
ABSTRACT

LOWMAN, NICHOLAS K. Viscous Fluid Conduits as a Prototypical Nonlinear Dispersive
Wave Platform. (Under the direction of Mark Hoefer.)

This thesis is devoted to the comprehensive characterization of slowly modulated, nonlinear

waves in dispersive media for physically-relevant systems using a threefold approach: analytical,

long-time asymptotics, careful numerical simulations, and quantitative laboratory experiments.

In particular, we use this interdisciplinary approach to establish a two-fluid, interfacial fluid

flow setting known as viscous fluid conduits as an ideal platform for the experimental study of

truly one dimensional, unidirectional solitary waves and dispersively regularized shock waves

(DSWs). Starting from the full set of fluid equations for mass and linear momentum conservation,

we use a multiple-scales, perturbation approach to derive a scalar, nonlinear, dispersive wave

equation for the leading order interfacial dynamics of the system. Using a generalized form of

the approximate model equation, we use numerical simulations and an analytical, nonlinear

wave averaging technique, Whitham-El modulation theory, to derive the key physical features of

interacting large amplitude solitary waves and DSWs. We then present the results of quantitative,

experimental investigations into large amplitude solitary wave interactions and DSWs. Overtaking

interactions of large amplitude solitary waves are shown to exhibit nearly elastic collisions and

universal interaction geometries according to the Lax categories for KdV solitons, and to be in

excellent agreement with the dynamics described by the approximate asymptotic model. The

dispersive shock wave experiments presented here represent the most extensive comparison to

date between theory and data of the key wavetrain parameters predicted by modulation theory.

We observe strong agreement. Based on the work in this thesis, viscous fluid conduits provide

a well-understood, controlled, table-top environment in which to study universal properties of

dispersive hydrodynamics.

Motivated by the study of wave propagation in the conduit system, we identify four new

admissibility criteria required for proper application of the Whitham-El DSW closure method for



a general class of scalar dispersive hydrodynamic equations. Further, we explore regularization

distinguishing characteristics of dissipative versus dispersive smoothing in a bidirectional system,

Fermi gas at unitarity, in which the appropriate physical mechanism is unclear. It is shown that

key differences in the resolution of nonlinear wave breaking allow one to design regularization

determining experiments.
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Chapter 1

Introduction

The study of nonlinear waves owes its origins to the earliest inquiries into fluid motion and

has grown into an active, interdisciplinary research community in the present day due to

the wide array of physical application areas and the lack of general solution methods for the

equations which govern them. In particular, propagation of nonlinear waves in conservative or

approximately conservative media has garnered significant interest in recent decades as it has

grown from its origins in water waves to modern applications in optics and ultracold dilute gases.

Two salient features of such systems, often referred to as being of dispersive hydrodynamic type,

are born out of the interplay between the wave breaking effects of nonlinearity and the spreading

effects of dispersion. They are admissibility of exponentially-localized solitary wave, or soliton,

solutions and the resolution of gradient catastrophe into a rank-ordered, slowly modulated

wave train, as in Fig. 1.1. A rich mathematical theory for solitons and dispersively regularized

shock waves (DSWs) has been developed for a broad class of problems, but much of it relies

heavily on properties due to the deep mathematical structure of integrability of the underlying

partial differential equation (PDE), which are often not available in physically-based models

for realistic parameter values. Moreover, while general wave averaging, asymptotic techniques

exist for DSWs and solitary waves, their applicability as a tool for comparison with quantitative

experiments is limited to long temporal and spatial scales, where the experimental realization of

1



Figure 1.1: Dispersive shock wave.

dissipationless, strongly nonlinear dynamics is difficult.

The central contribution of this dissertation is the establishment of a physical setting,

known as viscous fluid conduits, as an ideal platform for the study of unidirectional nonlinear

dispersive waves which are truly one dimensional and dissipationless at the length and temporal

scales of interest. To this end, we present the results of a threefold, interdisciplinary approach

involving model derivation and analysis using analytical, asymptotic techniques, careful numerical

simulations for comparison with analytical theory, and quantitative laboratory experiments

for large amplitude, interacting solitary waves and DSWs. In this dissertation, we also present

generalizations of the work on the conduit system which apply to the mathematical study of

DSWs in general, and we explore the manifestation of dispersive hydrodynamics in another

physical system, strongly interacting Fermi gas at unitarity, in which there is a question of the

appropriate physical regularization of nonlinearity.

In the remainder of this chapter, we put the present work in the appropriate historical

context. We begin by introducing the mathematical theory of dispersive hydrodynamics, review

relevant previous experimental studies, and give an overview of previous work on the conduit

system and its generalizations.
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1.1 Nonlinear Waves and Modulation Theory

One dimensional dispersive hydrodynamic systems are typified by the existence of two nonlinear

coherent structures: exponentially localized solitary waves and dispersively regularized shock

waves (DSWs). Solitary waves arise when the competing effects of nonlinear steepening and

dispersive spreading balance perfectly, forming a nonlinear analogue to the linear traveling wave,

whereas DSWs occur when nonlinear wave breaking is resolved by the formation of a modulated

train of solitary waves.

Nonlinear solitary waves differ from their linear counterparts in that they exhibit an amplitude-

dependent phase speed, often with larger waves propagating faster than slower ones, e.g. [126].

This property gives rise to a distinguishing feature of solitary waves in one-dimension, namely

the resulting nonlinear superposition which occurs when a larger, trailing solitary wave overtakes

a smaller, leading solitary wave, a phenomenon previously referred to as strong interaction of

solitary waves [78]. Whereas for linear waves the interaction of two localized waves is simply the

sum of the two structures, the nonlinear solitary wave interaction considered here is characterized

by the larger wave decreasing in height and experiencing a brief acceleration, while the smaller

solitary wave increases in amplitude and experiences a shift backwards [128]. The two waves

then emerge from the interaction with their initial profiles and speeds approximately restored.

Of particular interest to the present study is the physical implication of a lack of integrability

and its effects on the geometry of interacting solitary waves, as integrability is typically reserved

for weakly nonlinear models. The exact two soliton solution for integrable equations can be

derived, e.g. [44], and in the special case of the Korteweg–de Vries (KdV) equation, a prototypical

model of weakly nonlinear, dispersive waves, the soliton overtaking interaction has been classified

by amplitude ratio into three distinct regimes according to the qualitative structure of the

two-wave complex formed during the interaction [59]. This classification scheme for KdV is

characterized solely in terms of the ratio of the initial soliton amplitudes, a manifestation of the

high symmetry properties of the integrable equation. As part of this study, we extend the KdV

classification scheme to the strongly nonlinear, nonintegrable regime for the viscous fluid conduit
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system and find that the qualitative interaction structures are preserved, though the loss of a

symmetry (Galilean invariance) outside the weakly nonlinear limit introduces an increase in the

number of critical parameters required for its description.

The other dispersive hydrodynamic structure of interest here is the DSW and, again, the way

in which a lack of integrability manifests in the physical realization of the DSW. While in classical,

dissipative media, shocks arise when singularity formation due to nonlinearity is mediated by an

irreversible transfer of energy from large to small scales resulting in the generation of heat due

to viscous effects, DSWs represent the dispersive (dissipationless) analogue to the resolution of

hydrodynamic singularities. In such systems, nonlinearity is regularized by the transfer of energy

again from larger to smaller scales via the formation of a dynamically expanding, oscillatory

wave train, but the process is conservative, i.e. reversible. This region can be characterized by

nearly linear waves in one edge and a solitary wave on the other (see Fig. 1.1).

To obtain analytical information for DSWs, we use a multiscale, nonlinear wave modulation

technique, generally referred to as Whitham averaging [125, 126]. In this framework, a DSW is

described locally as a nonlinear, single phase, periodic wave solution to the underlying PDE.

Over the scale of the wave train, however, the parameters are allowed to vary slowly, governed

by a system of quasi-linear PDEs. The system is closed by matching the “inner” modulation

solution to the “outer” solution, obtained by considering the dispersionless limit of the PDE,

near the linear and soliton edges of the DSW. Hence the problem is converted to a free boundary

problem [40]. This can be compared to the study of a classical viscous shock wave (VSW), in

which one recovers a weak solution to the vanishing viscosity limit of the PDE and obtains an

ordinary differential equation (ODE) for the shock speed, cf. [60]. The difference arises because

a VSW is a localized phenomenon, while a DSW is continuously expanding and thus varies

spatially and temporally.

The main difficulty in the study of nonintegrable, dispersive models arises in the system of

modulation equations, which are generally not diagonalizable, making them difficult to solve

without numerical methods. However, the work of El [24] subverts this obstacle in the case of
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step initial data by assuming the existence of a simple wave solution to the modulation equations

and using information available locally near the linear and soliton edges of the DSW to solve for

the leading and trailing edge speeds and the soliton amplitude.

In this work, we present the application of this Whitham-El modulation theory for a

generalized form of the approximate governing equation for the conduit setting. While a

numerical study on the Riemann problem was conducted previously, its results were interpreted

through the lens of classical shock theory, leaving several open questions which are resolved

here [108, 109]. We also identify four new admissibility criteria for the modulation theory –

applicable to general unidirectional, scalar, dispersive hydrodynamic models – one of which

we observe for the first time in the conduit system that we term DSW implosion. Lastly, we

demonstrate how the difference between VSWs and DSWs can be exploited to determine the

appropriate regularization for nonlinear steepening in a system where the physical mechanism is

unknown. Owing to the approximate nature of modulation theory and the nonintegrable nature

of the physical settings considered, numerical methods play an integral role in each of the above

studies.

1.2 Experimental Studies of Nonlinear Waves

A key component of any study in applied mathematics is that of physical relevance. However,

even for integrable problems, for which Whitham modulation theory has been shown to be

mathematically rigorous (e.g. the work by Lax, Levermore, and Venakides [61, 62, 63, 117]),

quantitative experimental validation of the key analytical results for DSWs is largely lacking

from the literature. One difficulty is the long length and time scales required to compare with

the asymptotic theory. These slowly modulated wave trains are characterized by the presence

of two scales. One is the O(1) scale of individual oscillations and the other is a long, slow

scale of wave modulations O(t), t � 1. Large amplitude solitary waves also are generally

inaccessible to experimental study due to the presence of physical dissipation, instabilities, and

other physical effects neglected in deriving conservative approximate models. Here we review
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notable previous experiments on DSWs and classification of interacting solitary waves in other

dispersive hydrodynamic settings, noting their key results and also the limitations of the physical

system and experimental set-up as a nonlinear waves platform.

Experimental validation of the Lax categories for strong interactions of solitary waves have

been limited to shallow water settings and small amplitudes (necessarily less than the wave

breaking amplitude ∼ 0.78 in nondimensional units), due to dissipative effects and a capillary

instability at larger amplitudes [114, 3]. The existence of the three distinct interaction geometries

predicted for KdV, however, have been confirmed independently in [120, 21, 65]. The study of

[21], while still small amplitude, was conducted just beyond the limits of validity of the KdV

equation. Thus their experiments provided evidence that the existence of the three interaction

types extend beyond the integrable regime.

DSW experiments have been conducted in a number of physical settings in recent decades,

though quantitative comparisons with DSW theory have been limited. The first quantitative

experiments were conducted in ion-acoustic plasma by [116], which examined the amplitude of the

shock front generated by initial steps of varying height and compared with the weakly nonlinear

KdV model. The experimental observations showed good agreement for small amplitude jumps,

but the leading solitary wave amplitude quickly diverged from theory as the jump height grew.

Other experiments on shock phenomena conducted in ion-acoustic plasma [115], provide only

quantitative comparisons with theory for breaking time, a property of only the hydrodynamic core

of the governing equations and independent of any regularization mechanism. In both studies, the

DSWs created were limited to no more than ∼ 10 oscillations. We note that the dissipationless

assumption for ion-acoustic plasma is also an approximation, valid when the temperature of the

electrons is much greater than the temperature of the ions and over sufficiently short time scales.

Furthermore, comparisons with theory only involved nondimensional amplitudes, avoiding the

inclusion of physical dimensional quantities necessary for comparison of, e.g., speeds.

The only other quantitative comparisons between DSW modulation theory and real physical

data that we have identified were in the context of internal waves in large scale atmospheric flows.
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In [89], shock properties of the Benjamin-Ono equation are compared with an observational data

set for the Morning Glory phenomenon in the Gulf of Carpentaria. They report good agreement

with the nondimensional amplitude of the DSW front, but not for the dimensional propagation

speeds. There were also comparisons with KdV shock theory and nonlinear internal tides in

Massachusetts Bay by [100] and across the Australian North West Shelf by [107]. In each of

these cases, though, a weakly nonlinear model is employed, and by considering an observational

data set, a number of parameter fitting assumptions were made due to lack of explicit knowledge

of the physical parameters of the system. Observations of DSWs (undular bores) in water waves

were also reported in channel flows by [19]. Two major limitations for DSW experiments in

water waves are the presence of physical dissipation at the relevant length and time scales of the

modulation theory, and the difficulty in creating a truly one-dimensional water wave without

friction effects from a boundary.

Quantum superfluid settings, most notably Bose-Einstein condensates (BEC) and unitary

Fermi gas (UFG), also provide experimental platforms for the study of dispersive hydrodynamics.

In both systems, the idealized mean-field model is dissipationless, but this assumption applies

only at absolute zero temperature, when in reality some effective dissipation is inevitably present

due to experiments conducted at finite temperatures and coupling to normal fluid. There is

also an issue of interpreting the results of these experiments using a one-dimensional model

equation, as its applicability is restricted due to unstable transverse perturbations in the absence

of sufficient confinement. Other experimental difficulties arise because the superfluid is destroyed

upon imaging, making dynamic information harder to obtain. Long propagation times lead

to deviation from the conservative, 1D model due to confinement effects and coupling to the

uncondensed thermal cloud. Further, it is not experimentally feasible to create the idealized,

step-like condition required for comparison with modulation theory. Despite these difficulties in

conducting quantitative experiments, a number of notable qualitative shock experiments have

appeared in the literature.

The first observation in BEC was reported in [23] where the authors observed the formation
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of a small number of dispersive oscillations in response to nonlinear steepening followed by a

multidimensional instability. Subsequent shock wave experiments were conducted in a rapidly

rotating BEC by [106]. It was shown that the qualitative structure of shock waves observed in

experiment were well-described by full 3D numerical simulations of the mean-field equation.

The first qualitative comparisons with dispersive hydrodynamics are found in [46], in which

two dimensional blast wave experiments were shown to exhibit similar structure to numerical

simulations of the nonlinear Schrödinger (NLS) equation. Effectively one-dimensional BEC shock

experiments in a cigar-shaped trap were performed by [77], and the dissipationless model was

shown to exhibit good agreement with the experimental results. The results were not compared

with DSW theory, however. One issue in this effectively 1D BEC case is that the experiments

involve the collision of two initially separated clouds. This leads to shock formation after the

interaction of two rarefaction waves, and then the resulting shocks propagate along a variable

background, which is not captured by the theoretical approach. Dispersive shock waves in BEC

were also created by merging initially separated clouds by [18], in which it was observed that

without sufficient radial confinement, transverse instabilities lead to a distinct center bulge

near the point of collision. Once again, comparisons with theory were limited to qualitative

agreements with numerical simulations. The merging problem was interpreted explicitly for the

first time in the context of dispersive hydrodynamics by [49], though the distinctions between

pure DSWs and the BEC collision problem are identified.

Further observations of DSWs in quantum superfluids have appeared more recently in other

physical settings. The merging problem for strongly interacting Fermi gas at unitarity (UFG)

was presented by [52], though the resulting shock wave was interpreted by fitting the data to

a hydrodynamic mean-field model with an effective viscosity. The collision problem for UFG

will be considered in the dispersive hydrodynamic context by the present work in Chapter 7.

In another superfluid system, liquid helium, shock formation was observed as a result of a

jet hitting a surface below the superfluid transition temperature, although the results were

interpreted with the introduction of an effective viscosity [92]. Nearly ten dispersive oscillations
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were observed in the experiments conducted below the superfluid transition temperature, but

the only quantitative characterizations made were for the radius of the shock pattern. In yet

another superfluid system, the observation of hydrodynamic solitons and vortex streets in the

flow of an interacting Bose gas of exciton-polaritons in the wake of a potential obstacle were

reported [4], although the authors did not explore the possibility of creating a 1D shock. More

recently, the formation of soliton wave trains in response to large amplitude density perturbations

were observed in electron beams, and the results were compared with numerical simulations of

KdV, though no comparisons with modulation theory were made [80]. While these superfluid

settings allow the observation of characteristic dispersive hydrodynamic structures, the creation

of step-like initial data required for the study of the fundamental shock problem has been difficult

to achieve, and a complete characterization of all relevant experimental parameters is lacking.

The final notable experimental platform for DSWs is the so-called optical hydrodynamical

setting, in which light waves propagate through a nonlinear Kerr-like medium. Like in ultracold

atom systems, though, the optics setting does not lend the experimental fidelity needed to

simulate the step problem in one propagation direction, allow long time/distance evolution, or

easily capture dynamical information via imaging. Experimental observations in optics are also

limited by noisy data, with no experiment described below exhibiting more than ∼ 12 dispersive

oscillations in response to gradient catastrophe. The first observations of wave breaking leading

to dispersive oscillations were made by [93] in optical propagation along a single-mode fiber. The

optical intensity data was quite noisy, with few easily discernible oscillations, but the authors

showed qualitative agreement with numerical simulations of the NLS equation. Optical DSW

experiments were conducted in nonlocal, nonlinear media using spatial beams in a thermal

liquid cell by [8] via the formation of an initial, localized intensity perturbation. Quantitative

measurements are made for the shock speed (assumed to be determined by the shock width) as a

function of the size of the initial disturbance, although the data are fit to a scaling law and never

compared to the theoretical speed predicted by modulation theory. Similar experiments were

conducted in an all-optical experimental platform, where again the relevant measurements were
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shock speeds as a function of initial disturbance amplitude, fit to an assumed relationship and

not compared with DSW theory [119]. Novel, multidimensional interacting DSW observations

were also made and described in detail. DSWs were also created and studied experimentally

in nonlinear waveguide arrays in [50], though quantitative and dynamical information were

not reported. Optical DSWs in the spatial propagation of Gaussian laser beams in nonlocal,

nonlinear media were observed to exist [35]. In later investigations of optical intensity shocks in

thermal nonlocal media, measurements of the breaking distance were compared with NLS theory

[34], but this property is independent of dispersive/dissipative regularization. The breaking time

was also measured in the propagation of large amplitude dark beams in a defocusing medium by

[20]. Optical wave breaking was recently observed in pulse propagation in a nonlinear photonic

crystal fiber and considered in the context of pulse compression [67]. The results were compared

with numerical simulations of a generalized NLS equation, but shock features were not compared

with modulation theory.

1.3 Viscous Fluid Conduits as 1D Superfluids

As demonstrated in the previous section, there is not a quantitative experimental platform

for the controlled study of one-dimensional DSWs. Solitons have also been studied in many

physical systems, but their detailed quantitative study and comparison with theory is often

limited for similar reasons as DSWs. The main contribution of this thesis is in establishing a new

fluid system, viscous fluid conduits, as a medium to study solitons and DSWs, and conducting

quantitative experiments.

The viscous fluid conduit setting is realized by introducing a steady source of buoyant,

viscous fluid to a quiescent medium of heavier, more viscous fluid. Following transient dynamics,

a stable, fluid-filled pipe is formed if the Reynolds number of the system is sufficiently low [124].

The interest of this study is in the evolution of the interface separating the two fluids when

slowly varying perturbations of the injection rate are introduced. To fully describe the behavior

of this multi-fluid system, one must consider the full system of Navier-Stokes equations with
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jumps in density, viscosity, and pressure along a free, moving interface, a difficult task even for

direct numerical simulations.

An approximate model equation was previously proposed on the basis of physical arguments.

In the limit of gently sloping conduit walls, buoyant disturbances propagating upward along

the interface induced by unsteady injection are balanced by a viscous restoring force due to

the exterior fluid [83, 99, 43]. Upon invoking mass conservation, one can describe the dynamics

of the system in terms of only a nonlinear, dispersive PDE for the cross-sectional area of the

conduit formed by the interior fluid. Though the approximate model was shown to be in excellent

quantitative agreement when compared with solitary wave speeds and post-interaction solitary

wave behavior in experiments, its limitations were in the lack of a precise determination of the

parameter regimes of validity and a careful mathematical derivation. As part of this study, we

present the details of a systematic, multiple scales approach to the derivation of the approximate

model equation, which affords us knowledge of the breakdown of the model equation under

higher order physical effects neglected in modeling.

One key result is that the model derivation requires only a long wavelength assumption and

is valid for large amplitude disturbances, for long times and large spatial extents. This is in

stark contrast with well-known models of small amplitude, weakly nonlinear, interfacial fluid

dynamics such as the KdV [57] and Benjamin-Ono [10, 84] equations, making the resulting

conduit equation a scalar analogue for the Green-Naghdi (or Serre, Su-Gardner) equations of

large amplitude, shallow water waves [101, 112, 38]. Moreover, large amplitude conduit solitary

waves are asymptotically stable [105], exhibit good agreement with experiments [99, 83, 43], and

are robust, physical features of viscous fluid conduit interfacial dynamics.

With the limits of validity of the theoretical model established and the robustness of nonlinear

wave phenomena observable using a relatively simple tabletop experimental set-up, viscous

fluid conduits provide an optimal setting for the precise, quantitative, experimental study of

DSWs and large amplitude solitary wave interactions. This work was inspired by images from

previous experiments which demonstrated that the study of DSWs is accessible in viscous fluid
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conduits, see, e.g., Figure 18 in the review article [123], though they were never interpreted as

such. As part of this work, the NC State Dispersive Shock Wave Laboratory was established

with the purpose to study nonlinear wave phenomena in viscous fluid conduits. In this thesis,

we present the results of quantitative experiments on large amplitude interacting solitary waves

and systematic investigations into dispersive shock waves.

Interpretation of wave propagation in viscous fluid conduits from the viewpoint of dispersive

hydrodynamics offers enlightening parallels with the examples of dissipationless flows discussed in

the previous section, in particular with quantum superfluids. Typically, superfluidity is a property

of fluid-like flows in which internal friction (or viscosity) is negligible, with standard examples

being BEC and UFG. While one test for superfluidity in two and three dimensions in such

systems is the appearance of quantized vortices, solitons and DSWs are fundamental excitations

characteristic of dissipationless, superfluid-like media and represent the 1D analogue of quantized

vortices. So while it is counterintuitive that wave propagation in a medium dominated by

viscosity could exhibit no physical dissipation, we find that viscous fluid conduits provide a

well-understood, controlled, table-top platform in which to study universal properties of 1D

superfluidity.
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Chapter 2

Derivation of an Approximate

Interfacial Equation

In this chapter, we present the asymptotic derivation of an approximate model for the viscous

fluid conduit system. We describe the physical system of interest, identify the key assumptions

required for the reduced model, and provide insight into the effects of higher order physical

processes. The contents of this chapter are based on the following publication [68]:

Lowman, N. K. and Hoefer, M. A. 2013 “Dispersive hydrodynamics in viscous fluid conduits,”

Journal of Fluid Mechanics 88, 023016.

2.1 Abstract

The evolution of the interface separating a conduit of light, viscous fluid rising buoyantly through

a heavy, more viscous, exterior fluid at small Reynolds numbers is governed by the interplay

between nonlinearity and dispersion. Previous authors have proposed an approximate model

equation based on physical arguments, but a precise theoretical treatment for this two fluid

system with a free boundary is lacking. Here, a derivation of the interfacial equation via a

multiple scales, perturbation technique is presented. Perturbations about a state of vertically
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uniform, laminar conduit flow are considered in the context of the Navier-Stokes equations

with appropriate boundary conditions. The ratio of interior to exterior viscosities is the small

parameter used in the asymptotic analysis, which leads systematically to a maximal balance

between buoyancy driven, nonlinear self-steepening and viscous, interfacial stress induced,

nonlinear dispersion. This results in a scalar, nonlinear partial differential equation describing

large amplitude dynamics of the cross-sectional area of the intrusive fluid conduit, in agreement

with previous derivations. The leading order behavior of the two fluid system is completely

characterized in terms of the interfacial dynamics. The regime of model validity is characterized

and shown to agree with previous experimental studies. Viscous fluid conduits provide a robust

setting for the study of nonlinear, dispersive wave phenomena.

2.2 Introduction

Upon introduction of a steady source of light, viscous fluid into the base of a quiescent basin of

dense, more viscous fluid, a diapir will form. Once the radius of the diapir exceeds a critical

threshold, the diapir will rise buoyantly through the exterior fluid, trailed by a vertically

uniform, axisymmetric conduit, if its Reynolds number (Re) is sufficiently low [124]. Unsteady

perturbations of the injection rate have been shown in a laboratory setting to produce hallmark

features of nonlinear, dispersive systems including solitary waves and nonlinear wavetrains (cf.

the review in [123]). To fully describe the behavior of this miscible, two-fluid, interfacial flow, one

must consider the full system of governing equations with boundary conditions along a moving,

free interface, a difficult task even for numerical simulations. However, an approximate model

equation has been proposed on the basis of physical arguments. In the limit of gently sloping

conduit walls, disturbances propagating upward along the interface of the conduit induced by

unsteady injection are balanced by viscous forces from the exterior, resulting in wave propagation

[83, 99, 43]. Utilizing the conduit geometry, the leading order evolution of the system can be

described in terms of the (dimensionless) cross-sectional area of the conduit, A, by the nonlinear,
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dispersive, scalar partial differential equation (PDE)

∂A

∂t
+
∂

∂z

{
A2

[
1− ∂

∂z

(
A−1∂A

∂t

)]}
= 0 , (2.1)

we term the conduit equation. The relative ease of realizing this viscous conduit setting in

experiment and the analytical tractability of the model equation (2.1) make this an ideal platform

for the study of nonlinear, dispersive waves.

Interest in viscous fluid conduits began in the geophysics community nearly three decades

ago and has continued to the present day due to the prominence of fundamental nonlinear

wave phenomena. This simplified system is thought to capture the essential physics of magma

rising buoyantly along thermal plumes in the convecting mantle [83, 99] and is closely related

to interpenetrating magma flow in a viscously deformable, porous matrix where the cross-

sectional area of the conduit is comparable to the matrix porosity [75, 97, 98, 104]. Like in the

conduit setting, the primitive equations for interpenetrating magma flow can be reduced to

eq. (2.1) in the proper physical setting, thus it is commonly referred to as the magma equation.

While counterintuitive at first, that in both settings, viscosity-dominated dynamics lead to a

conservative (dissipationless) equation, this is natural in the conduit setting because (2.1) is

simply an expression for mass conservation of the conduit fluid.

In the context of viscous fluid conduits, time evolution of the conduit area is driven by a

nonlinear self-steepening term due to buoyancy and a dispersive term due to viscous stress

imparted by slow deformation of the exterior fluid. Solitary waves supported by the conduit

equation have been studied in detail analytically and shown to be asymptotically stable (e.g.

[97, 82, 105]). These solitary waves are readily observable in experiment by the generation

of a localized pulse in the rate of injection, and careful comparisons between the theoretical

amplitude-speed relation of eq. (2.1) and experimental data yield good agreement for small to

moderate amplitude solitary waves [83, 99, 43], though a precise explanation of the deviation

between theory and experiment has not been identified. The conduit equation has also been shown
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theoretically and numerically to produce slowly modulated, dynamically expanding, periodic

wavetrains in response to nonlinear steepening, whose speeds and amplitudes can be analytically

predicted using a nonlinear wave averaging technique [108, 109, 69]. These wavetrains correspond

to dispersively regularized shock waves (DSWs)–analogous to classical, viscous shocks–which

have garnered significant attention in the past decade due to their realization in optics and

superfluids [45]. DSWs in viscous fluid conduits have been observed experimentally [99, 123],

but their properties have never been studied.

A major hindrance to a more robust, quantitative study of nonlinear, dispersive waves

in this system is the lack of a systematic derivation of the conduit equation from the full

Navier-Stokes equations. In this work, we present a derivation of eq. (2.1) utilizing a multiple

scales, perturbation approach, providing confirmation of existing intuitive arguments. This

derivation results in a complete characterization of the leading order behavior of the system

(intrusive/exterior fluid velocities and pressures) in terms of A(z, t). It is found that the vertical

flow in the conduit imposes a shear stress on the interface, driving a weak vertical velocity

in the exterior fluid which persists far from the conduit walls, presently neglected in existing

derivations. Scaling relations between the fluid quantities are made explicit. Model validity is

characterized in terms of two independent parameters, the ratio of internal to external fluid

viscosities

ε = µ(i)/µ(e) , (2.2)

and the internal fluid’s Reynolds number Re(i). When ε � 1 and Re(i) = O(1), eq. (2.1) is

valid for times t � 1/ε and amplitudes A � 1/ε. This translates to dimensional time units

T/ε3/2, where the characteristic time scale T is typically on the order of seconds or tenths of

seconds. In contrast to well-known models of weakly nonlinear, interfacial fluid dynamics such as

the Korteweg-deVries [57] and Benjamin-Ono equations [10, 84], the conduit equation is valid

for arbitrarily large amplitudes assuming ε is sufficiently small. This more closely resembles

the one-dimensional, nonlinear, dispersive Serre (or Green-Naghdi) equations, which are an

approximate model of large amplitude, interfacial dynamics in inviscid, irrotational shallow
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water [101, 112, 38]. Finally, we determine the regime of model validity when inertial, external

boundary, surface tension, higher order viscous, and symmetry-breaking effects are present.

The remainder of the article will be organized in the following manner. Section 2.3 describes

the governing equations and their nondimensionalization, as well as the normalization of the

fluid properties to the appropriate scales of interest. In § 2.4, we present the implementation

of the perturbation method to derive the conduit equation. Information about its higher order

corrections from the full set of nondimensional equations is provided in § 2.5. The manuscript is

concluded with discussion of physical implications and future directions in § 2.6.

2.3 Problem Description

The purpose of this section is to describe the mathematical formulation of wave propagation

along an established, vertically uniform conduit, illustrated schematically in Fig. 2.1. We consider

an intrusive conduit fluid of density ρ(i) and viscosity µ(i) in an extended domain denoted V (i),

propagating within an exterior fluid with density ρ(e), viscosity µ(e), and domain V (e). The

present analysis is primarily concerned with capturing the interactions in an axially symmetric

conduit between buoyant forcing of the intrusive fluid due to unsteady injection and viscous

stress at the conduit boundary due to the exterior fluid. This requires the basic assumption that

the intrusive fluid is less dense, ρ(i) < ρ(e), and that the viscosity of the intrusive fluid is much

smaller than for the exterior fluid, i.e. ε� 1. We will adopt the convention that n̂c represents

the inward pointing unit normal to the conduit surface. The unit tangent to the conduit t̂c

is oriented so that it always has a positive vertical component. It is also necessary to define

the unit normal of cross-sectional disks along the conduit, denoted n̂d, oriented upward (see

Fig. 2.1).

Before proceeding, we present a brief word on the notation used in this work. We use the

cylindrical coordinate system, assuming azimuthal symmetry (r, z) (see Fig. 2.1). Bold symbols

correspond to vectors or tensors while non-bold symbols indicate scalar quantities. The only

superscripts we use (·(i), ·(e)) denote quantities associated with the intrusive or exterior fluid,
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Figure 2.1: Geometry of an axisymmetric, intrusive fluid conduit occupying a domain V (i)

flowing within a dense, exterior fluid of higher viscosity in a domain V (e). The dashed line denotes
an unperturbed conduit of radius R0, and the solid line is the conduit with some disturbance.
Relevant physical quantities are noted, as well as the sign conventions for the conduit unit
normal vector, n̂c, conduit unit tangent vector, t̂c, and cross-sectional disk unit normal vector,
n̂d.

respectively. Subscripts of non-bold symbols correspond either to the coefficients of the velocity

basis in cylindrical coordinates, e.g.

u(i,e) =

u(i,e)
r

u
(i,e)
z

 , (2.3)

or numerical ordering in an asymptotic sequence. Note that due to axisymmetry, we only consider

two vector components. A jump in the fluid quantity β is denoted

[β]j = β(e) − β(i) , (2.4)

evaluated at the fluid-fluid interface.
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2.3.1 Governing Equations

The complete description of the interaction between two incompressible fluids of constant

densities is given by the continuity equation for mass conservation, coupled with the Navier-

Stokes equation for linear momentum conservation, which can be written compactly as

∇ · u(i,e) = 0 , (2.5a)

ρ(i,e) du(i,e)

dt
= −∇p(i,e) + ∇ · σ(i,e) . (2.5b)

We will utilize cylindrical coordinates assuming azimuthal symmetry and that the force due to

gravity is the only external force. Then u(i,e) =
(
u

(i,e)
r , u

(i,e)
z

)
represents the velocity vectors for

the two fluids, d/dt is the material derivative operator, and σ(i,e) = µ(i,e)
[
∇u + (∇u)T

]
is the

deviatoric stress tensor. The modified pressure p(i,e), or the pressure deviation from hydrostatic,

can be written as the sum p(i,e) = ρ(i,e)gz + P (i,e), where P (i,e) is the absolute pressure. We

initially assume that the conduit has infinite vertical extent and the external fluid extends

infinitely in the radial direction.

Along the center axis r = 0, symmetry and perturbation of a vertically uniform conduit lead

us to require that the intrusive fluid satisfy

∂u
(i)
z

∂r
= u(i)

r =
∂p(i)

∂r
= 0 , r = 0 . (2.6)

In the far-field limit r → ∞, we require the exterior fluid velocity field u(e) and (modified)

pressure p(e) decay to zero. The boundary between the two fluids is represented by the level

curves r = η(z, t). The conduit area is therefore

A(z, t) = πη2(z, t) . (2.7)
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The boundary is treated as a material surface, which requires the kinematic condition

u(i)
r =

∂η

∂t
+ u(i)

z

∂η

∂z
, r = η(z, t) , (2.8)

in addition to continuity of normal and tangential components of the velocity

[u · n̂c]j =
[
u · t̂c

]
j

= 0 , r = η(z, t) . (2.9)

The last conditions along the fluid-fluid interface which must be satisfied are the balance of

normal and tangential stresses, which for general settings are written

[n̂c ·T · n̂c]j = − (∇ · n̂c) γ , r = η(z, t) , (2.10a)

[
t̂c ·T · n̂c

]
j

= ∇sγ · t̂c , r = η(z, t) , (2.10b)

where T(i,e) = −P (i,e)I + σ(i,e) is the stress tensor, I is the identity operator, γ is the surface

tension, and ∇s = (I− n̂c ⊗ n̂c) ·∇ is the surface gradient operator for the interface. For a

more detailed description of the fluid equations and boundary conditions, see e.g. [9].

Since the conduit equation (2.1) is a PDE for the cross-sectional area, it is also convenient to

derive an expression which relates the fluid properties to A(z, t) [99, 83]. First, the volumetric

flow rate Q through vertical cross-sections of the conduit (see Fig. 2.1) is defined to be

Q(z, t) = 2π

∫ η(z,t)

0
u(i) · n̂d r dr . (2.11)

Utilizing the conduit geometry, one can write the integral form of the continuity equation for

cross-sectional disks as a limit of vertical cylinders of vanishing height δz as

∂A

∂t
+ lim
δz→0

2π

δz

(∫ η(z+δz,t)

0
u(i) · n̂d r dr −

∫ η(z,t)

0
u(i) · n̂d r dr

)
= 0 . (2.12)
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This can be compactly written as

∂A

∂t
+
∂Q

∂z
= 0 . (2.13)

Thus the cross-sectional area of the conduit is related to the fluid properties through the intrusive

fluid velocity, in particular the vertical velocity u
(i)
z for an axisymmetric conduit.

2.3.2 Uniform Pipe Flow and Nondimensionalization

The equations of motion will now be nondimensionalized about a state of steady, vertically

uniform, conduit flow, which takes the form of a generalized Pouseuille (pipe) flow in the limit

of small Re and negligible surface tension [124]. In this setting, the intrusive equations are

reduced to u
(i)
r = 0, and the vertical velocity is driven by a vertical pressure gradient according

to eq. (2.5b)

1

µ(i)

∂p(i)

∂z
=

1

r

∂

∂r

(
r
∂u

(i)
z

∂r

)
, (2.14)

where p(i) is a function of z alone and the interface is fixed at r = R0. On the exterior, the

velocities are small relative to the pressure, which leaves only hydrostatic pressure balance, i.e.

P (e) = −ρ(e)gz + p0, where p0 is a constant reference pressure. Note that these relative scaling

arguments will be made more precise in § 2.4, as here we seek only a background scale about

which to perturb. Imposing the boundary condition (2.10a) and neglecting surface tension effects

yields an expression for the intrusive pressure

p(i) =
(
ρ(i) − ρ(e)

)
gz + p0 . (2.15)

Substituting the pressure (2.15) into the velocity equation (2.14), performing two integrations,

and imposing the boundary conditions (2.6) and (2.9), leads to the generalized pipe flow velocity

for the intrusive fluid

u(i)
z =

g

4µ(i)

(
ρ(e) − ρ(i)

) (
R2

0 − r2
)
. (2.16)
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Upon substitution into the tangential stress balance condition (2.10b) and neglecting surface

tension, we find that the exterior fluid must have a vertical velocity which satisfies

∂u
(e)
z

∂r
=
µ(i)

µ(e)

∂u
(i)
z

∂r

∣∣∣∣∣
r=R0

, (2.17)

and thus is proportional to the small parameter ε.

In section 2.4, we will perturb the interface of the steadily flowing conduit, so eq. (2.16)

provides natural length and velocity scales of interest. Previous studies have invoked a small

slope assumption on conduit perturbations [99, 83, 43] but have not explicitly identified the

appropriate vertical length scale. We now provide the precise scaling and nondimensionalization

for the governing equations that will lead to a maximal balance between buoyant and viscous

stress effects. The radial length scale L is proportional to the uniform conduit radius while

vertical variations are assumed to be weak according to

r̃ = r/L , z̃ = ε1/2z/L , L = R0/
√

8 . (2.18)

The proportionality constant in the characteristic length L is chosen for convenience in working

with the governing equations but will be rescaled to arrive at the standard form of the conduit

equation (2.1). The boundary is now denoted by r = η(z, t) = R0 + R′(z, t), or r̃ = (R0 +

R′(z, t))/L ≡ R̃(z̃, t̃). Hence the unit normal and tangent vectors for the conduit are given by

ˆ̃nc =
1

‖ñc‖

 −1

ε1/2 ∂R̃∂z̃

 , ˆ̃tc =
1

‖t̃c‖

ε1/2 ∂R̃∂z̃
1

 , (2.19a)

where

‖ñc‖ = ‖t̃c‖ =

1 + ε

(
∂R̃

∂z̃

)2
−1/2

. (2.20)
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Velocities are normalized to the radially-averaged vertical velocity of the uniform conduit

ũ(i,e) = u(i,e)/U , U =
gR2

0

(
ρ(e) − ρ(i)

)
8µ(i)

, (2.21)

leading to the long time scale ε−1/2T for vertical dynamics where

t̃ = ε1/2t/T , T = L/U . (2.22)

To nondimensionalize the pressure, the characteristic scale Π is chosen so that the vertical

pressure gradient within the conduit balances the viscous force due to radial variation in the

vertical velocity,

p̃(i,e) = ε1/2
p(i,e) − p0

Π
, Π = µ(i)U/L . (2.23)

Like in dimensional variables, the nondimensional, modified pressure can be decomposed as

p̃(i,e) = P̃ (i,e) − p̃(i,e)
h , where P̃ (i,e) = ε1/2P (i,e)/Π is the scaled, absolute pressure and p̃

(i,e)
h is the

normalized hydrostatic pressure which takes the form

p̃
(i,e)
h = −ε1/2 ρ

(i,e)gz

Π
=
−ρ(i,e)z̃

ρ(e) − ρ(i)
. (2.24)

Surface tension was neglected in the discussion of the uniform conduit, but it will be included in

the full system of equations for completeness, so it is normalized about a characteristic scale Γ:

γ̃ = γ/Γ . (2.25)

The Reynolds numbers for the viscous fluid conduit system are therefore defined for the two

fluids according to

Re(i,e) =
ρ(i,e)

(
ε−1/2L

)
U

µ(i,e)
. (2.26)

Note that Re(e) = ε
(
ρ(e)/ρ(i)

)
Re(i). While ρ(i) < ρ(e), we typically consider fluids where

Re(e) � Re(i).

23



The governing equations in nondimensional form are obtained by direct substitution of the

above scalings into the set of dimensional equations and boundary conditions. For the intrusive

fluid, the nondimensional continuity equation (2.5a) is

1

r̃

∂

∂r̃

(
r̃ũ

(i)
r̃

)
+ ε1/2

∂ũ
(i)
z̃

∂z̃
= 0 , (2.27)

and linear momentum balance (2.5b) requires

Re(i) d(i)ũ
(i)
r̃

dt̃
= −ε−3/2∂p̃

(i)

∂r̃
+ ∇̃2

ũ
(i)
r̃ − ε−1 ũ

(i)
r̃

r̃2
, (2.28a)

Re(i) d(i)ũ
(i)
z̃

dt̃
= −ε−1∂p̃

(i)

∂z̃
+ ∇̃2

ũ
(i)
z̃ , (2.28b)

where

d(i,e)

dt̃
=
∂

∂t̃
+
(
ũ(i,e) · ∇̃

)
, (2.29)

and

∇̃ = ε−1/2 ∂

∂r̃
+
∂

∂z̃
, ∇̃2

= ε−1 1

r̃

∂

∂r̃

(
r̃
∂

∂r̃

)
+
∂2

∂z̃2
. (2.30)

For the exterior fluid, mass conservation (2.5a) is similarly

1

r̃

∂

∂r̃

(
r̃ũ

(e)
r̃

)
+ ε1/2

∂ũ
(e)
z̃

∂z̃
= 0 , (2.31)

and momentum balance (2.5b) requires

Re(e) d(i)ũ
(e)
r̃

dt̃
= −ε−1/2∂p̃

(e)

∂r̃
+ ∇̃2

ũ
(e)
r̃ − ε−1 ũ

(e)
r̃

r̃2
, (2.32a)

Re(e) d(i)ũ
(e)
z̃

dt̃
= −∂p̃

(e)

∂z̃
+ ∇̃2

ũ
(e)
z̃ . (2.32b)
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The boundary conditions along the axis of symmetry r̃ = 0, given by eq. (2.6), are now

∂ũ
(i)
z̃

∂r̃
= 0 , ũ

(i)
r̃ = 0 ,

∂p̃(i)

∂r̃
= 0 , r̃ = 0 , (2.33)

and the far-field boundary condition still requires that the exterior fluid velocities and (modified)

pressure decay as r̃ →∞. The kinematic boundary condition (2.8) becomes

ũ
(i)
r̃ = ε1/2

(
∂R̃

∂t̃
+ ũ

(i)
z̃

∂R̃

∂z̃

)
, r̃ = R̃(z̃, t̃) , (2.34)

and couples to the equations for continuity of the velocity components (2.9), which are now

(
ũ

(i)
r̃ − ũ

(e)
r̃

)
= ε1/2

∂R̃

∂z̃

(
ũ

(i)
z̃ − ũ

(e)
z̃

)
, (2.35a)

(
ũ

(e)
z̃ − ũ

(i)
z̃

)
= ε1/2

∂R̃

∂z̃

(
ũ

(i)
r̃ − ũ

(e)
r̃

)
. (2.35b)

To nondimensionalize the stress balance conditions (2.10), the normalized deviatoric stress tensor

σ̃(i,e) = ε1/2(L/µ(i,e)U)σ(i,e) can be written

σ̃(i,e) =

σ̃(i,e)
r̃r̃ σ̃

(i,e)
r̃z̃

σ̃
(i,e)
z̃r̃ σ̃

(i,e)
z̃z̃

 = ε1/2

 2
∂ũ

(i,e)
r̃
∂r̃

∂ũ
(i,e)
z̃
∂r̃ + ε1/2

∂ũ
(i,e)
r̃
∂z̃

∂ũ
(i,e)
z̃
∂r̃ + ε1/2

∂ũ
(i,e)
r̃
∂z̃ 2ε1/2

∂ũ
(i,e)
z̃
∂z̃

 . (2.36)

Then the nondimensional stress balance conditions in the normal and tangential directions

become, respectively,

−‖ñc‖2P̃ + κ

σ̃r̃r̃ − 2ε1/2
∂R̃

∂z̃
σ̃r̃z̃ + ε

(
∂R̃

∂z̃

)2

σ̃z̃z̃


j

=
ε1/2‖ñc‖

Ca

(
1

R̃
− ε∂

2R̃

∂z̃2

)
γ̃

∣∣∣∣∣
r̃=R̃(z,t)

,

(2.37a)
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κ
−

1− ε
(
∂R̃

∂z̃

)2
 σ̃r̃z̃ + ε1/2

∂R̃

∂z̃
(σ̃z̃z̃ − σ̃r̃r̃)




j

=
ε‖ñc‖

Ca

(
∂

∂z̃
+
∂R̃

∂z̃

∂

∂r̃

)
γ̃

∣∣∣∣∣
r̃=R̃(z,t)

,

(2.37b)

where κ is a fluid-specific coefficient such that κ(e) = ε−1, κ(i) = 1 and the capillary number is

defined to be Ca = µ(i)U/Γ.

This is now a complete system of nondimensional equations with boundary conditions. It is

important to note that the system of equations to this point is general, with no approximations.

2.4 Derivation of the Approximate Model

Using the normalizations in the previous section and now treating the dimensionless parameters ε,

εRe(i), and 1/Ca as small in comparison to unity, the leading order behavior of the nondimensional

model equations will be derived. We determine the appropriate scalings of the fluid quantities

resulting in the long-time validity of a maximal balance between buoyancy and viscous stress

and, ultimately, the conduit equation (2.1). By our choice of scaling, the radial dynamics of the

conduit fluid are captured, as well as the near interface dynamics in the exterior. It is important

to consider that because the radial extent is large, the expressions derived below are valid only

near the boundary and do not represent a uniform asymptotic expansion across large radial

distances.

Note that the tilde notation for nondimensional variables will be dropped for the remainder

of the manuscript, but all quantities are understood to be nondimensional.

2.4.1 Asymptotic Expansions and Scaling Ansatz

The velocities and pressures of the two fluids, as well as the dimenionless parameters, will now

be scaled and expanded in powers of ε.

The dimensional equations were normalized so that vertical pressure gradients in the intrusive

fluid balance with viscous forces due to the vertical flow, which implies p(i), u
(i)
z = O(1) and can
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be expanded

p(i) = p
(i)
0 + εp

(i)
1 + · · · , (2.38)

u(i)
z = u

(i)
z,0 + εu

(i)
z,1 + · · · . (2.39)

This also requires that the inertial terms in the interior be neglected. From (2.28b), this means

Re(i) � ε−1. Note that this implies Re(e) � ρ(e)/ρ(i) so typically Re(e) � 1. The length scales

(2.18) were then chosen so that the uniform conduit radius R0 is O(1) and the vertical dynamics

occur on a longer spatial scale proportional to ε−1/2. The small slope condition therefore requires

R� ε−1/2. We emphasize that the deviation of the conduit wall from uniformity can be very

large.

In the uniform conduit, the intrusive modified pressure was balanced with the hydrostatic

pressure of the exterior fluid, but the exterior modified pressure was negligible. In the present

scaling, the extrusive pressure can be represented by

p(e) = ε
(
p

(e)
1 + εp

(e)
2 + · · ·

)
, (2.40)

so that leading order hydrostatic balance, p
(e)
h = P

(e)
0 , is preserved. Tangential shear stress due

to the intrusive vertical velocity was balanced by an exterior vertical velocity with scale set by

eq. (2.17) so that according to (2.39),

u(e)
z = ε

(
u

(e)
z,0 + εu

(e)
z,1 + · · ·

)
. (2.41)

The use of miscible fluids renders the surface tension negligible, which by (2.37) means 1/Ca�

1. Lastly, the amplitudes of the radial velocities are identified from (2.34) and expanded

asymptotically as

u(i)
r = ε1/2

(
u

(i)
r,0 + εu

(i)
r,1 + · · ·

)
, (2.42)

u(e)
r = ε1/2

(
u

(e)
r,0 + εu

(e)
r,1 + · · ·

)
. (2.43)
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The fluid quantities have now been scaled so that disturbances along the uniform conduit are

captured by appealing only to the leading order, approximate governing equations. In previous

derivations, the key physical assumption made was that the vertical wavelength of conduit

perturbations was long in comparison with the radial amplitude. In our framework, this is

captured by normalizing to the radial, conduit scale and then allowing slow variations in the

vertical direction. The magnitude of the slope is proportional to the ratio of the intrusive radial

velocity to vertical velocity, which is O(ε1/2) and thus indeed small in our analysis.

2.4.2 Leading Order Solution

In the physical regime of validity of the rescaled fluid properties, the leading order nondimensional

equations for the intrusive fluid are

1

r

∂

∂r

(
ru

(i)
r,0

)
+
∂u

(i)
z,0

∂z
= 0 , (2.44a)

∂p
(i)
0

∂r
= 0 , (2.44b)

∂p
(i)
0

∂z
=

1

r

∂

∂r

(
r
∂u

(i)
z,0

∂r

)
, (2.44c)

and for the extrusive fluid

1

r

∂

∂r

(
ru

(e)
r,0

)
= 0 , (2.45a)

1

r

∂

∂r

(
r
∂u

(e)
r,0

∂r

)
−
u

(e)
r,0

r2
= 0 , (2.45b)

1

r

∂

∂r

(
r
∂u

(e)
z,0

∂r

)
= 0 . (2.45c)

The axial boundary conditions at r = 0 (2.33) and the far-field conditions remain unchanged.

Along the interface, the velocity continuity conditions (2.35) and kinematic condition (2.34) at
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leading order are

u
(i)
z,0 = 0 , u

(i)
r,0 = u

(e)
r,0 =

∂R(z, t)

∂t
, r = R(z, t) . (2.46)

The interfacial force balance equations (2.37) simplify to

P
(e)
0 − P (i)

0 = 2
∂u

(e)
r,0

∂r
, r = R(z, t) , (2.47a)

∂u
(i)
z,0

∂r
=
∂u

(e)
z,0

∂r
−
∂u

(e)
r,0

∂z
+ 2

∂R

∂z

∂u
(e)
r,0

∂r
, r = R(z, t) . (2.47b)

In this form, analytical expressions for the fluid properties can be found. From (2.45a) and

(2.45b), along with the boundary condition (2.46), the extrusive radial velocity is

u
(e)
r,0 =

∂R(z, t)

∂t

R(z, t)

r
, (2.48)

hence exhibits algebraic decay. From our scaling of the modified pressure (2.40), the exterior

absolute pressure is

P
(e)
0 = − ρ(e)z

ρ(e) − ρ(i)
, (2.49)

and because the interior pressure is independent of r (2.44b), the boundary condition (2.47)

gives the form of the intrusive pressure to be

p
(i)
0 = P

(i)
0 +

ρ(i)z

ρ(e) − ρ(i)
=

2

R(z, t)

∂R(z, t)

∂t
− z . (2.50)

Substituting (2.50) into (2.44c) and imposing the boundary conditions (2.33) and (2.46) yields

u
(i)
z,0 =

1

4

[
1− ∂

∂z

(
2

R(z, t)

∂R(z, t)

∂t

)] (
R2(z, t)− r2

)
. (2.51)

The dependence of u
(i)
r,0 on the interface can be derived from (2.44a), which can be rewritten

u
(i)
r,0 = −1

r

∂

∂z

∫ r

0
r′u

(i)
z,0 dr′ . (2.52)
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From this form, it is readily observed that by imposing the kinematic boundary condition (2.46),

the resulting equation (2.52) is identical to the area conservation law (2.13). While this is not

surprising because the conservation law was derived by the integral form of the continuity

equation within the intrusive conduit, it shows that the multiple scales approach leads directly to

the appropriate relationship between the dynamic interface and the fluid velocity field, without

appealing to physical intuition. Solving (2.52) gives the explicit form of the intrusive, radial

velocity to be

u
(i)
r,0 = − 1

8r

∂

∂z

{[
1− ∂

∂z

(
2

R(z, t)

∂R(z, t)

∂t

)](
R2(z, t)− r2

2

)
r2

}
. (2.53)

The exterior vertical velocity can be solved according to (2.45c) along with the tangential

shear stress balance condition (2.47b) to obtain

u
(e)
z,0 = f(z, t) ln r + g(z, t) , (2.54)

where f(z, t) satisfies

f(z, t) = 2
∂

∂t

(
R(z, t)

∂R(z, t)

∂z

)
− 1

2
R2(z, t) . (2.55)

We note here that while u
(e)
r,0 decays as r →∞ and the pressure at leading order is hydrostatic

as required by the far-field boundary condition, the vertical velocity u
(e)
z,0 does not decay. As

discussed earlier, the leading order equations for the exterior fluid are valid only near the

interface. It is a known phenomenon that there is no solution to the Stokes’ flow equations, as

considered here, in cylindrical coordinates which vanish at ∞ (cf. [9]). To satisfy this boundary

condition, and to solve for the undetermined function g(z, t), one must appeal to higher order

terms, where inertial effects are incorporated. We do not consider this calculation here but will

discuss the solution for u
(e)
z,0 when a radial boundary is present in §2.5.

Hence the perturbed problem has subtle differences from the uniform conduit problem. There
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is now a pressure jump across the interface resulting from the unsteady injection rate. This is

balanced by a viscous, normal stress from the exterior fluid. All leading order fluid quantities

have been determined in terms of the radial profile of the conduit interface R(z, t).

2.4.3 Reduction to the Conduit Equation

The fluid properties are now known at leading order, but it remains to find the leading order

governing equation for the interfacial dynamics. This is done by appealing to the area conservation

law (2.13) or, equivalently, by imposing the kinematic boundary condition (2.46) on the intrusive

radial velocity expression (2.52). Integrating the vertical velocity expression (2.51) and relating

the conduit radius to the area via A(z, t) = πR2(z, t), yields an expression for the volumetric

flow rate Q(z, t) within the conduit in terms of its area,

Q(z, t) =
A2

8π

{
1− ∂

∂z

(
A−1∂A

∂t

)}
. (2.56)

Rescaling the area so that A′ = A/8π and inserting (6.7) into the area conservation law, we are

left with

∂A′

∂t
+
∂

∂z

{
A′2
[
1− ∂

∂z

(
A′−1∂A

′

∂t

)]}
= 0 , (2.57)

which is precisely the conduit equation (2.1) in standard form.

2.5 Robustness of the Conduit Equation

The benefit of the multiple scales approach to the derivation of eq. (2.1) is that the order of

magnitude of higher order corrections and the relation between dimensionless parameters are

elucidated. In particular, we are interested in criteria which indicate when previously neglected

terms become important to the leading order interfacial dynamics. This section is devoted to

exploring the effects of several assumptions made in § 2.4 and identifying approximate points

of breakdown for the conduit equation. We also demonstrate the ability to derive information
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about higher order corrections in special cases. In what follows, we determine the scalings such

that all corrections to the conduit equation (2.1) are O(ε).

2.5.1 Viscous, Higher Order Corrections

The equations solved in deriving the conduit equation (2.1) in § 2.4.2 were a special case of the

Stokes’ flow equations, in which the vertical dynamics occured over a much longer length scale

than the radial dynamics. A convenient analytical property of the axisymmetric Stokes’ flow

equations, is that one can rewrite the nondimensional equations in the form [86]

ε∇̃2
p(i,e) =

1

r

∂

∂r

(
r
∂p(i,e)

∂r

)
+ ε

∂2p(i,e)

∂z2
= 0 (2.58)

L̃2ψ(i,e) = 0 , L̃ = ε
∂2

∂z2
+
∂2

∂r2
− 1

r

∂

∂r
(2.59)

where ψ(i,e) is the Stokes’ stream function, which is related to the velocity components by

u(i,e)
r = −ε1/2 1

r

∂ψ(i,e)

∂z
, u(i,e)

z =
1

r

∂ψ(i,e)

∂r
. (2.60)

In the asymptotic formulation, the fluid pressures and velocities were expanded in asymptotic

series and expressions for the leading order term in the expansion were found. It was unclear

from the form of the equations, what would be the order of magnitude of the second term in the

series, but expanding (2.58), (2.59), one can see that p
(i,e)
1 = O(εp

(i,e)
0 ) and u

(i,e)
1 = O(εu

(i,e)
0 ),

provided the Stokes’ regime is still valid. Otherwise, inertial effects require an alternative scaling.

Because the conduit equation (2.1) was derived from the intrusive vertical velocity, this implies

that viscous corrections to the conduit equation (2.1) will be of magnitude O(ε).

2.5.2 Breakdown of Assumptions

A key physical assumption in deriving this model equation is the choice of characteristic

scales about which the full governing equations were normalized. In choosing the length scales
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(2.18) and imposing ε� 1, we implicitly assumed, by dropping higher order effects, that the

(dimensionless) radial dynamics occur such that r � ε−1/2. Specifically, if the perturbed conduit

radius satisfies ε1/2R(z, t)� 1, then our assumptions of dominant balance along the interface

are preserved, as well as the characteristic scalings chosen. However, when this condition is

violated, our asymptotic construction fails.

A similar condition can be derived for the breakdown of the assumption to neglect inertial

effects. From eq. (2.28b), if the interior Reynolds number satisfies Re(i) = O(1), then inertial

corrections to the conduit equation (2.1) will have magnitude ε. This condition is equivalent

to the small slope condition, which can be seen by direct evaluation of (2.26). Hence violation

of the small slope assumption coincides with the introduction of inertial effects to the viscous

conduit.

Another key assumption made in deriving the conduit equation was to neglect surface tension

effects. In the case of miscible fluids, this is reasonable, but the conduit equation is valid more

generally, with surface tension effects entering the approximate model (2.1) at O(ε), provided

the capillary number satisfies Ca = O(ε−1/2).

2.5.3 Dependence on an Outer Wall

Suppose that instead of considering the exterior dynamics on the infinite half-line, r > 0,

with far-field boundary conditions, we confined the exterior fluid with an outer wall, say at

r = Lw � R0, and imposed a no-slip, no-penetration boundary condition, i.e. both components

of the exterior velocity field are zero. The goal is to understand how the value of Lw couples

into the approximate model. Assuming the same scalings as in § 2.4, the change comes in the

solution to the exterior velocities. To prevent confusion with earlier work, we will use v(i,e) to

indicate velocities in this section. Using eq. (2.45b), and imposing the boundary conditions at

the outer wall, the particular form of the radial velocity is now

v
(e)
r,0 =

R(z, t)

R2(z, t)− L2
w

∂R(z, t)

∂t

(
r − L2

wr
−1
)
. (2.61)
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By eq. (2.54) and imposing the no-slip condition at Lw, the exterior vertical velocity is

v
(e)
z,0 = f(z, t) ln (r/Lw) , (2.62)

where f(z, t) is defined by eq. (2.55). Note that the inclusion of an exterior wall allows for the

complete characterization of the leading order velocity field, while in the case of infinite radius,

one would have to appeal to higher order to determine the free function g(z, t). The exterior

mass conservation equation (2.45a) is satisfied to leading order only if Lw � 1. To see how Lw

incorporates into the approximate model for the interface, the normal stress match condition is

modified to include the new form of the velocity, so that upon substitution, it becomes

v
(i)
z,0 =

1

4

[
1 +

∂

∂z

(
2(R2 + L2

w)

R(R2 − L2
w)

∂R

∂t

)] (
R2 − r2

)
. (2.63)

Hence the flux in the presence of an outer wall, denoted q(z, t), satisfies

q(z, t) =
A2

8π

{
1 +

∂

∂z

[
A−1∂A

∂t

(
A+ πL2

w

A− πL2
w

)]}
, (2.64)

which in the limit Lw → ∞, is exactly (6.7). However, if 1 � Lw < ∞, then a correction to

(2.1) can be derived. Expanding about 1/Lw = 0 yields a first-order correction of the form

q(z, t) ∼ A2

8π

{
1 +

∂

∂z

[
A−1∂A

∂t

(
−1− 2

A

πL2
w

)]}
, (2.65)

which is an additional higher order dispersive term. Hence, the modified conduit equation

becomes

∂A′

∂t
+
∂

∂z

{
A′2
[
1− ∂

∂z

(
A′−1∂A

′

∂t

)
− 16

L2
w

∂2A′

∂t ∂z

]}
= 0 . (2.66)

Thus, so long as Lw = O(ε−1/2), the conduit equation (2.1) is valid to O(ε).
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2.5.4 Symmetry Breaking – Inclined Conduit

Due to the small but nonnegligble velocities of the exterior fluid, it is unlikely that the axisym-

metric assumption is entirely accurate for an experimentally generated conduit. Here we consider

the point of breakdown due to an intrusive conduit fluid flowing at an angle φ relative to the

vertical axis, with the biggest difference now being angular effects. The coordinate system is now

rotated by the vertical angle φ so that z′ is the longitudinal axis of the conduit while r′ is the

radial direction and θ′ is the angular. The aim is to understand how the vertical angle introduces

higher order corrections in the physical setting in which exterior, radial, viscous effects balance

buoyant forcing within the conduit. Therefore, we will neglect the angular momentum equation

in seeking an approximate criterion, but understand that this introduces an additional possibility

for breakdown. In fact, via linear stability analysis, a critical tilt angle for gravitational instability

of the intrusive fluid has been derived [121], but that study did not address the validity of the

approximate model (2.1).

The nondimensional pressure in the new coordinates can be written p̂(i,e) = P̂ (i,e) − p̂(i,e)
h ,

where the hydrostatic pressure is now

p̂
(i,e)
h =

ρ(i,e)

ρ(e) − ρ(i)

[
−z′ cosφ+ ε1/2r′ sinφ

(
sin θ′ + cos θ′

)]
. (2.67)

By continuing to assume a leading order, hydrostatic balance on the exterior, the extrusive radial

velocity is unchanged, but normal stress balance (2.47a) and the radial momentum equation

(2.45b) yield the intrusive pressure to be

p̂
(i)
0 = −z′ cosφ+ 2

(
R−1∂R

∂t

)
+ ε1/2R sinφ

(
sin θ′ + cos θ′

)
. (2.68)

Then from (2.46), it is seen that the O(1− cosφ) and O
(
ε1/2 sinφ

)
corrections to the pressure

will enter at the same magnitude into the intrusive, vertical velocity, and hence into the area

conservation law in the same manner. We note, however, that for φ� 1, we indeed recover the

conduit equation. Then provided the angular momentum balance equation holds as well, the
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conduit equation (2.1) is valid to O(ε), as long as φ = O(ε1/2).

2.5.5 Summary

When higher order corrections are of size O(ε), the conduit equation (2.1) is valid for times

t � 1/ε and amplitudes A � 1/ε, in the limit ε → 0. The required parameter constraints

discussed in this section take the form:

• Weak inertial effects: Re(i) = O(1),

• Weak surface tension: Ca = O(ε−1/2),

• Weak boundary effects: Lw = O(ε−1/2),

• Weak symmetry breaking: φ = O(ε1/2).

Since the normalized time scale of (2.1) is long, T/ε1/2, the physical time of validity for the

conduit equation is for times much less than T/ε3/2.

2.6 Discussion and Conclusions

The key result of this perturbative approach to describing the dynamics of unsteady viscous

conduits is that the conduit equation (2.1) is shown to be a robust model of truly dissipa-

tionless/dispersive hydrodynamics in the fully nonlinear regime, akin to a superfluid. While

nonlinear, dispersive waves are prominent in the description of free fluid interfaces, for instance

in shallow water [57] or in deep, stratified fluids [10, 84], one often has to restrict to the case of

weak nonlinearity to derive an analytically tractable, dissipationless, approximate model. As we

have demonstrated, the conduit equation (2.1) is valid in the long time, large amplitude regime,

and additional physical effects must be considered for dissipation to be present in the model.

Possible sources include the use of a visco-elastic, exterior fluid [39] or the presence of mass

diffusion across the free interface.
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In addition to presenting a careful derivation of the approximate model, this article provides

the theoretical basis for the experimental study of nonlinear, dispersive waves in viscous fluid

conduits. To consider the validity of our modeling assumptions and the ability of the approximate

model to describe wave propagation in the system of interest, we compare with the data and

scalings reported from laboratory simulations of solitary waves [83, 43]. The key experimental

parameters are given in Table 2.1. In both sets of experiments, it is seen that the dimensionless

parameter ε is indeed small relative to unity and that the Reynolds numbers satisfy the condition

for weak inertial effects. Regarding the magnitude of the capillary number, all experiments were

conducted with miscible fluids, so it is also safe to neglect the effects due to surface tension, but

solubility introduces the possibility of mass diffusion. It was reported, however, that by using an

intrusive fluid that is a water-diluted version of the exterior fluid, this effect is minimal.

We can also compare our discussion from § 2.5 with the point at which the authors reported

deviation between theoretically predicted solitary wave speeds and the observations. The

advantage of the multiple scales approach is that the magnitude of the small slope condition is

now related directly to measurable quantities of the fluids, so it can be determined when this

assumption fails. [83] reported underestimation of the wave amplitude by the approximate model

at an amplitude A ≈ 13, while [43] observed a similar underestimation when the amplitude

of conduit waves exceeded A ≈ 10. Checking the small slope condition ε1/2R � 1 in both

cases (direct evaluation gives ε1/2R ≈ 4.5 and 2, respectively) reveals that indeed the perturbed

conduit radius exceeded the critical threshold and inertial effects would need to be incorporated

to model the conduit dynamics accurately for larger amplitude. Hence our criteria accurately

predict the point of breakdown of the conduit equation as an approximate description of the

interface.

With the limits of validity of the theoretical model established, viscous fluid conduits provide

an optimal setting for the precise, quantitative, experimental study of DSWs. Dispersively

regularized shock waves have attracted a great deal of interest in recent years due to their

observation in a range of physical systems, to include ultracold, dilute gas [23, 46], ion-acoustic
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plasma [115], nonlinear optics [119, 20], and shallow water [19], but careful comparisons of theory

and data are lacking. One difficulty is the long length and time scales required for the study of

DSWs. These slowly modulated wavetrains are characterized by the presence of two scales. One

is the O(1) scale of individual oscillations and the other is a long, slow scale of wave modulations

O(1/ε̃), ε̃ � 1 (generally, ε̃ is different from ε). However, images from previous experiments

demonstrate that the experimental study of DSWs is accessible in viscous fluid conduits, e.g.

Fig. 2.2. In this setting, a DSW is created by a step-like increase in the injection rate. This results

in a larger trailing, vertically uniform conduit connected to a smaller, leading vertically uniform

conduit, connected by a region of rapidly oscillating conduit waves, as depicted in Fig. 2.2. By

use of an automated syringe pump, high resolution imaging and accurate measurement of the

fluid densities and viscosities, precise quantitative experiments are possible. With the long-time

validity of the conduit equation (2.1), measurements of characteristic DSW features – leading

and trailing edge speeds and leading edge amplitude – can be compared with the analytical

results of asymptotic modulation theory [125, 24], as developed for the conduit equation (2.1)

by the present authors in [69].

The conduit equation is asymptotically equivalent to KdV in the small amplitude, long

wavelength regime [122], but novel DSW regimes, e.g. backflow and DSW implosion, have been

observed in large amplitude numerical simulations of (2.1). This work shows that these fully

nonlinear, dispersive hydrodynamic features of the reduced model are experimentally accessible

in viscous fluid conduits.

We thank Edward Shaughnessy and Karl Helfrich for many fruitful discussions. This work

was supported by NSF Grant Nos. DGE–1252376 and DMS–1008973.
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Figure 2.2: Figure 18 from the review article [123]. A vertically uniform, intrusive conduit is
established with red fluid and then perturbed by a step-like increase in the injection with green
fluid. One can see the formation of a DSW, with its characteristic periodic wavetrain slowly
modulated over long space and time scales. An interesting observation is that the trailing fluid
becomes trapped within individual waves of the DSW, surrounded by the leading fluid.
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Table 2.1: Experimental parameters used to study solitary waves on viscous fluid conduits in
previous literature. The parameters listed for [83] are reported for conduit fluid B only because
the authors reported issues due to mass diffusion with conduit fluid A and for a single background
flux value for which good agreement between theory and experiment was reported. All quantities
are in cgs units with the same number of significant digits as in the original papers.

Ref. [83] Ref. [43]

ρ(e) (g/cm3) 1.395 1.424

ρ(i) (g/cm3) 1.075 1.257

µ(e) (P) 110 45.0

µ(i) (P) 0.074 0.40

L (cm) 0.012 0.021

U (cm/s) 0.58 0.187

T (s) 0.02 0.11

ε 6.7× 10−4 8.9× 10−3

Re(i) 3.8 0.13

Re(e) 3.3× 10−3 1.3× 10−3
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Chapter 3

Dispersive Shock Waves in Viscously

Deformable Media: Whitham-El

Modulation Theory and Numerical

Simulations

With the approximate model established in the previous chapter and an understanding of the

physical system, we now wish to derive the key properties of solitary wave and DSW solutions

for the conduit equation. It turns out that a generalization of the conduit equation, known as

the magma equation, arises in the study of viscously deformable porous media. We choose to

analyze the more general magma equation in this chapter, as this theoretical study was originally

motivated by numerical simulations of the magma equation for step-like initial conditions and

the open questions that resulted [108, 109]. In addition to identifying the key physical properties

of conduit DSWs and solitary waves for comparison with experiments, we identify three distinct

shock structures originating from single step initial data. One of these structures we term DSW

implosion, which corresponds to the opening of a multiphase region within the single phase DSW
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interior. This was the first observation of this behavior from a single step, and we provide a simple

criterion for identifying its onset. We also identify four new admissibility criteria for applying

DSW modulation theory to the magma equation. In the following chapter, we generalize these

criteria to apply to any scalar, nonlinear dispersive PDE with hydrodynamic-type dispersionless

limit. The contents of this chapter are based on the following publication [69]:

Lowman, N. K. and Hoefer, M. A. 2013 “Dispersive Shock Waves in Viscously Deformable

Media,” Journal of Fluid Mechanics 718 524–557.

3.1 Abstract

The viscously dominated, low Reynolds’ number dynamics of multi-phase, compacting media

can lead to nonlinear, dissipationless/dispersive behavior when viewed appropriately. In these

systems, nonlinear self-steepening competes with wave dispersion, giving rise to dispersive shock

waves (DSWs). Example systems considered here include magma migration through the mantle

as well as the buoyant ascent of a low density fluid through a viscously deformable conduit.

These flows are modeled by a third-order, degenerate, dispersive, nonlinear wave equation for the

porosity (magma volume fraction) or cross-sectional area, respectively. Whitham averaging theory

for step initial conditions is used to compute analytical, closed form predictions for the DSW

speeds and the leading edge amplitude in terms of the constitutive parameters and initial jump

height. Novel physical behaviors are identified including backflow and DSW implosion for initial

jumps sufficient to cause gradient catastrophe in the Whitham modulation equations. Theoretical

predictions are shown to be in excellent agreement with long-time numerical simulations for the

case of small to moderate amplitude DSWs. Verifiable criteria identifying the breakdown of this

modulation theory in the large jump regime, applicable to a wide class of DSW problems, are

presented.
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3.2 Introduction

Shock waves in fluids typically arise as a balance between nonlinearity and dissipatively dominated

processes, mediated by the second law of thermodynamics. An alternative balancing mechanism

exists in approximately conservative media over time scales where dissipation is negligible.

Nonlinearity and wave dispersion have been observed to lead to dynamically expanding, oscillatory

dispersive shock waves (DSWs) in, for example, shallow water waves (known as undular bores)

[19], ion-acoustic plasma (known as collisionless shock waves) [115, 116], superfluids [23, 46], and

“optical fluids” [119, 20]. It is therefore counterintuitive that a fluid driven by viscous forces could

lead to shock waves regularized by dispersion. In this work, precisely this scenario is investigated

in viscously deformable media realized in magma transport and viscous fluid conduits.

The description of a low viscosity fluid flowing through a viscously deformable, compacting

medium is a fundamental problem in Earth processes. Such systems include flow of oil through

compacting sediment, subterranean percolation of groundwater through a fluidized bed, or the

transport of magma through the partially molten upper mantle [75]. This type of flow also

has implications for the buoyant ascent of a low density fluid through a deformable vertical

conduit. Great interest by the broader scientific community has been taken in these systems

since the derivation of a set of governing equations [75, 97, 98, 33]. The primitive equations treat

the magma transport as flow of a low Reynolds’ number, incompressible fluid through a more

viscous, permeable matrix that is allowed to compact and distend, modeled as a compressible

fluid. This model, thought to be a reasonable representation of melt transport in the upper

mantle, contrasts with standard porous media flow where the matrix is assumed fixed and the

fluid is compressible.

Upon reduction to one-dimension (1D) and under a number of reasonable simplifications,

the model equations reduce to the dimensionless, scalar magma equation

φt + (φn)z − (φn(φ−mφt)z)z = 0, (3.1)
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where φ is the porosity, or volume fraction of the solid matrix occupied by the magma or melt,

and (n,m) result from constitutive power laws relating the porosity to the matrix permeability

and viscosity, respectively. [97, 98] concluded that the parameter space for realistic magma

systems is n ∈ [2, 5] and m ∈ [0, 1], a claim which was later supported by re-derivation of the

conservation equations via homogenization theory for different geometric configurations of the

flow [104]. The flow through a deformable vertical conduit, magma migration via thermal plumes

through the convecting mantle being one example, can also be written in the form (3.1) upon

taking (n,m) = (2, 1) with the interpretation of φ as the conduit’s cross-sectional area [83].

The magma equation (3.1) is a conservation law for the porosity with nonlinear self-steepening

due to buoyant advection through the surrounding matrix via the flux term φn and nonlocal

dispersion due to compaction and distention of the matrix. Solitary traveling waves are special

solutions to eq. (3.1) that have been studied in detail both theoretically [97, 98, 91, 7, 82, 105]

and experimentally [99, 83, 43]. A natural generalization of single solitary waves to the case of

a train of such structures can be realized as a DSW when the porosity exhibits a transition

between two distinct states. The canonical dynamical problem of this type is the determination

of the long time behavior of the dispersive Riemann problem, consisting of eq. (3.1) and the

step initial data

φ(z, 0) =


φ−, z ∈ (−∞, 0]

φ+, z ∈ (0,∞)

. (3.2)

Note that there is currently no rigorous proof of well-posedness for this particular initial value

problem [103].

The dispersive Riemann problem was first studied in numerical simulations of eq. (3.1) in

the (n,m) = (3, 0) case by [108, 109]. Rather than smoothing the discontinuity and developing

a classical shock front as in a dissipatively regularized system, the magma system responds to a

jump by the generation of an expanding region of nonlinear oscillations with a solitary wave

front and small amplitude tail, characteristic of DSWs (see figure 3.1). With the inclination to

assume that steep gradients should be regularized by dissipative processes in this viscous system,
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[109] used classical shock theory [126] to attempt to describe the behavior. In this work, we use

a nonlinear wave averaging technique [24], referred to as Whitham averaging [125], in order to

describe the dispersive regularization of step initial data of arbitrary height with 0 < φ+ < φ−

for a range of constitutive parameters (n,m). The resulting DSW’s leading and trailing edge

speeds are determined and the solitary wave front amplitude is resolved.

Traditional analysis of DSWs, first studied in the context of the Korteweg-de Vries (KdV)

equation, asymptotically describes the expanding oscillatory region via the slow modulation

of a rapidly oscillating, periodic traveling wave solution. These modulations are connected to

the constant states of the exterior region by assuming the presence of linear dispersive waves at

one edge of the DSW (amplitude a→ 0) and a solitary wave at the other (wavenumber k → 0),

as shown in figure 3.1 [125, 40]. In the case of KdV, the resulting system of three hyperbolic

modulation equations can be solved due to the availability of Riemann invariants, which are, in

general, not available for non-integrable systems such as the one considered here. An extension of

simple wave led DSW Whitham modulation theory to non-integrable systems has been developed

by [24], which has been successfully applied, for example, to fully nonlinear, shallow water

undular bores [25, 26] and internal, two-fluid undular bores [29]. The modulation equations

reduce exactly to a system of two hyperbolic equations at the leading and trailing edges where

Riemann invariants are always available. Assuming the existence of an integral curve connecting

trailing and leading edge states in the full system of modulation equations, one can calculate

important physical DSW properties, namely the edge speeds, the solitary wave edge amplitude,

and the trailing edge wavepacket wavenumber (see s±, a+, and k− in figure 3.1), with knowledge

of only the reduced system at the leading and trailing edges. We implement this Whitham-

El simple wave DSW theory for the magma dispersive Riemann problem, finding excellent

agreement with full numerical simulations in the small to moderate jump regime. In the large

jump regime, we identify novel DSW behavior including backflow (negative trailing edge speed,

s− < 0) and DSW implosion. The oscillatory region of the implosion is characterized by slowly

modulated periodic waves bookending an interior region of wave interactions. This behavior
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is associated with a change in sign of dispersion and gradient catastrophe in the Whitham

modulation equations. To the best of our knowlege, this is the first example of breaking of

the Whitham modulation equations for initial data of single step type, previous studies having

focused on breaking for multistep initial data [37, 48, 2] or an initial jump in a modulated

periodic wave’s parameters [51], resulting in quasi-periodic or multi-phase behavior. Including

gradient catastrophe, we identify four verifiable criteria that can lead to the breakdown of the

simple wave DSW theory, applicable to DSW construction in other dispersive media.

Application of DSW theory to solutions of the magma equation has been largely neglected

in the previous literature. [28] considered the weakly nonlinear KdV reduction of the magma

equation and generic properties of the small amplitude DSWs produced. [73] numerically

integrated the full Whitham modulation equations for the “piston” problem with (n,m) = (3, 0)

incorporating a Dirichlet boundary condition rather than considering the general Riemann

problem. Furthermore, key DSW physical parameters were not discussed in detail and neither

backflow nor DSW implosion were observed. This work implements a general classification of

weak to large amplitude DSW behavior in terms of the initial jump height and the constitutive

parameters.

The presentation proceeds as follows. Section 3.3 describes the derivation of the magma

equation from the full set of governing equations for both magma transport and viscous fluid

conduits. Section 3.4 presents properties of the magma equation important to the application

of Whitham theory. Section 3.5 implements Whitham theory to the problem at hand and its

comparison with numerical simulations is undertaken in Section 3.6. Key physical consequences

of solution structures are elucidated and influences of parameter variation are considered. Causes

of breakdown in the analytical construction in the case of large jumps are identified. We conclude

the manuscript with some discussion and future directions in Section 3.7.
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Trailing Edge

Linear Waves

Leading Edge

SolitaryWave

Figure 3.1: Example numerical solution of the dispersive Riemann problem for eq. (3.1). The
solution to the initial step connects the external constant states φ± to an inner oscillatory region
with a solitary wave leading edge where the wavenumber k → 0 and a packet of linear waves in
the trailing edge where a→ 0. The salient physical properties of a magma DSW are the leading
edge amplitude a+, trailing edge wavenumber k−, the forward propagation speed of the solitary
wave front s+, and the trailing edge speed s−.

3.3 Governing Equations

In this section, we briefly summarize the origin of the magma equation (3.1) in the context of

magma migration [75, 97, 98] and fluid conduit flow [83]. Our purpose is to put the dispersive

equation in its physical context in terms of assumptions, parameters, and scalings.

3.3.1 Magma Geophysics

The equations governing flow of a viscous interpenetrating fluid through a viscously deformable

medium were derived independently in the context of magma by [75, 97, 98, 33]. The system is

a generalization of standard rigid body porous media flow but exhibits novel behavior. In the

absence of phase transitions, buoyancy drives the predominant vertical advection of magma,

the fluid melt, but the inclusion of dilation and compaction of the solid matrix introduces

variability in the volume fraction occupied by the melt, which we will see transmits melt fluxes

through the system as dispersive porosity waves. In the interest of providing physical intuition
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for understanding the 1D magma equation, we now recall the formulation of McKenzie and

describe the derivation of conservation equations for mass and momentum of the fluid melt

and the solid matrix, and then reduce systematically to eq. (3.1). In what follows, variable,

primed quantities are unscaled, often dimensional. Unprimed variable quantities are all scaled

and nondimensional. Material parameters and scales are unprimed as well.

The governing equations are a coupled set of conservation laws for mass and momentum

which describe the melt as an inviscid, incompressible fluid and the solid matrix as a viscously

deformable fluid, written in terms of the porosity φ′ (or volume fraction of melt). Interphase

mass transfers are taken to be negligible so the coupling comes from McKenzie’s introduction of

the interphase force I′, a generalization of the standard D’Arcy’s law [96], which describes the

rate of separation of the melt and matrix as proportional to the gradients of the lithostatic and

fluid pressures. The leading proportionality term is chosen so that in the limit of a rigid matrix,

D’Arcy’s Law is recovered. Upon substitution of the coupling term into the governing equations,

the system reduces to the Stokes’ flow equations for the matrix in the “dry” limit, φ′ → 0.

To simplify clearly to the 1D magma equation, it is convenient to write the governing

equations as in [54], where the original McKenzie system is presented in a computationally

amenable form. This follows from taking the solid and fluid densities to be distinct constants

and then introducing a decomposition of the melt pressure P ′ = P ′l +P ′+ P ∗ ′ where P ′l = ρsgz
′

is the background lithostatic pressure, P ′ is the pressure due to dilation and compaction of the

matrix given by P ′ = (ζ ′− 2
3η
′)∇·v′s, and P ∗ ′ encompasses the remaining pressure contributions

primarily stemming from viscous shear stresses in the matrix. Note the introduction of the solid

matrix velocity v′s, as well as the matrix shear and bulk viscosities η′, ζ ′, which arise due to matrix

compressibility and depend on the porosity as described below. For nondimensionalization, we

follow the scalings described in [108] (a similar reduction was performed in [97, 98, 7, 6]). This

requires the introduction of the natural length scale of matrix compaction δ and the natural

velocity scale of melt percolation w0 proposed by [75], which for a background porosity φ0 are
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defined as

δ =

√
K ′0(ζ ′0 + 4

3η
′
0)

µ′
, w0 = K ′0

∆ρg

φ0µ
(3.3)

where µ is the melt viscosity, ∆ρ = ρs − ρf is the difference between the solid and fluid densities,

and K ′0 and (ζ ′0 + 4
3η
′
0) are the permeability and combined matrix viscosity at the background

porosity φ0, respectively. [110] remarks that for practical geological problems, δ is on the order

of 102 − 104 m while w0 takes on values of 1 - 100 m yr−1, and the background porosity φ0

of standard media is between 10−3 − 10−2. Using these as standard scales and after algebraic

manipulation, the McKenzie system reduces to the non-dimensional form (unprimed variables)

of the system presented in [54],

Dφ

Dt
= (1− φ0φ)

P
ξ
, (3.4)

−∇ ·K ∇P +
P
ξ

= ∇ ·K [∇P ∗ + ĝ], (3.5)

∇ · vs = φ0
P
ξ
, (3.6)

∇P ∗ = ∇ · η(∇vs +∇vT
s )− φ0φĝ, (3.7)

where ξ = ζ − 2
3η and ĝ is a unit vector in the direction of gravity. Neglecting terms O(φ0),

moving in the reference frame of the matrix, and introducing constitutive laws K = φn and

ξ = φ−m for the permeability and a combined matrix viscosity, the system (3.4)-(3.7) reduces

to the dimensionless, 1D form for the vertical ascent of the fluid magma

φt = φmP, (3.8)

− (φnPz)z + φmP = −(φn)z . (3.9)

After normalizing by the natural length and time scales (3.3), this system of equations conve-

niently has no coefficient dependence on adjustable parameters, which gives rise to a scaling

symmetry discussed in Section 3.4.1. The constitutive power laws represent the expected effects
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of changes in the matrix porosity on its permeability and combined viscosity, when the porosity

is small. Both physical arguments, cf. [97, 98] and homogenization theory [104] have been used

to argue that physically relevant values for the constitutive parameters (n,m) lie in the range

n ∈ [2, 5] and m ∈ [0, 1] or at least in some subset of that range. Eliminating the compaction

pressure from the above formulation, leads to the scalar magma equation (3.1) considered in

this paper.

From the derivation, we observe that the time evolution of porosity in an interpenetrating

magma flow system is controlled by a nonlinear advection term (φn)z and a dispersive term

(φn(φ−mφt)z)z. The nonlinearity enters the system via buoyant forcing of the melt, driven by the

matrix permeability. Compaction and dilation of the matrix generate dispersive effects on the

melt which for step-like initial data, result in porosity propagation in the form of an expanding

region of porosity waves.

3.3.2 Viscous Fluid Conduits

An independent formulation of eq. (3.1) arises in the context of a conduit of buoyant fluid

ascending through a viscously deformable pipe. For magma, this represents an alternative

transport regime to the interpenetrating flow described above, most closely related to flow up

the neck of a thermal plume in the mantle.

Following [83], the buoyant fluid rises along a vertical conduit of infinite length with circular

cross-sections, embedded in a more viscous matrix fluid. The matrix with density ρM, viscosity

ηM and the fluid conduit with density ρf , viscosity ηf , must satisfy

ρM > ρf ηM � ηf . (3.10)

The circular cross-sectional area is A′ = πR′2, where the conduit radius R′ is allowed to vary.

The Reynolds’ number and slope of the conduit wall (i.e. the ratio of conduit deformation to

wavelength) are assumed to be small and mass and heat diffusion are negligible.
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With this set-up, the conduit flux Q′ can be related to the cross-sectional area A′ via

Poiseuille’s Law for pipe flow of a Newtonian fluid (recall that primed variables are dimensional)

Q′ = − A′2

8πηf

∂P ′

∂z′
(3.11)

where P is the nonhydrostatic pressure of the fluid. Conservation of mass manifests as

∂A′

∂t
+
∂Q′

∂z
= 0 . (3.12)

To derive an expression for P ′, we balance radial forces at the conduit wall. Using the small-slope

approximation, we assume radial pressure forces in the conduit dominate viscous effects. In the

matrix, the radial components of the normal force dominate viscous stresses. Setting the radial

forces of the matrix and conduit equal at the boundary and making the appropriate small-slope

approximations, yields an expression for the nonhydrostatic pressure

P ′ = −∆ρgz′ +
ηM

A′
∂A′

∂t′
, (3.13)

for ∆ρ = ρM − ρf . Substitution of (3.13) back into (3.11), utilizing (3.12) for simplification and

nondimensionalizing about a background, steady state, vertically uniform Poiseuille flow

Q0 =
∆ρg

8πηf
A2

0,

with length and time scales L and T

L =

(
ηMA0

8πηf

) 1
2

, T =
1

∆ρg

(
8πηfηM

A0

) 1
2

,

gives the non-dimensional equations

Q = A2

[
1 +

∂

∂z

(
1

A

∂Q

∂z

)]
,
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−∂A
∂t

=
∂Q

∂z
.

which are eqs. (3.8) and (3.9) for the case (n,m) = (2, 1).

3.4 Properties of the Magma Equation

In this section we recall several results that will be important for our studies of magma DSWs.

It is interesting to note that for the pairs (n,m) = (−1, 0) and (n,m) = (1
2 ,

1
2) the magma

equation has been shown to be completely integrable, but for other rational values of (n,m) it

is believed to be non-integrable by the Painleve ODE test [42]. We will primarily be concerned

with the physically relevant non-integrable range m ∈ [0, 1], n ∈ [2, 5], but many of the results

are generalized to a much wider range of values.

3.4.1 Linear Dispersion Relation and Scaling

Linearizing eq. (3.1) about a uniform background porosity Φ and seeking a harmonic solution

with real-valued wavenumber k, and frequency ω0, we write φ as

φ(z, t) ≈ Φ + ν
(
ei(kz−ω0t) + c.c.

)
, |ν| � 1, (3.14)

where c.c. denotes the complex conjugate. Substitution into eq. (3.1) yields the linear dispersion

relation

ω0(k,Φ) =
nΦn−1k

1 + Φn−mk2
. (3.15)

Taking a partial derivative in k gives the group velocity

(ω0(k,Φ))k =
nΦn−1(1− Φn−mk2)

(1 + Φn−mk2)2
. (3.16)

Note that although the phase velocity ω0
k is strictly positive, the group velocity (3.16) can

take on either sign, with a change in sign occurring when k2 = Φm−n. Taking a second partial
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derivative of eq. (3.15) with respect to k gives

(ω0(k,Φ))kk =
−2nkΦ2n−1−m(3− Φn−mk2)

(1 + Φn−mk2)3
. (3.17)

Introducing the sign of dispersion, we say the system has positive dispersion if (ω0(k,Φ))kk > 0

so that the group velocity is larger for shorter waves. Similarly, negative dispersion is defined as

(ω0(k,Φ))kk < 0. From eq. (3.17), the sign of dispersion is negative for long waves but switches to

to positive when k2 = 3Φm−n. These distinguished wavenumbers, the zeros of the group velocity

and sign of dispersion, have physical ramifications on magma DSWs that will be elucidated

later.

The magma equation also possesses a scaling symmetry. It is invariant under the change of

variables

φ′ = Φφ, z′ = Φ
n−m

2 z, t′ = Φ
1
2

(2−n−m)t, Φ > 0 . (3.18)

This allows us to normalize the background porosity to one without loss of generality, which we

will do in Section 3.5.

3.4.2 Long Wavelength Regime

In the weakly nonlinear, long wavelength regime, the magma equation reduces to the integrable

KdV equation [?, 113, 28] . To obtain KdV we enter a moving coordinate system with the

linear wave speed n and introduce the “slow” scaled variables ζ = ε1/2(z − nt), τ = ε3/2t,

and φ(z, t) = 1 + εu(z, t) to the magma equation. Assuming |ε| � 1, a standard asymptotic

calculation results in

uτ + n(n− 1)uuζ + nuζζζ = 0, (3.19)

which has no dependence on the parameter m. What this implies physically is that dispersion

in the small amplitude, weakly nonlinear regime is dominated by matrix compaction and

dilation. Nonlinear dispersive effects resulting from matrix viscosity are negligible. The original

construction of a DSW was undertaken for KdV by [40]. In Section 3.5, we will compare the
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results of KdV DSW theory with our results for magma DSWs.

3.4.3 Nonlinear Periodic Traveling Wave Solutions

The well-studied solitary waves of eq. (3.1) are a limiting case of more general periodic traveling

wave solutions. To apply Whitham theory to the magma equation, it is necessary to derive the

periodic traveling wave solution to eq. (3.1), which forms the basis for nonlinear wave modulation.

In the special case (n,m) = (3, 0), [73] obtained an implicit relation for φ in terms of elliptic

functions, and for (n,m) = (2, 1), the equation was derived in integral form by [83]. Here we

consider the full physical range of the constitutive parameters.

We seek a solution of the form φ(z, t) = φ(θ), where θ = z − ct for wave velocity c (c is

related to the wave frequency ω and the wavenumber k by the relation ω = ck), such that

φ(θ) = φ(θ + L) with wavelength L. Inserting this ansatz into eq. (3.1) and integrating once

yields

c(φ−mφ′)′ = Aφ−n + cφ1−n − 1, (3.20)

for integration constant A and ′ indicating a derivative with respect to θ. Observing

c(φ−mφ′)′ = c

(
1

2
φm
)[

d

dφ

(
φ−2m(φ′)2

)]
,

enables us to integrate with respect to φ and find for m 6= 1 and n+m 6= 2

(φ′)2 =
2

2−m− nφ
m−n+2 − 2

c(1−m)
φm+1 − 2A

c(1−m− n)
φm−n+1 − 2B

c
φ2m, (3.21)

with a second integration constant B.

For n+m = 2, which for our purposes necessarily implies n = 2 and m = 0, we integrate eq.

(3.20) to

(φ′)2 = 2 lnφ− 2A

c
φ−1 − 2

c
φ+

2B

c
. (3.22)
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For the case m = 1, n ∈ [2, 5], eq. (3.20) integrates to

(φ′)2 = −2

c
φ2 lnφ+

2A

cn
φ2−n +

2

1− nφ
3−n +

2B

c
φ2 . (3.23)

Equations (3.21), (3.22), and (3.23) can be written in the general form (φ′)2 = g(φ), where

g(φ) is the potential function. Periodic solutions exist when g(φ) has three real, positive roots

such that 0 < φ1 < φ2 < φ3. In this case, the potential function can be rewritten

(φ′)2 = g(φ) = (φ1 − φ)(φ2 − φ)(φ3 − φ)r2(φ) (3.24)

where r(φ) is some smooth function and r(φ) 6= 0 for φ ∈ (0, φ3). The sign is chosen so that

(φ′)2 φ→∞−−−→ −∞ for c > 0 as in each of the equations (3.21), (3.22), and (3.23). We verify that

c > 0 because in the linear wave limit when φ2 → φ3, c = ω0
k which is positive from eq. (3.15).

Similarly from solitary wave derivations (3.28), noting that A > 1, the speed is positive. From

eqs. (3.21), (3.22), (3.23) and the fact that c depends continuously on the roots φ1, φ2, φ3, the

only way for c to pass from positive to negative would be for φ ≡ 0, else the potential function is

singular, and in neither case does this yield a non-trivial periodic traveling wave solution. Thus

the wave speed c must be strictly positive.

We also confirm that the potential functions in equations (3.21), (3.22), and (3.23) have no

more than three positive roots in the physically relevant range of the constitutive parameters.

First consider the case of integer n,m so that all exponents are integers. From Descartes’ Rule

of Signs, polynomials with real coefficients and terms ordered by increasing degree have a

number of roots at most the number of sign changes in the coefficients. Hence, the four-term

polynomial expression (3.21) has at most three positive roots as we assumed. For eq. (3.22),

taking a derivative of g(φ) yields a three-term polynomial, which thus has at most two positive

roots. From the Mean Value Theorem, this means (3.22) has no more than three positive roots.

Eq. (3.23) follows in a similar manner, upon noting that one can factor out φ2 so that the

positive real roots are unchanged. Now relax the assumption that the constitutive parameters
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take on integer values and suppose they can take on any rational value so that eq. (3.21) has

rational exponents {y1, y2, y3, y4} with least common multiple y. Then let φ = ψy. It follows

that g(φ) has the same number roots as g(ψy), the latter now a four-term polynomial in ψ with

integer exponents. As above, this may have at most three positive roots. A similar argument

follows for eqs. (3.22), (3.23). The case of irrational n,m follows from continuity and density of

the rationals in the real line. This gives an upper bound on the number of positive roots, which

must be either one or three. We will consider only the cases where the particular parameters

give exactly three positive roots.

One can see from eq. (3.24) that there is a map between the parameters A,B, c and the

roots φ1, φ2, φ3 so the periodic traveling wave solution can be determined by use of either set of

variables. There is further an additional set of “physical” variables which we will use here. They

are the periodic wave amplitude a

a = φ3 − φ2, (3.25)

the wavenumber k = 2π
L , which we express

k =
2π

L
= π

(∫ φ3

φ2

1√
g(φ)

dφ

)−1

, (3.26)

and the wavelength-averaged porosity φ̄,

φ̄ =
2

L

∫ φ3

φ2

φ√
g(φ)

dφ . (3.27)

The three parameter family of periodic waves will be parameterized by either (φ1, φ2, φ3) or

(a, k, φ̄). Invertibility of the map between these two parameter families is difficult to verify in

general. However, in the limiting case φ2 → φ3, we can express the physical variables in the

following form at leading order:

a = 0, φ̄ = φ2, k =
r(φ2)π

2
(φ2 − φ1)

1
2 , φ1 < φ2 .
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Hence, the determinant of the Jacobian of the transformation is ∂k/∂φ1 6= 0. A similar argument

holds for the solitary wave limiting case using conjugate variables which will be introduced in

Section 3.5.3. Since invertibility holds in the limiting cases, we make the additional assumption

that it holds in general. Figure 3.2 shows a plot of g(φ) for (n,m) = (2, 1), with the particular

wave parameters a = 0.6, φ̄ = 1, k ≈ 0.29. From the example in figure 3.2, we observe that the

periodic wave takes its values on the bounded, positive portion of g(φ) with φ2 ≤ φ ≤ φ3.

The solitary wave solution of the magma equation occurs in the limit φ2 → φ1. To derive

the magma solitary wave, we impose the conditions on the potential function g(Φ) = 0, g(A) =

0, g′(Φ) = 0 for a solitary wave of height A which propagates on a positive background value Φ.

Utilizing these conditions on the background state Φ = 1 yields a solitary wave amplitude-speed

relation c(A) derived in [82] for n,m in the physical range



c(A) =
A2 − 2A+ 1

A lnA−A+ 1
, if m = 0, n = 2,

c(A) =
(n− 1)(nAn lnA−An + 1)

An − nA+ n− 1
, if m = 1,

c(A) =
(n+m− 2)[nAn+m−1 − (n+m− 1)An +m− 1]

(m− 1)[An+m−1 − (n+m− 1)A+ n+m− 2]
, otherwise .

(3.28)

3.4.4 Conservation Laws

Another feature of the magma equation necessary for the application of DSW modulation theory

is the existence of at least two conservation laws. [41] found two independent conservation

laws for the magma equation given arbitrary values for the parameters (n,m). While there

are additional conservation laws for particular values of (n,m), these lie outside the physically

relevant range and will not be addressed. The first conservation law is the magma equation

itself written in conservative form. The second conservation law does not have a clear physical

meaning as it does not correspond to a momentum or an energy. It also possesses singular terms

in the dry limit φ→ 0, but this is not a problem in the positive porosity regime considered here.
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Figure 3.2: Plot of (φ′)2 = g(φ), (n,m) = (2, 1). The bounded, periodic solution lies between
the roots φ2 and φ3. The roots correspond to a particular choice of the physical wave parameters
a = 0.6, k ≈ 0.29, and φ̄ = 1.

In conservative form, the conservation laws for the physically relevant parameter values are

φt + (φn(1− φ−mφt)z)z = 0 (3.29)

and



(
−1

2
φ2
z + lnφ

)
t

+ (−φφtz + 2φ)z = 0, if (n,m) = (0, 2)

(
−n

2
φ−2φ2

z +
φ1−n − 1

1− n

)
t

+
(
φ−2φzφt − φ−1φtz + n lnφ

)
z

= 0, if m = 1

(
1−m− n

2
φ−2mφ2

z +
1

2− n−m
(
φ2−n−m − 1

))
t

+(
mφ−2mφzφt − φ1−2mφtz + n

1−mφ
1−m

)
z

= 0, otherwise.

(3.30)

3.5 Resolution of an Initial Discontinuity

A canonical problem of fundamental physical interest in nonlinear media is the evolution of an

initial discontinuity. In the case of an interpenetrating magma flow, one can imagine magma
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flowing from a chamber of uniform porosity into an overlying region of lower porosity. We study

DSWs arising from this general set-up.

Consider the magma equation (3.1) given initial data (3.2) with the requirement 0 < φ+ <

φ−, which ensures singularity formation in the dispersionless limit φt + (φn)z = 0 (gradient

catastrophe). This is a dispersive Riemann problem. From DSW theory, a discontinuity in

a dissipationless, dispersively regularized hyperbolic system will result in smooth upstream

and downstream states connected by an expanding, rapidly oscillating region of rank-ordered,

nonlinear waves. In the negative dispersion regime, this region is characterized by the formation

of a solitary wave at the right edge and a linear wave packet at the left. Our goal in this section

is to derive analytical predictions for the speeds at which the edges propagate and the height of

the leading edge solitary wave.

Following the general construction of [24], which extends the work of [125] and then [40]

to non-integrable systems, we will assume that the spatial domain can be split into three

characteristic subdomains, (−∞, z1(t)), [z1(t), z2(t)], and (z2(t),∞), where z1(t) ≤ z2(t), for

all t > 0. We formally introduce the slow variables Z = εz and T = εt, where 0 < ε � 1,

which is equivalent to considering t � 1 when T = O(1). For the analysis, we use the slow

variables Z, T to describe the modulations of the traveling wave. For the numerics, we consider

t � 1 and do not rescale. Inside the dispersive shock region z ∈ [z1(t), z2(t)], the solution is

assumed to be described by slow modulations of the nonlinear, single phase, periodic traveling

wave solution, i.e. a modulated one-phase region (the use of phase here describes the phase

of the wave, not to be confused with the physical phase of the flow, e.g. melt or matrix). The

modulation equations are a system of quasi-linear, first-order PDE formed by averaging over

the two conservation laws augmented with the conservation of waves equation. This allows for

the description of the DSW in terms of the three slowly varying, physical wave variables: the

wavenumber k (3.26), the average porosity φ̄ (3.27), and the periodic wave amplitude a (3.25).

Outside the dispersive shock, the dynamics are slowly varying so the solution is assumed to be

governed by the dispersionless limit of the full equation which we call the zero-phase equation.

59



The dynamic boundaries between the zero- and one-phase regions are determined by employing

the Gurevich-Pitaevskii matching conditions [40]. The behavior of the modulation system near

the boundaries allows for a reduction of the modulation system of three quasilinear PDE to

only two, thus locally reducing the complexity of the problem. For a simple wave solution, the

limiting modulation systems can be integrated uniquely along an associated characteristic with

initial data coming from the behavior at the opposite edge.

This construction relies on several assumptions about the mathematical structure of the

magma equation and its modulation equations. From our discussion in Section 3.4, it is immediate

that we have a real linear dispersion relation with hyperbolic dispersionless limit (seen formally by

substituting the slow variables defined above and taking only the leading order eqation). The two

conservation laws given in equations (3.29) and (3.30) and the existence of a nonlinear periodic

traveling wave with harmonic and solitary wave limits round out the basic requirements. Beyond

these, we must satisfy additional constraints on the modulation system. Its three characteristics

are assumed real and distinct so that the modulation equations are strictly hyperbolic and

modulationally stable. The final requirement is the ability to connect the edge states by a simple

wave. For this, the two states are connected by an integral curve associated with only one

characteristic family. More will be said about this condition in the following discussion. We now

supply the details of the application of El’s method to the dispersive Riemann problem for the

magma equation.

3.5.1 Application of El’s method

To “fit” a modulated dispersive shock solution, we consider first the solution within the DSW,

z ∈ [z1(t), z2(t)]. In this region, the solution is described locally by its nonlinear periodic traveling

wave solution, parameterized by its three roots φ1, φ2, φ3, which vary slowly, depending on Z, T .

Variations in the periodic traveling wave solution are governed by averaging over the system of

conservation equations (3.29) and (3.30), along with an additional modulation equation known
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as conservation of waves,

kT + ωZ = 0, (3.31)

where k is the wavenumber and ω is the nonlinear wave frequency [125]. Recalling the wavenumber

k (3.26), we define the wavelength average of a generic smooth function F (φ) to be

F (φ) =
k

π

∫ φ3

φ2

F (φ)√
g(φ)

dφ . (3.32)

It is convenient here to use the nonlinear wave parameterization in terms of the three roots of

g(φ). Later we will use the physical wave variables a, k, φ̄.

We now seek moving boundary conditions for z1(t) and z2(t) where the modulation solution

is matched to the dispersionless limit. For the magma equation, the dispersionless limit is the

zero-phase equation

φ̃T + nφ̃n−1φ̃Z = 0 . (3.33)

The GP boundary conditions [40] include the matching of the average value of the porosity to

the dispersionless solution φ̄ → φ̃, as well as a condition on the amplitude and wavenumber.

Recalling figure 3.1, at the trailing edge, the wave amplitude vanishes. At the leading edge, the

leading wave is assumed to take the form of a solitary wave and thus the wavenumber decays

to zero. This could also be stated in terms of the roots of the potential function, as we saw in

Section 3.4.3 where the diminishing amplitude limit corresponds to φ2 → φ3 and the solitary

wave limit to φ2 → φ1. This implies that the boundary conditions align with double roots of the

potential function. This orientation of the DSW with a rightmost solitary wave and a leftmost

linear wave packet is expected for systems with negative dispersion, as is the case here, for at

least small jumps [24]. These conditions result in the following moving boundary conditions for
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an initial discontinuity:

z = z1(t) : φ = φ−, a = 0, φ2 → φ3, (3.34)

z = z2(t) : φ = φ+, k = 0, φ2,→ φ1 . (3.35)

In the a → 0 and k → 0 limits, one can show that F (φ) = F (φ). This is a fundamental

mathematical property of averaging that allows for the Whitham system of three modulation

equations to be reduced exactly to a system of two equations at the leading and trailing edges

z1(t), z2(t). An important note is that in the limit of vanishing amplitude, the nonlinear wave

frequency ω = ω(k, φ̄, a) becomes the linear dispersion relation ω0(k, φ̄) = ω(k, φ̄, 0) from eq.

(3.15) which has no dependence on the amplitude. The exact reduction of the full modulation

system to two PDE enables the construction of a self-similar simple wave solution. This simple

wave of each boundary system is directly related to the simple wave associated with the second

characteristic family of the full Whitham modulation system via the integral curve connecting

the left state (φ−, k−, 0) to the right state (φ+, 0, a+). The goal is to determine k− and a+ and

evaluate the characteristic speeds at the edges. Given φ− and φ+, this construction provides the

four key physical properties of the magma DSW as in figure 3.1. In the next two sections, we

implement this method.

3.5.2 Determination of the Trailing Edge Speed

To determine the trailing edge speed of the DSW, we consider the above modulation system in

a neighborhood of z1(t), where implementation of the boundary conditions yields the reduced

limiting system

φ̄T + (φ̄n)Z = 0, (3.36)

kT + (ω0)Z = 0 . (3.37)
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In characteristic form, the above system reduces to

− (ω0)φ̄
dφ̄

dT
+
(
nφ̄n−1 − (ω0)k

) dk

dT
= 0 (3.38)

along the characteristic curve dZ
dT = (ω0)k. The characteristic speed is the linear wave group

velocity (3.16) but here with Φ → φ̄. To determine the linear wave speed, we integrate eq.

(3.38) along the characteristic by introducing k = k(φ̄). Integrating from the leading edge

solitary wave where the wavenumber vanishes, i.e. k(φ+)=0, back across the DSW to the

trailing edge determines the linear wavenumber k−. Put another way, we connect states of our

modulation system at the trailing edge (k, φ̄) = (k−, φ−) to the leading edge in the a = 0 plane

(k, φ̄) = (0, φ+), by assuming k varies in only one characteristic family. This is our simple wave

assumption. To determine the speed, we evaluate s− = (ω0)k at (k−, φ−). The fact that we can

restrict to the a = 0 plane follows from the assumed existence of an integral curve for the full

Whitham modulation system and the GP matching conditions at the solitary wave edge, which

are independent of a. Recalling the symmetry (3.18), without loss of generality, we restrict to

the case

φ(z, 0) =


1, z ∈ (−∞, 0]

φ+, z ∈ (0,∞),

(3.39)

where φ+ ∈ (0, 1). From the physical derivation, eq. (3.1) has already been non-dimensionalized

on a background porosity scale so it is natural to normalize the upstream flow to unity in the

dimensionless problem. Restriction of φ+ ∈ (0, 1) results from physical interest in the problem of

vertical flow from a magma chamber into a dryer region above, but one through which magma

may still flow.

To determine the linear edge wavenumber k−, it is necessary to solve the ordinary differential

equation (ODE) initial value problem (IVP) resulting from the simple wave assumption k = k(φ̄)

63



in eq. (3.38)

dk

dφ̄
=

(ω0)φ̄

nφ̄n−1 − (ω0)k
=

k
[
n− 1− (1 +m)k2φ̄n−m

]
φ̄
[
(1 + φ̄n−mk2)2 − (1− φ̄n−mk2)

] , k(φ+) = 0 . (3.40)

To find an integral of (3.40), it is convenient to use the change of variables

α =
ω0

c(φ̄)k
, c(φ̄) = nφ̄n−1, (3.41)

which, upon substitution, is

α =
1

1 + φ̄n−mk2
. (3.42)

The IVP (3.40) therefore becomes

dα

dφ̄
= − [(m+ n− 2)α+ n−m]α

φ̄(2α+ 1)
, α(φ+) = 1 . (3.43)

Equation (3.43) is separable with an integral giving an implicit relation between α and φ̄.

Defining M = n−m
n+m−2 , the relation is


αe2(α−1) =

(
φ̄

φ+

)2−2n

, m+ n = 2

α

(
α+M

1 +M

)2M−1

=

(
φ̄

φ+

)m−n
, otherwise .

(3.44)

The implicit function theorem proves that eq. (3.44) can be solved for α(φ̄), provided α 6= −1
2 .

From eq. (3.43), α = −1
2 corresponds to a singularity in the righthand side of the ODE. Moreover,

negative values of α lead to negative average porosity which is unphysical. Therefore, we can

generally solve eq. (3.44) to get α = α(φ̄).

To find the speed of the trailing linear wave packet s−, we evaluate eq. (3.44) at the trailing
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edge. There we find α(1) = α−, with the initial condition (3.39), satisfies the implicit relation


α−e

2(α−−1) = φ
2(n−1)
+ , m+ n = 2,

α−

(
α− +M

1 +M

)2M−1

= φn−m+ , otherwise .

(3.45)

Given particular values for the parameters, we can solve this expression for α−, analytically or

numerically. Note that for the physical range of (n,m), α− is a decreasing function of φ+. Via

the transformation (3.42), we obtain k−, the wavenumber at the trailing edge. Upon substitution

into the group velocity (3.16), the trailing edge speed is

s− =
−n
(
k2
− − 1

)(
k2
− + 1

)2 = −nα−(1− 2α−) . (3.46)

In general, we cannot find an explicit relation for α− in (3.45) analytically, but when m = 1,

M = 1 and the expression simplifies to a quadratic equation in α− whose physical solution is

α− = −1

2

[
1−

(
1 + 8φn−1

+

) 1
2

]
, m = 1 . (3.47)

Then for m = 1, substitution of eq. (3.47) into eq. (3.46) yields the trailing edge speed

s− =
1

2
n

[
3 + 8φn−1

+ − 3
(
1 + 8φn−1

+

) 1
2

]
, m = 1 . (3.48)

Equation (3.48) provides a simple formula for the trailing edge speed in terms of the parameter

n and the jump height φ+ when m = 1, e.g. in viscous fluid conduits.

An interesting physical question to consider is whether the trailing edge speed can take on

negative values for some choice of the parameters. Recall that even though the phase velocity is

always positive, the linear group velocity (3.16), corresponding to the trailing edge speed, can

be negative. Returning to the problem of vertical magma flow from a chamber, such a result

would imply that for a magma chamber supplying a matrix of sufficiently small porosity relative
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to the chamber, porosity waves could transmit back into the chamber and cause the matrix

within the chamber to compact and distend. We refer to this condition as backflow. From our

discussion in Section 3.4.1, the group velocity evaluated at the trailing edge becomes negative

when k2
− = φm−n− , or α− = 1

2 . Using the determination of α− (3.45), backflow occurs for any

choice of (n,m) when α− ≤ 1
2 . Substituting this value into eq. (3.45) gives the critical value

φ+ = φb such that for any φ+ < φb, s− < 0:

φb =



(
1

2e

) 1
2(n−1)

, m+ n = 2,

{
1

2

[
1 + 2M

2(1 +M)

]2M−1
} 1

n−m

, otherwise .

Negative propagation of porosity waves for sufficiently large jumps was observed numerically in

[109] but could not be explained using viscous shock theory. Here we have identified an exact

jump criterion that initiates backflow.

3.5.3 Determination of the Leading Edge Speed and Amplitude

The leading edge speed could be derived in a similar fashion to the trailing edge, but [24]

describes a simpler approach by introducing a different system of basis modulation variables.

The main idea is to mirror the description of the linear wave edge by introducing conjugate

variables so that the potential curve g(φ), as in figure 3.2, is reflected about the φ axis. Then,

averaging is carried out by integrating over the interval (φ1, φ2) where −g(φ) > 0. The φ2 → φ1

limit at the soliton edge now resembles the φ2 → φ3 limit at the linear edge. The conjugate

wavenumber k̃ is defined as

k̃ = π

(∫ φ2

φ1

dφ√
−g(φ)

)−1

, (3.49)
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and will play the role of the amplitude a. Λ = k
k̃

will be used instead of the wavenumber k. In

the conjugate variables, the asymptotic matching conditions become

z = z1(t) : φ = 1, k̃ = 0, φ2 → φ3,

z = z2(t) : φ = φ+, Λ = 0, φ2 → φ1 .

In the modulation system, the reduction of the magma conservation laws to the dispersionless

limit (3.33) is retained, but the conservation of waves condition is rewritten in the new variables.

To do so, it is helpful to define the conjugate wave frequency ω̃ = ω̃(k̃, φ̄,Λ) = −iω(ik̃, φ̄, a(k̃,Λ)).

Assuming the existence of a simple wave, the Λ→ 0 limiting behavior of the modulation system

takes the form

dk̃

dφ̄
=

ω̃φ̄

nφ̄n−1 − ω̃k̃
, (3.50)

and

ΛT +
ω̃

k̃
ΛZ = O(ΛΛZ) .

Then the integral curve k̃ = k̃(φ̄) satisfying eq. (3.50), which is the same expression as in the

leading edge system (3.40) but in the conjugate variables, corresponds to the characteristics

dZ
dT = ω̃s(k̃,φ̄)

k̃
, where now the characteristic speed is the conjugate phase velocity. Here ω̃s(k̃, φ̄) =

ω̃(k̃, φ̄, 0) is called the solitary wave dispersion relation and is obtained from its expression in

terms of the linear dispersion relation ω̃s(k̃, φ̄) = −iω0(ik̃, φ̄). From eq. (3.15), the solitary wave

dispersion relation is

ω̃s(φ̄, k̃) =
nφ̄n−1k̃

1− φ̄n−mk̃2
. (3.51)

Upon substitution into eq. (3.50) and recalling that k̃ behaves like an amplitude, the GP

matching condition at the trailing edge takes the form k̃(1) = 0 so that we arrive at the IVP

dk̃

dφ̄
=

k̃
[
n− 1− (1 +m)k̃2φ̄n−m

]
φ̄
[
(1 + φ̄n−mk̃2)2 − (1− φ̄n−mk̃2)

] , k̃(1) = 0 . (3.52)
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Again, a change of variables will lead to a separable ODE which yields an implicit representation,

this time for the conjugate wavenumber at the leading edge. Defining

α̃ =
ω̃s

c(φ̄)k̃
=

1

1− φ̄n−mk̃2
, (3.53)

the α̃ IVP is

dα̃

dφ̄
= − [(m+ n− 2)α̃+ n−m] α̃

φ̄(2α̃+ 1)
, α̃(1) = 1 . (3.54)

This equation is the same as eq. (3.43) but with a different initial location because integration

takes place from the trailing edge to the leading edge. Note that for the physical range of the

constitutive parameters (n,m), α̃ is a decreasing function of φ̄. Integrating (3.54) gives the

relation between α̃ and φ̄


α̃e2(α̃−1) = φ̄2−2n, m+ n = 2

α̃

(
α̃+M

1 +M

)2M−1

= φ̄m−n, otherwise .

(3.55)

and the requirement α̃ > −1
2 for finding α̃ = α̃(φ̄). For all physically relevant φ̄ > 0, α̃ > 0.

Using the solitary wave dispersion relation, the leading edge speed s+ becomes

s+ =
ω̃s(φ+, k̃+)

k̃+

=
nφn−1

+

1− φn−m+ k̃2
+

, (3.56)

where k̃+ = k̃(φ+). Defining α̃+ = α̃(φ+), we find φn−m+ k̃2
+ = 1− 1

α̃+
, which upon substitution

into eq. (3.56) yields

s+ = nφn−1
+ α̃+, (3.57)

for any choice of m. To solve for the solitary wave speed, we evaluate the implicit relation for α̃

at the leading edge and insert into (3.57). The defining relations for α̃+ are found by evaluating
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α̃(φ+) in (3.55) 
α̃+e

2(α̃+−1) = φ2−2n
+ , m+ n = 2

α̃+

(
α̃+ +M

1 +M

)2M−1

= φm−n+ , otherwise .

(3.58)

Because α̃ is a decreasing function and α̃(1) = 1 and φ+ < 1, α̃+ = α̃(φ+) is an increasing

function of φ+. As in the trailing edge, the case m = 1 can be solved explicitly so the leading

edge speed is

s+ =
1

2
n

[(
1 + 8φn−1

+

) 1
2 − 1

]
, m = 1 .

Here we have determined an explicit relation between the jump height, the constitutive parameter

n, and the leading edge speed.

Determination of the leading edge amplitude a+ follows from the solitary wave amplitude-

speed relation (3.28), rescaled to a background porosity φ+ using the scaling symmetry in eq.

(3.18). In practice, a+ is computed numerically.

3.5.4 Analysis of the Theoretical Predictions

The theoretical predictions of Sections 3.5.2 and 3.5.3 were limited to explicit speed formulae

for the m = 1 case. In this section, we extend those results to the full physical range of the

constitutive parameters. We will also check that the speeds satisfy the DSW admissibility criteria

[24] and are consistent with KdV asymptotics in the weakly nonlinear limit.

First, we consider the DSW admissibility criteria. The dispersionless limit of the magma

equation (3.33) has the characteristic speed c = nφn−1. As the DSW evolves, it continuously

expands with speeds s− at the trailing edge and s+ at the leading edge. For the DSW construction

to be valid, the external characteristics must impinge upon the DSW region, transferring

information from the dispersionless region into the modulated one-phase region. Then the DSW

and external characteristic speeds must satisfy the relations s− < n and s+ > nφn−1
+ . These

conditions ensure a compressive DSW. Using the expressions for the speeds (3.46) and (3.57)
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we find that in the interior of the shock region

s− = −nα−(1− 2α−) < n = c(1), s+ = nφn−1
+ α̃+ > nφn−1

+ = c(φ+), (3.59)

because α− < 1 and α̃+ > 1 for φ+ < 1 as shown earlier. To admit a solitary wave-led dispersive

shock solution as we have constructed, it must also be the case that s− < s+ so that the interior

region continues to expand in time. We have verified numerically that this condition is satisfied

for choices of the constitutive parameters and the jump height in the physical range. Hence, our

analytical predictions for the speeds satisfy the DSW admissibility criteria.

Following our discussion in Section 3.4.2 of the weakly nonlinear limit 0 < 1− φ+ � 1, eqs.

(3.46) and (3.57) must be consistent with the standard KdV speeds and amplitude for the KdV

reduction of the magma equation (3.19)

s− = n− (1− φ+)2n(n− 1) (3.60)

k− =

(
(1− φ+)

2

3
n(n− 1)

)1/2

(3.61)

s+ = n− (1− φ+)
1

3
n(n− 1) (3.62)

a+ = 2(1− φ+), 0 < 1− φ+ � 1 . (3.63)

Using an asymptotic expansion for α and α̃ near 1 in expressions (3.45) and (3.58), respectively

and a small amplitude expansion for the leading edge wave amplitude a+ in the solitary wave

amplitude-speed relation (3.28), we have verified that equations (3.60) – (3.63) indeed do describe

the first order asymptotics of the magma results in equations (3.46), (3.57), and (3.28).

We now consider the speeds for more general parameter values over the full range of φ+, for

which one must solve numerically by implicitly solving the expressions (3.45) and (3.58). To solve

for the leading edge amplitudes, we invert the amplitude-speed relation (3.28) with a background

porosity Φ = φ+. In order to understand the effects of the constitutive parameters (n,m) on
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DSW behavior, consider figures 3.3a and 3.3b that show the normalized predicted leading and

trailing edge speeds s+/n and s−/n of the magma DSW as a function of the downstream porosity

φ+ for m = 0 and m = 1, respectively. The two plots look qualitatively similar indicating that

the degree of nonlinearity n appears to have the greatest impact on DSW speeds while m has

only a modest effect. The associated leading solitary wave amplitudes are plotted in figures 3.3c

and 3.3d. In the amplitude plots, the lighter dashed lines indicate the predictions based on the

weakly nonlinear KdV limit. The amplitudes of the leading edge depend rather dramatically

on the choice of the viscosity constitutive parameter m. The inclusion of a porosity weakening

matrix viscosity amplifies porosity wave oscillations causing the leading edge to grow large as

the jump grows, bounded from below by the KdV amplitude. In the m = 0 case, however, the

amplitudes grow less rapidly and are approximately bounded above by the KdV amplitude

result.

From the plots of the trailing edge speeds 3.3a and 3.3b, we note that not only do the speeds

take on negative values as we discussed in Section 3.5.2, but they also assume a global minimum

in the interior of the φ+ domain. Taking a derivative of eq. (3.46) with respect to φ+ yields

ds−
dφ+

=



2(n− 1)n(4α− − 1)φ2n−3
+ e−2(α−−1)

1 + 2α−
, m+ n = 2,

n(n−m)(4α− − 1)φn−m−1
+

(
α−+M
1+M

)1−2M

1 + α−

(
2M−1
α−+M

) , otherwise .

Then the trailing edge speed derivative is zero only when α− = αmin = 1
4 . Inserting this value of

α back into eq. (3.46), we find that the minimum linear speed, for any choice of (n,m) has the

universal scaled value

s−(αmin)

n
= −1

8
. (3.64)

We can use the expression (3.45) and α− = 1
4 to find that the linear speed takes on a minimum
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Figure 3.3: Analytical predictions for the normalized speeds and amplitude of magma DSWs.
In (a) and (b) the thicker curves indicate the leading edge speeds, and the thinner curves show
the trailing edge speeds. Note the existence of a zero and a universal global minimum in the
normalized trailing edge speeds for all cases of (n,m). For (c) and (d), the thinner dashed line
is the KdV amplitude result.
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when φ+ = φmin where

φmin =



(
1

4
e−

3
2

) 1
2(n−1)

, m+ n = 2

{
1

4

[
1 + 4M

4(1 +M)

]2M−1
} 1

n−m

, otherwise .

(3.65)

Note then for m = 1, we can explicitly verify from eq. (3.48) that φb > φmin. We confirm that

this inequality holds for any choice of (n,m) in the valid range. We will say more about the

significance of φmin and its relation with φb in Section 3.6.2.

3.6 Comparison with Numerical Simulations

The purpose of this section is to compare the analytical predictions of Section 3.5 for the speeds

and amplitudes of magma DSWs with careful numerical simulations, as well as to use simulations

to examine the internal shock structure. We see strong agreement between predictions and

numerics for small to moderate jumps and identify criteria for the breakdown of the theoretical

construction for large amplitudes. We find in particular that for φ+ < φmin, the DSW implodes.

This regime is characterized by the onset of internal wave interactions corresponding to gradient

catastrophe in the Whitham modulation equations.

3.6.1 Numerical Simulations

The magma equation (3.1) with initial data given by (3.39) was simulated using a finite difference

spatial discretization and an explicit Runge-Kutta time stepping method. Details of our numerical

method and accuracy verification are found in Appendix 3.8. Studying numerical simulations

allows us not only to verify the analytical predictions described in Section 3.5, but also to study

the internal structure of the DSWs, which we sought to bypass before, as well as the limitations

of the asymptotic DSW construction

We choose to focus on two particular parameter regimes, (n,m) ∈ {(2, 1), (3, 0)}. The first
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Figure 3.4: Two different types of envelope structures observed in simulations of eq. (3.1). (a)
The numerical solution at t = 120 for parameter values φ+ = 0.6, (n,m) = (3, 0). (b) The magma
equation at t = 200 for parameter values φ+ = 0.5, (n,m) = (2, 1).

case is physically motivated by the fluid conduit problem described in Section 3.3.2 while the

second was the problem studied numerically by [109] and [73]. Further, taking different values

for n and m in each case allows us to illustrate the different DSW forms arising from eq. (3.1).

Figure 3.4 shows the difference in the internal oscillatory structure which results from varying

the values of the constitutive parameters. In language consistent with [56], figure 3.4a when

(n,m) = (3, 0), depicts a wave envelope in the form of a wine glass, while in figure 3.4b with

(n,m) = (2, 1), the envelope resembles the shape of a martini glass. The degree of nonlinearity

n influences the internal structure of the DSW.

In figure 3.5 we show how the numerically simulated leading edge speed and amplitude

compare with our predicted values. From figure 3.5a, we obtain strong agreement for φ+ ∈ (0.5, 1)

but increasing deviation thereafter. Figure 3.5c gives a similar picture for the amplitudes, though

curiously the calculated amplitudes appear better predicted by the KdV asymptotics for larger

jump sizes. From figure 3.5b and 3.5d, we see strong quantitative agreement for jumps up to

φ+ = 0.2, but then increased disagreement for the larger jump. It is interesting to note that

in the case (n,m) = (3, 0), the leading edge speed is consistently underestimated, and thus

the leading edge amplitude is as well, while in the case (n,m) = (2, 1) they are consistently
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overestimated. We also observe that good agreement with the speed and amplitude predictions

occurs even for negative trailing edge velocities. This demonstrates that backflow is a real

physical feature of eq. (3.1), not just a mathematical artifact of the solution method. Note

also that while our numerical simulations for the leading solitary wave may deviate from the

DSW predictions, we verify that the leading edge is indeed a well-formed solitary wave that

satisfies the soliton amplitude-speed relation. With the numerically extracted amplitudes we

compute the predicted speed from eq. (3.28) and compare it with the speed extracted from the

simulations. The relative errors over all simulations are less than 0.3 %. The trailing edge speeds

were more difficult to extract in an objective, systematic manner due to the different structures

of the trailing edge wave envelope. Instead, we show a contour plot of sample solutions in the

z-t plane for the two different cases (n,m) = (3, 0) in figure 3.6a and (n,m) = (2, 1) in figure

3.6b. Overlying the contour plots are the predicted DSW region boundary slopes from Section

3.5. One can see that our predictions are in excellent agreement with numerical simulations. We

will further validate our predictions of the linear edge speeds in Section 3.6.2.

This excellent agreement between predictions and numerical simulations in the case of

small to moderate amplitude jumps has been seen in other non-integrable physical systems, cf.

[29, 26]. However, deviations in the large jump regime are also observed, leading one to question

the validity of the method in the case of large amplitude. [25] posits genuine nonlinearity in

the modulation equations as one possible assumption that could be violated as the jump size

increases. We will generalize their criteria in the next section by introducing four verifiable

conditions which violate our analytical construction.

3.6.2 Breakdown of Analytical Method

The Whitham-El DSW simple wave closure method used here requires the existence of a self-

similar simple wave solution to the full set of the Whitham modulation equations. In this section,

we identify two mechanisms that lead to the breakdown of this simple wave theory, the onset of

linear degeneracy or zero dispersion. In the former case, a loss of monotonicity manifests such
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Figure 3.5: Comparisons for (n,m) = (3, 0) and (n,m) = (2, 1) of the predicted (solid lines)
versus computed values (dot points) of the leading edge speeds and amplitudes for varying φ+.
The dashed lines indicate the predictions from KdV theory in the weakly nonlinear regime. The
vertical dotted line is the critical jump height φc, beyond which the analytical theory is no
longer valid.

76



(a) (n,m) = (3, 0), φ+ = 0.7 (b) (n,m) = (2, 1), φ+ = 0.5

Figure 3.6: Contour plots of numerical solutions for φ(z, t) plotted in the characteristic z-t
plane for different parameter values with the overlying dashed lines indicating the predicted
values for the leading and trailing edge speeds. The angles (speeds) line up excellently.

that the simple wave can no longer be continued. For the latter case, zero dispersion corresponds

to a gradient catastophe in the Whitham modulation equations leading to compression and

implosion of the DSW.

First we consider the zero dispersion case at the trailing edge. The right eigenvector of the

system (3.36), (3.37) associated with the characteristic speed ∂
∂kω0 of the trailing edge is [0, 1]T.

Therefore, in the vicinity of the trailing edge, the self-similar simple wave satisfies

φ̄′ = 0, k′ =

(
∂2ω0

∂k2

)−1

.

Hence, if ∂2

∂k2
ω0(k, 1) → 0 for k near k−, gradient catastrophe in the modulation system is

experienced. This condition corresponds to a change in the sign of dispersion and is equivalent

to the loss of genuine nonlinearity in the trailing edge system itself. As we will show later, this

is distinct from the loss of genuine nonlinearity of the full Whitham modulation system, in the

limit of the trailing edge. Recalling that the sign of dispersion changes when k2 = 3Φm−n (see

eq. (3.17)), we have the criterion k− ≥
√

3 leading to gradient catastrophe. More generally, for

any simple wave, one-phase DSW resulting from step-like initial data of a scalar, dispersive,
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nonlinear wave equation for φ, we can formulate the following condition which must hold for

the assumption of a continuously expanding, one-phase region:

∂2

∂k2
ω0(k, φ̄)

∣∣∣∣
(k−,φ−)

< 0. (3.66)

The criterion (3.66) holds for systems with negative dispersion in the long wavelength regime,

the inequality reversed for the positive dispersion case. This is a natural generalization of the

criterion in modulated linear wave theory where a change in the sign of dispersion is associated

with the formation of caustics and break down of the leading order stationary phase method

[85]. It is notable that Whitham hypothesized that breaking of the modulation equations could

lead to an additional source of oscillations (see Section 15.4 in [126]). Previous works have

resolved breaking in the Whitham equations by considering modulated multiphase waves in

the context of DSW interactions [37, 48, 2] or in the context of certain initial value problems

[51]. Beginning with the initial, groundbreaking work [30] on multiphase Whitham averaging for

KdV, all studies since have involved integrable systems. Since k− is a monotonically decreasing

function of φ+ for the magma DSW, we expect gradient catastrophe and DSW implosion for

sufficiently large jumps, i.e. φ+ < φc for the critical jump height φc. Using our work in Section

3.5, we can derive φc for which we violate (3.66). We note the following

d

dφ+

[
∂

∂k
ω0(k−, 1)

]
= −

(
∂2

∂k2
ω0(k−, 1)

)
k′(1). (3.67)

The trailing edge wavenumber k− = k(1) depends on φ+ through the initial condition k(φ+) = 0

(recall eq. (3.40)). Therefore, in eq. (3.67), dk−/dφ+ = −k′(1). Hence, the change in sign of

dispersion evaluated at the trailing edge coincides with a minimum of the linear edge speed

as a function of φ+ (see figures 3.3a and 3.3b). The dispersion sign changes from negative to

positive when φ+ = φc = φmin, where φmin is given in eq. (3.65). Our analytical method then is

no longer valid for jumps larger than this threshold value. This coincidence of a global minimum

edge speed and breakdown of the analytical method was also noted in the case of unsteady,
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undular bores in shallow-water by [25], however the mechanism was argued to be due to the loss

of genuine nonlinearity in the modulation system. The sign of dispersion did not change.

A similar argument holds in the vicinity of the leading edge. There, gradient catastrophe

occurs if the conjugate phase velocity (i.e. the speed of the leading edge) increases with decreasing

k̃. Then one-phase behavior is expected to be retained when

∂

∂k̃

(
ω̃s

k̃

)∣∣∣∣
(k̃+,φ+)

> 0 . (3.68)

The condition (3.66) says that the sign of dispersion must remain negative when evaluated at

the trailing edge. The second condition (3.68) requires that the sign of the conjugate dispersion

(now defined through changes in the phase velocity) remain positive when evaluated at the

leading edge. Verifying (3.68), we find that it does indeed hold for every φ+ ∈ (0, 1).

The simple wave construction also requires that the full modulation system be strictly

hyperbolic and genuinely nonlinear. Strict hyperbolicity of the full modulation system requires

the three characteristics be real and distinct at all points except at the DSW boundaries which

correspond to the merger of two characteristics. In integrable systems, this can be validated

directly due to the availability of Riemann invariants, but in the non-integrable case we assume

strict hyperbolicity. Genuine nonlinearity, on the other hand, is a condition necessary for the

construction of the integral curve connecting the leading and trailing edges and requires that

the characteristic speed λ varies monotonically along the integral curve. Again, we cannot check

this condition for all parameters in the full modulation system, but we can in neighborhoods

near the boundaries. Parameterizing the integral curve by φ̄, the monotonicity criteria are

dλ

dφ̄

∣∣∣∣
(k=k−,φ̄=1,a=0)

=
∂λ

∂k
k′ +

∂λ

∂φ̄
+
∂λ

∂a

da

dφ̄

∣∣∣∣
(k=k−,φ̄=1,a=0)

< 0, (3.69)

dλ

dφ̄

∣∣∣∣
(k̃=k̃+,φ̄=φ+,Λ=0)

=
∂λ

∂k̃
k̃′ +

∂λ

∂φ̄
+
∂λ

∂Λ

dΛ

dφ̄

∣∣∣∣
(k̃=k̃+,φ̄=φ+,Λ=0)

> 0 . (3.70)

These monotonicity conditions are the correct way to determine genuine nonlinearity at the
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trailing and leading edges. Testing for genuine nonlinearity in the reduced system of two

modulations equations fails to provide the proper condition (recall eq. (3.66)) because they

are restricted to the a = 0 plane. Since the trailing and leading edges correspond to double

characteristics, right and left differentiability, respectively, imply ∂λ
∂a → 0 and ∂λ

∂Λ → 0 at the

appropriate edge. Also, the limiting characteristic speeds are λ → ∂
∂kω0 and λ → ω̃

k̃
at the

trailing and leading edges, respectively. Then the monotonicity criteria (3.69) and (3.70), after

the change of variables to α and α̃, simplify to

dλ

dφ̄

∣∣∣∣
(k=k−,φ̄=1,a=0)

=

∂2

∂k2
ω0

∂
∂φ̄
ω0

nφ̄n−1 − ∂
∂kω0

+
∂2ω0

∂k∂φ̄

∣∣∣∣∣∣
(k=k−,φ̄=φ−,a=0)

= −nα−
(
16α3

−m− (16m+ 4)α2
− + (3n−m+ 2)α− +m− 1

)
2α− + 1

< 0,

(3.71)

dλ

dφ̄

∣∣∣∣
(k̃=k̃+,φ̄=φ+,Λ=0)

=

∂
∂φ̄
ω̃0(k̃nφ̄n−1 − ω̃0)

k̃2
(
nφ̄n−1 − ∂

∂k̃
ω̃0

)
∣∣∣∣∣∣
(k̃=k̃+,φ̄=φ+,Λ=0)

=
φn−2

+ nα̃
(
4α̃2 + (n−m+ 4)α̃+m− 1

)
2α̃+ 1

> 0 .

(3.72)

When either of these two conditions is not satisfied, a breakdown in genuine nonlinearity of the

full 3× 3 modulation system occurs at the boundaries, (3.71) and (3.72) corresponding to the

trailing, linear edge and the leading solitary wave edge, respectively. We can verify analytically

that for any value of φ+ ∈ (0, 1) and for all (n,m) in the physical range, condition (3.72) is

satisfied. For the linear edge condition (3.71), however, we can derive a condition for φ+ such

that the monotonicity condition is broken. Linear degeneracy first occurs when α = αl, where

αl satisfies

16mα3
l − (16m+ 4)α2

l + (3n−m+ 2)αl +m− 1 = 0 . (3.73)

From the IVP (3.43) and the implicit relation between α and φ̄ (3.45), we know that if there

exists an αl ∈ (0, 1] which satisfies (3.73), then we can find φ+ = φl such that (3.71) is no longer

satisfied. Then for each (n,m) in the physical range, there is a critical jump height φl such that
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genuine nonlinearity is lost at the trailing edge. Note that for m = 1, αl = 0 is the only root

of eq. (3.73) in the valid range and this gives the value φl = 0 which is outside the range of

interest. We have verified numerically that φc > φl for all n ∈ [2, 5], m ∈ [0, 1] so implosion

occurs before the loss of genuine nonlinearity. Before linear degeneracy occurs, the analytical

construction has already broken down due to a change in sign of dispersion (3.66). We have

found three distinguished jump heights exhibiting the ordering φb > φc > φl. As φ+ is decreased

through these values, the DSW exhibits backflow and then implosion before it ever reaches

linear degeneracy.

Figure 3.7 shows the key results of our analysis. Plots of the numerically computed solutions

for the two parameter cases tested in the regimes φ+ ∈ {(φb, 1), (φc, φb), (0, φc)} are shown.

We see in both cases that our analytical predictions for φb and φc are in agreement with the

numerical solution as backflow and DSW implosion occur when expected and not otherwise.

The choices for φ+ in figure 3.7 were chosen for visual clarity but we have performed further

simulations with φ+ much closer to φb and φc, finding that they do indeed accurately predict

the transitions in DSW behavior. For φ+ < φc, the DSW rank-ordering breaks down due to

catastrophe and results in wave interactions in the interior of the oscillatory region. In figure 3.8

we show an example of how the solution evolves from step initial data for φ+ < φc. The interior

of the DSW initially develops into approximately a modulated one-phase region. However, as

the simulation continues, the trailing edge linear waves stagnate due to the minimum in the

group velocity. The DSW is compressed as shorter waves at the leftmost edge are overtaken by

longer waves from the interior. Wave interactions in the DSW interior ensue. Another one-phase

region develops, separated from the main trunk of the DSW by a two-phase region, further

clarified by the contour plot of φ in the characteristic z-t plane in figure 3.9. We find that the

closer φ+ is to φc, the longer it takes for the interaction region to develop from step initial data.

This analysis suggests not only that our analytical construction accurately captures physically

important, critical values in φ+, but also that our predictions of the trailing edge speed s− from

Section 3.5.2 are consistent with the numerical simulations.

81



      

0.5

1

1.5

0 100 200

    

0.2

1

2

−50 0 50 100

         

0.7

1

1.3

50 150 250 350 450

0

1

φc ≈ 0.45

φb ≈ 0.64

φl ≈ 0.30

φ+

(a) (n,m) = (3, 0)

φ+
1

φb =
3

8

φc =
5

32

φl =0

            

0.5

1

1.6

100 250 400 550

       

0.3

1

2

0 100 200

    

0.1

1

4

−50 0 50 100

(b) (n,m) = (2, 1)

Figure 3.7: From top to bottom, magma DSWs in the forward propagating case, the backflow
regime before gradient catastrophe, and after DSW implosion. The solutions shown correspond,
from top to bottom, to (a) tf = {200, 150, 150}, (b) tf = {400, 200, 200}.
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Figure 3.8: DSW implosion. Evolution of the solution to eq. (3.1) with (n,m) = (2, 1), φ+ =
.1 < φc ≈ 0.16. The solution initially develops into a typical DSW with one-phase interior, but as
it evolves, the trailing edge compresses and longer waves from the interior overtake shorter waves
near the edge. Internal wave interactions (implosion) commence and the one-phase assumption
is no longer valid.
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z-t plane exhibiting modulated one-phase and two-phase behavior.

3.7 Summary and Conclusions

In summary, we have analytically determined DSW speeds and amplitudes for arbitrary initial

jumps and for physical values of the constitutive parameters. It is likely that these results

extend directly to non-physical parameter values as well. In figure 3.7, we see backflow and DSW

implosion for jumps beyond the catastrophe point φc, revealing internal wave interactions and

the need for modification of the one-phase region ansatz in the description of the DSW. Direct

analysis of the full Whitham system would be required for further study, a highly nontrivial

task for arbitrary (n,m). The significance of this work is its characterization of magma DSW

solutions, an open problem since observed in [109], its generalization to include the effects of bulk

viscosity on porosity oscillations, and, more generally in the field of dispersive hydrodynamics,

the new DSW dynamics predicted and observed. A regime which remains to be understood is

the flow of a magma into a “dry” region, i.e. φ→ 0. The original paper [109] conjectured that

the leading solitary wave would take on unbounded amplitude, implying physical disaggregation

of the multiphase medium. This paper has not explored the behavior of solutions as the jump

approaches this singular limit, and a viable alternative approach is yet to be proposed.

Aside from the novelty of dispersive shock behavior in viscously dominated fluids, this work

provides the theoretical basis with which to experimentally study DSW generation. Solitary waves
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in the fluid conduit system have been carefully studied experimentally [99, 83, 43], showing good

agreement with the soliton amplitude/speed relation (3.28) in the weak to moderate jump regime.

DSW speeds, the lead solitary wave amplitue, and the onset of backflow are all experimentally

testable predictions. Furthermore, the ability to carefully measure DSW properties in this

system would enable the first quantitative comparison of non-integrable Whitham theory with

experiment, previous comparisons being limited to qualitative features [46, 119, 20] or the weakly

nonlinear, KdV regime for plasma [116] and the weakly nonlinear, Benjamin-Ono equation

for atmospheric phenomena [89]. Due to its experimental relevance, the viscous fluid conduit

system deserves further theoretical study in the large amplitude regime. What are the limits of

applicability of the magma equation to this system? How do higher order corrections affect the

dynamics?

Finally, we have established new, testable criteria for the breakdown of the DSW solu-

tion method in equations (3.66), (3.68), (3.69), and (3.70). The additional four admissibility

criteria–loss of genuine nonlinearity, change in sign of dispersion at the solitary wave, linear wave

edges–apply to the simple wave DSW construction of any nonlinear dispersive wave problem.

Linear degeneracy and nonstrict hyperbolicity have been accommodated in various integrable

nonlinear wave problems [88, 56, 53]. Extensions to non-integrable problems are needed.

We thank Marc Spiegelman for introducing us to the magma equation and for many helpful

suggestions and fruitful discussion. We appreciate thoughtful comments from Noel Smyth. This

work was supported by NSF Grant Nos. DGE–1252376 and DMS–1008973.

3.8 Appendix – Numerical method

The magma equation was simulated using a sixth-order finite difference spatial discretization

with explicit Runge-Kutta time stepping. The initial condition (3.39) was approximated by a
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smoothed step function centered at z = 0

φ(z, 0) =
1

2

[
(1 + φ+) + (φ+ − 1) tanh

( z
4λ

)]
, (3.74)

where φ is the porosity and we assume φ(z, t) > 0 and φ+ ∈ (0, 1). The width λ was chosen to

be sufficiently large in comparison with the spatial grid spacing, typically λ = 10∆z for grid

spacing ∆z. This is reasonable since we are concerned with the long-time asymptotic behavior

of the solution and any effects of the initial profile’s transients will be negligible. We choose a

truncated spatial domain wide enough in order to avoid wave reflections at the boundary. It is

also convenient to consider the magma equation in the form (3.8), (3.9). In this form, we have an

ODE coupled to a linear elliptic operator L(φ)P = −(φn)z. We first solve for P by discretizing

and inverting L(φ) using sixth-order, centered differences. To obtain boundary conditions, we

note P = φ−mφt, and due to the wide domain, the function φ assumes a constant value at the

boundaries so P decays to zero near the boundaries. Hence we implement Dirichlet boundary

conditions on the compaction pressure. We then use the solution for P to update the righthand

side of eq. (3.8) and step forward in time using the classical, explicit 4th order Runge-Kutta

method. The temporal grid spacing was chosen to satisfy the Courant−Friedrichs−Lewy (CFL)

condition for the dispersionless limit, ∆t
∆z ≤ 1

n . Typically, we took ∆t = ∆z
2n .

The accuracy of our numerical scheme has been determined by simulating solitary wave

solutions on a background porosity φ = 1 as derived by [82], for the particular parameter regimes

(n,m) ∈ {(2, 1), (3, 0)}, used in our analysis. We numerically solve for φ from the nonlinear

traveling wave equation (φ′)2 = g(φ), i.e. eq. (3.24) with φ2 → φ1, and use this as our initial

profile. The ∞-norm difference between the numerically propagated solution φ∗ and the true

solitary wave solution φ is our figure of merit.

To compute the initial solitary wave profile, we implicitly evaluate

z − ct = I =

∫ A

φ

dũ√
g(ũ)

, z ≤ 0 (3.75)
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where A is the peak height of the solitary wave, and φ > 1. We then perform an even reflection

about the solitary wave center. The difficulty in evaluation of (3.75) arises from the square root

singularity in the integrand when ũ = A and the logarithmic singularity when ũ is near one. We

deal with this by breaking up the integral around these singular points as

I = I1 + I2 + I3 (3.76)

where

I1 =

∫ φ+µ

φ

dũ√
g(ũ)

, I2 =

∫ A−ε

φ+µ

dũ√
g(ũ)

, I3 =

∫ A

A−ε

dũ√
g(ũ)

, (3.77)

and µ > 0, ε > 0 are small and to be chosen. We evaluate I1 and I3 using Taylor expansions

up to first order and calculate I2 via standard numerical quadrature. The parameters µ and

ε are chosen so that the approximate error in evaluation of I1, I2, and I3 are less than some

desired level of tolerance, tol. Errors in I1 and I3 are due to the local Taylor expansion near the

singularities. The errors in I2 are due to the loss of significant digits in floating point arithmetic.

For 0 < ũ+ µ− 1� 1, the approximate rounding error in I2 is

fl(
1√

g(ũ+ µ)
) ≈ (

1

2
g′′(1))−

1
2 (ũ+ µ− 1 + εmach)−1, (3.78)

where fl(x) represents the evaluation of x in floating point arithmetic and εmach is machine

precision (≈ 2.2× 10−16 in double precision). To constrain the error so that it is less than tol,

we require

µ >

(
εmach

tol (2g′′(1))
1
2

) 1
2

− ũ− 1, (3.79)

and

ε >
A εmach

2 (−g′(A))
1
2 tol

. (3.80)
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To evaluate I1, we utilize a first order Taylor expansion of g(ũ) near ũ = 1, which gives

I1 ≈
(

1

2
g′′ (1)

)− 1
2
[
ln

(
ũ+ µ− 1

ũ− 1

)
− µg′′′(1)

6g′′(1)

]
. (3.81)

Then if we take the second term to be the approximate error and require it be less in magnitude

than tol, we find a second restriction on µ

µ <
6
√

2 |g′′(1)|
3
2 tol

|g′′′(1)| . (3.82)

A similar procedure for I3 leads to

ε <

(
6(−g′(A))tol

g′′(A)

) 2
3

. (3.83)

Hence, we choose ε and µ such that

ε =
A εmach

2 (−g′(A))
1
2 tol

, (3.84)

and

µ = max

0,

(
εmach

tol (2g′′(1))
1
2

) 1
2

− u− 1

 . (3.85)

We chose tol = 10−7 and found this to give a sufficiently accurate solitary wave profile.

Using this as an initial condition, we initiate our magma equation solver for a solitary wave

of height twice the background and a time evolution of approximately 10 dimensionless units.

We ran successive simulations for a range of decreasing ∆z values and ∆t chosen as described

above (note that simulations of fixed ∆z and a variable ∆t showed that the spatial grid was

the dominant source of numerical error). The convergence of the numerical error is described

by figure 3.10, where the solution converges at sixth order as expected. Note that there is an

alternative method for numerically calculating solitary wave solutions to eq. (3.1) for arbitrary

n,m in all dimensions [102].
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Figure 3.10: Convergence plots of the ∞-norm of the difference of the numerically evolved
solitary wave versus the true solution. In both cases, the time discretization ∆t is fixed and we
vary ∆z. The dotted lines indicate the desired sixth order convergence.

Based on these solitary wave validation studies, we typically use the conservative value

∆z = 0.05, though coarser grids were taken in small amplitude cases where the solutions

exhibited longer wavelength oscillations and had to propagate for much longer times. The final

time tf depended upon the jump φ+, with tf typically at least 1000 for smaller jumps and

tf ≈ 200 for larger jumps.

To calculate the leading edge speed s+ and its amplitude a+, we generally consider the

long time numerical simulations for the last two dimensionless units of time. We then find the

maximum at each fixed time and locally interpolate the discrete porosity function on a grid

with spacing 10−4∆z. This ensures we find the “true” numerical maximum and not just the

highest point on the grid. We then recompute the maximum of the interpolated porosities, and

the value at the final time is the amplitude a+. To find s+, we compute the slope of the least

squares linear fit to the function connecting the positions of the interpolated porosity maxima

versus their respective times. This is the leading edge speed.
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Chapter 4

Simple Wave DSW Admissibility for

Scalar Equations

The criteria for breakdown of the simple wave assumption required for validity of the Whitham-

El modulation theory [24], introduced in the previous chapter for the magma equation, are

generalizable to a broad class of scalar, third-order, nonlinear dispersive PDEs. Here we present

four new admissibility criteria for the Whitham-El method [69]. Similar conditions have also

recently been identified for application of the method for a class of bidirectional dispersive

hydrodynamic systems [47].

Consider a nonlinear, dispersive, scalar PDE of the form

φt + f(φ)x = (D[φ])x , (4.1)

where Dx is a third-order dispersion operator such that eq. (4.1) admits the real-valued linear

dispersion relation ω = ω(k,Φ), where k is the wavenumber and Φ is the background constant

state about which the system is linearized. Here we assume that for small k, i.e. for long waves,

the dispersion sign is negative, ∂2ω/∂k2 < 0, at least for k sufficiently small. This means we

consider solitary wave-led DSWs here for ease of presentation, though similar criteria hold in
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either case, with only changes in signs of inequalities. The equation must also admit a periodic

traveling wave solution with soliton and harmonic limits, as well as one additional, independent

conservation law from the equation (4.1) itself. Along with the conservation of waves equation,

this yields three independent conservation laws, as required by the Whitham-El procedure.

Finally, we assume the flux function in the dispersionless limit is convex, i.e. f ′′(φ) 6= 0, for the

parameter space of interest.

Recall that the DSW modulation theory under consideration is applicable for step initial

data, here taken without loss of generality to be centered about the x = 0 axis, of the form

φ(x, 0) =


φ− , x < 0

φ+ , x ≥ 0

. (4.2)

We assume φ± are real-valued scalars which satisfy f ′(φ−) > f ′(φ+) so that wave breaking

occurs. Applying modulation theory [125], the shock interior is described by a system of three

quasi-linear conservation laws, the Whitham equations, which can be written

qT +A(q)qX = 0 , (4.3)

where T = εt, X = εx, 0 < ε� 1 and A(q) is a real, 3×3 matrix with real eigenvalues λi(q) and

associated right eigenvectors ri(q). Note that here we formally introduce the small parameter

ε to rescale the time and space variables, but this is equivalent to considering long time and

space. If A has complex eigenvalues, the Whitham equations are of elliptic type and the system

possesses a modulational instability, cf. the case of the modulation equations for the focusing

nonlinear Schrödinger equation [32]. The modulation system variables q are taken to be the

physical wave variables describing the single-phase periodic wave solution,

q = q(X,T ) =
[
φ , k , a

]T
, (4.4)
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for a wave of amplitude a, wavenumber k, and mean height φ. The average φ is taken to be the

average value of the periodic wave over one wavelength. The GP boundary conditions for the

linear wave edge q− and solitary wave edge q+ are, respectively,

q− = [ φ− , k− , 0]T , q+ = [ φ+ , 0 , a+]T . (4.5)

Note that (4.3) is invariant under the variable rescaling X̃ = bX, T̃ = bT for any nonzero

scalar b. Given this scaling symmetry, it is natural to look for a self-similar solution of the form

q(X,T ) = q(ξ), ξ = X
T since solutions of this form preserve the symmetry of the original system

and the step initial data.

Substituting q(ξ) into (4.3) leads to

A(q) q′ = ξ q′ , (4.6)

where ′ indicates differentiation with respect to the self-similar variable ξ. Hence, this relationship

is satisfied if there exists a scalar α(q) such that (q)′ = α(q)ri(q) for some i and ξ = λi(q). Now

let (q)′ = α(q)r and λ(q) = ξ. We need to find α(q). Differentiating the expression λ(q) = ξ

with respect to ξ gives 1 = ∇λ · (q)′, where the gradient is taken with respect to q. Then

substituting q′ = αr into the previous expression yields

α(q) =
1

∇λ · r(q)
(4.7)

which holds only if ∇λ · r(q) is nonzero. Then if ∇λ · r 6= 0 for all (λ, r) pairs, we say the

conservation system is genuinely nonlinear (cf. [64]). We observe that λ (q) = ξ implies that the

characteristic speed λ must vary monotonically as the integral curve is traversed by any scalar

which parameterizes the integral curve connecting the left and right states of the shock interior.

Verifying genuine nonlinearity can be done by taking a total derivative of the eigenvalue with

respect to the parameterization. Note that strict hyperbolicity is also assumed in the construction
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of the simple wave solution, i.e. λ1 < λ2 < λ3 and all eigenvalues are real. Nonstrict hyperbolicity

(λi = λi+1 for some i) implies linear degeneracy (∇λi · ri = 0) [22]. The requirements of strict

hyperbolicity and genuine nonlinearity are necessary conditions to maintain the monotonicity

requirement for the existence of a self-similar, simple wave. A simple wave corresponds to a

self-similar solution with variation in only one characteristic field. Linear degeneracy or nonstrict

hyperbolicity leads to more complexity, i.e. self-similar variation in multiple characteristic fields,

see, e.g., [53]. Now we have the simple wave solution for the full modulation system in terms of

an eigenvector r(q) and eigenvalue λ

(q)′ =
r(q)

∇λ · r(q)
. (4.8)

The above discussion holds for quasi-linear hyperbolic systems in general, but we want to

apply this theory to the simple wave closure method for DSWs to understand what criteria

must be satisfied. Recalling the previous chapter, the difficulty in the study of DSWs for general

equations of the form (4.1) is that the resulting modulation system (4.3) is not diagonalizable.

Further, the Whitham-El method is meant to subvert the difficulty of explicitly constructing the

matrix A(q), so we wish to find easily verifiable criteria for the breakdown of the method using

only information from the two distinguished limits of the linear and solitary wave edges. We

focus our efforts here on the linear edge limit and present the analogous results for the solitary

wave limit, as the arguments follow similarly. In the linear edge, a = 0, limit, the modulation

system becomes (using the same notation from the previous chapter),

φ
k


T

+

 f ′ (φ) 0

∂ω/∂φ ∂ω/∂k


φ
k


X

= 0 . (4.9)

From [24], we know the eigenvalue/eigenvector pair corresponding to the DSW simple wave
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solution (namely, the middle characteristic of the full modulation system) is

λ =
∂ω

∂k
, r = [ 0 , 1 ]T . (4.10)

Further, we know that the relevant integral curve which connects the linear wave and solitary

wave edges of the DSW can be obtained by left multiplying eq. (4.9) by the left eigenvector

associated with the group velocity eigenvalue and looking for a solution of the form k = k
(
φ
)
.

Hence, the integral curve can be parameterized by φ.

From eq. (4.8), we see that the simple wave solution for the linear edge modulation system

satisfies

φ
′
= 0 , k′ =

1

∂2ω/∂k2
. (4.11)

Then if ∂2ω/∂k2 → 0 near k(φ−) = k−, i.e. if the sign of dispersion changes for some distinguished

wavenumber as we observed for the magma equation, then the modulation system undergoes

gradient catastrophe, a phenomenon described in the previous chapter as DSW implosion. Hence

for solitary wave led DSWs, implosion occurs if

∂2ω

∂k2

∣∣∣∣
φ=φ−,k=k−

≥ 0 . (4.12)

The identification of DSW implosion with a change in the dispersion sign (4.12) is a natural

extension to nonlinear waves of the criterion associated with the formation of caustics in

modulated linear wave theory [85].

We also require genuine nonlinearity to hold in the full system of modulation equations

across the entire DSW region. This can be verified in the neighborhood of the trailing edge

system. Genuine nonlinearity requires that the characteristic speed λ for the full modulation

system, which reduces to the linear wave group velocity near the linear edge, varies monotonically

across the shock region. By parameterizing the shock region by φ, we see that we can verify this

criterion near the linear edge for solitary wave led DSWs (speed must increase across the shock
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region from left to right, where φ decreases) by determining if

dλ

dφ

∣∣∣∣
q→q−

=
∂λ

∂k
k′ +

∂λ

∂φ
+
∂λ

∂a
a′
∣∣∣∣
q→q−

< 0 , (4.13)

where ′ here indicates differentiation with respect to φ. Recalling that the group velocity in the

weakly nonlinear limit is an even function of the amplitude, e.g. [66, 126], ∂λ/∂a → 0. Then

the condition for loss of genuine nonlinearity in the full modulation system, as verified at the

trailing edge by eq. (4.13), becomes

∂2ω

∂k2

dk

dφ
+

∂2ω

∂k∂φ

∣∣∣∣
(k=k−,φ=φ−)

≥ 0 , (4.14)

where dk/dφ is the characteristic ODE for the integral curve from [24] given by

dk

dφ
=

∂ω/∂φ

f ′
(
φ
)
− ∂ω/∂k

. (4.15)

Similar arguments for the solitary wave limit of the full modulation system yield the criterion

leading to implosion, in terms of the conjugate variables introduced in the previous chapter,

∂

∂k̃

(
ω̃

k̃

)
≤ 0 . (4.16)

Recall that while the trailing edge is described by a packet of nearly linear waves propagating

at the group velocity, the leading edge limit is defined by a solitary wave which propagates with

a phase speed. Similarly, loss of genuine nonlinearity of the full modulation system is realized in

the leading edge when

∂

∂k̃

(
ω̃

k̃

)
dk̃

dφ
+
∂

∂φ

(
ω̃

k̃

)∣∣∣∣∣
k̃=k̃+,φ=φ+

≤ 0, (4.17)

where

dk̃

dφ
=

∂ω̃/∂φ

f ′
(
φ
)
− ∂ω̃/∂k̃

. (4.18)
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While the criteria (4.12),(4.14),(4.16),(4.17) are relatively simple expressions to evaluate,

there remains the question of whether the distinguished wavenumber or conjugate wavenumber

is actually realized by the modulation system for a combination of upstream and downstream

states φ±. Motivated by the previous chapter, in which we observed that DSW implosion could

be predicted by identifying a global minimum in the trailing edge speed curve when plotted

as a function of the variable upstream φ+, we find that each of the breakdown criteria can be

verified graphically by plotting an appropriate DSW speed curve.

Consider the analysis of the previous chapter, where we fixed the upstream jump height φ−

and varied the downstream φ+. First, recall that the speeds are given by

s−(φ+, φ−) =
∂ω

∂k

(
k(φ;φ+), φ

)∣∣∣∣
φ=φ−

, s+(φ+, φ−) =
ω̃

k̃

(
k̃(φ;φ−), φ

)∣∣∣∣
φ=φ+

, (4.19)

where k(φ;φ+) indicates that the wavenumber is found by the solution of the characteristic

ODE, parameterized by a variable initial condition and similarly for the conjugate wavenumber,

though with a fixed initial condition. Then differentiating the two speeds, s± with respect to

φ+, yields

∂s−
∂φ+

= −∂
2ω

∂k2

dk

dφ

∣∣∣∣
φ=φ−

,
∂s+

∂φ+
=

∂

∂k̃

(
ω̃

k̃

)
dk̃

dφ
+
∂

∂φ

(
ω̃

k̃

)∣∣∣∣∣
φ=φ+

. (4.20)

Therefore, extrema in these speed curves correspond exactly to the criteria for DSW implosion

and loss of genuine nonlinearity, realized in the trailing and leading edges, respectively. In the

case where we fix the downstream φ+ and vary the upstream φ−, we find that an extremum

in the trailing edge speed curve s−(φ+, φ−) corresponds to loss of genuine nonlinearity, and an

extremum in the leading edge speed curve s+(φ+, φ−) corresponds to zero conjugate dispersion.

Hence, there are simple graphical criteria which allow one to identify breakdown of the Whitham-

El modulation theory for loss of genuine nonlinearity and DSW implosion. We now provide a

brief summary of the results, applicable to both positive and negative dispersion cases.

The criteria put forth by [24] for admissibility of the Whitham-El DSW closure method were
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generalizations of the Lax entropy conditions for classical shocks, in requiring that information

is transferred into the shock region, defined by the characteristic speed s− in the trailing edge

and s+ in the leading edge. For general equations of the form (4.1), these can be written in the

following manner:

1. s− < s+

This chooses the orientation of the DSW.

2. s− < c(φ−) and s+ > c(φ+), where c(φ) = f ′(φ) is the linear wave speed

This ensures the characteristics of the external dispersionless limit impinge on the internal

DSW characteristics.

Based on the discussion in this chapter, we add the following criteria which are necessary for

the self-similar simple wave assumption required by the modulation construction:

1. ∂2ω
∂k2

(
k(φ), φ

)∣∣∣
(k−,φ−)

6= 0 or ∂s−/∂φ+ 6= 0 ,

2. ∂
∂k̃

[
ω̃s
k̃(φ)

](
k̃(φ̄), φ̄

)∣∣∣∣
(k̃+,φ+)

6= 0 or ∂s+/∂φ− 6= 0.

These two criteria prevent gradient catastophe in the system of modulation equations.

3. d
dφ̄

[
∂
∂kω0(k(φ̄), φ̄)

]∣∣∣
(k−,φ−)

6= 0 or ∂s+/∂φ+ 6= 0 ,

4. d
dφ̄

[
ω̃s(k̃(φ̄),φ̄)

k̃(φ̄)

]∣∣∣
(k̃+,φ+)

6= 0 or ∂s−/∂φ− 6= 0

These two conditions indicate a breakdown in genuine nonlinearity of the full 3 × 3

modulation system.
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Chapter 5

Experiments on Large Amplitude

Solitary Wave Interactions in

Viscous Fluid Conduits

Up to this point, we have presented the theoretical basis for understanding nonlinear wave

phenomena arising in the viscous fluid conduit setting, a validated numerical solver for the

conduit equation and its generalization, and the appropriate relations between the physical

parameters which must hold for laboratory studies of the full system. Previous experimental

studies have provided validation of the theoretical amplitude-speed relation for single and

interacting solitary waves. Here we add to the conduit experimental literature, as well as to

the mathematical solitary wave community, by considering the geometry of the wave complex

formed at the height of a two solitary wave interaction. The contents of this chapter are based

on a manuscript which has been submitted for peer review [71]:

Lowman, N. K., Hoefer, M. A., and El, G. A. (2013) “Interactions of large amplitude solitary

waves in viscous fluid conduits,” under consideration for publication by the Journal of Fluid

Mechanics.
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5.1 Abstract

The free interface separating an exterior, viscous fluid from an intrusive conduit of buoyant, less

viscous fluid is known to support strongly nonlinear solitary waves due to a balance between

viscosity-induced dispersion and buoyancy-induced nonlinearity. The overtaking, pairwise inter-

action of weakly nonlinear solitary waves has been classified theoretically for the Korteweg-de

Vries equation and experimentally in the context of shallow water waves, but a theoretical

and experimental classification of strongly nonlinear solitary wave interactions is lacking. The

interactions of large amplitude solitary waves in viscous fluid conduits, a model physical system

for the study of one-dimensional, truly dissipationless, dispersive nonlinear waves, are classified.

Using a combined numerical and experimental approach, three classes of nonlinear interaction

behavior are identified: purely bimodal, purely unimodal, and a mixed type. The magnitude of

the dispersive radiation due to solitary wave interactions is quantified numerically and observed

to be beyond the sensitivity of our experiments, suggesting that conduit solitary waves behave

as “physical solitons.” Experimental data are shown to be in excellent agreement with numerical

simulations of the reduced model. Experimental movies are available with the online version of

the paper.

5.2 Introduction

Exponentially localized solitary waves arise in nature as a balance between the steepening effects

of nonlinearity and the spreading effects of dispersion. These fundamental, nonlinear coherent

structures exhibit an amplitude-dependent phase speed, often with larger waves propagating

faster than slower ones, e.g. [126]. A distinguishing feature of solitary waves in one-dimension is

the nature of the resulting interaction when a larger, trailing solitary wave overtakes a smaller,

leading wave, a scenario sometimes referred to as strong interaction of solitary waves [78]. A

classical model of weakly nonlinear solitary wave interactions is the Korteweg de-Vries (KdV)

equation. Unlike in the case of linear waves, where superposition applies, the nonlinear interaction
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is characterized by the larger wave decreasing in height and experiencing a forward shift in

position, while the smaller solitary wave increases in amplitude and experiences a negative

position shift [128]. The two solitary waves then emerge from the interaction with their initial

profiles and speeds restored. The absence of interaction-induced radiation is associated with

mathematical solitons and complete integrability of the governing equation, as is the case for

KdV. The exact two soliton KdV solution was derived [44] and the soliton overtaking interation

has been classified by amplitude ratio into three distinct regimes according to the qualitative

structure during the interaction [59]. When the ratio of the trailing and leading amplitudes is

sufficiently small, a bimodal structure persists through the interaction with the trailing wave

passing its mass forward to the leading wave. When the ratio is large, the interaction is unimodal,

with the larger wave engulfing the smaller one before emitting it. For intermediate ratios, there

is a hybrid state, in which the interaction begins with the larger wave absorbing the smaller one

and forming an asymmetric, unimodal mass. During the peak of the interaction, a distinctly

bimodal wave appears before the process undoes itself (see Fig. 5.2 for images of each interaction

type in the context of the model equation considered here). This classification scheme for KdV

depends solely on the ratio of the soliton amplitudes due to the existence of scaling and Galilean

symmetries. It has been confirmed experimentally in the case of weakly nonlinear, shallow water

waves [120, 21, 65]. Due to a capillary instability and small dissipation, solitary water waves are

limited to nondimensional amplitudes less than 0.78 [114, 3], thus water waves are a limited

system in which to probe large amplitude, conservative solitary wave interactions. Moreover,

experiments and numerical simulations of the water wave equations accessed amplitudes only up

to 0.4 [21]. Thus, to the authors’ knowledge, a systematic, quantitative classification of strongly

nonlinear solitary wave interaction behaviors in any physical system is lacking experimentally

and theoretically.

In this work, we extend the classification of overtaking interactions of solitary waves to a

nonintegrable, strongly nonlinear, dissipationless/dispersive wave equation, the so-called conduit

equation, cf. [68] and to experiments involving solitary wave interactions with nondimensional
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amplitudes up to ∼ 14. The conduit equation arises in the study of viscous fluid conduits, a

medium in which solitary waves have been studied experimentally in isolation [99, 83] and

post-interaction [43], but not during the interaction process. The viscous fluid conduit setting

is realized by introducing a steady source of buoyant, viscous fluid to a quiescent medium of

heavier, more viscous fluid. A stable, fluid-filled pipe is formed. Slow changes in the rate of

injection induce interfacial dynamics involving a maximal balance between buoyancy of the

intrusive fluid and the resistance to motion by the exterior fluid (see Fig. 5.1). The scalar,

nonlinear, dispersive conduit equation capturing the interfacial dynamics has been derived from

the full set of coupled fluid equations [68]. Unlike well-known models of small amplitude, weakly

nonlinear, interfacial fluid dynamics such as the KdV [57] and Benjamin-Ono [10, 84] equations,

the conduit equation is derived under long wave assumptions only, valid for large amplitudes

[68], much like the Green-Naghdi (or Serre, Su-Gardner) equations of large amplitude, shallow

water waves [101, 112, 38]. Moreover, large amplitude conduit solitary waves are asymptotically

stable [105], exhibit good agreement with experiments [99, 83, 43], and are robust, physical

features of viscous fluid conduit interfacial dynamics.

Using careful numerical simulations, we find that although the conduit equation does not

possess the KdV Galilean invariance, the qualitative Lax classification scheme from KdV theory

extends to the strongly nonlinear regime for physically realizable solitary wave amplitudes.

The type of interaction depends on the absolute amplitudes of the two waves, rather than

solely on their ratio. A scaling invariance of the conduit equation renders a unit solitary wave

background but cannot be used to scale individual solitary wave amplitudes. Our numerical

computations demonstrate small energy loss (10−2 relative change in the solitary wave two-norm)

due to interaction, also numerically observed in a closely related equation [7]. This confirms

the non-integrability of the conduit equation, as shown by the Painlevé test [42]. However, any

dispersive radiation following experimental solitary wave interaction was below the resolution of

our imaging system, a feature also observed in previous experiments [43]. This suggests that

while not mathematical solitons, conduit solitary waves are physical solitons. We support these
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numerical observations with quantitative interaction classification experiments, which are in

excellent agreement and represent the first observations of the mixed and unimodal interaction

types in viscous fluid conduits.

The importance of this work extends beyond the remarkable agreement between theoretical

and numerical predictions of conduit solitary wave dynamics and our experimental observations.

In particular, the overtaking interaction between two solitary waves can be seen as a fundamental

property of one-dimensional, dissipationless, dispersive hydrodynamics. As such, these observa-

tions further establish the viscous fluid conduit setting as a practically accessible experimental

and theoretical platform for future investigations into solitary waves, slowly modulated nonlinear

wavetrains, and their interactions, for which quantitative experiments in any physical system

are essentially lacking in the literature. Moreover, the fact that we do not observe qualitatively

new behaviors in the interactions of solitary waves beyond the weakly nonlinear regime is highly

nontrivial due to the lack of integrability and the increased dimensionality of the parameter

space. This suggests there could be some robustness or universality to the Lax categories for

wave equations which asymptotically reduce to KdV. There is also renewed interest in the nature

of two soliton interactions in integrable and nearly integrable systems in connection with the

theory of soliton gas (or soliton turbulence) [27]. Interactions falling into different Lax categories

have distinct effects on the statistical characteristics of soliton turbulence [87], and thus viscous

fluid conduits provide a promising setting for the experimental study of statistical properties of

incoherent soliton gases.

In the following section, we present the theoretical foundations for the classification of

conduit solitary waves and describe the experimental set-up. Section 5.4 presents the details of

our findings, and the manuscript is concluded in § 5.5 with a discussion of future directions.

5.3 Theoretical foundations

In this section, we give an overview of the theoretical foundations needed for classifying viscous

fluid conduit solitary wave interactions. We provide intuition regarding the physical effects that
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Figure 5.1: Diagram of the fluid conduit experimental system.
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give rise to interfacial dynamics, develop relevant numerical tools, and describe the experimental

set-up.

5.3.1 Derivation of the conduit equation and solitary wave solutions

A complete mathematical description of the viscous fluid conduit setting requires the consider-

ation of the full system of Navier-Stokes equations for the intrusive and exterior fluids, with

boundary conditions along a moving, free interface. To subvert this difficulty, an approximate

model governing the interfacial dynamics has been derived from physical principles [83, 99] and

via an asymptotic, multiple scales procedure [68] using the ratio of the viscosities as the small

parameter,

ε = µ(i)/µ(e) � 1 , (5.1)

where µ(i) indicates the (dynamic) viscosity of the intrusive fluid and µ(e) that of the exterior

fluid. Here we outline the asymptotic derivation and identify the additional key nondimensional

quantities and assumptions required to ensure model validity for comparison with experimental

parameters.

The steady injection from below of a buoyant, viscous fluid into a basin of a much more

viscous fluid evolves to form a vertically uniform, axisymmetric conduit, well-described by the

governing equations of Poiseuille-type flow [124]. In this unperturbed setting, the vertical velocity

of the intrusive fluid is driven by a vertical pressure gradient due to buoyancy, and the conduit

radius is set by the injection rate, assuming the velocity is O(ε) at the interface. In response to

perturbations of the injection rate, radial velocities are excited along the interface, inducing a

normal, viscous stress, which balances the pressure difference between the two fluids across the

boundary. This dominant balance is satisfied, provided the following assumptions hold: (1) the

vertical variation along the conduit wall is small relative to the radial, i.e. the vertical length

scale L is large relative to the radius of the unperturbed conduit R0,

L =

(
A0

8πε

)1/2

, A0 = πR2
0 , (5.2)
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(2) the two fluids are miscible with negligible mass diffusion across the interface, and (3) the

Reynolds number of the intrusive fluid, defined to be

Re =
ρ(i)UL

µ(i)
, U =

gA0∆ρ

8πµ(i)
, (5.3)

for intrusive fluid density ρ(i) and density difference ∆ρ = ρ(e)−ρ(i), is no larger than O(1). Under

these provisions, the vertical pressure gradient within the conduit has two contributions, one

from buoyancy and the other from viscous stress. This leads to the (nondimensional) volumetric

flux Q(z, t), with charactistic scale Q0, which can be written in terms of the nondimensional

conduit cross-sectional area, A(z, t) in the form

Q(z, t) = A2(z, t)

{
1− ∂

∂z

[
1

A(z, t)

∂A(z, t)

∂t

]}
, Q0 = A0U . (5.4)

Lastly, the flux is related to the evolution of the conduit area by appealing to the continuity

equation and imposing the kinematic boundary condition along the interface, yielding ∂tA(z, t) +

∂zQ(z, t) = 0, or the conduit equation

∂A(z, t)

∂t
+
∂

∂z

(
A2(z, t)

{
1− ∂

∂z

[
1

A(z, t)
.
∂A(z, t)

∂t

]})
= 0 . (5.5)

The conduit equation can be approximated by the KdV equation in the small amplitude, long

wavelength regime [?]. A key result for the present study is that eq. (5.5) is valid for long times,

t = o(ε−1) and large amplitudes A = o(ε−1), provided the aforementioned assumptions are

satisfied and ε is sufficiently small [68].

Conduit solitary waves, first considered by [97], are derived by introducing the ansatz

A(z, t) = A(ζ), ζ = z − ct, where c is the wave speed and A decays exponentially to a

background constant, here taken to be unity without loss of generality. Inserting this form of

the solution into eq. (5.5) and integrating twice yields the ordinary differential equation (ODE)
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defining the solitary wave profile A(ζ),

α0

(
dA

dζ

)2

= α1 + α2A+ α3A
2 + α4A

2 lnA ,

α0 =
1

2

(
2A2

s lnAs −A2
s + 1

)
, α1 = A2

s lnAs −A2
s +As , α2 = −2α0 ,

α3 = A2
s lnAs −As + 1 , α4 = −

(
A2

s − 2As + 1
)
,

(5.6)

where As is the total height of the solitary wave, i.e. background plus amplitude, and the

amplitude-speed relation is given by

c(As) =
2A2

s lnAs −A2
s + 1

A2
s − 2As + 1

. (5.7)

Note that the speed is monotone increasing in As, so larger solitary waves always move faster.

5.3.2 Numerical methods

To study the overtaking interaction of conduit solitary waves, we initialize A in eq. (5.5) with two

well-separated solitary waves. The trailing wave has amplitude atrail (a = As−1 is the amplitude

above the background) and the lead wave has amplitude alead. We take atrail > alead so that

ctrail > clead. The localized solitary waves are separated initially so that their superposition on a

uniform background of unity exhibits small, O(10−7), difference above background. The ODE

(5.6) is integrated as in [69] with tolerance below O(10−7). The dynamical solver for (5.5) has

been validated in [69]. The width of the truncated spatial domain is chosen so that, at all times,

the solitary waves are 10−8 close to the background state at the end points. The grid spacing

is chosen so that the individual solitary waves are well-resolved, with values selected from the

range ∆z ∈ [0.05, 0.5], with larger amplitude solitary waves requiring higher resolution. The

time step is ∆t = ∆z/2ctrail.
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5.3.3 Experimental set-up

The experimental apparatus, depicted in Fig. 5.1, used to study conduit solitary waves is an

acrylic cylinder with square sides 4 cm by 4 cm and a height of 90 cm, filled to a depth of

approximately 75 cm with a generic brand light corn syrup. To ensure miscibility, the intrusive

fluid was taken to be a 70:30 mixture of corn syrup and water, with food coloring used for

imaging. This set-up closely follows previous experiments by [83, 99, 43]. Injection of the intrusive

fluid through the base of the apparatus was precisely controlled by use of an automated syringe

pump, with the base injection rate 0.1 mL/min to create a vertically uniform, background

conduit. Solitary waves were formed by producing an additional localized pulse in the rate

of injection using a second syringe pump, connected to the apparatus via a y-junction, hence

affording precision control on the size of the solitary waves generated. Viscosities of the two

fluids were measured by a rotational viscometer, with 2% measurement uncertainty. Densities

were measured using a scale and graduated cylinder with uncertainty 1%. Nondimensional,

solitary wave amplitudes relative to background were measured by counting pixels across the

conduit from still frame images captured with a digital SLR camera. The dimensional radius of

the background conduit, held constant throughout the experiments, was measured by comparing

images of the background conduit with a grid of known size attached to the back wall of the

apparatus. To compute the correction due to the projection of the conduit fluid in the middle of

the apparatus onto the back wall, the grid was compared with a copy of the same grid submerged

within the filled apparatus before injection commenced. Errors due to imaging techniques and

measurement were estimated by measuring the diameter of the background conduit across a

range of images yielding a standard deviation of 2%, on the order of the viscosity measurements.

Interaction classification was achieved by high definition video recording of the interaction

using a second camera. Still frames of the interactions were then extracted from the video, and

downsampled using bicubic interpolation in the vertical coordinate by a factor of 0.1 ≈ ε1/2 in

order to enforce an aspect ratio of 1. Recall the long wavelength scaling in (5.2) sets an aspect

ratio of the vertical to radial lengths of order ε−1/2. This scaling significantly improves the
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Table 5.1: Key experimental parameters.

ρ(i) ρ(e) µ(i) µ(e) A0 U Re ε

1.23 g/mL 1.37 g/mL 0.789 P 83.6 P 0.017 cm2 0.118 cm/s 0.049 9.4× 10−3

fidelity with which we can classify the solitary wave interaction types. In cases where it was

difficult to determine the classification, edge detection algorithms were also used. Measured and

derived fluid properties are provided in Table 5.1.

A major difficulty previously encountered during experiments with this system was creating

and maintaining a straight, vertical conduit. We find the following protocol to be effective. The

injection line is prepared so that a small amount of air is left in the line just ahead of the

intrusive fluid. The remaining intrusive fluid has no air bubbles. A well-mixed volume of corn

syrup is poured down the side of the cylinder to fill, minimizing the entrainment of air. The

apparatus is allowed to equilibrate overnight. The experiment is initiated with steady injection at

a rate of 0.5 mL/min. First, controlled air bubbles are produced so that the initial penetration of

the intrusive fluid follows behind the air bubbles. This latter protocol is similar to the procedure

described in [43]. We find the background conduit to be straight to within 0.2◦ across 60 cm. It

merits mention that the conduit equation (5.5) has been shown to be valid for conduits canted

by O(6◦ ≈ ε1/2180◦/π) or less [68], which was not violated here due to our controlled initiation

procedure.

5.4 Overtaking interactions between strongly nonlinear solitary

waves

Using the theoretical, experimental, and numerical techniques developed in the previous section,

we now describe the classification of strongly nonlinear solitary wave interactions in the viscous

fluid conduit setting. Long time, high resolution numerical simulations in Fig. 5.2 exhibit the

three interaction categories, which are also found experimentally and displayed in a photo
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montage in Fig. 5.4. It is further shown that the dispersive tail generated by solitary wave

interactions is beyond the sensitivity of our experiments.

5.4.1 Classification of interactions: KdV

In the case of the KdV equation, i.e. the weakly nonlinear, long wavelength regime, properties

due to integrability have been used to classify the overtaking interaction analytically into three

distinct categories, based solely on amplitude ratio atrail/αL [59]:

1 <
atrail

αL
<

3 +
√

5

2
≈ 2.62 : bimodal ,

3 +
√

5

2
<
atrail

αL
< 3 : mixed ,

atrail

αL
> 3 : unimodal ,

(5.8)

where atrail and αL are the trailing and leading soliton amplitudes, respectively for t→ −∞. A

bimodal interaction denotes the case where the wave complex maintains a bimodal structure

throughout the interaction. This type of exchange interaction corresponds to a transfer of mass

from the larger, trailing solitary wave to the smaller, lead solitary wave. In contrast, unimodal

interaction involves the complete fusion of the lead wave by the trailing wave, followed by

fission into two waves. The intermediate, mixed-type interaction, which has a limited range of

amplitude ratios in the weakly nonlinear case, possesses both qualities, a unimodal structure

just before and just after interaction but a distinctly bimodal one at t = ti.

5.4.2 Classification of interactions: conduit equation

The numerical classification of strongly interacting solitary waves is achieved by dynamical

evolution of the conduit equation (5.5) given initial data consisting of a large, trailing solitary

wave of amplitude atrail, well separated from a smaller, leading solitary wave of amplitude alead.
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Figure 5.2: Example numerical solutions of the conduit equation eq. (5.5) exhibiting the three
types of overtaking interactions. The initial and final states, as well as the solution at the time
of peak interaction ti, are plotted on the spatial axis while the left and right insets correspond
to the solution just before and just after the peak interaction. The trailing amplitude is varied,
while the leading amplitude is fixed, alead = 1. (a) Bimodal interaction, atrail = 3.5. (b) Mixed
interaction, atrail = 5. (c) Unimodal interaction, atrail = 8.
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The geometry of the wave structure near the time of interaction, ti, defined to be

ti = arg min
t

{
max
z

[A(z, t)]
}
, (5.9)

is examined. The choice of ti is due to the nature of the interaction, in which the larger solitary

wave decreases in amplitude until t = ti before asymptotically approaching atrail long after the

interaction. This behavior is characteristic of KdV soliton interactions as well.

We allow the two solitary wave initial profiles to evolve long past the time of interaction

(tfinal ≈ 2ti). Once the numerical solution is obtained, the location and height of the two solitary

wave maxima are obtained for each time step by interpolating the solution onto a finer grid and

examining its derivative to find the local extrema. If only one maximum is found, the structure

at that time is considered unimodal. We classify interactions as bimodal if two maxima are

present throughout and as unimodal if the interaction possesses only one peak at t = ti. Note

that the distinguishing feature of the mixed interaction is the presence of a single maximum

just before and after the peak interaction time, but the reemergence of two distinct maxima at

t = ti. Example numerical simulations of eq. (5.5) of each type of interaction for a fixed αL = 1

and varying atrail are presented in Fig. 5.2.

The bifurcation diagram in Fig. 5.3 presents the key results of our classification analysis.

For a range of leading and trailing amplitude solitary waves, the critical amplitudes marking

phase transition are plotted. This was determined by fixing αL and monotonically varying atrail

in increments of αL/20 until the interaction type had transitioned from one type to another for

three consecutively larger values of atrail. The critical value then was taken to be the value of

atrail midway between the amplitudes corresponding to the last interaction of one type and the

first interaction of the new type. The x marks on the dashed vertical line along αL = 1 mark the

location of the simulations presented in Fig. 5.2. We find that due to a continuous transition,

the precise determination of type I-III requires high resolution simulations.

As pointed out earlier, the behavior of the conduit equation (5.5) is asymptotically equivalent
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to KdV in the small amplitude regime, which is captured in the zoomed inset of the phase

diagram as the conduit transitions limit on the KdV transitions for sufficiently small atrail / 0.5.

However, in this nonintegrable, strongly nonlinear equation where 2 < atrail < 15, the type of

interaction depends not on the amplitude ratio, but on the values of both amplitudes. This

is due to the existence of three distinct conduit amplitudes, the background and those of the

trailing and leading solitary waves. Only one amplitude can be scaled to unity using symmetry

of the equation, leaving two other free parameters (cf. [69]).

The complete, mathematical classification of KdV soliton interactions was enabled by an

explicit representation of the solution. Here, we do not have this luxury. Like in the integrable

setting, though, the structure of the interaction for every amplitude tested in our simulations

(which covers most of the physically relevant range) always falls into one of the three types.

Moreover, the mixed geometry is expected for a much wider range of amplitudes than in (7.8)

as the two initial waves grow larger.

5.4.3 Radiation emitted due to interaction

It is also of physical interest to consider the magnitude of the dispersive tail resulting from

interactions of conduit solitary waves, which are not exact solitons. Overtaking interactions

of solitary waves in nonintegrable equations have been shown via numerical simulations to

produce a small tail of linear dispersive waves following their interaction, e.g. [13, 79, 7], a

feature which if sufficiently large, could be examined experimentally. To address this issue, we

have run simulations of solitary wave interactions for a fixed αL = 1 and atrail varying between 2

and 8, so that it spans all three interaction types and also corresponds to the experiments in the

following section. The radiation was quantified in two ways using long time numerical evolution,

tfinal ≈ 3ti. The first is the change in the amplitudes of the solitary waves post-interaction

and the second is the change in the profiles. Here we find the maximum change in amplitudes

for both waves is consistently O(10−3). The change in the individual solitary wave profiles is

determined by centering a window about each individual wave, for both the initial and final
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times, and then determining the residual between the two profiles, here defined by the relative

two-norm difference, i.e. two-norm of the residual divided by the initial two-norm. This metric

reveals that the change in profiles from before to long after the interaction is not larger than

O(10−2) across the simulations examined. These findings are consistent not only with numerical

simulations of a closely related equation [7], but also with experimental findings from conduit

solitary wave interactions [43]. Moreover, the amplitude differences and residuals are beyond the

sensitivity of our experimental capabilities, which suggests that these conduit solitary waves are

approximately solitons, at least in a physical sense, hence we term them “physical solitons.”

5.4.4 Experimental observation of the three types of interaction

In Fig. 5.3, we plot the results of twenty-seven solitary wave interaction classification experiments.

The three distinct types predicted by numerical simulations of the conduit equation (5.5) are

readily observable in the full physical system, and their dependence on alead and atrail is

in excellent agreement with the phase diagram. Example images of an unscaled interaction

experiment and then scaled data used for classification are given in Fig. 5.4. While it is sometimes

difficult to distinguish between the regimes in the unscaled data, scaling the data recovers the

aspect ratio of the nondimensional coordinate system from the numerical simulations and allows

for proper determination. Typical examples of the three interaction types are shown. Movies in

both unscaled and scaled formats are available with the online version of the paper.

Regarding the agreement with numerical simulations, up to the 2% error in measuring

conduit diameters, the data all lie in the appropriate regions of the phase diagram. While

this agreement is compelling on its own, it is also possible to compare with the approximate

model breakdown criteria identified in [68]. The use of miscible fluids meets the negligible

surface tension criterion, and the contributions due to the outer wall are small because the

nondimensional radius of the outer wall satisfies Rwall ≈ 76 >> ε−1/2 = 10.3. The Reynolds

number criterion Re = 0.049� ε−1 = 106 for neglecting inertial effects is also satisfied. Lastly,

the breakdown of the multiple scales assumption occurs when the condition, A� 1/8ε ≈ 13.3,
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Figure 5.3: Phase diagram of the numerical and experimental classification of the overtaking
interaction between two conduit solitary waves as a function of the leading and trailing wave
amplitudes. The blue (darker) curve indicates the transition from bimodal interaction to the
intermediate/mixed type. The red (lighter) curve marks the transition from the mixed type
to unimodal. The inset represents the boxed portion in the weakly nonlinear regime showing
convergence to the KdV predictions (dashed lines). Crosses along alead = 1 correspond to
simulations in Fig. 5.2. The geometric shapes correspond to experimental classification.
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Figure 5.4: Data from interaction experiments. (a) Unscaled data showing the solitary wave
profiles from a typical interaction. (b) Examples of the three interaction types for scaled data used
in classifications. From top to bottom, (alead, atrail) are (1.27, 3.45), (1.53, 9.97), and (1.14, 10.01),
respectively. See the online version of the paper for movies of these experiments.
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is violated for large amplitude solitary waves [68]. We note that two of the trials lie beyond this

point, though they still fall in the appropriate classification region. There exists an independent

condition for model validity based on the introduction of inertial effects for sufficiently large

amplitude solitary waves, measured by an effective solitary wave Reynolds number [43], but

we find the multiple scales condition to be more restrictive in our case. Our results suggest

remarkably robust concurrence between the reduced, approximate interfacial equation and the

full two-fluid system.

5.5 Summary and conclusions

The qualitative characterization of large amplitude, pairwise solitary wave interactions in viscous

fluid conduits has been shown to permit geometric classification according to the three Lax

categories for KdV. Unlike the weakly nonlinear regime, however, the expected interaction type

depends on the wave amplitudes, rather than only their ratio, and the mixed unimodal/bimodal

interaction type is a more robust, readily observable feature than for surface water waves.

The long-time, large amplitude validity of the conduit equation (5.5) and its analytical

tractability make this two viscous fluid setting an ideal one for the study of nonlinear dispersive

waves. That nonlinear dispersive waves occur at all in a fully viscous setting is a nontrivial

observation, but that the reduced equation captures the geometry of interacting solitary waves

suggests the interfacial dynamics of viscous fluid conduits are, as predicted, approximately

one-dimensional and dissipationless at the time scales under consideration. Moreover, the

absence of dispersive radiation in the experiments implies that, while the conduit equation is not

completely integrable, its solitary waves practically interact elastically. These results encourage

future experimental studies on nonlinear coherent structures, such as rarefaction waves, slowly

modulated wavetrains (dispersive shock waves) and their interactions.
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Chapter 6

Experiments on Dispersive Shock

Waves in Viscous Fluid Conduits

The culmination of this dissertation in the context of the viscous fluid conduit setting is the

experimental validation of the Whitham-El modulation theory predictions for DSW speeds and

leading edge amplitude. Here we present details of the experimental method for studying the

shock problem in the full fluid system. We note that the experimental results presented in this

chapter are preliminary, and we have plans for ongoing investigations to collect new data. While

we acknowledge several sources of experimental error, it should be noted that the nonlinear wave

averaging applied to the asymptotic model yields excellent agreement despite the difficulties.

To improve upon the results, more trials will be run, and the data collection process will be

improved. The contents of this chapter will form the basis of a submission to a peer-reviewed

journal.

6.1 Abstract

Shock waves in classical fluids arise when the smoothing effects of viscosity mediate gradient

singularity formation, resulting in sharp, localized fronts across which energy is dissipated to
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smaller scales. In many quantum hydrodynamical settings – e.g. superfluids, cold plasma, and

nonlinear photonics, – the effects of viscosity are negligible and an alternate regularization

mechanism exists in which nonlinear steepening is regularized conservatively by the spreading

effects of dispersion. While such dispersively regularized shock waves have been identified exper-

imentally and observationally in a number of physical systems, a comprehensive, quantitative

characterization of their properties in a controlled laboratory setting is lacking from the liter-

ature due to their challenging nature both experimentally and theoretically. Here we present

a model system for the careful study of strongly nonlinear, truly dissipationless, dispersive

hydrodynamic structures: viscous fluid conduits. Though counterintuitive that the evolution of

viscosity-dominated fluids could admit superfluid-like characteristics, we show that this system

is both analytically tractable and ideal for high precision, quantitative experiments via a simple,

highly repeatable tabletop set-up. This enables us to show agreement between mathematical

theory and quantitative measurements of the speed and amplitude for the dispersive shock

wave front across a range of disturbance amplitudes, as well as validate qualitative features

of the DSW trailing edge. This represents the first such systematic, experimental inquiry into

validating DSW theory for the initial step problem.

6.2 Introduction

While dissipative shock waves are characterized by a smooth, rapid transition, the dispersive

regularization of nonlinear steepening takes on a strikingly different structure. In dissipationless,

superfluid-like systems, a universal mechanism of shock regularization manifests as wave breaking

is resolved by the formation of a rapidly oscillating, slowly varying envelope of amplitude-

ordered, nonlinear waves connecting two distinct states. This modulated wave train, known

as a dispersive shock wave (DSW), is characterized by a large amplitude soliton at one edge

and a small amplitude packet of nearly linear waves at the opposite edge and represents a

universal structure for shock formation in approximately conservative, nonlinear media. Broad

interest in DSWs has been stimulated in recent years by their observation across a range of

119



classical and quantum mechanical systems, with examples from ion-acoustic plasma (collisionless

shocks) [115], superfluids (quanutm shocks) [23, 46, 77, 52], nonlinear optics [93, 119, 20], and

geophysical fluids (undular bores) [89, 100], but a comprehensive, quantitative comparison

between the mathematical theory of DSWs and experimental measurements for the most basic

shock problem, the evolution of an initial step in one spatial dimension (1D), has proved elusive.

In many of these systems, qualitative agreements between numerical simulations of the governing

equation and the experimental observations has been demonstrated, but the only quantitative

comparisons exist for weakly nonlinear, small amplitude idealized models of wave propagation

[116] that have limited ranges of physical applicability. The most notable reason for the lack of

experimental validation is the absence of a dissipationless, effectively 1D physical system whose

experimental study lends the fidelity needed to create a discontinuity of arbitrary amplitude

and whose physical properties admit an analytically tractable approximate model valid for long

times and large spatial extents. In this manuscript, we present a fundamental fluid system, the

vertical evolution of a buoyant, viscous fluid within a medium of dense, much more viscous fluid,

which has precisely these qualities. We use this system to perform the first careful comparisons

between strongly nonlinear DSW theory and experimental measurement for well-developed shock

waves across a range of amplitudes for the most fundamental shock problem, the initial step.

The fluid setting of interest is realized by injecting from below an intrusive viscous fluid

into a quiescent basin of dense, highly viscous exterior fluid of similar composition. If the rate

of injection is steady, a vertically uniform, fluid filled pipe, or conduit, of the intrusive fluid

is formed [124]. When the rate of injection is slowly varied, however, characteristic dispersive

hydrodynamic wave patterns, i.e. solitons and DSWs, are formed along the free interface between

the two fluids. The approximate model governing the dynamics of the perturbed system can be

written in terms of a single, scalar quantity, the cross-sectional area of the intrusive conduit, A,

as a function of the vertical coordinate, z, and time, t, in the nondimensional form

∂A

∂t
+
∂

∂z

{
A2

[
1− ∂

∂z

(
1

A

∂A

∂t

)]}
= 0 . (6.1)

120



Initially proposed as a simplified model for the vertical ascent of magma along narrow, viscously

deformable dikes in the upper mantle [75, 97], the conduit equation was first derived by assuming

small variation in the pipe area from the uniform background state and physically intuiting an

interfacial force balance between the nonlinear advective effects of the buoyancy of the intrusive

fluid and the, ironically, nonlinear dispersive effects of the viscous resistance to motion of the

exterior fluid [99, 83]. More recently in an effort to characterize wave features of the fluid system,

the model equation was rederived systematically from the full set of coupled fluid equations using

a perturbative, multiple scales procedure with the intrusive to exterior fluid viscosity ratio as

the asymptotically small parameter, ε, and shown to be valid for long times, T = o
(
ε−3/2

)
, and

large amplitudes, a = o (1/8ε), provided modest physical assumptions on the basin geometry,

background velocities, fluid compositions, and characteristic aspect ratio hold [68].

The model equation has been verified in the case of solitons, a robust experimental feature

of the system created by producing a localized pulse in the injection rate, with (nondimensional)

amplitudes as large as ∼ 14, by showing favorable comparison between the theoretical amplitude-

speed relation and that of experimental solitons [99, 83]. Follow-on experiments established

agreement between experimental wave profiles and demonstrated that their interactions are

approximately elastic with their profiles asymptotically restored following collision [43] and

exhibited agreement with numerically predicted collision geometries [71]. Here, we extend the

existing nonlinear conduit wave studies to conduct carefully controlled experiments on conduit

shock waves, created by a sustained increase in the background rate of injection. Although

previously interpreted as periodic wave trains (e.g. [99]), the increased injection rate results

in a large trailing, vertically uniform conduit connected to a smaller, leading conduit by a

dynamically expanding, modulated periodic wave train with a large amplitude leading edge and

diminishing amplitude tail. Utilizing the theoretical and numerical results for conduit DSWs

[69], we conduct the first systematic comparison of experimental measurement of the key DSW

features (leading amplitude and speeds) with nonlinear wave modulation theory for DSWs

emanating from step-like data [125, 40, 24].
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6.3 Theoretical Background

Here we present a summary of the theoretical predictions for key, experimentally measurable

properties of conduit DSWs, as derived in [69] for a generalized form of the conduit equation

(6.1). The idealized shock problem under consideration here is eq. (6.1) with step-initial data of

the form

A(z, 0) =


A− , z < 0 ,

1 , z ≥ 0 ,

(6.2)

where A− > 1 to ensure wave breaking. The downstream conduit area can be normalized to unity

without loss of generality due to the existence of a scaling symmetry of the conduit equation

[69]. Note that the initial value problem considered here is slightly different than the one in [69]

in that we take the amplitude of the trailing conduit to be variable, rather than the leading.

This is because in the experiments, we fix a background conduit area and then variably increase

the injection rate to create a step.

Due to the lack of complete integrability of the conduit equation, the appropriate framework

for deriving analytical information for the properties of DSWs for the step initial value problem

is the Whitham-El DSW modulation theory, which results in closed-form analytical expressions

for the speeds of the trailing and leading edges, s±, of the wave envelope and its leading wave

amplitude, a+ [125, 40, 24]. The results of Whitham-El theory for the conduit equation were

compared with numerically simulated DSWs and shown to be in good agreement up to a critical

step-height, Ac = 6.4. The theoretical speeds are given explicity from

s− = 8 + 3A− − 3
√
A− (A− + 8) , (6.3)

s+ =
√

1 + 8A− − 1 . (6.4)

The amplitude of the leading edge is obtained by assuming the first oscillation in the wave train

is approximately a soliton propagating on a background of unity. Then using the predicted speed,
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the amplitude can be solved from the implicit amplitude-speed relation for conduit solitary

waves

s+ =
2a2

s ln as − a2
s + 1

a2
s − 2as + 1

, as = a+ + 1 . (6.5)

A physically interesting regime appears when A− > Ab = 8/3, because the analytical theory

predicts the DSW will expand downward, despite this being a unidirectional model for upward

wave propagation. This results from the property that the trailing edge is approximately a

coherent packet of linear waves, and thus the DSW edge propagates according to the linear wave

group velocity evaluated at an appropriate wavenumber. The importance for the present study

is that it is difficult to measure a group velocity, but backflow gives us a qualitative feature with

which we can validate the predictions in the trailing edge. Additionally, backward propagation

of waves could induce undesired boundary effects near the point of injection, so these need to be

accounted for properly by the experimental set-up. The details of converting the initial value

problem into a boundary value problem to prevent corruption of our modeling assumptions will

be discussed below.

6.4 Experimental Procedures

In this section, we cover the details of the experimental set-up and data processing involved in

measuring DSW properties, as well as the physical and mathematical considerations required for

validating key modeling assumptions and prescribing appropriate perturbations via injection.

6.4.1 Laboratory Set-Up and Fluid Properties

The experimental apparatus, set-up, and execution closely follows [71], but a larger, square

cylinder apparatus, with dimensions 5.08 cm × 5.08 cm × 182.88 cm, has been used here to

allow for longer propagation distances. The device is filled to a level of approximately 150 cm

with generic brand light corn syrup. The intrusive fluid is a dyed, diluted mixture of corn syrup

and water, with an approximate ratio of 70:30 corn syrup to water. Viscosities are measured
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using a rotational viscometer with 2% accuracy and densities with a graduated cylinder and

balance, yielding an uncertainty of 1%. The measured fluid properties are reported in Table 6.1.

The experiments are initiated by the formation of a straight background conduit of constant

area using an automated syringe pump set to a constant injection rate and an initiation procedure

similar to previous experiments. We note that this process in the larger apparatus can take

several hours, as the system must equilibrate and transient dynamics must fully propagate out

of the system. The background injection rates used in the experiments here varied between 0.1

and 0.3 mL/min. Conduit DSWs are created by programming boundary data into a second

syringe pump, which results in the formation of a step-like state in the system’s interior, far

from the nozzle in order to minimize boundary effects. The theoretical basis for relating the

syringe injection rate to the conduit area and deriving the appropriate DSW boundary condition

is described below.

High resolution images using digital SLR cameras, with the aid of a macro lens, are used to

collect data on the speed and amplitude of the leading edge of the DSW, as well as on the size of

the step. We are able to capture approximately 10 centimeters of vertical propagation distance,

while maintaining high resolution of the conduit. Measurements are achieved by placing one

camera near the bottom of the apparatus to measure the initial conduit area and the area after

the step is created, and another camera roughly 120 cm up the apparatus to take images of the

leading wave as it passes the view of the camera. In general, we are able to take four images of

the DSW front as it passes the top camera. Nondimensional camera distances are converted

to physical units by use of a 1 mm square grid on the back of the tube. Errors due to the

projection of the conduit onto the back wall are accounted for by comparing the known width

of the nozzle with its measurement found using the grid. This gives us an effective refraction

scaling of approximately 1.036. Distance measurement errors were previously estimated to be

not more than 2% [71]. We also collect data on the qualitative structure of the DSW interior and

its behavior near the trailing edge. To achieve this, we take still-frame images of the full device

using a third digital SLR camera equipped with a standard lens during each experiment every
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Table 6.1: Characteristic fluid properties of the experimental system.

ρ(i) (g/mL) ρ(e) (g/mL) µ(i) (P) µ(e) (P) ε

1.24 1.38 0.77 67.69 1.14×10−2

5 seconds. Because we vary the area of the background conduit, we must verify the modeling

assumptions in [68] for each experiment, as the characteristic lengths and velocity depend on

the background. In the following section, we describe the procedure for processing the images

and obtaining actual DSW properties.

6.4.2 Image Processing and Measurement Extraction

Data collected for each DSW experiment is in the form of raw RGB images, which we must

then process and extract speed, amplitude, and other qualitative data. We first recall that the

theoretical model is derived by assuming the physical vertical coordinate is stretched relative

to the radial direction by a factor of approximately ε−1/2. In analyzing images, it is beneficial

to impose this theoretical aspect ratio on the physical images by either upsampling the radial

direction by a factor of ε−1/2, taken to be approximately 10 in practice, or downsampling

the radial direction using standard interpolation algorithms. When measuring amplitudes or

obtaining qualitative propagation information, it is best to downsample the vertical direction

to leave the radial unchanged, while measuring vertical propagation speeds better lends itself

to upsampling the radial direction. In all cases, the images are rotated so that the conduit is

vertical. Here we briefly summarize our methods for image processing, starting with the macro

lens images and then the lower resolution, full conduit images.

From the high resolution images, we wish to extract dimensional (in cm) conduit widths

(and thus areas) and speeds (in cm/s). We systematically process each raw image using standard

tools in Photoshop software in the following manner. In the raw images, the conduit background

is typically an off-white color with the grid along the background, and the conduit fluid takes a

green tint. Our goal in processing is, while preserving the physical boundary between the fluid
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and the grid, to heighten the contrast between the two colors. We convert the image to the Lab

color spectrum, in which the middle ‘a’ channel represents, roughly, reds and greens. We then

use the curves tool in Photoshop in the ‘a’ channel to increase the contrast between the conduit

fluid (i.e. increase the color tone of the green fluid, making it greener) and the background grid

(by decreasing the color tone, or increasing its redness). This creates a sharper contrast between

the two objects, making it easier to delineate the boundary. To measure wave amplitudes, we

downsample the vertical direction by a factor of ten to ease the identificaction of the peak of the

wave. To measure the speed of the first waves in the wave train, we use a sequence of images

taken from the top camera, upsampled in the radial direction. In each image, we identify the

vertical position of the wave peak and record the time the image was taken, which the camera

reports to hundredths of seconds.

The lower resolution images of the full conduit are used to obtain qualitative information

about the quality of the trial and structure of the shock, and could be used in the future to

measure leading wave speeds over longer propagation distances. We process the collected images

by cropping out the extraneous information, using the curves feature to darken the conduit

fluid relative to the background, and downsampling the vertical dimension to keep the file sizes

manageable. We do not find the conversion to Lab color to be helpful in this case, so we use the

standard RGB color spectrum. With the time sequence of images for each trial spaced every 5

seconds, we assemble the still-frames into a movie, from which we can readily obtain qualitative

information.

To compare physical speed and amplitude measurements with theory, we normalize the

leading conduit area to one and divide all other measurements by this amplitude. For the

speeds, we normalize by the characteristic velocity U , reported in, e.g., [68]. U depends on the

background conduit area, here taken to be the leading conduit, so we compute its area using

the images of the conduit just ahead of the leading wave in order to minimize the effects of any

conduit size variability in the vertical direction. More is said about this variability below.
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6.4.3 Comments on the Experimental Data

The results presented here come from 11 DSW experimental trials. As stated in the preface to

this chapter, the experimental data here is preliminary and steps will be taken in subsequent

investigations to remedy the issues and collect more data. From these data, we not only studied

DSWs, but also examined several key physical properties about the system which we explain

below. We found that only 7 out of the 11 trials resulted in a reasonable approximation to a

DSW, so we report on only those trials below but use all 11 in consideration of other system

properties. Here we want to briefly comment on the issues we encountered.

The most significant problem in these experimental trials was the issue of longer equilibration

times due to the larger apparatus and more complicated nozzle device. This created issues with

maintaining a straight, steady conduit, which were not previously encountered when using a

smaller apparatus. Additionally, the time we allowed between experiments was likely too short.

In studies of solitary waves, the disturbance to the medium is highly localized in time and space

and thus its effects are minimal once it reaches the top of the apparatus. DSWs, on the other

hand, are large scale, large amplitude features, and it takes tens of minutes for the system to

equilibrate following a DSW trial run, which was an issue at the beginning of the data collection.

Other issues arose due to lighting, the main one being glare from overhead lights appearing

in the images. In future experiments, we will light the conduit from the back using low heat,

LED lights. Lastly, due to many of the issues described here, there were not enough quality

experimental trials conducted.

Despite these issues, we still find the results of these experiments to be meaningful, and

observe good agreement between theory and experiment for DSWs, as well as for the issues

discussed below.

6.4.4 Considerations for the Bottom Boundary

A major difference in the theoretical conduit model and the full physical system is the presence

of a bottom boundary in the experimental system, whereas the idealized construction considers
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the dynamics on an infinite vertical line. This introduces a number of challenges, but here we

discuss two primary ones and their resolution. One is that the fluid system, near the bottom

boundary undergoes a transient period of equilibration, during which the pipe size set by the

nozzle radius and the injection rate relaxes to the size set by the fluid system. This initial

transient state is neglected by the model, but it is important for experimental control to be

able to predict the size of the conduit resulting from a particular injection rate. The second

consideration is in translating the theoretical results, derived by considering an initial value

problem for the conduit equation on an infinite line, to a physical system of finite spatial extent

which allows a boundary condition and not an initial condition. There is also the issue that our

modeling assumptions account for only long wavelength perturbations of the conduit area, and

not the fast transitions which result from a rapid, sustained increase in the injection rate, which

is perhaps the obvious method for creating a step in the conduit area. The goal is to prescribe

slowly varying boundary data, via the syringe pump, which results in gradient catastrophe at

a fixed distance from the boundary. These two boundary problems will be considered in this

section, and their theoretical resolution will be considered in the context of the experimental

data.

Relating the Injection Rate and the Conduit Diameter

First, we relate the injection rate from the syringe pump to the area of the resulting conduit

above the equilibration region. Note that the quantities in this discussion are in dimensional

form. The equilibrium conduit diameter is the directly measurable experimental quantity, so

we seek a relation between the injection rate, q0, and the conduit diameter D0. Because we are

dealing with viscous fluids of low Reynolds number, it is assumed that the area of the conduit,

A, if the injection rate is held constant, is a function of only the vertical variable z within the

adjustment region. Then assuming the region has a characteristic vertical length δ, conservation

of conduit fluid implies

ρ(i) d

dt

∫ δ

0

∫
A(z)

dṼ = q0 −Q0 , (6.6)
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where q0 is the rate of injection set by the pump and Q0 is the volumetric flow rate in the

conduit above. Implicity, we are assuming the nozzle flow rate is equal to the injection rate at

the syringe pump, which is reasonable for incompressible fluids, though we consider this further

below. Hence, the injection rate is related to the equilibrium conduit by the relation

q0 = Q0 . (6.7)

The dependence of Q0 on the conduit diameter is the basis of the theoretical model and is given

by

Q0 =

[
πg
(
ρ(e) − ρ(i)

)
27µ(i)

]
D4

0 . (6.8)

Substituting eq. (6.7) into eq. (6.8) yields the desired power law relating the injection rate to

the conduit diameter, complete with an explicit prediction for the leading coefficient

D0 = αq
1/4
0 , α =

[
27µ(i)

πg
(
ρ(e) − ρ(i)

)]1/4

. (6.9)

It is important to note that the power law relationship is valid only when the injection rate is

constant, and additional considerations need to be taken for a variable rate.

The relation (6.9) was compared with data taken from 22 different conduit measurements from

DSW experiments. Using the experimental parameters reported in Table 6.1 and measurements

of conduit diameter in cm and injection rate in mL/min, the theoretical value of the coefficient is

α ≈ 0.248 min·cm with lower and upper bounds of 0.237 and 0.263, respectively, when accounting

for the maximum uncertainties associated with measuring the fluid densities and viscosities. A

comparison between the results of the experimental trials and the theoretical result is given in

Fig. 6.1.

It is apparent from the figure that eq. (6.9) is systematically underestimating the diameter

of the conduit resulting from a given injection rate, which could be due to a number of reasons.

One is the uncertainties involved in measuring the fluid properties, though we have attempted
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to account for this by giving error bars. Another is that one of our modeling assumptions could

be violated, most likely that the injection rate is not identical to the flow from the nozzle. This

could be due to small amounts of air in the lines connecting the syringe to the nozzle, friction

in the line and/or nozzle apparatus due to the walls or possibly viscous residue left behind by

the fluid. Lastly, there could be some uncertainty in the programmed injection rate and the

actual rate of injection carried out by the pump. As a result, we also report the results of fitting

the data to a power law of the general form D0 = Cq0.25
0 using nonlinear least squares, also

plotted on Fig. 6.1. The resulting coefficient is C ≈ 0.27, just higher than the upper bound

of our theoretical prediction. The data was also fit to a general power law with undetermined

coefficient and nonlinear power, but the power determined by the fitting was 0.24, so we took

this to imply that the 1/4 power predicted from theory is the correct relationship.

Boundary Data

The other particularly important boundary issue with which to contend in studying DSWs in

the experimental conduit system is in properly prescribing slowly varying boundary data in

order to study the step problem. Because our model neglects boundary effects and is valid only

for slow vertical variations, we need to find boundary data which results in wave breaking far

above the nozzle. Note that in this discussion we revert to dimensionless variables for ease of

presentation. We also assume that the above, theoretically-derived power law gives a reasonable

approximation for translating syringe pump data, even data which varies slowly in time, into

conduit area data, though this could be a source of improvement in future experiments. In

referring to boundary data, we mean the boundary above the adjustment region where the

conduit equation applies, and assume that we produce the desired boundary by programming

the injection rate according to eq. (6.9).

Since wave propagation along the conduit is unidirectional (though we identified above the

possibility of backflow for sufficiently short waves), the theoretical initial value problem with

localized variationposed on the whole real line and the experimentally relevant initial/boundary
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Figure 6.1: Comparison of observed conduit diameter plotted against the log of the injection
rate. The blue line is the result of a nonlinear least squares fit to the experimental data, assuming
a nonlinear power law with exponent 1/4. The lighter dashed lines above and below the solid
black prediction curve from theory represent error bars due to the uncertainty in measuring the
fluid properties.
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value problem posed on the half-line can be related. We wish to study the results of boundary

data which produces a large, trailing conduit of uniform area connected to a leading, smaller

conduit of uniform area. However, the conduit equation is valid only for slowly varying conduits,

so the immediate choice of simply increasing the pumping rate via a step violates the model.

Moreover, we have observed in experimental trials that this rapid transition results in a leading

wave which does not appear to be connected to the DSW. To resolve this issue, we have devised

two approaches, one which we implemented in our DSW experiments and the other which could

be implemented in the future.

The idea behind both methods is to use the conservative nature of the conduit equation (or

more generally of dispersive hydrodynamic systems) to consider the step problem in negative

time. Our goal is to have a profile which is approximately a step, centered at z = z0, with z0

well above the nozzle, which breaks at t = tb > 0, i.e.

A(z, tb) =


A− , z < z0 ,

1 , z ≥ z0 .

(6.10)

Recalling the general modulation theory approach for dispersive shocks [24, 69], outside of the

DSW interior, the dynamics are well described by the zero dispersion limit of the conduit equation.

Note that the hyperbolic dispersionless limit of the conduit equation has finite propagation

speed. This is not, in general, true of the full equation, which is nonlocal and thus has “infinite”

propagation speed, but here we leverage the finite propagation speed in the dispersionless limit

as a long wavelength proxy for the full equation. By examining the characteristic (z, t)-plane,

one observes that in reversed time, τ = tb − t, step-initial data of the form (6.10) leads to

a rarefaction wave. Thus the idea is, given a desired point of breaking in the interior of the

experimental apparatus z0, use eq. (6.10) as an initial condition and propagate backwards in

time until Ã(0, tb(z0)) = 1. This gives a solution A(z, t) = Ã(z, τ). Then the evaluation of that
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solution at z = 0 yields the appropriate boundary condition, namely

A(0, t) = Ã(0, τ) , τ ∈ [0, tb(z0)] . (6.11)

One can derive an analytical boundary condition by considering only the zero dispersion

limit of the conduit equation, recalling that a rarefaction solution to a dispersive hydrodynamic

equation is well-described by the long wavelength reduction. After the change of variables

τ = tb − t, Ã(z, τ) = A(z, tb − τ), the dispersionless conduit equation becomes

Ãτ − 2ÃÃz = 0 . (6.12)

Seeking a self-similar rarefaction solution of the form Ã(z, τ) = f(ξ), ξ = (z − z0)/τ , leads to

the following solution

Ã(z, τ) =


A− ,

z−z0
τ < −2A− ,

z0−z
2τ , −2A− ≤ z−z0

τ ≤ −2 ,

1 , z−z0
τ > −2 .

(6.13)

It still remains to choose, given a desired z0, the value of tb so that Ã(0, tb(z0)) = 1 and

Ã(z, tb(z0)) > 1 for all z < 0. This is achieved by determining the amount of time required for

the trailing edge (in negative time) of the rarefaction wave to reach the origin, which yields a

breaking time

tb(z0) =
z0

2
. (6.14)

Using this value for the breaking time and evaluating the rarefaction solution at z = 0 for

t ∈ [0, tb(z0)], we have the approximate boundary condition, as predicted by using only the

dispersionless limit,

A(0, t) =


z0

z0−2t , 0 < t < z0(A−−1)
2A−

,

A− , t > z0(A−−1)
2A−

.

(6.15)
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The appeal of using only the dispersionless limit is that one arrives at an analytical, explicit

representation for the boundary condition (6.15) and breaking time (6.14) as a function of only

the breaking point z0. The issue is that, while the zero dispersion conduit equation well describes

a rarefaction solution for the full conduit equation, there are known differences, such as the

formation of small amplitude dispersive waves near the edges of the rarefaction. An alternative,

and more precise, method for deriving the desired boundary condition is to use the full conduit

PDE and run numerical simulations in negative time (simply change variables from t → −t)

starting from a smoothed initial step of the form (6.10). The boundary condition and breaking

time are then derived numerically, following an identical procedure to the one above for the

zero dispersion equation, but it results in a numerically defined solution, rather than an explicit

one. There are, however, several considerations to take into account when implementing this

procedure. One is that a sharp step cannot be simulated numerically, so some smoothing must

be implemented. This leads to longer breaking times but smoother boundary data. The second

is the issue of the formation of small amplitude oscillations due to the inclusion of the nonlinear

dispersion term. We have observed that these waves tend to develop at the trailing edge of the

rarefaction wave, so it is difficult to define when the trailing edge reaches the origin to define

the breaking time. As an approximation, we take tb to be the first time at which the solution

A(0, t) = 1, thus we still neglect some effects of the dispersive oscillations. The most important

issue with this method, however, is that it is more costly, in that a full, high resolution, numerical

simulation of the conduit equation must be run for every choice of A− and z0 in order to derive

a boundary condition to program into the syringe pump.

A comparison of the boundary conditions derived by the two methods for a particular choice

of A−, z0 is given in Fig. 6.2. While the results of the zero dispersion method yield a good

approximation to the full numerical method, the time to breaking tends to be underestimated

and the ramp to A− is steeper. However, we have found in practice that a “pure” DSW, i.e. a

well-ordered, slowly modulated nonlinear wave train, can be produced by the zero dispersion

boundary condition, so it has been used exclusively in the DSW trials reported here. After all,
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Figure 6.2: Comparison of the two methods (numerical simulations of the full equation and the
zero dispersion limit) for deriving the boundary condition for a step size A− = 4, with breaking
ocurring at z0 = 50.

the DSW is the long time asymptotic resolution of data that asymptotes to A(z, t)→ A±, z →

±∞, A− > A+ (see, e.g., KdV [1]) so any variations from a pure step at breaking time will lead

to effectively transient behavior.

6.4.5 Validation of Area Conservation

The most fundamental assumption made in deriving the conduit equation is that mass is not

exchanged between the intrusive and the exterior fluid. Otherwise, the conduit area would

not be conserved, and we would expect a physical diffusion to be present in the leading order

model. One way to test this assumption experimentally is to measure the conduit area using the

high resolution, macro lens images taken at the bottom of the conduit and compare with areas

measured of the same conduit using images from the top of the apparatus.

This study was conducted using the DSW experimental data. The measurements of the
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Table 6.2: Comparison of the relative difference in area of the conduit area, as measured by two
high-resolution cameras separated by approximately one vertical meter.

Trial Area Bottom (cm2) Area Top (cm2) Relative Difference

1 0.0192 0.0216 0.121
2 0.0194 0.0197 0.013
3 0.0172 0.0209 0.214
4 0.0370 0.0362 0.022
5 0.0339 0.0387 0.141
6 0.0334 0.0387 0.159
7 0.0319 0.0366 0.150
8 0.0319 0.0293 0.080
9 0.0179 0.0208 0.162
10 0.0137 0.0162 0.180
11 0.0164 0.0193 0.177

bottom of the conduit were taken using the images from the lower camera preceding the increase

in injection rate. For the corresponding image from the top of the apparatus, the conduit

area was measured just ahead of the leading edge of the DSW. The results are presented in

Tab. 6.2. Although the technique was crude and required the assumption that the area of

the leading conduit was unperturbed by the creation of a DSW behind it and despite the

experimental difficulties identified above, perhaps the most important being the lack of sufficient

equilibration time between trials, we found the average relative difference to be only 12.9%, with

standard deviation 6.5%. We believe this offers some validation of the physical assumption of

area conservation, though we will consider this more carefully in future experiments.

6.5 Results of DSW Experiments

The speed and amplitude results of the 7 quality DSW experimental trials on varying step

heights are reported in Tab. 6.3, and the evolution of a typical DSW, as captured by the full

conduit images, is presented in Fig. 6.4. The combination of the boundary condition (6.15) and

conversion from pumping rate to conduit area was found to produce reliably a conduit profile

which broke well into the interior of the apparatus. The presence of such a large number of
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well-ordered dispersive oscillations (up to 50 in some experimental trials and approximately

20 in the bottom image of Fig. 6.4) represents a DSW that is asymptotically resolved and the

best experimentally realized, physical manifestation of the idealized long-time, asymptotic state

assumed by DSW theory to date.

The experimental data is compared with analytical predictions of Whitham-El modulation

theory in Fig. 6.3. The DSW leading edge amplitude is well-predicted by the theory, particularly

for smaller step sizes. At larger amplitudes, the theory over-predicts the solitary wave amplitude,

a feature which was previously observed numerically in studies of the conduit equation [69]. The

speeds s+ are systematically overestimated by modulation theory. This was also observed in the

previous numerical study, though to a lesser degree. The discrepancies in the speeds could be

due to the measurement technique, which allowed a limited number of position measurements

over a limited vertical extent. Capturing the propagation over a greater distance, even with

slightly lower resolution, will likely improve these results. This is further supported by the

higher accuracy results of the amplitudes a+, which were measured far more precisely but is

found using only nondimensional amplitude ratios. The speed measurements, on the other hand,

require nondimensionalization by the characteristic velocity U, which involves the fluid density

difference and the interior fluid viscosity. We note further that despite the breakdown of the

theoretical method for A− > Ac = 6.4, it was still found to give reasonable approximation for

the DSW properties in previous numerical studies, and appears to give favorable comparison

with experimental data, though only two of our trials lie beyond this point. The validity of the

model equation has also not been shown in the asymptotically large, i.e. A >˜ O(ε−1) amplitude

regime, which is certainly achieved in these experiments. More experiments need to be conducted

to study the possible implications this could have in interpreting the results in the context of

modulation theory.

In addition to the speed and amplitude measurements, we also sought to identify the backflow

regime. In general, small amplitude, short wavelength dispersive oscillations are beyond the

sensitivity of these experiments, making the theoretical trailing edge of the DSW difficult to
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Table 6.3: Nondimensional DSW speed and amplitude data for seven experimental trials.

Trial A− s+ a+

1 2.92 2.09 4.9
6 1.93 2.02 2.4
7 2.54 2.81 4.0
8 3.82 3.81 6.8
9 3.03 2.97 6.3
10 9.55 6.69 41.5
11 6.99 5.66 33.2
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Figure 6.3: Comparison of DSW data collected on leading edge speed and amplitude versus
theoretical predictions.

identify. Therefore, to identify backflow in experiment, we need to be well beyond the predicted

threshold Ab = 8/3 so that the point of creation of small amplitude waves from the DSW interior

can be seen to expand downward. A clear example of backflow from a qualitative experimental

trial is presented in Fig. 6.5, in which small amplitude oscillations can be seen to propagate

further down the conduit than initially. This encourages future qualitative studies on DSW

properties, such as interactions with solitary waves, rarefaction waves, and other DSWs.
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Figure 6.4: Example of the typical evolution of a conduit DSW with A− ≈ 4.3 and leading edge
amplitude a+ ≈ 18. Note that the individual images were downsampled in the vertical direction
by a factor of 10 as described. This experiment was qualitative, so the front propagation speed
was not measured.
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Figure 6.5: Example of backflow in a DSW with A− ≈ 7.4 and leading edge amplitude a+ ≈ 37.
Note that the individual images were downsampled in the vertical direction by a factor of 10 as
described. This experiment was qualitative, so the front propagation speed was not measured.
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6.6 Discussion and Conclusions

The preliminary experimental data presented in this study will be expanded upon in future

investigations. Several points of improvement have been identified here, which we now summarize.

The most important improvement for future work is to provide more experimental DSW trials

which well sample the step height parameter space, particularly the region A− ∈ [2.5, Ac].

The lower bound 2.5 is chosen because measuring small amplitude conduit features magnifies

measurement uncertainties.

Several significant, easily addressed, procedural improvements have also been identified.

One is allowing longer equilibration times both before initiating experiments and following

DSW trials. This will result in DSW propagation along a more uniform background. Another

correction is the method of measuring propagation speeds for the leading edge wave. The limited

propagation distances and short time window afforded by high resolution imaging via macro lens

introduced unnecessary uncertainty into the experimental data. Capturing the leading edge wave

over longer propagation distances and a greater number of images will lead to better results.

The issue of lighting was also addressed. In the trials reported here, we used overhead lights,

which created significant glare in the images. A better solution is to light the experimental

apparatus from behind with LED lights which emit negligible amounts of heat and thus do not

introduce new physical considerations. A last improvement which could reduce human error

in measurements is to use an alternative method to the grid used here for converting camera

distances to physical distances, say by submerging an object of known size in the exterior fluid

long before experiments commence but then never changing the camera positions. Alternatively,

the width of the apparatus could be used, provided corrections due to it not being submerged in

the fluid could be properly taken into account. This has the distinct advantage that one could

create a uniform background for the images and utilize algorithmic edge detection techniques to

systematically extract the interface and its properties.

Although the experiments can be improved and expanded, the results of this study show that

dispersive shock waves in viscous fluid conduits exhibit quantitative and qualitative agreement
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with analytical predictions based on Whitham-El modulation theory. This is the first such

system to be compared with the properties of a strongly nonlinear dispersive hydrodynamic

model, and the most extensive comparison with DSW theory in any physical system to date.

This agreement between theory and experiment, as well as the study on the spatial conservation

of conduit area, further validates the conduit equation as the leading order description of the

full system dynamics, lending support to the superfluid interpretation of wave propagation in

viscous fluid conduits. Moreover, we have offered an extensive blueprint for conducting future

investigations, most notably by demonstrating precisely how to create a carefully controlled step

in the conduit area by programming boundary data into a syringe pump. This work is evidence

that viscous fluid conduits provide an ideal platform for the study of one dimensional, nonlinear

dispersive waves.

142



Chapter 7

Dispersive Shock Waves in a

Bidirectional System

As discussed extensively, DSWs represent universal nonlinear structures which occur in any

nonlinear, approximately conservative, superfluid-like system. While we have primarily been

concerned with unidirectional conduit DSWs, the Whitham-El modulation theory also applies to

bidirectional systems [24, 47]. In this chapter, we demonstrate the application of the nonintegrable

DSW construction to a quantum mechanical setting known as unitary Fermi gas, a system

for which it unclear what is the appropriate physical regularization mechanism for nonlinear

wave breaking. We demonstrate how the differences in viscous and dispersive shock waves, in

particular their speeds of propagation, can be used to identify the appropriate type of physical

regularization, even when the theoretical oscillation wavelength for DSWs is too small to be

imaged. We shed light on the limitations of quantitative DSW experiments in this setting by

identifying the strict assumptions which must be satisfied to interpret the results with a 1D

model. It is also identified that violating this assumption could lead to a transverse instability

which bears strong resemblance with the dynamics predicted by a viscous regularization. The

contents of this chapter are based on the following publication [70]:

Lowman, N. K. and Hoefer, M. A. 2013 “Fermionic shock waves: Distinguishing dissipative
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versus dispersive regularizations,” Physical Review A 88 013605.

7.1 Abstract

The collision of two clouds of Fermi gas at unitarity (UFG) has been recently observed to lead

to shock waves whose regularization mechanism, dissipative or dispersive, is being debated.

While classical, dissipative shocks, as in gas dynamics, develop a steep, localized shock front

that translates at a well-defined speed, dispersively regularized shocks are distinguished by an

expanding region of short wavelength oscillations with two speeds, those of the leading and

trailing edges. For typical UFG experimental conditions, the theoretical oscillation length scale

is smaller than the resolution of present imaging systems so it is unclear how to determine the

shock type from its structure alone. Two experimental methods to determine the appropriate

regularization mechanism are proposed: measurement of the shock speed and observation of a

one-dimensional collision experiment with sufficiently tight radial confinement.

7.2 Introduction

Ultracold, dilute gases provide a universal medium for the study of nonlinear hydrodynamic flows

in the presence of dissipation and dispersion [58]. Experimental attainment of the superfluid

regime in a Bose-Einstein condensate (BEC) and a unitary Fermi gas (UFG) has led to the

observation of nonlinear coherent structures of fundamental interest, including quantized vortices

[74, 72, 129], solitons [15, 111, 127], and shock waves [23, 46, 52]. In the absence of regularization,

the effects of nonlinearity can lead to self-steepening and gradient catastrophe. In many physical

systems, this steepening is mediated by weak dissipation, often due to the effects of viscosity,

which transfers kinetic energy to heat across a narrow transition region, a viscous shock wave

(VSW). An alternative regularization mechanism occurs in dissipationless (conservative) media

where self-steepening is balanced by dispersion, in which case gradient catastrophe is resolved

into the formation of an expanding oscillatory region called a dispersive shock wave (DSW).
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For BEC, a mean field description is well-established in which the hydrodynamic equations

are regularized by dispersion (c.f. [55]). Generation of shock waves in recent UFG collision

experiments has fueled interest in the formulation of an analogous theory for fermionic systems.

While a direct, computational approach using density functional theory is available [14], two

simplified models have been proposed and successfully fitted to the experimental data, one in

which the hydrodynamic equations are regularized by dissipation [52] and the other by dispersion

[5, 94]. Although effort has been made to develop theory incorporating dispersion in the weakly

interacting regime [11, 90] and both dispersion and dissipation in the weakly nonlinear regime

[58], large amplitude effects and the relative magnitude of dissipation and dispersion in the

strongly interacting regime are still unknown. This raises a fundamental question – how does one

determine the appropriate regularization for a UFG from experiment? An obvious distinction

is the structure of the shock. A VSW takes the form of a traveling wave, while a DSW is

characterized by an expanding collection of large amplitude oscillations. However, in the case of

a UFG, the oscillation scale may be too fine to be imaged [52, 5]. In this article, we show that the

type of regularization may alternatively be distinguished by measuring the shock speed; VSW

and DSW speeds differ. We also highlight the parameter regime in which a three-dimensional

(3D) experiment is amenable to one-dimensional (1D) simplification and argue that the collision

experiments in [52] were fully 3D, like those observed in BEC [18]. We conclude with another

regularization distinguishing experiment, the 1D collision problem where a prominent density

bulge is predicted for the dissipative case alone.

7.3 Governing Equations

At zero temperature, the macroscopic, low energy dynamics of a Fermi superfluid can be

described by the, as yet unregularized, equations of irrotational hydrodynamics [36]

∂n

∂t
+∇ · (nv) = 0 , (7.1)
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m
∂(nv)

∂t
+m∇ · (nv ⊗ v) +∇P (n) = −n∇U(r), (7.2)

where r = (x, y, z), U(r) is the trap potential, v(r, t) is the velocity field, m is the particle

mass, n(r, t) is the density, and the pressure law P (n) = ξ ~2
5m

(
3π2n5/2

)2/3
is a scaled version of

µ(n) = 5P (n)/(2n), the bulk chemical potential. The total number of particles N =
∫
ndr is

conserved. The irrotational velocity field is proportional to the gradient of a velocity potential φ,

v = ~
2m∇φ. The Bertsch parameter, ξ, is a dimensionless, universal constant for which we use

ξ ' 0.40 [36], though more recent studies have suggested a slightly smaller value (e.g. [17, 31]).

The particular value will not affect the results of our analysis, only the scalings. In what follows,

we consider the case of a harmonic trap potential U(r) = 1
2

(
ω2
⊥r

2
⊥ + ω2

zz
2
)
, where r2

⊥ = x2 + y2

and ω⊥, ωz are the transverse and longitudinal trap frequencies, respectively. It is convenient to

introduce the harmonic oscillator lengths a⊥,z = (~/mω⊥,z)1/2.

Conservation laws of the form (7.1), (7.2) are known to admit discontinuous shock solutions

which, when interpreted in the vanishing viscosity limit, correspond to a generic dissipative

regularization of gradient catastrophe [60]. The shock speed is determined by integrating (7.1),

(7.2) across a sharp transition resulting in jump conditions. While the bulk viscosity of a

UFG is negligible, its shear viscosity is not [16] suggesting that dissipation could be a viable

regularization mechanism for the singular hydrodynamics.

In contrast, a dispersive regularization of the hydrodynamic equations, proposed in [95], uses

an extended Thomas-Fermi functional approach. The first order correction to the hydrodynamic

system is the addition of a von Weizsacker-type [118], dispersive correction term to the righthand

side of (7.2) of the form λ ~2
4m∇ · (ρ∇⊗∇ log ρ), where λ is a dimensionless parameter with

accepted value λ ' 0.25 [5]. Note that studies in the weakly interacting regime have led

to alternative dispersive models [11, 90]. While the particular form of the dispersion at the

microscopic, oscillatory level is still unknown, the qualitative behaviors due to dispersion which

distinguish such systems from their dissipative analogs hold for a broad class of forms (see e.g.

[47]).
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By introducing the complex wavefunction ψ =
√
n exp

[
iφ/(2

√
λ)
]
, the system (7.1), (7.2)

with the gradient correction term can equivalently be written in the form of a generalized

nonlinear Schrödinger (gNLS) equation, similar to the Gross-Pitaevskii equation from BEC

mean field theory but with a different nonlinear exponent

i~λ1/2∂ψ

∂t
= U(r)ψ − λ ~2

2m
∇2ψ + ξµ0 |ψ|4/3 ψ , (7.3)

where µ0 = ~2
2m

(
3π2
)2/3

.

To formulate the 1D shock problem for a UFG, we consider the case of a cigar-shaped trap

ω⊥ � ωz and derive an effective 1D equation from (7.3). We assume sufficiently tight radial

confinement so that radial dynamics are negligible and integrate over the transverse coordinates

following a standard procedure [76] (see Appendix for details). The anisotropy requirement for

dimensionality reduction is ωz
ω⊥
� 1

N [36]. This regime is realizable, for example by means of a

2D optical lattice [81, 12]. The 1D wavefunction Φ(z, t) then satisfies

i~λ1/2∂Φ

∂t
=

1

2
mω2

zz
2Φ− λ ~2

2m

∂2Φ

∂z2
+

[
5mω2

⊥(ξµ0)3/2

4π

]2/5

|Φ|4/5 Φ , (7.4)

where
∫
|Φ|2dz = N . Note that tight transverse confinement leads to a nonlinear coefficient and

power that differ from their 3D analog in (7.3). It is important to distinguish the various length

and time scales in the problem so we nondimensionalize (see Appendix for details) by introducing

Φ = Φ0Φ̃, z = Lz̃, and t = T t̃ with L = L0, Φ0 =
√
N/L0, T ≈ 1.56[L6

0/(Nω
5
⊥a

6
⊥)]1/5. All stated

approximate numerical values are given in full in the Appendix. L0 is a characteristic length to

be chosen. To obtain the hydrodynamic equations, the longitudinal wavefunction takes the form

Φ̃ =
√
ρ̃ exp

(
i
ε

∫
ũ dz̃

)
, and after dropping ,̃ the system of 1D conservation equations for UFG is

∂ρ

∂t
+
∂(ρu)

∂z
= 0, (7.5)

∂ (ρu)

∂t
+
∂

∂z

(
5

7
ρ

7
5 + ρu2

)
=
ε2

4

∂

∂z

[
ρ
∂2 (log ρ)

∂z2

]
− κρz , (7.6)
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with

ε ≈ 0.78

(
a4
⊥

NL4
0

)1/5

, κ ≈ 2.45

(
a2
⊥L

3
0

N1/2a5
z

)4/5

, (7.7)

and ρ, u are the dimensionless density and longitudinal velocity, respectively. These hydrodynamic

equations admit the long wave speed of sound c(ρ) = ρ1/5. Note that the transformation from

(7.4) to (7.5), (7.6) is exact with no approximation. This form reveals the dispersive regularization

of the hydrodynamic equations when 0 < ε� 1.

It is beneficial to briefly describe the relations between inherent length scales associated

with different choices for L0. The longitudinal oscillation length, Losc, associated with DSWs, is

obtained by choosing L0 in (7.7) so that ε = 1. The longitudinal extent of the trapped UFG,

Ltrap, is determined by fixing L0 in (7.7) so that κ = 1. Another important length scale is

associated with the inter-particle spacing Lint that is estimated by standard arguments (see

Appendix for details). The 1D anisotropy requirement leads to the following relations

Lint ∼
a

2/3
⊥ a

1/3
z

N1/6
� Losc ∼

a⊥
N1/4

� Ltrap ∼ N1/6a
5/3
z

a
2/3
⊥

. (7.8)

That DSW dynamics occur at length scales much larger than Lint is a requirement for the

validity of the hydrodynamic model [36]. DSWs exhibit rapid oscillations with wavelength

Losc and a larger, envelope modulation length we denote Lmod. When L0 = Lmod such that

Losc � Lmod � Ltrap, then 0 < ε � 1 and 0 < κ � ε2 so that a dispersive regularization is

appropriate and inhomogeneities due to the trap can be neglected. In what follows, we use

parameters from experiment and set L0 = Lmod = 3µm corresponding to the experimental

imaging resolution [52]. Then, ε ≈ 0.05 and κ ≈ 0.0003, thus satisfying our smallness conditions.

For the rest of this work we neglect the trap, setting κ = 0 in (7.6).
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7.4 Effects of Regularization

We now discuss the dynamics of shock solutions for eqs. (7.5), (7.6) with ε = 0 (dissipative

regularization) and 0 < ε � 1 (dispersive regularization). We consider the conservation laws

with general step initial data

ρ(z, 0) =


ρ0, z ≤ 0

1, z > 0

, u(z, 0) =


u0, z ≤ 0

0, z > 0

. (7.9)

For general ρ0 and u0, single step initial data results in the generation of two waves. We focus

on the case ρ0 > 1 and u0 specifically chosen from a locus of velocities corresponding to a single,

right propagating shock wave.

7.4.1 Dissipation

In dissipatively regularized systems, shock waves are nonlinear traveling wave solutions which

can be viewed as a balance between nonlinearity and dissipation. Deriving the shock profile

for the hydrodynamic equations of UFG with a vanishing effective Newtonian viscosity is

mathematically equivalent to constructing a weak solution for the system (7.5), (7.6) with

ε = 0. The magnitude of the dissipative correction sets the width of the localized transition

region but does not affect the shock speed. In order to satisfy the jump conditions for a single

right-propagating shock wave, it is required that the velocity of the left state depend on the

density ρ0 according to the Hugoniot locus relation [60] u0(ρ0) = [5(ρ
7/5
0 − 1)(ρ0 − 1)/(7ρ0)]1/2.

The speed of the corresponding shock is then

V (ρ0) = {[5(ρ
7/5
0 − 1)ρ0]/[7(ρ0 − 1)]}1/2 . (7.10)

The VSW speed is parameterized only by the left-state density ρ0 and is independent of the

magnitude of the viscous correction.
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7.4.2 Dispersion

The dispersive regularization, 0 < ε� 1, of the initial jump (7.9) results in a DSW, two distinct

constant states connected by an expanding, oscillatory region. This region is characterized by

nearly linear, vanishing amplitude waves at the rightmost leading edge and a single (dark)

solitary wave at the leftmost trailing edge (see Fig. 7.2). DSW closure conditions, analogous

to the jump conditions for VSWs, provide relations between the left and right constant states

and the edge speeds. To implement the DSW closure, we use Whitham-El DSW theory [24], an

extension of the nonlinear wave modulation theory of Whitham [125] for dispersive shock–fitting

[40] to nonintegrable systems such as the one considered here. For the theoretical details, we

refer the reader to an extensive development of DSW theory for gNLS equations in [47].

DSW closure implies that the velocity u0 must lie on the DSW locus u0(ρ0) = 5(ρ
1/5
0 − 1),

which is distinct from the Hugoniot locus for VSWs. The speed vL of the linear, leading edge

satisfies

vL =
2α2

L − 1

αL
,

27(1 + αL)

2(2 + αL)3
= ρ

−2/5
0 . (7.11)

The speed vS at the trailing, soliton edge is

vS = [αSρ
1/5
0 + 5(ρ

1/5
0 − 1)],

27(1 + αS)

2(2 + αS)3
= ρ

2/5
0 . (7.12)

While for classical shocks, eq. (7.10) gives an explicit speed in terms ρ0, eqs. (7.11), (7.12)

give implicit relations. To compare them directly, we consider the small jump case 0 < δ =

(ρ0 − 1)� 1, in which the dispersively regularized conservation laws admit a weak DSW with

speeds vL ∼ 1 + 12δ/5, vS ∼ 1 + 2δ/5. For the weak VSW from (7.10), V ∼ 1 + 3δ/5. This

analysis demonstrates that regularization dependent shock speeds differ, even for small density

perturbations. In Fig. 7.1, we plot the dispersive and viscous shock speeds for a range of density

jumps. As noted earlier, not only the shock speed but also its structure changes drastically

depending on the regularization mechanism, though under present imaging capabilities, the

difference is not as clear. The left panel of Fig. 7.2 depicts the numerical solution to the
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Figure 7.1: Nondimensional shock speeds by type of regularization. vL and vS correspond to
the leading and trailing edge speeds of a UFG DSW, respectively. V is the dissipative shock
speed. The vertical dotted line at ρ0 = 2.7 is for comparison with the particular discontinuity
simulated in figure 7.2.

gNLS equation corresponding to the hydrodynamic eqs. (7.5), (7.6) and shock solution for

the dissipative hydrodynamics (ε = 0). The signature slowly modulated, oscillatory envelope

structure expected for a DSW is further revealed by the zoomed-in inset. The right panels

of Fig. 7.2 depict the DSW and VSW solutions convolved with a Gaussian of width 1, the

modulation length, mimicking the effects of imaging. Owing to the smoothing of the rapid

DSW oscillations, the DSW is now more difficult to distinguish from the filtered VSW solution

(dashed). However, DSW expansion is noticeable from the spreading of the steep density gradient.

Conversely, the VSW maintains its shape and propagates with a different speed. This shows that

determination of the speed of the shock front and its scaling according to (7.10) or (7.11),(7.12)

is a viable experimental method for distinguishing between dispersive and dissipative shocks

even when potential oscillations are sub-imaging resolution.

7.5 Regularization Determining Experiments

In deriving the shock solutions, we have assumed the validity of the one-dimensional reduction.

In previous attempts to describe the UFG collision experimental observations, a regularization

term has been added to a 1D or 3D hydrodynamic model [52, 5, 94]. From the experimental
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Figure 7.2: Numerical simulation of the gNLS equation (solid) (from eqs. (7.5), (7.6)) for a
DSW with ρ0 = 2.7 and corresponding VSW solution (dashed). The right panel depicts the
filtered solutions.
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Figure 7.3: Numerical simulation of the gNLS equation (solid) and dissipative hydrodynamic
equations (dashed) for the collision problem. The right panel depicts the filtered solutions.
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parameters, it is verified that the anisotropy criterion for reduction to 1D is not met [52].

Further, from its similarity to observations in BEC [18], the appearance of a characteristic center

“bulge” upon collision in the experiments of [52] suggests the presence of transverse instabilities

and vortex formation, lending doubt to the accuracy of the azimuthally symmetric numerical

simulations in [5]. The 1D regime, however, is not subject to these instabilities. Therefore,

we consider the 1D collision problem with dissipative (ε = 0) and dispersive (0 < ε � 1)

regularizations for the idealized initial condition

ρ(z, 0) =


1, |z| > L

0, |z| ≤ L
, u(z, 0) = 0 , (7.13)

representing two initially separated, quiescent UFGs.

The results for L = 1 are depicted in Fig. 7.3. The left panel shows the numerical solution

for gNLS and the solution for the corresponding dissipative problem, while the right panel shows

the Gaussian filtered solutions. Initially, two rarefaction waves propagate inward, for which the

two regularizations agree to leading order because the effects of dissipation and dispersion are

negligible. Upon collision of the rarefaction waves, outward propagating shocks are created. In

the case of the viscous problem, we derive the weak solution to the hydrodynamic equations

(see Appendix for details). The dispersive shock solution is similar to that observed in BEC

theoretical and experimental studies [49]. The key physical difference after filtering is the distinct

center bulge created in the dissipative problem. The dispersive solution, on the other hand,

forms a smooth, expanding well between the two constant states. Therefore, the one-dimensional

collision problem provides a clear distinction between dissipative and dispersive regularizations.

7.6 Conclusions

The similarity between the bulge-producing dissipative collision problem and both the BEC

[18] and UFG [52] experiments is striking. We know that BEC is regularized by dispersion,

153



yet a bulge is still produced. One possible interpretation is that the proliferation of quantized

vortices and quantum turbulence in the fully 3D case yields an effective viscosity for the

larger scale dynamics, even though the underlying model is dissipationless. Similarly, fully 3D

experiments in a UFG may not provide a definitive determination of the underlying hydrodynamic

regularization mechanism unless imaging resolution is significantly improved. Our work here

provides unambiguous measures of dispersive/dissipative effects in a unitary Fermi gas from

shock dynamics, enabling the determination of the dominant regularization mechanism.

Acknowledgements: We thank John Thomas, James Joseph, and Peter Engels for enlightening

discussion. This work was supported by NSF Grant Nos. DGE–1252376 and DMS–1008973.

7.7 Appendix – 1D Reduction

The 3D wavefunction expression (3) was reduced to an effective 1D model by integrating over

the transverse dynamics as described in [76]. In this appendix we present the details of this

calculation, as well as the derivation of the characteristic length and time scales presented. We

further derive the weak solution for the dissipative 1D collision problem. We assume that the

anisotropy condition is satisfied.

Decompose the 3D complex wavefunction such that ψ(r, t) = Ψ(r⊥;n1(z, t))Φ(z, t), where

r = (r⊥, z) and n1(z, t) is the local density function which satisfies the normalization condition

n1(z, t) = N

∫
|ψ(r, t)|2 dr . (7.14)

Also assume the trap potential takes the special form U(r) = U1(r⊥) +U2(z) (above we consider

the case of an ideal harmonic trap which certainly fits into this assumption). Normalize the

transverse and longitudinal wave functions according to the constraints

∫
|Ψ(r⊥;n1)|2 dr⊥ = 1,

∫
|Φ(z, t)|2 dz = N . (7.15)
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Hence, n1(z, t) = N |Φ(z, t)|2. Substituting these anzatzes into (3) yields

[
i~λ1/2∂Φ

∂t
+ λ

~2

2m

∂2Φ

∂z2
− U2(z)Φ

]
Ψ =

[
−λ ~2

2m
∆rΨ + U1(r⊥)Ψ + ξµ0

(
|ΨΦ|4/3

)
Ψ

]
Φ .

(7.16)

Multiply the equation by the complex conjugate Ψ∗ and integrate with respect to the transverse

coordinates r⊥. Using the normalization condition on Ψ, gives

i~λ1/2∂Φ

∂t
+ λ

~2

2m

∂2Φ

∂z2
− U2(z)Φ = µ⊥(n1)Φ, (7.17)

where

µ⊥(n1) =

∫
Ψ∗
[
−λ ~2

2m
∆r + U1(r⊥) + ξµ0

(
|ΨΦ|4/3

)]
Ψ dr⊥ . (7.18)

This is now an effectively 1D equation, but it is left to determine µ⊥ and Ψ. If we substitute

the expression for µ⊥ (7.18) into eq. (7.16) and enter the Thomas-Fermi regime (neglecting the

radial Laplacian term), we get the following eigenvalue problem for Ψ:

U1(r⊥)Ψ + ξµ0

(
|ΨΦ|4/3 Ψ

)
= µ⊥(n1)Ψ . (7.19)

Note that |Φ|4/3 = (n1/N)2/3. Then solving for Ψ, we find

|Ψ|4/3 =

(
N

n1

)2/3 1

ξµ0
(µ⊥ − U1(r⊥)) . (7.20)

Assuming that Ψ is real in the ground state, (7.20) can be solved explicitly to obtain

Ψ =


(
N

n1

)1/2

[ξµ0 (µ⊥ − U1(r⊥))]
3
4 , µ⊥ > U1(r⊥),

0, otherwise .

(7.21)

Next, an expression is needed for µ⊥ which comes from the normalization condition on the

transverse wave function (7.15). Assume an ideal, harmonic trap potential so that U1(r⊥) =
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1
2ω

2
⊥r

2
⊥, where r2

⊥ = x2 + y2. Note that Ψ vanishes for r⊥ such that U1(r⊥) ≥ µ⊥. This gives the

upper bound of the integration in (7.14) to be

r⊥ <

(
2µ⊥
mω⊥

)1/2

. (7.22)

Substituting eqs. (7.21) and (7.22) into eq. (7.15), one can solve for µ⊥ from

∫ (
2µ⊥
mω⊥

)1/2

0
r⊥

(
µ⊥ −

1

2
ω2
⊥r

2
⊥

)3/2

dr⊥ =
(ξµ0)3/2

2π

(n1

N

)
. (7.23)

Eq. (7.23) can be integrated upon making a simple change of variables to obtain

µ⊥ =

(
5mω2

⊥(ξµ0)3/2

4π

)2/5

|Φ|4/5 . (7.24)

The trap potential in the longitudinal coordinate z is assumed to be U2(z) = 1
2mω

2
zz

2. Hence,

eq. (7.17) becomes

i~λ1/2∂Φ

∂t
+ λ

~2

2m

∂2Φ

∂z2
− 1

2
mω2

zz
2Φ−

(
5mω2

⊥(ξµ0)3/2

4π

)2/5

|Φ|4/5 Φ = 0, (7.25)

which is 1D and in dimensional form.

We now nondimensionalize the equation using Φ = Φ0Φ̃, z = Lz̃, and t = T t̃ to the

semiclassical scaling with normalized sound speed, which after dropping tildes becomes

iε
∂Φ

∂t
+
ε2

2

∂2Φ

∂z2
− 1

2
κz2Φ− 5

2
|Φ|4/5 Φ = 0 . (7.26)

Note that each term in (7.25) is dimensional. We multiply both sides by a dimensional param-

eter A and normalize (7.25) to the semiclassical scaling (7.26) while enforcing the normalization
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condition (7.15). This yields the parameters and scalings

L = L0, Φ0 =

(
N

L0

)1/2

, (7.27)

T =

(
10
√

5

3πξ3/2N

)1/5(
1

ω⊥

)(
L0

a⊥

)6/5

(7.28)

ε =

(
10
√

5λ5/2

3πξ3/2N

)1/5(
a⊥
L0

)4/5

, (7.29)

κ =

(
10
√

5

3πξ3/2N

)2/5(
ωz
ω⊥

)2(L0

a⊥

)12/5

, (7.30)

A =

(
10
√

5

3πξ3/2N

)2/5(
1

~ω⊥

)(
L0

a⊥

)2/5

. (7.31)

The inter-particle spacing Lint is estimated by determining the approximate volume occu-

pied by N Fermions in the ground state of the harmonic trap. The standard Thomas-Fermi

approximation is used whereby the kinetic energy terms are neglected in favor of a balance

between the nonlinearity and the trap potential, µ(n) = µ0 − U(r) from eq. (2). µ0 is the total

chemical potential determined by the requirement that
∫
ndr = N . The volume is

Vol{r |µ0 > U(r)} =
27/2ξ3/4π

31/2
N1/2a2

⊥az

≈ 10.3N1/2a2
⊥az.

(7.32)

Dividing the cube root of the volume by N gives

Lint =

(
27/2ξ3/4π

31/2

)1/3(
a2
⊥az

N1/2

)1/3

≈ 2.18

(
a2
⊥az

N1/2

)1/3

. (7.33)

The 1D collision problem with ε = 0 and initial data given by (13) generates two rarefaction

waves propagating inward from the initial discontinuities at |z|= L, which interact at time

t = ti. For comparison with numerical simulations, we set L = 1, though the results are easily
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generalizable. On the right (the left can be constructed from symmetry), the rarefaction wave is

given by

u (z, t) =
5

6

[
z − 1

t
− 1

]
, (7.34)

ρ (z, t) =

[
1

6

(
5 +

z − 1

t

)]5

, (7.35)

for (z − 1)/t ∈ [−5, 1]. Hence, ti = 1/5. Immediately upon interaction, an intermediate velocity

state um = 0 is created along the center axis z = 0 and two outward propagating shocks are

produced. These can be described by constructing an intermediate density ρm so that it lies

along the appropriate density locus, i.e.

u2 =
5
(
ρ

7/5
m − ρ7/5

)
(ρm − ρ)

7ρmρ
, (7.36)

where u and ρ are evaluated at the right rarefaction waves just ahead of the shock front, which

are the variable background into which the shock is propagating. The intermediate value ρm,

which must be found by evaluating (7.36) implicitly, couples to the shock speed by invoking the

jump conditions to give the ordinary differential equation

s′(t) =
ρu

ρ− ρm

∣∣∣∣
z=s(t)

. (7.37)

The initial condition must be prescribed just after the interaction time so that a shock is

created, say t = ti + ν, 0 < ν � 1. Then, inserting the Taylor series expansion, s(1/5) = 0 ∼

s(1/5 + ν)− νs′(1/5 + ν) into (7.36), (7.37) gives the approximate initial data

s(1/5 + ν) ∼ ν17/7 517/7

355/7 − 1
, 0 < ν � 1 , (7.38)

which we use as initial conditions to numerically solve the system (7.36), (7.37). For the

simulations presented, we took ν = 5× 10−5 and found it to be sufficiently small to accurately

resolve the shock dynamics.
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Chapter 8

Conclusion

The key result of this work is the establishment of the viscous fluid conduit setting as an ideal

platform for the comprehensive study of unidirectional nonlinear dispersive wave phenomena in

one dimension. Starting from the full system of mass and momentum conservation equations

describing the dynamics of two fluids separated by a free interface, we have shown that the

leading order dynamics can be described in terms of only a scalar PDE for the cross-sectional

area of the conduit formed by the interior fluid. That a dissipationless model equation can be

derived at all for a highly viscous system is remarkable in itself, but we find that this model is

valid for long times and large amplitudes provided only modest assumptions hold for the two

fluids.

A combined numerical and analytical approach, using Whitham-El modulation theory, to

the analysis of the conduit equation and its generalization yielded theoretical predictions for key

physical properties of conduit DSWs and large amplitude solitary wave interactions. Moreover,

the identification of new shock phenomena in the conduit system led us to identify four new

admissibility criteria for the validity of the simple wave DSW closure method. It was also

demonstrated for a quantum mechanical system that the theory of dispersive hydrodynamics

can inform the design of new experiments to resolve questions of physically modeling a system.

The theoretical and numerical predictions for wave propagation along the conduit interface
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were then compared with laboratory simulations of the full two-fluid system in the in-house

NC State Dispersive Shock Wave Laboratory. Experiments on large amplitude solitary wave

interactions yielded remarkable agreement with analysis of the conduit equation and also

demonstrated a persistence of soliton interaction properties predicted by weakly nonlinear,

integrable systems theory, even into the large amplitude regime. Initial investigations into shock

wave experiments yield good agreement with analytical theory and merit further investigation.

The work in this thesis has also opened several new and interesting directions for future

research, both pertaining to the conduit setting and to dispersive hydrodynamic systems,

in general. The establishment of the DSW laboratory and the robustness of nonlinear wave

phenomena in the conduit system offer possibilities to validate several longstanding nonlinear

wave theories and make interesting new observations. Some of these are soliton-rarefaction,

DSW-DSW, DSW-soliton, and DSW-rarefaction interactions, the amplitude distribution and

number of solitons emanating from localized initial data, and the statistical properties pertaining

to the passage into the soliton turbulence limit. Physically, one can also examine the effects

of the introduction of new physical perturbations, such as a physical dissipation via a non-

Newtonian exterior fluid, the stability of wave structures in the presence on an inhomogeneous

medium, or the breaking of the conduit’s azimuthal symmetry. Unrelated to conduits, this study

has also opened new directions for DSW modulation theory, namely we have identified the

need for an extension of the theoretical methods beyond the simple wave regime, and it also

remains to be explored whether DSW implosion in the modulation equations can be realized

experimentally and, theoretically in the shock interior, rather than from its edges. These open

problems demonstrate the richness of the underlying mathematics and fluid mechanics considered

in this thesis.
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[101] F. Serre, Contribution á l’ étude des écoulements permanents et variables dans les canaux,
Houille Blanche, 8 (1953), p. 374.

[102] G. Simpson and M. Spiegelman, Solitary wave benchmarks in magma dynamics, J. Sci.
Comput., 49 (2011), p. 268.

[103] G. Simpson, M. Spiegelman, and M. I. Weinstein, Degenerate dispersive equations
arising in the study of magma dynamics, Nonlinearity, 20 (2007), p. 21.

[104] , A multiscale model of partial melts 1: Effective equations, J. Geophys. Res.-Solid,
115 (2010), p. B04410.

[105] G. Simpson and M. I. Weinstein, Asymptotic stability of ascending solitary magma
waves, SIAM J. Math. Anal., 40 (2008), p. 1337.

[106] T. P. Simula, P. Engels, I. Coddington, V. Schweikhard, E. A. Cornell, and
R. J. Ballagh, Observations on sound propagation in rapidly rotating bose-einstein
condensates, Phys. Rev. Lett., 94 (2005), p. 080404.

[107] N. F. Smyth and P. E. Holloway, Hydraulic jump and undular bore formation on a
shelf break, J. Phys. Oceanogr., 18 (1988), p. 947.

[108] M. Spiegelman, Flow in deformable porous media I. Simple analysis, J. Fluid Mech.,
247 (1993), p. 17.

[109] , Flow in deformable porous media II. Numerical analysis, J. Fluid Mech., 247 (1993),
p. 39.

[110] M. Spiegelman, P. B. Kelemen, and E. Aharonov, Causes and consequences of
flow organization during melt transport: The reaction infiltration instability in compactible
media, J. Geophys. Res., 106 (2001), p. 2061.

167



[111] K. E. Strecker, G. B. Partridge, A. G. Truscott, and R. G. Hulet, Formation
and propagation of matter-wave soliton trains, Nature, 417 (2002), p. 150.

[112] C. H. Su and C. S. Gardner, Korteweg de Vries equation and generalizations. III.
derivation of the Korteweg de Vries equation and Burgers equation, J. Math. Phys., 10
(1969), p. 536.

[113] D. Takahashi, J. R. Sachs, and J. Satsuma, Properties of the magma and modified
magma equations, J. Phys. Soc. Jpn., 59 (1990), p. 1941.

[114] M. Tanaka, The stability of solitary waves, Phys. Fluids, 29 (1986), p. 650.

[115] R. J. Taylor, D. R. Baker, and H. Ikezi, Observation of collisionless electrostatic
shocks, Phys. Rev. Lett., 24 (1970), p. 206.

[116] M. Q. Tran, K. Appert, C. Hollenstein, R. W. Means, and J. Vaclavik, Shocklike
solutions of the Korteweg-de Vries equation, Plasma Physics, 19 (1977), p. 381.

[117] S. Venakides, The zero dispersion limit of the Korteweg-de Vries equation for initial
potentials with non-trivial reflection coefficient, Commun. Pur. Appl. Anal., 38 (1985),
p. 125.

[118] C. F. von Weizsacker, Zue theorie der kernmassen, Z. Phys., 96 (1935), p. 431.

[119] W. Wan, S. Jia, and J. W. Fleischer, Dispersive superfluid-like shock waves in
nonlinear optics, Nat. Phys., 3 (2007), p. 46.

[120] P. D. Weidman and T. Maxworthy, Experiments on strong interactions between
solitary waves, Journal of Fluid Mechanics, 85 (1978), p. 417.

[121] J. A. Whitehead, Instabilities of fluid conduits in a flowing earth are plates lubricated
by the asthenosphere?, Geophys. J. Roy. Astr. S, 70 (1982), p. 415.

[122] J. A. Whitehead and K. R. Helfrich, The korteweg-deVries equation from laboratory
conduit and magma migration equations, Geophys. Res. Lett., 13 (1986), p. 545.

[123] , Magma waves and diapiric dynamics, in Magma Transport and Storage, M. P. Ryan,
ed., John Wiley & Sons, Chichester, 1990, pp. 53–76.

[124] J. A. Whitehead and D. S. Luther, Dynamics of laboratory diapir and plume models,
J. Geophys. Res., 80 (1975), p. 705.

[125] G. B. Whitham, Non-linear dispersive waves, Proc. Roy. Soc. Ser. A, 283 (1965), p. 238.

[126] , Linear and nonlinear waves, John Wiley & Sons, New York, 1974. Pure and Applied
Mathematics.

[127] T. Yefsah, A. T. Sommer, M. J. H. Ku, L. W. Cheuk, W. Ji, W. S. Bakr, and
M. W. Zwierlein, Heavy solitons in a fermionic superfluid, Nature, 499 (2013), p. 426.

168



[128] N. J. Zabusky and M. D. Kruskal, Interaction of “Solitons” in a collisionless plasma
and the recurrence of initial states, Phys. Rev. Lett., 15 (1965), p. 240.

[129] M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H. Schunck, and
W. Ketterle, Vortices and superfluidity in a strongly interacting fermi gas, Nature, 435
(2005), p. 1047.

169


	List of Tables
	List of Figures
	Introduction
	Nonlinear Waves and Modulation Theory
	Experimental Studies of Nonlinear Waves
	Viscous Fluid Conduits as 1D Superfluids

	Derivation of an Approximate Interfacial Equation
	Abstract
	Introduction
	Problem Description
	Governing Equations
	Uniform Pipe Flow and Nondimensionalization

	Derivation of the Approximate Model
	Asymptotic Expansions and Scaling Ansatz
	Leading Order Solution
	Reduction to the Conduit Equation

	Robustness of the Conduit Equation
	Viscous, Higher Order Corrections
	Breakdown of Assumptions
	Dependence on an Outer Wall
	Symmetry Breaking – Inclined Conduit
	Summary

	Discussion and Conclusions

	Dispersive Shock Waves in Viscously Deformable Media: Whitham-El Modulation Theory and Numerical Simulations
	Abstract
	Introduction
	Governing Equations
	Magma Geophysics
	Viscous Fluid Conduits

	Properties of the Magma Equation
	Linear Dispersion Relation and Scaling
	Long Wavelength Regime
	Nonlinear Periodic Traveling Wave Solutions
	Conservation Laws

	Resolution of an Initial Discontinuity
	Application of El's method
	Determination of the Trailing Edge Speed
	Determination of the Leading Edge Speed and Amplitude
	Analysis of the Theoretical Predictions

	Comparison with Numerical Simulations
	Numerical Simulations
	Breakdown of Analytical Method

	Summary and Conclusions
	Appendix – Numerical method

	Simple Wave DSW Admissibility for Scalar Equations
	Experiments on Large Amplitude Solitary Wave Interactions in Viscous Fluid Conduits
	Abstract
	Introduction
	Theoretical foundations
	Derivation of the conduit equation and solitary wave solutions
	Numerical methods
	Experimental set-up

	Overtaking interactions between strongly nonlinear solitary waves
	Classification of interactions: KdV
	Classification of interactions: conduit equation
	Radiation emitted due to interaction
	Experimental observation of the three types of interaction

	Summary and conclusions

	Experiments on Dispersive Shock Waves in Viscous Fluid Conduits
	Abstract
	Introduction
	Theoretical Background
	Experimental Procedures
	Laboratory Set-Up and Fluid Properties
	Image Processing and Measurement Extraction
	Comments on the Experimental Data
	Considerations for the Bottom Boundary
	Validation of Area Conservation

	Results of DSW Experiments
	Discussion and Conclusions

	Dispersive Shock Waves in a Bidirectional System
	Abstract
	Introduction
	Governing Equations
	Effects of Regularization
	Dissipation
	Dispersion

	Regularization Determining Experiments
	Conclusions
	Appendix – 1D Reduction

	Conclusion
	References

