_LHFSH ’
* *

* * *
klosg LHFsH KL HFsH Ki g2 kLHFSHfoff , klosg LHFSH)»

is the parameter vector k , which minimizes the cost function

4 ny ) .
J (K) = dZZ(CIIEjZ’I,bIood o CEZ,bIood (tl : CISAD’ k))2 (2)

e
Parameters were estimated with an iterative nonlinear optimization algorithm using
MATLAB R2010a (Mathworks, Natick, MA, USA) software. We chose the Nelder-Mead
simplex method for its relative insensitivity to the initial parameter values as compared to
other common methods, such as Newton’s method, and its robustness to discontinuities
(Nelder and Mead, 1965). We confirmed convergence to the solution after the parameter

search terminated.
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Sensitivity Analysis
We performed a sensitivity analysis to examine model parameter uncertainty using a
previously described method (Breen et al., 2013). The key purpose of sensitivity analysis is
to identify the main contributors to the variation in the model outputs by ordering the
parameters; parameters with high sensitivity are more important for the model output than
parameters with low sensitivity. Briefly, the sensitivity function relates changes of the model

output to changes in the model parameters. We calculated the relative sensitivity functions

Reobiood, (£) @nd Rignaovaryk (1) With respect to the parameters k; for each of the model-

predicted concentrations Cgz, pioog @nd fold changes of CYP19A mRNA in the ovary
compartment Fnrnaovary, respectively. MATLAB was used to numerically solve the partial
derivatives of Re; piooqx (t) @Nd Ryrnaovaryk (t) for control and each FAD dose. To rank the

relative sensitivities, we calculated the L2 norm across time for each relative sensitivity

function as described by

L2 norm ( Re2 biood , ) = \/ ” Re2 bioodk, (t)‘zdt ©)

and

L2 norm ( RmRNA,ovary,ki ) = \/H RmRNA,ovary,ki (t)‘zdt : (4)
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RESULTS
Mathematical Model of HPG-axis

Table 1 shows the estimated biochemical parameter values determined by fitting the
model predictions to the measured mean plasma E2 concentrations for all four FAD doses
from the two time-course studies. The time for convergence to the solution for the nonlinear
parameter estimation was typically around 4 h on an Intel Core 2 Duo processor using
MATLAB.

For plasma E2 concentrations, we compared the model-predicted concentrations with
the time-course measurements. Overall, the model-predicted E2 concentrations correspond
closely to the mean time-course measurements for all four doses (Figure 2A-D). For the high
FAD dose (30 ng/L), the extended model performed markedly better than the previous model
(Breen et al., 2013), the prediction error from the previous model is reduced by 60, 32, 81,
95,99, 96, 27,and 14 % at 1, 2, 9, 10, 12, 16, 20, and 28 d, respectively. When compared
with our initial model (Breen et al., 2013), the extended model also better captured the mean
time-course behavior for the 30 ug/L FAD treatment, which was substantially reduced within
1 d of exposure to FAD, remained reduced throughout the exposure period, and rebounded at
2 d post-exposure, before returning to control levels following 8 or more d of recovery in
clear water (Figure 2D). For the other FAD doses, the extended model performed similarly to
the original model (Breen et al., 2013). For example, in the 3 ug FAD/L treatment, the
extended model continued to capture the plasma E2 compensation during exposure, and the

overshoot and return to control levels once the FAD exposure was terminated (Figure 2C).
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Figure 3A shows the model-predicted venous E2 dose-response during FAD exposure
ond, 1, 4, and 8. For FAD doses between 0 pg/L and 10 pg/L, the model predictions
monotonically decreased across dose, with FAD exposure on d 1 having the lowest venous
E2 concentration and d 8 having the highest venous E2 concentration, the same as the
original model predicted. The model predictions continued to decrease monotonically across
doses for FAD dose greater than 10 ug/L, with E2 concentrations on d 1 decreasing slower
than on d 4 and 8. As a result, FAD exposure on d 1 had the highest venous E2 concentration
and d 4 and 8 had similar venous E2 concentrations at higher FAD treatments. In contrast,
the previous model predictions had the lowest venous E2 concentration on FAD exposure d 1
and the highest venous E2 concentration on FAD exposure d 8 at higher FAD doses. Figure
4A provides a summary of model predictions for venous E2 concentrations plotted as a
function both of FAD concentration and time.

We also compared the model-predicted and measured ovary CYP19A mRNA fold
changes to validate our extended model. The model-predicted ovary CYP19A fold changes
correspond closely to the time-course measurements for all four doses (Figure 2E-H). Figure
3B shows the model-predicted ovary CYP19A dose-response for FAD exposure ond 1, 4,
and 8. The model predictions monotonically increased across dose, with the lowest ovary
CYP19A mRNA predicted for FAD exposure on d 1: similar to in the original model. For d 4
and 8, the model predicted similar ovary CYP19A mRNA fold changes as a function of FAD
dose, whereas the previous model predicted higher ovary CYP19A mRNA fold changes on d

4 than on d 8 (Breen et al., 2013). Figure 4B provides an integrated summary of the
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predictions for ovary CYP19A mRNA fold changes are plotted both as a function of FAD
concentration and time.

Model predictions were compared to plasma E2 concentrations from the 4-d exposure
study to further validate our model: this dataset was not used in the model development.
Even though all five FAD doses (0, 0.04, 0.2, 1, and 5 ug FAD/L) used for model validation
differed from the FAD doses used for model calibration, the model-predicted dose-response

curve for venous E2 corresponds closely to measured plasma E2 (Figure 3C).

Sensitivity Analysis

The relative sensitivities for modeled E2 and CYP19A mRNA, respectively, with
respect to each of the 26 biochemical model parameters are shown for the control and three
FAD test concentrations (0.5, 3, and 30 pg/L) during exposure and post-exposure (Figures 5
and 6). Overall, E2 (Figures 5) and CYP19A mRNA (Figures 6) are highly to moderately
sensitive to 17 model parameters during exposure and post-exposure; Six parameters,
k_syn mRNA_basal, Ka_syn mRNA, k_loss_FAD, k_loss LHFSH, k_rib_on, k_rib_off are
insensitive. Of these six parameters, four (k_syn_ mRNA_basal, Ka_syn mRNA,
k loss_FAD, k_loss_LHFSH) are also not sensitive for E2 and CYP19A mRNA in the

original model (Breen et al., 2013).

DISCUSSION
Breen et al., (2013) developed a mechanistic mathematical model for the HPG axis in

female fathead minnows to predict the dose-response, time-course behaviors for endocrine
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effects of the aromatase inhibitor, FAD. The model included a regulatory feedback loop
within the HPG axis that facilitates adaptive responses in plasma E2 concentrations and
CYP19A mRNA to FAD. The previous model captured the adaptive changes in plasma E2
concentrations occurring during exposure, and the overshoot observed post-exposure for the
3 ng/L FAD dose, along with the up-regulation of ovary CYP19A mRNA production
occurring during exposure for both the low (3 pg/L) and high (30 ug/L) FAD treatment
groups. However, the model did not provide good predictions of plasma E2 concentrations
for the high dose (30 ng/L FAD) treatment, which was significantly reduced throughout the
exposure period and substantially different from the response at the lower FAD
concentrations. These experimental data and modeling results prompted us to refine the
model in the current study to examine the hypothesis that an additional biological mechanism
was needed. Since protein synthesis controls the amount of CYP19A involved in the
conversion of T into E2, we investigated protein synthesis as a possible factor influencing
compensation. Specifically, we extended the computational model of the HPG axis to include
a pathway for protein synthesis to address the main limitation of the previous HPG axis
model (Breen et al., 2013). The extended model was evaluated with measurements of plasma
E2 data and ovarian CYP19A mRNA for eight FAD test concentrations. The results support
our hypothesis. By including a pathway for protein synthesis of CYP19A, the extended
model significantly improved the model fit for the dynamic E2 concentrations at high FAD
dose (30 ug/L FAD) treatment, while maintaining good model fits of dynamic E2
concentrations for controls and the lower doses (0.5 and 3 pg/L FAD), despite significant

differences in data behavior between high and low doses. The extended model was also
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capable of predicting the dynamic CYP19A mRNA fold changes for all four doses during the
two time-course studies, and the venous E2 dose-response during a 4-d exposure at 0, 0.04,
0.2, 1, and 5 ug FAD/L. Moreover, our sensitivity analysis indicates that CYP19A protein
synthesis plays an important role in the revised model, since both E2 and CYP19A mRNA
were highly to moderately sensitive to the parameters associated with the protein synthesis.
The extended model contributes to on going efforts to understand and simulate
biological responses to endocrine active chemicals, including aromatase inhibitors.
Development of a computational system model that incorporates this additional biological
mechanism provides a better understanding of possible adaptive responses, which can refine
descriptions of dose-response time-course behaviors that differ substantially from low dose
to high dose regimes. The knowledge obtained from iterations in model development,
refinement, and empirical testing can help us to better understand the biology underlying
toxicological responses to endocrine active chemicals, and can be applied to help reduce the
uncertainty of dose-response assessments in support of quantitative risk assessments, a need
identified as critical to supporting new approaches to regulatory toxicology (National

Research Council, 2007).

SUPPLEMENTARY DATA

The dynamic molecular balance equations are provided as supplementary data, available

online.
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Figure 1. Graphical representation of biochemical processes within the six compartments of the model: venous blood (A), gill blood (B), brain (C),
ovary (D), liver (E), and rest of body (F). In the venous blood (A), processes include: uptake and release of LH/FSH, E2, and FAD, degradation of
LH/FSH. In the gill (B), processes include: uptake and release of LH/FSH, E2, and FAD; FAD transport from gill lamellae to gill blood. In the brain
(C), processes include: uptake and release of FAD and E2; LH/FSH synthesis, release, and degradation; E2-mediated inhibition of LH/FSH release
into venous blood. In the ovary (D), processes include: uptake and release of FAD and E2; reversible binding of LH/FSH in blood to LH/FSH
receptors on cell membrane (surface); LH/F SH receptor-mediated activation of CYP19A_mRNA synthesis; binding of CYP19A_mRNA to ribosome
(Rib); binding of amino acids (AA) to transfer RNA (tRNA); translation of CYP18A_mRNA into CYP19A by CYP19A_mRNA_Rib complex and
tRNA_AA; degradation of CYP19A_mRNA and CYP19A ; conversion of T into E2 catalyzed by CYP19A; enzyme inhibition of CYP19A by FAD. In
the liver (E), processes includes: uptake and release of E2 and FAD; degradation of E2 and FAD. In the rest of body (F), processes include uptake
and release of FAD and E2.
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Table 1. Estimated parameters

Parameter Description Symbol Compartment  Walue
Basal synthesis rate of CYF 134 mRMA k_syn_mRMNA_basal Crvary 5.1x%107 pmol-hr
Maximum synthesis rate of CYP194 mRMA k_syn_mBMNA_max Chvary 6.8x10"" pmol-hr
Degradation rate of CYP194 mRNA k_loss mRMNA Cvary 280102 hrt
Maximum synthesis rate of CYP15A k_cat_C¥P13A_mRMA Owvary 5.7x102 hr'
Michaelis constant for synthesis of CYP15A Km_syn_CYP19A Cwvary 6.5x10% pmol-L™
Degradation rate of CYP194 k_loss CYP15A Owvary 3.0x102 hr'
Inhibition constant of FAD Ki_FAD Cvary 43107 pmol-L™
Activation congtant for synthesis CYP194 mRMA Ka_syn_mRMNA Chvary §.8x1022 pmolL™
Total amount of ribosome A_rib_total Owvary 9.6x10r* pumol
Binding rate of ribosome with CYP1 84 mRMA k_rib_on Cwvary 2010t pmol-hr?
Releasing rate of ribosome with CYP134 mRMNA k_rib_off Crvary 1.8x10¢ hr'
Synthesis rate of A4 k_syn_AA Chvary 1.1x10" pmolk-hr’
Degradation rate of A4 k_loss AL Cvary 21 hrt
Binding rate of A with Al with tRMNA k_tRMA_on Cwary 92 pmal-hr’
Releasing rate of A4 from RMNA k_tRMNA_off Cwvary 7Ax10 hrt
Degradation rate of FAD k_loss FAD Liver 5.6x10 hr'
Degradation rate of E2 k_loss E2 Liver 43 hrt
Zerg-order synthesis rate of LHFSH kD_syn_LHFSH Brain £.3:107° pmolk-hr!
Degradation rate of LHFSH k_loss |HFSH Brain 1.4¢10¢ hr'
Releasing rate of LHFSH k_LHFSH Brain 25102 hr'
Inhibition constant of E2 Ki_E2 Brain 4810 pmol-L™
Releasing rate of LHFSH {blood) from LHFSH receptor {(ovary) k_LHFSH_off “Venous Blood 78010 hr'
Degradation rate of LHFSH k_loss |HFSH venous Blood 28 hr
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Figure 2. Model evaluation for control and three FAD concentrations (0.5 pg/L, 3 pgiL, and 30 pg/L). Model-predictions were plotted
as a function of days during pre-exposure (-15 — 0 days), exposure to FAD (0 — 8 days), and post-exposure (8 — 33 days), and
compared with measurements (mean + SD) for plasma E2 concentrations (A-D) and ovary CYP19A_mRNA fold changes relative to
controls (E-H). Model-predictions were compared with measurement data from two experiments: control data includes four sampling
times during exposure and seven sampling times post-exposure; 0.5 pg/L - two sampling times during exposure and five sampling
times post-exposure ; 3 pg/L - four sampling times during exposure and four sampling times post-exposure; 30 pg/L - four sampling
times during exposure and seven sampling times post-exposure. Vertical dashed lines indicate period of FAD exposure.
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Figure 3. Modeled dose-response during FAD exposure. Model predictions were plotted as a function of FAD concentrations for venous E2
concentrations (A, C) and ovary CYP194A_mRMNA fold changes relative to controls {B) during exposure to FAD on days 1, 4, and 8 {2024, 2096,
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and post-exposure (8 — 33 days) for venous E2 concentrations (A) and ovary CYP19A_mRNA fold changes relative to controls (B).
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Figure 5. Relative sensitivities for modeled E2 plotted as a function of the 26 biochemical model parameters for control and three FAD

concentrations (0.5, 3, and 30 pg/L). Each bar represents the L2 norm of the relative sensitivities across time during exposure (0 — 8 days; A) and

post-exposure (8 — 33 days; B). The values indicate the degree to which changes in parameter values lead to changes in model outputs.
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LH/FSH:

dCLHFSH_brain =k

brain dt 0 syn LHFSH — kIoss_LHFSH ' ALHFSH_brain

V,

kLHFSH 'ALHFSH_brain .
C - b
1 + E2_brain
Ki_E2

Ovary Compartment

FAD:
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dC C

FAD_ovary FAD_ovary .
Vovary - Qovary CFAD_arteriaI - P )
FAD_ovary:blood

dt

E2:
v dCEZ_ovary _ C CE2_ovaw Vmax_CYPlQA 'CT .
ovary T - Qovaw E2_ arterial P . + C ,
E2_ovary:blood Km . 1+ FAD_ovary + CT
h Ki_FAD
CYP19A:

dCcyplgA _ Vmax_syn_CYP19A 'CAA_tRNA —k

V
ovary dt K

+C loss CYP19A ACYPlQA )
m_syn_CYP19A AA_tRNA

Vmax of CYP19A (conversion of T to E2):

Vmax_CYPlQA = kcat_CYPlQA ’ AbvplgA;

Amino Acids (AA):

vV dCAA —k Vmax_syn_CYPlQA 'CAA_tRNA k
ovary T — Royn AA T K -

A

AA I

loss_AA ’
m_syn_CYP19A + CAA_tRNA

CYP19A mRNA:
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v dCCYPlgA_mRNA —k (ksyn_mRNA_max - ksyn_mRNA_basaI )CLHFSH_R_ LHFSH

ovary — Msyn_mRNA_basal
dt Ka_syn_mRNA + CLHFSH_R_ LHFSH

- kloss_mRNA ’ ACYPlgA_mRNA’

CYP19A mRNA — Ribosome Complex:

dC ,
CYP19A_mRNA rib .
Vovary dt - krib_on ’ AbYPlQA_mRNA_free : A’ib_free - krib_off ’ ACYPlQA_mRNA_rib’

AbvplgA_mRNA_free = AbYPlgA_mRNA - A:YPlQA_mRNA_rib’

Aib_free = Aib_total - AbYPlQA_mRNA_rib;

Amino Acids — tRNA Complex:

v dCAA_tRNA —k A

ovary dt — ™MRNA on * A free A&RNA_free - ktRNA_off 'AAA tRNA !

AAA_free = AAA - AAA_tRNA;

ARNA_free = ARNA_totaI - AAA_tRNA;

Vmax of CYP19A mRNA-rib complex (conversion of transcript (CYP19A mRNA) to

protein (CYP19A)):

\Y

max_syn CYP19A — kcat_CYPlQA_mRNA ’ AbYPlQA_mRNA_rib’

Liver Compartment
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FAD:

ACen0 s Cenp ¢
VIiver %J'Ver = Qliver CFAD_arteriaI - PFA$

FAD_liver:blood

- kIoss_FAD ' AFAD_Iiver;

E2:

dc,, ,
VIiver % = Qliver CE2_arterie1l -

CE2_Iiver k .
" Noss B2 ° AEZ_Iiver’

PE2_Iiver:b|ood

Venous Blood Compartment

LH/FSH-receptor complex:

dALHFSH_R_LHFSH —k

dt LHFSH_on ' A1_HFSH_venous_free ’ AR_LHFSH_free

—Kiresh ot * ALkrsh R LHFsH>
where A?_LHFSH_free = AQ_LHFSH - ALHFSH_R_LHFSH

and ALHFSH_venous_free = A_HFSH_venous - ALHFSH_R_LHFSH’

LH/FSH:
v dCLHFSvaenous _ kLHFSH 'ALHFSHfbrain K .
venous dt - C ~ Moss_LHFSH ' ALHFSH_venous_free'
l + E2_brain
i E2
E2:
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V dCEZ_venous _ CE2_Iiver CE2_ovary

venous dt - Qliver P Qovary P

E2_liver:blood E2_ovary:blood
Co, i C
E2_brain E2_RoB .
+ Qbrain P + QRoB P - QcardiacCEz_venous )
E2_brain:blood E2_RoB:blood

FAD:
V dCFAD_venous _ CFAD_Iiver c:FAD_ovary

venous dt - Qliver P Qovary P

FAD_liver:blood FAD_ovary:blood
C , C
FAD_brain FAD_RoB .
+ Qbrain P + QRoB P - QcardiacCFAD_venous J
FAD_brain:blood FAD_RoB:blood

Rest of Body Compartment
FAD:
V dCFAD_RoB _ Q C CFAD_Rob .

RoB — <RoB FAD_arterial — ,

dt - P

FAD_RoB:blood

E2:

vV dCEZ_RoB _Q C _ CEZ_Rob .
— <XRoB E2_arterial ’

RoB
dt PE2_FZoB:bIood
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5. COMMENTARY ON THE PARAMETER IDENTIFICATION ISSUE

Mathematical modeling of biological systems and their response to chemical
exposures plays a key role to enhance the interpretation and quantitative application of
biological measurement data in risk assessments and drug development. Computational
models are considered the central element in systems biology, which allows us to better
understand complex biological systems by means of in silico experiments, model predictions,
and hypothesis generation (Chris et al., 2011). Since it is often not possible to measure key
model parameters directly, these parameters need to be obtained from an estimation process
by data fitting, and this process is a critical step in model development (Chis et al., 2011;
Saccomani et al., 2011). However, mathematical models that describe biological systems are
often complex nonlinear dynamic models with many unknown parameters (Saccomani et al.,
2011). Giving the complexity of biological mechanisms in combination with the limited
amount of quantitative biological data, it is important in the model development process to
infer how well model parameters can be determined. The mismatch between the complexity
of the models and the limited available data can lead to ill-conditioned inverse problems
(Burth et al., 1999). Hence, parameter estimation can be a challenging mathematical and
computational problem (Chis et al., 2011).

The main source of difficulties to estimate unknown parameters is the lack of
identifiability, which is an important aspect of model development (Chis et al., 2011; Jacquez
and Greif, 1985). For the models to be identifiable, a unique solution of the inverse problem
for all the free parameters must exist (Chis et al., 2011; Jacquez and Greif, 1985). Therefore,

it is not possible to assign unique values for all the unknown parameters when the model has
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identifiability issues (Chis et al., 2011). Identifiability can be of particular importance when
many of the model parameters have biological meaning, and these parameter values have
implications in biological or public health contexts, e.g. estimating the basic reproductive
number, Ry, in epidemiological models (Chis et al., 2011; Eisenberg et al., 2013). Hence,
identifiability of estimated model parameters and their uncertainties need to be addressed.
Parameter identification issues can be classified into two types: structural (a priori)
non-identifiability and practical (a posteriori or data-based) non-identifiability (Chis et al.,
2011; Saccomani, 2013). Structural non-identifiability arises when some model parameters
cannot be uniquely determined in the best-case scenario of noise-free data (Chis et al., 2011;
Eisenberg et al., 2013; Saccomani, 2013). For instance, when the model is structurally non-
identifiable, it is not possible to estimate two or more parameters in the model separately
(Capaldi et al., 2012), but only some combination of parameters. Moreover a structural non-
identifiable model might contain unnecessary parameters. These parameters might be not
identifiable since the model does not depend at all on the parameters. Structural
identifiability is a necessary condition for estimating parameters in model development for
real-life situations, which use data with inevitable noise and possibly insufficient data length
(Eisenberg et al., 2013; Saccomani, 2013). Practical non-identifiability arises when we lack
information in the available experimental data (Chis et al., 2011; Saccomani, 2013). We
often encounter severe constraints on experimental design when we attempt to develop
mathematical models of biological systems (Saccomani, 2013). To model biological systems,
practical identifiability issues frequently occur due to estimating parameters with an

insufficient sample size, since it is expensive and time consuming to collect large
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experimental data, especially for in vivo studies. In addition, mathematical modeling of
biological systems often includes complicated non-linear terms such as Michaelis-Menten
and Hill kinetics in their model equations, which requires appropriate data to capture both an
early exponential growth and a saturation phase. The lack of appropriate data could be
another common source of practical non-identifiability.

The most noticeable cause of non-identifiability is due to over-parameterization of
models (Catchpole et al., 1997). Parameter redundancy occurs when a model has too many
parameters (Cole et al., 2010). We could also have parameter redundancy in the practical

: . : : : _— VS
sense with complicated non-linear terms such as Michaelis-Menten Kkinetics, v = —T>*—

S+K, '

e.g. the parameters V. and K_ cannot be estimated independently when S << K_,, since

V= (\12‘—”] S. For a parameter redundant model, a set of model parameters can be expressed

in terms of a smaller set of parameters (Catchpole et al., 1997; Little et al., 2010).

In our study, mathematical modeling of biological systems was performed by using a
system of nonlinear ordinary differential equations. The mathematical models were
developed based on knowledge of biological mechanisms, and model parameters were
estimated using biological data generated from experiments. It is essential in the model
development process to infer how well model parameters can be determined and the
uncertainty of the estimated model parameters given the complexity of biological
mechanisms in combination with the limited amount of quantitative biological data. Thus, the

estimation of unknown model parameters, identifiability, and uncertainty quantification play
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a central role in the model development. To quantify the uncertainties of estimated model
parameters in our study, standard errors of estimated model parameters for the extended
H295R steroidogenesis model of Chapter 2 and the first HPG axis model of Chapter 3 were

calculated. Moreover, we examined identifiability of the first HPG axis model of Chapter 3.

Standard Error and Correlation Coefficient Calculation
To quantify the uncertainties of the estimated model parameters in our models,
standard errors and relative standard errors of the estimated model parameters were
calculated. In addition, we calculated the correlation matrix of the model parameters. We
followed the development and notation laid out in Banks et al. (2009) to describe the

standard error and correlation coefficient calculations. The statistical model is defined as

Y =f(t,.0)+&, j=1...n (1)

where f(tj ,0) is our deterministic model and &;are the errors. The ordinary least squares

estimator @ is obtained by minimizing the cost function DIy, - ft, o0y, - f(t,,0)],

6 =argmin3 [y, - (1, [y, - (1, 0)] @

Then, the m x p sensitivity matrix Dj(é) is given by
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of (t;,0)  of(t;,0) of,(t;, 0)
o0, 06, 00,
| A, 0) A (.0)  h(t,0)
D,(0)=| 6, 0, 26, |, i=1...n, 3
of,(t,,0)  of(t,,0) ot (t;, 0)
a6, 0, 00,

where m is the number of states of the system. The estimated variance of error matrix is

given by
V = var(z)) :diag(ﬁi[yj (O]l - f‘(tj,g)]TJ, @)

which is an unbiased estimator. The variance-covariance matrix is described by

A

=07 (5)

where Q = Z DJ.T (9)\7’1Dj (@). Using the variance-covariance matrix, we obtain the standard
j=1

errors SE(@,) for the k™ element of @ by
SE(Q,) ~ 2y, k=1...p, (6)
and the correlation matrix P by

P=M1IM, 7

where M = y/diag(%).

Standard errors and relative standard errors for the estimated transport equilibrium

parameters and the estimated parameters of the metabolic pathway in the extended H295R
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model of Chapter 2 are shown in Table 1 and Table 2, respectively. Overall, relative standard
errors for the estimated parameters of the metabolic pathway were much smaller than
estimated transport equilibrium parameters. The relative standard errors for all the estimated
parameters of metabolic pathway were very small, less than 3.3%, except one parameter Kia.
The model parameter, ki4, had very large uncertainty. We believe the large uncertainty is due
to the existence of two paths to create E2 in our model, namely the E1 pathway and the T
pathway. Based on the sensitivity analysis results, the E1 pathway appears to be the preferred
pathway for E2 synthesis, as compared to the T pathway (Breen et al., 2011). The relative
standard errors for all of the estimated transport equilibrium parameters were also small, less
than 15.9%, except one parameter g,s having a larger value of 65.78%. The absolute values
of each element of the correlation matrix for the metabolic pathway are shown in Figure 1.
Taking the absolute value of the correlation coefficient measures the strength of the
relationship. Overall, most pairs of estimated parameters have very little or no correlation.
The correlation matrix for the estimated transport equilibrium parameters is the identity
matrix since transport equilibrium parameters are independent of each other, which implies
that their covariance is zero.

We encountered a problem when we attempted to calculate the standard errors and
the correlation matrix of the estimated model parameters of the HPG axis model of Chapter
3. As described earlier, existence and invertibility of the matrix Q in Equation (6) is required
in order to calculate the standard errors and the correlation matrix. However, this required
condition is rather easily violated in practice (Banks et al., 2009). We were unable to invert

the matrix Q without a warning of potential inaccurate results using Matlab, since the matrix
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was ill-conditioned. Hence, we were incapable of obtaining stable estimates of the standard

errors and the correlation matrix. This result suggests that the estimated model parameters in

the HPG axis model suffer from parameter identifiability issues. Therefore, identifiability of

the HPG axis model of Chapter 3 was examined.

Table 1. Estimated transport equilibrium parameters,

standard errors, and relative standard errors

Parameter Value Sk Relative SE (%)
dig 00129  0.0007 543
G0 00052  0.0003 5.77
d1 00412  0.0028 6.80
d2 00558  0.0019 3.41
A3 0.0911 0.0027 2.96
d24 00605  0.0087 14.38
ds 00212 00014 6.60
ds  0.0423  0.0067 15.84
97 00676  0.0023 3.40
s 00377  0.0248 65.78
dog 00400  0.0024 6.00
dp 00267  0.0009 3.37
431 00443  0.0015 3.39
d32  0.0351 0.0020 5.70
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Table 2. Estimated parameters of metabolic pathway,
standard errors, and relative standard errors

Parameter Value SE Relative SE (%)
ko 0.0139 0.0000 0
Ky 0.0163 0.0000 0
ko 0.0105 0.0000 0
K3 0.7573 0.0006 0.08
kg 1.2683 0.0028 0.22
ks 0.8139 0.0007 0.09
Ke 11.1525 0.0280 0.25
kg 7.2168 0.0013 0.02
g 0.1765 0.0058 3.29
Kg 1.7537 0.0085 0.48
ST 0.0476 0.0006 1.26
Kqq 6.4794 0.0019 0.03
Kq2 12.1879 0.0173 0.14
Ki3 0.5948 0.0008 0.13
Kig 0.0005 0.2013 40260.00
Kis 0.0910 0.0008 0.88
Kig 0.6367 0.0038 0.60
Ki7 0.2471 0.0001 0.04
Kig 0.1215 0.0004 0.33
Ka1 63.5659 0.0000 0
Ka2 25.2075 0.0000 0
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Figure 1: Heat map of correlation coefficients for metabolic pathway parameters of the
H295R model. The heat map shows the absolute value of each element of the correlation
matrix.

Identifiability Analysis
As discussed earlier, we could encounter practical identifiability issues due to the
insufficient data available for an inverse problem. Collecting biological data is often difficult
and costly (Capaldi et al., 2012). Our HPG axis model is a representation of the endocrine
system of an organism (i.e., fish) based on in vivo experimental results. The HPG model was

developed from detailed analysis of the underlying biological system, which involves a
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relatively large number of biologically interesting parameters. On the other hand, the data
available from in vivo experiments are typically not large. It is the nature of in vivo studies
that experiments are expensive and time consuming, and that biological systems at the
organismal level are highly complex. The HPG axis model has 16 model parameters to
estimate from 26 data points. Therefore, the ratio between the number of observables and the
number of parameters in our HPG axis model is low. To examine the possibility of
insufficient data, we generated a larger dataset by simulation under a best case scenario. We
obtained computer-generated data from the model simulation without any noise for each of
the 16 state variables, sampled every 24 hours for 34 hours, and at 3 doses, and model
parameters were re-estimated with this dataset. These estimated parameter values did not
change substantially from the estimated HPG axis model parameters shown in Chapter 3.
Moreover, we were still unable to invert the matrix Q2 in Equation (6) without a warning of
potential inaccurate results using Matlab, since the matrix was ill-conditioned. Even though
we used the best case scenario of a large dataset to re-estimate model parameters, we were
still unable to obtain stable estimates of the standard errors and correlation matrix for the
HPG axis model.

We could also encounter structural identifiability issues. One of the potential causes
of non-identifiability is due to over-parameterization of models, causing some of parameters
to be unidentifiable. Under these conditions, reduced model and combinations of parameters
can be estimated even when individual parameters may not be estimated (Eisenberg et al.,
2013). Therefore, one way to overcome this issue is to use the subset selection method to

reduce the number of parameters to be estimated in the model (Burth et al., 1999). To apply
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subset selection, the model parameters are partitioned into well-conditioned and ill-
conditioned parameters: well-conditioned parameters are the parameters likely to be
estimated reliably, whereas ill-conditioned parameters are the remaining parameters that are
likely to be causing the inverse problem to be ill-conditioned (Burth et al., 1999). llI-
conditioned model parameters are fixed at prior estimated values, while the remaining well-
conditioned parameters are re-estimated using the same dataset (Burth et al., 1999). This
approach may introduce the bias by fixing the ill-conditioned parameters to prior estimates,
but could lead to major improvements on the parameter estimation over full-order estimation
(Burth et al., 1999). We implemented the subset selection method for our HPG axis model
using the L2 norm results of the sensitivity analysis. Small perturbations in the highly
sensitive parameters result in large changes in the model output, whereas substantial
variations in the relatively insensitive parameters result in only small changes in the model
output (Reich, 1981; Li et al, 1996). Parameters could become identifiable when insensitive
parameters are fixed a priori (Li et al, 1996). Thus, we selected a subset of parameters to be
re-estimated by ordering parameters according to the L2 norm results of the sensitivity
analysis, and fixing the insensitive parameters to prior estimates. First, we fixed four
insensitive parameters (Ksyn_ mrnA basals Ka_syn mrRNA, Kioss_FAD, Kioss_LHFsH) tO prior estimated
values and then re-estimated 12 sensitive parameters (Ksyn mrnA_max,: Kioss mRNA,
Vimax_syn_cvp19a, Km_syn_cyp19a, Kioss cyrioa, Ki Fap, Ka syn mrRnAs Kioss £2, Ko_syn LHFsH, KLHFSH,

Ki £2, KLHrsH_off). We were still unable to invert the matrix € in Equation (6) without a
warning of potential inaccurate results using Matlab, since the matrix was ill-conditioned.

Next, we halved the number of parameters to be re-estimated, choosing 6 parameters to be
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re-estimated from 12 sensitive parameters and fixing the remaining 12 parameters to prior
estimated values. We tried every combination of 6 sensitive parameters, but were still unable
to invert the matrix Q. Even with this substantial reduction in the number of estimated model
parameters, we were still unable to obtain stable estimates of the standard errors and
correlation matrix for the HPG axis model.

We also used a Monte Carlo approach to investigate parameter identifiability for the
HPG axis model. First, we generated 100 data sets by adding small noise to the simulated
hourly model output based on the published results, and model parameters were re-estimated
using the generated data set. Then, the matrix € was created and we removed, in turn, row i
and column i from the matrix (i.e., treating parameter i as if it were known.) Based on the set
of matrices generated, we then selected which parameter to eliminate from the estimation
process, either by finding which matrix had the largest condition number (i.e. “hardest” to
invert) or which of the resulting variance/covariance matrices yielded the largest correlation
between some pair of parameters. Using this approach, we could remove, one-by-one,
“troublesome” parameters. In many instances, the matrix { was not positive definite until
many parameters were removed. And in some instances, most of the parameters had to be
removed, leaving only a set of four, five, or six parameters that were identifiable, despite the
fact that this procedure was based on idealized scenarios. These results are in agreement with
the subset selection analysis, which showed the inability of obtaining stable estimates of the
standard errors and correlation matrix for the HPG axis model. Based on the results from
several analyses to examine potential identifiability issues, we believe that our HPG axis

model had non-identifiable parameters. Hence, we are unable to estimate all 16 parameters
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reliably. Work is ongoing to investigate the issue of identifiability in more detail for this
model.

Currently, the vast majority of biological models are nonlinear and dynamic,
including the biological models developed in this study. Ideally, one would like to establish
the domain of validity of the identifiability algorithm. However, this may not be possible
(Saccomani et al., 2010). Testing the identifiability of general non-linear dynamic models is
an extremely challenging mathematical problem (Chis et al., 2011). In addition, it may also
not be possible to distinguish between non-identifiability and lack of convergence of the
iterative optimization algorithm used for parameter estimation (Saccomani et al., 2010),
which could further complicate the investigation of identifiability. Moreover, we also need to
consider designing the experiment to improve the ability to estimate the model parameters.
An optimized experimental design is necessary to improve the estimability of the relevant
parameters in biological models. Identifiability and optimal sampling design are linked steps

in parameter estimation (Jacquez and Greif, 1985).
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6. CONCLUSIONS

We have developed mechanistic computational models to predict the biochemical
responses of vertebrate endocrine systems to EACs in collaboration with government,
academia, and industry within the United States and internationally. Specifically, we
developed (1) a model of the metabolic network of adrenal steroidogenesis in human cells to
predict the synthesis and secretion of adrenocortical steroids and their dynamic dose-
response to EACs, and (2) a model of the HPG axis in female fathead minnows to predict
dose-response and time-course behaviors for endocrine effects of EACs. A variety of
environmental contaminants and pharmaceuticals are known to act as EACs, which have the
potential to alter endocrine homeostasis leading to adverse effects in exposed vertebrates
including humans. In order to assess environmental risk, exposures must be linked to effects
of EACs. Itis critical to establish a causal relationship between exposures and adverse effects
of EACs in order to understand the result of molecular and biochemical changes. The
development of predictive mechanistic computational models allows for more accurate and
efficient quantitative evaluations of the chemical toxicants to help overcome challenges in
ecological and human risk assessments, and to improve quantitative risk assessments. The
integration of mathematical and computational models with the technology of molecular
biology and chemistry enabled us to improve the ability to predict the effects in exposed
vertebrates. In collaboration with experimental scientists, the use of data from laboratory
experiments allowed us to develop and evaluate mathematical models of biochemical
signaling and metabolic pathways, which could be utilized for predicting human health and

ecological outcomes from exposures to chemical toxicants. Moreover, the use of in vitro
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experimental methods together with our computational model support the recommendations
of the National Research Council report on the vision of toxicology in the 21* century with
the use of in vitro systems that can: (1) provide broad coverage of chemicals, mixtures, and
outcomes; (2) reduce the cost and time of testing; (3) use fewer animals; and (4) develop
more robust scientific basis to assess health effects from environmental chemicals.

In particular, our research demonstrates the need for a close collaboration between
modelers and biologists/toxicologists to successfully develop and evaluate mechanistic
computational models that can predict and improve the understanding of the mechanisms for
dose-response behavior of EACs. Data needed by the modelers (e.g., ovary volume
measurements) were obtained experimentally. In turn, model simulations helped generate
testable hypotheses that directed further laboratory work. The application and refinement of
these models are proceeding in much the same way. As experimental data is generated, it
informs the refinement of these models and its adaptation for other applications. In turn, use
of these models for those applications leads to additional hypotheses that can be tested to
inform our understanding and the impact of chemical stressors on important biological
processes. Our dose-response models for human adrenal cells and fish exposed to EACs
support both human health and ecological risk assessments by advancing our understanding
of the biological effects of chemicals considered harmful to the public and ecosystems, which
include many EACs. Both of these models and the approaches taken for their development
represent innovative and highly transferrable products that address critical needs for

improved predictive risk assessments related to EACs.
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The mechanistic computational models developed in our research have several
potential applications. First, these models will help to improve our understanding of the
biochemical responses to EAC, and could be used to identify predictive biomarkers
indicative of adverse effects. Second, these models could be used as a basis to predict the
potentially adverse effects of environmental EAC that interact with components of the
modeled biological pathways. Furthermore, the mechanistic information incorporated in the
models could help to more accurately extrapolate dose-response curves from high dose data
to lower doses that are often more environmentally relevant. These applications can help
overcome challenges in both ecological and human risk assessments since the modeled
biological pathways are conserved across vertebrates (e.g., human, fish).

There are some limitations to our mechanistic computational models. In particular,
our model of the HPG axis had some parameter identification challenges. Mathematical
models are simplified representations of the systems and processes in which we are
interested. Even though the use of an in vivo experimental method linked to our
computational model provided us with valuable biological information, we had limited data
available due to the expense and time constraints of the in vivo study. The small sample size
used for parameter estimation could contribute to the uncertainty in the parameter values.

In our study, the primary use of models is to make predictions. The ability to forecast
the unseen outcome under different situations provides us with vital information. However,
the meaning and relevance of the model parameters may be compromised under parameter
identification issues. It is a requirement for parameter estimation that all parameters in a

model are identifiable on the basis of the observed data. The absence of identifiable
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parameters implies that we cannot distinguish between different values of parameters on the
basis of the observed data. Even though it is possible to estimate parameter values even when
not all parameters are identifiable, the estimated parameters may not be reliable. The simplest
way to solve the problem of parameter estimation with non-identifiable parameters is to
predetermine the values of other parameters in the model which could influence the
parameters being estimated by other means, and hold these parameters to be predetermined
fixed values. However, even this simplest approach requires additional data or knowledge in
order to predetermine these parameter values soundly. The exploration of identifiability is a

major task, which needs to be addressed in future research.
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Computational Model of Steroidogenesis in Human H295R Cells to Predict
Biochemical Response to Endocrine-Active Chemicals: Model Development

for Metyrapone

Michael S. Breen,! Miyuki Breen, 23 Natsuko Terasaki* Makoto Yamazaki# and Rory B. Conolly 2

INational Exposure Research Laboratory and ZNational Center for Computational Toxicology, U.S. Environmental Protection Agency,
Research Triangle Park, North Carolina, USA; 2Biomathematics Program, Department of Statistics, North Carolina State University,
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BACKGROUND: An #n vitre steroidogenesis assay using the human adrenocortical carcinoma cell line
H295R is being evaluated as a possible screening assay to detect and assess the impact of endocrine-
active chemicals (EACs) capable of altering steroid biosynthesis. Data interpretation and their
quantitative use in human and ecological risk assessments can be enhanced with mechanistic com-
putational models to help define mechanisms of action and improve understanding of intracellular
concentration-response behavior.

OBJECTIVES: The goal of this study was to develop a mechanistic computational model of the meta-
bolic network of adrenal steroidogenesis to estimate the synthesis and secretion of adrenal steroids
in human H295R cells and their biochemical response to steroidogenesis-disrupting EAC.

METHODS: We developed a deterministic model that describes the biosynthetic pathways for the
conversion of cholesterol to adrenal steroids and the kinetics for enzyme inhibition by metryrapone
(MET), a model EAC. Using a nonlinear parameter estimation method, the model was fitted to the
measyrements from an # vitie steroidogenesis assay using H295R cells.

REsuLTS: Model-predicted steroid concentrations in cells and cultare mediom corresponded well to
the time-course measurements from control and MET-exposed cells. A sensitivity analysis indicated
the parameter uncertainties and identified transport and metabolic processes that most influenced
the concentrations of primary adrenal steroids, aldosterone and cortisol.

CONCLUSIONS: Qur study demonstrates the feasibility of using a computational model of steroido-
genesis o estimate steroid concentrations # vitre. This capability could be useful to help define
mechanisms of action for poorly characterized chemicals and mixtures in support of predictive haz-
ard and risk assessments with FACs.

Kty WoRDS: endocrine-disrupting chemicals, H295R cells, mathematical model, mechanistic com-

putational model, metyrapone, sensitivity analysis, steroid biosynthesis. Enviren Health Perspect
118:265-272 (2010). doi:10.1289/¢hp.0901107 available via http.//elx.doi.org/ [Online 16 October

2009]

There is international concern about the
potential for various envircnmental con-
taminants and commercial products to alter
endocrine system function and contribute
to adverse effects in humans and wildlife
(Cooper and Kavlock 1997; Daston et al.
2003; Hutchinson et al. 2006; Zacharewski
1998). The Safe Drinking Water Act
Amendments (1996) and the Food Quality
Protection Act (1996) require screening for
endocrine-disrupting properties of chemi-
cals in drinking water and pesticides used in
food production. In response to this legis-
lation, the U.S. Environmental Protection
Agency developed and implemented an endo-
crine disruptor screening program. The effort
focuses on the effects of chemicals that mimic
hormones by acting as agonists or antagonists
of estrogen and androgen hormone receptors
(Chu et al. 2009; Henley and Korach 2006),
and other endocrine-active chemicals (EACs)
that can cause effects by non-receptor-medi-
ated mechanisms (Harvey and Everett 2003;
Ulleras et al. 2008; Villeneuve et al. 2007).
In this article, we describe a mechanistic com-
putational model of steroidogenesis that can
be used to estimate the biochemical effect

of EACs that can modulate the activity of
steroidogenic enzymes and the subsequent
concentrations of steroid hormones.

Steroids have an important role in several
physiologic and pathologic processes, such
as stress response, development, metabo-
lism, electrolyte regulation, reproduction,
and hormone-sensitive cancers (Portier 2002;
Ulleras et al. 2008). Stercids are derived from
cholesterol (CHOL) and are synthesized pri-
marily in the adrenal cortex, ovaries, testes,
and placenta through a series of biochemical
reactions mediated by multiple cytochrome
P450 (CYP) enzymes and hydroxysteroid
dehydrogenases (HSDs) (Miller 1988; Payne
and Hales 2004). Exposure to various envi-
ronmental EACs can alter the activity of these
steroidogenic enzymes and the subsequent
production rate of steroids (Sanderson 2006;
Sanderson et al. 2002; Walsh et al. 2000).
To better understand the intracellular mecha-
nisms underlying the concentration—response
behavior of steroidogenesis-disrupting chemi-
cals, we are developing mechanistic compu-
tational steroidogenesis models that describe
chemical-mediated biological perturbations at
the biochemical level.

Data for our computational model were
obtained from an ## vizre steroidogenesis assay
using the human adrenocortical carcinoma
cell line H295R. The H295R cells express all
the key enzymes for steroidogenesis and the
ability to produce all the adrenocorticol ste-
roids (Gazdar et al. 1990; Rainey et al. 1994;
Staels et al. 1993). The expression of steroido-
genic genes in H295R cells is well correlated
to the expression in normal human adrenal
(Oskarsson et al. 2006). The H295R cell line
has been widely used to study adrenocortical
function, regulation of stercidogenesis, and
screening of EACs (Gracia et al. 20065 Hecker
and Giesy 2008; Muller-Vieira et al. 2005;
Sanderson et al. 2002; Ulleras et al. 2008).
The H295R assay system is being developed
and evaluated by several international labo-
ratories as a possible steroidogenesis screen-
ing approach (Hecker et al. 2007). This assay
coupled with a mechanistic computational
model supports the recommendations by the
National Research Council (2007) on the
vision of toxicology in the 21st century with
the use of iz vitro systems that can &) pro-
vide broad coverage of chemicals, mixtures,
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and outcomes; &) reduce the cost and time of
testing; ¢) use fewer animals; and & develop
a more robust scientific basis to assess health
effects from environmental agents.

A mechanistic mathematical model of
steroidogenesis has several potential applica-
tions. First, this type of model can enhance the
interpretation of data from iz witre steroido-
genesis assays by helping to define mechanisms
of action for poorly characterized chemi-
cals and mixtures of chemicals in support
of in vitro EAC screening methods. Second,
this model can help guide low-concentration
extrapolations of ir wirre concentration—
response curves. Third, the model can help
formulate hypotheses and design critical
experiments. Fourth, a model that predicts the
response of the major adrenal steroids [e.g.,
cortisol (CORT), aldosterone (ALDO)] to
EACs can be coupled to multorgan systems
models, which include regulatory feedback of
the hypothalamus—pituitary—adrenal axis and
the renal-angiotensin—aldosterone system, in
support of iz vive EAC screening methods.

Other steroidogenesis models have been
previously reported. Murphy et al. (2003)
developed a model for vitellogenesis, a
steroid-controlled process, in female fish. To
model ovarian staroidogenesis, all reactions
between the release of gonadotropin and the
production of testosterone were combined
and mathematically described by one Hill
equation. Selgrade and Schlosser (1999) devel-
oped a mathematical model to predict plasma
levels of estradiol during different stages of
the menstrual cycle in women. Estradiol
concentrations were modeled as a weighted
sum of luteinizing hormone, growth folli-
cle stage, and preovulatory stage. However,
these models lack a mechanistic metabolic
pathway of steroid biosynthesis at the bio-
chemical level. Breen et al. (2007) developed

a mechanistic computational model of ovarian

Table 1. Estimated transport equilibrium param-
eter values (dimensionless) and #2 values from
model fit of steroids corresponding to given g
parameters.

Parameter Value A

s 0.0043 098
G 00013 097
@ 0.0140 0.9
o 00171 099
. 0069 099
o 00729 097
e 00072 0.9
G 00141 097
G 00201 099
T 00174 070
e 00124 099
G 0.0084 098
7 00130 098
I 00108 099
i oM —4

2MET transport equilibrium { () set to CORTICO transport
equilibrium (¢g,) see "Results” for details.

steroidogenesis. Metabolic reaction and trans-
port rates were estimated from ovary explants
of a small fish. Becker et al. (1980) developed
a probabilistic model of the metabolic path-
way for testicular steroidogenesis. Transition
probabilites for the reactions in the pathway
were estimated from ex #ivo preparations of
rat and rabbit testes. However, ovarian and
testicular steroidogenesis does not include the
metabolic pathways for the major adrenal ste-
roids, aldosterone and cortisol.

In this study, we developed a mechanistic
computational model of the adrenal meta-
bolic and transport processes that mediate
steroid synthesis and secretion and the kinet-
ics for enzyme inhibition by the competitive
steroidogenic enzyme inhibitor metyrapone
(MET), a model EAC.

Materials and Methods

We first describe the iz vitro steroidogenesis
experiments, and then the mathematical model
and procedures for parameter estimation.

Steroidogenesis assay with H295R cells.
We performed two experimental studies with
H295R cells: a control study with samples
analyzed at five time points (0, 8, 24, 48,
and 72 hr) and a MET study with two MET
concentrations (1 and 10 uM) with samples
analyzed at four time points [8, 24, 48, and
72 hr; see Supplemental Material for details
(doi:10.1289/ehp.0901107.S1 via hrep://
dx.doiorgl)]. Briefly, the medium and cells
were separately removed from four replicate
wells at each tme point. The cells were dis-
solved in 100 pL distilled water and sonicated
to produce a cell Iysate. Steroid concentrations
in the medium and cell lysate were measured
using liquid chromatography/mass spectrom-
etry for 12 steroids [pregnenolone (PREG),
17ct-hydroxypregnenolone (HPREG), dehy-
droepiandrosterone (DHEA), progesterone
(PROG), 17at-hydroxyprogesterone (HPROGY),
androstenedione (DIONE), testosterone (T,
deoxycorticosterone (DCORTICO), corticos-
terone (CORTICQ), ALDO, 11-deoxycortisol
(DCORT), and CORT] and using enzyme-
linked immunosorbent assay for two additional
steroids [estrone (E;) and 17[3-estradiol (E,)].
The quantitative ranges for cach steroid in
the cells and medium are provided in Table 1
of the Supplemental Material (doi:10.1289/
chp.0901107.51).

Estimarion of eell volume. To estimate the
volume of the cells per well, we performed a cell
morphology study following the same exper-
imental method as the previously described
steroidogenesis assay for both controls and the
two concentrations of MET (1 and 10 pM).
At post-stimuli incubation periods of 0, 24,
48, and 72 hr, cells were separated from the
medium and removed from six replicate wells.
The mean cell diameter and mean cell circu-
larity in each well were measured using a cell

analyzer (Vi-CELL XR, Beckman Coulter,
Fullerton, CA, USA). Because the mean circu-
larity of the separated cells was always = 90%, a
spherical cell shape was assumed with a volume

V;ndw_ceﬂ CXPICSSCCI as

Vindiv_cdl = %TE(%)S 1]

where & is the mean measured cell diame-
ter (14.20 pm). This yielded a Viugp cen of
1,499 pmS. To determine the mean volume
of cells per well, V), we multiplied V] 4, .1
by the number of cells per well.

Compensation of stereid dilution in cell
fysate. To compensate for diludon of the ste-
roids by 0.1 mL distilled water, V., added
to the cell lysate, we determined the concen-
tration of steroid x in cells, C_y,(#), by muldi-
plying the measured concentration of steroid
xin the cell lysate, G o(2), by the dilution
factor Vijee/ Ve, where the volume of the cell
lysate, Ve is the sum of Ve and V...

Overview of mathematical H295R
steroidegenesis model The compurtational
model is based on an iz vitre steroidogenesis
experimental design with two compartments:
culture medium and H295R cells (Figure 1).
The model consists of steroid transport and
metabolic pathways. The transport path-
ways indude cellular uptake of CHOL (ste-
roid precursor) and MET and the import
and secretion of 14 adrenal steroids (PREG,
HPREG, DHEA, PROG, HPROG, DIONE,
T, DCORTICO, CORTICO, ALDO,
DCORT, CORT, E;, and E,). The metabolic
pathway includes conversion of CHOL into
the 14 adrenal steroids and inhibition of ste-
roidogenic enzymes by MET. Development
of various aspects of the model is described in
detail below.

Import of CHOL, the precursor for all
steroid hormones, Cholesterol is wansported
to the inner mitochondrial membrane, which
is the site for the first metabolic reacton of
steroid biosynthesis. This transport process
consists of two main steps. First, CHOL is
imported into the cell mainly by the low-
density-liproprotein-receptor—mediated
lysosomal pathway (Brown and Goldstein
1986; Chang et al. 2006; Gallegos et al.
2000). Second, CHOL is delivered to the
inner mitochondrial membrane by the intra-
cellular sterol carrier protein-2, steroidogenic
acute regulatory (StAR) protein, and periph-
eral benzodiazepine receptor (Chang et al.
20065 Gallegos et al. 2000; Maxtield and
Wustner 2002). We model the transport rate
of CHOL from the medium as a first-order
process (Figure 1B).

Metabotic patinvay. The metabolic path-
way in the H295R cells that converts CHOL
into the 14 adrenal steroids consists of 17 enzy-
matic reactions catalyzed by nine different pro-
teins (Figure 1A} (Payne and Hales 2004). All
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metabolic reactions occur in the smooth endo-
plasmic reticulum except conversion of CHOL
to PREG, which occurs in the inner mitochon-
drial membrane (Agarwal and Auchus 2005;
Miller and Strauss 1999). Interorganelle trans-
ports are not included in the model because we
assumed these processes are not rate limiting,
Because the metabolic reactions are predomi-
nantly irreversible, the reverse reaction rates are
set to zero (Becker et al. 1980). We assume the
substrate concentration is much less than the
Michaelis constant (substrate concentration
that yields a half-maximal reaction rate). Thus,
the rate of product formation increases linearly
with substrate concentration as described by a
first-order rate constant (Figure 1B).

Steroid rransport parhway, The transport
of the steroids between the cells and medium
is mediated by multiple transport mecha-
nisms, including nonvesicular and vesicular
processes (Chang et al. 20065 Maxfield and
Wusmer 2002; Neufeld et al. 1996). Because
the concentration of the newly synthesized
steroids in the cells is probably insufficient to
saturate the multiple steroid transport mecha-
nisms during the experiments, we model the
rates of secretion and uptake for each steroid
as reversible first-order processes [, and £,
for secretion and uptake of steroid x, respec-
dvely; see Supplemental Material, Figure 1
(doi:10.1289/611};).0901107.51)].

Uptake and enzyme inhibition by MET.
Various EACs can directly inhibit the stercido-
genic enzymes in the metabolic pathway. In
this study, we examined the steroid response
of H295R cells to exposures from MET, an
EAC that is a competitive inhibitor of CYP11-
B-hydroxylase (CYP11B1), which catalyzes two
different reactions in the metabolic pathway:
conversion of DCORTICO to CORTICO,
and conversion of DCORT to CORT
(Figure 1A) (Harvey and Everett 2003; Harvey
et al. 2007). We assume that MET diffuses into
the cells and reaches equilibrium with the MET
concentration in the medium:

CMET el =G0 OMET, med(8), [2]

where Cypr oy and Cyp pmeq are the cell
and medium MET concentrations at time #,
respectively, and gy is the partition coeffi-
cient (Figure 1B). To account for the volumes
of the cells, Veell, and medium, Vmed, the

molecular balance equation

Vel CMET et (D4 Vined Criz Tumed ()
=Vt CMET el O+ Vi cd Gtz Tmed (0), - [3]

is solved for Cypr (2 and substituted into
Equation 2 with Cpipr,c1(0) = 0 to yield
Chipteell (7)

_ q40
B ( 1+ 40 I/t:ell’”/meti) CMET)mCd(O). 4]

For the two CYP11B1 enzymatic reac-
dons competitively inhibited by MET', the
kinetic parameters 4, ¢ and 4,7 are respectively
divided by ticoprico = 1+ (Cuer coti/f41)
and ctcopr = 1+ (Cyarcr/bys) with MET
inhibition constants 4 and /4y, (Figure 1B).

Dynamic molecular balances. The time
ocourses of the steroids are described by dynamic
molecular balance equations [see Supplemental
Material (doi:10.1289/ehp.0201107.51)]. 'The
dynamic molecular balance equatons for the
steroids in cells and medium are

StAR

H295R Cells h

J

N\

PrRog) | [corTicd | HPREG) | [pcoRT]) | [pHEA] | (E1] | |(E2)

[PREG] [pcoRTICO] [ALDO)

[HPROG|

\ Medium

[corT) [DIONE]
J

H295R Cells

| K1 Qo %o 91 T Gos Goa Gan s Uos  dar Gas a0 dao st T2
(CHOL MET) h
Prog | [corTicd | (HPREG) [DCORT) | [DHEA @ @

[PREG] [DCORTICO) (ALDO]  [HPROG]  [CORT] (DIONE]
\_ Medium )

Figure 1. {A) Conceptual steroidogenesis model for control and MET-exposed H295R cells. The model
consists of two compartments: culture medium and H295R cells. Cellular uptake of CHOL from medium
Is depicted by the broad gray arrow laheled with the StAR protein. Reversible steroid transport between
medium and cells i1s depicted by bidirectional thin gray arrows. [rreversible metabolic reactions in the
cells are depicted by arrows, with each pattern representing a unique enzyme. Enzymes are labeled next
to reactions they catalyze: CYP450 side-chain-cleavage (CYP11A), CYP450¢17-o-hydroxylase {(CYP17H),
CYP450¢17,20-lyase {CYP17L), 3-B-hydroxydehydrogenase type 2 (3pHSD2), 17p-hyd roxydehydrogenase
type 1 {17pHSD1), CYPA50 aromatase {CYP19), CYP450 21-ce-hydroxylase {CYP21A}, CYP450
11-B-hydroxylase type 1 {CYP11B1), and aldosterone synthase {CYP11B2). Steroids are PREG, HPREG,
DHEA, PROG, HPROG, DIONE, T, k4, E;, DCORTICO, CORTICO, ALDO, DCORT, and CORT. The EAC MET is
shown as enzyme inhibitor of CYPT1B1. {B) A graphical representation of the parameters for the math-
ematical H295R steroidogenesis model, which consists of first-order rate constants for CHOL uptake into
the cells, &, and for each metabolic process, k—ki 5. For the quasi-equilibrium analysis, the equilibrium
constants are fqo—qqg. Partition coefficient for MET is . Enzyme inhibition constants for MET are ky; and

ky for CORTICO and CORT pathways, respectively.
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dcxjcell _

Vcell Px cell ™ U

P T A xcell
+ [xjcell - ijcell {5}
and
4C, e
Vmed A - ijcell - [x,celh (6]

where C, . and C, .4 are the concentrations
of steroid x in cells and medium, respectively;
P oy and U, g are the production and use
rates of steroid x in cells, respectively; Z, .
and S, . are the cell import and secretion
rates of steroid x, respectively. The first two
terms on the right side of Equation 5 repre-
sent the net metabolic reaction rate of ste-
roid x. The last two terms represent the net
cellular uptake or release rate of steroid x.
Quasi-equilibrium analysis. We assume
that the steroid concentrations in the cells and
medium are operating near equilibrium. There
is good experimental evidence to support this
assumption. First, the time-course data from
the control and MET -exposed cells show that
some steroid concentrations in the medium
increase for 48 hr but then decrease at 72 hr.
Because the cells can secrete and import ste-
roids, the steroid transport is probably revers-
ible. Second, the time-course data from the
control and MET studies show remarkably
similar dynamic behavior for each stercid con-
centration in the cells and its corresponding
concentration in medium. For each steroid, a
comparison between the simultaneous meas-
urements in the cells and medium shows that
a linear regression line (y-intercept set to zero)
closely fits the data [see Supplemental Material,
Figure 2 (doi:10.1289/¢hp.0901107.51)]. This
linear correlation between concentrations in the
cells and medium is clearly evident with large
B2 values for each steroid transport parameter
(Table 1). This is good evidence that the ste-
roid transport between the cells and medium

Table 2. Estimated parameter values of metaholic
pathway.

Parameter Valle Unit
I 00049 fi=?
ko 00230 hr!
ks 09443 hr!
Iy 27%1078 bt
ks 08522 hr!
ke 132263 hr!
Iy noozo hr!
I 31% 105 hr!
& 3.1479 hr!
b 00367 bt
k” 68701 hrt
ks 136062 hr!
e 05482 hr!
g 00003 bt
ks 00826 hr!
f(15 05627 hrt
LT 02396 hr!
k1g, 00847 hr!
o 18.1767 i
s B8.2661 i

is rapid and reversible. Therefore, we assume
that the steroid concentrations in the cells
and medium reach equilibrium after a short
transient time. Because the steroids are also
involved in the metabolic pathway of stercido-
genesis, this is considered a quasi-equilibrium.
To examine the quasi-equilibrium behav-

ior, the reversible transport rates (4, and %_,
for secretion and import of steroid x, respec-
tively) are assumed to be much faster than the
metabolic reaction rates. After a short period
of time, the concentration of steroid x in the
cells and medium reaches equilibrium:

Cx,med _ £ +x _

CYac,cell B k_—x B [7}

where ¢, is the equilibrium constant. We can
sum the mass (molecules) of steroid x in the
cells and medium to yield

d( I/cellC:c,cf:H + Vmed C‘J@med)

ar
d( Vccll + Vmedgx) Cx!ccll

- dr

Ux,cell . [8]

=p

weell T

'The simplified system of equations consists of a
differential equation for cach steroid in the cells,

dcx,cell _ 1
P - Vcell ¥ Vmedqx \Px,cell - ijcell) >

[9]

and an algebraic equation for each steroid in
the medium,

Cx,med:qxcﬁgcell' [10}

The model consists of 14 transport equilib-
rium constants (g9, ¢ag, « - + » ¢ag), 17 meta-
bolic rate constants (£, £, .. ., £y5), a CHOL
import rate (f,), two enzyme inhibition con-
stants for MET (&4, #45), and the partition
coefficient for MET (g40). These dynamic
molecular balance equations for quasi-equilib-
rium and 35 parameters are used in all sub-
sequent analyses [see Supplemental Material
{doi:10.1289/chp.0901107.51)].

Parameter estimation. The parameters for
the two pathways (steroid transport pathway
and metabolic pathway) were independently
estimated using the mean concentrations
from replicate experiments. For the steroid
transport pathway, the equilibrium constants
(419, G205 + + + » g32), were estimated with the
time-course data from the control and MET
studies using the direct least squares solution
for Equation 10:

Q’Z: [Qx,cell’ Qx,cell] JQ%JCEH’ Qx,med: [1 H

where ¢,* is the least squares estimate of
the equilibrium constant for stercid x, and
Qx,cell’ = [ijcell(f =0, d = 0) Cx,cell(l" = 8,

d=0)...Cfr=72, 4= 10)] and
Qx,medl = {Cx,med(’f =0, d= 0) C"Jc)mecl(bL =38,
d=0) ... Cpnealr="72, d=10)] are the meas-
ured concentrations in the cell and medium,
respectively, at tme ¢ for the MET dose 4 for
4=0,1,and 10 uM.

For the metabolic pathway, the parame-
ters (&, %y, . . ., Jyg, Fap, kao) were estimated
with the time-course data from the control and
MET studies using the weighted least squares
method. Let C, ..p(z5 CdMET,med’ k) be the
model-predicted concentrations of steroid x in
the cells at the ith time 7 for the #th MET dose
(including control) CanET,med with parameter
set k= Uy, koo oo bus, kg, ki) Let O5
be the measured concentration of steroid x in
the cells at the ith time 7, for the #th MET dose
(induding control) (%5 1.q and let €4, be
the mean measured concentration across time
whered=1,...,3and i=1,..., 5. Then, the
weighted least squares estimate, £° = (%%, ,*,
oy Rig®s Ra®, kig®), is the parameter values £,
which minimizes the cost function

—
i

T

1
o

1 el

k)=

®
]

{ 2
eell Cx,cell(’z‘? %Er,med=é)] .

[12]

M o
£ %

]
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Parameters for the metabolic pathway were
estimated with an iterative opumization algo-
rithm using MATLAB R2009a (Mathworks,
Natick, MA, USA) software. We chose the
Nelder-Mead simplex method for its relative
insensitivity to the initial parameter values
compared with other common methods, such
as Newton’s method, and its robustness to
discontinuities (Nelder and Mead 1965).
Convergence to the solution was confirmed
after the parameter search terminated.

Sensirivity analysis. We performed a sen-
sitivity analysis to examine model uncertainty.
The sensitivity function relates the changes
of the model output to changes in the model
parameters. To rank the sensitivity functions,
we calculated relative sensitivity functions
R, 14 with respect to parameter #; for each
of the model-predicted concentrations in the
medium C, ;. as described by

kB \OC, e
Rac,med,ét- = ( - ) med

Cx, ned

3k, (13l

Substituting Equation 10 into Equation 13
yields

Rx,medjﬁi = (

k )acmn 14]

Cﬁg cetl ok i

The relative sensitivities Ry med , With respect
to parameter ¢, for cach of the model-predicted

concentrations in the medium C, .4 are

_ qi aCmeed
Rj@meajqi B ( ijmed) 841 )

(15]
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Substituting Equation 10 intc Equation 13
yields

( 4 )acx,cell it

R L Creell EI7HN 16

wmed, g x )3Cx,ce11 +1, i=x [ }
[T

Using MATLAB, partial derivatives were
numerically determined for C, . with respect
to each parameter, and relative sensitvity func-
tions were calculated as shown in Equations
14 and 16 for control and each MET' dose. To
rank the relative sensitvities, we calculated the
L2 norm across time for each relativity sensi-
dvity function as described by

LGorm(Rx,medakg) = f‘ Rx,med,k,(r) ‘ 2dt

and

L2n0rm(R f‘ Rmmsd,gz("‘) | 2ds .

meech;') =

Magnitudes of the relative sensitivities relate
the degree to which changes in parameters
values lead to changes in model outputs.

Results
Transporr parbway. Table 1 shows the est-

mated parameter values and &2 values for the
model evaluadon of the wansport pathway.
The MET wansport equilibrium (g4) could
not be determined from the data because
MET was not measured in the cells. Therefore,
we set (g49) equal to CORTICO transport
equilibrium (g,) because the previously meas-

ured partition coefficients for MET (Xlogl =

— Model-predicted ALDO
@ Weasured ALDD
Mo del-pradictad E;
B Measured E;
— Model-predicted T
@ Measured T

=)
@
=

200

@
=)

=
=2

o
=

Concentration in medium {nM)

=

2.0) and CORTICO (XlogP = 1.9} are simi-
lar [PubChem Database (National Center
for Biotechnology Information 2003)]. The
transport equilibrium model predictions cor-
respond well to the mean steroid concentra-
tions measured in the cells and medium with
large R? values (T'able 1). For DCORTICO,
the transport equilibrium model closely fits
the measured concentrations in the cells and
medium [see Supplemental Material, Figure 2
(doi:10.1289/ehp.0901107.81)]. Across
time, the model-predicted and measured
DCORTICO concentrations in medium also
cotrespond well [see Supplemental Marerial,
Figure 3 (doi:10.1289/chp.0901107.51)].
Similar results were observed for the other ste-
roids. The close fit of a ransport equilibrium
model to the data indicates that the steroid
concentrations in the cells and medium reach
equilibrium after a short time.

Metabolic pathway. Table 2 shows the
estimated parameter values for the metabolic
pathway. The time for convergence to the
solution for the iterative parameter estimation
was typically 24 min on an Intel Core 2 Duo
processor computer using MATLAB.

For control cells, we compared model-
predicted steroid concentrations with time-
course measurements. Overall, the model-
predicted concentrations correspond well
to the mean time-course data in cells [see
Supplemental Material, Figure 4 (doi:10.1289/
chp.0901107.81)] and in medium (Figure 2).
For two steroids (PROG and PREG) with
mean measurements that increase until 48 hr
and then sharply decrease at 72 hr, the model

underestimated at 48 hr and overesimated at

— Model-predicted PROG

m Measured PROG
Model-predicted HPROG

¢ Measured HPROG %

2
o
=

200

— Model-predicted DHEA
@ Measured DHEA

150

o0

50

Concentration in medium {nM)

Concentration in medium {nM)

72 hr (Figure 2B,E). For DCORTICO, the
model underestimated the mean measurements
at 8, 24, and 48 hr (Figure 2D). For DHEA,
all model-predicted and measured concentra-
tions in the cells were below the minimum level
of quantification [see Supplemental Material,
Figure 4 (doi:10.1289/¢hp.0901107.51)].
Therefore, the ability of the model to accurately
correspond to the me-varying concentrations
of DHEA measured in the medium is limited
with the assumed quasiequilibrium between the
cells and medium. The model-predicted DHEA
concentrations in the medium correspond well
with the average time-course behavior of the
measurements (Figure 2B).

For MET -exposed cells, we compared
model-predicted steroid concentrations with
time-course measurements after incubation
with MET. For the steroids (CORTICO,
ALDQO, and CORT) downstream from the
enzyme inhibited by MET (CYP11B1), the
model-predicted concentrations closely cor-
respond to the mean time-course measure-
ments in cells [see Supplemental Material,
Figure 5 (doi:10.1289/ehp.0901107.
51)] and in medium (Figure 3A-C), which
decrease as MET increases. For the steroids
(DCORTICO and DCORT) immediately
upstream from CYP11B1, the model-predicred
concentrations compare well with the mean
time-course data in cells [see Supplemental
Material (doi:10.1289/¢hp.0901107.51)]
and in medium (Figure 3D,E), which remain
approximately unchanged at 8, 24, and 48 hr
as MET increases and then slightly increase
at 72 hr as MET increases. For the other ste-
roids further upstream from CYP11B1, the
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Figure 2. Model evaluation of metabolic and transport pathways for control study. Model-predicted concentrations in medium were plotted as a function of time
and compared with concentrations {mean + SD} measured at five sampling times for steroids: ALDQ, Eo, and T{A); PROG, HPROG, and DHEA {B); HPREG, DIONE,
and By (O CORTICO and DCORTICO {0); and PREG, CORT, and DCORT {£.

133



model-predicted and measured concentrations
remained approximately unchanged from con-
trols as MET increases (data not shown).

Sensitivity analysis. Figure 4 shows the
relative sensitivities for two steroids. Odd-
and even-numbered parameters are shown in
Figure 4A and 4B, respectively. For ALDO,
two parameters (b1, ¢o5) were highly sensi-
tive at each MET dose, and six parameters
were moderately sensitive, with their sensitiv-
ity decreased (&, ks, k16, ¢51) or increased
(kgy, g40) as MET increased. For CORT,
two parameters (£17, g27) were highly sensi-
tive at each MET dose, and five parameters
(ka, ko3, Fys. dg0, ¢4) were moderately sensi-
tive with their sensitivity decreased as MET
increased. The HPREG pathway appears to
be the preferred pathway for CORT synthe-
sis because CORT was more sensitive to the
HPREG pathway (%5, £5) and less sensitive
to the PROG pathway (%5, %5). The sensitv-
ity of ALDO and CORT can indicate the
uncertainty of the parameters. The parameters
with high sensitivity tend to have less uncer-
tainty compared with parameters with low
sensitivity.

Discussion

We developed a mechanistic mathematical
model and estimated metabolic and transport
parameters for adrenal steroidogenesis to esti-
mate synthesis and transport of the steroids
and their dynamic concentration—response
to the EAC MET. In the H295R cells and
medium, the model-predicted steroid con-
centrations closely correspond to the time-
course data from control experiments and

dynamic concentration—response data from
experiments with MET -exposed cells. The
quasi-equilibrium assumption reduced the
complexity of the model while maintaining
the model’s predictive ability.

Advantages of mechanistic model, The
potential importance of the model is due to
the use of mechanistic information at the
biochemical level. Our mechanistic model
includes each enzymatic reaction in the meta-
bolic pathway. Under control conditions, the
rate-limiting step is the transport of CHOL
from the outer to inner mitochondrial mem-
brane (Chang et al. 2006; Miller and Strauss
1999). For EAC-exposed cells, one or more
steps in the pathway can become rate limit-
ing, depending on the EAC concentration and
enzyme inhibition strength. Some chemicals
inhibit a single specific steroidogenic enzyme,
whereas others inhibit multiple enzymes
(Harvey et al. 2007). After further develop-
ment, our model should increase insight into
mechanisms of steroidogenic-active chemi-
cals with unknown mechanisms of action and
mixtures of chemicals. Furthermore, labora-
tory experiments are often performed with
EACs at higher doses than typical human
exposures because of the quantification limits
of the assay. Low concentration extrapola-
tons of concentration—response curves may
be inaccurate if not guided by mechanistic
models (Conolly and Lutz 2004).

The experiments used to fit and evaluate
this model included time-course measure-
ments of each adrenal steroid in both the cells
and medium. In addition, the mechanism of

action for MET, the EAC used in this study,
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was previously characterized as a potential
CYP11B1 enzyme inhibicor. These “data-rich”
experiments allow us to fit and evaluate the
model for each steroid. After further refinement
and evaluation of the model for other EAC
with different mechanisms of action, the model
could be then applied for rapid ¢z witre EAC
screening methods, which measure only a few
steroids. The refined model would help identify
mechanisms of action for poorly characterized
EAC and extrapolate concentration—response
curves in support of human hazard and risk
assessments.

The model assumption of quasi-equili-
brium has several advantages. It reduces the
number of model parameters and the number
of differential equations in the mathematical
model by replacing some of them with alge-
braic equations. Also, it decouples the system
of equations for the metabolic and transport
pathways to allow the set of parameters for
cach pathway to be independently estimated.
Moreover, it reduces the complexity of the
more general model while preserving its impor-
tant features and facilitating model analysis.

In vitro steroidegenesis dassay. As shown
with i edrre data, H295R cells can provide
the data needed for comparison with model
predictions. H295R cell experiments elimi-
nate the feedback of the hypothalamus—pitu-
itary—adrenal axis, which allows discrimination
among different modes of action for EACs.
This in vitre assay can identify direct effects
at the molecular and biochemical level and
distinguish them from general stress-induced
effects observed with 7z vive rodent assays.
Furthermore, cell assays allow for the use of
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Figure 3. Model evaluation of metabolic and transport pathways for control and two MET concentrations {1 pM and 10 yM). Model-predicted concentrations in
medium were plotted as a function of time and compared with concentrations {mean + SD} measured at five sampling times for steroids: ALDQ (A), CORTICO {B),
CORT (&), DCORTICO (D), and DCORT {£). For controls, model-predicted and measured steroid concentrations are the same as shown in Figure 2.
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RNA interference-mediated gene knock-
downs, gene knockouts, or steroid precursors
to selectively block or bypass certain reactions
and isolate regions of the steroidogenic path-
Wa}’ fo[ l'eﬁnelnent Ofpafalneter ﬁtim&teﬁ.
Dynamic concentration—response behav-
ior. The model closel_v matched three dyna_mic
concentration—response behaviors observed in
these experiments. First, the concentration of
the steroids (CORTICO, ALDO, CORT)
downstream from CYP11B1 (enzyme inhib-
ited by MET) decreased as MET increased
(Figure 3A-C). Second, the concentrations
of steroids (DCORTICO and DCORT)
immediately upstream of CYP11B1 slightly
increased or remained constant as MET
increased (Figure 3D,E). This small concen-
tration increase in the model predictions and
mean measurements is due to the decrease
in the conversion rate of DCORTICO into
CORTICO and of DCORT into CORT and
the subsequent pooling of the substrates. Third,
all the other steroids were unaffected by MET.
Our research goal is to better understand
the dose-response behavior of EACs. Our

10

@ I Control
9 . =1 MET 1pM
g . MET 10pM

approach is to develop computational mecha-
nistic models that describe the biological
perturbations at the biochemical level and
integrate information toward higher levels of
biological organization. This approach will
ultimately enable predictions of ir vive dose
I'ESPOHSe& TO aC]]iCVC tl]is goﬂl, ﬁlfﬂ]el' feﬁ ne-
ment of the model will be needed based on
additional model-guided experiments, such
as cell proliferation and viability, gene regula-
tion, and upstream signaling.

Limirations. Although our model predic-
tions compare well with the experimental data,
the model-predicted concentrations of three
steroids (PROG, PREG, and DCORTICO)
do not correspond for a few measurements. For
control experiments, the model underestimated
PROG and PREG concentrations at 48 hr and
overestimated them at 72 hr (Figure 2B,E), and
underestimated DCORTICQO concentrations
at 8, 24, and 48 hr (Figure 2D). For MET
experiments, DCORTICO did not correspond
at 72 hr after incubation with 10 pM MET
(Figure 3D). Instead of a small increase in
DCORTICO as predicted by the model, MET

Relative sensitivity
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Figure 4. Relative sensitivities for model-predicted steroids ALDO (4) and CORT (B), plotted as a function
of the 35 model parameters (ky—kg, q19—qa2, kgg—ksa) for control and two MET concentrations (1 and 10 pM).
Each bar represents the L2 norm of the relative sensitivities across time (0-80 hr) and indicates the degree
to which changes in parameter values lead to changes in model outputs. Odd- and even-numbered para-

meters are shown in A and B, respectively.

had little or no effect on DCORTICO. Time-
course measurements Fnr tI'ICSE three StCTUidS
showed an increase in the mean concentrations
until 48 hr, and then a sharp decrease (PROG
and PREG) or no change (DCORTICO) at
72 hr. A possible source of these discrepancies
is the model assumption of no saturarion in
the HlCt-lbOliC pathway: our lnodel uses ﬁl'St'
order enzyme kinetics. We plan to investigate a
model with Michaelis-Menten enzyme kinetics
that may improve the model fit.

Conclusions

Our study demonstrates the ability of a newly
developed mechanistic computational model
of adrenal steroidogenesis to estimate the
synthesis and secretion of adrenal steroids
in human H295R cells, and their dynamic
concentration—response to the EAC MET.
Model-predicted steroid concentrations in
the cells and medium closely correspond to
the time-course measurements from con-
trol and MET-exposed cells. This capability
could enhance the interpretation of data from
in wvitro steroidogenesis assays by helping to
define mechanisms of action for poorly char-
acterized chemicals and mixtures in support
of in vitre EAC screening systems for predic-
tive hazard assessments.
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1. Steroidogenesis Assay with H293R cells

NCI H295R human adrenocortical carcinoma cells (American Type Culture Collection, Manassas,
VA, USA) were grown in 1:1 mixture of Dulbecco's modified Eagle's medium (Invitrogen
Corporation,Carlsbad, CA, USA) and Ham's F12 medium (MP Biomedicals Inc, Irvine, CA, USA)
containing 15 mM HEPES (Dojindo Laboratories, Kumamoto, Japan), 0.00625 mg/ml insulin
(Sigma-Aldrich, Inc., St. Louis, MO, USA), 0.00625 mg/ml transferrin (Sigma- Aldrich, Inc., St.
Louis, MO, USA), 30 nmol/L sodium selenite (Wako Pure Chemical Industries, Ltd., Osaka,
Japan), 1.25 mg/ml bovine serum albumin (Sigma-Aldrich, Inc., St. Louis, MO, USA), 0.00533
mg/ml linoleic acid (Sigma-Aldrich, Inc., St. Louis, MO, USA), 2.5 % Nu-Serum I (Becton,
Dickinson and Company, Franklin Lakes, NJ , USA), 100 U/mL penicillin (Meiji Seika Kaisha,
Ltd., Tokyo, Japan) and 100 mg/L streptomyein (Meiji Seika Kaisha Ltd., Tokyo, Japan) at 37°C in
a 5% CO, atmosphere. Cells were grown in 225 cm” flask (Asahi Techno Glass Corporation, Chiba,
Japan) to about 80 % confluence, and then split using 0.025% Trypsin (MP Biomedicals Inc, Irvine,
California)- 0.02 % EDTA solution (Dojindo Laboratories, Kumamoto, Japan).

The control and MET exposure experiments were conducted in 6-well tissue culture plates
(Becton, Dickingon and Company, Franklin Lakes, NJ, USA). A cell suspension of 2 ml containing
6x10° cells was placed in each well. Each experiment had four replicates per time sample. The test
plates were then incubated at 37°C in a 5% CO, atmosphere. After incubation for 72 hr, the medium
was changed to either 2 ml of supplemented medium, which was1:1 mixture of Dulbecco's modified
Eagle's medium and Ham's F12 medium (Invitrogen Corporation,Carlsbad, CA, USA) containing
0.00625 mg/ml ingulin, 0.00625 mg/ml transferrin, 30 nmol/L sodium selenite, 1.25 mg/ml bovine
serum albumin, 0.00535 mg/ml linoleic acid, 10 % FBS (Invitrogen Corporation, Carlsbad, CA,
USA), 100 U/mL penicillin and 100 mg/L streptomycin, with 50 nM of adrenocorticotropin

(ACTH, Sigma-Aldrich, Inc., St. Louis, MO, USA), 20 uM of forskolin (Sigma-Aldrich, Inc., St.
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Louis, MO, USA), 100 nM of angiotensin II (EMD Chemicals Inc., Darmstadt, Germany) and 0.1%
of dimethyl sulfoxide (DMSO,Wako Pure Chemical Industries, Ltd., Osaka, Japan), in the case of
the control experiments, or 2 ml of MET-treated supplemented medium. Dilutions of a MET
(Sigma-Aldrich, Inc., St. Louis, MO, USA) stock solution were prepared directly in supplemented
medium to generate two test concentrations of MET (1 and 10 uM). After changing the medium, the
test plates were incubated at 37°C with a 5% CO, atmosphere, and the experiments were initiated.
At incubation periods of 8, 24, 48, and 72 hr for the control and MET experiments, the medium and
cells were separately removed from four replicate wells. The cells were dissolved in 100 ul of
distilled water and sonicated to produce a cell lysate.

The concentrations of twelve steroids (PREG, HPREG, DHEA, PROG, HPROG, DIONE,
T, DCORTICO, CORTICO, ALDO, DCORT, CORT) in the medium and cell lysate were measured
using liquid chromatography/mass spectrometry (LC-MS/MS). The LC-MS/MS systems consisted
of a LC10A VP series (Shimadzu, Kyoto, Japan) and API4000 (Applied Biosystems, Foster City,
CA, USA)). The steroids were extracted from the medium and cell lysate by ethyl acetate and
separated on L.C by acetonitrile and formic acid. MS/MS parameters were optimized using multiple
reaction monitoring (MRM) mode for every steroids in positive electrospray ionization. The
medium and cell lysate volumes were 500 pLL and 70 ul, respectively, and LC-MS/MS running
time was 17.5 min/sample. The concentrations of two additional steroids (E1, E2) in the medium
and cell lysate were measured using enzyme-linked immunosorbent assay (ELISA) with
commercial kits (Wako Pure Chemical Industries, Ltd., Osaka, Japan). The concentration of
cholesterol in the medium and cell lysate was measured using a commercial kit (Wako Pure

Chemical Industries, Ltd., Osaka, Japan) based on cholesterol oxidase method (Allain et al. 1974).
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2. Dynamic molecular balance equations in cells and medium
CHOL in cells:

dC 1
cell %ﬂl() = kIVmedCCHOL,med (t) - szceHCCHOL,cell (t);

Conorear (0)=1.88x107 nM

PREG in cells:

dC. t
Vcell %ﬂl() = kzycenCCHOL,cell (t) - (k3 + ks + k+19 )VcellCPREG,cell (t) + k—19VmedCPREG,med (t);

Conrgear (0) = 9.45x10° nM

HPREG m cells:
dCHPREG cell (t)
Vcen T = kcheuCPREG,ceu (t ) - (k4 + ks + k+24 )VceuCHPREG,ceu (t ) + k—MVmedCI-IPREG,med (t );

CHPREG,cell (O) = O

DHEA in cells:

dCoen e (1
Vcell %”() = k4VcellCHIPREG,cell (t ) - (k7 + k+zs )VcenCDHEA,cell (t ) + k—ZSVmedCDHIEA,med (I );

Cpaeacar (0)=3.49x10° nM

PROG in cells:

dC t
chell %ﬂl() = ks VceIICPREG,cell (t ) - (ks + ku + k+20 )VcenCPROG,cell (t ) + k—ZOVmedCPROG,med (t );

Crrosea (0)=32.10n1M

HPROG in cells:
dCHPROG,cell (t) _ _ .
Vcen T - kcheuCHpRm,cen (t)+ kcheuCPROG,cen (t) (k9 + klz + k+25 )VcenCHPROG,cen (t) + k—25VmedCHPROG,med (t)=

Caprogear (0) =101.83 nM

DIONE in cells:
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dac e
%“() =k VeetCosma et (f ) + kQVceIICHPROG,cell (t ) - (klo + ks + kg )Vce11CD10NE,ce11 (t ) + k—ZQVmedCDIONE,med (f )5

Copone.eer (0) = 2.33x10° nM

I/cell

T in cells:

dC, (¢
I/cell %U = k]OVcellCAD,cell (t) - (k14 + k+31 )V::eHCT,cell (t)+ k—BleedCT,med (r)

CT,cell (0) = 0

E1 in cells:

M=k v CDION’E,cell(t)_(k15+k )V

cell dt 137 cell +30 cell

Cpt e (0) =2.09x10° nM

CEl,cell (t) + k V CEl,med (t)

—30" med

E2 in cells:
dC, t
cell Ez(:_i%() = kl:ll/::ellCT,cell (t)+ leI/(:ellCEl,cell (t) - k+32I/ce11CE2,cell (t)+ k—SZVmedCEl,med (t)

Crpen (0)=424.170M

DCORTICO in cells:
dc a (7)
Ve % - klchellCPROG,cell (1‘ ) - ( o klé + k+21 } VceIICDCORT[CO,cell (t ) + kflleedCDCORTICO,med (t )
CORTICO
CDCORTICO,cell (0) =835.01nM
CORTICO in cells:

dc, ult k
2 CORTIE0.«<l ( ) = L7, CDCORTICO,cell (t ) _(kls + k+22 )VceIICCORTICO,cell (t ) + kfsz C

cell dt cell med — CORTICO,med (t)
aCORT[CO

Ceormcon (0) = 2.27x10° nM

ALDQ in cells:
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dC’ALDO,cell(t)zk VO -k . V.C +5 .V _C

cell dt 18" cell COR’I’[CO,cell(t) +237 cell " ALDO,cell (t) —23" med — ALDO,med (t)

CALDO,cell (0) =0

DCORT in cells:

pconrean (! k
I/ce]l %ﬂ() = kIZV;eHCHPROG,ceH (t) - [ = + k+26 ]I/cellCDCORT,cell (t) + kflﬁVmedCDCORT,med (I)

4 6ZCORT

Cpeonrean (0) = 7.56x10" nM
CORT in cells:

dCoorrear (1) K
I/;:ell Citled = 5 VcellCDCORT,cell (f)— k+27:VcellCCORT,cell (l()+ k—ZTVmedCCORT,med (f)

dr aCORT

Corpea (0)=3.43x10° nM

CHOL in medium:

dCCHOL,med ( t )

dr = _leCHOL,med (t); CCHOL,med (O) =8.11x10* nM

PREG in medium:

dcC t
Vmed PRE;:ned ( ) - k+19I/CellCPREG,cell (t) _kfIQVmedCPREG,med (t)’ CPREG,med (0) =0.850M

HPREG in medium:

v dCHPREGm’(t):k v.C k. V. _C

med dt +24° cell —"HPREG,cell (t) —24" med —HPREG,med (t)’

, C

regmed (0) = 69.45 nM

DHEA in medium;

V@’Lmi(t):kyc kv

med dt +28" cell™ DHEA,cell (t) —28" med " DHEA,med (t)7 CDHEA,med (0) = 0

PROG in medivm;
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dCPROG,med (t )

Ve df = k+ZOI/(:eIICPROG,cell (t ) - k—ZOVmedCPROG,med (t ); CPROG,med (0) =0.03nM
HPROG in medium:

dC f
Vmed %med() = k+25Vce11CHPROG,ce11 (t ) - k—ZSVmedCHPROG,med (t ); CHPROG,med (0) =0

DIONE in medium:

P dCDION'E,med (t ) =k .V C

med T +29" cell ~"DIONE,cell (t) _k_29V CDION'E,med (t), CDION'E,med (0) =0.80nM

med

T in medium:

dCT,med(t)=k vV C -k ¥V C (t); CT’med(0)=0.80nM

med dt +31" cell T,cell(t) —31" med " T,med

El in medium:

% dCEl Jmed (t )

med +30" cell
dt

=k, CEl,cell (t) —k 50V, CEl,med (t); CEl,rned (O) =0.11nM

med

E2 in medium:

dC,
Vmed HTM = k+321/cellCE2,cell (t) - k732VmedCE2,med (f)’ CEZ,med (0) = ]'21 HM
DCORTICO in medium:

daC t
Vmed DCORE(;O,med ( ) = k+21che11CDCORTICO,cell (t) - k—ZIVmedCDCORTICO,med (t)ﬂ CDCORTICO,med (0) = O HM
CORTICO in medium:

AC o (7
Vinea %ﬂl() = k+22Vce11CCORnco,cell (t ) - k—ZZVmedCCORTICO,med (t ); CCORTICO,med (O) =0.11nM

ALDO in medium:
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po LCvona () o eaC arpomes (1) Carpoea (0)=0.910M

med dt +23" cell ALDO,cell( ) —23" med

DCORT in medium:

dacC. e U
Ve %d() =k 26V cetC o cel ( ) k 26 edCocortmed (I ); CbeorT med (0) =0nM

CORT in medium:
dC o me
Vmed COR;; - ( ) k+271/cellCCORT,Cell ( ) k 27VmedCCORT,med (r)’ CCORT,med (0) =0.03nM

3. Molecular balance equations for quasi-equilibrium

CHOL in cells:
dC
Kell%ﬂl() kaedCCHOL,med( ) Vi Copor, cell( ); CCHOL,cell (0) =1.88x10" nM

PREG in cells:

aICPREG,cell (I)
dt

V +Vmedq19 Jl:k cell CHOL cell (k +k ) cellCPREG,cell (I):|’ CPREG,cell (0) = 945X]‘03 nM

cell

HPREG in cells:

dt Vo Vo

cell

AC o cen (£ 1
PRl ( ) = ( q jl:k I/cellCPREG,cell (‘t) - (k4 +k6 ) V;ellC}[PREG,cell (t):|> CHPR.EG,cell (O) = 0
ed 124

DHEA 1n cells:

dC e o (1 1
DHECZ H( ) _[V +Vmedq28 Jl:k VceIICHPREG,cell( ) k VceuCDHEA cel]( ):I’ CDHEA,cell (0): 3'49X103 nM

cell
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PROG in cells:

dCPROG,cel] (r ) _
df

V +Vme o Jl:k cetCerec, Ce“ (k +k ) Vet Crro cel (t )] Crrotcell (0) =32.10nM

cell

HPROG in cells:

dCHPROG,ce]l (t )
dt Vear + Vm

Coprogee (0) =101.83nM

g JI:]C cell HPREGcell f)+k cell PROG,cell (t) (k +k ) cell HPROGcell t)jl
ed 125

DIONE in cells:

dC cel I 1
DIOZEI, 1l ( ) _ {V " de%g J[k7Vce[lCDHEA,cell ( )+ kg VceﬂCH:PROG,cell ( ) (k + k ) cellCDIONE,ceu (1):|

cell
CDION'E,cell (0) =2.33x10° nM

T in cells:

dCT;;l(t) (Vcen +Vmed%1][k eatComongean (1) =%V e Cran (1) |5 Corean (0)=0

El in cells:

dCEz;;ll 4. [Vceu +11/medq30 ][kHVceHCDIONE e (1) =k o Cry e (1 )J, Copean (0)=2.09x10° nM
E2 in cells:

dCEZtvy u. [Vce" Vo ][k VerCrcan (1) + 55V o Copy con (2 )} Cooean (0)=424.17 nM
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DCORTICO in cells:

dC

(XCORTICO

CE. (t) 1 k
DCORZI;O' = [ VoV J|:k11VceHCPROG,ceH (t) - ( = Jl/cellCDCORTICO,ceII (E)} Cheorrico e (0) =833.01naM

CORTICO in cells:

dc, (t 1
S ( ) ( J{ ut VearCoeormcoe (t)ikISI/cellCCORHCO,cell (r)} Ceormco.at (0) =2.27x10° nM

dt Vear * Vet | %corico

ALDO in cells:

dC, oo (1 1
S ( ) ) ( q ] leI/CellCCORTICO,cell (t)j|’ C"ALDO,c:ell (0) =0
ed 123

dt IV/cell + Vm
DCORT in cells:
dC. t k
DEORT.cel ( ) = ( ! J|:kllr/ce11C}[PROG,cell (t) - (¢J I/;:ellC"DCORT,cell (t) 5 CDCORT,cell (0) = 756X104 IlM
dt Vet +Vneaas CORT
CORT in cells:
AC e orT cen (t) ( 1 J|: k17
= = VeaCpeorTen (I) 2 CoorTeen (0) =3.43x10° nM
df Vcell + Vmed q27 aCORT
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( H295R Cells )

| K1 Kig Koo Ky1  kyp Kz Koy Qo Kos Kps Koy Kpg Ky K3y K k32)

cHoL| A

PROG| [coRTICQ [HPREG| [DCORT| [DHEA| (E1] [E2

[PREG| [DCORTICO| [ALDO|  [HPROG| (CORT| [DIONE] (T |
\_ Medium )

Supplemental Material, Figure 1. Graphical representation of the
parameters for the mathematical H295R steroidogenesis model.
First-order rate constant for cholesterol uptake into the cells is k; .
First-order rate constants for metabolic processes are: k,- k,5 . Reversible
first-order rate constants for transport processes (k,, and k_, for secretion
and import of steroid x; respectively) are k,qg- k;,. Enzyme inhibition
constants for MET are k,, and k,, for CORTICO and CORT pathways,
respectively.
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Supplemental Material, Figure 2. Comparison of transport equilibrium
model-predictions (linear regression line) with measurements in cells and
medium. Model-predicted DCORTICO concentrations in medium were
plotted as a function of DCORTICO concentrations in cells, and
compared with mean concentrations measured at five sampling times for
control and two MET concentrations.
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Supplemental Material, Figure 3. Model evaluation of transport pathway.
Comparison of transport equilibrium model-predictions with time-course
measurements in medium from control (A) and two MET concentrations:

1 UM (B) and 10 uM (C). Model-predicted and mean measured DCORTICO
concentrations in medium were plotted at five time points after incubation of
cells with MET. Model-predicted DCORTICO concentrations in medium
were estimated from mean measured concentrations in cells at each
corresponding time point. Dotted lines represent linear interpolations
between model-predicted and measured concentrations. Measured steroid
concentrations are same as shown in Supplemental Material, Figure 2.
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Supplemental Material, Figure 4. Model evaluation of metabolic
pathway for control experiments. Model-predicted concentrations in cells
were plotted as a function of time, and compared with concentrations
(mean and standard deviation) measured at five sampling times for
steroids: ALDO, E2, T (A); PROG, HPROG, DHEA (B); HPREG, DIONE,
E1 (C); CORTICO, DCORTICO (D); PREG, CORT, DCORT (E).
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Supplemental Material, Figure 5. Model evaluation of metabolic
pathway for control and MET-exposed cells. Model-predicted

concentrations in cells were plotted as a function of time, and compared
with concentrations (mean and standard deviation) measured at five

sampling times for steroids: ALDO (A), CORTICO (B), CORT (C),
DCORTICO (D), DCORT (E). For controls, model-predicted and

measured steroid concentrations are same as shown in Supplemental

Material, Figure 5.
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Supplemental Material, Table 1. Quantitative ranges for
steroids in cells and medium

Quantitative range (nM)

Steroid Cells Medium

PREG 1.3x10% - 1.3x10° 15.8 — 1.6x103
HPREG 1.2x10% - 1.2x108 15.0 - 1.5x103
DHEA 1.4x10%— 1.4x108 17.3 — 1.7x10°
PROG 2.6x10%— 1.3x108 3.2 -1.6x10°
HPROG 2.4x10%—1.2x10° 3.0 —1.5x103
DIONE 2.8x10°— 1.4x10° 3.5 -1.7x10°
T 2.8x10%~ 1.4x10° 3.5 -1.7x103
E1 1.6x103 - 1.5x10° 5.5 — 5.5x10?
E2 5.0x10%2—-1.0x104 5.5 —1.1x102
DCORTICO 1.2x104 - 6.1x10° 15.1 - 7.6x10°3
CORTICO 1.2x10% - 5.9x108 14.4 — 7.2x10°
ALDO 2.2x10% - 1.1x108 2.8 — 1.4x10°
DCORT 1.2x10% - 5.9x10° 14.4 — 7.2x103
CORT 1.1x10% - 5.6x10° 13.8 - 6.9x103
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Appendix B

DEVELOPING PREDICTIVE APPROACHES TO CHARACTERIZE ADAPTIVE
RESPONSES OF THE REPRODUCTIVE ENDOCRINE AXIS TO AROMATASE
INHIBITION: I. DATA GENERATION IN A SMALL FISH MODEL

Daniel L. Villeneuve, Miyuki Breen, David C. Bencic, Jenna E. Cavallin, Kathleen M.
Jensen, Elizabeth A. Makynen, Linnea M. Thomas, Leah C. Wehmas, Rory B. Conolly,
Gerald T. Ankley
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Adaptive or compensatory responses to chemical exposure can
significantly influence in vive concentration-duration-response
relationships. This study provided data to support development
of a computational dynamie model of the hypothalamic-pituitary-
gonadal axis of a model vertebrate and its response to aromatase
inhibitors as a class of endocrine active chemicals. Fathead min-
nows (Pimephales promelas) were either exposed to the aromatase
inhibitor fadrozole (0.5 or 30 pg/l) continuously for 1, 8, 12, 16,
20, 24, or 28 days or exposed for § days and then held in control
water (no fadrozole) for an additional 4, 8, 12, 16, or 20 days. The
time course of effects on ovarian steroid production, circulating
17f-estradiol {(E2) and vitellogenin (VTG) concentrations, and
expression of steroidogenesis-related genes in the ovary was meas-
ured. Exposure to 30 pg fadrozole/] significantly reduced plasma
E2 and VTG concentrations after just 1 day and those effects per-
sisted throughout 28 days of exposure. In contrast, ex vive E2 pro-
duction was similar to that of controls on day 8-28 of exposure,
whereas transcripts coding for aromatase and follicle-stimulating
hormone receptor were elevated, suggesting a compensatory
response. Following cessation of fadrozole exposure, ex vive E2
and plasma E2 concentrations exceeded and then recovered to
control levels, but plasma VTG concentrations did not, even after
20 days of depuration. Collectively these data provide several new
insights into the nature and time course of adaptive responses to
an aromatase inhibitor that support development of a computa-

tional model (see companion article).
Key Words: steroidogenesis; endocrine disruption; reprodue-

tion; alternative species; compensation; time course.

Aromatase (cytochrome P450 [CYP] 19) catalyzes a key
rate-limiting step in estrogen biosynthesis—conversion of C19

androgens such as androstenedione or testosterone (T) to C18
estrogens such as estrone or 17f-estradiol (E2) (Miller, 1988).
From a therapeutic perspective, aromatase inhibitors have been
sought and developed primarily to treat estrogen-dependent
cancers. However, aromatase has also been recognized as a
target for chemical contaminants in the environment. For
example, numerous fungicides, certain polychlorinated
biphenyls, polychlorinated dibenzo-p-dioxins, organotins, etc.
have been reported to inhibit aromatase activity, at least in
vitro (Drenth ef al., 1998; Sanderson, 2006; Vinggaard ef al.,
2000). This has led to recognition of aromatase inhibitors as
an important class of endocrine disruptors and inclusion of
screening for aromatase inhibitors specifically, and steroid
biosynthesis inhibitors more broadly, in the Endocrine
Disruptor Screening Program of United States Environmental
Protection Agency (U.S. EPA) (http://www.epa.goviendo/). In
vifro aromatase inhibition assays have also been incorporated
into nascent high-throughput screening programs such as
ToxCast (Reif ef af., 2010). As chemicals are screened in
these programs, identification of additional environmental
contaminants that inhibit aromatase activity can be expected.
Based on adverse outcome pathway knowledge developed by
our research program, such chemicals are likely to function as
reproductive toxicants in fish (Ankley ef af., 2010).

Indeed, previous study has demonstrated that in vivo exposure
to aromatase inhibitors can cause reproductive impairment in
fish (Ankley ef al., 2002, 2005; Sun ef al., 2007). Based on end-
points measured in fish at multiple levels of biclogical organi-
zation, an adverse outcome pathway has been defined whereby
aromatase inhibition leads to decreased estrogen synthesis in
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the gonad, decreased concentrations of circulating E2, reduced
hepatic vitellogenesis, reduced uptake of vitellogenin (VIG)
into oocytes, impaired oocyte growth, and ultimately decreased
fecundity (Ankley ef al., 2010). Early life exposures to aro-
matase inhibitors have also been reported to cause adverse
effects on growth, eye development, sexual differentiation, and
sperm quality in zebrafish (Hamad ef al., 2007; McAllister and
Kime, 2003), as well as complete sex reversal in Xenopus laevis
(Olmstead ef al., 2009). In birds, exposure to aromatase inhibi-
tors has been linked to altered behavior and impaired osteo-
genesis (Deng ef al., 2010; Wacker ef al., 2008). Additionally,
gestational exposures of rodents to aromatase inhibitors have
been associated with in ufero developmental abnormalities and
altered sexual behaviors in adulthood (Gerardin ef al., 2008;
Tiboni ef al., 2008). Collectively, given the important role of
estrogens in many aspects of developmental, reproductive,
and behavioral biology, it is clear that chemical inhibition of
aromatase poses a potential risk in vive to a diversity of ver-
tebrates. However, the challenge of understanding at what con-
centrations and under what exposure conditions adverse irn vivo
effects are likely to occur remains.

To more effectively utilize in vifro aromatase inhibition data
for quantitative risk assessment and predictive toxicology, there is
a need to develop computational models that can support predic-
tion of complex concentration-duration-response relationships
that may occur ix vivo (Villeneuve and Garcia-Reyero, 2011). To
address this, our research team has conducted a series of time-
course experiments to characterize direct effects of exposure to
endocrine active chemicals (EACs) such as aromatase inhibitors,
adaptive/compensatory responses that occur during exposure,
and the rapidity and extent to which organisms recover following
exposure (Ankley ef al., 2009a,b; Ekman ef al., 2011; Villeneuve
ef al., 2009). In earlier studies in which fathead minnows were
exposed to 3 or 30 ug fadrozole/l for 1, 2, 4, or 8 days, followed
by varying durations of depuration (experiment 1; Villeneuve
ef al., 2009) or exposed to 2, 5, 15 or 50 ug fadrozole/l for 7 days
(Villeneuve ef al., 2006), we documented a series of ovarian gene
expression changes consistent with a compensatory feedback
response to declining E2 concentrations. Although we observed
some recovery in both rates of E2 production and plasma E2 con-
centrations, circulating concentrations of VT'G did not return to
control levels, even after 8 days of depuration, and after 21 days
of continuous exposure, reproductive impacts were still observed
{Ankley ef al., 2002; Villeneuve ef al., 2009).

This study had four primary objectives. First, we tested the
hypothesis that plasma VTG concentrations in female fathead
mimows would return to control levels over a more extended
depuration/recovery period. Second, we sought to evaluate
whether compensatory responses observed in an 8-day expo-
sure would be sustained over a longer period of continu-
ous exposure. Third, we wanted to examine the dynamics of
the compensatory responses at a lower fadrozole concentra-
tion (i.e., 0.5 pg fadrozole/l) that had been used in the previ-
ous studies (e.g., experiment 1; Villeneuve ef al., 2006, 2009).

Finally, we wanted to measure the concentrations of fadro-
zole in plasma. Collectively, these data contribute to increased
understanding of the nature and time course of compensatory
responses and recovery processes that can affect concentration-
duration-response relationships and toxicological outcomes for
aromatase inhibitors. The results also inform the development
of computational models of the hypothalamic-pituitary-gonadal
axis in fish that could support the use of data from in vifro
screening assays to predict probable reproductive outcomes in
fish. The initial steps toward development of such a model are
described in the companion article by Breen ef al. (2013).

MATERIALS AND METHODS

Fadrozole expostre. Sexually mature adult fathead minnows (Pimephales
promelas, 5-6 months old), obtained from an onsite culture facility at the U.S.
EPA Mid-Continent Ecology Division (Duluth, MN), were exposed to 0, 0.5,
or 30 pg fadrozole/l. Solvent-free solutions of fadrozole were delivered to 20-1
tanks containing 10 1 of test solution via a continuous flow (approximately
45ml/min) of UV-treated, filtered Lake Superior water. Four male and four
female fathead minnows were exposed in each tank. The experiment was ini-
tiated by transferring random groups of fish directly to tanks that had been
receiving a continuous flow of test solution for approximately 48h. Addition
of fish was staggered by replicate within each treatment to permit all sam-
ples from a given exposure tank to be collected within 45min of the desired
exposure duration. Fish were either exposed continuously and sampled after
1, 8, 12, 16, 20, 24, or 28 days of exposure or exposed for 8 days, after which
chemical delivery ceased and the tanks received a continuous flow of control
Lake Superior water (no fadrozole) for an additional 4, 8, 12, 16, or 20 days
(Supplementary fig. 1), with fadrozole concentrations steadily diminishing as
the volume in the tank was exchanged (6.5 water exchanges per day at 45ml/
min flow rate). There were two replicate tanks for each unique exposure condi-
tion (ie., combination of treatment and time point). Fish survival, water tem-
perature, and dissolved oxygen concentrations were monitored daily in all test
tanks. Flow rates and pH were monitored one to two times each week.

Fadrozole concentrations in exposure tanks were measured on 19 occasions
over the course of the experiment. Water from control tanks was also analyzed for
fadrozole on 14 occasions over the study duration. Fadrozole concentrations in
the tank water were quantified by high-pressure liquid chromatography (LC) with
mass spectral (MS) detection. The LC/MS (1946 LC/MSD, Agilent, Wilmington,
DE) method consisted of injecting 50 jl of tank water onto a Kinetex C18
2.0 % 50 mm column (Phenomenex, Torrance, CA) held at 25°C with an isocratic
elution using a mobile phase of 50% 0.025M ammonium acetate buffer/methancl
at a flow rate of 200 pl/min. Fadrozole was measured in the selective ion monitor-
ing mode using the response of positive ions 224 and 225 amu, with an atmos-
pheric pressure photoionization source with a toluene dopant. Recoveries (mean
+ SD) in water samples spiked with 043 and 21.8 pg fadrozole/], respectively,
were 08+ 3% (r = 30) and 101 +4% (n = 28). Average percent agreement among
duplicates was 97 +3% (n = 59). The method detection limit was 0.05 pg/l.

On appropriate sampling days, fish were euthanized in a buffered solution of
tricaine methanesulfonate (MS-222; Finquel, Argent, Redmond, WA). Whole-
body wet weight was measured, and urine was collected from males using
nonheparinized microcapillary tubes. The presence or absence of sperm in each
urine sample was noted and urine was stored at —80°C for future metabolomic
analyses (e.g., Collette ef «l., 2010). Blood was collected from both males and
females using heparinized microhematocrit tubes then centrifuged to separate
the plasma. Plasma samples were stored at —80°C until analyzed. For males,
the remaining carcass (sans urine and blood) was wrapped in solvent-rinsed
aluminum foil and stored at —20°C for tissue residue analysis. For females,
liver tissue was removed, snap frozen in liquid nitrogen, and stored at —80°C.
Ovary tissue was removed, weighed, and then split into three subsamples.
A 168 mg (mean + SD) portion of the center of the right ovary was transferred
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to a glass test tube containing 500 pl medium 199 (M2520; Sigma, St Louis,
MO) supplemented with 0.1lmM isobutylmethylxanthine (Sigma [7018) and
1 pg 25-hydroxycholesterol (Sigma)/ml for use in an ex vive steroid production
assay. The entire left ovary and the anterior portion of the right ovary was snap
frozen in liquid nitrogen and stored at —80°C for subsequent metabolomic
analysis, whereas the posterior portion of the right ovary was similarly frozen and
stored for RNA extraction. Female brain tissue was removed, snap frozen, and
stored at —80°C. Pituitary glands (< 0.5mg) were removed with a fine forceps,
transferred to 100 pl RNAlater (Ambion, Austin, TX) and stored at —20°C. All
dissection tools were washed with RNAseZap (Ambion) between samples to
prevent cross-contamination and/or RNA degradation. All procedures involving
animals were reviewed and approved by the U.S. EPA Animal Care and Use
Committee in accordance with Animal Welfare Act and Interagency Research
Animal Committee guidelines.

An additional set of tanks loaded with four males and four females per
tank, as above, were included in the overall experimental design to allow
for measurement of fadrozole concentrations in plasma. Fish in these tanks
were exposed to 0.5 or 30 pg fadrozole/l for 1 day, 8 days, or 8 days followed
by a single day of depuration or to control Lake Superior water for 8 days.
There were two replicate tanks per time X treatment combination. However,
unlike in the main experiment, only blood samples were collected from these
fish. After blood collection, the rest of the carcass was preserved intact and
stored at —20°C for possible tissue residue analysis. Plasma was prepared by
centrifugation and samples stored at —80°C for subsequent determination of
plasma fadrozole concentrations. For fadrozole quantification, 15 pl of plasma
was combined with 50 pl acetonitrile, vortexed, and then sonicated for 15 min.
Following sonication, samples were centrifuged for 10min at 12,000 x g at
0°C, and the supernatant was transferred to a clean sample vial. The remaining
extract was subjected to a second round of extraction with 100 pl of 50% ace-
tonitrile/water and the supernatant of the second round of extraction combined
with the first. The volume was brought to 500 pl, and 50 pl of the resulting final
extract was injected into the LC/MS. The subsequent fadrozole quantification
was the same as that described for the tank water. The effective method detec-
tion limit for plasma fadrozole measurements was 0.3 pg/pl.

Biochemical analyses, Plasma VTG concentrations were quantified
by enzyme-linked immunosorbent assay using a polyclonal antibody to fat-
head minnow VTG and purified fathead minnow VTG as a standard (Korte
etal., 2000). Ex vive steroid production assays were conducted using methods
adapted from McMaster ef al. (1995) as described previously (Ankley ef al.,
2007, Martinovic ef al., 2008). Steroids were extracted from medium (ex vive)
or plasma samples by liquid-liquid extraction with diethyl ether and quantified
by radioimmunoassay (Jensen ef ¢l 2001). For culture medium samples from
ex vive steroid production assays, both E2 and T were quantified; however, due
to limited volumes, only E2 could be quantified in female plasma.

Gene expression analyses.  Relative abundance of mRNA transcripts cod-
ing for aromatase (cypi9ie), follicle-stimulating hormone receptor (f5hr),
cytochrome P450 cholesterol side-chain cleavage (eyplla), and steroidogenic
acute regulatory protein (star) in ovaries was measured by real-time quantita-
tive PCR (QPCR). Ovary samples were extracted and DNAse treated (DNA
free, Applied Biosystems/Ambion), and then 250ng total RNA was reverse
transcribed to ¢cDNA and transcripts were quantified by Dynamo Sybrgreen
(Bio-Rad, Hercules, CA) using methods and reaction conditions detailed previ-
ously (Biales et al., 2007). Primer specificity was determined through melting
curve analysis. Both minus reverse transcription and no-template controls were
used to confirm a lack of genomic DNA contamination and/or primer dimer
formation. Relative quantity values, unadjusted for amplification efficiency,
were calculated using the 24°T method (Livak and Schmittgen, 2001) using
185 RNA as a normalizer. QuantumRNA Universal 18S primers (Ambion)
were used for 185 rRNA, and all other primer sequences used for the analyses
are provided as Supplementary table 1.

Statistical analysis, Analyses were conducted such that samples from all
relevant treatment groups (ie., control, continuously exposed to 0.5 or 30 png
fadrozole/l, and 8 days exposed to 0.5 or 30 pg fadrozole/l then depurated/

allowed to recover [0.5R, 30R]) for each time point were analyzed in the same
assay (e.g. radioimmunoassay and QPCR), whereas samples from different time
points were often analyzed in separate assays. As a result, interassay variability
was generally not a factor in comparisons among treatments but could contrib-
ute increased varability to comparisons among time points. Therefore, unless
otherwise stated, statistical analyses were focused on comparisons within rather
than between time points. Data normality was evaluated using a Kolmogorov-
Smimov test. Homogeneity of variance was evaluated using Levene’s test. Data
conforming to parametric assumptions were analyzed using one-way ANOVA
followed by Duncan’s multiple range test. Data that did not conform to paramet-
ric assumptions were either transformed to meet parametric criteria or analyzed
using a nonparametric Kruskal-Wallis test followed by Dunn’s nonparamet-
ric post hoe test. There were no significant differences among replicate tanks
within a treatment group and time point for the endpoints examined. Therefore,
individual fish were considered the unit of replication for statistical purposes.
Differences were considered significant at p < 0.05 unless otherwise noted.

RESULTS

Measured concentrations of fadrozole in the 0.5 and 30 ng/l
treatment tanks over the course of the study (mean + SD) were
0.35+0.03 (n=158)and 25.3+1.0 (n = 158) ng/l, respectively.
No fadrozole was detected (< 0.05 pg/l) in water from control
tanks. In tanks where fish were exposed to 0.5 pg fadrozole/l
for 8 days, followed by depuration (0.5R treatments), fadro-
zole concentrations were nondetectable by day 12 (i.e., after
4 days of depuration) and remained so throughout the rest of
depuration. In contrast, in tanks where fish were exposed to
30 pg fadrozole/l for 8 days, followed by depuration (30R
treatments), 0.1 pg fadrozole/l could be detected after 4 days
of depuration (exposure day 12), and small fadrozole peaks,
estimated as less than 0.02 ng fadrozole/l, were detected after
8 days of depuration (exposure day 16). However, after 12 days
of depuration, all fadrozole concentrations were less than the
method detection limit of 0.05 pg/l, and no discernible fadro-
zole peaks were evident on the chromatograms.

After 1 day of exposure to 30 pg fadrozole/l, measured
plasma concentrations (mean = SD) were 30.3+8.8 pg
fadrozole/nl in males (n = 4) and 26.7+7.4 pg fadrozole/nl in
females (n = 3). After 8 days of exposure to 30 pg fadrozole/l,
plasma concentrations were 27.7 £6.0 pg fadrozole/ul in males
(n=0)and 21.9+4.5 pg fadrozole/nl (n = 6) in females. After
a single day of depuration, those concentrations had dropped to
1.43+0.95 pg fadrozole/ul in males (n =4) and 2.07+0.32 pg
fadrozole/nl in females (# = 3). No fadrozole was detected in
plasma from males or females exposed to control Lake Superior
water for 8 days (detection limit, 0.3 pg/nl).

Fish survival was high over the duration of the study. No
males and just two of 304 females in the study died prior to
sampling. Mean (= SD) temperature of the water in the test
tanks was 25.5£0.6°C. Mean (x SD) dissolved oxygen concen-
tration was 6.2+0.6mg/l, and pH was 7.58 £0.16. There were
no significant treatment-related differences in survival or water
quality conditions.

Exposure to fadrozole had significant effects on plasma E2
concentrations in females but only in those exposed to 30 ng
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fadrozole/l (Fig. 1A). Plasma E2 concentrations were signifi-
cantly reduced within 1 day of exposure to 30 ng fadrozole/l.
After 8 days of exposure, plasma E2 concentrations in females
exposed to 30 ng fadrozole/l had rebounded slightly and
were not significantly different from those in control females.
However, for those females exposed to 30 ng fadrozole/] contin-
uously for 12 or more days, plasma E2 concentrations remained
significantly reduced. In females exposed to 30 pg fadrozole/l
for 8 days, then exposed to control Lake Superior water over
subsequent days, plasma E2 concentrations rebounded dra-
matically and were actually significantly greater than those
detected in control females 4 and 8 days postexposure, before
returning to control levels following 12 or more days of depura-
tion/recovery (Fig. 1A). Plasma E2 concentrations in females
exposed to 0.5 pg fadrozole/l (nominal) were not significantly
different from those in control females (Fig. 1B).
Concentrations of the estrogen-responsive protein, VTG,
in female plasma were significantly affected at both 0.5 and
30 ng/l fadrozole concentrations (Figs. 1C and 1D). Exposure
to 30 pg fadrozole/l reduced plasma VTG concentrations
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more than 2.4-fold within 24 h and over 40-fold within 8 days.
Plasma VT'G concentrations remained significantly depressed
(> 65- to 400-fold) in the females continuously exposed
beyond 8§ days. For females exposed to 30 ng fadrozole/l for
8 days and control water on subsequent days, plasma VTG
concentrations generally remained significantly depressed
compared with controls (except 16 days postexposure; day
24). However, the VT'G concentrations in those fish were only
about 1.5- to 2.5-fold less than those in control fish. That was
similar to the magnitude of VI'G depression observed in fish
exposed continuously to 0.5 pg fadrozole/l for 12 or more days
(Fig. 1D). As in fish exposed to the greater concentration of
fadrozole, depuration in Lake Superior water after 8 days of
exposure to 0.5 pg fadrozole/l resulted in some recovery of
VTG concentrations compared with fish that were continuously
exposed; however, they still tended to be lower than those in
females never exposed to fadrozole.

In addition to effects on circulating concentrations of E2
and VTG, steroid production by ovary tissue was affected by
the in vivo exposure to fadrozole (Figs. 2A and 2B). Ex vivo
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Concentrations of 17B-estradiol (E2; panels A and B) and vitellogenin (VTG; panels C and D) measured in the plasma of female fathead minnows

exposed to 0, 0.5 (panels B and D), or 30 ug (panels A and C) fadrozole/l either continuously for 1, 8, 12, 16, 20, 24, or 28 days, or exposed to 0.5 or 30 pg
fadrozole/l for 8 days followed by an additional 4, 8, 12, 16, or 20 days of depuration in control Lake Superior water (no fadrozole; 0.5 R, 30 R). Error bars
represent SE and » = 8 for most conditions (treatment x time point combinations). Vertical dashed line indicates cessation of chemical delivery to 0.5R and 30 R
treatments. * indicates statistically significant difference from control (0) within time point.
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FIG. 2.

Ex vivo production of 173-estradiol (E2; panels A and B) and testosterone (T, panels C and D) by ovary tissue collected from female fathead min-

nows exposed to 0, 0.5 (panels B and D), or 30 pg (panels A and C) fadrozole/l either continuously for 1, 8, 12, 16, 20, 24, or 28 days, or exposed to 0.5 or 30 pg
fadrozole/l for 8 days followed by an additional 4, 8, 12, 16, or 20 days of depuration in control Lake Superior water (no fadrozole; 0.5 R, 30 R). Error bars
represent SE and # = 8 for most conditions (treatment x time point combinations). Vertical dashed line indicates cessation of chemical delivery to 0.5 R and 30R
treatments. * indicates statistically significant difference from control (0) within time peint.

E2 production by ovary tissue was significantly reduced after
24h of exposure to 30 ng fadrozole/l. However, in contrast with
plasma E2 concentrations, that significant effect did not persist
when the exposure period was extended beyond 8 days. What
was similar to the plasma E2 effect was the significant increase
in ex vive B2 production by ovary tissue collected from fish that
were exposed for 8 days, and then held in control water only for
the subsequent 4 days. Over the 12-h incubation period, ovary
tissue from these fish produced, on average, twice as much
E2 as ovary tissue from control fish and 6.5 times more than
ovary tissue from fish exposed continuously for 12 days. Ex
vivo T production was also significantly affected (Figs. 2C and
2D). Specifically, ovary tissue from females exposed to 30 ng
fadrozole/l for 8 or more days produced, on average, about
five times more T than ovary tissue from control fish. In the
fish exposed to 30 ng fadrozole/l for 8 days before being held
in control water, ex vive T production returned to the control
range within 8 days postexposure.

At the molecular level, there was significant modulation of
the abundance of two transcripts coding for proteins thought to
be key for production of E2 by the fish ovary. In the females that
experienced significant reductions in circulating E2 concentra-
tions (i.e., those exposed continuously to 30 ng fadrozole/l),
both cypi9ala and fshr expressions were significantly elevated
throughout the entire exposure duration (except day 1 in the
case of cypl9ala; Fig. 3). The abundance of transcripts coding

for StAR and CYP11A was not significantly affected by fadro-
zole exposure (Supplementary fig. 2).

DISCUSSION

In an earlier study (experiment 1), Villeneuve ef al. (2009)
reported that exposure to 3 or 30 pg fadrozole/l caused sig-
nificant reductions in ex vive E2 production and plasma E2
concentrations within 24 h and that over subsequent days of
exposure (through day 8), effects on ex vive E2 production
{both doses) and plasma E2 concentrations (3 pg fadrozole/l
only) gradually decreased. The gradual reduction in impact was
accompanied by rapid and persistent increases in the expres-
sion of cypi@ala and fshr (particularly at the 30 ng/l concen-
tration) and more transient upregulation of star and cyplla
{(Villeneuve et al., 2009). After fadrozole delivery ceased, there
was a period of increased ex vive E2 production compared with
the controls, suggesting that E2 production rates by the gonad
had increased as part of a compensatory response to aromatase
inhibition by fadrozole. This study (experiment 2) largely con-
firmed those initial results. Ex vive E2 production and plasma
E2 concentrations in fish exposed to 30 pg fadrozole/] recov-
ered slightly from exposure day 1 to exposure day 8, such that
on day 8 the effect of fadrozole was not statistically signifi-
cant (Figs. 1A and 2A). Fish exposed to 30 ng fadrozole/l for
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Relative abundance of cyp!%ala (panels A and B) and fshr (panels C and D) transcripts detected in the ovaries of female fathead minnows exposed

to 0, 0.5 (panels B and D), or 30 (panels A and C) pg fadrozole/] either continuously for 1, 8, 12, 16, 20, 24, or 28 days, or exposed to 0.5 or 30 pg fadrozole/ for
8 days followed by an additional 4, 8, 12, 16, or 20 days of depuration in control Lake Superior water (no fadrozole; 0.5 R, 30 R). Relative transcript abundance
normalized to 185 rRNA. Error bars represent SE and # = 8 for most conditions (treatment ¥ time point combinations). Vertical dashed line indicates cessation of
chemical delivery to 0.5 R and 30 R treatments. * indicates statistically significant difference from control (0) within time point.

8 days followed by control water on subsequent days exhibited
a period during which their ex vive and plasma E2 concentra-
tions exceeded those of the controls, again, suggesting that the
fish had mounted a compensatory response to the stressor. Just
as in the previous study (experiment 1), both cypi{9aia and
Jfshr expression, thought to be localized primarily within the
granulosa cells, increased in response to fadrozole exposure.
Additionally, this study (experiment 2) showed that this change
in gene expression was sustained over the entire period of time
that the fadrozole exposure was continued. In contrast, the more
transient increases in cypifa and star transcripts (Villeneuve
et al., 2009), both of which are thought to be localized primar-
ily in the theca cells, were not observed in this study. Given that
elevated ex vive production of T was observed in both this study
(experiment 2) and the previous one (experiment 1; Villeneuve
et al., 2009), it is not clear whether increased expression of
cyplla and star is not a consistent response to aromatase inhi-
bition and/or declining E2 concentrations or whether the timing
of sample collection in this study (experiment 2) simply missed
this more transient upregulation. Either way, there were several
distinct consistencies between this study (experiment 2) and
that of Villeneuve ef al. (2009) (experiment 1), which suggest
a mechanism of compensation that should be incorporated into
dynamic concentration-response models intended to predict
effects of aromatase inhibitors.

In addition to confirming reproducibility of our previous
study with fadrozole, the current, more temporally intensive
study (experiment 2) enabled a more thorough mechanistic
evaluation of compensatory responses to aromatase inhibition.
For example, in experiment 1, Villeneuve ef a!. (2009) noted that
although plasma VTG concentrations recovered considerably
over the 8 days depuration/recovery periodincluded in that study,
concentrations of the lipoprotein never returned to control levels
(Villeneuve ef al., 2009). Therefore, we were curious whether
full recovery of circulating VI'G concentrations would occur
over a more extended recovery period as this has significant
implications for predicting/modeling the potential reproductive
impacts of aromatase inhibition in fish (Miller ef al., 2007;
Li et al., 2011a,b). We found that even when the depuration
period was extended 2.5 times longer than that in experiment
1 (Villeneuve et al., 2009), plasma VI'G concentrations did
not retwrn to levels comparable to those in females that had
never been exposed to fadrozole (Fig. 1C) despite the fact that
plasma E2 concentrations had fully recovered or even exceeded
those of control fish (Fig. 1A). Remarkably, even at the
lower concentration of fadrozole (0.5 ug/l), which caused no
discernible effect on plasma B2 concentrations (Fig. 1B), some
reduction in VTG concentrations was evident over roughly half
of the depuration/recovery phase of the experiment (Fig. 1D).
These results suggest that, of the endpoints examined in this
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study (experiment 2), plasma VI'G concentrations were the
most sensitive to the effects of fadrozole. Furthermore, even
modest effects on VI'G concentrations were quite persistent,
further affirming the utility of VTG concentrations, in female
fish, as a useful biomarker (Miller ef af., 2007). This extended
duration of VI'G depression following a transient exposure
to an aromatase inhibitor can, in theory, be incorporated into
modeling efforts. However, remaining uncertainties as to
just how long the VI'G depression may persist and the subtle
mechanisms through which VTG production is reduced
even at concentrations that cause no detectable change in E2
production or circulation make accurate modeling of VTG
responses challenging.

A second major question that arose from our previous time
course study with fadrozole (experiment 1) was whether the
apparent compensatory response that led to a recovery in ex
vive B2 production and plasma concentrations (at least for the
3 ng fadrozole/l treatment; Villeneuve ef al., 2009) could be
sustained over a longer exposure duration. At the molecular
level, the response in this study (experiment 2) was maintained,
with increased cypi9ala and fshr being sustained throughout
the duration of fadrozole exposure. Ex vivo E2 production was
maintained at a level that was not significantly different from
the control. However, consistent with experiment 1 (Villeneuve
et al., 2009), neither plasma E2 nor VT'G concentrations recov-
ered despite what might be viewed as successful compensation,
at least in terms of ex vive steroid production. This is consistent
with results of a 21-day reproduction experiment with fadro-
zole in which exposure to concentrations greater than 10 ng
fadrozole/l caused significant reductions in plasma E2 and
VTG concentrations and associated reductions in fish fecun-
dity (Ankley ef al., 2002). Unfortunately, the 0.5 ng fadrozole/l
treatment concentration included in this study (experiment
2) did not cause significant reductions in ex vive E2 produc-
tion or plasma E2 concentrations, so it was not feasible to
directly discern whether compensation could be successfully
maintained at lower fadrozole concentrations. However, the
VTG effect at the 0.5 ng/l concentration does suggest that some
impact was occurring, even if it could not be resolved statisti-
cally for endpoints other than VTG. Thus, at present, although
there is evidence that some compensatory response to fadrozole
exposure occurs, it is not clear that it ultimately does much to
mitigate the potential negative effects on plasma VI'G produc-
tion and, ultimately, reproduction, in long-term exposures.

This study (experiment 2) also provided critical knowledge
concerning the kinetics of fadrozole uptake and excretion
in fish as it relates to the responses observed in vivo. Based
on fadrozole’s estimated log Kow of 3.20 (estimated using
KOWWIN v. 1.67; http://www.epa.gov/opptintr/exposure/pubs/
episuite htm) and assuming strictly branchial uptake and
elimination, one would predict an equilibrium blood:water
partition coefficient (P__) of 35 (Fitzsimmons ef al., 2001).
Total measured concentrations in plasma (not differentiating
free fadrozole from protein bound) were approximately equal to

water concentrations, suggesting rapid metabolism of fadrozole
by fathead minnows. This was further supported by the plasma
data that showed that fadrozole was rapidly cleared from the
body during depuration. Based on these results, it appears that
for modeling purposes, plasma concentrations of fadrozole can
be assumed to be similar to water concentrations under steady-
state conditions.

Finally, although it did not relate directly to our initial
study objectives or hypotheses, the time-dependent profile of
cypl9ala expression in fish exposed continuously to 30 ng
fadrozole/l was notable. Increased cypi9aia expression can
be viewed as one of the primary compensatory responses to
declining E2 concentrations. Over the course of the 28-day
exposure, average cypl%ala expression, although elevated,
seemed to oscillate. Although interesting in its own right, what
was even more remarkable was that plasma E2 concentrations
followed a parallel time-dependent pattern (Fig. 4). Ex vive E2
production, which, in a cause-effect sense, would be considered
more temporally proximal to cypl9ala expression, did not
closely parallel the cyp i 9alaexpression profile (Supplementary
fig. 3). Although by no means definitive, these behaviors raise
the question of whether circulating E2 concentrations have a
direct influence on cypi 9ala expression in the fathead minnow
ovary. As opposed to cypi9alb, which is an isoform of the
aromatase gene predominantly expressed in brain and known
to be regulated by estrogen responsive elements, the cyp{9ala
isoformisnotthoughtto containa functional estrogenresponsive
element as part of its gene regulatory region (Callard ef al.,
2001; Kishida and Callard, 2001). Therefore, there is currently
no evidence to suggest that direct interaction of E2 with the
estrogen receptor in ovary tissue could account for the parallel
profiles. However, it has been suggested that T can stimulate
follicle-stimulating hormone—independent expression of cypf9

£ 1.5 -e= FAD 30 (plasma E2; ng/ml)
§" 1.0 -= FAD 30 (cyp19a1a/18S)
o 1.
-
£ 0.51
0.00101
g 0.0008+
8 0.0006
€ 0.0004-
& 0.0002+
0.0000 T T 1
0 10 20 30
Time point (d)
FIG. 4. Comparson of the time-dependent profile of cypl9ala transcript

abundance (normalized to 185 rRNA) with the time-dependent profile of
plasma 17f-estradiol (E2) concentrations in female fathead minnows continu-
ously exposed to 30 pg fadrozole/l for 1, 8, 12, 16, 20, 24, or 28 days. Error
bars represent SE and # = 8 for most conditions (treatment x time point com-
binations). Y-axis is split to allow measurements made in different units to be
displayed on the same graph.
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inmammalian granulosa cells via interaction with liver receptor
homolog-1 LRH-1 (Wu ef af., 2011). It is not known whether
a similar mechanism operates in fish, nor was it feasible to
measure circulating T concentrations in the females from this
study due to limited available plasma volumes. Nonetheless, the
ex vive T production results suggest that excess accumulation
of T in ovary tissue and/or plasma was possible. Assuming that
impaired ability to aromatize T to E2 was the major cause of
the nearly fivefold increase in ex vive T release from the ovaries
of fish exposed to 30 ng fadrozole/l, one could hypothesize that
direct, local, T-dependent regulation of cypi9ala expression
could yield an oscillatory expression pattern. Such regulation,
if it exists, would be an important regulatory pathway to include
in a mechanistic model of steroidogenesis. Thus, follow-up
investigations are warranted.

As a whole, these data contribute to on-going efforts to
understand and model biological responses to EACs, like aro-
matase inhibitors, Development of computational system mod-
els that incorporate knowledge concerning the compensatory
feedback mechanisms that modulate the impacts of EACs can
lead to improved prediction of complex concentration-duration-
response behaviors. If appropriately coupled to complementary
toxicokinetic models, such computational system models have
potential to aid the extrapolation of in vitro toxicity pathway
assay data into probabilistic predictions of potential adverse
outcome(s). Additionally, iterations of model development and
empirical testing can lead to an improved understanding of the
biology underlying toxicological responses to EACs and other
environmental contaminants (see companion paper; Breen
ef al. 2013).

SUPPLEMENTARY DATA

Supplementary data are available online at http://toxsci.
oxfordjournals.org/.
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Table S1. Primers used for real-time quantitative polymerase chain reaction (QPCR)
assays.

Primer ID Sequence (5°— 3’) Reference {if applicable)
CYP11A_F CGACACCCGGACTTGCA (Villeneuve et al. 2007)
CYP11A_R CACGTCTCCTTTAGAGGTGATACG (Villeneuve et al. 2007)
FSHR_F CCCCATCGTTCTGGACATCT (Villeneuve et al. 2007)
FSHR_R GAAGCTTAAGGGTCCACAGCAT (Villeneuve et al. 2007)
StAR_F CTTGAACAGCAAACAGATGACCTT (Villeneuve et al. 2007)
StAR_R CTCCCCCATTTGTTCCATGT (Villeneuve et al. 2007)
CYP19A_F CATGCAGAAAAACTCGACCA n/a

CYP19A_R GCTCCGACCAGCTAAAACAG n/a

18S-fw AATGTCTGCCCTATCAACTTTC (Filby and Tyler 2005)
18S-rv TGGATGTGGTAGCCGTTTC (Filby and Tyler 2005)

163



SUPPLEMENTARY DATA

Figure $1. Diagram of experimental design. Boxes indicate the period of exposure to

0.5 (yellow) or 30 ug (red) fadrozole (FAD)/L, respectively. The lack of a box indicates
exposure to control water only. Intersection of vertical dashed lines with the horizontal
arrows indicates the days on which samples were collected for each treatment group.
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Figure S2. Relative abundance of cyp77a (A, B) and star (C, D) transcripts detected in
the ovaries of female fathead minnows exposed to 0, 0.5 (B, D), or 30 pg (A, C)
fadrozole/L continuously for 1, 8,12, 16, 20, 24, or 28 d, or exposed to 0.5 or 30 ug
fadrozole/L for 8 d followed by an additional 4, 8, 12, 16, or 20 d of depuration in control
Lake Superior water (no fadrozole; 0.5 R, 30 R). Relative transcript abundance
normalized to 183 rRNA. Error bars represent SE. n=8 for most conditions (treatment x

time-point combinations). Vertical dashed line indicates cessation of chemical delivery
to 0.5 R and 30 R treatments.
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Figure S3. Comparison of the time-dependent profile of cyp79a7a transcript abundance
(normalized to 18S rRNA) with the time-dependent profile of ex vivo E2 production in
female fathead minnows continuously exposed to 30 pg fadrozole/L for 1, 8, 12, 16, 20,
24, or 28 d. Error bars represent SE. n=8 for most conditions (treatment x time-point
combinations). Y-axis is split to allow measurements made in different units to be
displayed on the same graph.
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