
ABSTRACT

MATZUKA, BRETT JAMES. Nonlinear Filtering Methodologies for Parameter Estimation and Uncertainty
Quantification in Noisy, Complex, Biological Systems. (Under the direction of Hien Tran.)

A model is a set of equations constructed to represent the interactions of various variables within

a biological or physical process. These mathematical models are used to obtain a more thorough un-

derstanding of a system or to gain information not easily obtained through other means. Measurements

of system components are frequently collected and are used to validate the model through the solution

of the inverse problem. The inverse problem is defined as calculating the optimal parameter values to

obtain the best possible fit of the model the the data. However, as the systems of interest become more

complex, the solution to the inverse problem becomes increasingly difficult.

A common method to solve the inverse problem is to use a nonlinear least squares (NLS) approach

which aims to minimize the residual, the difference between the data and the model. However, this

methodology presents a certain set of assumptions which may not hold for complicated biological mod-

els. An alternate method addressed in this thesis is the use of Kalman filtering. The Kalman filter is a

recursive algorithm that optimally combines the uncertainties in the model and data to yield an improved

final estimate. Carrying out the inverse problem utilizing this methodology has a number of advantages

and has shown favorable results.

One area where these methodologies have proven fruitful is in cardiovascular modeling. The car-

diovascular system is a branching network of vessels which transports blood and nutrients throughout

the body while removing wastes. At the center of this process is the heart, which is the mechanism that

facilitates transport through pumping. The heart and vasculature are controlled through the autonomic

nervous system. As the cardiovascular system is so important to homeostasis, obtaining measurements

on immediate variables of interest is difficult. Mathematical modeling is one way to gather more under-

standing. Using a simplified model of the cardiovascular system and the autonomic nervous system, the

Kalman filter is used to illustrate their interplay. The advantages are shown over a NLS approach due to

the ability to take into account modeling errors.

For many problems, measurements are collected for a multitude of individuals, representing a pop-

ulation. A standard approach is to fit each individual using NLS and then do statistical analysis on the

individual parameters. However, this has been known to introduce bias to the final estimates. An im-

proved method is introduced that accounts for inter- and intra-individual variability called nonlinear

mixed effects. Using the Kalman filter within this framework allows the estimation of the population

parameters, along with model misspecification, and time varying parameters. Using a population phar-

macokinetic study, nonlinear mixed effects was carried out utilizing the Kalman filter referred to as

stochastic nonlinear mixed effects. The results of this highlight the utility of the stochastic nonlinear

mixed effect method through refinement of noisy model components.
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Chapter 1

Introduction, Motivation, and Outline

A model is a set of equations constructed to represent the interactions of various variables within a

biological or physical process. Often, the model only incorporates the pertinent information for the

system of interest, and will exclude variables or processes which are deemed insignificant or have little

impact. Even if a model fully encapsulates the real world process, it may rely on initial conditions,

boundary conditions, or parameters which are difficult to prescribe to high accuracy and precision [2].

The type of model constructed will also have an effect on the outcome and utility. Empirical mod-

els are created purely based upon observations rather than mathematically describable relationships of

the system. Mechanistic models are constructed as representative abstractions of the underlying pro-

cesses and are often compared to data for prediction purposes [8]. Mechanistic models are governed

by physical relations and laws, and therefore often have less parameters than empirical models. Within

this framework, models can then be classified as deterministic, thus having exact determinability, or

stochastic, incorporating a level of statistical uncertainty within the predictions.

Resolving a model, we obtain a solution or single realization of the process outcome, out of a

possible infinite number of realizations, without any understanding of the uncertainty associated with the

model solution. The solution techniques introduce another level of uncertainty as numerical techniques

have finite accuracy and precision. Other difficulties arise due to the size, complexity, and nonlinearity

of the models, along with number of parameters [1].

In addition to the model, measurements from the system are collected at temporal and spatial lo-

cations. The measurements, themselves, introduce another element of uncertainty as sampling history,

sampling equipment precision, and environmental conditions all introduce errors [9]. The computation

of the model solution conditioned on these observed measurements defines the data assimilation or in-

verse problem which will be the focus for the remainder of this study. The inverse problem is defined as

calculating the optimal parameter values to obtain the best possible fit of the model to a specified data.

The overall purpose of model building is to test hypotheses with regards to the system and param-

eters (within and between groups), and predict or simulate future outcomes [3]. Given the sources of
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variability associated with the model solution due to the measurements and their collection, the model

parameters, and the model assumptions may not fully represen the governing process [9], therefore the

probability density function (pdf) of the model is considered. The pdf of the model can be used to extract

information on the most likely estimate of the model state and its uncertainty [2].

For this thesis, the models of interest can be formulated as systems of ordinary differential equa-

tions (ODE), or solutions thereof [7]. Applying noise to the state space of the model alters the model

framework from an ODE to a stochastic differential equation (SDE). This allows the model to account

for the uncertainty associated with missing processes not considered, numerical techniques, and model

parameters. Shifting to the SDE approach, then, allows the model to be represented by a probability

density. While a class of linear SDEs possess analytical solutions [6], as well as optimal numerical so-

lutions (Kalman filters) [5], many models are nonlinear and the solution for SDEs of this type require

numerical methods.

The focus of this thesis will be on utilizing nonlinear filtering methodologies to quantify system

dynamics along with its utilization within the inverse framework. Few studies are explicitly concerned

with using filtering techniques for parameter estimation [4], the main purpose of this study is to illustrate

its novelty and utility not only for uncertainty quantification of model dynamics, but its application to

parameter estimation in general.

This thesis will continue as follows. Chapter 2 will cover a multitude of nonlinear filtering meth-

ods and their applications to a wide range of parameter estimation problems primarily within biological

systems. A comprehensive comparison is carried out which highlights each filter’s strengths and weak-

nesses on varying classes of problems.

Chapter 3 presents general background on human physiology of the cardiovascular system in gen-

eral, as well as autonomic regulation. This biological background serves as motivation for the modeling

done in Chapter 4.

Chapter 4 utilizes the biological background of Chapter 3 to construct a model to describe the

baroreceptor and the body’s regulation of blood pressure and heart rate during head-up tilt. The general

model is derived and filtering is used to understand the control systems. The results are compared to

alternate methods of modeling the control along with their respective uncertainties.

Chapter 5 presents a general background on pharmacokinetics and dynamics. This will provide the

foundation for Chapter 6.

Chapter 6 provides a methodology for solving inverse problems for repeated measures or population

studies and its application is shown in a population pharmacokinetic study of metformin.

Lastly, Chaper 7 provides a resolution as to what has been presented and concludes with possible

future work which could be of interest.
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Chapter 2

Nonlinear Filtering Methodologies for
Parameter Estimation

2.1 Introduction

For many problems in science, the estimation of the state of a system given a set of system observations

is ubiquitous. Given that mathematical models approximate the true dynamics of the underlying system

and that any measurement of the system dynamics is noisy, we wish to find an optimal method to

combine these to get more accurate estimates of the state of the system, and any model parameters.

An optimal method to do this is to use the Bayes filter; however, the Bayes filter can rarely be solved

analytically, and numerical approximation is often intractable, except for a small set of restrictive cases

[3].

One solution to the Bayes filter is the celebrated Kalman filter [27]. Assuming that the model is

linear and that the errors in both the model and the observations are Gaussian, the Bayes filter simplifies

to the Kalman filter, which calculates the optimal state of the system by taking a weighted average of

the probability distribution from the model and the probability distribution from the measurement. It

is deterministic in nature and characterizes the entire optimal estimate through the propagation of the

mean and covariance of the estimate at each step. However, if these restrictive assumptions do not hold

and the model dynamics are nonlinear or the noise distributions are non-Gaussian, the Kalman filter

fails. Several variants of the Kalman filter have been developed to overcome these shortcomings.

One such method is to approximate the nonlinear model dynamics by a linearization about the

current state. This linear model is then propagated forward under the Kalman filter equations along

with the observations and is used to approximate the optimal mean and covariance for the state of

the system. This method still requires the assumption of Gaussian noise to hold for both the model

and measurements, which may not be true as a normal distribution is not guaranteed to be maintained

through a nonlinear transformation. This approach is known as the Extended Kalman Filter (EKF) [8,
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12, 9, 19].

Another approach to handle the nonlinear model dynamics is via a statistical linearization [7]. In-

stead of linearizing the model dynamics, we perform a linearization of the distribution itself by carefully

choosing a set of sigma points that characterize the distribution and capture the important features. By

propagating these points through the unscented transform, we get an accurate representation of the pos-

terior distribution. This is done for both the model and observations, and the resulting distributions are

used in the classical Kalman filter equations. This approach still assumes Gaussian distributions and is

known as the Unscented Kalman Filter (UKF) [7, 14, 11, 26, 38].

The last of the deterministic approaches to be discussed is the Cubature Kalman filter [3]. It is de-

rived by applying the Gaussian distribution to the Bayes filter for any nonlinear function and exploiting

the properties of the highly efficient cubature numerical integration technique for the multi-dimensional

integral given in the Bayes filter. Much like the Unscented Kalman Filter, this method requires the cal-

culation of cubature points to characterize the integrals, which are used to calculate the distributions

more accurately, and finally used in the classical Kalman filter equations.

Another set of approaches has been derived by using sampling techniques, as opposed to deter-

ministic methodologies, to characterize the distributions. These sampling based methods sample a large

number of points from the assumed distribution and propagate them forward. The characterization of the

distribution is now done using straightforward calculations of the mean and variance of these samples.

The accuracy of these sample based approximate methods depends on the sampling as opposed to the

previous approaches which relied upon the accuracy of the linearizations or the numerical integration.

There are two types of these methods we will discuss, the Ensemble Kalman filter (EnKF) and the En-

semble Transform Kalman Filter (ETKF), though many other methods exist. For example, we refer the

interested reader to [1, 6, 9, 10, 13] for more information on these methods and others.

For this study, since the systems dealt with will change sequentially in time, we shall focus our efforts

on state-space models using discrete time. Therefore, difference equations shall mainly be presented to

describe the dynamics of a system over time. This discrete formulation shall be used as measurements

are collected at discrete times in application and the modeling framework can easily be extended to

continuous time.

In this chapter, a comprehensive comparison study of the methods presented above will be performed

on several problems. We shall draw conclusions about which methods give the best result for certain

problems taking into account the assumptions, cpu time required for solutions, and the ability to solve

the types of problems presented. The chapter is organized as follows. Background and derivation of the

Bayes filter and Kalman filter will be presented in Section 2.2. Section 2.3 presents the deterministic

methods previously discussed, and Section 2.4 the sampling based methods. The problem statement

of interest will be presented in Section 2.5. The application of these methods to test problems will be

presented in Section 2.6. Finally, Section 2.7 contains our concluding remarks.
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2.2 Background and Derivation

2.2.1 Bayes Filter

The Bayes filter is an optimal method to combine a model along with measurements to get the best

estimate of the state of the system, and the model parameters.

We start by defining the state-space representation as follows:

xi+1 = f (i, xi, ui, θ) + wi (2.1)

yi+1 = h(i + 1, xi+1, ui+1, θ) + vi+1, (2.2)

where xi+1 ε <
nx and yi+1 ε <

ny are the model state and measurement, respectively, wi and vi+1 are as-

sumed to be independent and identically distributed (i.i.d.) noise processes with zero means and covari-

ances Qi and Ri+1, ui ε <
nu is an exogenous control, and θ denote the model parameters. The functions

f and h are assumed to be nonlinear in the state and observations.

The objective is to use the measurements, y1:i, up to time i, to give an understanding of the state

xi. This requires calculating the distribution, p(xi|y1:i), assuming that the initial distribution p(x0|y0) =

p(x0), which is just the distribution of the state without any observations at the current time, known

as the prior. Given the initial distribution, p(xi|y1:i) can be calculated in two steps: a prediction and an

update.

Assuming time starts at i−1, with p(xi−1|y1:i−1), the prediction step involves using the model to calcu-

late the prior probability density function (pdf) of the state at time i by using the Chapman-Kolmogorov

equation [5]

p(xi|y1:i−1) =

∫
p(xi|xi−1)p(xi−1|y1:i−1)dxi−1, (2.3)

which utilizes the fact that p(xi, xi−1|y1:i−1) = p(xi|xi−1) since the model is a first order Markov process.

The pdf p(xi|xi−1) is given by the state-space model (2.1) with statistics governed by wi.

Now given a measurement yi becomes available at time i, Bayes’ rule is applied to update the prior

estimate and get our posterior

p(xi|y1:i) =
p(yi|xi)p(xi, y1:i−1)

p(yi, y1:i−1)
, (2.4)

where p(yi, y1:i−1) =
∫

p(yi, xi)p(xi|y1:i−1)dxi.

The posterior is dependent upon the likelihood function which is defined by the measurement equa-

tion (2.2), with statistics given by vi+1. Hence, the posterior updates the prior given a measurement to

get the density at the current state [5] and the Bayes filter is simply a recursion relationship between

(2.3) and (2.4).

The difficulty arises as each time we obtain a new measurement, the full posterior distribution would

have to be recomputed. This is particularly troublesome in dynamic estimation where measurements are
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obtained one at a time; when the number of time steps increases, the dimensionality of the full posterior

distribution also increases leading to computationally intractable calculations [27].

2.2.2 The Kalman Filter

Assuming linear dynamics and Gaussian noise processes, the Bayes filter simplifies to the Kalman filter.

Utilizing the work of Majda and Harlim [19], the Kalman filter is derived as follows. Operating with

Gaussian distributions, the entire optimal estimate can be characterized through the propagation of the

mean and covariance. Letting xi+1|i be the state at time i + 1 given the state at time i, x̂i+1|i denotes the

mean of the prior distribution, and Pxi+1|i the covariance of the prior distribution, the state space can be

formulated as:

xi+1|i = Fxi|i + wi (2.5)

yi+1 = Hxi+1 + vi+1, (2.6)

where wi and vi+1 are normally distributed with mean 0 and covariances, Q and R, respectively, and F

and H are matrix operators. For simplification, we shall use the following notation to describe distribu-

tions, wi ∼ N(0,Q) and vi+1 ∼ N(0,R) where ∼ denotes distributed and N(0,R) denotes normal with

mean 0 and covariance R. This gives p(xi+1) ∼ N(x̂i+1|i, Pxi+1|i) with

Pxi+1|i =
〈
(xi+1 − x̂i+1|i)(xi+1 − x̂i+1|i)T 〉

, (2.7)

where 〈A〉 denotes the mean of A.

Substituting (2.5) into (2.7), the following equation for the covariance prediction can be obtained,

Pxi+1|i =
〈
(Fxi|i + wi+1 − Fx̂i|i)(Fxi|i + wi+1 − Fx̂i|i)T 〉

(2.8)

= F
〈
(xi|i − x̂i|i)(xi|i − x̂i|i)T 〉

FT + Q = FPxi|i F
T + Q. (2.9)

Assuming Gaussian distributions, the distributions become

p(xi+1) ∝ e−
1
2 (x−x̂i+1|i)T (Pxi+1|i )

−1(x−x̂i+1|i) (2.10)

p(yi+1|xi+1) ∝ e−
1
2 (yi+1−Hx)T R−1(yi+1−Hx). (2.11)

By applying Bayes formula, p(xi+1|yi+1) ∝ p(xi+1)p(yi+1|xi+1), where ∝ denotes proportionality, the

posterior can be written as

p(xi+1|yi+1) ∝ e−
1
2 J[x], (2.12)

where J[x] = (x − x̂i+1|i)T (Pxi+1|i)
−1(x − x̂i+1|i) + (yi+1 − Hx)T R−1(yi+1 − Hx).

The best estimate is obtained by maximizing the conditional density, p(xi+1|yi+1), which is the same
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as minimizing J[x]. The necessary condition for J[x] to be minimized is

dJ
dx

= P−1
xi+1|i

(x − x̂i+1|i) + (x − x̂i+1|i)T P−1
xi+1|i
− HT R−1(yi+1 − Hx) + (yi+1 − Hx)T R−1(−H) (2.13)

= 2(Pxi+1|i)
−1(x − x̂i+1|i) − 2HT R−1(yi+1 − Hx) = 0, (2.14)

which implies

(Pxi+1|i)
−1(x − x̂i+1|i) = HT R−1(yi+1 − Hx).

Isolating the dependent variable x yields

(P−1
xi+1|i

+ HT R−1H)x = P−1
xi+1|i

x̂i+1|i + HT R−1yi+1.

Adding and subtracting HT R−1Hx̂i+1|i, the inverse of the leading term (P−1
xi+1|i

+ HT R−1H) is multiplied

through to obtain

x̂i+1|i+1 =(P−1
xi+1|i

+ HT R−1H)−1P−1
xi+1|i

x̂i+1|i + (P−1
xi+1|i

+ HT R−1H)−1HT R−1yi+1+[
(P−1

xi+1|i
+ HT R−1H)−1HT R−1Hx̂i+1|i − (P−1

xi+1|i
+ HT R−1H)−1HT R−1Hx̂i+1|i

]
,

where x̂i+1|i+1 is the mean of the posterior distribution.

Rearranging the terms gives

x̂i+1|i+1 = (P−1
xi+1|i

+ HT R−1H)−1P−1
xi+1|i

x̂i+1|i + (P−1
xi+1|i

+ HT R−1H)−1HT R−1Hx̂i+1|i+

(P−1
xi+1|i

+ HT R−1H)−1HT R−1(yi+1 − Hx̂i+1|i).

Adding the x̂i+1|i terms together and simplifying leads to

x̂i+1|i+1 = x̂i+1|i + Ki+1(yi+1 − Hx̂i+1|i), (2.15)

where Ki+1 is defined as

Ki+1 = (P−1
xi+1|i

+ HT R−1H)−1HT R−1, (2.16)

also known as the Kalman gain. Equation (2.15) is the mean update for the state. A more common

expression for the Kalman gain can be obtained by multiplying Ki+1 by (HPxi+1|i H
T + R)(HPxi+1|i H

T +

R)−1;

Ki+1 = (P−1
xi+1|i

+ HT R−1H)−1HT R−1(HPxi+1|i H
T + R)(HPxi+1|i H

T + R)−1. (2.17)

Multiplying R by (Pxi+1|i H
T )−1Pxi+1|i H

T in (HPxi+1|i H
T + R)(HPxi+1|i H

T + R)−1 gives

(HPxi+1|i H
T + R)(HPxi+1|i H

T + R)−1 = (HPxi+1|i H
T + R(Pxi+1|i H

T )−1Pxi+1|i H
T )(HPxi+1|i H

T + R)−1. (2.18)
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Substituting (2.18) into (2.17) and expanding yields

Ki+1 = (P−1
xi+1|i

+ HT R−1H)−1[HT R−1HPxi+1|i H
T + HT (Pxi+1|i H

T )−1Pxi+1|i H
T ]

(HPxi+1|i H
T + R)−1. (2.19)

Substituting (Pxi+1|i H
T )−1 = (HT )−1P−1

xi+1|i
into (2.19) yields

Ki+1 = (P−1
xi+1|i

+ HT R−1H)−1[HT R−1H(Pxi+1|i H
T ) + HT (HT )−1P−1

xi+1|i
(Pxi+1|i H

T )
]
(HPxi+1|i H

T + R)−1.

Rearranging terms results in

Ki+1 = (P−1
xi+1|i

+ HT R−1H)−1[(HT R−1H + P−1
xi+1|i

)(Pxi+1|i H
T )

]
(HPxi+1|i H

T + R)−1.

Simplifying, we finally arrive at

Ki+1 = Pxi+1|i H
T (

HPxi+1|i H
T + R

)−1, (2.20)

which is the more common expression for the Kalman Gain.

By substituting (2.15) into the covariance formula,

〈
(xi+1 − x̂i+1|i+1)(xi+1 − x̂i+1|i+1)T 〉

, (2.21)

we obtain

(xi+1 − x̂i+1|i+1) = xi+1 − x̂i+1|i − Ki+1(yi+1 − Hxi+1 − H(x̂i+1|i − xi+1)).

Let ei+1|i+1 = xi+1 − x̂i+1|i+1 be the error between the true state and the estimated state. Using the output

equation (2.6) leads to

ei+1|i+1 = (I − Ki+1H)ei+1|i − Ki+1(Hxi+1 + vi+1 − Hxi+1) (2.22)

ei+1|i+1 = (I − Ki+1H)ei+1|i − Ki+1vi+1. (2.23)

Using (2.23), the covariance update is given by

〈
ei+1|i+1eT

i+1|i+1
〉

= (I − Ki+1H)
〈
ei+1|ieT

i+1|i
〉
(I − Ki+1H)T + Ki+1RKT

i+1 (2.24)〈
ei+1|i+1eT

i+1|i+1
〉

= (I − Ki+1H)
〈
ei+1|ieT

i+1|i
〉
− (I − Ki+1H)

〈
ei+1|ieT

i+1|i
〉
(Ki+1H)T + Ki+1RKT

i+1. (2.25)

Substituting (2.16) into (I − Ki+1H) and simplifying results in

(I − Ki+1H) = (P−1
xi+1|i

+ HT R−1H)−1(P−1
xi+1|i

+ HT R−1H) − (P−1
xi+1|i

+ HT R−1H)−1HT R−1H (2.26)

= (P−1
xi+1|i

+ HT R−1H)−1P−1
xi+1|i

. (2.27)
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Applying the definition of the covariance,
〈
ei+1|ieT

i+1|i
〉

= Pxi+1|i , along with substituting (2.27) and ex-

panding (2.25) yields

〈
ei+1|i+1eT

i+1|i+1
〉

= (I − Ki+1H)Pxi+1|i −
(
(P−1

xi+1|i
+ HT R−1H)−1P−1

xi+1|i

)
Pxi+1|i H

T KT
i+1 + Ki+1RKT

i+1

= (I − Ki+1H)Pxi+1|i − (P−1
xi+1|i

+ HT R−1H)−1HT KT
i+1

+
(
(P−1

xi+1|i
+ HT R−1H)−1HT R−1)RKT

i+1

= (I − Ki+1H)Pxi+1|i − (P−1
xi+1|i

+ HT R−1H)−1HT KT
i+1

+ (P−1
xi+1|i

+ HT R−1H)−1HT KT
i+1.

Simplifying, the covariance update becomes

Pxi+1|i+1 = (I − Ki+1H)Pxi+1|i . (2.28)

In summary, the above derivation for the Kalman filter essentially contains two steps.

Prediction

x̂i+1|i = Fxi|i (2.29)

Pxi+1|i = FPxi|i F
T + Q (2.30)

Update

x̂i+1|i+1 = x̂i+1|i + Ki+1(yi+1 − Hx̂i+1|i) (2.31)

Ki+1 = Pxi+1|i H
T (

HPxi+1|i H
T + R

)−1 (2.32)

Pxi+1|i+1 = (I − Ki+1H)Pxi+1|i . (2.33)

As stated, however, this only holds if the model dynamics and observation equation are both linear

and the noise processes are Gaussian. For cases when these do not hold, modifications to the Kalman

filter have been developed.

2.3 Deterministic Kalman Filters

2.3.1 The Extended Kalman Filter

Because of the Kalman filter’s optimality and simplicity, the extended Kalman filter (EKF) maintains

the basic framework and idea of the original Kalman filter, but uses a first order linearization of the

model dynamics to approximate the error statistics. Following Evensen [9], the extended Kalman filter

10



is derived as follows. Assuming a general nonlinear system as below:

xt
i+1 = f (i, xt

i, ui, θ) + wi (2.34)

yt
i+1 = h(i + 1, xt

i+1, ui, θ) + vi+1, (2.35)

and assuming this system is modeled by the approximate equation

x̂−i+1 = f (i, x̂i, ui, θ), (2.36)

subtracting (2.36) from (2.34) obtains

xt
i+1 − x̂−i+1 = f (i, xt

i, ui, θ) − f (i, x̂i, ui, θ) + wi. (2.37)

A Taylor expansion can be performed to approximate the system

f (x) = f (x0) +
d f
dx

(x0)(x − x0) +
1
2

(x − x0)T Fxx(x0)(x − x0)T + O
(
||x − x0||

3),
where Fxx is used to denote the second derivative, or Hessian matrix for multiple dimensions. Applying

this expansion to the original system leads to

xt
i+1 − x̂−i+1 = f (i, x̂i, ui, θ) +

d f
dx

(x̂i)(xt
i − x̂i) +

1
2

(xt
i − x̂i)Fxx(x̂i)(xt

i − x̂i)T + O
(
||x− x3

0||
)
− f (i, x̂i, ui, θ) + wi.

Squaring both sides and taking the expected value leads to the following equation

Pxi+1|i = Fx(x̂i)E[(xt
i − x̂i)(xt

i − x̂i)]T Fx(x̂i)T +
1
2

Fx(x̂i)E[(xt
i − x̂i)(xt

i − x̂i)T ]FT
xx(x̂i)E[(xt

i − x̂i)]

+
1
4

E[(xt
i − x̂i)(xt

i − x̂i)T ]FxxFT
xxE[(xt

i − x̂i)(xt
i − x̂i)T ] + ... + Q,

which simplifies by discarding the moments of third or higher order

Pxi+1|i ≈ Fx(x̂i)Pxi|i Fx(x̂i)T + Q, (2.38)

where Fx(x̂i) =
∂ f (i,x)
∂x |x=x̂i is the Jacobian, Q is the model error covariance, and Pxi+1|i is the predicted

error covariance.

Applying the same procedure to the nonlinear observation equation h, we utilize a linearization of

the observation equation to be used in the update as follows

Hi+1 =
∂h(i, x)
∂x

|x=x̂−i+1
.

Using the above derivations in the classical Kalman filter equations, we obtain the extended Kalman

11



filter. While the initial state estimation portion of the algorithm is unchanged, these Jacobians are utilized

in the initial covariance estimation and in the estimation update for both the covariance and the state,

through the gain. Though utilizing the same procedure as the Kalman filter, the extended Kalman filter

is sub-optimal for nonlinear problems, and reduces to the Kalman filter for linear problems.

The algorithm for the extended Kalman filter is summarized as follows:

Initialize: for i = 0

x̂0 = E[x0]

P0 = E[(x0 − E[x0])(x0 − E[x0])T ]

algorithm: for i = 1,2,3,...

State Estimation

x̂−i = f (i, x̂i−1)

Covariance Estimation

P−i = Fi,i−1Pi−1FT
i,i−1 + Qi−1

where F is the linearization of the model w.r.t. the state

Fi,i−1 =
∂ f (i, x)
∂x

|x=x̂i−1

Kalman Gain Matrix

K = P−i HT
i
[
HiP−i HT

i + Ri
]−1

where H is the linearization of the observation w.r.t. the state

Hi =
∂h(i, x)
∂x

|x=x̂−i

State Estimation Update

x̂i = x̂−i + K
[
yi − h(i, x̂−i )

]
Covariance Estimation Update

Pi =
[
I − KHi

]
P−i

Reviewing the algorithm, this extension of the Kalman filter is applicable for nonlinear systems,

though still requires Gaussian distributions for both the model and observations. However, the disad-

vantage of the extended Kalman filter is that it is approximating the nonlinear model by a linearized

counterpart, through a first order Taylor expansion. The success of the extended Kalman filter relies

heavily on the assumption that the linearization of the nonlinear state-space model deviates from lin-

earity no more than first order [14]. In cases where the nonlinearities deviate from linearity greater than

first order, or the initial estimates cause higher order terms to be significant, the filter will achieve less

accurate results, and can even diverge and fail to achieve meaningful results [38]. This is likely due to
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the approximation of the error statistics by the linearized model, since a Gaussian distribution cannot be

guaranteed once propagated through a nonlinear operator.

To increase the accuracy of nonlinear models, another Kalman filter has been constructed that better

preserves the distribution statistics as it passes through the nonlinearities. Unlike the EKF, this new

filter maintains at least second order accuracy for all distributions, and at least third order accuracy for

Gaussian distributions [14].

2.3.2 The Unscented Kalman Filter

The unscented Kalman filter addresses the shortcomings of the EKF through the ’unscented transfor-

mation.’ Following the work by Haykin [14], the unscented Kalman filter is derived assuming the errors

are Gaussian random variables (GRV). Instead of using a linear approximation to the nonlinear model,

a set of sample points is constructed which will completely capture the true mean and covariance of the

GRV, and once propagated through the nonlinear model, will capture the posterior mean and covariance

to 3rd order for any nonlinearity [38]. The advantages of the unscented Kalman filter are not just the

increase of accuracy, but also the decrease in complexity by not requiring the calculation of a derivative,

or Jacobian. To better understand, we shall explain the unscented transformation.

The unscented transformation (UT) is a method used to calculate the statistics of a random variable

which undergoes a nonlinear transformation [11]. Assuming that x is a random variable with dimension

L, which has mean x̂ and covariance, Px, this random variable gets propagated through a nonlinear

function, y = g(x). To calculate the statistics of y, a matrix χ is formed of 2L + 1 sigma vectors χi. This

matrix χ is constructed as follows,

χ =
[
x̂, x̂11xL +

( √
(L + λ)Px

)
L, x̂11xL −

( √
(L + λ)Px

)
L
]
, (2.39)

where x̂ is a column vector, x̂11xL is a matrix of the column vector x̂, and
(√

(L + λ)Px
)
L is an LxL

matrix. The corresponding weights (Wi) for the sigma vectors are as follows

W (m)
0 =

λ

(L + λ)
(2.40)

W(c)
0 =

λ

(L + λ)
+ (1 − α2 + β) (2.41)

W (m)
i = W (c)

i =
1

2(L + λ)
i = 1, ..., 2L, (2.42)

where λ = α2(L + κ)− L is a scaling parameter. The tuning parameter, α, is used to determine the spread

of the sigma points around x̂, and takes values between 1 ≥ α ≥ 10−4 depending on the problem. The
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tuning parameter, κ, is a secondary scaling parameter which is optimally set to 3 − L [14]. Lastly, β is

used to incorporate prior knowledge of the distribution of x (for Gaussian distributions, β = 2 is optimal)

[38]. From our matrix of sigma points (2.39),
(√

(L + λ)Px
)
i is the ith row of the matrix square root [38].

The sigma vectors are then propagated through the nonlinear function accordingly,

yi = g(χi), i = 0, ..., 2L, (2.43)

with the mean and covariance of y being approximated using a weighted sample mean and covariance

of the posterior sigma points,

ŷ ≈
2L∑
i=0

W (m)
i yi (2.44)

Py ≈

2L∑
i=0

W (c)
i

(
yi − ŷ

)(
yi − ŷ

)T . (2.45)

As stated earlier, the UT results in approximations that are accurate to the third order for Gaussian inputs

for all nonlinearities, and accurate to at least second order for all other inputs [9]. Extending the UT for

use in the Unscented Kalman filter (UKF) is straightforward, and is shown below (assuming additive
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Gaussian noise),

Initialize: for t = 0

x̂0 = E[x0]

P0 = E[(x0 − E[x0])(x0 − E[x0])T ]

algorithm: for t = 1,2,3,...

Calculate Sigma Points

χt−1 =
[
x̂, x̂ +

( √
(L + λ)Pt−1

)
L, x̂ −

( √
(L + λ)Pt−1

)
L
]

time-update equations

χ∗t,t−1 = F(χt−1, ut,wt)

where ut is an exogenous input and wt are parameters

x̂−t =

2L∑
i=0

W (m)
i χ∗i,t|t−1

P−t =

2L∑
i=0

W (c)
i

(
χ∗i,t|t−1 − x̂−t

)(
χ∗i,t|t−1 − x̂−t

)T
+ Q

time-update equations for observation: augment sigma points

χt|t−1 =
[
χ∗0,t|t−1 χ∗0,t|t−1 +

(√
(L + λ)P−t

)
L, x̂ −

(√
(L + λ)P−t

)
L
]

Yt|t−1 = g(χt,t−1)

ŷ−t =

2L∑
i=0

W (m)
i Yi,t|t−1

measurement-update equations

Pŷt ŷt =

2L∑
i=0

W (c)
i

(
Yi,t|t−1 − ŷ−t

)(
Yi,t|t−1 − ŷ−t

)T
+ R

Pxtyt =

2L∑
i=0

W (c)
i

(
χi,t|t−1 − x̂−t

)(
Yi,t|t−1 − ŷ−t

)T

Kt = Pxtyt P
−1
ŷt ŷt

x̂t = x̂−t + Kt
(
yt − ŷ−t

)
Pt = P−t − KtPŷt ŷt K

T
t

where Q is the process noise covariance and R is the measurement noise covariance.

The unscented Kalman filter as presented assumes additive Gaussian noise. There are multiple vari-

ations of this algorithm for numerical purposes, one of which is the square root unscented Kalman filter.
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Also, a more general form of the UKF is also available, which does not assume additive noise, but prop-

agates the measurement and process covariance through the nonlinear function. These extensions can

be found in most of our referenced materials [14, 11, 26, 38, 30].

2.3.3 The Cubature Kalman Filter

Similar to the previous deterministic filters, the cubature Kalman filter (CKF) relies upon an approxima-

tion of the nonlinear function and is derived following the work of Arasaratnam [3]. However, unlike the

previous methods, the CKF closely follows the Bayes filter theory and takes advantage of the assumption

of a normal distribution using numerical integration techniques to calculate the time and measurement

updates. This underlying assumption of a Gaussian distribution for the predictive density and the mea-

surement density is central as it leads to a Gaussian posterior distribution [3].

The prediction step, or time update, is focused on calculating the mean x̂i+1|i and covariance Pi+1|i

of the predictive density

x̂i+1|i = E[xi+1|u1:i, y1:i]. (2.46)

Substituting the model (2.63) into (2.46), obtains

x̂i+1|i = E[ f (i, xi, ui, θ) + wi|u1:i, y1:i] = E[ f (i, xi, ui, θ)|u1:i, y1:i].

This result follows because wi is assumed to be a zero-mean noise process that is uncorrelated with

previous measurements. The expectation becomes

x̂i+1|i =

∫
<nx

f (i, xi, ui, θ)p(xi|u1:i, y1:i)dxi

=

∫
<nx

f (i, xi, ui, θ)�(xi; x̂i|i, Pi|i)dxi,

where�(.; ., .) is standard notation for a Gaussian density. Following the same procedure, the predictive

covariance is

Pi+1|i = E[
(
xi+1 − x̂i+1|i

)(
xi+1 − x̂i+1|i

)T
|u1:i, y1:i].

Again, substituting (2.63) in for xi+1, using f (xi) for shorthand to represent f (i, xi, ui, θ) leads to

Pi+1|i = E
[(

f (xi) + wi − x̂i+1|i
)(

f (xi) + wi − x̂i+1|i
)T
|u1:i, y1:i

]
= E

[
f (xi) f (xi)T + f (xi)wT

i − f (xi)x̂T
i+1|i + wi f (xi)T

+ wiwT
i − wi x̂T

i+1|i − x̂i+1|i f (xi)T − x̂i+1|iwT
i + x̂i+1|i x̂T

i+1|i|u1:i, y1:i
]
.
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Assuming that wi is independent of both f (xi) and x̂i+1|i, we can use E[xy] = E[x]E[y] and E[E[x]] =

E[x]. Knowing that wi ∼ N(0,Q) and x̂i+1|i = E[ f (xi)|u1:i, y1:i], the previous expression simplifies to be

Pi+1|i = E
[
f (xi) f (xi)T − f (xi)x̂T

i+1|i + wiwT
i − x̂i+1|i f (xi)T + x̂i+1|i x̂T

i+1|i|u1:i, y1:i
]

= E
[
f (xi) f (xi)T ]

− E
[
f (xi)x̂T

i+1|i
]
+ E

[
wiwT

i
]
− E

[
f (xi)x̂T

i+1|i
]
+ E

[
x̂i+1|i x̂T

i+1|i
]
.

Further simplifying −2E
[
f (xi)x̂T

i+1|i
]
+ E

[
x̂i+1|i x̂T

i+1|i
]

using E
[
f (xi)

]
E
[
x̂T

i+1|i
]

= x̂i+1|i x̂T
i+1|i, gives

Pi+1|i =

∫
<nx

f (i, xi, ui, θ) f (i, xi, ui, θ)T
�(xi; x̂i|i, Pi|i)dxi − x̂i+1|i x̂T

i+1|i + Qi.

For the measurement update, assuming measurement errors are from Gaussian distributions, the

likelihood function can be written as

p(yi+1|u1:i, y1:i) = �(yi+1; ŷi+1, Pyy,i+1|i),

where the measurement prediction, calculated using the same procedure as the prediction step, is

ŷi+1 =

∫
<nx

h(i + 1, xi+1, ui+1, θ)�(xi+1; x̂i+1|i, Pi+1|i)dxi+1.

The associated covariance, calculated using the same procedure as the prediction step, is given by

Pyy,i+1|i =

∫
<nx

h(xi+1)h(xi+1)T ×�(xi+1; x̂i+1|i, Pi+1|i)dxi+1 − ŷi+1ŷT
i+1 + Ri.

Therefore, the joint conditional Gaussian density of the state and measurement is given by

p
(
[xT

i+1yT
i+1]T |y1:i, u1:i

)
=

(
�

x̂i+1|i

ŷi+1

 , Pi+1|i Pxy,i+1|i

PT
xy,i+1|i Pyy,i+1|i

 ),
where the cross covariance is calculated as follows, substituting (2.64),

Pxy,i+1|i = E
[
(xi+1 − x̂i+1|i)(yi+1 − ŷi+1)

]
= E

[
(xi+1 − x̂i+1|i)(h(xi+1) + vi+1 − ŷi+1)

]
,

where carrying out the calculation, assuming vi+1 is independent of xi+1 and x̂i+1|i, and also noting that
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E(xi+1|y1:i, u1:i) = x̂i+1|i and E(h(xi+1)|y1:i, u1:i) = ŷi+1, we obtain

Pxy,i+1|i = E
(
xi+1h(xi+1)T + xi+1vT

i+1 − xi+1ŷT
i+1 − x̂i+1|ih(xi+1)T − x̂i+1|ivT

i+1 + x̂i+1|iŷi+1
)

= E
(
xi+1h(xi+1)T )

− E
(
xi+1ŷT

i+1
)
− E

(
x̂i+1|ih(xi+1)T )

+ E
(
x̂i+1|iŷi+1

)
=

∫
<nx

xi+1h(i + 1, xi+1, ui+1, θ)T
�(xi+1; x̂i+1|i, Pi+1|i)dxi+1 − x̂i+1|iŷi+1.

Given a new measurement yi+1, the posterior density p(xi+1|y1:i+1, u1:1+i) is calculated from the Bayesian

filter, resulting in

p(xi+1|y1:i+1, u1:i+1) = �(xi+1; x̂i+1|i+1, Pi+1|i+1), (2.47)

where

x̂i+1|i+1 = x̂i+1|i + Ki+1(yi+1 − ŷi+1|i) (2.48)

Pi+1|i+1 = Pi+1|i − Ki+1Pyy,i+1|iKT
i+1 (2.49)

Ki+1 = Pxy,i+1|iP−1
yy,i+1|i, (2.50)

which, if f (...) and h(...) are linear functions of the state, simplifies to the classical Kalman filter.

The remaining question now becomes how to calculate an integral of the form,∫
<n

g(x)�(x)dx =

∫
<n

g(x) exp(−xT x)dx.

Arasaratnam [3, 4] proposes that the best way to do this is (i) transform it into a more familiar spherical-

radial integration form, and (ii) subsequently apply a third-degree spherical-radial rule .

First, a transformation must be made to change the variables from the Cartesian space x ∈ �n to a

radius r and direction y as follows: let x = ry with yT y = 1, so that xT x = r for r ∈ [0,∞) [3]. Then, the

integral becomes

I( f ) =

∫ ∞

0

∫
Un

f (ry)rn−1 exp(−r2)dσ(y)dr,

where Un is the surface of the sphere defined by Un = {y ∈ �n|yT y = 1} and σ(...) is the spherical

surface measure [3]. This integral can be broken up into a radial component and spherical component

which can subsequently be computed numerically using a cubature rule and quadrature rule. The radial

integral is given by

I =

∫ ∞

0
S (r)rn−1 exp(−r2)dr,
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where S (r) is defined by the spherical integral with unit weighting function w(y) = 1,

S (r) =

∫
Un

f (ry)dσ(y).

Carrying out both computations and combining them into a third-degree spherical-radial rule, the stan-

dard Gaussian weighted integral is calculated

I�( f ) =

∫
<n

f (x) ×�(x; 0, I)dx ≈
m∑

i=1

ωi f (ξi),

where

ξi =

√
m
2

[1]i

ωi =
1
m
, i = 1, 2, ...m = 2n.

Here [1]i denotes a generator, where a generator u in a fully symmetric region is defined by u =

(u1, u2, ..., ur, 0, ...0) ∈ <n with ui ≥ ui+1 > 0, i = 1, 2, ...(r − 1). For example, [1] ∈ <2 is represented

by the points ( 10
 , 01

 , −1

0

 ,  0

−1

 ),
using the notation that [u1, u2, ..., ur]i is the i-th point from the set [u1, u2, ..., ur]. For more information

on the numerical integration details, see [3, 4].

In summary, the algorithm for the cubature Kalman filter (assuming additive noise) proceeds as follows,
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Initialize: for t = 0

x̂0 = E[x0]

P0 = E[(x0 − E[x0])(x0 − E[x0])T ]

algorithm: for t = 1,2,3,...

Calculate Matrix Square Root

Pt−1|t−1 = S t−1|t−1S T
t−1|t−1

Evaluate Cubature Points: for i = 1, 2, ..., 2nx

Xi,t−1|t−1 = S t−1|t−1ξi + x̂t−1|t−1

time-update equations

X∗i,t|t−1 = f (Xi,t−1|t−1, ut−1, θ)

where ut−1 is an exogenous input and θ are parameters

x̂t|t−1 =
1

2nx

2nx∑
i=1

X∗i,t|t−1

Pt|t−1 =
1

2nx

2nx∑
i=1

X∗i,t|t−1X∗
T

i,t|t−1 − x̂t|t−1 x̂T
t|t−1 + Qt−1

time-update equations for observation: calculate matrix square root

Pt|t−1 = S t|t−1S T
t|t−1

Evaluate Cubature Points: for i = 1, 2, ..., 2nx

Xi,t|t−1 = S t|t−1ξi + x̂t|t−1

Yi,t|t−1 = h(Xi,t|t−1, ut−1, θ)

measurement-update equations

ŷt|t−1 =
1

2nx

2nx∑
i=1

Y∗i,t|t−1

Pyy,t|t−1 =
1

2nx

2nx∑
i=1

Yi,t|t−1YT
i,t|t−1 − ŷt|t−1ŷT

t|t−1 + Rt

Pxy,t|t−1 =
1

2nx

2nx∑
i=1

ωiXi,t|t−1YT
i,t|t−1 − x̂t|t−1ŷT

t|t−1

Kt = Pxy,t|t−1P−1
yy,t|t−1

x̂t|t = x̂t|t−1 + Kt(yt − ŷt|t−1)

Pt|t = Pt|t−1 − KtPyy,t|t−1KT
t
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where Qt−1 is the process noise covariance and Rt is the measurement noise covariance.

It should be noted that a distinct advantage of the cubature Kalman filter over the EKF is that it

does not require the calculation of derivatives. Other advantages include the lack of tuning parameters,

which have been known to have a distinct impact on the effectiveness of convergence on the UKF, and

2n points to propagate as opposed to 2n + 1. The disadvantage of the cubature Kalman filter is the strict

enforcement of the Gaussian distributions for the states and observations. Again, similar to the unscented

Kalman filter, there are multiple variations of this algorithm for numerical purposes, including a square

root implementation. For details on this, we refer the interested reader to [3].

2.4 Sampling Based Kalman Fitlers

2.4.1 Ensemble Kalman Filter

The main idea of the ensemble Kalman filter (EnKF) is to approximate the error statistics of the estimate

by a set of particles sampled from the distribution. Using the work of Majda and Harlim [19], the EnKF

is derived accordingly. Unlike the deterministic methods, the prior and posterior error covariances are

calculated by the ensemble covariance matrices around the corresponding ensemble mean, instead of

the classical covariance equations given in the linear Kalman filter. That is, the covariance is computed

Pxi+1|i =
1

N − 1
Ui+1|iUT

i+1|i (2.51)

Pxi+1|i+1 =
1

N − 1
Ui+1|i+1UT

i+1|i+1, (2.52)

where

Ui+1|i = [x1
i+1|i − x̂i+1|i; x2

i+1|i − x̂i+1|i; ...; xN
i+1|i − x̂i+1|i] (2.53)

Ui+1|i+1 = [x1
i+1|i+1 − x̂i+1|i+1; x2

i+1|i+1 − x̂i+1|i+1; ...; xN
i+1|i+1 − x̂i+1|i+1], (2.54)

with x j
i+1|i being the jth particle being propagated through the model, and x j

i+1|i+1 is the update of each

particle. With this, N is defined to be the number of particles in which to approximate the distribution

and x̂ = N−1 ∑N
j=1 x j. From now on, U shall be defined as the ensemble perturbation matrix as it gives

the deviation of each particle from the mean. The advantage of this methodology is that unlike the

deterministic methods, there is no need to do an expensive calculation, such as the linearization or

statistical transform, to get error statistics. In place of these, each ensemble member is integrated in time

through the dynamical model.

To obtain the update equations, the Kalman gain is first calculated, as before. Substituting the en-
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semble error covariance results in

Ki+1 = Pxi+1|i H
T (HPxi+1|i H

T + R)−1

= (N − 1)−1UUT HT (H(N − 1)−1UUT HT + R)−1

= (N − 1)−1U(HU)T ((N − 1)−1(HU)(HU)T + R)−1.

In the above expression, and also for the remainder of this chapter, the subscript on U is omitted for

simplicity.

Looking at the Kalman gain equation, it is seen that anywhere the linear operator H appears, it is

coupled to the ensemble perturbation matrix; U. Due to this consequence, given a nonlinear observation

function h, HU can be replaced with the following approximation

V =
[
h(x1

i+1) − ŷi+1; h(x2
i+1) − ŷi+1; ...; h(xN

i+1) − ŷi+1
]
,

where ŷi+1 is the mean of the observation function given each sample, ŷi+1 =
∑N

j=1 h(x j
i+1).

Again, the need for costly calculations can be avoided by using the ensemble approximations in

place of deterministic methods.

To get final estimates, the classical Kalman filter update equations are applied to each ensemble

member

x j
i+1|i+1 = x j

i+1|i + Ki+1(ym
i+1 − h(x j

i+1|i)), (2.55)

where Ki+1 is defined as above, and the observation, yi+1, is perturbed accordingly

ym
i+1 = yi+1 + ψm

i+1, (2.56)

where ψm
i+1 is a Gaussian random variable with mean zero and covariance R. This perturbation is a Monte

Carlo method applied to the Kalman filter formula which yields an asymptotically correct analysis error

covariance estimate for large ensemble sizes [19]. In practice, to keep these perturbations unbiased,

these random perturbations are generated by first randomly drawing a M x N size matrix, A, where N

is the number of particles and M is dimension of the data, and take the singular value decomposition

of (N − 1)−1AAT = F
∑

FT . Therefore, unbiased random vectors of ym
t+1 are obtained, which is just

the column vectors of the matrix T = ((N − 1)R)
1
2 F

∑− 1
2 FT A [19]. Since the measurements are being

perturbed, the measurement error covariance matrix can be defined to be

R = (N − 1)−1EET ,

where E = [ψ1, ψ2, ..., ψN] are the ensemble measurement perturbations, with mean zero. In summary,

the algorithm for the ensemble Kalman filter is given as follows. An alternate implementation is given
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by Evensen [10], and many other implementations also exist.

Initialize: for i = 0

x̂0 = E[x0]

P0 = E[(x0 − E[x0])(x0 − E[x0])T ]

algorithm: for i = 1,2,3,...

State Estimation

Sample N particles from initial distribution: for j = 1, ...,N

x−
j

i = f (i − 1, x j
i−1)

x̂−i = (N)−1
N∑

j=1

x−
j

i

Covariance Estimation

U = [x−
1

i − x̂−i ; x−
2

i − x̂−i ; ...; x−
N

i − x̂−i ]

P−i = (N − 1)−1UUT

Measurement Ensemble

y j
i = yi + ψ

j
i

Y =
[
y1

i , y
2
i , ..., y

N
i
]

E =
[
ψ1

i , ψ
2
i , ..., ψ

N
i
]

R = (N − 1)−1EET

V =
[
h(i, x−

1

i ) − ŷi; h(i, x−
2

i ) − ŷi; ...; h(i, x−
N

i ) − ŷi
]

unbiased random vectors

[F,Σ] = svd
(
(N − 1)−1EET )

T =
(
(N − 1)R

) 1
2 FΣ−

1
2 FT E

Kalman Gain Matrix

Ki = (N − 1)−1UVT ((N − 1)−1VVT + R)−1

State Estimation Update

Innov = T − Y

x j
i = x−

j

i + Ki ∗ Innov

Posterior Covariance Update

W = [x1
i − x̂i; x2

i − x̂i; ...; xN
i − x̂i]

Pt = (N − 1)−1WWT
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2.4.2 Ensemble Transform Kalman Filter

Just like the EnKF, the ensemble transform Kalman filter (ETKF) relies on sampling from the proposed

normal distribution to obtain the error statistics. The main idea of the ETKF is to take the square root

of the covariance matrix, and transform it to a space where it is more robust and well-conditioned

[12, 13, 9, 19, 30].

There are multiple methods for taking the square root, the one we shall focus on from here is the

ETKF as derived by Bishop [1]. The basic idea is to find a transformation matrix T; so that

Ui+1|i+1Ui+1|iT = UT and UT (UT )T = (N − 1)−1Pxi+1|i+1 ,

where Pxi+1|i+1 is the sample posterior covariance matrix as previously defined. The posterior ensemble is

then generated by taking the posterior mean and adding each column vector from U. Using the identity

AT (AAT + R)−1 = (I + AT (R−1)A)−1AT R−1, (2.57)

and letting V = A and R be the measurement error covariance, The Kalman gain becomes

Ki+1 = (N − 1)−1U(I + (N − 1)−1VT R−1V)−1VT R−1. (2.58)

Substituting (2.58) and (2.51) into the posterior covariance formula leads to

Pxi+1|i+1 = (I −
U

N − 1
(I + (N − 1)−1VT R−1V)−1VT R−1H)

UUT

N − 1
. (2.59)

Factoring out U
N−1 from (2.59) yields

Pxi+1|i+1 =
U

N − 1
(
I −

(
I +

VT R−1V
N − 1

)−1 VT R−1V
N − 1

)
UT . (2.60)

Resulting in

Pxi+1|i+1 =
1

N − 1
U(I − (I + B)−1B)UT , (2.61)

where B = VT R−1V
N−1 . Knowing that I − (I + B)−1B = (I + B)−1 leads to

Pxi+1|i+1 = U
(
(N − 1)I + VT R−1V

)−1UT = UΣUT = U
TT T

N − 1
UT . (2.62)

Utilizing this, the ETKF algorithm is obtained.
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Initialize: for i = 0

x̂0 = E[x0]

P0 = E[(x0 − E[x0])(x0 − E[x0])T ]

algorithm: for i = 1,2,3,...

State Estimation

Sample N particles from initial distribution: for j = 1, ...,N

x−
j

i = f (i − 1, x j
i−1)

x̂−i = (N)−1
N∑

j=1

x−
j

i

Covariance Estimation

U = [x−
1

i − x̂−i ; x−
2

i − x̂−i ; ...; x−
N

i − x̂−i ]

P−i = (N − 1)−1UUT

Measurement Ensemble

y j
i = yi + ψ

j
i

Y =
[
y1

i , y
2
i , ..., y

N
i
]

E =
[
ψ1

i , ψ
2
i , ..., ψ

N
i
]

R = (N − 1)−1EET

V =
[
h(i, x−

1

i ) − ŷi; h(i, x−
2

i ) − ŷi; ...; h(i, x−
N

i ) − ŷi
]

SVD of (2.62)

[X,Γ] = svd
(
(N − 1)I + VT R−1V

)
Kalman Gain Matrix

Ki = U
(
XΓ−1XT )VT R−1

State Estimation Update

x̂i = x̂−i + Ki(yi − h(x̂−i ))

Transformation Matrix

T =
√

N − 1XΓ−
1
2 XT

W = UT

Posterior Ensemble and Covariance

A = x̂i + W

Pi = (N − 1)−1AAT
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2.5 Problem Statement

Consider a state space model of the form

xi+1 = f (i, xi, ui, θ) + wi (2.63)

yi+1 = h(i + 1, xi+1, ui, θ) + vi+1, (2.64)

where f is a nonlinear function of the state xi+1 ε <
nx , and h is a nonlinear function relating the obser-

vation yi+1 ε <
ny to the state. The variable ui ε <

nu is an exogenous control, wi and vi+1 are i.i.d. noise

processes, and θ denote the model parameters.

The objective is to find optimal parameter estimates allowing the best fit to the data. Classically,

parameter estimation is done by using an optimization technique to minimize a cost function [29].

Often, the cost function is defined as the sum of the squares of the difference between the model output,

yk, and observations, yobs
k , given by

J(θ) =

N∑
k=1

γk
[
yobs

k − yk
]2, (2.65)

where γk is a weighting parameter and yobs
k − yk is the residual. This approach is commonly referred to

as nonlinear least squares.

While few papers are explicitly concerned with the use of filtering techniques for parameter estima-

tion [14], there are multiple methods which can achieve this goal. The filters previously defined were

for state estimation, the optimal combination of the model predictions and observations to obtain an

improved estimate of the state of the system; however, utilizing the following methodologies allows the

filters to subsequently estimate parameters. The first, and most direct, is to modify the state space rep-

resentation to accommodate this objective. Since the observations are assumed to be coming from the

model, and optimal parameter estimates are the main focus, one method can be obtained by assuming

that the parameters have zero dynamics

θi+1 = θi + ri

yi+1 = h(i + 1, xi+1, , ui+1, θi+1) + vi+1,

where ri and vi+1 are i.i.d. noise processes. However, the goal is to not only estimate the parameters,

but also to fit the states as accurately as possible. This methodology is known as dual estimation [14].

There are two methodologies to be discussed that directly achieve this. The first of these methods is

joint estimation [9, 10, 14, 22, 24, 30]. Joint estimation is done by concatenating the parameters into the
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state-space. This gives the following

z = [x; θ]

zi+1 = f (i, zi, ui) + wi

θi+1 = θi + ri.

A second approach is called the dual filter [22, 23, 24, 31, 32]. Dual estimation is done by con-

currently running a state filter and parameter filter in parallel [14, 22, 23]. The state filter estimates the

state; xi; using the parameter value from the parameter filter at time i − 1. While, the parameter filter

estimates the parameter, θi, using the state estimate at time i − 1. These both propagate forward in time

and obtain estimates at each time step. Specifically, the state filter estimates the posterior of the state;

p(xi|i−1|yi, θ̂i−1); given the posterior estimate of the parameter at the previous time point; θ̂i−1, while the

parameter filter estimates the posterior of the parameter, p(θi|i−1|x̂i−1, yi); given the posterior estimate of

the state at the previous time point; x̂i−1.

2.6 Applications

In this section, we will compare the performance of the filtering methodologies presented in the previ-

ous sections on several test problems. Their performance will be judged based upon their ability to fit

the states, and more importantly, the model parameters accurately given varying levels of state measure-

ments. As stated previously, we will only compare the dual filters and joint filter estimation methods,

and not the parameter filters. All computations were done using code written in MATLAB.

These methods will be tested using three examples, the Lorenz equations, an HIV model, and a model

predicting cerebral auto-regulation. The first two examples were constructed using simulated data, while

the last example uses real patient data. Therefore, for the first two examples, the model is known to be

correct, while for the last example, the model is only an approximation of the system. Each example

was chosen to present a different challenge. The Lorenz example was selected to test the performance

for a highly nonlinear, chaotic system with a temporal shift in parameter values both full and partial

state observations . The HIV model was selected to test the performance for a nonlinear model with nu-

merical stiffness, sparse measurements, and multiplicative errors. Lastly, the model predicting cerebral

auto-regulation was selected as a real world example utilizing real patient data.

2.6.1 Lorenz Equations

The first example is the famous Lorenz 63 equations first studied by Lorenz in 1963 [20]. The system is

made up of 3 state equations and 3 model parameters, with nonlinearities present in 2 of the 3 equations.

This was chosen because of the well known properties of the chaotic behavior and strong nonlinearities.
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Due to the nature of the system, small perturbations to the state can lead to large qualitative changes.

This system of ordinary differential equations is given by

dx
dt

= σ(y − x)

dy
dt

= x(ρ − z) − y

dx
dt

= xy − βz.

For this test case, we generate data using the following initial conditions and parameter values with a

parameter regime change occurring at time; t = 10.
x0

y0

x0

 =


0.9

1

1.1

 ,

σ

ρ

β

 =


10; 7

28; 21
8
3 ; 1

 , wk = 0.1, ∆t = 0.01.

This was done to test each algorithm’s ability to accurately track the parameters and states when per-

turbations to the systems dynamics occur. For each case, we start with the initial condition given from

above, but with initial parameter values perturbed away from the true solution. The initial parameter

values and covariances are
σ0

ρ0

β0

 =


5

21
1
3

 ,Q =


0.001 0 0

0 0.001 0

0 0 0.001

 ,R =


0.1 0 0

0 0.1 0

0 0 0.1

 ,Qσ,ρ,β =


0.5 0 0

0 0.5 0

0 0 0.5

 .
Since the data is simulated, the observation and process noise covariance (Q and R, respectively) are

known. They are appropriately defined to reflect that knowledge. However, as we are more interested in

the application of filtering for parameter estimation, we perturb the initial values of the parameters away

from the truth, defined above, and set the parameter process noise covariance, Qσ,ρ,β, to appropriately

reflect this condition, and to account for the temporal shift in parameter regime. For this example, one

hundred runs of each filter with full state observations were performed, perturbing the initial state and

parameter values with Gaussian noise distributed N(0, 0.1), and the mean run results are presented. To

appropriately encapsulate this, the initial covariances were set as follows:

Px0 = Pq0 =


0.1 0 0

0 0.1 0

0 0 0.1

 .
Reviewing Figure 2.1, the deterministic methods tracked the state over the whole simulation. It is noted

that the results for both the joint and dual UKF and CKF are nearly identical, and therefore differen-
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tiation between the UKF and CKF methods on the plots is negligible without much finer granularity.

More importantly, the accuracy of the methods’ abilities to track the parameters through time, and the

parameter regime change, is shown in Figures 2.2 and 2.3. The dual filters’ mean parameter estimates

are presented in Figure 2.2, with 3 standard deviations plotted around each estimate, and the true param-

eter value plotted as the solid lines. As before, the difference between the CKF and UKF is negligible,

and both track the parameter with the same qualitative features. As can be seen, both dual estimation

methods track the parameter values, with a small lag when the regime shift occurs, but quickly adapt

and shift to the correct value. From Figure 2.3, the joint estimation methods exhibit more variation for

the mean estimates due to erratic changes occurring frequently to the estimates. This is due to the nature

of the joint estimation technique. As we are appending the parameters as unobserved states, the method

is partitioning the error equally among the states and the parameters, and can pass it back and forth.

This translates into the filter moving the state to best fit the data at the cost of the parameter shifting

greatly. As the parameter shifts drastically, the state is once again inaccurate and requires another sharp

change in the parameter to accommodate. This overcorrection leads to the observed qualitative behavior

as the error gets propagated back and forth between the state and parameter. Because the dual filter

compartmentalizes the error for the state and parameter into two distinct filters running concurrently,

this behavior is not as noticeable. However, since the state filter is using estimates from the parameter

filter, and vice versa, to update, the dual filter can also exhibit variation as the error of each filter is still

passed, but better handled due to each filter’s updated covariance and relegation of error to their respec-

tive components. Table 2.1 presents the mean results over the hundred runs for the sum of square truth

(SST), the difference between the filters state estimate and the known true solution, the sum of square

parameter (SSP), the difference between the true parameter value and the estimated parameter value at

final time, each parameter estimate with one standard deviation, and the amount of CPU time each filter

took.

Table 2.1: Results for deterministic filters with full state observations over parameter regime shift; joint
and dual, averaged over 100 runs.

truth j. ukf j. ckf j. ekf d. ukf d. ckf
SST 0 3.03 3.03 1.14 1.00 0.72
SSP 0 0.12 0.12 0.86 0.031 0.031
σ (1 std) 10; 7 7.22 (3.04) 7.22 ( 3.27) 6.91 (0.91) 6.93 (1.02) 6.93 (1.02)
ρ (1 std) 28; 21 21.23 (2.86) 21.23 ( 3.14) 20.63 (0.81) 20.83 (0.47) 20.83 (0.47)
β (1 std) 8

3 ; 1 0.87 (0.94) 0.87 (1.14) 0.84 (0.37) 1.01 (0.10) 1.01 (0.10)
CPU (secs) N/A 5.41 3.54 100.61 7.96 4.78

Next, the ensemble filters are presented for a single run. Figure 2.4 shows the ensemble filters’ ability
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Figure 2.1: Top: Plot of filter estimates for x1 utilizing both joint and dual filters over all observations.
Bottom: Plot of filter estimates for x1 utilizing both joint and dual filters over short time scale. This gives
a better perspective of the methods tracking ability.
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Figure 2.2: Plot of Parameter estimates for the dual UKF and dual CKF along with 3 standard devia-
tions (dotted) over the all observations, as well as true parameter values; green: ρ blue: σ. red: β
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Figure 2.3: Plot of parameter estimates for the joint EKF, joint UKF and joint CKF over all observa-
tions, as well as true parameter values (purple lines). UKF and CKF obtained nearly identical results
and therefore the UKF (red) is not visible.
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to track the state; x1; over the parameter shift. The ensemble filters accurately track the state initially,

top of Figure 2.4, but fail to catch the parameter regime shift and therefore, fail to track the state after

this event, bottom of Figure 2.4. This is more noticeable in Figure 2.5 where the ensemble parameter

estimates are shown, with the solid line being the true parameter value. This inability to catch the shift

is due to the nature of the sampling technique underlying the method. At each update, the samples are

shifted based upon the covariance, which is shrinking due to the increased confidence and accuracy

in the estimates. Therefore, when the parameter shift occurs, the ensemble filters struggle to sample

from enough of the parameter space to quickly adjust, making the shift occur slowly and ultimately

inaccurately. Table 2.2 presents the sum of squares truth, sum of squares for the parameters, and each

parameter estimate with standard deviation for the ensemble filters.

An update implemented to account for the ensemble shrinkage noted above is to append a process

noise onto the prior. Instead of calculating the prior solely by propagating the particles through the

model

x−
j

i = f (x j
i−1, i − 1, ui−1, θ),

a process noise is added to account for a known underlying model error, which prevents the shrinkage

phenomena described previously. The prior calculation then becomes

x−
j

i = f (x j
i−1, i − 1, ui−1, θ) + wi,

where wi ∼ N(0,Q). This perturbs the prior ensemble with covariance; Q; to maintain a known process

error. For the case described above, this process noise will allow the parameters to span the space more

readily, accounting for the shift and properly estimating the parameters.

Table 2.2: Results for ensemble filters with full state observations over parameter regime shift averaged
over 100 runs.

truth EnKF ETKF
SST 0 203.69 153.96
SSP 0 42.73 82.94
σ (1 std) 10; 7 11.06 (0.005) 15.49(7.54e-4)
ρ (1 std) 28; 21 25.77 (0.0045) 23.69 (5.48e-4)
β (1 std) 8

3 ; 1 2.87 (5.76e-4) 2.88 (5.92e-5)

The new implementation of the ensemble filters is now presented with mean results over one hun-

dred runs. Figure 2.6 shows the updated ensemble filters’ ability to track the states; x1 and x3; over the

parameter shift. From Figure 2.6, the updated ensemble filters do well to accurately track the states over

the entire interval, including the parameter shift. The parameter estimates for the updated ensemble fil-
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Figure 2.4: Top: Plot of ensemble methods’ state filter estimate of x1 for the Lorenz equations prior to
parameter shift. Bottom: Plot of ensemble methods’ state filter estimate of x1 for the Lorenz equations
post parameter shitf.
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Figure 2.5: Plot of parameter estimates for both ensemble filters over all observations.
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ters are presented in Figure 2.7, with the true values plotted as the solid lines. Similar to the deterministic

methods, the updated ensemble methods track the parameter estimates accurately over time, including

quickly adapting to the parameter shift. However, similar to the joint methods, the updated ensemble

methods exhibit a large degree of variation around the mean. Since ensemble methods are based upon

random sampling, samples can be drawn that maximize the likelihood for the observed state, but with

a large error in the parameter. These deviations in the parameters cause errors in the next update of the

state. To account for these errors, the filter corrects the parameters. However, this causes the previous

state estimates to be less accurate, which leads to adjustment in the states, and the qualitative features

in Figure 2.7. These deviations in the parameters are made worse by the updated sampling due to the

random perturbing of the particles with the process noise. This leads to extra deviation in the estimates

shown in the parameters compared to the joint and dual methods. One way to account for these devia-

tions would be to decrease the process noise. Table 2.3 presents the mean over the hundred runs for the

sum of squares truth, sum of squares for the parameters, each parameter estimate with standard deviation

for the updated ensemble filters, and CPU time.

Table 2.3: Results for Updated Ensemble Filters with full state observations averaged over 100 runs

truth EnKF ETKF
SST 0 8.00 3.24
SSP 0 26.3 7.63
σ (1 std) 10; 7 6.54 (2.89) 7.74(5.82)
ρ (1 std) 28; 21 21.24 (2.81) 21.32 (5.51)
β (1 std) 8

3 ; 1 0.15 (1.11) 0.78 (1.21)
CPU (secs) N/A 45.87 76.11

Next, the parameters values are kept in the chaotic regime for the whole simulation, and only use

observations for x1. This was done to study the filters’ ability to estimate more states than we have ob-

servations. This is important as rarely in practice does one obtain full state observations for the system.

Doing this over a single execution of each filter, it is seen that the methods seem to deal quite differently

with the new situation. From Figure 2.8, all filters do well to track x1 for which observations are present,

however, most of the methods struggle to track x2, except for the joint EKF and dual UKF. The bottom

plot in Figure 2.8 does not display the dual CKF as it fails to track the state and largely deviates, in or-

ders of magnitude, away from the truth. Figure 2.9 shows the parameter estimates for the methods with

observations for x1 only. Other than the joint EKF, no method seems to show much success in terms of

tracking the states or parameters with observations for x1. This is likely due to the more complicated

procedures each of the filters uses in calculating the covariance; because they not only require the co-

variance, but also a cross-covariance calculation, to estimate the updated state, errors can be more easily
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Figure 2.6: Top: Plot of updated ensemble state filter estimates of x1 for the Lorenz equations over all
observations. Bottom: Plot of updated ensemble state filter estimates of x3 of the Lorenz Equations over
all observations.
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propagated which leads to less stable results.

Table 2.4: Results for deterministic filters given observations for x1.

truth j. ukf j. ckf j. ekf d. ukf d. ckf
SST 0 1.61e4 509.4 6.21 128.48 2.07e9
SSP 0 146.85 26.95 1.45 213.99 343.97
σ (1 std) 10 12.61 (4.86) 10.12 ( 32.83) 9.43 (0.7) 7.39 (.17) 0.002 (0.001)
ρ (1 std) 28 17.46 (3.47) 23.59 (47.4) 26.94 (1.2) 42.34 (1.90) 27.25 (111.29)
β (1 std) 8

3 8.04 (7.03) 5.40 (28.18) 2.65 (0.46) 1.42 (3.14) 18.27 (127.75)
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Figure 2.8: Top: Plot of joint and dual state filter estimates for x1 over short time scale given observa-
tions only for x1. Bottom: Plot of joint and dual state filter estimates for x2 over same short time scale
given observations only for x1.

Moving onto the ensemble methods, Figure 2.10 shows the methods’ ability to track both the state

with observations; x1; as well as the unobserved states; x3. As seen, the ensemble methods have no

trouble with the unobserved states, tracking all states accurately over the whole simulation. Reviewing

their parameter estimates, Figure 2.11 shows the mean parameter estimate for both ensemble filters and

the true parameter value. The ensemble methods quickly adapt their parameter estimates to a neigh-

borhood of the true solution by time, t = 5. This success by the ensemble methods seems to be due to

36



0 5 10 15 20
0

10

20

time

Parameter estimates

σ

0 5 10 15 20
10

20

30

time

ρ
 

 

dual ukf
joint ukf
dual ckf
joint ckf
joint ekf

0 5 10 15 20
−5

0

5

10

β

Figure 2.9: Plot of joint and dual filters’ parameter estimates given observations only for x1.

their underlying theory of sampling. Instead of a deterministic covariance, which can lead to large errors

which causes large discrepancies in the estimate, the ensemble methods use a sampling strategy which

prevents these errors from propagating into the estimate as easily. This is because though the ensemble

might have a few samples with a large variation from the true posterior, these outliers are averaged out

by the rest of the ensemble which are more accurately approximating the posterior. The deterministic

methods require the covariance to be accurate each step, and one inaccurate step gets propagated forward

leading to less and less accurate estimates, as we observed earlier. From Table 2.5, note the accuracy of

the ensemble methods for limited state observations, only x1.

Table 2.5: Results for ensemble filters given observations for x1 only

truth EnKF ETKF
SST 0 0.81 0.95
SSP 0 0.27 0.086
σ (1 std) 10 10.35 (0.007) 9.87( 0.026)
ρ (1 std) 28 27.62 (0.0038) 27.74 ( 0.019)
β (1 std) 8

3 2.70 (0.0006) 2.73 (0.00195)
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Figure 2.10: Top: Plot of ensemble methods’ state filter estimates for x1 over short time scale given
observations only for x1. Bottom: Plot of ensemble methods’ state filter estimates for x2 over same short
time scale given observations only for x1.
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Figure 2.11: Plot of parameter estimates using ensemble filters given observations only for x1 along
with true parameter values (purple lines).
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2.6.2 HIV model

The second example is a HIV model with quadratic nonlinearities in two of the state equations and six

model parameters. HIV is a viral disease that infects healthy T-cells in the body. A simple mathematical

model describing the dynamics of HIV in humans is given by [12],

Ṫ = λ − dT − kVT (2.66)

Ṫ ∗ = kTV − δT ∗ (2.67)

V̇ = NδT ∗ − cV, (2.68)

where λ is the recruitment of uninfected T-cells, d is the per capita death rate of uninfected cells, k is

the infection rate, δ is the death rate of uninfected cells T ∗, N is the number of new HIV virons V per

infected cells and c is the clearance rate. This test case was not only chosen because of the difficulties

it provides due to the nonlinearities and its biological background, but more importantly, because of the

varying orders of magnitude of the parameters and states. Due to the stiff nature of the system, numerical

issues can arise which can cause inaccuracies in the estimates if not appropriately handled by the filter.

To test this model, we create data using the following initial conditions and parameter values,


T0

T ∗0
V0

 =


1000

0.0001

0.001

 ,


λ

d

k

δ

N

c


=



10

0.01

8e−4

0.7

100

13


, wk = 0.04, ∆t = 0.5.

Unlike the previous example, data is created using a multiplicative error model, with errors given by

x(1 + ε). This was done as it is often more realistic for biological problems to exhibit multiplicative

error in the data as opposed to additive. Also, unlike the previous example, the sampling rate is set

to a much larger interval. This is done to test the filters’ ability to accurately estimate the parameters

over a sparser temporal data set. This is once again important as it is often difficult to obtain dense

data sets for biological and biomedical experiments. Using the analysis provided by Fink et al. [12]

by calculating the sensitivities and using these to carry out subset selection, only the parameters λ, k,

and δ can be accurately estimated due to identifiability. Similar to the previous example, we start with

the initial conditions given, but with the identifiable parameter values perturbed away from the true

values, while the unidentifiable parameters are held constant at their known values. To deal with the

issues caused by the multiplicative error model and the stiffness, a log transformation is applied to both

the model and data. The transformation is defined as ynew = log10(y), where y is the original data, and

xnew = log10(x), where x is the original state dynamics. To obtain the new model, we use dxnew
dt = 1

log(10)x ẋ

39



and substitute 10xnew for x. The above transformation will scale the errors in the data from multiplicative

to additive, fitting the assumptions of the filter, and will also scale the states and parameters so as to

prevent numerical errors from the varying orders of magnitude. The initial covariances and parameters

are then given by the following, using the log transformed model and data,


λ0

k0

δ0

 =


6

0.0005

0.3

 ,Q =


0.0001 0 0

0 0.0001 0

0 0 0.0001

 ,R =


0.02 0 0

0 0.02 0

0 0 0.02

 ,

Qλ,k,δ =


0.0001 0 0

0 0.0001 0

0 0 0.0001

 .
The observation and process covariances are set appropriately knowing the nature of the simu-

lated data. Similar to the first example, one hundred runs of each filter are conducted by corrupting

our intended initial conditions for the states and parameters with Gaussian noise, distributed N(0, 0.1).

Therefore, the initial covariance for the states and parameters, Px0 and Pq0 , are set as

Px0 = Pq0 =


0.1 0 0

0 0.1 0

0 0 0.1

 .
As the parameterization of the model rarely contributes to the process noise, and can even be negligible,

the parameter process noise covariance is set to be very small, or multiple orders of magnitude less than

the initial estimate. Figure 2.12, transforming the states and parameters back to the original scaling, we

can see that, except for the joint CKF, the filters are all accurately tracking the states qualitatively and

quantitatively. Some overshoot on the peaks can be seen by both dual filters and both ensemble filters,

but damps out as the state approaches steady state. Figure 2.13 depicts the same overshoot, which can be

attributed to the filters convergence to the parameter estimates. Reviewing Figure 2.14, all 3 parameters

for both dual filters are taking longer to approach the correct parameter estimate, while for the ETKF,

k is slow to converge to the proper value. This can often be attributed to the model and the sensitivity

of the parameters to the data. If the parameters are not sensitive, or sensitive only in selected regions,

then the estimates will take longer to converge or won’t change much until those regions are evaluated

by the filter. For this example, there are far fewer measurements than the previous, which can explain

the slower convergence in parameter estimates to the truth.

Comparing the ensemble filters to the deterministic, the EnKF took more iterations to converge to

the proper state estimates and had larger error because of this. The ETKF took fewer iterations and this

is likely due to the sampling method implemented. Because we are filtering around the log-transformed
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Table 2.6: Results for the deterministic filters for the HIV model in log10 space, averaged over 100
runs

truth j. ukf j. ckf j. ekf d. ukf d. ckf
SST 0 0.0015 0.0015 0.005 17.21 10.88
SSP 0 1.5e-5 1.5e-5 9.2e-6 6.44 5.44
λ (1 std) 1 1.002 (0.24) 1.002 (0.07) 1.001 (0.048) 0.98 (0.2) 0.97 (0.2)
k (1 std) -3.097 -3.1 (0.16) -3.1 (0.04) -3.1 (0.033) -2.85 (0.03) -2.9 (0.03)
δ (1 std) -0.1549 -0.155 (0.16) -0.155 (0.04) -0.156 (0.01) -0.127 (0.01) -0.138 (0.01)
CPU (secs) N/A 40.03 39.11 13.53 46.9 41.37
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Figure 2.12: Plot of filter estimates for the number of uninfected T cells, T ∗, over all the measurements.
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model and data, small errors in log space equate to large deviations in the original space. The ETKF

handled this better by using the SVD to ensure more accurate distributions. As the small errors accu-

mulated in the EnKF sampling, the EnKF required more iterations to accurately converge to the correct

estimates. However, the EnKF estimates λ more accurately than the ETKF. For our tests, we are using

100 particles to approximate the distribution. Enlarging the number of particles could improve the ro-

bustness of the estimates, but at the cost of computational time. Since each particle results in a function

evaluation, the computation time increases linearly with the number of particles. Since the deterministic

filters all propagate the covariance through a deterministic algorithm, they do not encounter this sam-

pling error. However, because they are solely based upon their deterministic methodology for estimating

the covariance, if an error is encountered, the repercussions are directly felt in the estimate and usually

results in inaccuracies and divergence. The ensemble methods, though they incorporate a sampling er-

ror, do use averaging to correct for these poor estimates and are therefore far more robust to errors in

the covariance over the course of a run. Reviewing Tables 2.6 and 2.7, the accuracy for both EnKF and

ETKF methods can be seen for this case.

Table 2.7: Results for the Ensemble Filters for the HIV model in log10 space, averaged over 100 runs

truth EnKF ETKF
SST 0 0.07 0.002
SSP 0 0.04 0.05
λ (1 std) 1 0.99 (0.19) 0.96 (0.36)
k (1 std) -3.097 -3.099 (0.10) -3.1 (0.06)
δ (1 std) -0.1549 -0.157 (0.11) -0.153 (0.07)
CPU (secs) N/A 359.3 364.2

2.6.3 Autoregulation model

The final example is a model used to describe cerebral autoregulation coupled with intercranial hemo-

dynamics, and shall also incorporate real data as a final test of practicality. Many models have been

developed for this purpose, but Ursino and Lodi’s [28] (U-L) model is selected as it is simple, but still

retains the important features to describe the cerebral blood flow. The goal is to estimate the blood flow

velocity in response to changes in arterial blood pressure. A more detailed analysis and derivation is

given by Aoi [2]. Viewing arterial pressure as a function of time, pa = pa(t), and using the diagram of
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Figure 2.13: Plot of filter estimates for the number of infected T cells
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cerebral dynamics (Figure 2.15) to construct a circuit analogy, the U-L model is given by

dpic

dt
=

kE pic

1 + CakE pic

[
Ca

dpa

dt
+

dCa

dt
(pa − pic) +

pc − pic

R f
−

pic − pvs

R0

]
dCa

dt
=

1
τ

[−Ca + σ(x)] ,

with observation function

v(ti) =
1

AcRpv

 (pa − pic)3

p2
a − 2pa pic + pic +

kR
C2

aRpv

 ,
where

σ(Gx) =
(Can + ∆Ca/2) + (Can − ∆Ca/2)eGx/kσ

1 + eGx/kσ

Ra =
kR

V2
a
, Va = Ca(pa − pic)

pc =
paRpv + picRa

Rpv + Ra
,

and x =
q−qn

qn
, where q is the arterial blood flow defined as, q =

pa−pc
Ra

. Simplifying to our general state

space framework, ~x = [pic,Ca]T is the state vector of intracranial pressure and arterial compliance,

respectively, v(x, t, θ) is the observation function, and the parameters, θ, are given below

θ = {qn, pvs, kE , τ,G,Ro,Rpv,R f ,∆Ca1,∆Ca2,Can, kR, Ac}.

This model has many challenges including nonlinearities, oscillatory input, pa, a large number of

parameters, single state observation, and stiffness due to varying orders of magnitude in the parame-

ter values. Because of the large number of parameters, we run a subset selection following the same

procedure carried out by Fink et al [12] as used in the previous example. This led to 5 of the 13 pa-

rameters being found to be identifiable and uncorrelated; they are kE , τ,G,Can, kR. Before estimating

the real data, we first simulated data from the model using nominal values for the parameters and initial

conditions, using arterial pressure input from a standard patient. Using stepsize, ∆t = 0.08, and noise

level, wk = 0.02, we created the data with initial conditions, [pic,Ca, v̂]T = [4.35, 0.15, 77.28]T , and

parameter given by Table 2.8.

It is noted that from Table 2.8 the values that were arterial pressure dependent were calculated using

the standard patient pressure data. After creating the data, we then went on to estimate the parameters

by using a log-transform solely on the parameters.

Setting the covariances appropriately, and perturbing the parameter values to be estimated, we obtain
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Figure 2.15: Hemodynamic schematic of the simple model of Ursino and Lodi [28]. Arterial (red)
and venous (blue) compartments are enclosed within the intracranial space (brown, Cic: intracranial
compliance). Regulated variables (Ca: arterial compliance, Ra: arterial resistance) implicitly account
for dynamics of hemodynamic variables (pa: extracranial arterial blood pressure, q: MCA territory ar-
terial blood flow, pc: capillary blood pressure, pic: intracranial pressure, pv: intracranial venous blood
pressure, q f : cerebrospinal fluid (CSF) formation rate, qo: CSF outflow rate) and constant hemody-
namic variables (Rpv: pial venus flow resistance, Rv: cortical cerebral venous flow resistance, R f : CSF
formation resistance, Ro: CSF outflow resistance, pvs: venous sinus blood pressure). Reprinted with
acknowledgement to Mikio Aoi [2].

our initial conditions as follows

ke0

τ0

G0

Can0

kR0


=



0.041

11

0.6

0.27

3e4


,Q =


0.0001 0 0

0 0.0001 0

0 0 0.0001

 ,

Qke,τ,G,Can,kR =



0.0001 0 0 0 0

0 0.0001 0 0 0

0 0 0.0001 0 0

0 0 0 0.0001 0

0 0 0 0 0.0001


,

with R = 0.02, Px0 = 10I, and Pq0 = 10I, where I is the identity matrix.

Running all the filters over the simulated data, only the ensemble methods successfully converged.

While the dual UKF could track the blood flow velocity, v̂, it failed to get reasonable compliance esti-

mates; Ca Along with that, the dual UKF not only failed to estimate the parameters, the covariance and
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Table 2.8: Parameters of the hemodynamic model of CA. Superscript * indicates that the value of the parameter
was determined by the suggested value in [28]. Subscript n indicates that the parameter represents a basal value.

Parameter Description Initial Value
pcn (mmHg) Capillary pressure 25*
picn (mmHg) ICP 9.5*
qn (ml/s) Arterial flow 15.114
pvsn (mmHg) Venous pressure 6*
Van (ml) Arterial volume 13.5*
q f n (ml/s) CSF formation rate 2/300*
kE (ml−1) Intracranial elastance .11*
τ (s) CA relaxation time 20*
G (unitless) CA gain 1.5*
pan (mmHg) Arterial pressure mean arterial pressure from data
R0 (mmHg · s/ml) CSF outflow resist. (picn − pvsn)/q f n

R f (mmHg · s/ml) CSF formation resist. (pcn − picn)/q f n

Can (ml/mmHg) Arterial compliance Van/(pan − picn)
Ca,mx (ml/mmHg) Max Ca 6 Can

Ca,mn (ml/mmHg) Min Ca .5 Can

∆Ca1 (ml/mmHg) σ amplitude 1 2(Ca,mx −Can)
∆Ca2 (ml/mmHg) σ amplitude 2 2(Can −Ca,mn)
Ran (mmHg · s/ml) Arterial resistance (pan − pcn)/qn

Rpv (mmHg · s/ml) Pial vein resistance Ran
picn−pcn
pcn−pan

kR (mmHg3 · s/ml) Resistance coefficient V2
an

pan−pcn

C2
anqn

Ac (cm2) Area of MCA 0.25
Ca0 (ml/mmHg) Initial Ca Can

Pic0 (mmHg) Initial ICP picn

confidence in the parameter estimates diverged over time. The dual CKF failed to solve as it encoun-

tered numerical errors and completely diverged. The joint filters also failed to estimate due to the limited

state observations coupled with the large number of parameters. The lack of success of the deterministic

filters stem from their covariance estimation methodology. As they each are using a linearization or nu-

merical approximation to characterize the covariance of the posterior distribution, they are not capturing

the true posterior of this system. As these errors accumulate, the confidence in the estimates diverges

and the filter resolves to solely fitting the data. This creates poor confidence in the state estimates and

a complete failure in the parameter estimates. The ensemble methods succeed in this instance because

their covariance calculation is based upon sampling which is more robust to errors. As before, the few

poor approximations are cancelled out by the large number of accurate particles, keeping the estimate

and covariance closer to the true posterior. To compare the ensemble filter’s success to a standard ap-

proach in real application, we also ran a nonlinear least squares estimation using Levernberg-Marquardt,

LM. From Figure 2.16, the ensemble method, ETKF, is comparable to the nonlinear least squares fit us-
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Figure 2.16: Left: simulated data, v̂ (red), true blood flow velocity (blue), filter estimate for simulated
blood flow velocity (green), NLS estimate for simulated blood flow velocity (cyan). Bottom plot displays
the simulated blood flow velocity and fits due to both methodologies over a shorter time scale. Right:
Plot of hidden state Ca with added noise (red), true solution (blue), filter estimate (green), and NLS
estimate (cyan).

ing Levenberg-Marquardt for blood flow; however, the filter seems to more accurately approximate the

hidden state; Ca. The improved fit of the hidden state; Ca, is likely due to the model’s requirement of

the patient’s blood pressure as an input in terms of predicting blood flow velocity. This adds a level of

complexity in that the parameters can not only have sensitivity to the model, but to the input data, pa.

Any deviations in patient pressure can alter parameter estimates, and the filter is able to capture this

due to allowing the parameters to contain temporal dynamics, unlike the NLS approach. The EnKF also

converged successfully for this problem, but the results were left out as they were less accurate than the

ETKF. From Figure 2.17, the filter’s convergence to the parameter estimates can be seen. As mentioned

in the previous example, if the parameters are only sensitive in specific areas, they will only shift once

those regions are encountered. Also, given that patient pressure data is required in the model as an input,
dpa
dt , to predict blood flow velocity, the shifts to the estimates can also be related to the sensitivity of the

parameters to the inputs. This can explain the convergence plots for each parameter. The full results

are displayed in Table 2.9; only a single run is presented as the time for computation was orders of

magnitude greater than the previous examples.

Moving onto the real patient data, and using the knowledge gained from the simulated data, we

go on to use the ETKF to estimate both the blood flow velocity and parameters for the autoregulation

model. Again, we compare the results to the standard nonlinear least squares approach using LM. Using

the initial conditions and parameter estimates from the simulated data, the fit to the blood flow velocity

is seen in Figure 2.18 for both methods. The sum of squares residual (SSR) and parameter estimates
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Table 2.9: Results of ETKF vs. LM for simulated blood flow data with parameters in log10 space

truth NLS ETKF
SST 0 2.09e3 1.82e3
SSP 0 25.98 24.92
Ke (1 std) -0.9586 -0.6861 -1.4686 ( 0.0048)
τ (1 std) 1.301 2.0237 1.2334 (0.002)
G (1 std) 0.1761 1.0035 0.0227 (0.0019)
Can (1 std) -0.8342 0.0917 -0.9075 (0.003)
kR (1 std) 4.6335 4.5453 4.7344 (0.0004)
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are given in Table 2.10. One issue in comparing the filter to the nonlinear least squares approach is that

we are looking at the SSR which will be biased towards the NLS approach. Since NLS is based upon

a minimization of the residuals, it should exhibit a theoretical minimum for the problem. However, if

the covariance is increased for the model while putting large confidence in the data, the filter will track

the data without any regard for the model, and it will minimize the residual, but with little regard to the

model. So, though the SSR is useful in terms of knowing how well the model may be fitting the data

in a relative viewpoint, it is not the best metric for comparison of these two methods. More thought

needs to be put into an optimal method to objectively compare the efficiency of each method for a given

model fit, full loglikelihood of fit may be more appropriate method. Reviewing the results, the qualitative

differences can be seen in the two estimation methods, with the lower SSR for the NLS likely due to

the under shoot of the filter when the blood flow dips before reaching its maximum. Reviewing the

estimates, substantial differences can be seen which account for the different dynamics. All in all, the

ETKF produces comparable results to the NLS, and the fit can be seen in Figure 2.18.

Table 2.10: Results of ETKF vs. LM for real blood flow data with parameters in log10 space

NLS ETKF
SSR 3.58e3 3.80e3
Ke (1 std) -0.93 -0.89 (0.0022)
τ (1 std) 1.00 1.09 (0.0009)
G (1 std) 0.33 0.28 (0.0009)
Can (1 std) -0.75 -0.72 (0.0009)
kR (1 std) 4.61 4.68 (0.0009)

2.7 Conclusion

In comparing a multitude of nonlinear filtering techniques for parameter estimation, a number of advan-

tages for each method have been witnessed. The joint extended Kalman filter seems to exhibit the best

start point for any state and parameter estimation problem due to its simplicity in implementation cou-

pled with accurate results. It handled the nonlinear dynamics in each example well, even with limited

state knowledge. It resolved the parameter accurately, and with high confidence, in each example and

was robust to each examples’ challenges. Though it did not present the best fit to the states in each case,

it did resolve the parameter estimates accurately, and with high confidence, while being robust to each

challenge presented. The UKF, both dual and joint, exhibited success in estimation of both the states and

parameters as long as there was adequate data present. These methods struggled in the Lorenz example

when only one state was being observed. Their level of robustness and accuracy were good, but depen-
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Figure 2.18: Plot of blood flow velocity data (red), filter estimate for the blood flow velocity (blue) and
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dent upon high levels of state knowledge. However, the ability to run without model linearizations gives

this method a distinct advantage in runtime and simplicity that the EKF does not exhibit. The joint CKF

and dual CKF exhibited equivalent results to the UKF methods, but with failure in many cases where

the UKF methods still succeeded. The negligible difference in accuracy coupled with the higher failure

rate makes the CKF method’s less usefulness in applications. The ensemble method’s only shortcoming

is its inability to span the space well in long runs. Since it does well to converge to the appropriate

answer, the confidence in the estimate increases and large changes take longer to be corrected. Updating

the ensemble with the model and parameter noise processes, the ensemble Kalman filters overcame this

adversity and produced the best results in state and parameter estimates for real data. The only other

potential drawback is the increase in computational time as it scales proportionally to the number of

particles. However, if time is not an issue, the ensemble methods were comparable to the best estimates,

with high confidence, in all three examples. The ensemble methods were also the only methods to con-

verge on the real data. While the other methods could not sufficiently handle the covariance updates

for the final example, the ensemble methods demonstrated a high level of robustness and success in the

most challenging problems. In cases of extreme complexity and challenge, the ensemble methods seem

to be the best method to choose.

Overall, although the extended Kalman filter is the best start point due to simplicity, the ensemble

filters were the best filter for our applications. The UKF obtained the same level of accuracy as the

CKF in all examples where both converged, however, the UKF converged more frequently than the

CKF. The dual UKF and CKF exhibited less variation in estimates and failed less frequently than their

joint counterparts. The EKF succeeded in estimating both the states and parameters in the first two

applications, but failed in the last application. The ensemble filters managed to succeed in every example

including the real data problem.

We have used nonlinear filtering techniques for the estimation of both the states and parameters

and shown comparable results when compared to the standard cost function minimization method. In

cases where online parameter estimation is necessary or parameter values can shift temporally, nonlinear

filtering has shown favorable results.

51



REFERENCES

[1] Anderson, B. ”An Ensemble Adjustment Filter for Data Assimilation.” Monthly Weather Review,

Vol. 129, 2001, Pgs. 2884-2903

[2] Aoi, M. Nonlinear, Noninvasive Assessment of Patient-Specific Cerebral Autoregulation in Stroke

Subjects. PhD thesis, North Carolina State University, 2011.

[3] Arasaratnam, I. and Haykin, S. ”Cubature Kalman Filters.”

IEEE Transactions in Automatic Control. Vol. 54, 2009. Pgs. 1254-1269.

[4] Arasaratnam, I., Haykin, S., and Hurd, T. ” Cubature Kalman Filtering for Continuous-Discrete

Systems: Theory and Simulations.” IEEE Transactions on Signal Processing. Vol. 58, No. 10, 2010,

Pgs. 4977-4993

[5] Arulampalam, S. M., Maskell, S., Gordon, N., and Clapp, T. ”A Tutorial on Particle Filters for

Online Nonlinear/Non-Gaussian Bayesian Tracking.” IEEE Transcations on Signal Processing. Vol.

50, no. 2, 2002, Pgs. 174-188.

[6] Bishop, C.H., Etherton, B.J., and Majumdar, S.J. ”Adaptive Sampling with the Ensemble Transform

Kalman Filter. Part I: Theoretical Aspects.” Monthly Weather Review. Vol. 129, Pgs. 420-436.

[7] Candy, J. V. Bayesian Signal Processing: Classical, Modern and Particle Filtering Methods. New

Jersey: John Wiley and Sons, Inc., 2009.

[8] Daum, F. ”Nonlinear Filters: Beyond the Kalman Filter.” IEEE AE Systems Magazine. Vol. 20, No.

8, 2005. Pgs. 57-69.

[9] Evensen, G. Data Assimilation: The Ensemble Kalman Filter. New York: Springer, 2009.

[10] Evensen, G. ”The Ensemble Kalman Filter for Combined State and Parameter Estimation.”

IEEE Control Systems Magazine. Vol. 29, 2009. Pgs. 83-104.

[11] Evensen, G. ”The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementa-

tion.” Ocean Dynamics. Vol. 54, 2003. Pgs. 539-560.

52



[12] Fink, M., Attarian, A., and Tran, H. ”Subset Selection for Parameter Estimation in an HIV Model.”

PAMM. Vol. 7, No. 1, 2008. Pgs. 1121501-1121502.

[13] Gershgorin, Majda, and Harlim, J. ”Mathematical Strategies for Filtering Turbulent Dynamical

Systems.” Discrete Contin. Dynam. Syst. A, Vol. 27, No. 2, 2010. Pgs. 441-486

[14] Haykin, S. Kalman Filtering and Neural Networks. New York: John Wiley and Sons, Inc., 2001.

[15] Hunt, B., Kostelich, E., and Szunyogh, I. ” Efficient Data Assimilation for Spatiotemporal Chaos:

A Local Ensemble Transform Kalman Filter.” Physica D, Vol. 230, 2007, Pgs. 123-137.

[16] Julier, S., J. and Uhlmann, J. K. ”A New Extension of the Kalman filter to Nonlinear Systems.” In

Proc. of Aerosense: The 11th Int. Symp. on Aerospace/Defense Sensing, Simulation and Controls.

1997.

[17] Kalman, R. E. ”A New Approach to Linear Filtering and Prediction Problems.”

ASME J. Basic Engineering. Vol. 82, 1960, Pgs. 34-45.

[18] Kelley, C.T. Iterative Methods for Optimization. SIAM, Philadelphia, PA, 1999.

[19] Lewis, F. L. Optimal Estimation. New York: John Wiley and Sons, Inc., 1986.

[20] Lorenz, E. N. ”Deterministic Nonperiodic Flow.” Journal of the Atmospheric Sciences. Vol. 20,

1963. Pgs. 130-141.

[21] Majda, A.J. and Harlim, J. Filtering complex turbulent systems. Cambridge University Press, UK,

2012.

[22] Mordakhani, H., Sorooshian, S., Gupta, H.V., and House, P.R. ”Dual state-parameter estimation

of hydrological models using ensemble Kalman filter.” Advances in Water Resources. Vol. 28, Pgs.

135-147.

[23] Nelson, A.T. Nonlinear Estimation and Modeling of Noisy Time-series by Dual Kalman Filtering

Methods. PhD Thesis, Oregon Graduate Institute, 2000.

53



[24] Nelson, L.W. and Stear, E. ”The simultaneous on-line estimation of parameters and states in linear

systems.” IEEE Transactions on Automatic Control. Vol. AC-12, 1996, Pgs. 438-442.

[25] Ristic, B., Arulampalam, S., and Gordon, N. Beyond the Kalman Filter: Particle filters for tracking

applications. Boston: Artech House, 2004.

[26] Sarkka, S. ”On Unscented Kalman Filtering for State Estimation of Continuous-Time Nonlinear

Systems.” IEEE Transactions on Automatic Control. Vol. 52, No. 9, 2007. Pgs. 1631-1641.

[27] Sarkka, S. Bayesian Filtering and Smoothing. Cambridge University Press, UK, 2013.

[28] Ursino, M. and Lodi, C. A. ”A Simple Mathematical Model of the Interaction between Intercranial

Pressure and Cerebral Hemodynamics.” Journal of Applied Physiology. Vol. 82, 1997. Pgs. 1256-

1269.

[29] Wann, E. and Van Der Merwe, R. ”The Unscented Kalman Filter for Nonlinear Estimation.”

Adaptive Systems for Signal Processing, Communications, and Control Symposium, IEEE. 2001.

Pgs. 153-158.

[30] Wan, E. and Van Der Merwe, R. ”The Square-Root Unscented Kalman Filter for State and Param-

eter Estimation.” IEEE International Conference on Acoustics, Speech and Signal Processing. Vol.

6, 2001. Pgs. 3461-3464.

[31] Wan, E.A., Van Der Merwe, R., and Nelson, A.T. ”Dual Estimation and the

Unscented Transformation,” in S.A. Solla, T.K. Leen, and K.R. Muller, Eds.

Advances in Neural Information Processing Systems 12, Cambridge, MA: MIT Press, 2000,

Pgs. 666-672.

[32] Wan, E.A., and Nelson, A.T. ”Dual Kalman Filtering for nonlinear prediction, estimation and

smoothing.” Advances in Neural Information Processing Systems. Vol. 9, 1997.

54



Chapter 3

Physiology Background

Given the overview of filtering techniques in the previous chapter, and their application to modeling

problems, the purpose is to utilize these filtering methods to help better understand the control systems

of the cardiovascular system. However, before proceeding to do so, this chapter presents an overview of

the physiology of the cardiovascular system, including vasculature and the autonomic regulation aspects

governing blood flow. General information comes from Boron and Boulpaep [1], Brunton et al. [2], and

Fox [6].

3.1 The Cardiovascular System

The primary responsibility of the cardiovascular system (CVS) is the transportation of nutrients (amino

and fatty acids, vitamins, hormones, etc) and oxygen to the tissues; and removing wastes (i.e. carbon

dioxide and urea) from the body. Using blood as a transport mechanism, the CVS consists of two main

components, the large systemic division and smaller pulmonary division, connected by the heart. The

pulmonary branch, consisting of the pulmonary arteries, capillaries, and pulmonary veins, pumps blood

from the right ventricle to the lungs and then returns to the left atrium, which then fills into the left

ventricle and is ejected into systemic circulation throughout the body, consisting of the aorta, arterial

branches, capillaries, veins, and venae cavae. Blood finally returns to the right atrium where the process

repeats; this is illustrated in Figure 3.1. These two divisions form a closed circuit which are serially

connected, and serve important functions. The pulmonary branch facilitates exchange of oxygen and

carbon dioxide within the lungs, while the systemic branch facilitates the transportation of blood and

nutrients while draining wastes from the tissues and organs of the body. Although both branches are

governed by the heart similarly, they exhibit different operating conditions. Systemic circulation has a

much higher volume, it’s vessels are longer and thicker, and it operates with a higher pressure within

the arteries with more resistance to flow. The operating blood pressures for each branch are visualized

in Figure 3.2.
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Figure 3.1: Blood flow from the left ventricle through the systemic arteries and veins to the right
atrium. It is then ejected from the right ventricle and pumped through the pulmonary circulation back
to the left atrium. Systemic arteries and pulmonary veins are O2-rich, CO2-poor blood, while systemic
veins and pulmonary arteries are O2 poor and CO2 rich. Reprinted from [6].
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Figure 3.2: Left: Typical pressure during systemic circulation. Right: Typical pressure in pulmonary
circulation. In both, the oscillations represent variations in time, not distance. Reprinted with permission
from [1].

This entire process is controlled by the heart. The centerpiece for the vasculature and cardiac cycle,

the heart consists of four chambers, two each for the left and right hearts which feed the systemic and

pulmonary systems, respectively. Each side of the heart consists of an atrium and ventricle with the

former being a primer for the latter [4]. Each side of the heart outputs the same volume of blood per

unit time, deemed the cardiac output (CO) [m/s]. Valves at the inlet and outlet of the ventricles allow

pressure to build up, preventing back-flow of blood. Atrioventricular valves separate the atria from the

ventricles, and semilunar valves are located at the exit of the ventricles. For the left ventricle, the mitral

valve separates the atrium from the ventricle and the aortic valve is the outlet. For the right ventricle,

the tricuspid valve separates the atrium and the pulmonary valve is the outlet. These heart chambers

work in synchrony due to electrical coupling of the cardiac muscle fibers. The pumping of the heart is

activated by an electrical cascade triggered by an action potential, which starts in the sinoartrial (SA)

node and spreads through the myocardial cells of the right and left atria. Since fibrous tissue separates

the atria and ventricles, the electrical impulse cannot directly travel down the heart, but requires the

special modified, conducting myocardial cells of the atrioventricular node (AV) to continue. This signal

then cascades down the bundle of His along the interventricular septum, where it splits into right and left

bundles branches. The signal finally arrives at the Purkinje fibers within the ventricular walls resulting

in the contraction of cardiac muscle cells and the pumping of the heart [2]. More specifically, the direct

consequence of this process is the cardiac cycle. Defined in Figure 3.4, starting at ’F’, upon completing

contraction, the aortic valve closes resulting in the diastole phase in which the left ventricle undergoes

isovolumetric relaxation. Once the isovolumetric relaxation ends and the pressure in the atrium is greater

than the ventricle, the mitral valve between the left atrium and left ventricle opens resulting in the left
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ventricle filling with blood passively, ’A’. Then as the volume increases to the point that pressure starts

to increase, upon arriving at ’C’, the mitral valve closes and isovolumetric contraction occurs. The left

ventricle begins to contract increasing the pressure without changing the volume. Finally, ’D’, the pres-

sure increases to the point the aortic valve opens causing ventricular ejection, the systole phase. During

each of these contractions of the left ventricle, blood is transported through the aorta at pressures be-

tween 80 and 120 mmHg. Traveling through systemic circulation, the arteries branch into arterioles then

into capillaries where oxygen (O2) and nutrients diffuse across the vessel barrier while carbon dioxide

(CO2) and other metabolites diffuse in the reverse direction into the blood stream (see Figure 3.5). Sub-

sequently, this semi-deoxygenated, waste filled blood is transported through the veins, and venous side

of systemic circulation, back to the right atria at pressures around ∼2mmHg [6]. By contrast, in the

pulmonary branch, blood flow operates at a relatively low pressure, with a lower right ventricle pressure

of ∼25mmHg, but higher venous pressure of ∼8mmHg [6].

Figure 3.3: Diagram of a typical cardiac cycle. The figure shows the relationship between heart sounds
and the intraventricular pressure and volume. The top graph represents the pressures in the left ventricle
and left atrium. The bottom graph shows the ventricular volume. Reprinted with permission from [6].

In terms of blood volume, the average total blood volume within the body is ∼5 liters; however,

this is not uniformly distributed throughout the body, but divided amongst the systemic circulation
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(∼85%), pulmonary circulation (∼10%), and the heart (∼5%) [1]. Within circulation, the majority of

the total blood volume is contained in the venous component. In general, the veins serve as the storage

vessels while the arteries’ purpose is to regulate blood flow and pressure throughout the body. As the

flow goes through the arterial network, the number of vessels and the total cross-sectional area of the

vasculature increases exponentially as blood travels into the capillaries (Figure 3.5). These capillaries

receive blood from the arterioles for distribution throughout tissues. The network of capillaries form a

mesh-like structure made up mostly of endothelial cells wide enough only to accommodate a single red

blood cell (about 2-5µm). Due to loss of pressure as the system branches and the vessels’ radius narrow,

the blood flow rate is relatively slow at the capillaries making diffusion of metabolites between tissues

and the vessels easy [1]. Unlike the arterial network which has high pressure and elastic vessels, the

venous network acts as a conduit for metabolite removal from the tissue and is primarily collagen, a

non-elastic connective tissue. This leads to their high compliance, the ability to store a large volume of

blood while incurring minimal change, giving the veins the name ”capacitance vessels.” [1, 4]. Due to

the greatly reduced blood pressure in the venous system being insufficient to return blood to the heart

(Figure 3.2), veins have infrastructure to ensure one way flow known as veinous valves. These venous

valves are a function of the veins passing between skeletal muscle groups that provide a massaging

action, which prevents flow away from the heart [6]. This feature of the veins ensures blood returns

to the heart where the cardiac cycle can repeat. A complete cardiac cycle typically lasts 0.8s, which

corresponds to a average heart rate of 75 beats/min [1, 4].

Figure 3.4: Pressure-volume loop and four phases of the cardiac cycle. Line segments represent AC:
Diastole, CD: Contraction, DF: systole, FA: relaxation. Reprinted with permission from [1].
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Figure 3.5: Branching structure of the typical vascular bed. Reprinted with permission from [1].

3.2 Cardiovascular Regulation

Autonomic regulation uses information about blood pressure and blood gas concentrations, obtained by

baroreceptors and chemoreceptors, and sends it to the CNS via afferent sensory neurons to produce an

output signal, which is utilized by the body through transport through efferent motor neurons. In the

CNS, cardiovascular activity is regulated by the medulla. Baroreceptors, located in the carotid sinus and

aortic arch, respond to perturbations in vessel wall distention due to arterial pressure change. Decreased

arterial pressure results in small wall distention, which results in a decrease in baroreceptor firing rate.

The medulla assimilates this information and activates the sympathetic nervous system as described

above to rectify these deviations. Neurotransmitters, norepinephrine and epinephrine, are released which

trigger the cascade of effects from the sympathetic system such as increased heart rate, increased cardiac

contractility and increased vascular resistance. This leads to an increase in stroke volume and cardiac

output leading to an increase in arterial pressure which rectifies the baroreceptor decrease viewed and

signaled to the medulla [4]. Because the sympathetic control of heart rate and regulation is a more

gradual process, not able to exert beat-by-beat control, the parasympathetic system is also withdrawing

during this time which helps mediate the increase of heart rate [8].

All of the mechanics governing the heart and cardiovascular system are controlled by the body to

maintain a level of stability known as ”homeostasis.” When a stimulus perturbs the system away from

baseline, a feedback is activated to regulate the system and return it to homeostasis. A sensor in the

system recognizes a disturbance and sends correcting information via an integrator to the effector, which

acts to bring the property back to intended operating values. One of the main global feedback control

mechanisms found in the body is the autonomic nervous system, which utilizes the central nervous

system (CNS) for signal integration and the peripheral nervous system (PNS) for signal dissemination
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[4].

The hypothalamus and solitary tract nucleus are generally regarded as the loci of integration of auto-

nomic nervous function, among which contains blood pressure and respiration. The sympathetic system

is not essential to life in a controlled environment, but lack of the system becomes more evident in times

of stress [2]. In other words, the sympathetic nervous system is always active and used to constantly ad-

just to a changing environment. When the sympathetic nervous system is active, heart rate is increased,

blood pressure rises, and blood flow is shifted from the skin and splanchnic region to skeletal muscle.

This can be seen from a head-up tilt experiment through the arterial baroreflex regulation. As the tilt

occurs, the drop in pressure causes the sympathetic activation through the baroreflex, which results in

increased heart rate and contractility [9]. The parasympathetic system is antagonizing to the sympathetic

and is more necessary for survival as its primary concern is conservation of energy and maintaining or-

gan function. Because of its antagonizing theme, it affects the cardiovascular system by slowing heart

rate and lowering blood pressure. In general, the parasympathetic system responds to deviations due to

the direct connection via the vagus nerve (a delay of 0.5 s), while the sympathetic nervous system must

synapse through the ganglia (reflex response delay of 2.0 s) [7]. Triedman et. al. [10] used a pharma-

cological autonomic blockade to show the effects of a subject with autonomic dysfunction through an

impaired parasympathetic pathway. This has been shown to lead to an increased heart rate and blood

pressure. These pathways and their affects are shown in Figure 3.6

During head-up tilt, blood pools in the legs due to gravity which decreases blood pressure in the

upper body activating the sympathetic system. The sympathetic system causes an increase in heart rate

via the sinoartrial node, increase in automaticity and conduction velocity in the atrioventricular node,

increase in automaticity and conduction velocity in the Purkinje bundle, and an increase in contrac-

tility, conduction velocity, and rate of atrioventricular pacemakers in the ventricle to account for this

decreased blood pressure. However, the parasympathetic system decreases the heart rate via the sinoar-

trial node, decreases contractility and shortens AP duration in the atria, decreases conduction velocity in

atrioventricular node, and causes a slight decrease of contractility in the ventricle. This is done through

modulation via neurotransmitters [2].

For a normally functioning heart, the primary mechanism by which cardiac output is maintained is

the recruitment of preload reserve; a dynamic reduction of venous capacitance that results in central-

ization of peripheral blood volume and enhanced venous return, thereby increasing left ventricle end

diastolic volume which leads to an increase in stroke volume [4]. If this is not functioning correctly or

the heart is experiencing acute circulatory stress, the sympathetic branch of the autonomic nervous sys-

tem can be activated which will increase the myocardial contractility, increased heart rate, and increased

vascular resistance. This will all work to increase the preload recruitment and help provide sufficient

forward cardiac output to the body.
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Figure 3.6: Diagram of the pathways by which the sympathetic and parasympathetic system’s interact
with the heart and vasculature. As seen, the sympathetic system synapses through the ganglia in the spine
(green paths) while the parasympathetic has a more direct connection (yellow paths). The sympathetic
system can affect both the heart and vasculature, while the parasympathetic only directly affects the
heart. Reprinted with acknowledgement to Alison Margolskee.

62



REFERENCES

[1] Boron, W.F. and Boulpaep, E.L. Medical Physiology. Philadelphia, PA: Saunders, 2003.

[2] Brunton, L.L., Lazo, J.S., and Parker, K.L. The Pharmacological Basis of Therapeutics. New York:

McGraw-Hill, 2006.

[3] Bugenhagen, S., Cowley, A., and Beard, D. ”Identifying physiological origins of baroreflex dys-

function in salt-sensitive hypertension in the Dahl SS rat.” Physiological Genomics. 2010. Vol. 42,

Pgs. 23-41.

[4] Ellwein, L.M. Cardiovascular and Respiratory Regulation, Modeling, and Parameter Estimation.

PhD Thesis. North Carolina State University, 2008.

[5] ”Schematic overview of the cardiovascular system.” Diagram, 2012, Biology-Forums.com,

http://biology-forums.com/index.php?action=gallery;sa=view;id=9172, Web, April 8th 2014.

[6] Fox, S.I. Human Physiology. New York, NY: McGraw-Hill, seventh edition, 2002.

[7] Heldt, T., Shim, E., Kamm, R., and Mark, R. ”Computational Modeling of Cardiovascular Response

to Orthostatic Stress.” Journal of Applied Physiology. 2002. Vol. 92, Pgs. 1239-1254.

[8] Olufsen, M., Ottesen, J., Tran, H., Ellwein, L., Lipsitz, L., and Novak, V. ”Blood pressure and blood

flow variation during postural change from sitting to standing: model development and validation.”

Journal of Applied Physiology. 2005. Vol. 99, Pgs. 1523-1537.

[9] Ottesen, J., and Olufsen, M. ”Functionality of the baroreceptor nerves in heart rate regulation.”

Computer Methods and Programs in Biomedicine. 2005. Vol. 101, Pgs 208-219.

[10] Triedman, J., and Paul, J. ”Blood pressure modulation by central venous pressure and respiration.

Buffering effects of the heart rate reflexes.” Circulation. 1994. Vol. 89, Pgs. 169-179.

63



Chapter 4

Time Varying Resistance in a Baroreflex
Regulation Model During Head-Up Tilt

4.1 Introduction

Over short time scales (seconds to minutes), the body’s requirement to distribute and maintain adequate

amounts of oxygenated blood to vital areas is paramount to maintain homeostasis. This feature is con-

trolled via multiple mechanisms, but primarily by the baroreflex system, which senses changes in aortic

and carotid blood pressure, stimulating the sympathetic and parasympathetic systems. The sympathetic

system induces alterations in heart rate, cardiac contractility, vascular resistance, and compliance, while

the parasympathetic system induces rapid changes in heart rate and cardiac contractility [18, 47, 58].

A number of modeling studies have been carried out to elucidate further understanding of these

mechanisms and their interplay [4, 24, 32, 40, 42, 45, 46, 55, 58]. Most of these studies can be separated

into two categories, models predicting baroreflex regulation of heart rate as a function of blood pres-

sure [4, 32, 42, 55] and models predicting blood pressure dynamics as function of heart rate [24, 28, 40,

46, 58]. A few other studies include more elaborate models predicting the interaction between the cardio-

vascular and respiratory systems [2, 10, 55]. Finally, numerous studies, e.g. [11, 17, 21, 31, 51, 54, 57]

assess baroreflex regulation quantitatively via analysis of the measured signals using a variety of signal

processing methods, most commonly based on transfer function analysis.

This chapter focusses on development of a model that uses heart rate to predict arterial blood

pressure dynamics during head-up tilt (HUT) [11, 17, 21, 51, 58]. HUT is a non-invasive test often used

to determine the ability of the body to maintain blood flow and pressure for patients suffering from

syncope, lightheadedness, and dizziness [30, 38]. The test starts with a patient lying on a tilt-table in

supine position, after steady signals have been recorded, the patient is tilted head-up to an angle of 60-

70 degrees. In response to the tilt, gravity pools 500-1000ml of blood in the lower extremities [30, 58].

The result is a decrease in venous return, which causes a decrease in cardiac filling, and blood pressure
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in the upper body (above the body’s center of gravity), while the blood pressure in the lower body

(below the body’s center of gravity) is increased. The body senses this change in blood pressure by

baroreceptors located in the aortic arch and carotid sinuses, and responds by sympathetic activation and

parasympathetic withdrawal [58]. This autonomic neural modulation leads to an increase in heart rate,

cardiac contractility, vascular resistance, and vascular tone.

This study compares two methods for prediction of neural regulation of cardiac contractility

and vascular resistance. Focus is on estimating time-varying changes of these quantities in response

to HUT. Similar to the study by Williams et al. [58], the first method uses piecewise linear splines,

while the second uses the ”Ensemble Transform Kalman Filter” (ETKF) for prediction of these quanti-

ties. Moreover, we show that the Delayed-Rejection Adaptive Metropolis Hastings (DRAM) algorithm

can be used for prediction of parameter uncertainties within the spline methodology, and compared to

variability obtained from the ETKF.

The remainder of the chapter shall proceed as follows; the mathematical model will first be

derived in two parts. Then, identifiability and sensitivity will be considered. Next, the linear spline

methodology will be explained, along with the use of DRAM for parameter uncertainty. The Kalman

filtering methodology will follow. Lastly, the results and discussion will be presented.

4.2 Mathematical Model

This section presents the cardiovascular model developed in [58] to describe blood flows, volumes, and

pressures in the systemic circulation during HUT and is split into two parts: a lumped cardiovascular

model predicting dynamics while patient is resting, and a model predicting the dynamic shifts due to the

response to the HUT.

4.2.1 Lumped cardiovascular model

The basic cardiovascular model is derived through an analogy of an electrical RC-circuit with pressure

analogous to flow, charge analogous to volume, compliance analogous to capacitance, and resistence

consistent for both. Using Figure 4.1, it can be seen that the model contains 5 compartments represent-

ing the arteries and veins in the upper and lower body of systemic circulation, comprised of ”Wind-

kessel” components linked to a compartment representing the left ventricle. For this model, the upper

body compartments include arteries and veins in the head, thorax, and abdomen, while the lower body

compartments include all the vessels in the legs. Given the RC-circuit framework, the model will be

able to predict blood pressure and flow in the compartments, but will not accurately capture the pulsatile

nature of the wave-propagation in the arterial network. Therefore, this study is limited to the prediction

of the systolic and diastolic pressures.

Within each of the four arterial and venous compartments (indexed by i), pressure pi (mmHg) and
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Figure 4.1: Compartment model used for predicting HUT dynamics in the systemic circulation. The
model includes five compartments representing the left heart (lh), arteries (a), and veins (v) in the upper
(u) and lower (l) body. Flows are marked by q, pressures by p, volumes by V , resistors by R, compliances
by C. The opening and closing of the aortic (av) and mitral (mv) vales and prevention of retrograde flow
through systemic veins are modeled via pressure-varying resistors.

volume Vi (ml) can be related by

V − Vun = C(p − pext), (4.1)

where Vun (ml) is the unstressed volume, C (ml/mmHg) is the compartment compliance, and pext = 0

(mmHg) is the pressure in the surrounding tissue.

Using Ohm’s law to describe the volumetric flow, q, between two compartments is given by

q =
pin − pout

R
, (4.2)

where pin and pout are the pressures on each side of the resistor, R (mmHg s/ml), respectively. Differ-

entiating (4.1) with respect to time and applying Ohm’s law (4.2), we obtain the system of ordinary

differential equations for pressure of the form

dV
dt

= C
dpi

dt
=

pi−1 − pi

Ri−1
−

pi − pi+1

Ri
.

This holds and is valid since we assume that C (ml/mmHg) is constant. This formulation is used for

the four body compartments, but a different formulation is derived for the heart due to the changes in

volume in accordance with pumping. For the heart compartment, the change in volume is obtained by

the differential equation,
dVlh

dt
= qin − qout.
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For the heart, pressure is calculated directly by using the pressure-volume relation

plh = Elh(Vlh − Vun), (4.3)

where Elh is the elastance (reciprocal of the compliance). The pumping of the heart is achieved by

introducing a variable elastance function [10] that depends on the heart rate, H, and includes a defined

time for the start of relaxation. Using the elastance function proposed by Ellwein [10], our elastance

becomes

Elh(t̃) =


Emax−Emin

2
[
1 − cos( πt̃

TM
)
]
+ Emin, 0 ≤ t̃ ≤ TM

Emax−Emin
2

[
cos(π(t̃−TM)

TR
) + 1

]
+ Emin, TM ≤ t̃ ≤ TM + TR

Emin TM + TR ≤ t̃ ≤ T,

(4.4)

where t̃ is the time within a cardiac cycle, Emin and Emax denote the maximum and minimum elastance,

respectively. Then, for each cardiac cycle, T = 1
H , elastance is increasing over the interval 0 ≤ t ≤ TM,

decreasing for TM ≤ t ≤ TM + TR, and held constant at its minimum value, Emin, during diastole,

TM + TR ≤ t ≤ T . The values for final time, T , and the time of maximal elastance, TM, are obtained

from data while TR is a model parameter.

Lastly, the heart valves are modeled using a time-varying resistance for which a large resistance Rcl

represents a closed valve, while a small resistance Rop is indicative of an open valve. This is modeled

smoothly as

Rv = Rcl −
Rcl − Rop

1 + e−β(pin−pout)
, (4.5)

where pin and pout denote the pressures in the compartments on either side of the valve.

Using these relations, the system of differential equations becomes

dpau

dt
= (qav − qal − qaup)/Cau,

dpal

dt
= (qal − qalp)/Cal,

dpvl

dt
= (qalp − qvl)/Cvl,

dpvu

dt
= (qaup + qvl − qmv)/Cvu,

dVlh

dt
= qmv − qav,
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where

qav =
plh − pau

Rav
,

qaup =
pau − pvu

Raup
,

qal =
pau − pal

Ral
,

qalp =
pal − pvl

Ralp
,

qvl =
pvl − pvu

Rvl
,

qmv =
pvu − plh

Rmv
.

In the equations for the flows, q, the left ventricular pressure, plh, is calculated using (4.3). The abbrevi-

ations can be seen in Table 4.1, below.

Table 4.1: Subscript descriptions used in compartment model from [58].

Abbreviation Details
av aortic valve
au upper body arteries
al lower body arteries
aup upper body ”peripheral” vascular bed
alp lower body ”peripheral” vascular bed
vu upper body veins
lh left ventricle (heart)

4.2.2 HUT model dynamics

The model derivation thus far has dealt with the cardiovascular dynamics while in the supine position.

Once the HUT occurs, gravity will affect the system by causing blood to pool in the lower extremities

which leads to an increase in pressure in the lower body, while also decreasing pressure in the upper

body. This response is accounted for by modeling the hydrostatic pressure on each compartment. Using

the pressure at the level of the carotid arteries as a reference point, an extra term is added to the flows

to (qal) and from (qvl) the lower body compartments. For simplicity, we assume the tilt-axis is placed at

the level of the lower body compartments. Using the calculation from [39] for the gravitational effects,
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the modified flow equations are given by

q =
ρghsin(θ(t)) + pin − pout

R
(4.6)

θ(t) =


0, t < tst

vt(t − tst), tst ≤ t ≤ tst + ted

60, t > tst + ted,

where ρ (g/ml) is the blood density, g (cm/s2) is the gravitational acceleration constant, h (cm) is the

absolute difference in height between the upper and lower body compartments, θ(t) is the tilt angle (in

radians), vt = 15 degrees/second is the tilt speed, while tst and ted denote the time at which the tilt begins

and finishes, respectively. The hydrostatic pressure between the upper and lower body compartments is

incorporated through the term, ρghsin(θ(t)), which will be used in the cardiovascular model.

4.3 Sensitivity Analysis, Identifiability, and Subset Selection

Given the model described above, understanding the sensitivity of the parameters is important due to

their effect on the system output. Parameters for which the model output is insensitive cannot be esti-

mated reliably [25], neither can parameters that are correlated. Parameters that are either insensitive or

correlated are not identifiable [5, 6, 8, 14, 26, 41]. The recent study by Kelley and Ipsen [25] also shows

that estimates for correlated parameters are not reliable when using the Levenberg-Marquardt algorithm.

4.3.1 Sensitivity Analysis

The sensitivities are classically calculated as

S (t; θ) =
∂y(t; θ)
∂θ

, (4.7)

where y is the model output and θ denotes the model parameters. The sensitivities are the coefficients

of the first order truncation of the Taylor expansion of the observation function, and give a quantitative

understanding of how the output will change with respect to a change in the parameter [3]. Considering

their function in the calculation of standard errors for parameter estimates, the sensitivites can indicate

regions where data provide more information on the parameters and help in determining parameter

identifiability [6, 26]. When the system is linear in the parameters, the sensitivities can be calculated

analytically; however, when the model is nonlinear, this calculation is carried out by linearizing around

current values of the parameter [43]. This dependency on the current value means the sensitivities are a

local analysis and will vary based on the initial values of the parameters. This presents challenges due
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to the importance of the sensitivities in both determining the identifiability of parameters and in terms

of estimating parameters which allow more accurate predictions of the data.

Given a system defined by ordinary differential equations

dx
dt

= f (t, x; θ), x(0; θ) = x0, (4.8)

y(t, θ) = g(t, x(t, θ); θ), (4.9)

where y(t; θ) is the observation function and x(t; θ) are the state variables, the sensitivities are calculated

by

S (t; θ) =
∂y
∂θ

=
dg
dx

dx
dθ

+
dg
dθ
. (4.10)

The partial derivatives of the observation function are easily calculated, however, the partial derivative

of the state equations with respect to the parameters requires the solutions of the ordinary differential

equations (4.8). This is obtained by solving the following

d
dt
∂x(t; θ)
∂θ

=
d f (t, x; θ)
dx(t; θ)

∂x(t; θ)
∂θ

+
d f (t, x; θ)

dθ
. (4.11)

Using the model we derived previously, the sensitivities are calculated and used to rank the pa-

rameters from most to least sensitive. The base model during the supine position will be used to

calculate the sensitivities. It contains n = 12 parameters, θ = [Raup,Ral,Rvl,Ralp,Cau,Cal,Cvl,Cvu,

TR, Emin, Emax,Vun,lh]. Given that the model output will only include arterial blood pressure, the sensi-

tivities are calculated as

S =
∂pau

∂θ̃
, (4.12)

where θ̃ is the log-scaled parameters. To carry out the sensitivity calculation, we obtain the Jacobians by

using a forward difference approximation

d f
dθ̃i

=
f (t, x, θ̃ + hei) − f (t, x, θ̃)

h
,

d f
dxi

=
f (t, x + hei, θ̃) − f (t, x, θ̃)

h
,

where ei = [0...0
i
1̂0...]T is the unit vector in the i’th component direction, h =

√
χ is the step-size, and

χ = 10−8 is the integration tolerance used for the numerical solution of the dynamical system. Using the

2-norm to get the total sensitivity [46], the sensitivities are ranked in Fig 4.2.
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Figure 4.2: Ranked total sensitivities, ||∂pau/∂θ̃||2, for CV model. Ranked from most to least sensitive.
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4.3.2 Subset Selection

A number of methods have been developed which utilize the information provided by the sensitivities

to provide a subset of parameters which are identifiable and uncorrelated [5, 6, 8, 14, 26, 41]. The

method developed by Burth [5] followed by the method constructed by Olufsen [41] were used to

obtain the subset of parameters to be estimated. The first uses a singular value decomposition and QR

factorization to identify the subset of parameters. The sensitivity matrix defined in (4.12) is decomposed

as S (θ̃) = UΣVT , where Σ is a diagonal matrix with the singular values of S . The numerical rank of S ,

ρ, is used to predict the number of identifiable parameters. Using the tolerance ε, the numerical rank of

S is the largest k for which σn−k+1 > εσn. For this study, ε is the square root of the integration tolerance
√
χ. Using ρ, the matrix of eigenvectors V can be written as [VρVn−ρ]. The parameters represented by

the ρ highest eigenvectors are then found using QR-factorization with column pivoting. The subset is

finally found by VT
ρ P = QR, where Q is an orthogonal matrix, and the first ρ elements of R form an

upper triangular matrix with diagonal elements in decreasing order. The permutation matrix P is used

to reorder the parameter vector θ̃ = PT θ̃. Lastly, the partition θ̃ = [θ̃ρ, θ̃n−ρ], where θ̃ρ contains the first ρ

sensitive elements, while the θ̃n−ρ contains the parameters that are less sensitive. Using this, we estimate

the parameters, θ̃ρ, while holding the remaining, θ̃n−ρ, at their nominal values. This can lead to bias in the

computations, but reduces the variance of the estimates [5]. Estimating more parameters will decrease

the bias, but can increase the variance for the parameters; the goal is to balance the bias and variance
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allowing minimal prediction error [41].

The other method used to calculate a subset is based upon computing pair-wise correlations. The

principle is to exclude correlated parameters from the set to be estimated until no correlation remains

[43]. The correlation matrix, c, is used to evaluate the correlations

ci, j =
Ci, j√
Ci,iC j, j

. (4.13)

Here ci, j describes the degree of correlation between parameter i and j, with numeric value between 0

and 1. A parameter pair (i, j) is considered correlated, iff |ci, j| > γ for γ → 1. C is the correlation matrix,

the inverse of the Hessian, C = H−1, which is given by H = 1/σ2S T S . This inversion of the Hessian

requires the sensitivity matrix, S , to be nonsingular. Although no theoretical predictions exist to define

a appropriate value for γ, we used γ = 0.85 for our analysis [41].

The covariance matrix C can also be used for the calculation of the standard error [6], defined by

sk =
√

Ck,k, k = 1, ..., q

which is used in the confidence interval calculation, for a given level 100(1 − α)%, as follows

Θcon f ,k = [θk − t1−α/2sk; θk + t1−α/2sk]

where α ∈ [0, 1] and t1− α2 ∈ < [41]. The critical value t1−α/2 is computed from a student’s t-distribution

tK−q,α with K − q degrees of freedom determined by the probability P[T ≥ t1−α/2] = α/2. When K

is large, the degrees of freedom can be approximate by ∞ and the critical value t1−α/2 → 1.96. A

confidence interval can be constructed for each possible realization of data of size K that could be

collected, then 100(1 − α)% of these intervals would contain the true value of the parameter θk [41].

However, although these confidence intervals can be computed, they are statistically optimistic due to

linear approximation of the nonlinear model in the neighborhood of the best parameter estimate [9, 48].

4.4 Methods

Optimal parameter values were calculated by William et al [58] for steady state while the patient was

in supine position. Using these optimized parameter estimates, sensitivity analysis and subset selection

was carried out for the complete model incorporating the tilt dynamics. The purpose is to identify pa-

rameters which are sensitive, uncorrelated, and identifiable, and to study parameters which are impacted

by autonomic regulation. Using the sensitivities and subset selection, the parameters θ =
[
Raup, Emin

]
are

estimated while holding the remaining parameters at their optimized values from steady state. Knowing

Raup and Emin will vary in time due to autonomic regulation, the linear spline methodology is first exam-

72



ined, along with parameter uncertainty through DRAM, followed by the Kalman filtering methodology.

4.4.1 Raup and Emin estimation

The regulation of Raup and Emin is modeled by defining a set of nodes for each parameter linked through

piecewise linear functions of time as developed by Williams [58]. These parameters are defined as

X(t) = {Raup(t), Emin(t)} and are given by

X(t) =

N∑
i=1

γiHi(t), (4.14)

Hi(t) =


t−ti−1
ti−ti−1

, ti−1 ≤ t ≤ ti
ti+1−t
ti+1−ti

, ti ≤ t ≤ ti+1

0, otherwise,

where the unknown coefficients, γi, i = 1...N, are the nodes representing the parameter with N being the

number of nodes along the time span analyzed. These N nodes were then estimated through nonlinear

optimization, and were specified and positioned to properly obtain the parameter dynamics.

4.4.2 Nonlinear Optimization and Parameter Estimation

To estimate the model parameters, we employed nonlinear optimization to minimize the least square

error between the model prediction and the measured data. This was done by constructing the residual

(4.16), the difference between the model and the measured data, formulated from the observation func-

tion which relates the observation to the state. The observation function relies on the assumption that the

measurements are described fully by some underlying function of the model plus an error term which

represents the measurement noise, defined below

yd
i = h(ti, xm(ti; θρ, θn−ρ), θ) + εi, i = 1, 2, ...,K (4.15)

where h is the observation function, yd are the measured data, xm are the model states, θ are the pa-

rameters, ε are the measurement noise, and K is the number of measured data. This definition relies

on the assumption that the errors are independent, identically distributed (i.i.d.) random variables with

mean E[εi] = 0, covariance cov(εi, ε j) = 0, and constant variance var(εi) = σ2. Defining the observation
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function (4.15) as the arterial blood pressure, pau, the residuals are constructed as follows

R =
1
√

K

 pm
au.1 − pd

au,1

pd
au,1

,
pm

au,2 − pd
au,2

pd
au,2

, ...,

pm
au,K − pd

au,K

pd
au,K

 , (4.16)

where pm
au,1 is the first model prediction and pd

au,1 is the first observed data. Given that only the systolic

and diastolic pressure of each cardiac cycle are observed for optimization, the arterial pressures be-

comes, pd
au = [psys

au,1, psys
au,2, ..., psys

au,K , pdia
au,1, pdia

au,2, ..., pdia
au,K]. Using the residual (4.16), the objective func-

tion for optimization is constructed as the sum of squares error given by

θ̄ρ = arg min
θρ

J(θ), (4.17)

J(θ) = RT R =
1
K

K∑
i=1

|ym(ti; θρ, θn−ρ) − yd
i |

yd
i

, (4.18)

where ym is the model prediction for pau and yd is the observed measurement of arterial pressure. The

scaling by yd is done to ensure that all quantities in the output vector are similar in magnitude and equal

in weight. As stated previously, the time varying parameters [Raup, Emin] will be estimated while the

remaining unidentifiable parameters θn−ρ will be held constant at their nominal values. The time varying

parameters were estimated through the linear spline methodology by minimizing the cost function (4.18)

using the Levenberg-Marquadt algorithm [29]. The upper and lower bounds for the parameters were set

to be a factor of 4 from their nominal values for the optimization algorithm.

4.4.3 Uncertainty Quantification and DRAM

The linear spline method previously described by Williiams et al [58] will give an estimate of the pa-

rameters, but understanding the variability around those estimates is also important. Understanding the

uncertainty and confidence in the estimates is not only important for the parameters specifically, but the

system overall. Uncertainty quantification is crucial to obtaining the variability of each estimate, and

Markov Chain Monte Carlo is one known method used to calculate this uncertainty.

The purpose of MCMC is to estimate the expectation Eπ[ f ], where f is a function with distribution

π, by constructing a Markov chain with invariant distribution equivalent to π whose sample path average

is used to approximate the expectation of π [19, 52, 53]. More specifically, assuming the Markov chain

has π as its unique stationary and limiting distribution, and simulating, the mean of f along a realization

of the sample path of the chain of length N becomes 1
N

∑K
i=1 f (Xi), where the X’s are the samples along

the chain [19]. However, MCMC has also become increasingly useful as a method to simulate complex,

74



nonstandard multivariate distributions [7]. There are two central methods for MCMC, the dimension

reduction based approach used in Gibbs sampling, and the propose and reject based method used in the

Metropolis-Hastings algorithm [22, 36, 53]. We shall focus on the latter for this study due to ease of

implementation.

The Metropolis-Hastings (MH) algorithm is built off of the foundation of an accept-reject method.

Because we are dealing with a Markov chain, the proposal distribution q(x, y) from which we generate a

new value of the chain is dependent on the current state of the process [7]. For this approach, assuming

the process X is at current value x, a new value Y is proposed by sampling from our proposal q(x, y) and

is accepted with probability

α(x, y) = min
[
π(y)q(y, x)
π(x)q(x, y)

, 1
]
, (4.19)

otherwise, the proposed value Y is rejected and the chain remains at x. For this algorithm to successfully

draw samples from π, two conditions are required to hold, ergodicity and reversibility. By defining the

acceptance probability by (4.19), detailed balance is satisfied by the first term within the min function

which means the chain is reversible [52]. For ergodicity to hold, the chain is required to be irreducible

and aperiodic. This means that if x and y are in the domain of π(·) then it must be possible to move

from x to a new position dy in a finite number of iterations, and the number of moves required to move

from x to dy is not necessarily a multiple of some integer [7]. This is satisfied by a proposal q(x, y)

with positive density on the same support as π or with a restricted support. A number of extensions and

strategies have been proposed to improve the efficiency of the resulting MCMC estimators: adaptation

[19, 20] and delayed rejection [19, 53].

The first of these enhancements, delayed rejection, is based upon the idea that instead of advancing

the iteration and retaining the position of the chain after a MH proposal rejection, a second stage pro-

posal, conditioned on the previous rejection, be computed such that reversibility of the Markov chain

is preserved [19]. This process can be extended to a fixed or random number of stages, and can also

be used to combine different proposal distributions. Assuming a proposed sample Y1 from q1(x, y1) was

tried and rejected, a second stage proposal Y2 is generated from q2(x, y1, y2) depending on the current

position and what has been proposed and rejected. This secondary proposal is accepted with probability

β(x, y1, y2) = (4.20)

min
[
π(y2)q1(y2, y1)(1 − α(y2, y1))q2(y2, y1, x)
π(x)q1(x, y1)(1 − α(x, y1))q2(x, y1, y2)

, 1
]
, (4.21)

maintaining the Markov chain’s reversibility with regards to the invariant distribution π.

The second enhancement is based upon the idea of adapting or tuning the proposal distribution

covariance determined by the distribution of the states in the sample path thus far. Assuming Gaussian

proposal distribution, the covariance matrix is calibrated using the sample path of the MCMC chain.

Because of the adaptation, the covariance now depends on the history of the chain in addition to the
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current state, resulting in the stochastic chain no longer being Markovian. However, due to the ergodic

properties still maintained, Haario [20] has proved that the adaptive metropolis (AM) chain simulates

the target distribution π.

The proposal distribution is adapted by taking the current position of the Markov chain, Xn, and

centering the Gaussian proposal around that position while setting the covariance to be

Cn = sdCov(X0, X1, ..., Xn−1) + sdεId (4.22)

where sd is a parameter that depends only on the dimension d of the state space on which π is defined,

ε > 0 is a constant we choose to be very small, and Id denotes an identity matrix of dimension d

[20, 19]. For adaptation, an initial covariance, C0, is chosen based upon prior knowledge of the system,

and a time index n0 > 0 is defined as the length of the non-adaptation period which results in the

following covariance

Cn =

C0, n ≤ n0

sdCov(X0, ..., Xn−1) + sdεId, n > n0.
(4.23)

Applying the definition of the covariance matrix for a given set of points X0, ..., Xk ∈ <
d obtains

Cov(X0, ..., Xk) =
1
k

k∑
i=0

XiXT
i − (k − 1)X̄kX̄T

k , (4.24)

where X̄k = 1
k+1

∑k
i=0 Xi and the elements of Xi ∈ <

d are arranged such that Xi is a column vector.

Substituting (4.24) into (4.23), we get that, for n > n0, the covariance Cn satisfies the recursive formula

Cn+1 =
n − 1

n
Cn +

sd

n
(nX̄n−1X̄T

n−1 − (n + 1)X̄nX̄T
n + XnXT

n + εId), (4.25)

which allows for a more computationally efficient means to update the covariance matrix since X̄n also

follows an obvious recursive formula. The choice of n0 is free, but is used to delay the number of itera-

tions till the adaptation occurs. Haario [20] found that adaptation should not be done at each iteration,

but at given intervals. Setting n0 to be the index that defines the length between the non-adaptation

periods improves the mixing properties of the algorithm [19]. The parameter ε is used to ensure that

the covariance, Cn, does not become singular. For practical purposes, the scaling parameter is set to

be sd = 2.42/d as this optimizes the mixing properties of of the MH in cases of Gaussian targets and

Gaussian proposals [15].

Combining these strategies and incorporating them into the original Metropolis-Hastings algorithm

provides the procedures required for the Delayed-Rejection Adaptive Metropolis Hastings (DRAM)

algorithm. More information on the properties and implementation can be found in Haario [19]. Using

this, parameter uncertainty was predicted following the procedure outlined in the chemical reactions
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problem (example 2) by Haario et al [19].

4.4.4 Nonlinear filter - Ensemble Transform Kalman Filter

The main purpose of this study is to optimally estimate the state of the system, and model parameters

Raup and Emin, given a set of noisy observations. One method to accomplish this has already been

discussed, but an alternate method is the Kalman filter [27]. The ensemble transform Kalman filter is

used due to its utility in solving complex and challenging problems, explicitly cardiovascular based

systems as detailed in chapter 2 [35].

4.5 Results

Using the five compartment cardiovascular model, results were obtained for the HUT dynamics by

accounting for the hydrostatic pooling of blood in the legs by enacting controls through the application

of piecewise linear spline functions defined in (4.14). Holding the unidentifiable parameters at their

nominal values, the remaining ρ identifiable parameters are discretized as θρ = [γi,Raup , γi,Emin] and

approximated with nodes, N = 33, spaced out across the time domain. Using the initial conditions for

the states and nodes, given below, we minimize the cost function (4.18) using the Levenberg-Marquardt

method [29], 

pau0

pal0

pvl0

pvu0

Vlh0


=



67.71

3.5

66.35

3.75

60


,

Raup0

Emin0

 =

00
 .

Figure 4.3 shows the diastolic and systolic arterial blood pressure data along with the model fit for pau.

The plot gives an overview of the model fit to the diastolic and systolic pressure data with a qualitative

focus on the HUT dynamics. The subplot displays the histogram of the residuals for the NLS fit overlaid

with the theoretical Gaussian distribution.

The time varying parameters, Raup and Emin, obtained by minimizing the least squared error (4.18)

using the residual (4.16) are depicted in Figure 4.6 and Figure 4.7, respectively. Using the NLS results,

a DRAM run was used to obtain a better understanding of the uncertainty of each estimate over the time

scale. The DRAM routine was run for 2000 samples with a burn-in of 300 samples. Each plot shows

the mean, taken to be the NLS estimates for each node in the linear piecewise spline, along with first

and second standard deviation intervals calculated using the DRAM methodology. Along with the NLS

estimates and the confidence intervals, the figures also present the estimates of Raup and Emin obtained
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using the Ensemble Transform Kalman filter using the initial conditions provided below

pau0

pal0

pvl0

pvu0

Vlh0


=



67.7088

3.5

66.3546

3.75

60


,Q =



0.5 0 0 0 0

0 0.0001 0 0 0

0 0 0.05 0 0

0 0 0 0.1 0

0 0 0 0 0.05


,

R = 0.1,QRaup,Emin =

1e − 6 0

0 1e − 6

 ,
with Px0 = 1e−6I and Pq0 = 1e−8I, where I is the identity matrix. The confidence intervals, two standard

deviations, for the filter are also presented as the dashed red lines. Figure 4.3 displays the diastolic and

systolic blood pressure data along with the model fit utilizing the ETKF for pau. The subplot again

depicts the histogram of residuals from the filter fit overlaid with the theoretical Gaussian distribution.

As the filter estimates the distributions in real time, a better understanding of the fit can be viewed in

the absolute value of the residuals over the time interval seen in Figure 4.5. Reviewing the plot, we

would expect approximately 95% of the data to be within 2σ. Over the time course of the experiment,

413 observations were collected. Of these, 31 were outside of the 2σ interval resulting in 92.5% being

within the calculated filter confidence interval. Although this metric gives us a theoretical understanding

of the filters accuracy in prediction, it can be seen that a large number of the points outside of the interval

are between the t = [80, 100] interval when the tilt occurs. This interval is where the greatest changes

are occurring due to effects of gravity and the body’s regulation of the physiological processes. Table 4.2

gives a quantitative overview of the two methods fit to the pressure data.

Table 4.2: Results of ETKF vs. NLS for blood pressure

NLS ETKF
RMSE 1.9658 0.7414
σ2

residual 3.8583 0.5508
Jcost 3.8642 0.5497

Further validation and evaluation can be gathered by examining the dynamics of the unobserved

states. As no data is available for those states, only the qualitative behavior and average values can be

assessed. Figure 4.4 depicts the filter dynamics for the lower body arterial pressure pal, venous pressure

pvl, upper body venous pressure pvu and the volume of the left ventricle Vlh. As the tilt occurs, the effect

of gravity results in an increase in pressure to the lower extremities as the blood pools for both the

arterial and venous compartments. This same process causes a decrease of pressure in the upper body
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Figure 4.3: Plot of Nonlinear Least Squares and Ensemble Transform Kalman Filter fit to Pressure
data, pau, and Residual distributions.
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which results in less blood returning to the heart and therefore a smaller volume. The dynamics of the

unobserved states match these assertions.
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Figure 4.4: Plots of ETKF results of unobserved states as described; upper left: pal, lower left: pvl,
upper right: Vlv, lower right: pvu.

4.6 Discussion and Conclusion

The focus of this work was to better understand the cardiovascular regulation during HUT. This was

accomplished by constructing a simple five compartment lumped model built using basic physiological

principles and modeling the ρ identifiable parameters; Raup and Emin; as time varying parameters using

both the linear spline approach which utilized nonlinear optimization to minimize the residual, and the

Ensemble Transform Kalman filter methodology. Performing model analysis through sensitivity analysis

and subset selection, these parameters were selected due to being sensitive and non-correlated, but also

because of their significance in terms of autonomic response to HUT.

In response to performing the tilt, peripheral resistance immediately drops (Figure 4.6). This could

be a result of changes in hydrostatic pressure in the lower compartments or due to activation of skele-

tal muscle [51, 57]; however, as the tilt is performed in a relaxed environment, muscle action should

not be activated during the procedure and therefore changes in hydrostatic pressure is likely the rea-

son. After the initial drop in resistance, a rebound occurs due to contraction of smooth muscles in the
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Figure 4.6: NLS estimate for Raup along with confidence bounds derived through DRAM compared to
ETKF estimate for Raup with confidence intervals in log scale.
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Figure 4.7: NLS estimate for Emin along with confidence bounds derived through DRAM compared to
ETKF estimate for Emin with confidence intervals in log scale.

muscular and elastic arteries, respectively, while also increasing nerve traffic through parasympathetic

withdrawal along with sympathetic efferent nerve excitation [58]. This sympathetic activation also has a

positive inotropic effect on the heart which decreases the left ventricles elastance (Figure 4.7) allowing

the heart to increase preload volume and therefore, cardiac output. The drop in blood volume observed,

Figure 4.4, immediately following the tilt coincides with results seen in previous studies; Smith et al

[50] and Matzen et al [34] reported a 25% reduction in ventricular blood volume while Enish et al [11]

and Lieshout et al [31] reported a decrease in stroke volume following HUT [58]. This decrease in

left ventricular volume is an immediate consequence of the decrease of filling pressure, which concurs

with experimental results [11]. The lower compartments venous pressure (pvl) increases as a result of

the gravitational pooling of blood, which agrees with previous findings [17], while the upper venous

pressure (puv) also simultaneously drops, as reported in literature [21, 31].

Using the general NLS framework, we expect observations to be of the form (4.15) with the as-

sumption that errors will be Gaussian due to the central limit theorem. Comparing the NLS and filter

residuals distributions, the filter does better job to explain the variation in pressure by minimizing the

residual variance. The differences in these residual distributions and fits are described quantitatively by

reviewing Table 4.2. Although the filter is also assuming Gaussian distributions for both the measure-

ment error and model error, the filter can better represent the residual distribution because it can take

the model error into account. This accounts for error that would be associated with the measurements

otherwise, inappropriately, and can cause bias to the estimates. More specifically, this study is using

a model which simplifies the cardiovascular system into 5 lumped compartments. This is being used
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to explain the underlying physiological processes without explicitly accounting for such features as the

sympathetic or parasympathetic nervous system. The filter exhibits a better fit and methodology because

the processes that are not well understood, or incorporated into the model, can be accounted for through

the model error of the filter. This will appropriately relegate the error of the different components of the

model to their respective states.

Reviewing the estimates for Raup for both the filter and linear spline in Figure 4.6, the qualitative

features are consistent for both methods. Although discrepancies are visible between the two methods in

terms of general dynamics, the linear spline method is discretizing the time domain up and approximat-

ing the dynamics through the optimization of each node. Since this is not continuous like the filter, the

linear spline can only approximate the dynamics where the nodes are positioned. In this case, the filter

shows the maximum value for the Raup around t = 60, while the linear spline positioned this maximum

at t = 45 as that is where the closest node was positioned. This feature allows the filter to give more

accurate estimates of where the dynamics occur temporally since it does not rely on discretization. This

also becomes a statistical issue as if we want to further capture the dynamics using more nodes, we are

intrinsically decreasing the degrees of freedom with each addition node and expecting a better fit. This

gives rise to model selection issues in terms of optimal number of nodes for each parameter. Comparing

the confidence intervals for each method, they appear consistent for both methods over the time frame.

Figure 4.7 gives an overview of the fits for Emin using both the linear spline and ETKF. Before the

HUT (t = 80), both methods are consistent in predicting little to no change to the estimate. Once the

HUT occurs, the methods display differences in their estimate of the minimum ventricular elastance,

Emin. The filter has an increase in the confidence of the estimate over this time and ends with a lower

estimate than the spline and larger confidence, encapsulating the spline estimate within the confidence

bounds. The differences in the estimate and the confidence of these methods shows how the incorpora-

tion of modeling error into the system can have an effect on our perceived dynamics. The spline shows

less variation overall and greater confidence in the estimate due to the assumptions that all the error

in the fit is solely due to the observations. This leads to a higher confidence in the estimate and less

deviation of the estimate over the time scale. However, when this assumption does not hold, the filter

more appropriately captures the parameter dynamics, and uncertainty in those estimates.

While other studies have been proposed to predict blood pressure regulation [24, 40], we utilized

a simplified, five compartment model derived by Williams et al. [58] to better understand the body’s

response to orthostatic stress during head-up tilt. By using arterial pressure data, utilizing parameter

estimation to fit our model, and capturing the dynamics of resistance and elastance, we obtain a bet-

ter understanding of the interplay between the cardiovascular system and autonomic activation. Utiliz-

ing both linear spline optimization and Kalman filtering, we highlight the benefits of Kalman filtering

through the estimation of Raup and Emin and the uncertainty associated with those parameters. Due to

the nature of biological modeling in general, and cardiovascular modeling specifically, simplifications

are often implemented due to the complexity of the systems. Kalman filtering presents a methodology
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to account for the errors inherent to these model simplifications. While the current study only presented

analysis for a single subject, the results show that the model and methodology can be used for larger,

varying groups of subjects. Future work should consider estimation for more subjects or utilization of

a nonlinear mixed effects engine to estimate the variability among a population. Also, to have a better

understanding of the model misspecification, the filter can be incorporated into optimization and the

model noise can become parameters which can also be estimated.
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Chapter 5

Pharmacokinetics and
Pharmacodynamics

The previous chapter highlighted the benefits of using nonlinear filtering techniques in modeling using a

single subject, and alluded to the potential benefit in utilizing its application in larger, varying groups of

subjects. This chapter presents the background for pharmacokinetics and pharmacodynamics, fields as-

sociated with quantifying the properties of drugs and their effects within populations. The main concepts

presented in this chapter come from Gabrielsson and Weiner [3] and Riviere [4].

In general, pharmacokinetics is used to understand how the body affects the drug, while pharmaco-

dynamics is how the drug affects the body.

5.1 Pharmacokinetics

Pharmacokinetics (PK) is best defined as the study of absorption, distribution, and elimination of drugs

within the body [1, 4]. More specifically, the study of the time course of drug concentration disposition

through the different body spaces such as plasma, blood, urine, cerebrospinal fluid, and tissues. A drug

can be administered to the body any number of ways including intravenous (IV), intramuscular (IM),

subcutaneous (SC), oral (PO), topical (TOP), and inhalation (IN). Upon administration, the drug under-

goes absorption, which is defined as the process in which the drug moves into the bloodstream. Based

upon the dosage applied and the method administered, the time course and the amount absorbed can

vary significantly (intravenous vs. oral). The primary quantity of interest is the concentration of free,

nonprotein-bound drug dissolved in the blood because this is the fluid that carries the drug throughout

the body from which samples for drug analysis can be readily and repeatedly collected. For the majority

of drugs, the concentration in the systemic circulation is in equilibrium with the extracellular fluid of

well-perfused tissues; therefore, the plasma drug concentration in systemic circulation generally reflects

the extracellular drug concentration. A drug must generally be present at its site of action in a tissue at
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a sufficient concentration for a sufficient period of time to produce the intended pharmacological effect

[4]. Figure 5.1 illustrates the process a drug undergoes to create an effect, including administration,

absorption, distribution, and elimination.

Figure 5.1: Schematic representation illustrating the interplay between absorption, distribution, bind-
ing, and elimination (excretion and metabolism) kinetics as well as dynamics of a drug.

For a drug to have its effect, it must reach its targeted site of action in its intended molecular form.

To do so, the drug must be transported through a number of boundaries and barriers to distribute to its

targeted location. Membrane barriers, and the resistance they offer to drug movement, often define the

modeling structure utilized for pharmacokinetic analysis [4]. Biological spaces are defined by the func-

tionality of these barriers. The most effective barriers such as the skin or areas of the gastrointestinal or

respiratory tracts protect the organ from the external environment. Upon traversing the protective mem-

branes, the drug will enter the interstitial fluid compartment before entering the blood stream through the

absorption process. After leaving the plasma compartment and traveling into the target tissue, again the

drug will encounter the interstitial fluid compartment before passing through the target cell membrane

and into the intracellular fluid to arrive at the intended cellular organelle target; a simplified depiction of

this process is displayed in Figure 5.2.

The compositions of the membranes governs the type of transport required for the drug to traverse

the boundaries. A basic model for a cellular membrane was proposed by Davson and Danielli [2] and
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postulates that the membrane is a heterogenous composition of varying lipids along with proteins, which

help stabilize the membrane. The location of the proteins within the lipid matrix is primarily a conse-

quence of their hydrophobicity and hydrophilicity. Evidence indicates that lipid-based membranes are

permeable to non-polar lipid soluble compounds and polar water-soluble compounds with sufficient

lipid solubility [4]. These will diffuse through the hydrophobic lipid regions of the membrane. The rate

of this diffusion will be proportional to the concentration gradient across the membrane and can be

quantified by Fick’s law of diffusion

Rate of Diffusion(mg/s) =
D(cm/s)P

h(cm)
(X1 − X2)(mg), (5.1)

where D is the diffusion coefficient for the specific penetrant, P is the partition coefficient of the pene-

trant between the membrane and the external medium, h is the membrane thickness, and X1 − X2 is the

concentration gradient across the membrane.

Another variable that affects the diffusion across membranes is the pH. Nonionized weak organic

acids and bases are more permeable than ionized acids and bases. The amount of drug in the ionized

versus nonionized form is directly related to the pKa (negative logarithm of the acidic dissociation

constant) of the drug and the pH of the medium on both sides of the membrane. It is the nonionized

drug that is governed by Fick’s law and easily able to diffuse. The ratio of ionized to nonionized drug is

given by the Henderson-Hasselbalch equation:

For acids:

pKa − pH = log[(HAcid)o/(Acid)−]. (5.2)

For bases:

pKa − pH = log[(HBase)+/(Base)o]. (5.3)

The equations are identical as they involve the ratio of protonated to non-protonated moieties. The only

difference is that for an acid, the protonated form (HAcid)o is neutral, while, for a base the protonated

form (HBase)+ is ionized.

While passive diffusion is the usual route of transmembrane permeation for non-polar, small mole-

cules, there are other mechanisms by which substances can pass a membrane barrier. One example is

protein carrier-mediated active transport. In the case of active transport, the carrier protein binds to the

drug and carries it against the concentration gradient, allowing entry of hydrophilic or charged com-

pounds which normally cannot cross the membrane through passive diffusion. Also, unlike diffusion,

the rate of transport is saturable if the proportion of mediators to amount of drug is small; thus, it is

no longer concentration dependent. Other examples of transport are pores which only allow relatively

small molecules to pass through independent of lipid solubility, through dissolution in water thereby

traveling where the water goes, and through endocytosis by which the compound binds to the surface

of the membrane, the membrane invaginates the compound, and interiorizes the compound through a
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number of mechanisms.

Figure 5.2: Illustration of the absorption, distribution, and transport of a drug through the various
barriers and membranes to its target.

5.2 Pharmacodynamics

While this thesis will not address pharmacodynamic modeling, this section is included for completeness.

Once a drug reaches its site of action, the drug binds to a receptor at that site to cause an effect.

Pharmacodynamics can be defined as the study of the time course of the biological effect of drugs, the

relationship between the effect and drug exposure, and the drug blood concentration and drug response

[3].

Pharmacodynamics concerns the interplay of drug-receptor binding. Receptors are the macromole-

cules that are associated with chemical signaling within and between cells. Agonists are ligands that

bind to a certain receptor, thereby increasing the proportion in an active form, and activate a biological

response. Antagonists are compounds that reduce the action of another compound by deactivating or

diminishing the biological response. The amount of activity of a compound, either in terms of concen-

tration or amount needed to cause a desired effect, defines the potency. Generally, the main interest of

pharmacodynamics is the efficacy of a drug, defined as the degree to which agonists produce varying

responses, even when occupying the same proportion of receptors [3]. Typically, ligands are competing

for receptors and the ligand with the highest affinity will bind.

The law of mass action is often used to describe receptor occupancy and the most applicable receptor

occupancy model is below

[Drug] + [Receptor]
 [Drug–Receptor] −→ E.
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Assuming response is proportional to the number of receptors occupied at a particular time, models are

then constructed to quantify important features. Typically, the maximal drug induced response Emax, the

baseline effect, E0, and the plasma concentration corresponding to the half-maximal difference between

the baseline and maximal response EC50 describe the efficacy. Using modeling to understand the con-

centration to response relationship, these parameters can be quantified to elucidate the dose-response

profile.
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Chapter 6

Stochastic Nonlinear Mixed Effects - A
Metformin Case Study

6.1 Introduction

Nonlinear mixed effects modelling is a common and powerful methodology for analyzing repeated

measures to charaterize the pharmacokinetic (PK) and pharmacodynamic (PD) properties of a drug

[1, 22, 23, 26]. Within this modeling framework, the variability is decomposed into inter-individual

and intra-individual variability. The inter-individual variability accounts for factors that facilitate het-

erogeneity of subjects within the population. The intra-individual (residual) variability is not only as-

sociated with the errors due to measurement collection such as assay sensitivity, dosing, and sampling,

but also with errors due to model misspecification, approximations due to model evaluation, and model

parameters [36]. This requires these errors to all be independent such that the residuals remain uncorre-

lated, however, this does not always hold for fitted models [12].

Errors in dosing, sampling history, and model misspecification may introduce time-dependent error

variances, or serial correlations [12]. Typically, model misspecification and serial correlation is diag-

nosed through the examination of the residuals, however, some serial correlation is considered unavoid-

able and how it directly relates to the model can be difficult to ascertain. Karlsson et al. [12] concluded

that neither accuracy nor precision of the structural parameters improved with the recognition of serial

correlations, but that such improvement can only be obtained through an improved structural model.

However, consideration of autocorrelated error structures can lead to more accurate variance compo-

nents. Furthermore, time-dependent errors due to inaccurate recordings of sample times in complex

dosing studies can be difficult to handle, let alone potential time dependencies within the model param-

eters [36]. This has led to suggesting the inclusion of autoregressive, AR(1), models to help account for

these time correlated errors [3, 5, 12].

All of these uncertainties can affect the results and are frequently attributed to not fully understand-
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ing the governing processes or the complexity being too great to fully quantify. An alternate and more

sophisticated method for handling models with structural misspecifications and serial correlations is the

use of stochastic differential equations (SDE) [22, 35]. This approach is more flexible with regards to

specifying models with different residual error correlation patterns, while still including the statistical

functionality of the AR(1) model [22]. These grey-box models are stochastic state space models uti-

lizing SDEs to describe the dynamics of the states in continuous time while incorporating a discrete

time measurement equation. An immediate advantage and consequence of SDE models is the ability to

relegate the intra-individual error associated with model misspecification into a system noise term for

unspecified dynamics and the intra-individual error associated with measurement noise accounting for

uncorrelated errors, such as assay error, into their respective components [16, 35].

Following the procedures presented by Overgaard et al. [22] and Tornoe et al. [36], this chapter

aims to implement SDEs into an nonlinear mixed effects modeling framework to elucidate the benefits

of this methodology in terms of population pharmacokinetic analysis. Using Metformin clinical data in

a PK example, the purpose is to illustrate the application of SDEs to model development and diagnostics

through (1) separation of system noise from measurement noise within the intra-individual variability,

(2) accounting for serially correlated residuals, and (3) estimation of time-varying parameters similar to

deconvolution. Secondly, the purpose is to compare the results of multiple numerical SDE solvers to the

common ordinary differential equation (ODE) approach.

6.2 Nonlinear Mixed Effects

Nonlinear mixed effect models are used for repeated measures, and can be thought of as a hierarchical

modeling framework involving both fixed-effects for population parameters and random effects incorpo-

rating uncertainty associated with inter- and intra- individual variability [24, 25, 34]. The intra-individual

variability is described in the first stage by the difference between the individual predictions and obser-

vations modeled as

yi, j = g(xi, j, φi) + ei, j, ei, j ∼ N(0, σ2) i = 1, ...,N, j = 1, ..., ni (6.1)

where yi, j is the jth response for the ith individual, g(·) is the nonlinear observation function for the

individual specific parameter set φi and state dynamics, xi, j, N is the number of individuals (or repeated

measures), and ni is the number of measurements for each individual. The residual error terms ei, j are

assumed to be independently and identically distributed (i.i.d.) normal random variables with mean zero

and variance σ2.

The state dynamics x are used to quantify the behavior of the system. These are most commonly
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modeled using ordinary differential equations (ODEs) [22] described below

dx
dt

= f (t, x, u; φi), x(0; φ) = x0, t ≥ t0, (6.2)

where x is an M-dimensional dependent variable vector, x0 is the initial conditions, f (·) is the model, t

is an independent variable, u is an exogenous input, and φi is the O-dimensional parameter vector. As

we are interested in decomposing the noise affecting the system into a model misspecification term rep-

resenting the uncertainty associated with unknown or incorrectly specified dynamics and measurement

noise term accounting for uncorrelated errors such as assay error [16, 22, 35, 36], this is accomplished

through the incorporation of stochastic differential equations (SDEs). Stochastic differential equations

allow the system noise to be added directly to the differential equations which accounts for random

variations to the evolution of the states that may not be strictly accounted for within the structural model

[22]. This leads to the following SDE model formulation

dxi = f (xi, ui, t, φi)dt + σwdw, (6.3)

wit − wis ∼ N(0, |t − s|I),

where x, u, t, f (·), and φ are as previously defined. The identity matrix is denoted by I and σwdw

is the system noise. The structural model f (·) is the drift term, the matrix σw is a scaling diffusion

term, while w is a standard Wiener process, commonly referred to as Brownian motion [10, 36]. The

standard Wiener process w is a nonstationary stochastic process with mutually independent (orthogonal)

increments (wt − ws) which are normally distributed with mean zero and variance |t − s|I [8, 15]. When

the diffusion term σw is zero, the SDE (6.3) reduces to an ODE (6.2), and therefore, the physiological

interpretation of the parameters is preserved within the SDE model formulation [36].

The inter-individual variability is accounted for in the second stage by modeling the individual

parameters as

φi = h(θ,Zi) exp(ηi), ηi ∼ N(0,Ω), (6.4)

where h(·) is the parameter structural model, which is a function of the fixed-effects parameters θ and

potential covariates Zi. The random effects ηi describe each individual’s variation from the population,

and are independent and multivariate normally distributed with mean zero and covariance Ω. This results

in a multivariate log-normal distribution for the individual parameters [22]. Finally, the set of population

parameters to be estimated in the nonlinear mixed effects model utilizing SDEs represent the intra-

individual variability, inter-individual variability, model misspecification or system noise, and fixed-

effects parameters and are given by the set (σ2,Ω, σw, and θ), respectively.

A number of methods exist to estimate parameters for the model (6.1), but we shall focus on max-

imum likelihood estimation due to its strength in testing hypotheses and constructing confidence inter-

vals. Maximum likelihood estimation also has a number of optimal properties in estimation including

99



sufficiency, consistency, efficiency, and parameterization invariance [21]. For more details, Davidian

and Giltinan [5] give a description and comparison for various estimation methods for nonlinear mixed-

effects models. Maximum likelihood estimation is based upon maximizing the marginal density

L(θ, σ2, σw,Ω) ∝
N∏

i=1

∫
p1(Yini |ηi, θ, σ

2, σw, di)p2(ηi|Ω)dηi (6.5)

=

N∏
i=1

∫
exp(li)dηi, (6.6)

where L is the population likelihood function, Yi j = [yi1, ..., yini] represents all observations of the ith

individual up to time ti j, and, assuming a normal conditional density, the first-stage distribution is

p1(yini |ηi, θ, σ
2, σw, di) ≈

ni∏
j=1

exp(− 1
2 eT

i jR
−1
i( j| j−1)ei j)√

|2πRi( j| j−1)
, (6.7)

where ei, j = yi, j − g(xi, j, φi) is the residual from (6.1) and Ri( j| j−1) is the prediction covariance, while

the second-stage distribution (6.4) remains p2(ηi|Ω). The a posteriori log-likelihood function for the

random effect of the ith individual is now

li = −
1
2

ni∑
j=1

(
eT

i jR
−1
i( j| j−1)ei j + log |2πRi( j| j−1)|

)
−

1
2
ηT

i Ω−1ηi −
1
2

log |2πΩ|. (6.8)

A number of methods exist to approximate the population likelihood (6.6). Sparse grid techniques

provide one method which yields accurate results for a broad classes of functions [4, 7, 29, 31, 32]. More

details for this method are given by Smith [28]. Due to the necessity to update parameter estimates, the

sparse grid technique requires a gradient descent method to accomplish this.

Another method is Monte Carlo integration. This offers the advantages that the convergence is in-

dependent of the dimension of parameter space [28] and parameter estimates are easily updated within

an expectation maximization framework. As the focus is utilizing SDEs within nonlinear mixed effect

models, Monte Carlo integration is chosen as it does not depend on the smoothness of the population

likelihood (6.6). Utilizing Monte Carlo integration techniques to approximate the population likelihood

(6.6), the critical step to estimation is dependent upon selecting the appropriate sampling distribution

[23]. In general, quasi-Monte Carlo sampling is preferred as it has shown a faster rate of convergence

(O
(
ln Rp/R

)
) and better assurance of error over classical Monte Carlo [27]. From Monte Carlo integra-

tion, the expected value of f (x) under a distribution p, defined as I[ f ], is

I[ f ] = Ep[ f (x)] =

∫
f (x)p(x)dx '

1
N

N∑
k=1

f (x(k)). (6.9)
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If p(x) is not easily sampled from but easily evaluated for a given x, a sampling distribution q(x) can be

used such that

I[ f ] =

∫
f (x)

p(x)
q(x)

q(x)dx

'
1
N

N∑
k=1

w̃ f (x(k)), w̃ =
p(x(k))
q(x(k))

, (6.10)

known as importance sampling. Applying the importance sampling methodology to the population like-

lihood (6.5), we obtain

L(θ, σ2, σw,Ω) ∝
N∏

i=1

∫
p1(Yini |ηi, θ, σ

2, σw, di)
r(0,Ω)

q(ηi, ωi)
q(ηi, ωi)dηi, (6.11)

where we sample from q(ηi, ωi), the sampling distribution, assuming a Gaussian distribution with mean

centered around each individual’s ηi with individual covariance ωi. The individual log-likelihood then

becomes

li = −
1
2

ni∑
j=1

(
eT

i jR
−1
i( j| j−1)ei j + log |2πRi( j| j−1)|

)
+

1
2
η(k)T

i Ω−1η(k)
i +

1
2

log |2πΩ| −
1
2
ζ(k)T

i ωiζ
(k)
i −

1
2

log |2πωi|,

(6.12)

where η(k)
i is an O-dimensional sample for the individual ηi taken from the sampling distribution, ζ(k)

i =

η(k)
i − ηi is the deviation of the sample η(k)

i from the prior mean ηi, and

log(w̃) =
1
2
η(k)T

i Ω−1η(k)
i +

1
2

log |2πΩ| −
1
2
ζ(k)T

i ωiζ
(k)
i −

1
2

log |2πωi| (6.13)

represent the importance weights, w̃ = r(0,Ω)/q(ηi, ωi). This individual a posteriori log-likelihood

function is based on the one-step prediction error [22, 36]. As previously stated, when no system noise

is present (σw = 0), the SDE model will reduce to the more familiar ODE, and therefore, the one-step

prediction covariance will reduce to the ODE residual covariance, Ri( j| j−1) = σ2 [22].

The one-step prediction output ŷi( j| j−1) is the optimal prediction of the jth measurement before that

measurement is observed while Ri( j| j−1) is the covariance for that prediction [36]. Thus, the Gaussian

conditioned densities are completely described by

ŷi( j| j−1) = E
[
yi j|Yi( j−1), φi, σ

2, σw, di
]
, (6.14)

Ri( j| j−1) = V
[
yi j|Yi( j−1), φi, σ

2, σw, di
]
, (6.15)

where ŷi( j| j−1) and Ri( j| j−1) are the conditional mean and covariance, respectively, of yi j conditioned on

all previous measurements up to time t j−1 for individual i denoted by Yi( j−1) = [yi1, ..., yi( j−1)]. The
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subscript notation i( j| j − 1) utilized in equations (6.14) and (6.15) refer to the prediction at j based on

all j − 1 measurements for individual i [36].

The one step prediction errors are now calculated as

ei j = yi j − ŷi( j| j−1), ei j ∼ N(0,Ri( j| j−1)). (6.16)

This one-step prediction ŷi( j| j−1) and covariance Ri( j| j−1) are calculated using the nonlinear extensions of

the Kalman filter [13, 14].

6.3 Kalman Filter

Using the work presented by Overgaard [22] and Tornoe [35, 36], the derivation and implementation of

the various Kalman filters within the nonlinear mixed effects framework is now presented.

6.3.1 Extended Kalman Filter Implementation

The Kalman filter [13] is a recursive algorithm, which calculates the optimal state of a system by taking

a weighted average of the probability distribution from the model and the probability distribution from

the measurement, assuming the model is linear and the distributions are Gaussian. When these restrictive

assumptions do not hold, adjustments to the Kalman filter must be made, as discussed in Chapter 2. The

Extended Kalman filter (EKF) is an efficient extension to the Kalman filter which accounts for nonlinear

models by using the linearized model within the classical filter equations. This provides estimates for

the conditional mean and covariance for the assumed Gaussian conditional densities needed within the

likelihood function in equation 6.8.

The EKF equations are grouped into two components: the prediction step and the update step. The

prediction step consists of predicting the state and output variables ahead to the next measurement, while

the update step utilizes the measurement to update the state predictions.

The one-step state predictions of the EKF, which are the optimal (minimum variance) prediction of

the mean and covariance, are calculated by solving the state and covariance prediction equations from

time t j−1 until t j, where t j−1 is the time point of the last measurement and t j is the time point of the

following measurement,

dx̂i(t| j−1)

dt
= f (x̂i(t| j−1), di, φi), t ∈ [t j−1, t j], (6.17)

dP̂i(t| j−1)

dt
= AitPi(t| j−1) + Pi(t| j−1)AT

it + σwσ
T
w, (6.18)
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with initial conditions

x̂i(1|0) = xi0, (6.19)

Pi(1|0) = Pi0 =

∫ t2

t1
eAit sσwσ

T
w(eAit s)T ds, (6.20)

where xi0 are the initial conditions for the states. The integral in equation (6.20) specifying the initial

state covariance Pi0 is taken as the integral of the Wiener process and the state dynamics over the time

period of the first two measurements.

While the EKF is an exact, optimal solution to the state filtering problem in linear systems, utilizing

the linearization of the system within the covariance prediction equation, it is only a first-order approxi-

mation for nonlinear systems. The matrix Ait is the first-order Taylor expansion of the state equations in

equation (6.17) about the current state at time t, defined as

Ait =
∂g
∂x

∣∣∣∣
x=x̂i(t| j−1)

. (6.21)

Now, the EKF one-step output prediction equations to be used in the nonlinear mixed effects are

ŷi( j| j−1) = g(φi, x̂i( j| j−1)) (6.22)

Ri( j| j−1) = Ci jPi( j| j−1)CT
i j + σ2 (6.23)

where Ci j is first-order Taylor expansion of the measurement equation 6.1 about the current prediction,

defined below

Ci j =
∂ f
∂x

∣∣∣∣
x=x̂i( j| j−1)

. (6.24)

The one-step output covariance Ri( j| j01) is therefore the sum of the state covariance associated with the

observed state (Ci jPi( j| j−1)CT
i j) and the covariance associated with the measurements (σ2). As previously

state, in the case of no system noise (σw = 0), the one-step output prediction ŷi( j| j−1) and covariance

Ri( j| j−1) will reduce to the ODE prediction ŷi j and residual covariance σ2 typically utilized within the

likelihood function [34].

Lastly, the second component of the EKF is the update step. Conditioning on the jth measurement,

the one-step prediction and covariance are updated using the EKF state-update equations

x̂i( j| j) = x̂i( j| j−1) + Ki j(yi j − ŷi( j| j−1)) (6.25)

Pi( j| j) = (I − Ki jCi j)Pi( j| j−1), (6.26)

where x̂i( j| j) is the updated state estimate, Pi( j| j) is the updated state covariance, and Ki j is the Kalman
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gain given below

Ki j = Pi( j| j−1)CT
i j(Ci jPi( j| j−1)CT

i j + σ2)−1 = Pi( j j−1)CT
i jR
−1
i( j| j−1). (6.27)

The optimal state estimate at time j, x̂i( j| j), is equivalent to the best state prediction x̂i( j| j−1) before a

measurement is taken plus a correcting term consisting of an optimal weighting term multiplied by

the difference between the measurement yi j and the one-step prediction [34]. The Kalman gain is the

weighting term which corrects the estimate based upon the covariance of the state prediction and ob-

servations. If the measurement has a large variance σ2, the Kalman gain becomes small causing the

correction term to go to zero and the noisy measurement to be neglected. When the system noise is large

implying uncertainty in the system output, the Kalman gain will approach one due to the prediction

covariance becoming large. More specifically, as the limit of the noise increases (σw → ∞, P → ∞),

the Kalman gain goes to one (Ki j → 1) resulting in the updated state being equal to the measurement

[19]. A comprehensive EKF implementation is presented by Tornoe et. al. [34].

6.3.2 Unscented Kalman Filter Implementation

Due to the localized first-order Taylor expansions, the EKF can only obtain first order accuracy for all

distributions. However, another Kalman filter has been constructed which better preserves the distri-

bution statistics as it passes through the nonlinearity. The Unscented Kalman filter (UKF) overcomes

shortcomings of the EKF by utilizing the ’unscented transformation.’

The unscented transformation (UT) is a method used to calculate the statistics of a random variable

which undergoes a nonlinear transformation [11]. Instead of a linearization, the UT propagates a set of

sample points through the nonlinear model which will capture the posterior mean and covariance to at

least 2nd order for all distributions, and at least 3rd order accuracy for Gaussian distributions [9, 11].

Assume we have a random variable, z, with dimension L, which has mean ẑ and covariance, Pz. This

random variable gets propagated through a nonlinear function, ψ = g(z). To calculate the statistics of ψ,

we form a matrix, χ, of 2L + 1 sigma vectors, χi. This matrix, χ, is constructed as follows,

χ =
[
ẑ, ẑ11xL +

( √
(L + λ)Pz

)
L, ẑ11xL −

( √
(L + λ)Pz

)
L
]
, (6.28)

where ẑ is a column vector, ẑ11xL is a matrix of the column vector ẑ, and
( √

(L + λ)Pz
)
L is an LxL matrix.
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The corresponding weights (Wi) for the sigma vectors are as follows

W (m)
0 =

λ

(L + λ)
(6.29)

W(c)
0 =

λ

(L + λ)
+ (1 − α2 + β) (6.30)

W (m)
i = W (c)

i =
1

2(L + λ)
i = 1, ..., 2L, (6.31)

where λ = α2(L + κ)− L is a scaling parameter. The tuning parameter, α, is used to determine the spread

of the sigma points around ẑ, and takes values between 1 ≥ α ≥ 10−4 depending on the problem. The

tuning parameter, κ, is a secondary scaling parameter which is optimally set to 3 − L [9]. Lastly, β is

used to incorporate prior knowledge of the distribution of x (for Gaussian distributions, β = 2 is optimal)

[38]. From our matrix of sigma points (6.28),
( √

(L + λ)Pz
)
i is the ith row of the matrix square root [38].

The sigma vectors are then propagated through the nonlinear function accordingly,

ψi = g(χi), i = 0, ..., 2L, (6.32)

with the mean and covariance of ψ being approximated using a weighted sample mean and covariance

of the posterior sigma points,

ψ̂ ≈

2L∑
i=0

W (m)
i ψi (6.33)

Pψ ≈
2L∑
i=0

W (c)
i

(
ψi − ψ̂

)(
ψi − ψ̂

)T . (6.34)

Following the same procedure as the EKF, the one-step state predictions for the UKF are calculated

by constructing the sigma points (6.28) around the current states xi(t| j−1) and propagating them through

the model from t j−1 to t j, as before,

χ∗k[i(t| j−1)] =
dχk[i(t| j−1)]

dt
= f (χk[i(t| j−1)], di, φi), t ∈ [t j−1, t j], (6.35)

where χ∗k[i(t| j−1)] is the solution of the model for each sigma vector k of subject i. Using the weights (6.29,

6.30, 6.31), the mean and covariance is resolved by

x̂i(t| j−1) =

2L∑
k=0

W(m)
k χ∗k[i(t| j−1)] (6.36)

P̂i(t| j−1) =

2L∑
k=0

W(c)
k (χ∗k[i(t| j−1)] − x̂i(t| j−1))(χ∗k[i(t| j−1)] − x̂i(t| j−1))T + σwσ

T
w. (6.37)
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Using the state mean prediction (6.36), a new set of sigma points is constructed for the observation

function (6.1)

Λk[i(t| j−1)] =
[
x̂i(t| j−1), x̂i(t| j−1)11xL +

(√
(L + λ)P̂i(t| j−1)

)
L, x̂i(t|j−1)11xL −

(√
(L + λ)P̂i(t| j−1)

)
L
]
, (6.38)

and subsequently propagated through the observation function (6.1)

Λ∗k[i(t| j−1)] = g(Λk[i(t| j−1)], φi), (6.39)

which is used to obtain the observed state predictor and covariance

ẑi(t| j−1) =

2L∑
k=0

Wmz
k Λ∗k[i(t| j−1)] (6.40)

P̂z
i(t| j−1),zz =

2L∑
k=0

Wcz
k (Λ∗k[i(t| j−1)] − ẑk[i(t| j−1)])(Λ∗k[i(t| j−1)] − ẑk[i(t| j−1)])T + σ2. (6.41)

Now, the UKF one-step output prediction equations to be used in the nonlinear mixed effects are

ŷi( j| j−1) = g(φi, x̂i( j| j−1)) (6.42)

Ri( j| j−1) = P̂z
k[i( j| j−1)],zz (6.43)

Lastly, the UKF equations utilize the observation sigma points (6.38) to calculate the observed cross-

covariance

P̂z
i(t| j−1),xz =

2L∑
k=0

Wcz
k (χ∗k[i(t| j−1)] − x̂k[i(t| j−1)])(Λ∗k[i(t| j−1)] − ẑk[i(t| j−1)])T . (6.44)

Using this, the state mean prediction (6.36), and state covariance prediction (6.41), the one-step state

and state covariance predictions are updated by adjusting for the jth measurement, similar to the EKF,

as follows

x̂i( j| j) = x̂i( j| j−1) + Ki j(ŷi( j| j−1) − yi j) (6.45)

P̂i( j| j) = P̂i( j| j−1) − Ki jP̂z
i( j| j−1),zzK

T
i j , (6.46)

where x̂i( j| j) is the updated state based upon the measurement, P̂i( j| j) is the updated covariance, and Ki j

is the Kalman gain calculated by

Ki j = P̂z
i(t| j−1),xz(P̂

z
i(t| j−1),zz)

−1. (6.47)

As before with the EKF, the Kalman gain is used as a weighting term to optimally combine the model
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and data conditioned on their covariances.

6.4 Study and Data

Metformin is the most commonly prescribed treatment for type 2 diabetes in the world, however the

mechanism for its glucose-lowering action remains poorly understood. A new delayed release (DR)

metformin tablet was formulated to target delivery of metformin to the lower gut to enhance secretion

of gut hormones while decreasing systemic exposure [33]. The metformin data was collected as part of

a randomized four period, crossover study comparing the pharmacokinetics of the new delayed release

formulation of metformin HCl. A single dose of 2000mg of metformin extended release (XR) was

given as four 500-mg tablets immediately after a standardized meal. Pharmacokinetic samples for the

measurement of plasma metformin were collected every half hour for the first 3 hours and between

hours 12 to 14, and every hour thereafter up to 36 hours [2]. This was done for 16 healthy subjects, and

is presented below.

6.5 Results

The application of SDEs to population PK/PD modeling was carried out using clinical PK metformin

(XR) data from 16 healthy subjects to illustrate its utility to model development. A standard PK model

is presented which illuminates known deficiencies and is used to motivate tracking unexplained time

variations in the deficient component of the model. This then leads to the application of the SDE ap-

proach where multiple filters are executed and compared. Finally, a final ODE model is compared to the

SDE models.

The inter-individual variability of the population, and individual parameter vector φi, is assumed to

be distributed around the population mean parameter vector θ according to a log-normal distribution as

in equation (6.4), more specifically,

φi = θ exp(ηi), ηi ∈ N(0,Ω), (6.48)

where the random-effects ηi influencing the individual vector φi are assumed multivariate normal with

mean zero and covariance matrix Ω.

6.5.1 Initial Model: 2-Compartment Oral

A two-compartment micro rate-constant model with first-order absorption and elimination was selected

as the initial PK model describing the single dose (QD) oral administration of metformin. A diagram

representing this model is given by Figure 6.1. Previous studies have shown that metformin absorption

is incomplete and variable [6], and therefore first-order absorption may not be appropriate; however,
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Figure 6.1: Diagram representing the two compartment model. Absorption compartment, Aa, repre-
sents the gut. Drug is taken into the absorption compartment and is transported into the central compart-
ment at rate ka. The drug can diffuse into the peripheral compartment Aperipheral at a rate k12 and can
diffuse back at rate k21. The drug will be eliminated from the body at rate ke.
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this is done in order to demonstrate the utility of SDEs to model development through the estimation of

model misspecification. The system of ODEs governing the PK model can be written in matrix form,

along with observation equation, as

d
dt


Aa

C

Aperipheral

 =


−ka 0 0

ka
V −(k12 + ke) k21

V

0 k12V −k21




Aa

C

Aperipheral

 (6.49)

log(Cobs) = log(C) + e, e ∼ N(0, σ2) (6.50)

where Aa is the state variable for the amount of drug in the absorption compartment, C is the concentra-

tion of drug in the central compartment, Aperipheral is the amount of drug in the peripheral compartment,

and Cobs is the observed metformin drug concentration within the plasma.
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Figure 6.2: Top: Population PK model fit for 16 subjects concentration profiles in log-space for concen-
tration. Base model fit utilizes a 2-compartment oral absorption model with log-additive error. Bottom:
Individual predictions vs. individual concentrations along with unity line (blue). Unity line represents
the ideal situation where the model perfectly predicts the observations.

The model (6.49) is parameterized in terms of rate parameters ka, k12, k21, and ke to represent the
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kinetics of the drug as it travels through the system. The first-order oral absorption is governed by the

rate constant ka and the amount of drug present. The kinetics between the central and peripheral com-

partments are governed by the rate constants k12 and k21, while the volume of the central compartment

is represented by V . The rate at which a drug is eliminated from the system is represented by ke.

The parameter estimates of the initial PK model are given in Table 6.1. The observed metformin

concentration-time profiles for all subjects in the study are displayed in Figure 6.2. The concentration

profiles miss the maximum observed concentrations and possess different qualitative features from the

observations Reviewing the predicted and observed plasma concentrations, Figure 6.2, the unity line

(blue) represents the ideal situation where the model predicts the observations. Given the predictions

appear qualitatively different from the unity line, there appears to be an underlying deficiency in the

model. The plasma concentration profiles, the differences between the predicted and observed concen-

trations, along with the known uncertainty in absorption leads to the following adaptation of the model

to better describe the absorption process [6, 37].

6.5.2 Absorption Rate Tracking Model: EKF and UKF

Utilizing the information from the initial model, the main area of model refinement should be the ab-

sorption model. The absorption rate ka was initially assumed to be constant; however, to account for the

suspicion of temporal dynamics, we concatenate the absorption rate parameter ka into the state equa-

tions and allow it to fluctuate due to noise similar to a random walk. Instead of implementing a structural

model with built in assumptions for ka to account for these time variations, the filters will shift ka over

time to account for uncertainties in the states to best explain the concentration observations. To account

for this, the model dynamics for ka are set to zero, thereby allowing only the noise term σka to drive

the process. Assigning the noise terms σabs, σcentral, σperiperhal, and σka to be mixed effects within the

modeling framework, this allows the estimation of model misspecification for each compartment. If the

noise σka is nonzero, this indicates the assumption that the absorption rate parameter is constant may

not hold, and that ka may be better explained by a time-varying process. This is significant as it allows

a process for model refinement.

This leads to the following model refinements for ka, written out as an SDE as

d


log|ka|

Aa

C

Aperipheral

 =


0

−exp(log |ka|)Aa
exp(log |ka |)

V Aa − (k12 + ke)C +
k21
V Aperipheral

k12VC − k21Aperipheral

 dt +


σka 0 0 0

0 σAa 0 0

0 0 σcentral 0

0 0 0 σperipheral

 dwt

(6.51)

log(Cobs) = log(C) + e, e ∼ N(0, σ2) (6.52)
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Figure 6.3: Left: Population PK model fit utilizing EKF for 16 subjects concentration profiles in log-
space. Below is the individual predictions vs individual concentrations with unity line. Right: Population
PK model fit utilizing UKF for 16 subjects concentration profiles in log-space. Below is the individual
predictions vs individual concentrations with unity line (blue). Unity line represents the ideal situation
where the model perfectly predicts the observations.

where ka is the state variable for the absorption rate parameter and σAa , σcentral, σperipheral, and σka are

the noise terms associated with the model misspecification for each compartment. Given that the absorp-

tion rate ka must be constrained to non-negative space, the state equation for ka is log-transformed. This

prevents the rate constant from becoming negative while keeping the error additive, which is required

for the EKF and UKF.

The estimated model parameters for the absorption rate tracking model for both the EKF and UKF

are presented in Table 6.1. Comparing the plasma concentration profiles for the absorption rate tracking

models, Figure 6.3, to the initial two compartment model plasma concentration profiles, Figure 6.2, the

absorption rate tracking model manages to better capture the absorption phase of the concentration pro-

files and no longer displays a missing underlying process in the individual predictions vs concentrations.

Comparing the filtering methodologies, they appear to qualitatively match with minimal quantitative dif-

ferences. Reviewing the estimates in Table 6.1, the UKF manages to converge to a better loglikelihood

despite the qualitative similarities in profiles. This is due to the increased confidence in the filter esti-

mates from the UKF, which is seen in Figure 6.4. While both filters agree in terms of the mean prediction

for subject one, the prediction interval for the EKF is larger resulting in more variability associated with

the estimate. Over this same profile, the UKF manages to better encapsulate the variability in the filter

estimate over the time scale. This leads to the better log-likelihood.

Along with the differences in the prediction intervals, the filters exhibit other important differences.

While both the EKF and UKF prescribe minimal error to the central and peripheral compartments

(σcentral and σperipheral, respectively) the breakdown of the variability associated within the absorp-
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Figure 6.4: Left: Plasma concentration profile for Subject 1 including data, initial 2-compartment
model (ODE), EKF absorption rate tracking model (EKF), UKF absorption rate tracking model (UKF),
and Wiebull absorption 2-compartment model (Wiebull); prediction intervals are presented for the UKF
calculated as ŷ j| j−1±

√
R( j| j−1) Right: EKF and UKF filter predictions for Subject 1 along with prediction

intervals for each filter.
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Figure 6.5: Absorption rate profiles, ka, for Wiebull, EKF, and UKF models. This figure displays the
temporal dynamics of the absorption rate of QD dose metformin for each individual.
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Figure 6.6: Left: Plots of the fraction yet to be absorbed of metformin utilizing the EKF, UKF, and
Wiebull ODE model. Right: Mass balance of drug over time for the EKF, UKF, and constrained EKF
solutions.

tion compartment along with the rate parameter, ka, seem to deviate. The EKF maintains a smaller noise

estimate for the absorption compartment (σabsorption = 0.19) while associating the majority of the vari-

ability to the absorption rate (σka = 0.39). However, the UKF maintains a much smaller noise estimate

for the absorption rate (σka = 0.064) while also increasing the absorption compartment’s diffusion pa-

rameter estimate (σabsorption = 0.25). The immediate effects of this result are better seen in Figure 6.5.

Relegating more variability to the noise term for the rate parameter ka, allows ka to drift more readily to

explain the concentration data as seen in the EKF estimates. The UKF estimates for ka are constrained

to a lesser range due to the small noise diffusion parameter, σka .

While the filter predictions do well to explain the observations, the absorption compartment is ex-

amined to check the effects of the estimated variability. Administering an oral dose, it is expected that

the initial value would align with the dose and decay at a rate respective of the absorption rate param-

eter ka. Dividing the absorption compartment by the dose, the amount yet to be absorbed is displayed,

Figure 6.6. Comparing the filters, a troubling discovery is seen due to the large estimated variability.

The fraction left to be absorbed not just increases, but can increase to values greater than one, meaning

mass is being created within the absorption compartment. Looking over Figure 6.6, the mass balance is

calculated as the sum of all the compartments over time, done for the filtering methods. Given this is a

closed system, the sum of all the compartments at any time should equal the dose. Figure 6.6 confirms

this concern of mass being created as mass grows to values much larger than the dose.

To overcome this, the noise terms for the states (σabs, σcentral, σperipheral) in the absorption rate

tracking model are fixed to be small while estimating the noise for ka. This minimizes the chance of

mass creation while still allowing information to be obtained on the absorption rate parameter, ka. The

results for mass balance of this constrained absorption rate tracking model are displayed for the EKF in
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Figure 6.7: Absorption rate profiles, ka, for Wiebull and constrained EKF models.

Figure 6.6. While some mass can still be created due to the noise terms, the effect is largely minimized by

fixing their values. Understanding how this adjustment affects the absorption rate parameter, ka is plotted

for the constrained EKF in Figure 6.7. This results in a much larger rate of absorption for each subject

along with a larger variance to the terminal rate. Reviewing Table 6.2, the effects of the constraints of

the noise terms on the model parameter are displayed. The residual error, σ2, and loglikelihood are both

worse as expected given the number of degrees of freedom taken out of the fit along with the inability

to quantify the modeling error for those respective states. This error now gets lumped with the residual

variability which explains the increase. However, to adjust for this, the variability in the absorption

rate parameter increases to try to account for the deficiencies of the absorption process. The volume of

distribution estimate also changes, approaching the estimate obtained from the initial two compartment

model. Utilizing the information obtained from the SDE models, a structural model for the absorption

rate is constructed.

6.5.3 2-compartment Oral with Wiebull absorption rate

Given the temporal dynamics observed from the SDE models for the absorption rate parameter, ka, a

structural model is enacted to describe this process. A Weibull function is utilized within the initial two
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Table 6.1: Results for 2-compartment Oral model with log-additive errors for original model, EKF,
UKF, and Wiebull absorption.

2-cpt Oral EKF UKF 2-cpt Oral Wiebull 2-cpt Oral Wiebull UKF
σ2 0.24 0.092 0.068 0.021 0.0271
R N/A 0.0892 0.0659 N/A 0.0264
σabs N/A 0.1895 0.2478 N/A 0.0239
σcentral N/A 0.0078 0.0058 N/A 0.0023
σperipheral N/A 0.0353 0.0214 N/A 0.0232
σKa N/A 0.3882 0.0638 N/A N/A
ka (h−1) 0.21 N/A N/A N/A N/A
k12 (h−1) 0.16 0.1963 0.0671 0.29 0.259
k21 (h−1) 0.0017 0.0024 0.007 0.0028 0.0021
ke (h−1) 0.03 0.0093 0.1627 0.0008 0.0013
V (L) 593.12 1617.83 1670.04 334.46 363.52
Loglike -415.51 -70.64 -24.65 177.87 201.64
-2LL 831.02 142 49.31 -355.75 -403.28
t1/2 elim (h) 23.10 74.52 4.26 866.43 533.19
Cl (L h−1) 17.79 15.05 271.72 0.27 0.473
Cl2 (L h−1) 94.9 317.58 112.06 96.99 94.15
V2 (L) 55,823.5 132,324.2 16,008.53 34,539.3 44,833.3
α N/A N/A N/A 0.814 1.194
K N/A N/A N/A 0.995 1.00
λ N/A N/A N/A 12.086 15.58
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compartment oral model to describe the extended release absorption rate, written out below

ka = α
(
1 − exp(−(t/λ)K)

)
(6.53)

d
dt


Aa

C

Aperipheral

 =


−ka 0 0

ka
V −(k12 + ke) k21

V

0 k12V −k21




Aa

C

Aperipheral

 (6.54)

log(Cobs) = log(C) + e, e ∼ N(0, σ2) (6.55)

where α, λ, and K are now shape parameters which will be optimized within the mixed effects frame-

work. Reviewing Figure 6.8, the plasma concentration profiles fit the data which can be better seen

through the predicted versus observed concentration plot. Comparing the absorption rate profiles to the

original filter estimates, Figure 6.5 shows that while the qualitative nature of the absorption does not

match, the quantitative range of the rates sync up with the filter estimates. The UKF had terminal rates

between 0.4-1 and the EKF had terminal ranges between 0.6-1.5, while the Weibull absorption has a

terminal range 0.4-0.9. The parameter estimates for the kinetic parameters for the Weibull absorption

are displayed in Table 6.1.

Lastly, to check the validity of the final model, the two compartment oral model with Weibull ab-

sorption was run with the UKF with noise terms relegated to the states. Reviewing the noise estimates

for the states in Table 6.1, the absorption noise, σabs, has diminished due to the better quantified process

and no longer is considered significant. Looking over the kinetic parameter estimates, they match the

ODE model which again validates the structural model for ka.

6.6 Discussion and Conclusion

While mixed effect models traditionally utilize ordinary differential equations to describe a physical

process, an SDE model approach is presented. This allows the intra-individual variability to be fur-

ther decomposed into measurement noise and process noise. The process noise represents model mis-

specification and autocorrelated residual errors while the measurement noise accounts for assay error,

sampling, and other errors due to observation collection.

This study presented the derivation of the EKF and UKF for application within nonlinear mixed

effect solvers, more specifically, sampling based methodologies. Using metformin clinical data, model

development was carried out through the application of SDEs. The performance of the EKF and UKF

was compared, displaying the advantages of the unscented Kalman filter in terms of overall performance

over the extended Kalman filter. Initially fitting an oral two compartment model, deficiencies in the

absorption process were highlighted. This led to the development of an SDE model to better elucidate the
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Figure 6.8: Top: Population PK model fit for 16 subjects concentration profiles in log-space for con-
centration. Model fit utilizes a 2-compartment oral absorption model with Wiebull absorption rate with
log-additive error. Bottom: Individual predictions vs. individual concentrations with unity line(blue).
Unity line represents the ideal situation where the model perfectly predicts the observations.

Table 6.2: Results for 2-compartment Oral model with log-additive errors for full EKF and constrained
EKF.

EKF Constrained EKF
σ2 0.092 0.15
R 0.0892 0.1441
σabs 0.1895 1e-7
σcentral 0.0078 1e-7
σperipheral 0.0353 1e-7
σKa 0.3882 0.83
ka (h−1) N/A N/A
k12 (h−1) 0.1963 0.191
k21 (h−1) 0.0024 0.002
ke (h−1) 0.0093 0.025
V (L) 1617.83 516.88
Loglike -70.64 -153.25
-2LL 142 306.5
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absorption process. Comparing the estimates between the methods and models, the changes in structural

model assumptions impacted the estimates for volume of distribution. Reviewing the study of metformin

XR by Duong et al [6], the filter obtains a volume estimate approximately ten times larger. However, for

the clearance parameter, the estimates ranged greatly depending on the filter from approximately three

times greater (UKF) to five times less (EKF). This uncertainty is likely caused by the uncertainty linked

to the volume and elimination parameters. The size of the study likely had an effect on the estimates as

well, given Duong et al [6] conducted a study with 305 subjects, while this study has only managed 16

subjects.

Estimating the noise terms allowed the refinement of the two compartment model. This led to obtain-

ing information on the absorption process which led to a structural model alteration for the absorption

rate, ka, as a Wiebull function. While the filters helped to give model misspecification estimates for the

different states, and also provided a fitting method for the temporal dynamics of the absorption rate,

they did have issues by creating mass when large model misspecification was present. To prevent this,

the noise terms were fixed which still provided a way to handle both the auto correlated errors and time

varying parameter absorption rate. Applying the UKF to the final ODE model, the parameter estimates

for the noise were small and the parameter estimates for the kinetics were nearly identical. The similar

estimates for both the ODE and SDE models confirmed what was found in previous studies [12, 36].

Overall, the application of SDEs to nonlinear mixed effect modeling was highlighted. SDEs allow

the estimation of model misspecification, and can also account for serial correlations. Along with these

advantages, the SDE approach provided a systematic model development framework by tracking model

deficiencies. Lastly, the differences between the extended and unscented Kalman filters were displayed.
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Chapter 7

Conclusion

Overall, the application of nonlinear filtering to biological systems modeling has been highlighted

through its utility in a number of problems, both simulated and real world. The motivation for its use

was given due to the required simplification of complex processes in biology for modeling purposes.

Filtering provides a useful way to incorporate the effects of these simplifications within the modeling

framework. The definition and premise of the inverse problem was presented. The application of filtering

to inverse problems was highlighted in chapter two. Multiple techniques can be used to utilize filtering

for parameter estimation. The precision and accuracy of each technique was displayed on a number of

problems of varying difficulty, and the strengths and weaknesses were discussed. The ability of the fil-

ters to overcome a multitude of challenges including stiffness, strong nonlinearities, proportional error

models, and sparse sampling were necessary adversities to overcome for real application.

Next, to facilitate the proper modeling of autonomic regulation of the cardiovascular system via

the baroreceptor, the biology of the cardiovascular system was discussed. This provided the necessary

background to understand the important processes for modeling the effects of the body during ortho-

static stress. Using the biology of the CVS, along with a circuit analogy, a model was constructed using

heart rate data to predict blood pressure during a head-up tilt experiment. Accounting for the pooling of

blood in the lower extremities due gravitational effects through hydrostatics, a five compartment model

was constructed. The simplified model was used to describe the autonomic regulation via the barore-

ceptor during head-up tilt through the estimation of the resistance of the arteries and contractility of the

heart. These parameters were selected to be estimated by conducting a sensitivity analysis followed by

subset selection, along with understanding the information to be examined about the biological system.

Using a nonlinear spline methodology, these time varying quantities were estimated and compared to

the estimates obtained from the ensemble transform Kalman filter. This helped to again highlight the

utility of the Kalman filter to complex biological systems, and also gain knowledge on the regulation of

the CVS during head-up tilt.

Next, general background on pharmacokinetics and pharmacodynamics was presented to provide

123



the necessary information for the modeling to take place. Understanding the disposition of a drug as it

enters the body, distributes, causes an effect, and is eliminated is crucial to properly model the system.

Detailing those processes helped show the complexity of the systems we wish to understand and test

hypotheses against.

Lastly, using the background on pharmacokinetics and pharmacodynamics, nonlinear mixed effects

modeling was introduced and applied to a PK study for metformin. Using both an extended and un-

scented Kalman filter within the nonlinear mixed effect framework allowed the quantification of model

misspecification which could be used to understand modeling deficiencies. This also could account for

time correlated residuals and provided a method for estimation of time varying parameters, already wit-

nessed in a previous chapter. This methodology provided a model development framework for biological

systems. Not only that, the estimation of model misspecification for populations would allow the use

of filters in the future for medical purposes since the process noise matrix is necessary a priori infor-

mation for actually, real world application of Kalman filtering. Applying an importance sampling based

expectation maximization algorithm with SDEs to a small, metformin study allowed a better, and more

thorough, understanding of the absorption process of the drug. While the study was small, it showed the

value of SDEs in modeling.

Overall, this thesis presented a thorough, detailed narrative on nonlinear filtering methodologies and

their application to parameter estimation, state estimation, and uncertainty quantification. Future work

would hope to further develop some of the methods displayed including, but not limited to, when to use

a joint estimation method over a dual estimation method, particle filtering, the advantages of particle

filtering over Kalman filtering and vice versa, how to overcome mass balance issues in a closed system

utilizing filters, how sensitivities and correlation affect filter performance, and any refinements upon the

filtering algorithms themselves.
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