
ABSTRACT

DAVIDSON, RUTH ELLEN. Some Problems in Geometric Combinatorics and Mathematical
Phylogenetics. (Under the direction of Patricia Hersh and Seth Sullivant.)

In this thesis, geometric objects essential to the underlying organization of problems in
topological combinatorics and mathematical phylogenetics are studied. In particular, (1) lex-
icographic shellability characterizations of geometric and semimodular lattices are given, (2)
results are given about a simplicial complex associated to a novel formulation of a hypergeo-
metric identity using the Euler-Poincaré relation, (3) a complete combinatorial description is
given of a family of polyhedral cones associated to the distance-based phylogenetic reconstruc-
tion algorithm UPGMA, and (4) polyhedral geometry is used to analyze the behavior of the
distance-based phylogenetic methods UPGMA, least-squares phylogeny, and Neighbor-Joining
near a polytomy.

Geometric lattices are characterized as those finite, atomic lattices such that every atom
ordering induces a lexicographic shelling of the order complex given by an edge-labeling of the
Hasse diagram known as a minimal labeling. Equivalently, geometric lattices are shown to be
exactly those finite lattices such that every ordering on the join-irreducibles induces a lexico-
graphic shelling. This new characterization fits into a similar paradigm as Peter McNamara’s
characterization of supersolvable lattices as those lattices admitting a different type of lexico-
graphic shelling, namely one in which each maximal chain is labeled with a permutation of
{1, . . . , n}. A similar characterization of semimodular lattices is also given, and the relationship
between two types of lexicographic shelling applied to finite graded atomic lattices is briefly
explored.

A family of non-pure simplicial complexes {∆(n) : n ∈ Z>0} is studied, of which the
alternating sum of the face numbers is equal to one side of a known hypergeometric identity
due to Alfred Dixon. The complex ∆(n) is shown to be shellable for all n. The Betti numbers
of ∆(n) are calculated for n ≤ 4, and the Euler-Poincaré relation is used to give a new proof of
the identity for n ≤ 4.

Distance-based phylogenetic algorithms attempt to solve the NP-hard least-squares phy-
logeny problem by mapping an arbitrary dissimilarity map on a set of taxa X representing
biological data to a tree metric on X. The input space of all dissimilarity maps on X is identi-
fied as a Euclidean space which properly contains the set of all tree metric outputs on X as a
polyhedral fan. A distance-based phylogenetic method f induces a partition of the input space
into a family of regions



{C(T ) : f(x) is a tree metric realized by the combinatorial tree T for all x ∈ C(T )}.

When the decision criteria for a method are linear, each region C(T ) is a polyhedral cone
with an H-representation given by the criteria. An instance of this type of family of polyhedral
cones associated to the distance-based phylogenetic reconstruction algorithm UPGMA is stud-
ied. The set of extreme rays of a UPGMA cone C(T ) is shown to have a closed-form description
in terms of the elements of the maximal chain in the lattice of set partitions Πn corresponding to
a combinatorial tree T on n leaves. The spherical volumes of the UPGMA cones are computed
for n ≤ 7.

Phylogenetic inference on biological data routinely returns a tree with a polytomy, or an
internal vertex with more than three neighbors, representing either a multi-way speciation
event or a lack of sufficient data to resolve a binary phylogeny. Polyhedral geometry is used
to compare the local nature of the subdivisions of the input space near a tree metric with
a polytomy induced by the distance-based methods least-squares phylogeny, UPGMA, and
Neighbor-Joining. The results of this investigation suggest that UPGMA and Neighbor-Joining
poorly match least-squares phylogeny when the true tree has a polytomy with exactly four
neighbors.
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Chapter 1

Introduction and Background

Material

To paraphrase Phil Hanlon [44] combinatorics is the branch of mathematics that organizes
discrete data in ways that make it manageable to analyze. We define geometric combinatorics
as the sub-branch of combinatorics that either uses geometric objects to organize discrete data
or studies geometric objects from a combinatorial point of view. In this thesis we study geometric
objects essential to the underlying organization of problems in topological combinatorics and
mathematical phylogenetics. In particular, two types of geometric objects that (1) play key
roles in the results we obtain and (2) we study from a combinatorial viewpoint are simplicial
complexes (Definition 1.1.1) and polyhedra (Definition 1.2.1). In a broader context, simplicial
complexes are fundamental to the field of algebraic topology, and polyhedra are fundamental
to Euclidean geometry.

Many key ideas in polyhedral geometry and simplicial topology begin with the work of Leon-
hard Euler (1707-1783). Euler’s 1736 solution [33] to the famous Seven Bridges of Königsburg
Problem is considered to be the first topological argument [20]. The problem was to find a path
through the city of Königsburg using every one of its seven bridges; each of these seven bridges
crossed the Pregel river exactly one time. The reason for interest in the problem was that it
was impossible to show such a path did not exist by trial and error.

Euler is also responsible for the Euler polyhedron formula v − e + f = 2 for 3-dimensional
polyhedra, where v, e, and f denote the number of vertices, edges, and 2-dimensional faces,
respectively. This formula has proven to be fundamental in algebraic topology as well as poly-
hedral geometry. The alternating sum of faces in arbitrary dimension is now known as the Euler
characteristic and can be defined for either polyhedra or abstract simplicial complexes. For the
specific applications in this thesis, we define the closely related reduced Euler characteristic for
simplicial complexes in Definition 1.1.7.
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So, the story of polyhedral geometry and simplicial topology begins in many ways with
the work of Euler. The close relationship between the geometry and topology of polyhedra
and simplicial complexes has persisted as the fields in which these objects are frequently used
have developed. For example, Ludwig Schläfli (1814-1895) generalized the Euler polyhedron
formula to convex polyhedra in arbitrary dimension [56] in 1852. In this particular monograph,
Schläfli assumed that the boundary of a convex polytope was shellable [68]. Shellability, defined
for simplicial complexes in Definition 1.3.2, is a concept that can be applied to both simpli-
cial complexes and polyhedra, and gives similar information about them as geometric spaces.
Shellable simplicial complexes are the main objects of interest in Chapters 2 and 3.

Another example of the historical relationship between polyhedral geometry and simplicial
topology is found in the work of Henri Poincaré (1854-1912). Poincaré is considered to be largely
responsible for combinatorial and algebraic topology developing into a mature field of study, and
used polyhedra extensively in his work [20]. He obtained the Euler-Poincaré relation (Equation
1.1), which was published in 1899 [52]. This famous relation shows that the alternating sum of
the Betti numbers (Definition 1.1.10) of a topological space is equal to the alternating sum of
the number of cells forming the i-dimensional components of the space. Betti numbers can be
viewed as numbers that count the i-dimensional holes of a space, so this relation combines two
combinatorial perspectives on a geometric object. We exploit these perspectives in Chapter 3
to study a reformulation of a known identity due to Alfred Cardew Dixon (1865-1936) using a
simplicial complex.

Once a mathematical object has been determined to be of interest, we may be able to
better understand the object by studying a transformation of the object rather than directly
studying the object itself. One well-known example of this strategy is the representation theory
of groups, in which groups are studied via their images under homomorphisms into general
linear groups of vector spaces. This philosophy is employed in topological combinatorics by
associating a simplicial complex to a partially ordered set (Definition 1.1.2) called an order
complex (Definition 1.1.3). The order complex encodes properties of the partially ordered set
just as a group representation encodes information about a group. In particular, the types of
shellings admitted by the order complex of a partially ordered set can reveal properties of the
partially ordered sets. We examine this relationship in Chapter 2.

Another use of geometric combinatorics that is important in this thesis is the study of
mathematical properties of the input and output spaces of an algorithm. Such mathematical
properties may give insight about the performance of a method. For example, understanding the
geometric structure or combinatorial properties of the input space of an algorithm can explain
an observed bias of an algorithm on specific types of data sets. These insights can be exploited
to create better algorithms and improve existing algorithms. When an algorithm takes inputs
in a Euclidean space and makes decisions according to linear selection criteria, we can study
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the decomposition of the input space indexed by the possible outputs of the algorithm using
polyhedral geometry.

There are many tools available to aid in the study of such a decomposition found in the field
of linear optimization. Linear optimization is the extensively developed area of mathematics
concerned with minimizing or maximizing a function subject to a set of constraints, where
the function and constraints are determined by linear equations. This type of optimization
was pioneered in 1947 when George Dantzig designed a method for solving linear formulations
of United States Air Force planning problems. The method he designed is now known as the
simplex method and was soon determined to be applicable to a wide range of problems [22]. The
fundamental objects organizing all linear optimization problems are polyhedra, which have been
studied for centuries. However, the emergence of the field of linear optimization was facilitated
by the development of high-performance computing due to the high dimension of the polyhedra
often associated with linear optimization problems of practical interest.

The algorithms we will study using this approach, that is, the approach of using polyhedral
geometry to study input and output spaces, are phylogenetic reconstruction algorithms. A
phylogeny is a mathematical model of the common evolutionary history of a group of genes or
a group of species, and is commonly represented using a phylogenetic tree (Definition 1.4.1).
Sometimes the genes or species are referred to as taxonomical units or taxa. The phylogenetic
reconstruction methods we will study use data collected under the assumption of models of
DNA, RNA, or protein sequence evolution on the taxa. We assume there is a phylogenetic
signal of the true history that the method is detecting in the data.

Distance-based phylogenetic reconstruction methods, introduced in Section 1.4.1, take a
point in Euclidean space as an input and return a phylogenetic tree with edge weights as an
output. These methods include polynomial-time algorithms that are relevant in the age of huge
data sets. Two fundamental examples of these algorithms include the Neighbor-Joining (NJ)
algorithm of Naruya Saitou and Masatoshi Nei (Algorithm 5.4.6) and the Unweighted Pair
Group Method with Arithmetic Mean (UPGMA) of Robert Sokal and Charles Michener (Al-
gorithm 4.2.1). Both NJ and UPGMA use linear selection criteria and therefore define families
of polyhedra that are indexed by the combinatorial type of tree returned by the algorithm.

It is the within the purview of biologists to develop heuristics for solving computationally
difficult problems, and it is within the purview of mathematicians to analyze how well these
heuristics perform by posing and studying mathematically tractable questions associated to the
heuristics. NJ and UPGMA are considered by biologists to have certain drawbacks in terms
of accuracy. For example, they do not always satisfy performance criteria such as the ability
to produce the correct tree on a fixed data set, where the correct tree is known because the
data was produced by simulations or curated from a set of taxa with a known evolutionary
history. Also, these algorithms may exhibit bias that contradicts the expected values of model
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distributions on phylogenetic trees. Using the mathematical properties of the input and output
spaces associated to an algorithm we may confirm or further explain biases and pathologies
already known to biologists by other means.

There exist phylogenetic reconstruction methods that are considered superior by biologists
due to the use of more accurate models of evolution or superior performance on real data sets,
such as maximum likelihood estimation. However, the input and output spaces of methods that
are not distance-based are often difficult to study mathematically. There are also distance-based
methods that include corrections and improvements to the approach used in NJ that include the
Weighted Neighbor-Joining method “Weighbor” of William Bruno, Nicholas Socci, and Aaron
Halpern [21] and the BIONJ algorithm of Olivier Gascuel [38]. But both Weighbor and BIONJ
induce partitions of the input space that are not polyhedral, and so are not amenable to the
powerful toolkits at hand from linear optimization.

So in some ways, NJ and UPGMA should be viewed as fundamental examples in a large
class of algorithms. By studying the input and output spaces for NJ and UPGMA using poly-
hedral geometry, we hope to gain insight into the issues observed by biologists. Studying these
algorithms may suggest what can be learned about other methods. Furthermore, these algo-
rithms give rise to families of polyhedra that are inherently interesting from the perspective of
geometric combinatorics. In Chapter 4, we explore the combinatorial properties of the family of
polyhedra associated to UPGMA. The organizational tool we use to explain these combinatorial
properties is a partially ordered set (Definition 1.1.2) known as the lattice of set partitions Πn

(Example 1.1.4). The partially ordered set Πn can be studied using the concept of shellability
of an order complex (Definition 1.1.3). This concept is fundamental to the results in Chapter
2, and provides another link between simplicial complexes and polyhedral geometry.

The NJ and UPGMA algorithms can be viewed as polynomial-time heuristics for the NP-
hard least-squares phylogeny (LSP) problem (Problem 5.1.1). This provides a concrete starting
point for the use of our geometric perspective in Chapter 5, in which we examine the decom-
position of the input space in certain regions corresponding to data that may not be sufficient
to resolve a complete evolutionary history. These regions correspond to phylogenies that model
non-binary speciation events, or trees with an unresolved branching structure. This type of tree
contains a high-degree internal vertex called a polytomy (Definition 1.4.3). Trees containing
polytomies are routinely returned by many types of phylogenetic reconstruction methods, not
just the methods addressed in this thesis.

Chapter 1 is devoted to developing background and terminology necessary to present the
topics in later chapters. Section 1.1 explains the connection between simplicial complexes and
partially ordered sets that is fundamental to Chapter 2, as well as key concepts from simplicial
topology fundamental to Chapter 3. Section 1.2 explains some basic concepts in polyhedral ge-
ometry that are used in Chapters 3 and 4. Section 1.3 defines shellability and shellable simplicial
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complexes, and briefly explores the notions of lexicographic shellability used in Chapter 2 and
general non-pure shellability used in Chapter 3. Section 1.4 lays out the fundamental problem
of phylogenetic inference, explains the notion of distance-based phylogenetic inference that is
examined in detail in Chapters 4 and 5, and sets up a geometric perspective on distance-based
phylogenetic inference using the ideas from polyhedral geometry outlined in Section 1.2.

The results in Chapter 2 about lexicographic shellability characterizations of geometric and
semimodular lattices are joint work with Patricia Hersh and appear in the paper [23]. The
results in Chapters 4 and 5 are joint work with Seth Sullivant and appear in the papers [24]
and [26], respectively.

1.1 Simplicial Complexes and Partially Ordered Sets

The first object from geometric combinatorics that we will introduce is the simplicial complex.
Simplicial complexes can be thought of in many ways, including topological spaces, geometric
objects, or set systems for organizing information. We will primarily be concerned with their
topological properties and their relationship to the theory of partially ordered sets.

Definition 1.1.1. An (abstract) simplicial complex on a vertex set V is a collection ∆ of
subsets of V satisfying

1. if v ∈ V then {v} ∈ ∆, and

2. if F ∈ ∆ and G ⊆ F , then G ∈ ∆.

The subsets of V comprising ∆ are called faces or simplices. The dimension dimF of a
face F is |F | − 1, and dim ∆ is simply max{dimF : F ∈ ∆}. A face F is a facet if F is not
properly contained in any other face of ∆. We say ∆ is pure if all the facets of ∆ have the
same dimension. We write F to denote the sub-complex of ∆ generated by F , or in other words
F = {G ∈ ∆ : G ⊆ F}.

Figure 1.1 shows two simplicial complexes on the vertex set V = {1, 2, 3, 4, 5}. In Figure
1.1-(a) we have a pure simplicial complex

∆a = {∅, {1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 4}, {2, 3}, {2, 4}, {2, 5}, {3, 5}, {1, 2, 4}, {2, 3, 5}}

and in Figure 1.1-(b) we have a non-pure simplicial complex

∆b = {∅, {1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 4}, {2, 3}, {2, 4}, {2, 5}, {3, 5}, {1, 2, 4}}.
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Both ∆a and ∆b contain the face F = {1, 2, 4}, and so

F = {∅, {1}, {2}, {4}, {1, 2}, {1, 4}, {2, 4}, {1, 2, 4}}.

is a sub-complex of both ∆a and ∆b.

(a) (b)

Figure 1.1: Two simplicial complexes such that V = {1, 2, 3, 4, 5}.

Partially ordered sets, commonly referred to as posets, play key roles throughout combina-
torics via topics such as Möbius inversion, hyperplane arrangements, and applications to group
theory. Posets are useful in computer science and computational biology, and are applied in
various other branches of mathematics. We direct the interested reader to Chapter 3 of Richard
Stanley’s Enumerate Combinatorics Volume I [66] for a thorough introduction to the theory of
posets.

Definition 1.1.2. A partially ordered set or poset is a set P with a binary order relation
satisfying three axioms:

1. For all p ∈ P , p ≤ p. (reflexivity)

2. If p, q ∈ P satisfy both p ≤ q and q ≤ p, then p = q. (antisymmetry)

3. If p, q, r ∈ P satisfy both p ≤ q and q ≤ r, then p ≤ r. (transitivity)

Note: throughout this thesis all posets will be taken to be finite.
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Two elements p and q of a poset P are comparable if either p ≤ q or q ≤ p holds; else we say
p and q are incomparable. The poset P has a 0̂ if there exists an element 0̂ such that 0̂ ≤ p for
all p ∈ P , and P has a 1̂ if there exists an element 1̂ such that 1̂ ≥ p for all p ∈ P . A chain C is
a poset that is totally ordered or admits a linear order, i.e. every pair {p, q} ⊂ C is comparable.
Examples of totally ordered sets include the real numbers R and the set of the first n positive
integers {1, 2, . . . , n}, denoted [n].

A subset C of a poset P is a chain of P if C is a chain when regarded as a subposet of P . If
there does not exist a larger chain of P containing C, we say that C is maximal. If there does
not exist p, q ∈ C and r ∈ P \C satisfying (i) p < r < q and (ii) C∪{r} is a chain of P , then we
say C is unrefinable or saturated. If p < q and there does not exist r ∈ P such that p < r < q,
we say that q covers p and write pl q.

To visualize and study a poset P we associate the useful Hasse diagram of P which is simply a
graph with vertices given by the elements of P and edge set E(P ) given by the covering relations
of P . We follow the convention that when p l q, q is drawn above p. The Hasse diagram of a
poset is shown in Figure 1.2-(a).

(a) (b)

Figure 1.2: A Hasse diagram and an order complex of a poset.
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1.1.1 Order Complexes of Partially Ordered Sets

Next we introduce a family of simplicial complexes associated to posets known as order com-
plexes. Order complexes of posets are useful because we can obtain valuable information about
the poset by studying the associated order complex. Such information may include determina-
tion of membership in an important class of posets, as we will see in Chapter 2.

Definition 1.1.3. Let P be a poset. The order complex ∆(P ) of P is the simplicial complex
with vertex set given by the elements of P and faces given by the chains of P .

Figure 1.2-(b) shows the order complex of the poset whose Hasse diagram is shown in
Figure 1.2-(a). Note that the maximal chains with 3 elements correspond to 2-simplices (also
known as triangles) in the order complex. The non-maximal chain {0̂, 1̂} corresponds to the 1-
simplex (also known as an edge) in the order complex that is the intersection of the 3 maximal
2-simplices in the order complex.

Another partially ordered set that appears many times in this thesis is the lattice of set
partitions, which we introduce in the next example. Lattices are a special type of poset; the
precise definition of a lattice is given in Definition 2.2.1.

Example 1.1.4. Let Πn consist of all set partitions of a set with n elements. Without loss of
generality we can identify this underlying set as [n]. We consider the set [n] and the blocks in a
set partition of [n] as consisting of unordered elements: λ1| . . . |λk denotes a set partition with
k blocks where λi ⊂ [n] and λi ∩ λj = ∅ for i 6= j, i, j ∈ [k]. When the context is clear, we will
use (for example) 12|345 as shorthand for the set partition {{1, 2}, {3, 4, 5}} of [5].

Set partitions in Πn are ordered by refinement, which means that λ1| . . . |λk ≤ µ1| . . . |µ` if
and only if for each i ∈ [k] there exists a j ∈ [`] satisfying λi ⊆ µj .

The Hasse diagram of Π3 is shown in Figure 1.3. Two posets P and Q are isomorphic if
there exists an order-preserving bijection φ : P → Q whose inverse is order-preserving, that is
s ≤ t in P if and only if φ(s) ≤ φ(t) in Q. Note that Π3 is isomorphic to the poset shown in
Figure 1.2-(a).

1.1.2 Some Topological and Combinatorial Invariants of Simplicial Com-

plexes

One way to understand the structure of a simplicial complex is by examining its topological
and combinatorial qualities. Any geometric realization of an abstract simplicial complex is a
topological space, and we can understand this space combinatorially. One useful combinatorial
invariant simply counts the faces of each dimension of a finite simplicial complex ∆:
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Figure 1.3: Π3, the lattice of set partitions of the set {1, 2, 3}.

Definition 1.1.5. The f -vector f∆ = (f0, f1, . . . , fd) is the integer vector with entries fi

counting the number of faces of dimension i. The maximal entry fd counts the number of facets
of ∆, and dim ∆ = d. If we consider the empty set to be a face of a simplicial complex ∆, we
say ∅ is a face with dimension equal to −1, and f∆ = (f−1, f0, f1, . . . , fd), where f−1 = 1.

Example 1.1.6. When we defined ∆a and ∆b, shown in Figure 1.1-(a) and Figure 1.1-(b), we
specified that ∅ was a face of both ∆a and ∆b. So f∆a = (1, 5, 6, 2) and f∆b

= (1, 5, 6, 1). If ∆a

is the simplicial complex where we do not consider ∅ to be a face, then f∆a
= (5, 6, 2).

Another combinatorial invariant arises as the alternating sum of the entries in the f -vector
f∆:

Definition 1.1.7. The reduced Euler characteristic of the simplicial complex ∆ is the alter-
nating sum

χ̃(∆) =
d∑

i=−1

(−1)ifi

where f∆ = (f−1, f0, . . . , fd).

Note that the alternating sum in Definition 1.1.7 of the f -vector where ∅ is not included as a
face is simply called the Euler characteristic. So, the modifier reduced in this context specifically
indicates the inclusion of ∅ as a face.
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Topological qualities of a simplicial complex ∆ can determine the reduced Euler character-
istic of ∆, as the next example demonstrates. Recall that a homotopy between two functions
f and g from a space X to a space Y is a continuous map G from X × [0, 1] → Y such that
G(x, 0) = f(x) and G(x, 1) = g(x).

Definition 1.1.8. Two topological spaces X and Y are homotopy equivalent if there exist
continuous maps j : X → Y and k : Y → X such that j ◦ k is homotopic to the identity map
on Y and k ◦ j is homotopic to the identity map on X.

A useful way to think of homotopy equivalence of two spaces is that one can be continuously
deformed into the other. So the capital letters “A” and “O” are homotopy equivalent.

Example 1.1.9. Note that if ∆ = {∅, {1}}, then χ̃(∆) = (−1)−1× (1) + (−1)0× (1) = 0. Also,
consider again the complex ∆a from Figure 1.1-(a). We have

χ̃(∆a) = (−1)−1 × (1) + (−1)0 × (5) + (−1)1 × (6) + (−1)2 × (2) = 0

The complexes in Example 1.1.9 are instances of the fact that the reduced Euler characteristic
of any simplicial complex that can be continually deformed to a point is 0. The complexes ∆
and ∆a are equivalent as topological spaces under homotopy equivalence. However, it is not
the case that every simplicial complex with a reduced Euler characteristic of 0 is homotopy
equivalent to a point, as we will see in Chapter 3.

A very useful set of topological invariants of a simplicial complex is the set of Betti numbers.
To define Betti numbers we must first understand the notion of the (simplicial) homology groups
of a simplicial complex. For an introduction to simplicial homology, see for example Section 2.1
of Algebraic Topology by Allen Hatcher [42]. For a simplicial complex ∆, let ∆k denote the set
of all k-dimensional simplices in ∆, i.e. the set of all simplices in ∆ with k + 1 vertices.

A simplicial k-chain is a formal sum of k-simplices
∑j

i=1 ciσi where σi ∈ ∆k and ci ∈ Z.
Note that we will use the term “chain” in this context to mean something completely different
than its usage in conjunction with posets as defined earlier. Let Ck denote the free abelian
group with the basis given by the elements of ∆k. The group Ck is often called a chain group.
Let σ = {v1, . . . , vk+1} ∈ ∆k. The kth boundary map ∂k : Ck → Ck−1 between chain groups is
the function defined by

∂k(σ) =
k+1∑
m=1

(−1)m{v1, . . . , v̂m, . . . , vk+1}

where {v1, . . . , v̂m, . . . , vk+1} is the (k − 1)-simplex obtained by omitting the vertex vm. The
elements of the subgroup ker ∂k of Ck are called cycles and the elements of the subgroup im ∂k+1
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of Ck are called boundaries. It is simple to verify that im ∂k+1 ⊂ ker ∂k, so that the quotient
group Hk = ker ∂k/ im ∂k+1 is defined. We call the group Hk the kth homology group of ∆, and
also write Hk(∆) when the specific simplicial complex under discussion must be made clear.

Definition 1.1.10. The number βk(∆) = rank(Hk(∆)) is the kth Betti number of ∆.

The number βk(∆) can often be regarded as the number of k-dimensional holes that ∆ has
as a topological space. When it is clear from context which simplicial complex we are discussing,
we simply write βk. We have β−1 = 1, for the single generator ∅ of the chain group C−1, as
all chain groups Ck for k < −1 are zero. The number β0 counts the number of connected
components of ∆, and the number β1 counts the number of 1-dimensional holes.

If d is the maximum dimension of a face of a simplicial complex ∆, the face numbers and
Betti numbers of ∆ are related by the Euler-Poincaré relation, which is attributed [9] to Henri
Poincaré:

d∑
i=−1

(−1)ifi =
d∑

i=−1

(−1)iβi. (1.1)

Example 1.1.11. We check Equation 1.1 for ∆a and ∆b from Figure 1.1. We computed
χ̃(∆a) = 0 in Example 1.1.9. It is clear that ∆a has one connected component, so β0(∆a) = 1,
and no higher-dimensional holes, so βk(∆a) = 0 for k > 0. Thus,

(−1)−1 × β−1(∆a) + (−1)0 × β0(∆a) = −1 + 1 = 0.

So Equation 1.1 holds for ∆a.
We have

χ̃(∆b) = (−1)−1 × (1) + (−1)0 × (5) + (−1)1 × (6) + (−1)2 × (1) = −1.

To compute the Betti numbers of ∆b, we note that ∆b has one connected component, so that
β0(∆b) = 1, but also one 1-dimensional hole made by the triangle with edges {2, 3}, {2, 5} and
{3, 5}. So, β1(∆b) = 1. Therefore

∑2
i=−1(−1)iβi(∆b) = −1, and Equation 1.1 also holds for ∆b.

1.2 Polyhedral Geometry

Polyhedra are fundamental objects of study in Euclidean geometry. In particular, they are
used as tools in linear optimization. See Günter Ziegler’s Lectures on Polytopes [72] for a com-
prehensive theoretical introduction to polyhedral geometry. For an introduction to polyhedral
geometry from the perspective of linear optimization, we recommend either Introduction to
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Linear Optimization by Dimitris Bertsimas and John Tsitsiklis [7] or Vas̆ek Chvátal’s Linear
Programming [22].

We now develop some terminology essential to polyhedral geometry in a Euclidean space
Rd. Given a subset X ⊆ Rd, the convex hull of X, denoted conv(X), is the set of all convex
combinations of points in X, or in other words:

conv(X) =

{
λ1x1 + · · ·+ λkxk : {x1, . . . ,xk} ⊆ X, λi ≥ 0,

k∑
i=1

λi = 1

}
.

The conical hull of X is the set of all nonnegative combinations of points in X:

cone(X) = {λ1x1 + · · ·+ λkxk : {x1, . . . ,xk} ⊆ X, λi ≥ 0} .

Let c ∈ Rd and z ∈ R. The (possibly empty) half-space in Rd defined by c and z is the set of
all x ∈ Rd such that c · x ≤ z.

Definition 1.2.1. A H-polyhedron P is the intersection of finitely many half-spaces in Rd.

If P is an H-polyhedron we may write P = {x ∈ Rd : Ax ≤ z}, and say Ax ≤ z is an
H-representation of P , where A ∈ Rm×d and z ∈ Rm. A linear inequality cx ≤ c0 is valid for
P if it is satisfied for all points x ∈ P . A face of P is any set of the form

F = P ∩ {x ∈ Rd : cx = c0}

where cx ≤ c0 is a valid inequality for P . The dimension of a face is the dimension of its affine
hull.

Definition 1.2.2. A V-polyhedron is a subset of Rd that can be written as conv(X) + cone(Y )
for finite subsets X and Y of Rd.

In Definition 1.2.2, the symbol + denotes the Minkowski sum: if X,Y ⊆ Rd then X + Y =
{x+y : x ∈ X,y ∈ Y }. If P = conv(X)+cone(Y ) then conv(X)+cone(Y ) is a V-representation
of P .

Theorem 1.2.3, due to Gyula Farkas (1847-1930) [35], is sometimes called “Farkas’ Theorem”
in the literature, and is not to be confused with the also well-known “Farkas’ Lemma,” to which
Section 1.4 of Ziegler’s book [72] is devoted. While we will not have need of Farkas’ famous
lemma in this thesis, we will make use of Theorem 1.2.3.

Theorem 1.2.3. A subset P ⊆ Rd is an H-polyhedron if and only if P is a V-polyhedron.

Note that Theorem 1.2.3 merely asserts that if there exists an H-representation of a poly-
hedron P then P also has a V-representation, and vice versa. It is still a general problem of
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Figure 1.4: A polyhedron in R2.

interest in polyhedral geometry to compute the other representation when one is known. This
problem is often computationally intractable for “large” (in other words, useful) dimension d.

Example 1.2.4. Figure 1.4 shows a polyhedron P ⊆ R2. The dashed lines are valid inequalities
for P that give an H-representation for P . The arrows show which side of the inequalities we
identify as the half-space defined by each inequality. We fill in the dashed lines where they define
a 1-dimensional face of P . The shaded grey area that is the intersection of the three half-spaces
is P . The points A,B, and C are the 0-dimensional faces of P , also known as vertices. The
V-representation of P is P = conv{A,B,C}. Note that P is also a geometric realization of the
abstract 2-simplex with vertex set {A,B,C}.

Some simpler versions of Theorem 1.2.3 will be of use to us in this thesis. In particular,
we will have need of convenient descriptions of polyhedral cones and polytopes. We say a set
C ⊆ Rd is a polyhedral cone if C = cone(Y ) for a finite set of vectors Y ⊂ Rd. Let 0 denote the
zero vector in Rd.

Theorem 1.2.5. A set C ⊆ Rd is a polyhedral cone C = cone(Y ) for some finite subset Y ⊆ Rd

if and only if C = {x ∈ Rd : Ax ≤ 0} for some A ∈ Rm×d.

Hereafter we take cone to mean polyhedral cone.

13



Figure 1.5: A 2-dimensional polyhedral fan in R3
≥0.

Definition 1.2.6. An extreme ray r of a cone C is a 1-dimensional face of C.

Every polyhedral cone can be written as the cone of its extreme rays, so in practice when
we write C = cone(Y ) we may assume, if it is clear from the context, that Y is precisely the
set of vectors that generate extreme rays of C. We commonly refer to a point vector v ∈ Rd

that generates an extreme ray r interchangeably with the extreme ray r itself.

Definition 1.2.7. For any convex subset P ⊆ Rd, the lineality space of P is defined as

lineal(P ) = {y ∈ Rd : x + ty ∈ P for all x ∈ P, t ∈ R}

When a polyhedron P satisfies lineal(P ) = {0}, then we say P is pointed. In Chapters 4
and 5 we will use the idea of a polyhedral fan:

Definition 1.2.8. A fan is a family F of cones in Rd such that:

1. if P ∈ F then every nonempty face of P is in F , and

2. if P1, P2 ∈ F then P1 ∩ P2 is a face of both P1 and P2.

Informally, a polyhedral fan is a family of cones that is easy to work with because cones in
the family fit together nicely. The dimension of a fan F is the largest dimension of a cone in
F . Figure 1.5 shows a 2-dimensional fan in the positive octant, also known as R3

≥0, of R3. The
labeled points in the picture generate the extreme rays of the fan. Each 2-dimensional cone is
the cone of two extreme rays.

The next version of Farkas’ Theorem concerns polytopes. A polyhedron is bounded if it
contains no ray; a polytope is a bounded polyhedron. A V-polytope is the convex hull of a finite
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point set in Rd. An H-polytope is a bounded H-polyhedron. The polyhedron in Figure 1.4 is a
polytope.

Theorem 1.2.9. A subset P ⊆ Rd is a V-polytope if and only if it is an H-polytope.

The concept of a polytopal complex is similar to the concept of a polyhedral fan. We
introduce it now to motivate the idea of shellability that is introduced in Section 1.3.

Definition 1.2.10. A polytopal complex is a finite, nonempty collection C of polytopes, (called
the faces of C) in Rd that contains all the faces of its polytopes, and such that the intersection
of two polytopes P1, P2 ∈ C is a face of both P1 and P2. The dimension of a polytopal complex
is the dimension of the largest polytope in C, and C is pure if all the inclusion-maximal faces,
or facets of C, have the same dimension.

Note that, for example, the meanings of the terms facet and dimension for a polytopal com-
plex are analogous to the meanings for these terms in regard to simplicial complexes (Definition
1.1.1).

Example 1.2.11. Given a polytope P , the boundary complex of P , denoted C(∂P ), is the
polytopal complex formed by taking the collection of all proper faces of P . Then the facets of
C(∂P ) are the facets of P , and C(∂P ) is a pure (dimP -1)-dimensional polytopal complex.

1.3 Shellability

The notion of shellability originated in polyhedral theory via the study of boundary complexes
of convex polytopes, which are introduced in Example 1.2.11. As Michelle Wachs discusses in
Lecture 3 of [68], the geometer Ludwig Schläfli (1814-1895) assumed the following theorem
without proof in his 1852 manuscript Theorie der vielfachen Kontinuität [56].

Theorem 1.3.1. The boundary complex of a convex polytope is shellable.

Shläfli assumed the content of Theorem 1.3.1 in the course of computing the Euler char-
acteristic of a convex polytope. Heinz Bruggesser and Peter Mani proved Theorem 1.3.1 in
1970 [17], and Peter McMullen used Theorem 1.3.1 in his proof of the upper bound conjecture
for simplicial polytopes [48]. Since simplicial complexes arise outside of polyhedral geometry,
shellability has many applications outside of polyhedral geometry as well. See Definition 8.1 in
[72] for the definition of shellability for polytopal complexes. We will only define shellability for
simplicial complexes.

Definition 1.3.2. A simplicial complex ∆ is shellable if its facets can be arranged in a linear
order F1, F2, . . . , Ft so that the subcomplex

(⋃k−1
i=1 F i

)
∩Fk is pure and (dimFk−1)- dimensional

for k = 2, . . . , t. Such an ordering is called a shelling.
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The wedge of two disjoint topological spaces X and Y is the quotient space obtained by
identifying two points x0 ∈ X and y0 ∈ Y as equivalent. The next theorem, due to Anders
Björner and Michelle Wachs, appears for general, i.e. not necessarily pure, simplicial complexes,
in [15], and explains why shellable simplicial complexes have attractive topological properties.

Theorem 1.3.3. A shellable simplicial complex has the homotopy type of a wedge of spheres
in varying dimensions. For each dimension r, the number of r-spheres is the number of r-facets
whose entire boundary is contained in the union of earlier facets in the shelling order.

Example 1.3.4. The simplicial complex ∆a in Figure 1.1-(a) is not shellable; there are two
facets, {1, 2, 4} and {2, 3, 5}, and no matter which facet we choose to come first in a proposed
shelling order, F 1 ∩ F 2 = {2} which is a 0- dimensional sub-complex, whereas (dimF2 − 1) =
(dimF1 − 1) = 1. However, the non-pure simplicial complex ∆b in Figure 1.1-(b) is shellable.
We can take F1 = {1, 2, 4}, F2 = {2, 3}, F3 = {2, 5}, and F4 = {3, 5}. It is easy to check that(⋃k−1

i=1 F i

)
∩ Fk is pure and (dimFk − 1)- dimensional for k = 2, 3, and 4 in this case.

1.3.1 Lexicographic Shellability

Let P and Λ be posets. Given a map λ from the edges of the Hasse diagram of P to Λ
λ : E(P ) → Λ we can associate a label sequence λ(x1, x2), λ(x2, x3), . . . , λ(xn−1, xn) to each
saturated chain C = x1 l x2 l · · · l xn in P . Different types of lexicographic shellabillity
are defined by conditions on these label sequences arising from various edge-labelings. For all
discussions in this thesis, it is sufficient to take Λ to be the set Z of integers with the usual
total ordering. We say that C is increasing if the label sequence of C is strictly increasing. The
first type of lexicographic shellability that we examine is EL-shellability.

Definition 1.3.5. A map from the edges of the Hasse diagram of a poset P to a poset Λ
λ : E(P )→ Λ is an EL-labeling for P if

1. for every interval [x, y] of P , there is a unique rising chain C := x = x1 lx2 l · · ·lxj = y

where λ(x, x2) ≤ λ(x2, x3) ≤ · · · ≤ λ(xj−1, y), and

2. the label sequence of C is lexicographically smaller than the label sequence of every other
saturated chain in the interval [x, y].

Figure 1.6-(a) shows an EL-labeling of the poset from Figure 1.2-(a). Any linear ordering
of the facets of ∆(P ) compatible with the lexicographic order of the label sequences of the
corresponding maximal chains of P will be a shelling order for ∆(P ). The shelling order of
the facets of ∆(P ) shown in Figure 1.6-(b) corresponds to the lexicographic ordering (1, 2) <
(2, 1) < (3, 1) of the label sequences for the maximal chains shown in Figure 1.6-(a).
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(a) (b)

Figure 1.6: An EL-labeling and the associated shelling of the order complex.

So, if there exists an EL-labeling of E(P ), then ∆(P ) is shellable and we say that P is
EL-shellable.

Example 1.3.6. The lattice of set partitions Πn is EL-shellable. The EL-labeling we give here
first appears in [11] and is due to Ira Gessel. If xly in Πn, then y is obtained from x by merging
two blocks B1 and B2. Then the labeling

λ(x, y) = max{minB1,minB2}

is an EL-labeling of E(Πn). For example, the unique increasing chain in the interval [0̂, 1̂] in Π4

is
0̂ = 1|2|3|4 l 12|3|4 l 123|4 l 1234 = 1̂,

and has label sequence

λ(1|2|3|4, 12|3|4), λ(12|3|4, 123|4), λ(123|4, 1234) = 2, 3, 4.

1.3.2 Shellabilty and Homology Calculations

We can calculate the Betti numbers (Definition 1.1.10) βk(∆) of a simplicial complex ∆ by un-
derstanding how a shelling order puts ∆ together in a fashion that lets us explicitly understand
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the topology of ∆. An r-dimensional facet Fk of ∆ is a homology r-facet if Fk satisfies

∂Fk = Fk ∩
⋃
i<k

Fi.

So Fk is a homology r-facet when Fk attaches to ∆ along its whole boundary in a shelling
order. The Betti numbers of any shellable simplicial complex have a natural interpretation in
terms of homology facets: the number of r-spheres in the homotopy type of ∆ is the number of
homology r-facets, as described in Theorem 1.3.3. In other words, βr(∆) is equal to the number
of r-spheres in the homotopy type of ∆.

Example 1.3.7. Recall from Example 1.3.4 that the non-pure simplicial complex ∆b in Figure
1.1-(b) is shellable with shelling order F1 = {1, 2, 4}, F2 = {2, 3}, F3 = {2, 5}, and F4 = {3, 5}.
It is clear that ∆b has the homotopy type of a 1-sphere. The boundary of the facet F4, which
is the pair of vertices {3} and {5}, is contained in the union

⋃
i<4 Fi, but no other facets have

boundaries contained in the union of earlier facets.

1.4 Geometry of Distance-Based Phylogenetic Methods

A phylogeny is a mathematical model of the common evolutionary history of a group of genes
or species. Phylogenies are often represented using a phylogenetic tree, defined formally in
Definition 1.4.1. A phylogenetic tree modeling the evolutionary history of four species labeled
“Dog, Cat, Frog, and Fish” is shown in Figure 1.7.

Phylogenetic trees are inferred from biological data such as DNA sequences, morphology,
and fossil evidence. This thesis discusses distance-based methods that utilize numerical inputs,
and our mathematical analysis does not depend on the methods by which these inputs are
obtained. For context, it is worth noting that inputs for distance-based methods are often com-
puted from amino acid or DNA sequence data using a statistical model of sequence evolution.
There are many types of phylogenetic inference that use many types of data. We direct the
interested reader to Phylogenetics by Charles Semple and Mike Steel [57] for a mathemati-
cal introduction to the field of phylogenetics and to Inferring Phylogenies by Joe Felsenstein
[36] for an introduction to phylogenetics with a more thorough explanation of the biological
perspective.

We define a graph as an ordered pair G = (V (G), E(G)) where V (G) is the set of vertices
of G, and E(G) ⊂ {(u, v) | u 6= v, {u, v} ⊂ V } is the set of edges of G. Note that this
definition precludes the existence of loops. Furthermore, we assume for the purposes of this
thesis that G has no multiple edges. A path P ⊂ V (G) is a set of vertices {v0, . . . , vn} where
{vi−1, vi} ∈ E(G) for all i ∈ [n]. A graph G is connected if there exists a path between every
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Figure 1.7: A phylogeny for four species.

pair of vertices {u, v} ⊂ V (G). A path Γ in G is a cycle if v0 = vn and no vertex v ∈ V (G)
appears more than once in the sequence in Γ except for v0. A graph is acyclic if it contains no
cycles. A tree is a connected, acyclic graph. The degree of a vertex w, denoted deg(w), is the
number |{(u, v) ∈ E(G) | w ∈ {u, v}}|. The degree-one vertices of a tree graph are called leaves.

Definition 1.4.1. A phylogenetic X- tree T on the label set X is an ordered pair T = (T , φ)
where T is a tree graph T = (E(T ), V (T )) with no vertices of degree two, and φ : X → L(T ) is
a bijection from the label set X onto the leaves L(T ) of T . Two phylogenetic trees T1 = (T1, φ1)
and T2 = (T2, φ2) are isomorphic if there exists a bijection ϕ : V (T1) → V (T2) that induces a
bijection E(T1)→ E(T2) and satisfies φ2 = ϕ ◦ φ1.

It is often convenient to identify the set of species or genes X that is being modeled as
[n] = {1, 2, . . . , n} where n = |X|. The set X may be referred to as taxa or taxonomic units.
Two isomorphic phylogenetic X-trees with X = [5] are shown in Figure 1.8. For the purposes
of this thesis, we regard isomorphic phylogenetic X-trees as being equivalent, and omit the
mention of the leaf or taxon label set X when it is obvious from the context. Furthermore, it
is often sufficient to write T to denote a phylogenetic tree instead of using the ordered pair
notation T = (T , φ). A phylogenetic X-tree T = {T , φ} is rooted if there exists a distinguished
vertex ρ of degree at least two such that ρ /∈ φ(X). The two trees in Figure 1.8 are unrooted.
The trees in Figure 1.7 and 1.9 are rooted.
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(a) (b)

Figure 1.8: Two isomorphic phylogenetic [5]-trees.

Definition 1.4.2. Two phylogenetic X-trees T1 and T2 have the same tree topology if their
underlying trees T1 and T2, ignoring leaf labels, are isomorphic. We also say T1 and T2 have the
same shape or tree shape in this case.

We can view a rooted tree as a directed graph where each edge e ∈ E(T ) is directed away
from the root. In a rooted tree, we say a vertex v ∈ V (T ) is a descendant or child of u ∈ V (T )
if the path from ρ to v includes u. This digraph interpretation of a rooted tree induces a partial
order ≤T on the vertices of the tree T so that u ≤T v when u is on the path from the root ρ to
v. Accordingly, if u ≤T v, then v is a descendant of u.

Let V̊ (T ) denote the interior (i.e. non-leaf) vertices of T . We say that T = (T , φ) is binary if
every u ∈ V̊ (T ) has degree 3, except the root ρ, which if it exists, has degree 2. The motivation
for the term “binary” in this definition is that every interior vertex, including ρ if T has a root,
has exactly 2 descendants. However, the term binary may be applied to unrooted trees, in which
every interior vertex has degree 3. We associate a special term to interior vertices that either
have degree greater than or equal to 4 or have more than two descendants.

Definition 1.4.3. A polytomy is a vertex in a phylogenetic tree that is either a root ρ of a
rooted tree satisfying deg ρ ≥ 3 or an interior vertex u that is not a root satisfying deg u ≥ 4.

A phylogenetic tree with a polytomy vertex models an evolutionary history where there is
either a multi-way speciation event or where it is understood that there is insufficient data to
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completely resolve the history. The two trees in Figure 1.8 each have a polytomy vertex.
In a rooted tree, there may be more than one ordering on the internal vertices that may

correspond to speciation events in the inferred evolutionary history. To make this precise, we
make the following definition:

Definition 1.4.4. A rank function on T is a bijection r : V̊ (T )→ {1, 2, . . . , |V̊ (T )|} satisfying
u ≤T v ⇒ r(v) ≤ r(u).

The number of rank functions on T is given by the next formula, which appears in [66] as
Exercise 1 in the supplementary exercises for Chapter 3.

|V̊ (T )|!/
∏

v∈ ˚V (T )

|de(v)| (1.2)

where de(v) denotes the set of descendants of v.
A rooted phylogenetic tree with a rank function is called a ranked phylogenetic tree. Some-

times it is useful to consider a specific type of subgraph of the tree T :

Definition 1.4.5. Let T be a rooted phylogenetic tree. Let v be a vertex in V (T ). Then the
clade associated to v is the sub-tree of T consisting of v along with the set of all descendants
of v.

Example 1.4.6. For the rooted, ranked phylogenetic [5]-tree T = {T , φ : [5]→ L(T )} in Figure
1.9, let ui denote the interior vertex of rank i, i.e. r(ui) = i. Then the clade associated to u3 is
the subtree formed by the induced subgraph with vertex set {u1, u2, u3, φ(1), φ(2), φ(3), φ(4)}.

Figure 1.9: A ranked phylogenetic [5]-tree.

Note that ranked phylogenetic [n]-trees are naturally in bijection with maximal chains in
the lattice of set partitions Πn, which was defined in Example 1.1.4.
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Example 1.4.7. The maximal chain

π5 = 1|2|3|4|5 l 12|3|4|5 l 12|34|5 l 1234|5 l 12345 = π1

in Π5 corresponds to the ranked phylogenetic tree in Figure 1.9.

1.4.1 Distance-Based Phylogenetic Methods

Distance-based phylogenetic reconstruction methods get their name from the characteristics of
their inputs and outputs, which are types of pairwise distance functions on the set of species
being modeled. In particular, all distance-based methods take dissimilarity maps as inputs and
return tree metrics as outputs. We formally define both terms now:

Definition 1.4.8. A function δ : X ×X → R is a dissimilarity map on X if

1. δ(x, y) = δ(y, x) for all {x, y} ⊂ X, and

2. δ(x, x) = 0 for all x ∈ X.

If we identify X as [n], and label the coordinates of R(n2) with the two-element subsets of
[n], every point in R(n2) can be identified as a dissimilarity map on [n].

Definition 1.4.9. A function d : X × X → R is a tree metric if there exists a phylogenetic
X-tree T and a function w : E(T ) → R≥0 such that d(x, y) =

∑
e∈P (x,y)w(e) where P (x, y)

is the unique path in T between the leaves φ(x) and φ(y). We refer to the pair (T,w) as a
weighted tree.

We say that d is realized by the phylogenetic tree T . Note that d may be realized by a
rooted tree such as the tree in Figure 1.9, or an unrooted tree such as the trees in Figure 1.8.
There are interesting characterizations of tree metrics in terms of constraints on the distances
between the leaves of the tree, which we now describe.

Definition 1.4.10. A dissimilarity map δ on X satisfies the four-point condition if, for every
four (not necessarily distinct) elements {w, x, y, z} ⊂ X,

δ(w, x) + δ(y, z) ≤ max{δ(w, y) + δ(x, z), δ(w, z) + δ(x, y)}

The following theorem is due independently to K. A. Zaretskii [71], J. M. S. Simões-Pereira
[59], and Peter Buneman [18], [19].

Theorem 1.4.11. A dissimilarity map δ on X satisfies the four-point condition if and only if
δ is a tree metric on X.
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If we take w = x we can recover the traditional triangle inequality from the four-point
condition on X. Therefore the set of tree metrics on X is a subset of the set of all metrics on
X.

We now introduce a subset of the set of tree metrics that are commonly associated to tree
metrics realized by rooted trees. For a phylogenetic X-tree T = (T , φ), we usually discuss tree
metrics as a function on the set X only, but we can extend the function d to all vertices of T
by taking d(u, v) to be the sum of edge weights on the unique path from u to v for any pair of
vertices {u, v} ⊂ V (T ). We do so to make Definition 1.4.12:

Definition 1.4.12. An edge-weighting of a rooted tree T with root vertex ρ is equidistant if
the tree metric d realized by the weighted tree (T,w) satisfies

1. d(ρ, φ(x)) = d(ρ, φ(y)) for all x, y ∈ X, and

2. d(v, φ(x)) ≤ d(u, φ(x)) whenever u ≤T v ≤T ≤ φ(x).

Tree metrics realized by rooted trees with equidistant weightings also have an alternate
characterization. To make this characterization, we first give Definition 1.4.13:

Definition 1.4.13. A dissimilarity map δ : X × X → R is an ultrametric on X if for every
three distinct elements {x, y, z} ⊂ X,

δ(x, y) ≤ max{δ(x, z), δ(y, z)}

The following theorem appears as part of Theorem 7.2.5 in Phylogenetics by Charles Semple
and Mike Steel [57]:

Theorem 1.4.14. Let δ be a dissimilarity map on X. Then δ is an ultrametric if and only
if there exists a rooted phylogenetic X-tree T with an equidistant weighting w such that the
weighted tree (T,w) realizes δ.

As we mentioned after Definition 1.4.8, we can identify the set of all dissimilarity maps
on [n] as R(n2) = Rn(n−1)/2. The definitions of tree metrics and ultrametrics are less general,
but since tree metrics and ultrametrics on the set [n] are also dissimilarity maps, they can be
identified as points in the same space Rn(n−1)/2. Because of Theorems 1.4.11 and 1.4.14, we
can think of these points either as points corresponding to certain weighted trees or points in
certain polyhedral subsets of Rn(n−1)/2:

Definition 1.4.15. Let Tn denote the set of all tree metrics on [n] and let ETn denote the set
of all ultrametrics on [n]. Then Tn and ETn are proper subsets of Rn(n−1)/2 that we identify as
tree space and equidistant tree space, respectively.
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Note that Tn and ETn provide a different notion of tree space than the tree space described
in the paper “Geometry of the space of phylogenetic trees” by Louis Billera, Susan Holmes, and
Karen Vogtmann [8]. The spaces Tn and ETn are well-known to be polyhedral fans (Definition
1.2.8) in Rn(n−1)/2 of dimension 2n− 3 [62] and n− 1 [3] respectively.

Definition 1.4.16. A distance-based phylogenetic method or simply a distance-based method is
any function f that takes a dissimilarity map δ as an input and returns a tree metric d, where
d is either an arbitrary tree metric in Tn or an ultrametric in ET n, as an output.

A distance-based phylogenetic method f induces a partition of the space Rn(n−1)/2 of all dis-
similarity maps into a family of regions

{C(T ) : f(x) is a tree metric realized by the combinatorial tree T for all x ∈ C(T )}.

Each region C(T ) is the set of all dissimilarity maps that the distance-based method sends
to a cone in the polyhedral fan corresponding to T . If we only consider inputs with positive
entries, we can consider a partition of the positive orthant Rn(n−1)/2

≥0 of Rn(n−1)/2. In Chapter 4,
we study the partition of Rn(n−1)/2

≥0 induced by the UPGMA algorithm (Algorithm 4.2.1). We
will see that this partition is a family of polyhedral cones whose V-representation is described
in terms of maximal chains in the lattice of set partitions Πn introduced in Example 1.1.4.
In Chapter 5, we use polyhedral geometry to investigate regions in the partition of the input
space Rn(n−1)/2 by distance-based phylogenetic methods corresponding to families of binary
resolutions of tree metrics realized by trees with polytomies.
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Chapter 2

Lexicographic Shellability and the

Characterization of Posets

2.1 Introduction

In this chapter we discuss the notion of lexicographic shellability and investigate the prob-
lem of characterizing posets by the types of lexicographic shellings they admit. The concept
of lexicographic shellability was first introduced by Anders Björner in [11]. We explained the
approach of using one type of lexicographic shelling known as an EL-labeling (Definition 1.3.5)
to shell the order complex of a poset in Chapter 1, and we will explain another type of lex-
icographic shellability induced by CL-labelings (Definition 2.3.1) in this chapter. There are
many examples of lexicographically shellable posets in the literature, often with a view towards
showing that fundamental types of posets admit lexicographic shellings. Many lexicographically
shellable posets of interest in the literature, including those studied in this chapter, are lattices
(Definition 2.2.1).

For example, Björner showed that geometric lattices were lexicographically shellable in [11],
Adriano Garsia showed that upper semimodular lattices are lexicographically shellable in [40],
Richard Stanley gave a lexicographic shelling of supersolvable lattices in [64], and Michelle
Wachs and James Walker showed that geometric semilattices are lexicographically shellable in
[69]. John Shareshian showed that the subgroup lattice of a finite solvable group is CL-shellable
(see Definition 2.3.1) in [58], and Russ Woodroofe showed that this lattice is EL-shellable in
[70]. We briefly explore the relationship between EL-shellability and CL-shellability of finite
graded atomic lattices in Section 2.3.

In Section 2.4 we characterize geometric lattices (Definition 2.2.4) as those finite, atomic lat-
tices such that every atom ordering induces a lexicographic shelling of the order complex given
by an edge-labeling of the Hasse diagram known as a minimal labeling (Definition 2.2.3). Equiv-
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alently, we show geometric lattices are exactly those finite lattices such that every ordering on
the join-irreducibles (Definition 2.2.2) induces a lexicographic shelling. This new characteriza-
tion fits into a similar paradigm as Peter McNamara’s characterization of supersolvable lattices
as those lattices admitting a different type of lexicographic shelling, namely one in which each
maximal chain is labeled with a permutation of {1, . . . , n} [49]. In Section 2.5 we give a similar
characterization of semimodular lattices. The results in Sections 2.4 and 2.5 are joint work with
Patricia Hersh and appear in the paper [23].

2.2 Lattices and Minimal Labelings

Lattices are of particular interest in the theory of posets. Every finite lattice admits a type of
edge-labeling known as a minimal labeling. We now briefly develop some terminology related to
lattices, as well as some additional terminology for posets necessary to define minimal labelings.

If p and q are elements of a poset P and there exists r ∈ P such that r ≥ p and r ≥ q, then
r is an upper bound for p and q. We say p and q have a least upper bound or join if there exists
an upper bound s of p and q such that s ≤ r for all other upper bounds r of p and q. We write
s = p ∨ q if s is the least upper bound of p and q in P . Similarly, we say s is the greatest lower
bound or meet of p and q in P and write s = p ∧ q if s ≥ r for all lower bounds r of p and q in
P .

Definition 2.2.1. A poset L is a lattice if every pair of elements p and q in L have both a join
and a meet.

Consequently, every finite lattice must have a 0̂ and a 1̂.

Definition 2.2.2. An element r of a poset P is join-irreducible if we cannot write r = p ∨ q
for any p and q in P satisfying p 6= q, p < r, and q < r.

An atom is an element of P that covers 0̂. In a finite poset, the join-irreducibles are precisely
the elements that cover exactly one element, and include the atoms. For a poset (or lattice) P
we write JoinIrred(P ) to denote the set of join-irreducibles of P , and A(P ) to denote the set
of atoms of P . A lattice L is atomic is every element of L is the join of atoms. Note that if L
is an atomic lattice, JoinIrred(L) = A(L).

Definition 2.2.3. Given any bijection γ : JoinIrred(L) → [n], the map γ induces a minimal
labeling λγ : E(L)→ [n] by the rule

λγ(x, y) = min{γ(j) : j ∈ JoinIrred(y) \ JoinIrred(x)}.
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A finite poset P is graded if every maximal chain has the same number of elements in it;
in this case, there is a rank function ρ defined recursively by ρ(x) = 0 for x a minimal element
of P and ρ(y) = ρ(x) + 1 for xl y. A graded lattice is semimodular if it has a rank function ρ
that satisfies

ρ(x ∧ y) + ρ(x ∨ y) ≤ ρ(x) + ρ(y). (2.1)

Definition 2.2.4. A finite lattice is geometric if it is atomic and semimodular.

Proposition 2.2.5 appears as Corollary 1, p. 81 in Garrett Birkhoff’s book Lattice Theory
[10], and gives an alternate formulation of semimodularity for graded lattices that will be
convenient in proofs that appear later in this chapter.

Proposition 2.2.5 (Birkhoff). Let L be a finite lattice. The following two conditions are equiv-
alent:

1. L is graded, and the rank function ρ of L satisfies the semimodularity condition (2.1)
above.

2. If x and y both cover x ∧ y, then x ∨ y covers both x and y.

Geometric lattices are an important class of lattices. For example, the class of geometric
lattices includes all of the intersection lattices of real, central hyperplane arrangements. Also,
every geometric lattice is the lattice of flats of a matroid, which we define next. Note that
matroids have many equivalent characterizations. The one we provide, Definition 2.2.6, appears
in Richard Stanley’s article [63] as part of a discussion on hyperplane arrangements.

Definition 2.2.6. Let S be a finite set and let 2S = {T : T ⊆ S}. A (finite) matroid is a pair
M = (S,J ), where J is a collection of subsets of S satisfying the following two conditions:

• J is a nonempty abstract simplicial complex (Definition 1.1.1), i.e. J 6= ∅ and if J ∈ J
and I ⊆ J , then I ∈ J .

• For any T ⊂ S, the inclusion-wise maximal elements of J ∩ 2T have the same cardinality.

The collection J is called the collection of independent sets. An independent set T is a basis
if T ∪ {s} /∈ J for any s ∈ S. The rank of a set T ⊆ S is the number

rank(T ) = max{|I| : I ∈ J and I ⊆ T}.

So, rank(∅) = 0 and rank(M) = rank(S). A k-flat is a maximal subset of rank k. The closure
T is the smallest flat containing T , or in other words,

T =
⋂

flats F⊇T
F.
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We can identify geometric lattices with matroids in the following manner: if S is the set of
atoms of a geometric lattice L, then T ⊆ S is independent if and only if the join of T in L

has rank equal to the cardinality of T . The next example relates the concepts of matroid and
geometric lattice via a lattice we first saw in Chapter 1.

Example 2.2.7. The lattice of set partitions Πn from Example 1.1.4 is a geometric lattice.
One can see this by checking that Πn is finite, atomic, and semimodular. The atoms of Πn

are the partitions consisting of exactly one block containing two elements and all other blocks
consisting of singleton elements. For example, the atoms of Π4 are the partitions

12|3|4, 13|2|4, 14|2|3, 23|1|4, 24|1|3, 34|1|2.

The graphical matroid of a finite graph G is the matroid M(G) = (S,J ) where S is the
set E(G) of edges of G and J is the collection of subsets of E(G) that are forests of G, or
collections of connected acyclic subgraphs. Let π be a set partition of the vertices of G and let
Fπ be the subset of E(G)

Fπ = {e ∈ E(G) : both endpoints of e are contained in the same block of π}.

Then Fπ is a flat of M(G). Consider the case G = Kn, and note that every set partition of
[n] can be obtained by a subset of E(Kn). So, Πn is isomorphic to the lattice of flats of the
graphical matroid of the graph Kn, the complete graph on n vertices.

The lattice Πn can also be viewed as the intersection lattice of the real hyperplane arrange-
ment consisting of hyperplanes of the form xi = xj , {i, j} ∈

(
[n]
2

)
. This hyperplane arrangement

is also known as the Type A Coxeter arrangement.

Since geometric lattices are atomic, we can induce a minimal labeling λγ on a geometric
lattice L from any total ordering γ of the set A(L) of the atoms of L. Such minimal labelings
for geometric lattices were originally introduced by Björner in [11]; the following theorem shows
the motivation for introducing them.

Theorem 2.2.8 (Björner [11]). The minimal labeling resulting from any linear ordering of the
atoms in a geometric lattice is an EL-labeling.

In Section 2.4 we show that a lattice L is geometric if and only if λγ is an EL-labeling for
every total ordering γ of A(L).

2.3 CL-Shellability and EL-Shellability

A concept closely related to EL-shellability is that of CL-shellability. The idea of a CL-shellable
poset was introduced by Anders Björner and Michelle Wachs in [13] in order to show that

28



the Bruhat order poset for a Coxeter group is lexicographically shellable. To understand the
notion of CL-shellability we must first introduce the idea of a chain-edge labeling: a labeling
λ : E(P ) → Λ, where Λ is a poset, is a chain-edge labeling if whenever two chains C,C ′ in P

coincide along there first d edges, then their labels coincide along their first d edges as well.
In other words, whenever xi l xi+1 for xi, xi+1 ∈ C ∩ C ′, λC(xi, xi+1) = λC′(xi, xi+1) for all
i ≤ d− 1. When a poset is given a chain-edge labeling, it is possible that an edge in E(P ) may
have more than one label depending on which chain we identify it as a member of.

Since it is possible that in a chain-edge labeling an edge in E(P ) may have more than one
label depending on which chain we identify it as a member of, we remove this ambiguity when
working with chain-edge labelings by introducing the concept of rooting an interval in a poset.
Given a poset P , if [x, y] ⊂ P is an interval in P and r is a maximal chain from 0̂ to x, then
the pair ([x, y], r) is a rooted interval with root r, denoted [x, y]r. Note that this implies if C is
a maximal chain of [x, y], then C ∪ r is a maximal chain from 0̂ to y.

Definition 2.3.1. A chain-edge labeling λ of the edges E(P ) of the Hasse diagram of a poset
P is called a CL-labeling (chain lexicographic labeling) if for every rooted interval [x, y]r in P ,

1. there is a unique increasing maximal chain C in [x, y]r, and

2. the label sequence of C is lexicographically smaller than the label sequence of every other
saturated chain in the interval [x, y]r.

If P admits a CL-labeling, we say P is CL-shellable. Since every EL-labeling is a CL-labeling,
EL-shellability implies CL-shellability. It is unknown, in general, if CL-shellability implies EL-
shellability. Section 4.1 of the article [68] by Michelle Wachs contains a thorough discussion of
the relationships between different types of lexicographic shellability for posets.

2.3.1 Recursive Atom Orderings

The notion of a recursive atom ordering was introduced by Björner and Wachs in [14]. Recursive
atom orderings give an alternative formulation of CL-shellability for finite posets that does not
depend on an edge-labeling. Recall that the length of a finite poset P is the maximum length
of a chain of P .

Definition 2.3.2. A finite poset P is said to admit a recursive atom ordering if either its length
`(P ) = 1 or `(P ) > 1 and there is an ordering a1, a2, . . . , at of the atoms of P that satisfies the
following two conditions:

1. For all j ∈ [t], the interval [aj , 1̂] admits a recursive atom ordering in which the atoms of
[aj , 1̂] that belong to [ai, 1̂] for some i < j come first.
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2. For all i < j, if ai, aj < y then there is a k < j and an atom z of [aj , 1̂] such that
ak < z ≤ y.

Figure 2.1 shows a recursive atom ordering of a poset. The atoms of the poset are ordered
left to right and labeled A1, A2, A3, and A4. The rank 2 elements are ordered left to right, and
labeled B1, B2, and B3. The ordering of the rank two elements induces their ordering as atoms
of the intervals [Ai, 1̂].

Figure 2.1: A recursive atom ordering.

The following theorem appears in [14] as Theorem 3.2:

Theorem 2.3.3 (Björner and Wachs). A graded poset P admits a recursive atom ordering if
and only if P is CL-shellable.

A consequence of Theorem 2.3.3 is that if a finite graded atomic lattice L has a recursive
atom ordering that induces a minimal labeling that is an EL-labeling, then L is both CL-
shellable and EL-shellable. This suggests the following conjecture:

Conjecture 2.3.4. Let L be a finite graded atomic lattice. Then if L is CL-shellable, L is
EL-shellable.

Conjecture 2.3.4 posits the equivalence of EL- and CL-shellability for finite graded atomic
lattices. One approach to proving this conjecture would be as follows: given a finite graded
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atomic lattice that is CL-shellable, we know that L admits a recursive atom ordering. Since L
is an atomic lattice, this ordering induces a minimal labeling. If one could show this labeling
was always an EL-labeling, this would establish Conjecture 2.3.4. Unfortunately, the minimal
labeling induced by the recursive atom ordering of the lattice in Figure 2.1 is not an EL-labeling,
as shown in Figure 2.2.

Figure 2.2: A minimal labeling induced by a recursive atom ordering.

While this does not show that Conjecture 2.3.4 is false, it does show that this method of
proof will not work.

2.4 Lexicographic Shellability Characterizations of Geometric

Lattices

Peter McNamara proved that supersolvable lattices can be characterized as lattices admitting a
certain type of EL-labeling known as an Sn-EL-labeling [49]. Each maximal chain is labeled by
the set of labels {1, . . . , n} with each label used exactly once in each maximal chain. Previously,
Richard Stanley had proven that all supersolvable lattices admit such EL-labelings in [64]. Thus,
McNamara’s result gave a new characterization of supersolvable lattices: that a finite lattice is
supersolvable if and only if it has an Sn-EL-labeling.
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This section is devoted to giving two new characterizations of geometric lattices. The first is
based on atom orderings for finite atomic lattices. The second characterization replaces this with
a condition on the orderings of the join-irreducibles for finite lattices so as to avoid assuming a
priori that the lattices are atomic. In both cases, we prove for any finite lattice L that if every
ordering of the join-irreducibles induces a minimal labeling which is an EL-labeling, then L is
a geometric lattice. To this end, we first develop some helpful properties of minimal labelings.

Lemma 2.4.1. Let L be a finite atomic lattice and let λγ be a minimal labeling on L. Then
xi l xi+1 ≤ xj l xj+1 in L implies λγ(xi, xi+1) 6= λγ(xj , xj+1). In other words, the labels on
any particular saturated chain are distinct.

Proof. This is immediate from the fact that A(xj+1)\A(xj) is disjoint from A(xi+1)\A(xi) for
i 6= j.

Lemma 2.4.2. Let L be a finite lattice. Then JoinIrred(u) ⊆ JoinIrred(v) if and only if u ≤ v.
Moreover, u = v if and only if JoinIrred(u) = JoinIrred(v). In the special case of a finite atomic
lattice L we have A(u) ⊆ A(v) if and only if u ≤ v, and we have A(u) = A(v) if and only if
u = v.

Proof. This follows from two facts: (1) that every element of a finite lattice L is a join of
join-irreducibles, and (2) that the only join-irreducibles in an atomic lattice are the atoms.

Lemma 2.4.3. Let L be a finite lattice and suppose that there exist x, y ∈ L that both cover
x∧ y, but with x not covered by x∨ y. Then for j any join-irreducible satisfying y = (x∧ y)∨ j,
we have that j /∈ JoinIrred(z) for any z covering x.

Proof. Assume by way of contradiction that the join-irreducible j given above satisfies j ≤ z

for some xl z. Note that x∧ y ≤ xl z, which together with j ≤ z implies (x∧ y)∨ j ≤ z. But
(x ∧ y) ∨ j = y, so we may conclude that x ∨ y ≤ z. This contradicts the fact that x ∨ y does
not cover x, completing our proof.

Now to our first characterization of geometric lattices.

Theorem 2.4.4. Let L be a finite atomic lattice. Then L is geometric if and only if every atom
ordering induces a minimal labeling that is an EL-labeling.

Proof. Björner proved in Theorem 2.2.8 that all of the minimal labelings for a geometric lattice
are EL-labelings. We now prove the converse. Since we assume that L is atomic, what remains
is to prove that L is semimodular.

Suppose otherwise. By Proposition 2.2.5, there must exist x, y ∈ L such that x and y

both cover x ∧ y but x ∨ y does not cover x. By Lemma 2.4.2, we may choose some atom
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ax ∈ A(x) \ A(x ∧ y) such that ax 6∈ A(y). Since L is an atomic lattice, there must also exist
ay ∈ A(y) such that (x ∧ y) ∨ ay = y. By Lemma 2.4.3, ay /∈ A(z) for any z such that x l z.
This implies ay 6= ax, since ay 6∈ A(z) for all z satisfying x l z, which in particular implies
ay 6∈ A(x).

Now consider any atom ordering γ : A(L) → [n] such that γ(ax) = 1 and γ(ay) = 2. Since
ax ∈ A(x) \A(x ∧ y) and γ(ax) = 1, we know that λγ(x ∧ y, x) = 1. Let

C := x ∧ y = x0 l x = x1 l x2 l · · ·l xk = x ∨ y

be the lexicographically smallest saturated chain on the interval [x∧y, x∨y]. By Lemma 2.4.3,
ay /∈ A(x2). Therefore, λγ(x1, x2) 6= 2. By Lemma 2.4.1, there is no repetition in the label
sequence, implying λγ(x1, x2) > 2. For some 2 < j ≤ k, we must have ay ∈ A(xj) \ A(xj−1),
implying λγ(xj−1, xj) = 2.

But min{γ(a)|a ∈ A(x2) \ A(x1)} ≥ 3, so λγ(x1, x2) > λγ(xj−1, xj). This implies that C
cannot have weakly increasing labels, hence that λγ is not an EL-labeling.

Next we give a closely related alternative characterization of geometric lattices which avoids
making the assumption that the lattices are atomic. The essence of the proof will be a reduction
to the atomic case. We thank Peter McNamara for pointing out that one does not need to assume
that a finite lattice is atomic in order to give a lexicographic shellability characterization of
geometric lattices.

Theorem 2.4.5. A finite lattice L is a geometric lattice if and only if every ordering of the
join-irreducibles induces a minimal labeling λγ which is an EL-labeling.

Proof. One direction is well-known, so we focus on the other direction. That is, we will assume
there is some join-irreducible that is not an atom, and use this to produce an ordering on
join-irreducibles whose associated minimal labeling is not an EL-labeling. The case where all
join-irreducibles are atoms has already been handled in Theorem 2.4.4.

Suppose there exists v ∈ JoinIrred(L) that is not an atom. In this case, we may choose
such a v so that if a < v for a ∈ JoinIrred(L) then a is an atom. It is well known (see [66], p.
286) that in a finite lattice, the join-irreducibles are precisely the elements that cover exactly
one other element. Let u be the unique element in L with ul v. Thus, JoinIrred(u) is entirely
composed of atoms and | JoinIrred(u)| = k for some 1 ≤ k ≤ n − 1 where n is the number of
join-irreducibles in L. Consider an ordering γ on the join-irreducibles such that γ(v) = 1 and
{γ(x)|x ∈ JoinIrred(u)} = {2, 3, . . . , k + 1}. The lexicographically smallest label sequence for
any saturated chain in the interval [0̂, v] must then have a descent, because all saturated chains
must include u, but λγ(u, v) = 1 while λγ(x, y) > 1 for all covering relations xly in the interval
[0̂, u]. Thus, this minimal labeling λγ is not an EL-labeling.
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2.5 Lexicographic Shellability Characterization of Semimodu-

lar Lattices

Our next theorem, Theorem 2.5.1, characterizes semimodular lattices, and previously appeared
in the paper [54] of Ivan Rival. We nonetheless include our proof of Theorem 2.5.1 both for
its new approach to this sort of question and because it provides a significantly higher level of
detail than appears in the argument in [54]. We thank Victor Reiner for suggesting the question
of characterizing semimodular lattices using similar techniques to those we applied in Section
2.4. First we make an observation that the proof of Theorem 2.5.1 will rely upon.

Observation. Let L be a finite lattice with | JoinIrred(L)| = n and let x ∈ L. If | JoinIrred(x)| =
k and γ̂ : JoinIrred([0̂, x]) → [k] is a linear extension of the subposet of join-irreducibles of
the interval [0̂, x], then there exists a linear extension γ : JoinIrred(L) → [n] of the subposet
JoinIrred(L) that restricts to the map γ̂.

Theorem 2.5.1. Let L be a finite lattice with | JoinIrred(L)| = n. Suppose that for every linear
extension γ : JoinIrred(L) → [n] of the subposet JoinIrred(L) of join-irreducibles in L, the
resulting minimal labeling λγ is an EL-labeling on L. Then L is (upper) semimodular.

Proof. Assume by way of contradiction that x and y cover x ∧ y but that x ∨ y does not cover
x. Lemma 2.4.2 shows that there exist join-irreducibles jx ∈ JoinIrred(x) \ JoinIrred(x∧ y) and
jy ∈ JoinIrred(y)\JoinIrred(x∧y). Let k be the number of elements in JoinIrred(x∧y). Notice
that if k = 0, then x and y are atoms, so in particular x and y are join-irreducibles jx := x and
jy := y.

Now we choose a linear extension γ of the subposet JoinIrred(L) of L comprised of the
join-irreducibles. By Observation 2.5, we may choose γ so that it assigns exactly the values in
{1, . . . , k} to the join-irreducibles in [0̂, x ∧ y]. Moreover, we may insist that γ(jx) = k + 1 and
γ(jy) = k+ 2, choosing how γ assigns the values in {k+ 3, . . . , n} to the subposet comprised of
the remaining join-irreducibles by taking any linear extension of the remaining join-irreducibles.

Denote the lexicographically smallest maximal chain in the interval [x ∧ y, x ∨ y] by

C = x ∧ y l xl x2 l · · ·xm−1 l xm = x ∨ y.

We have assumed that x ∨ y does not cover x, implying m > 2. Our constraints given above
on our choice of γ imply that λγ(x1, x2) 6∈ {1, . . . , k + 2}, since Lemma 2.4.3 ensures that
jy 6∈ JoinIrred(x2). Thus, λγ(x, x2) ≥ k+ 3. But since JoinIrred(y) ⊂ JoinIrred(x∨ y), we then
must have jy ∈ JoinIrred(x`) \ JoinIrred(x`−1) for some 2 < ` ≤ m. This implies min({γ(j)|j ∈
JoinIrred(x`) \ JoinIrred(x`−1)}) ≤ k + 2. Hence, λγ(x`−1, x`) ≤ k + 2 < r = λγ(x, x2), forcing
the chain C to have a descent, a contradiction to this being an EL-labeling. Thus, knowing that
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x and y both cover x ∧ y does imply in our setting that x ∨ y covers both x and y. Thus, L is
semimodular.

2.6 Discussion

A concept closely related to that of an EL-labeling is that of an R-labeling. We give the definition
from Chapter 3 of Stanley’s book [66] here.

Definition 2.6.1. Let P be a finite graded poset with a 0̂ and a 1̂. A map from the edges
of the Hasse diagram of P to the integers λ : E(P ) → Z is an R-labeling for P if for every
interval [x, y] of P , there is a unique saturated chain C := x = x1 l x2 l · · · l xj = y where
λ(x, x2) ≤ λ(x2, x3) ≤ · · · ≤ λ(xj−1, y).

A notable difference between EL-labelings and R-labelings is the fact that we do not require
the unique increasing chain in an interval to have a lexicographically smallest label sequence.
Axel Hultman informed us in a personal communication that the proof of Theorem 2.4.4 may
easily be modified to yield the following statement: Let L be a finite lattice with set of join-
irreducibles JoinIrred(L) and k = | JoinIrred(L)|. Then the labeling λγ induced by each choice of
order-preserving bijection γ : JoinIrred(L)→ [k] is an R-labeling if and only if L is semimodular.

If M = M(S) is a matroid (Definition 2.2.6) of rank r on a finite set S, the independence
complex of M is the (r − 1)-dimensional simplicial complex formed by the family of all inde-
pendent sets in M . As we saw in the the discussion in Section 2.2, a geometric lattice is the
lattice of flats, or closed sets, of a matroid.

Remark. There is a well-known result concerning matroid complexes which has a similar flavor
to Theorem 2.4.4. This appears e.g. in the article “Homology and shellability of matroids and
geometric lattices” of Björner [12] as Theorem 7.3.4. The statement of this result is as follows: a
simplicial complex ∆ is the independence complex of a matroid if and only if ∆ is pure and every
ordering of the vertices induces a shelling of ∆. It seems interesting to note the resemblance
between the necessary hypotheses for Theorem 7.3.4 of [12] and those of our characterization(s)
of geometric lattices. It is natural to ask if one result is a translation of the other into a different
language. This does not appear to be the case, rather the two results seem to be fundamentally
quite distinct.

Finite geometric lattices, finite semimodular lattices, and finite supersolvable lattices are
now known to have characterizations in terms of the types of edge-labelings they admit. At
this point in time we do not know if there are other classes of lattices or posets that can be
characterized in this fashion.
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Chapter 3

Towards a Shellability Proof of a

Hypergeometric Identity

3.1 Introduction

The goal of this chapter is to give results that could be employed towards a new proof of the
identity

n∑
s=0

(−1)s
(
n

s

)3

=

 0 if n is odd,

(−1)n/2
( 3n/2
n/2,n/2,n/2

)
, if n is even,

(3.1)

using tools from topological combinatorics. The identity (3.1) is due to Alfred Cardew Dixon
(1865-1936). Dixon originally proved (3.1) in the paper “On the sum of the cubes of the coeffi-
cients in a certain expansion by the binomial theorem” in Messenger of Mathematics Volume
20 [30], which is a journal that ceased to publish in 1929. See page 121 of the book Combi-
natory Analysis-Two Volumes in One by Percy Alexander MacMahon (1854-1929) [47] for an
application of (3.1).

This identity is actually a special case of a more general identity. Let n1, n2, and n3 be
nonnegative integers and let N = n1 + n2 + n3. Then

min(n1,n3,n1+n3−n2)∑
s=max(0,n1−n2,n3−n2)

(
n3

s

)(
n2

n1 − s

)(
n1

n2 − n3 + s

)
(−1)s =

0 if N is odd,

(−1)N/2−n2
( N/2
N/2−n1,N/2−n2,N/2−n3

)
if N is even.

(3.2)
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The identity (3.1) is the case n1 = n2 = n3 = n. The general case (3.2) is called the well-
poised 3F2 transformation. It is due to Wilfrid Norman Bailey (1893-1961) and can be found
on page 97 of his book Generalized Hypergeometric Series [5]. See the proof of Lemma 4.2 in
the paper [53] of Victor Reiner, Dennis Stanton, and Volkmar Welker for an application of the
identity (3.2) related to the Charney-Davis conjecture. We thank Noam Elkies for suggesting
the idea of proving the identity (3.1) using ideas from topology such as trying to interpret the
alternating sum as an Euler characteristic. We thank Dennis Stanton for sharing his expertise
and historical knowledge regarding the identities (3.1) and (3.2).

We now explain one approach to finding a topological proof of (3.1) that we work towards
in this chapter. By Theorem 1.3.3, when a simplicial complex ∆ is shellable (Definition 1.3.2),
the Betti numbers βi(∆) (Definition 1.1.10) can be interpreted as counting the number of
i-dimensional faces attaching to ∆ along their entire boundary in a shelling order.

So, our aim is to find, for each n, a shellable simplicial complex ∆ with face numbers
(Definition 1.1.5) fs−1 =

(
n
s

)3 and then calculate the Betti numbers of ∆. Then the Euler-
Poincaré relation, which we saw as Equation 1.1 in Chapter 1:

d∑
i=−1

(−1)ifi =
d∑

i=−1

(−1)iβi,

where d is the maximum dimension of a face of ∆, will hopefully give a new way of understanding
and proving (3.1). Determining the Betti numbers may also lead to a refinement or a greater
understanding of (3.1). Our candidate for a suitable simplicial complex to work towards these
goals was given to us by Patricia Hersh, and is defined here:

Definition 3.1.1 (Hersh). Fix n ≥ 1. Let ∆(n) be the simplicial complex with vertices given
by 3-tuples (is, js, ks) for is, js, ks ∈ [n] and faces given by collections of vertices

{(i1, j1, k1), . . . , (ir, jr, kr)}

satisfying

i1 < i2 < · · · < ir and j1 < j2 < · · · < jr and k1 < k2 < · · · < kr.

It is easy to see that the number of r-faces of ∆(n) is counted by the product
(
n
r+1

)3. So

χ(∆(n)) =
n∑
s=0

(−1)s+1

(
n

s

)3

= (−1)×
n∑
s=0

(−1)s
(
n

s

)3

.

Therefore, if our approach to this problem works, the equation produced by writing down the
Euler-Poincaré relation for ∆(n) will actually be equivalent to multiplying both sides of Equa-
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tion 3.1 by −1. So, when we calculate the alternating sum of the Betti numbers
∑d

i=−1(−1)iβi
(as we do for n ≤ 4 in Section 3.4.1) we will actually check (−1)×

∑d
i=−1(−1)iβi to verify (3.1).

We can generalize the construction of ∆(n). In particular, define a simplicial complex Γp(n)
with vertices given by sequences in [n]p for p ≥ 1, and faces given by collections of vertices

{(i1,1, . . . , i1,p), (i2,1, . . . , i2,p), . . . , (ir,1, . . . , ir,p)}

satisfying i`,a ∈ [n] for all ` ∈ [r] and all a ∈ [p], and i`,a < i(`+1),a for all ` ∈ [r − 1] and all
a ∈ [p]. Then Γp(n) has face numbers given by

fs−1 =
(
n

s

)p
for 0 ≤ s ≤ n.

Note that for p = 1, Γp(n) corresponds to the identity

n∑
k=0

(−1)k
(
n

k

)
= 0, n ≥ 1 (3.3)

which appears as Exercise 1.3-(f) in Enumerative Combinatorics Volume I by Richard Stanley
[66]. Γ1(n) is the traditional n-simplex ∆n−1 with vertices labeled with the labels {1, . . . , n}
and therefore has the homotopy type (Definition 1.1.8) of a point. Therefore the left-hand side
of (3.3) is (−1)χ̃(∆n−1) which is equal to zero.

For p = 2, Γp(n) corresponds to the identity

n∑
k=0

(−1)k
(
n

k

)2

=

 0 if n is odd,

(−1)n/2
(
n
n/2

)
, if n is even.

. (3.4)

Determining the value of the right-hand side of (3.4) appears as Exercise 5.48 in A Course in
Enumeration by Martin Aigner [1]. One way to prove (3.4) is by the use of a sign-reversing
involution (Definition 3.5.1).

Since we originally wanted to explore this new approach to the identity (3.1), we present
results in this chapter for p = 3, i.e. for ∆(n). However, as the reader will see in Sections 3.3
and 3.4.1, the arguments leading to these results depend on the fact that p is a positive integer
and p > 1, but not truly on the fact that p = 3. So, the construction should generalize to create
a family of non-pure, disconnected shellable simplicial complexes {Γp(n) : p ≥ 1}. However, it
is unknown if the Betti numbers of these generalized constructions for arbitrary p will have any
combinatorial significance of the type that the Betti numbers of ∆(n) do. We hope that the
study begun in this chapter may eventually lead to the establishment of new identities.
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We also note that we can view the simplicial complex ∆(n) as the order complex (Definition
1.1.3) of the poset P∆(n) where the elements of P∆(n) are integer triples in [n]3 and (i, j, k) ≤
(i′, j′, k′) in P∆(n) if and only if i < i′, j < j′ ,and k < k′ as integers. Our proof of the shellability
of the complex ∆(n) does not directly use the fact that ∆(n) is an order complex of a poset,
but we may incorporate this view into future work on this problem.

In Section 3.2 we observe some additional facts about ∆(n) and develop some technical
language for operations on the faces of ∆(n). In Section 3.3 we establish a shelling order for the
facets of ∆(n). In Section 3.4.1 we characterize the homology facets (Definition 3.4.1) of ∆(n),
and use this characterization to verify our reformulation of (3.1) for n ≤ 4. In Section 3.5 we
discuss some possible continuations of the work described in this chapter.

3.2 Some Facts About ∆(n)

When n = 1, the only nonempty face of ∆(n) is {(1, 1, 1)}. Figures 3.1 and 3.2 show the
simplicial complexes ∆(2) and ∆(3), respectively. It is immediately apparent that ∆(n) is non-
pure for all n > 1, and always has precisely one (n−1)-dimensional facet given by the collection
of vertices {(1, 1, 1), (2, 2, 2), . . . , (n, n, n)}. This is the maximum possible dimension of a face
of ∆(n), so when we calculate the Euler-Poincaré relation it will be sufficient to calculate

n−1∑
i=−1

(−1)ifi =
n−1∑
i=−1

(−1)iβi. (3.5)

Note that each of ∆(1), ∆(2), and ∆(3) contain isolated vertices. Since ∆(1) is a point, it
is pure and connected, but ∆(2) and ∆(3) are disconnected and nonpure.

Figure 3.1: The simplicial complex ∆(2).
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Figure 3.2: The simplicial complex ∆(3).

Since we will be establishing a shelling order for ∆(n), it is essential that we understand
which faces are facets. The facets of ∆(n) are characterized in Lemma 3.2.1.

Lemma 3.2.1. Let F = {v1, . . . , vr} = {(i1, j1, k1), . . . , (ir, jr, kr)} be a face of ∆(n). Then F

is a facet if and only if F satisfies the following three properties:

(P1) max{ir, jr, kr} = n.

(P2) min{i1, j1, k1} = 1.

(P3) If r ≥ 2, min{i`+1 − i`, j`+1 − j`, k`+1 − k`} = 1 for all ` ∈ [r − 1].

Proof. Let F = {v1, . . . , vr} be a facet of ∆(n). Properties P1 and P2 clearly must hold for
F : if P1 does not hold, then F ⊂ {v0} ∪ F where v0 = (i1 − 1, j1 − 1, k1 − 1). If P2 does not
hold F ⊂ F ∪ {vr+1}, where vr+1 = (ir + 1, jr + 1, kr + 1). If P3 does not hold, there exists an
index ` ∈ [r − 1] where min{i`+1 − i`, j`+1 − j`, k`+1 − k`} > 1 and we can construct a vertex
vs = (is, js, ks) satisfying

i` < is < i(`+1), j` < js < j(`+1), and k` < ks < k(`+1).
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Then F ′ = {v1, v2, . . . , v`, vs, v`+1, . . . , vr} properly contains F and F cannot be a facet. So each
condition is necessary and sufficient for F to be a facet.

From this characterization of the facets of ∆(n), we immediately obtain the next lemma:

Lemma 3.2.2. For n ≥ 2, the simplicial complex ∆(n) is nonpure and disconnected.

Proof. Any vertex vs = (is, js, ks) satisfying {1, n} ⊂ {is, js, ks} must be an isolated vertex, as
vs cannot be contained in any other face in this case. If n > 1 there is more than one vertex in
∆(n), so ∆(n) contains isolated vertices and is disconnected for all n ≥ 2. For all n there is an
(n− 1)-dimensional facet F (n) = {(1, 1, 1), (2, 2, 2), . . . , (n, n, n)}, and for n ≥ 2, dimF (n) > 0.
So ∆(n) is not pure for n ≥ 2.

It is also useful to obtain new faces of ∆(n) from old, and understand how to obtain a new
facet from an old facet. To make these actions possible, we now define operations on the faces
of ∆(n) in Definitions 3.2.3, 3.2.4, 3.2.6 and 3.2.9.

Definition 3.2.3. Let F = {v1, v2, . . . , vr} be a face of ∆(n). For ` ∈ [r − 1], let

A` = {a` ∈ {i`, j`, k`} : a`+1 − a` > 1}

and let
Ar = {ar ∈ {ir, jr, kr} : ar < n}.

For ` such that A` 6= ∅, define a up-twist G about the vertex v` as the face of ∆(n) obtained
by replacing v` in F with the new vertex v′` of ∆(n) obtained by increasing an index of v` in
A` by 1.

Definition 3.2.4. Let F = {v1, v2, . . . , vr} be a face of ∆(n). For ` ∈ {2, 3, . . . , r}, let

B` = {b` ∈ {i`, j`, k`} : b` − b`−1 > 1}

and let
B1 = {b1 ∈ {i1, j1, k1} : b1 > 1}

For ` such that B` 6= ∅, define a down-twist G about the vertex v` as the face of ∆(n)
obtained by replacing v` in F with the new vertex v′` of ∆(n) obtained by decreasing an index
of v` in B` by 1.

Example 3.2.5. In this example, we consider faces of ∆(5). In the face F = {(1, 1, 2), (2, 5, 5)}
with v1 = (1, 1, 2), and v2 = (2, 5, 5) the set A1 = {j1, k1} = {1, 2}, and B2 = {j2, k2} = {5, 5}.
An up-twist of F about v1 is the new face {(1, 2, 2), (2, 5, 5)}. A down-twist of F about v2 is
the new face {(1, 2, 2), (2, 4, 5)}.
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Definition 3.2.6. Recall conditions P1, P2, and P3 from Lemma 3.2.1, and let F be a facet.
We say an up-twist G of a facet F = {v1, v2, . . . , vr} is safe if either ` > 1 and condition P3 is
conserved, or ` = 1 and condition P2 is conserved. We say a down-twist G of a facet F is safe
if either ` < r and condition P3 is conserved, or ` = r and condition P1 is conserved.

Example 3.2.7. In this example, we again consider faces of ∆(5). The down-twist

{(1, 2, 2), (2, 4, 4)}

of
{(1, 2, 2), (2, 4, 5)}

about the vertex (2, 4, 5) is not safe. The down-twist

{(1, 2, 2), (2, 3, 5)}

of
{(1, 2, 2), (2, 4, 5)}

about the vertex (2, 4, 5) is safe.

Lemma 3.2.8. Let F1 = {v1, . . . , vr} be a facet of ∆(n). If F2 is a safe up-twist or a safe
down-twist of F1, then then F2 is a facet of ∆(n).

Proof. First we consider the case where F1 is a facet {v1, . . . , vr} of ∆(n) and

F2 = {v`′} ∪ {vj : j ∈ [r] \ {`}}

is a safe up-twist of F1 about the vertex v`. By Lemma 3.2.1, it is sufficient to show that F2

satisfies P1, P2, and P3. If ` < r, then vr is unaffected by the vertex change and P1 holds
for F2. If ` = r, then the maximum element of v′r will not decrease and P1 is satisfied by
F2. If ` > 1, then P2 is trivially satisfied by F2. If ` = 1, then since F2 is a safe up-twist,
min{i1, j1, k1} = min{i′1, j′1, k′1} = 1, where (i′1, j

′
1, k
′
1) is the new vertex in v′1 ∈ F2. So P2

holds.
Now, since F1 is a facet, min{i`+1 − i`, j`+1 − j`, k`+1 − k`} = 1. Without loss of generality,

we can say min{i`+1 − i`, j`+1 − j`, k`+1 − k`} = i`+1 − i`, so that i` /∈ A` and v′` = (i`, j′`, k
′
`).

Therefore min{i`+1 − i`, j`+1 − j′`, k`+1 − k′`} = 1 and P3 holds.
A similar argument shows that if F2 is a safe down-twist of F1, then F2 is also a facet of

∆(n).
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Definition 3.2.9. Let F = {v1, . . . , vr} be a face of ∆(n) where r ≥ 2. For ` ∈ [r − 1], a
contraction of F about v` is a face

G = {w} ∪ {vj : j ∈ [r] \ {`, `+ 1}}

where w = (i, j, k) is a vertex satisfying

(ii) i ∈ {i`, i`+1}, j ∈ {j`, j`+1}, k ∈ {k`, k`+1},

(ii) min{i`+2 − i, j`+2 − j, k`+2 − k} = 1, and

(iii) min{i− i`−1, j − j`−1, k − k`−1} = 1.

We say a contraction is safe if F is a facet and either ` = 1 and min{i, j, k} = 1 or ` + 1 = r

and max{i, j, k} = n.

Example 3.2.10. In this example, we consider faces in ∆(6). If

F = {(1, 2, 1), (2, 4, 3), (3, 5, 5), (6, 6, 6)},

then G1 = {(1, 2, 1), (2, 5, 5), (6, 6, 6)} is obtained from a contraction of F about v2 = (2, 4, 3),
and G2 = {(1, 4, 3), (3, 5, 5), (6, 6, 6)} and G3 = {(2, 2, 3), (3, 5, 5), (6, 6, 6)} are obtained from
contractions of F about v1 = (1, 2, 1). Note that G2 is obtained from a safe contraction, but G3

is not.

The next lemma shows that we can use safe contractions to obtain a new facet from an old
facet in ∆(n).

Lemma 3.2.11. Let F1 = {v1, . . . , vr} be a facet of ∆(n) and let ` ∈ [r − 1]. If

F2 = {w} ∪ {vj : j ∈ [r] \ {`, `+ 1}}

where w = (i, j, k) is obtained from F1 via a safe contraction about v`, then F2 is a facet of
∆(n).

Proof. We appeal again to Lemma 3.2.1; we must show that F2 satisfies P1, P2, and P3. If
` < r− 1, then vr ∈ F2 and F2 inherits P1 from F2. If ` = r− 1, then `+ 1 = r and since F2 is
obtained from a safe contraction, max{i, j, k} = max{ir, jr, kr} = n. So F2 satisfies P1. If ` > 1,
then v1 ∈ F2 and F2 automatically inherits P2 from F1. If ` = 1, then since F2 is obtained from
a safe contraction, min{i, j, k} = min{i1, j1, k1} = 1 and F2 satisfies P2.

Conditions (ii) and (iii) in the definition of a contraction guarantee that F2 satisfy P3. So
P1, P2, and P3 are true for F2, and F2 is a facet of ∆(n).
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3.3 A Shelling Order for ∆(n)

In this section we construct a shelling order for ∆(n). Recall that by Lemma 3.2.2, ∆(n) is not
pure. To set up the shelling order, we first partition ∆(n) into sets of facets according to dimen-
sion. For 0 ≤ m ≤ n−1, let Sm be the set of facets of dimension m. For example, Sn−1 is the set
containing the single (n − 1)-dimensional facet F (n) = {(1, 1, 1), (2, 2, 2), (3, 3, 3), ..., (n, n, n)},
and S0 contains the facets comprised solely of isolated vertices such as the facet F = {(1, n, 1)}.
The next definition allows us to order the facets in Sm for a fixed m using the lexicographic
order.

Definition 3.3.1. The σ-word σ(F ) of the face F = {v1, . . . , vr} is the sequence

(i1, j1, k1, i2, j2, k2, i3, . . . , kr−1, ir, jr, kr).

Informally, we can see that the σ-word of a face is obtained by simply ignoring all the
parentheses in the listing of the vertices of the face.

Example 3.3.2. The σ-word of the vertices of the facet

F = {(1, 2, 1), (3, 3, 3), (4, 4, 5)}

of ∆(5) is
σ(F ) = (1, 2, 1, 3, 3, 3, 4, 4, 5).

The σ-word of the vertices of the facet

G = {(1, 2, 2), (2, 3, 3), (4, 4, 5)}

of ∆(5) is
σ(G) = (1, 2, 2, 2, 3, 3, 4, 4, 5).

In the lexicographic order we have σ(F ) < σ(G).

Now we define the order on the facets of ∆(n) that we will show is a shelling order.

Definition 3.3.3. Define an order O on the facets of ∆(n) as folllows: Fi < Fj in the order O
if

1. Fi ∈ Sm and Fj ∈ S` for ` < m or

2. ` = m and σ(Fi) is lexicographically smaller than σ(Fj).

Theorem 3.3.4. The order O is a shelling order for the facets of ∆(n).
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We need the following well-known lemma, which provides a useful working definition of a
shelling, in our proof of Theorem 3.3.4. This lemma is explicitly stated for non-pure simplicial
complexes as Lemma 2.3 in the paper [15] of Anders Björner and Michelle Wachs, but a version
for pure simplicial complexes appears earlier in the paper [11] of Björner.

Lemma 3.3.5. An order F1, F2, . . . , Ft of the facets of a simplicial complex ∆ is a shelling if
and only if for every i and k satisfying 1 ≤ i < k ≤ t there is a j with 1 ≤ j < k and a vertex
v ∈ Fk such that Fi ∩ Fk ⊂ Fj ∩ Fk = Fk \ {v}.

We will follow the notation of Lemma 3.3.5 and let [t] denote the index set for the order O.
To work with Lemma 3.3.5 in the proof of Theorem 3.3.4, we will be fixing two facets Fi and
Fk and constructing a facet Fj satisfying the conditions of the lemma. To make this easier, we
now develop some notation for vertex subsets of Fi and Fk.

Let Fk, for k > 1, be a facet of ∆(n). Let i be an index satisfying 1 ≤ i < k ≤ t. Let Vi,k
denote the (possibly empty) set of vertices in Fi∩Fk, let Vk = Fk\Fi, and let Vi = Fi\Fk. Write
Vi,k = {vc,1, . . . , vc,s}, Vk = {vk,1, . . . , vk,e}, and Vi = {vi,1, . . . , vi,u}. We write the vertex sets
so that as positive integers, (c, 1) < · · · < (c, s), (k, 1) < · · · < (k, e), and (i, 1) < · · · < (i, u).
Also, we write the indices of Vi,k, Vk, and Vi in the same order they appear in Fk and Fi, and
we do not rename the indices when considering the subsets Vi,k,Vi, and Vk.

Example 3.3.6. Let
Fi = {(1, 2, 1), (3, 3, 3), (4, 4, 4), (5, 5, 5)}

and
Fk = {(1, 2, 1), (2, 3, 3), (5, 4, 5)}.

Then Vi,k = {(1, 2, 1)}, Vk = {(2, 3, 3), (5, 4, 5)}, and Vi = {(3, 3, 3), (4, 4, 4), (5, 5, 5)}. Also,
{(c, 1)} = {1}, {(k, 1), (k, 2)} = {2, 3} and {(i, 1), (i, 2), (i, 3)} = {2, 3, 4}.

The next lemma will make it easier to work with the sets Vi,k, Vi, and Vk.

Lemma 3.3.7. Let Fi and Fk be facets of 4(n) such that i < k ∈ [t]. There exist ordered
partitions of Vi,k,Vi, and Vk into blocks of ordered vertices

Vi,k = C1| · · · |CN ,

Vi = I1| · · · |IM ,

and
Vk = K1| · · · |KM
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such that each ordered block of the ordered partitions corresponds to a consecutive subsequence
of vertices in a facet.

Proof. We can generate the required partitions of the vertices of Vi, Vk, and Vi,k using an
algorithmic approach. We will explain the algorithm Vi,k = C1| · · · |CN ; the algorithms for Vi
and Vk are similar.

Let Fi = {v1, . . . , vr}. If Vi,k = ∅, then the partition is empty, and there is nothing to
compute. So, assume Vi,k 6= ∅. We use the following algorithm to build the blocks of the
ordered partition C1| · · · |CN .

Algorithm 3.3.8. • Input: The vertices {v1, . . . , vr} of Fi and the vertex subset Vi,k.

• Output: An ordered partition of Vi,k of ordered blocks of vertices in Vi,k, in which each
block is a set of vertices that are both consecutive in {v1, . . . , vr} and written in the order
that they appear in {v1, . . . , vr}.

• Initialize `(1) = min{` ∈ [r] : v` ∈ Vi,k}, set C1 = {v`(1)} .

• While `(i) < r:

– If v`(i)+1 ∈ Vi,k, set Ci = Ci ∪ {v`(i)+1}, update `(i) = `(i) + 1.

– Else if v`(i)+1 /∈ Vi,k, set v`(i) as the last vertex in Ci.

∗ If the set {m ∈ [r] : m > `(i) and vm ∈ Vi,k} is empty, Ci = CN and the
algorithm terminates.

∗ Else update `(i + 1) = min{m ∈ [r] : m > `(i) and vm ∈ Vi,k} and set Ci+1 =
{v`(i+1)}.

• Return the partition Vi,k = C1| · · · |CN .

It remains to explain why the partitions of Vi and Vk both have the same number of blocks
M . Assume by way of contradiction that the partition of Fi has more blocks than the partition
of Fk. Then either (i) there is at least one vertex in the sequence {v1, . . . , vr} that is between
two vertices of Fk, (ii) there is a vertex of Fi greater than the last vertex of Fk, or (iii) there is
a vertex smaller than the first vertex of Fk. Case (i) implies Fk does not satisfy P3, Case (ii)
implies that Fk does not satisfy P1, and Case (iii) implies Fk does not satisfy P2. So, all three
cases are impossible by Lemma 3.2.1. So Fi cannot have more blocks in the ordered partition
than Fk. The argument is symmetric in Fi and Fk, so the ordered partitions of Fi and Fk have
the same number of blocks.
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Example 3.3.9. Here is an example of the ordered partitions with ordered blocks described
in Lemma 3.3.7. Let

Fi = {(1, 2, 1), (2, 3, 3), (3, 4, 4), (5, 5, 5), (6, 6, 6), (7, 8, 8), (9, 9, 9), (10, 10, 10)}

and
Fk = {(1, 2, 1), (2, 3, 5), (6, 6, 6), (7, 8, 9), (10, 10, 10)}

be facets of ∆(10). Then

Vi,k = {(1, 2, 1), (6, 6, 6), (10, 10, 10)},

Vi = {(2, 3, 3), (3, 4, 4), (5, 5, 5), (7, 8, 8), (9, 9, 9)},

and
Vk = {(2, 3, 5), (7, 8, 9)}.

We have
Vi,k = C1|C2|C3 = {(1, 2, 1)}|{(6, 6, 6)|{(10, 10, 10)},

Vi = I1|I2 = {(2, 3, 3), (3, 4, 4), (5, 5, 5), }|{(7, 8, 8), (9, 9, 9)},

and
Vk = K1|K2 = {(2, 3, 5)}|{(7, 8, 9)}.

The next lemma is useful in our proof of Theorem 3.3.4. Recall that we write Vk =
{vk,1, . . . , vk,e}.

Lemma 3.3.10. Let i < k be indices in the order O. There exists ` ∈ {(k, 1) . . . , (k, e)} such
that B` 6= ∅.

Proof. First we handle the case where dimFi = dimFk. In this case Fi and Fk each have r
vertices, and the sequences σ(Fi) and σ(Fk) are both of length 3r. By our construction of the
shelling order O in Definition 3.3.3 this implies σ(Fi) < σ(Fk) in the lexicographic order which
means the first place the two sequences differ, call this index b ∈ [3r], is larger in σ(Fk).

In other words, we have
σ(Fi) = (p1, . . . , p3r)

and
σ(Fk) = (q1, . . . , q3r)

where pa = qa for a ∈ [3r] satisfying a < b, and qb > pb as integers.
The first place the sequences differ occurs in the vertex of smallest index not present in both

47



Fi and Fk. So qb ∈ {ik,1, jk,1, kk,1} as vk,1 is the vertex of smallest index in Vk. Without loss of
generality, we can say b designates the position of ik,1. Recall that we write Vi = {vi,1, . . . , vi,u}.
Then we have ik,1 > ii,1. If (k, 1) = (i, 1) = 1, then ik,1 ≥ 2 and Bk,1 6= ∅. If (k, 1) > 1,
i(k,1)−1 must appear in a vertex in Vi,k by our choice of b, and we can write ik,1 − i(k,1)−1 >

ii,1 − i(k,1)−1 ≥ 1. So Bk,1 6= ∅ in this case.
Next we handle the case where dimFi > dimFk. We can write Fi and Fk as the disjoint

unions
Fk = Vi,k t Vk, Fi = Vi,k t Vi.

We know that |Vi| > |Vk| because dimFi > dimFk. By Lemma 3.3.7 there exist partitions of
Vi,k,Vi, and Vk

Vi,k = C1| · · · |CN , Vi = I1| · · · |IM ,

and
Vk = K1| · · · |KM

such that each block in each partition corresponds to an uninterrupted sequence of vertices in a
facet. Since |Vi| > |Vk| and the ordered partitions of Vi and Vk have the same number of blocks,
there must exist A ∈ [M ] such that |IA| > |KA|. For indices x ∈ [u] and y ∈ [e] we can write

IA = {vi,x, . . . , vi,(x+|IA|)}, and KA = {vk,y, . . . , vk,(y+|KA|)}.

Recall that the σ-word σ(KA) (Definition 3.3.1) is the ordered set of indices of all vertices
appearing in the face KA. We divide the proof for dimFi > dimFk into two cases

n ∈ σ(KA), (3.6)

and
n /∈ σ(KA). (3.7)

Consider first the case (3.6). This case implies n ∈ {ik,(y+|KM |), jk,(y+|KM |), kk,(y+|KM |)}, the
index set of the last vertex in the last block of the partition K1| · · · |KM of Vk. We can assume
without loss of generality that n = ik,(y+|KM |). Then n appears as an element of vi,(x+|IM |) also.
Because of this, we know that in Fi, the vertices in IM immediately follow the vertices in CN ,
and in Fk, the vertices in KM immediately follow the vertices in CN . For some z ∈ [s], we can
write CN = {vc,z, . . . , vc,(z+|CN |)}.

Then n − ic,(z+|CN |) ≥ |IM |, and the net change in the i index in the vertices of KM is
bounded below by |IM | > |KM |, and there are only |KM | vertices to accomplish this change.
Therefore there must exist an index ` ∈ {(k, y), . . . , (k, y + |KM |)} such that i` − i`−1 > 1. So,
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for this v` ∈ Vk, B` 6= ∅.
Now we consider the case (3.7). This implies that for some w ∈ [s] there exists a vertex

vc,w ∈ Vi,k where (c, w) = (k, (y+|KA|))+1 in the vertex numbering in Fk. Since Fk is a facet, it
satisfies P3 from Lemma 3.2.1, which means that min{ic,w− ik,(y+|KA|), jc,w− jk,(y+|KA|), kc,w−
kk,(y+|KA|)} = 1. Without loss of generality we can say ic,w − ik,(y+|KA|) = 1. If 1 ∈ σ(KA) then
A = 1 and ik,(y+|K1|) ≥ |I1| where |I1| > |K1|, but we only have |K1| vertices to accomplish this
index change and so there exists ` ∈ {1, . . . , (1 + |K1|)} such that B` 6= ∅.

If 1 /∈ σ(KA), there exists x ∈ [s] and vc,x ∈ Vi,k such that (c, x) + 1 = (k, y) in the label
sequence of the vertices of Fk. Then ik,(y+|KA|)−ic,x ≥ |IA| where |IA| > |KA|. But we only have
|KA| vertices to accomplish this index change and so there exists ` ∈ {(k, y), . . . , (k, (y+ |KA|))}
such that B` 6= ∅. This completes the proof of the Lemma for the case dimFi > dimFk.

Now we proceed to the proof of Theorem 3.3.4. The essence of the proof is that given any
pair of facets Fi and Fk such that i < k in O, we may use Lemma 3.3.10 to construct a facet
Fj such that the hypotheses of Lemma 3.3.5 is satisfied, which will show that O is a shelling
order.

Proof. Let Fi and Fk be such that i and k satisfy 1 ≤ i < k ≤ t in the order O. Recall we
write Vi,k = Fi ∩ Fk and Vk = {vk,1, . . . , vk,e}, where Vk = Fk \ Fi. Write Fk = {v1, . . . , vr}.
We will find a vertex v ∈ Fk and construct a facet Fj such that 1 ≤ j < k and such that
Vi,k ⊂ Fj ∩ Fk = Fk \ {v}. This will show that O is a shelling order by Lemma 3.3.5.

By Lemma 3.3.10 there exists ` ∈ {(k, 1), . . . , (k, e)} such that B` 6= ∅. We will divide the
proof into two cases: ` = r and ` < r. For now assume that ` < r. If such an ` exists we choose
` that is minimal.

Then choose the “left-most” vertex element in B`: for example if B` = {i`, k`} we choose
i`. Without loss of generality we can say that i` is the left-most element of the set B`. Let w =
(i`−1, j`, k`). Since Fk is a facet, we know that min{i`+1−i`, j`+1−j`, k`+1−k`} = 1. We now have
two sub-cases to consider: (i): min{j`+1−j`, k`+1−k`} = 1 and (ii): min{j`+1−j`, k`+1−k`} > 1.
In the case (i), the down-twist (Definition 3.2.4) about v`

Fj = Fk \ {v`} ∪ {w}

is safe and Fj is a facet.
In this instance dimFj = dimFk. The only place σ(Fj) and σ(Fk) differ is the position of

i` − 1 from the new vertex w. So σ(Fj) < σ(Fk) and we know j < k in the order O. Also,
Vi,k ⊂ Fj ∩ Fk = Fk \ {v`}, so v` and Fj satisfy the conditions of Lemma 3.3.5.

Next, consider the sub-case (ii): min{j`+1 − j`, k`+1 − k`} > 1. Since Fk is a facet, P3 is
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satisfied and i`+1 − i` = 1 must hold. In this case the face

Fj = Fk \ {v`} ∪ {w, (i`, j` + 1, k` + 1)}

satisfies P3 and is a facet. Since dimFj > dimFk, j < k in O. Clearly Vi,k ⊂ Fj∩Fk = Fk \{v`}.
Next we consider the case where the only ` ∈ {(k, 1), . . . , (k, e)} satisfying B` 6= ∅ is ` = r.

Again without loss of generality we can say that ir is the left-most index in Br. Let w =
(ir − 1, jr, kr). There are two sub-cases to consider: (i) n ∈ {jr, kr} and (ii) n /∈ {jr, kr}.

If (i) n ∈ {jr, kr}, then the down-twist about vr

Fj = Fk \ {vr} ∪ {w}

is safe and Fj is a facet of the same dimension as Fk satisfying σ(Fj) < σ(Fk) and so j < k in
O. For the sub-case (ii) when n /∈ {jr, kr}, let

Fj = Fk \ {vr} ∪ {w, (n, n, n)}.

Since dimFj > dimFk, we have j < k in O. In both sub-cases Vi,k ⊂ Fj ∩ Fk = Fk \ {vr}. This
completes the proof.

3.4 The Homology Facets of ∆(n)

One approach to calculating the Betti numbers (Definition 1.1.10) of ∆(n) is by understanding
how the shelling order O puts ∆(n) together as a topological space. This helps us understand
the topology of ∆(n). Towards this goal, we establish the next definition:

Definition 3.4.1. We say a facet Fk of a simplicial complex ∆ with shelling order O is a
homology (r − 1)-facet if Fk is an (r − 1)-dimensional facet satisfying

∂Fk = Fk ∩
⋃
i<k

Fi

where i < k in O, and ∂Fk denotes the boundary complex of Fk, which is the sub-complex of
∆ formed by taking the collection of all proper faces of Fk.

In other words, Fk is a homology (r − 1)-facet when Fk attaches to ∆ along its whole
boundary in the shelling order O. As we saw in Chapter 1, the Betti numbers of any shellable
simplicial complex have a natural interpretation in terms of homology facets. By Theorem
1.3.3, the number of (r − 1)-spheres in the homotopy type of ∆ is the number of homology
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(r − 1)-facets. The next lemma characterizes the homology facets of ∆(n) for dimension 1 and
greater.

Lemma 3.4.2. Let r ≥ 2. A facet Fk = {v1, . . . , vr} is a homology (r− 1)-facet of ∆(n) if and
only if B` 6= ∅ for all ` ∈ [r].

Proof. First let B` 6= ∅ for all ` ∈ [r]. It suffices to show that for all `, Fk \ {v`} ⊂ Fj(`) for
some j(`) < k. First, let ` = r. If at least two of the elements of the set {ir, jr, kr} are equal to
n, then since Br 6= ∅, we can say without loss of generality that ir − ir−1 > 1. Then the facet

Fj(`) = Fk \ {vr} ∪ {(ir − 1, jr, kr)}

satisfies dimFj(`) = dimFk and σ(Fj(`)) < σ(Fk), so j(`) < k and we have the desired contain-
ment Fk \ {v`} ⊂ Fj(`). If Br = {n}, without loss of generality we can say that Br = {ir}. Then
min{jr, kr} = n− p for some p ≥ 1. Let

Fj(`) = Fk \ {vr} ∪ {(n− p, n− p, n− p), (n− p+ 1, n− p+ 1, n− p+ 1), . . . , (n, n, n)}.

Then dimFj(`) > dimFk, so j(`) < k and Fk \ {vr} ⊂ Fj(`).
Now, let ` < r. Either |B`| = 1 or |B`| = 2. (Since Fk is a facet and satisfies P3, |B`| < 3).

If |B`| = 2 we can assume B` = {i`, j`}. If min{j`+1 − j`, k`+1 − k`} = 1, then let

Fj(`) = Fk \ {v`} ∪ {(i` − 1, j`, k`)}.

Then σ(Fj(`)) < σ(Fk), with Fk \{v`} ⊂ Fj(`) and dimFk = dimFj(`), so j(`) < k. If min{j`+1−
j`, k`+1 − k`} > 1 then i`+1 − i` = 1 because Fk is a facet and satisfies P3. Then let

Fj(`) = Fk \ {v`} ∪ {(i` − 1, j`, k`), (i`, j` + 1, k` + 1)}

and again dimFj(`) > dimFk, so j(`) < k and Fk \ {v`} ⊂ Fj(`).
If |B`| = 1, then we can assume B` = {i`}. If i`+1 − i` > 1, then

Fj(`) = Fk \ {v`} ∪ {(i` − 1, j`, k`)}

satisfies P3 (because Fk does), dimFk = dimFj(`) and σ(Fj(`)) < σ(Fk), so j(`) < k and
Fk \ {v`} ⊂ Fj(`). If i`+1 − i` = 1 and min{j`+1 − j`, k`+1 − k`} > 1, then

Fj(`) = Fk \ {v`} ∪ {(i` − 1, j` − 1, k` − 1), (i`, j`, k`)}

satisfies dimFk < dimFj(`) so j(`) < k and Fk \{v`} ⊂ Fj(`). So whenever B` 6= ∅ for all ` ∈ [r],
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Fk attaches along its entire boundary in the shelling order O and is a homology facet.
For the converse, assume that Fk = {v1, . . . , vr} is a homology facet. We wish to show that

B` 6= ∅ for all ` ∈ [r]. Assume by way of contradiction that there exists ` ∈ [r] where B` = ∅.
Since Fk is a homology facet, Fk \ {v`} ⊂ Fj(`) for some j(`) < k. If dimFk = dimFj(`), then

Fj(`) = Fk \ {v`} ∪ {v′`}

for some v′` 6= v`, and σ(Fj(`)) < σ(Fk). Then since the only entries in the sequences σ(Fj(`))
and σ(Fk) that are different come from v` and v′`, one of the three inequalities (i) i′` < i`,
(ii) j′` < j`, or (iii) k′` < k` must be true. If i′` < i` = i`−1 + 1, then this is a contradiction
because i′` > i`−1. The same contradiction arises if inequalities (ii) or (iii) hold.

If dimFj(`) > dimFk, then

Fj(`) = Fk \ {v`} ∪ {va,1, . . . , va,d}

where d ≥ 2. First consider the sub-case where ` = r. In this instance, n ∈ {ir, jr, kr}. Without
loss of generality we can say n = ir. Since Br = ∅, ir−1 = n − 1. Then we must have n − 1 <
ia,1 < ia,2 and ia,1 = n, but since n is the maximum index allowed, this is a contradiction. Next,
consider the sub-case where ` < r. Then since Fk satisfies P3, min{i`+1−i`, j`+1−j`, k`+1−k`} =
1. Without loss of generality, we assume i`+1 − i` = 1. Since B` = ∅, i` − i`−1 = 1. But we
must have i`−1 < ia,1 < ia,2 < i` + 1, which is impossible. Therefore we have also arrived
at a contradiction when dimFj(`) > dimFk. So when Fk is a homology facet, B` 6= ∅ for all
` ∈ [r].

Recall that for n ≥ 1, ∆(n) has a collection of isolated vertices with index set of type {1, n, k}
where k ∈ [n]. Then, as a shellable simplicial complex has the homotopy type of a wedge of
spheres, only a wedge including 0-spheres can increase the number of connected components
to more than 1. In fact, we will obtain one additional connected component for each isolated
vertex, so we refer to the isolated vertices of ∆(n) as homology vertices. Similarly, we say one-
dimensional homology facets of ∆(n) are homology edges, and two-dimensional homology facets
of ∆(n) are homology triangles. The next lemma shows how to count the homology vertices.

Lemma 3.4.3. There are 6(n− 1) homology vertices in the simplicial complex ∆(n).

Proof. When n = 2, the 6 homology vertices are (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), and
(2, 2, 1). For each n, there are 6 homology vertices of this form:

(1, 1, n), (1, n, 1), (1, n, n), (n, 1, 1), (n, 1, n), (n, n, 1).

Let S3 denote the symmetric group on 3 letters. Then, for n ≥ 3, for each k /∈ {1, n}, there

52



are 6 homology vertices for the |S3| = 6 vertices using the index set {1, k, n}. There are n− 2
choices for each such k, so there are 6 + 6(n− 2) = 6(n− 1) homology vertices in ∆(n).

3.4.1 Verifying the Identity 3.1 for n ≤ 4

Recall that we hope to use the Euler-Poincaré relation to verify (3.1). We verify (3.1) for n ≤ 4
by calculating the Betti numbers for n ≤ 4. In these small cases, plugging n into the relation

n−1∑
i=−1

(−1)i+1fi =
n−1∑
i=−1

(−1)i+1βi (3.8)

which is Equation 3.5 multiplied on both sides by -1, shows the identity 3.1 holds.
The simplicial complex ∆(1) is a single point. So β−1 = 1, β0 = 1 because there is a single

connected component, and βk = 0 for k > 1. Therefore the right hand side of (3.8) is 1− 1 = 0,
and we have verified (3.1) for n = 1. For ∆(2), it is clear that we have 7 connected components
(see Figure 3.1). So we have β−1(∆(2)) = 1 and β0(∆(2)) = 7. Then the right-hand side of
Equation 3.8 is 1− 7 = −6. We evaluate (3.1) at n = 2:

(−1)2/2

(
3(2)/2

(2)/2, (2)/2, (2)/2

)
= (−1)2 × 3! = −6.

We have verified (3.1) for n = 2.
We can use the homology vertices of ∆(2) to construct the homology edges of ∆(3), which

by Lemma 3.4.2 are precisely the edges in ∆(3) satisfying B1 6= ∅ and B2 6= ∅. The edges of
∆(3) satisfying B1 6= ∅ are precisely the edges {v1, v2} such that v1 a homology vertex of ∆(2).
Then for v1 ∈ {(1, 2, 2), (2, 1, 2), (2, 2, 1)} we must have v2 = (3, 3, 3) for B2 6= ∅ to hold. For the
case v1 ∈ {(1, 1, 2), (1, 2, 1)(2, 1, 1)}, we have 3 choices for each choice of v1. We demonstrate
for the 3 choices where v1 = (1, 1, 2): (1) v2 = (3, 3, 3), (2) v2 = (2, 3, 3), and (3) v3 = (3, 2, 3).

In particular, if v1 has index set {1, 1, 2}, we obtain one homology edge by setting v2 =
(3, 3, 3), and two homology edges for choosing a position a2 ∈ {i2, j2, k2} to set equal to 2 for
the corresponding position in v1 \ {2}. So, there are 12 homology edges in ∆(3). By Lemma
3.4.3, there are 12 homology vertices, and therefore 13 connected components, in ∆(3), so
(−1)× (−β−1 + β0 − β1) = 0, verifying 3.1 for n = 3.

We can count the homology edges of ∆(4) similarly, using the homology vertices of ∆(2)
and ∆(3) to construct homology edges of {v1, v2} ∈ ∆(4), as for both n = 2 and n = 3 the
homology vertices give vertices v1 ∈ ∆(4) satisfying B1 6= ∅. The next lemma facilitates these
calculations.

Lemma 3.4.4. Let v = (i, j, k) be a homology vertex of ∆(3). The number of homology edges
{v1, v2} of ∆(4) such that v = v1 is (4− i)(4− j)(4− k)− 1.
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Proof. Since (i, j, k) is a homology vertex of ∆(3), 3 ∈ {i, j, k} and the edge F = {(i, j, k), (4, 4, 4)}
satisfies P3 in Lemma 3.2.1. There are 4− i ways to either make no change to i2 or to replace
{(i, j, k), (i2, j2, k2)} with the down-twist (Definition 3.2.4) {(i, j, k), (i2 − 1, j2, k2)}. There are
4 − j ways to either make no change to j2 or to replace {(i, j, k), (i2, j2, k2)} with the down-
twist {(i, j, k), (i2, j2 − 1, k2)}, and 4 − k ways to either make no change to k2 or to replace
{(i, j, k), (i2, j2, k2)} with the down-twist {(i, j, k), (i2, j2, k2 − 1)}.

We obtain (4 − i)(4 − j)(4 − k) edges this way. The down-twists will all be safe because
3 ∈ {i, j, k} so 4 ∈ {i2, j2, k2} will hold. So, all (4 − i)(4 − j)(4 − k) edges obtained thus far
are facets. But the facet {(i, j, k), (i+ 1, j + 1, k+ 1)}, which is in the set of edges so obtained,
does not satisfy B2 6= ∅ and so is not a homology edge by Lemma 3.4.2. Therefore there are
(4− i)(4− j)(4− k)− 1 homology edges {v1, v2} of ∆(4) such that v = v1.

We illustrate Lemma 3.4.4 in the next example.

Example 3.4.5. There are six homology vertices in ∆(3) for the six permutations of the index
set {1, 2, 3}. For each of these vertices v there are 5 homology edges {v1, v2} such that v = v1.
Consider the case v1 = (1, 2, 3). We count the ways to obtain a homology edge by either setting
v2 = (4, 4, 4) or obtaining a homology edge as a sequence of safe down-twists (Definition 3.2.4)
of a homology edge. We have 4− i1 = 3, 4− j1 = 2, and 4− k1 = 1. Then we can obtain three
facets by either not changing i2 or by reducing the index i2 by 1 in a safe down-twist about v2

in the i-column:

{(1, 2, 3), (4, 4, 4)}, {(1, 2, 3), (3, 4, 4)}, {(1, 2, 3), (2, 4, 4)}.

From these, we can obtain the following safe down-twists in the j-column:

{(1, 2, 3), (4, 3, 4)}, {(1, 2, 3), (3, 3, 4)}, {(1, 2, 3), (2, 3, 4)}.

Then from each of these we cannot make any moves in the k-column. Note that the facet
{(1, 2, 3), (2, 3, 4)} is not a homology facet because it does not satisfy B2 6= ∅. So there are
(4− i1)(4− j1)(4− k1)− 1 = (3)(2)− 1 = 5 homology edges of ∆(4) such that v1 = (1, 2, 3).

Applying Lemma 3.4.4, we have 5 edges for each of the six homology vertices of ∆(3) with
index set {1, 2, 3}, 8 homology edges for each of the 3 homology vertices of ∆(3) with index
set {1, 1, 3}, and 2 homology edges for each of the 3 homology vertices of ∆(3) with index set
{1, 3, 3}. So there are 5(6) + 8(3) + 2(3) = 60 homology edges in ∆(4) with v1 appearing as a
homology vertex in ∆(3).

By inspection, we obtain 10 homology edges {v1, v2} in ∆(4) where v1 is one of the three
homology vertices of ∆(2) with index set {1, 1, 2}, and we obtain 8 homology edges {v1, v2} in
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∆(4) where v1 is one of the three homology vertices of ∆(2) with index set {1, 2, 2}. So there
are 10(3) + 8(3) = 54 homology edges in ∆(4) with v1 appearing as a homology vertex in ∆(2).
In total, β1(∆(4)) = 114.

The six homology triangles of ∆(4) are:

{(1, 1, 2), (2, 3, 3), (4, 4, 4)}, {(1, 1, 2), (3, 2, 3), (4, 4, 4)}, {(1, 2, 1), (2, 3, 3), (4, 4, 4)},

{(1, 2, 1), (3, 3, 2), (4, 4, 4)}, {(2, 1, 1), (3, 2, 3), (4, 4, 4)}, {(2, 1, 1), (3, 3, 2), (4, 4, 4)}.

Recall that by Lemma 3.4.3 there are 6(4 − 1) = 18 homology vertices in ∆(4), so that
β0(∆(4)) = 19. Therefore the right hand side of (3.8) is 1 − 19 + 114 − 24 = 90, which is
the same as the right hand side of (3.1) evaluated at n = 4.

3.5 Discussion

We have not yet succeeded in counting the homology facets of ∆(n) for n ≥ 5, either in
individual cases or for general n. We know the number of homology vertices for all n by Lemma
3.4.3. By Lemma 3.4.2, to count the (r − 1)-dimensional homology facets for r ≥ 2, it would
be sufficient to count all facets {v1, . . . , vr} satisfying B` 6= ∅ for all ` ∈ [r]. However, this has
not been accomplished at this point in time. Our inability to construct more general lemmas
similar to Lemma 3.4.4 has precluded the development of a successful general approach counting
homology facets of ∆(n) in terms of homology facets of ∆(k) for k < n.

As we noted in Section 3.1, the identity given in Equation 3.4 appears in Chapter 5 of
Martin Aigner’s book [1]. Chapter 5 of this book is titled “The Involution Principle.” We give
a standard definition of a well-known tool used in involution methods here, known as a sign-
reversing involution. Additional background on sign-reversing involutions can also be found in
Chapter 2 of Richard Stanley’s book Enumerative Combinatorics, Volume I [66].

Definition 3.5.1. Let X be a finite set of objects and suppose each element of X has a sign,
or in other words has been assigned either the value +1 or the value −1 via a function s, so
that s(x) ∈ {1,−1} for all x ∈ X. A sign-reversing involution on X is a function f such that f
is a bijection f : X → X satisfying

• f(f(x)) = x for all x ∈ X, and

• if f(x) 6= x, then s(f(x)) = −s(x).

Given a sign-reversing involution f : X → X, let XF denote the set of all elements of X
such that f(x) = x. Then ∑

x∈XF

s(x) =
∑
x∈X

s(x).
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Therefore, to total all signed elements of X it is sufficient to find the cardinality of fixed points
under f which is the set XF . Both (3.3) and (3.4) can be established using a sign-reversing
involution. It is possible that we could complete our new proof of (3.1) using involution tech-
niques on the homology facets of ∆(n). While we have tried to find a sign-reversing involution
on the homology facets of ∆(n) towards the goal of reducing the total number of objects to be
counted, we have not yet made progress with this strategy.

Furthermore, as we mentioned in Section 3.1, ∆(n) is the order complex of P∆(n) where the
elements of P∆(n) are integer triples in [n]3 and (i, j, k) ≤ (i′, j′, k′) in P∆(n) if and only if i < i′,
j < j′, and k < k′ as integers. This suggests another potential strategy towards computing the
Betti numbers of ∆(n). Let P̂∆(n) be the poset obtained by adjoining a 0̂ and a 1̂ to P∆(n). If
one were able to find a CL-labeling (Definition 2.3.1) of P̂∆(n), the CL-labeling could be used to
compute the Betti numbers of ∆(n), as βr(∆(n)) is the number of decreasing chains of length
r+ 2 in a CL-labeling of the Hasse diagram of P̂∆(n). See Section 5, and in particular Theorem
5.9 of the paper [15] by Anders Björner and Michelle Wachs for a detailed exploration of this
approach.

Since EL-shellability implies CL-shellability, as we discussed in Section 2.3, an EL-labeling
of P̂∆(n) would also be sufficient to compute the Betti numbers of ∆(n). Finally, an EL- or CL-
labeling of either P̂∆(n) or P∆(n) could lead to a different shelling order for ∆(n) than the order
O established in Theorem 3.3.4, which could in turn provide more insight into the structure of
∆(n).
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Chapter 4

Polyhedral Combinatorics of

UPGMA Cones

4.1 Introduction

In this chapter we study the decomposition of the input space Rn(n−1)/2
≥0 induced by the distance-

based phylogenetic reconstruction algorithm UPGMA. The UPGMA algorithm (Unweighted
Pair Group Method with Arithmetic Mean) of Robert Sokal and Charles Michener (Algorithm
4.2.1), which was first proposed in the papers [60] and [61], is a clustering algorithm and
distance-based phylogenetic tree reconstruction method. Like all distance-based phylogenetic
reconstruction methods (Definition 1.4.16), UPGMA takes a dissimilarity map δ ∈ Rn(n−1)/2

(Definition 1.4.8) and returns a tree metric d (Definition 1.4.9), which we can identify as a
point in Rn(n−1)/2. In practical use, it suffices to consider the action of UPGMA on inputs with
nonnegative entries only, and when the entries of the input vector are nonnegative, the edge
weights in the tree realization of the output d will also be nonnegative. UPGMA outputs ultra-
metrics (Definition 1.4.13), which are equivalent to equidistant, rooted tree metrics (Definition
1.4.12).

Therefore we will study the partition

{C(T ) : UPGMA(x) is realized by T for all x ∈ C(T )}

of Rn(n−1)/2
≥0 induced by UPGMA, where T is the binary rooted ranked tree that realizes the

ultrametric output of UPGMA for all δ ∈ C(T ). A motivation for studying the geometry of the
regions in this partition is to gain insight into the observed performance of the algorithm on real
datasets. Note that UPGMA, like its relative the Neighbor-Joining Algorithm (NJ) (Algorithm
5.4.6), can be viewed as a greedy heuristic for the NP-hard least-squares phylogeny problem
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(LSP) (Problem 5.1.1). The relationship between the UPGMA and NJ algorithms and LSP is
discussed in detail in Chapter 5.

Another motivation for studying the UPGMA algorithm is described in the paper [2], where
David Aldous observed that rooted trees constructed from biological data using phylogenetic
reconstruction methods are not distributed according to probability distributions similar to
those followed by trees simulated under speciation models. As an example of a popular speciation
model, we give the Yule-Harding model. The Yule-Harding model generates random rooted,
binary phylogenetic trees with leaf set [n] according to the following algorithm, commonly
known as the Yule process. Recall that a pendant edge is an edge in a phylogenetic tree incident
to a leaf.

Algorithm 4.1.1 (Yule Process). • Input: Leaf set [n] = {1, . . . , n}, n ≥ 2.

• Output: a rooted, binary phylogenetic [n]-tree.

• Initialize: Randomly select two leaves x and y from [n] with uniform probability. Identify
these two leaves as the leaf set of a rooted binary tree T1. Set S1 = [n] \ {x, y} and
L1 = {x, y}.

• While Si 6= ∅:

– Randomly select an element xi of Si with uniform probability.

– Randomly select a pendant edge ei = (ui, yi) of Ti with probability determined by
the uniform distribution on the set of pendant edges of Ti. Here ui is a binary internal
vertex and yi ∈ Li.

– Subdivide ei by adding a new vertex vi.

– Update Ti+1 as the tree with leaf set Li+1 = Li ∪ {xi} , V (Ti+1) = V (Ti) ∪ {vi, xi}
and E(Ti+1) = E(Ti) \ {ei} ∪ {(ui, vi), (vi, yi), (vi, xi)}. Update Si+1 = Si \ {xi}.

• Return Tn−2+1, a rooted, binary phylogenetic tree with leaf set [n].

Aldous observes in [2] that trees reconstructed from data are less balanced than trees pre-
dicted by the Yule-Harding model, where the balance of a tree is expressed in terms of the
average number of descendants of each interior vertex. The rooted tree shape or tree topology
(Definition 1.4.2) that is the least balanced is called the comb topology. Figure 4.1 shows a
comb with six leaves. The relationship between the Yule-Harding model and other speciation
models is discussed in Section 2.5 of Phylogenetics by Charles Semple and Mike Steel [57]. The
lack of agreement in balance between simulated trees and trees reconstructed from biological
data leads us to consider the notion of potential bias in reconstruction methods.
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Figure 4.1: A comb tree with six leaves.

The goal of our analysis of the partition of Rn(n−1)/2
≥0 induced by UPGMA is to gain insight

into this problem of potential bias from the perspective of geometric combinatorics: if regions
corresponding to some tree shapes are inherently larger than others, this indicates that UPGMA
might favor those shapes in the presence of noise in data or model misspecification of the
equidistant assumption (Definition 1.4.12) on the tree metric representing the true evolutionary
history.

With these motivating problems in mind, we study the decomposition of space induced by
the UPGMA algorithm. For a given binary phylogenetic X-tree T (that is, with leaf labels X
but without edge weights), the region P(T ) ⊆ Rn(n−1)/2

≥0 of dissimilarity maps for which the
algorithm returns T is a union of finitely many polyhedral cones, one for each rank function
(Definition 1.4.4) on the interior nodes of T . We give explicit polyhedral descriptions of the
cones, including H-representations and V-representations, for all T and all n. In particular,
each cone has O(n3) facet-defining inequalities in the H-representation but exponentially many
extreme rays in the V-representation.

To compare the relative sizes of the regions P(T ), we use the idea of spherical volume:

Definition 4.1.2. Let C be a cone in Rd. The spherical volume of C is the surface area of the
intersection of C with the (d− 1)-dimensional unit sphere Sd−1 in Rd.

For example, if C is the positive quadrant in R2, then the spherical volume of C is equal
to the angle measure π/2, which is the 1-dimensional area of the intersection of S1 with C. We
estimate the spherical volumes of the regions P(T ) for n ≤ 7. These volumes give a measure of
the proportion of dissimilarity maps for which UPGMA returns a given combinatorial type of
tree. In particular, our computations seem to indicate that highly unbalanced trees have small
volume UPGMA cones compared to more balanced trees. Our computation of spherical volumes
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builds on the Monte Carlo strategy in the paper [31] of Kord Eickmeyer, Peter Huggins, Lior
Pachter, and Ruriko Yoshida. The results in this chapter are joint work with Seth Sullivant,
and appear in the paper [24].

4.2 Ranked Phylogenetic Trees and the UPGMA Algorithm

Recall that the lattice of set partitions Πn provides a useful alternate description of rooted,
ranked phylogenetic trees. As we saw in Example 1.4.7, every maximal chain in the lattice of
set partitions corresponds to a ranked phylogenetic tree. For a maximal chain C in Πn we write

C = 1|2| · · · |n = πn l πn−1 l · · ·l π2 l π1 = 12 · · ·n.

We use the convention that πi is always a partition with i parts.
Given πi ∈ C, we write πi = λi1|λi2| · · · |λii. When πilπi−1, there are exactly two blocks λij , λ

i
k

that are joined in πi−1 but distinct in πi. Recall that V̊ (T ) denotes the set of interior vertices
of T . If v ∈ V̊ (T ) where r(v) = n − i, then πi−1 joins the two blocks in πi that correspond to
the subtrees of T induced by the child nodes of v.

The UPGMA algorithm constructs a rooted ranked phylogenetic X tree from a dissimilarity
map δ, as well as an equidistant tree metric d which approximates δ. The algorithm works as
follows:

Algorithm 4.2.1 (UPGMA Algorithm). • Input: a dissimilarity map δ ∈ Rn(n−1)/2
≥0 on [n].

• Output: a maximal chain C in the partition lattice Πn and an equidistant tree metric d.

• Initialize πn = 1|2| · · · |n, and set δn = δ.

• For i = n− 1, . . . , 1 do

– From partition πi+1 = λi+1
1 | · · · |λ

i+1
i+1 and distance vector δi+1 ∈ R(i+1)i/2

≥0 choose j, k
be so that δi+1(λi+1

j , λi+1
k ) is minimized.

– Set πi to be the partition obtained from πi+1 by merging λi+1
j and λi+1

k and leaving
all other parts the same. Let λii = λi+1

j ∪ λi+1
k .

– Create a new dissimilarity map δi ∈ Ri(i−1)/2
≥0 by setting δi(λ, λ′) = δi+1(λ, λ′) if λ, λ′

are both parts of πi+1 and

δi(λ, λii) =
|λi+1
j |
|λii|

δi+1(λ, λi+1
j ) +

|λi+1
k |
|λii|

δi+1(λ, λi+1
k )

otherwise.
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– For each x ∈ λi+1
j and y ∈ λi+1

k , set δi(x, y) = δi+1(λi+1
j , λi+1

k ).

• Return: Chain C = πn l · · ·l π1 and equidistant tree metric d = δ2.

Note that at the step which recalculates distances, the weighted average

δi(λ, λii) =
|λi+1
j |
|λii|

δi+1(λ, λi+1
j ) +

|λi+1
k |
|λii|

δi+1(λ, λi+1
k )

is used to determine the new distance. This is simply a computationally efficient strategy to
compute the average

δi(λ, λ′) =
1

|λ| · |λ′|
∑

x∈λ,y∈λ′
δ(x, y) (4.1)

a formula we will make use of later.

Example 4.2.2. Let δ = (1, 2, 1.8, 1.7, 2, 2.6, 3.1, 2.4, 2.6, 1.2) ∈ R5(5−1)/2
≥0 be a dissimilarity

map on 5 taxa.
The UPGMA algorithm performs the following steps, where an underline is used to denote

the smallest value in δi.

δ5 =
12 13 14 15 23 24 25 34 35 45
(1, 2, 1.8, 1.7, 2, 2.6, 3.1, 2.4, 2.6, 1.2)

δ4 =
12, 3 12, 4 12, 5 34 35 45
(2, 2.2, 2.4, 2.4, 2.6, 1.2)

δ3 =
12, 3 12, 45 3, 45

2 2.3 2.5

δ2 =
123, 45
2.367

where
2.367 ≈

(
|12|

|12|+ |3|

)
(2.3) +

(
|3|

|12|+ |3|

)
(2.5)

The resulting ranked, rooted tree T with an equidistant weighting w produced by the UP-
GMA algorithm is displayed in Figure 4.2. Note that the rank function on the tree corresponds
to the agglomeration steps in the algorithm. The weighting w is equidistant because at step i

of the algorithm, the distance between every pair of elements in two blocks λ, λ′ in πi is the
weighted average of all distances between all pairs, as shown in Equation 4.1.
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Figure 4.2: The tree metric d realized by the weighted tree (T,w) from Example 4.2.2.

The corresponding chain in the lattice of partitions Π5 is

C = 1|2|3|4|5 l 3|4|5|12 l 3|12|45 l 45|123 l 12345.

4.3 UPGMA Regions and UPGMA Cones

The UPGMA algorithm partitions the set of dissimilarity maps with positive entries, which
we identify as Rn(n−1)/2

≥0 , into regions indexed by ranked, rooted tree shapes corresponding to
maximal chains in Πn. For a given rooted phylogenetic [n]-tree T let P(T ) ⊆ Rn(n−1)/2

≥0 denote
the Euclidean topological closure of the set of dissimilarity maps δ such that the UPGMA
algorithm returns T when given δ as an input. The set P(T ) is called the UPGMA region
associated to the tree T . Similarly, for a maximal chain C in Πn, let P(C) ⊆ Rn(n−1)/2

≥0 denote
the closure of the set of dissimilarity maps such that the UPGMA algorithm returns the ranked
rooted tree corresponding to the chain C.

Our goal in this section is to describe the sets P(T ) and P(C). Clearly P(T ) = ∪P(C)
where the union is over all maximal chains in Πn whose associated tree is T . The next theorem,
Theorem 4.3.1, describes how each P(T ) is a polyhedral cone, and the steps in the algorithm
UPGMA determine the H-representation of each cone P(C). Recall that a pointed cone has a
trivial lineality space (Definition 1.2.7) consisting only of the origin.

Theorem 4.3.1. For each chain C ∈ Πn the set P(C) is a pointed polyhedral cone with O(n3)
facet-defining inequalities, and exponentially many extreme rays. Each covering relation in the
chain C determines a collection of facet-defining inequalities for P(C). Each element of the
chain C determines a collection of extreme rays of P(C).

Theorem 4.3.1 is of practical interest concerning UPGMA, but we will provide a more
general result for the description of cones associated to partial chains, which we define next,
that will imply Theorem 4.3.1.
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Definition 4.3.2. A partial chain C is a sequence

πs l πs−1 l · · ·l πt

for some n ≥ s ≥ t ≥ 1. A partial chain is grounded if s = n.

The fact that steps in the partial chains correspond to covering relations guarantees that
at each step the covering relation πi+1 l πi corresponds to joining a pair of blocks of the
partition πi+1 into a new block of πi. This means that any partial chain C can be interpreted
as intermediate information that is calculated between steps s and t of the UPGMA algorithm.

For a partial chain C, let P(C) denote the set of all dissimilarity maps in Rs(s−1)/2
≥0 which

the UPGMA algorithm could produce on steps s through t of the algorithm. Observe that this
notation is consistent with the use of P(C) to denote the cone corresponding to a maximal
chain C ∈ Πn. We let the coordinates in the space Rs(s−1)/2 represent the s(s− 1)/2 distances
δ(λsj , λ

s
k).

Proposition 4.3.3. Let C be a partial chain in Πn. Let P(C) ⊆ Rs(s−1)/2
≥0 be the set of dis-

similarity maps for which steps s through t of the UPGMA algorithm return the partial chain
C. For each covering relation πi l πi−1, let λij(i) and λik(i) be the pair of blocks of πi joined in
πi−1. Then P(C) is the solution to the following system of linear inequalities:

δ(λsj , λ
s
k) ≥ 0 for all j, k

for i = s, . . . , t− 1, and for all pairs j, k 6= j(i), k(i)

1
|λij(i)||λ

i
k(i)|

∑
λsj⊆λij(i),λ

s
k⊆λ

i
k(i)

|λsj ||λsk|δ(λsj , λsk) ≤
1

|λij ||λik|
∑

λsj⊆λij ,λsk⊆λ
i
k

|λsj ||λsk|δ(λsj , λsk).

Note that if s > t we only need the nonnegativity constraint δ(λsj(s), λ
s
k(s)) ≥ 0, as the other

inequalities δ(λsj , λ
s
k) ≥ 0 follow from δ(λsj(s), λ

s
k(s)) ≤ δ(λ

s
j , λ

s
k).

Proof. At step i of the UPGMA algorithm, we choose the pair of λij(i) and λik(i) to merge such
that δi(λij(i), λ

i
k(i)) is minimized. Using the formula from Equation 4.1

δi(λij , λ
i
k) =

1
|λij ||λik|

∑
x∈λij ,y∈λik

δ(x, y)

twice shows that
δi(λij , λ

i
k) =

1
|λij ||λik|

∑
λsj⊆λij ,λsk⊆λ

i
k

|λsj ||λsk|δ(λsj , λsk).

This yields precisely the inequalities in the statement of the proposition at step i.
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Proposition 4.3.4. Given a maximal chain C ∈ Πn, there are O(n3) facet-defining inequalities
in the H-representation of the polyhedral cone P(C).

Proof. At step t, there are
(
t

2

)
ways to merge two blocks of πt, and the pair of blocks

δ(λtj(t), λ
t
k(t)) merged at step t can be paired with

(
t
2

)
− 1 other pairs of blocks. So

(
t

2

)
− 1

new inequalities are introduced at step t. An elementary identity for binomial coefficients tells
us that for a, b ≥ 0,

a∑
r=b

(
r

b

)
=
(
a+ 1
b+ 1

)
.

Thus there are
n∑
t=2

((
t

2

)
− 1
)

=
(
n+ 1

3

)
− n+ 1

facet-defining inequalities.

According to Theorem 1.2.5, the facet-defining inequalities of the polyhedral cones P(C)
imply the existence of a closed-form description of the extreme rays of P(C). Therefore, we
now provide a description of the extreme rays of the cones of grounded partial chains P(C),
which are partial chains (Definition 4.3.2) starting with the bottom element πn = 1|2| · · · |n.
The polyhedral description of the cones P(C) for more general partial chains is used in the
proof of Theorem 4.3.7, which gives the combinatorial description of the V-representation of
the extreme rays of P(C). We require some additional terminology to state the relevant results,
beginning with Definition 4.3.5.

Definition 4.3.5. Given a partition πk = λ1|λ2| · · · |λk ∈ Πn a traversal of πk is a subset
F ⊂

(
[n]
2

)
of size

(
k
2

)
, where each element of F is a pair {p, p′} ∈ π satisfying p ∈ λ, p′ ∈ λ′. In

each traversal there is precisely one such pair p, p′ for every pair of distinct blocks λ, λ′ of πk.

For example, the partition 12|3|45 has 22 · (2 · 1) · (2 · 1) = 16 traversals. Figure 4.3 shows
the traversal F = {{1, 3}, {1, 4}, {3, 5}} of the partition 12|3|45, where for example the pairing
{1, 3} is indicated by connecting the circled elements 1 and 3 with an edge. The purpose of
introducing the language of traversals is to give a convenient method of describing the extreme
rays, or V-representation of P(C), for arbitrary chains C ⊂ Πn.

Definition 4.3.6. Let πk = λ1|λ2| · · · |λk ∈ Πn. Let F be a traversal of πk. The induced vector
of F , denoted v(F ), is the dissimilarity map in Rn(n−1)/2 such that

1. v(F )(i, j) = 0 if the pair i, j is not in the traversal F , and

2. when {i, j} ∈ F , v(F )(i, j) = |λk(i)||λk(j)| where i ∈ λk(i) and j ∈ λk(j).
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Figure 4.3: The traversal F = {{1, 3}, {1, 4}, {3, 5}} of the partition 12|3|45.

This traversal F = {{1, 3}, {1, 4}, {3, 5}} of the partition 12|3|45 shown in Figure 4.3 induces
the vector (0, 2, 4, 0, 0, 0, 0, 0, 2, 0). For i 6= j ∈ [n] let eij ∈ Rn(n−1)/2 be the dissimilarity map
such that eij(i, j) = 1 and eij(x, y) = 0 for all other pairs x 6= y.. Another way to write v(F ) is

v(F ) = 2 · e1,3 + 4 · e1,4 + 2 · e3,5.

Theorem 4.3.7. Let C = πn l πn−1 l · · ·l πt be a grounded partial chain in Πn. Then P(C)
is a cone with extreme rays given by the set of vectors

{ek,l : k, l are not in the same part of the partition πt}⋃ n⋃
i=t+1

{v(F ) : F is a traversal of πi }.

Note that if t = 1, the first set in the union is empty.
The remainder of this section consists of the proof of Theorem 4.3.7 and completes our

description of the cones P(C). The proof will be broken into a number of pieces, and will work
by induction on both t and n. Let 1t denote the vector in Rt(t−1)/2 all of whose coordinates
are equal to one. Note that 1n is the induced vector of the single traversal associated to the
partition 1|2| · · · |n, which appears in every partial chain.

Lemma 4.3.8. Let C = πs l · · ·l πt be a partial chain in Πn with s > t. Then

1. 1s is an extreme ray of P(C), and

2. 1s is the only extreme ray of P(C) that has a nonzero (λsj(s), λ
s
k(s)) coordinate where

(λsj(s), λ
s
k(s)) is the pair of parts joined together in the partition πs−1.

Proof. First of all, 1s satisfies the single inequality δ(λj(s), λk(s)) ≥ 0 of Proposition 4.3.3
strictly. The rest of the inequalities of Proposition 4.3.3 are satisfied with equality by 1s so that
1s ∈ P(C). Hence the extreme ray 1s is in the intersection of all the facet-defining inequalities

65



except for one. Since P(C) is a pointed cone because it is contained in the positive orthant,
this implies that 1s is an extreme ray. This proves part (1). Furthermore, since every extreme
ray of a cone is the intersection of some of its facet-defining inequalities, every other extreme
ray must have the inequality δ(λj(s), λk(s)) ≥ 0 as an active inequality, meaning the inequality
is actually an equality at every point on the extreme ray. This proves part (2).

Let C = πs l · · ·l πt be a partial chain, and C ′ a partial chain obtained as a final segment
of C, that is, there is a s < u ≤ t, such that C ′ = πul · · ·lπt. The UPGMA algorithm induces
a natural linear map A(C,C ′) : Rs(s−1)/2 → Ru(u−1)/2. In particular, it is defined by

(A(C,C ′)δ)(λ, λ′) =
1

|λ||λ′|
∑

µ,µ′∈πs
µ⊆λ,µ′⊆λ′

|µ||µ′|δ(µ, µ′)

where λ, λ′ are blocks of πu.

Definition 4.3.9. A linear transformation φ : Rn → Rm is a coordinate substitution if for each
of the coordinate vectors ei, φ(ei) = cieα(i) with ci > 0, where α : [n] → [m]. That is, each
coordinate maps to a scaled version of another coordinate.

Note, in particular, the quantity δ(µ, µ′) only appears in the formula for (A(C,C ′)δ)(λ, λ′),
so that A(C,C ′) is a coordinate substitution map. when restricted to the coordinates δ(µ, µ′)
where µ, µ′ are in different parts of πs.

With the preceding paragraph in mind, we let P̃(C) denote the intersection of P (C) with
the hyperplane {δ : δ(λj(s), λk(s)) = 0}.

Proposition 4.3.10. Let C = πs l · · · l πt be a partial chain and with final segment C ′ =
πs−1 l · · ·lπt. Then A(C,C ′) : P̃(C)→ P(C ′) is surjective, and P̃(C) = A(C,C ′)−1(P(C ′))∩
Rs(s−1)/2−1
≥0 .

Proof. Note that by definition of the UPGMA algorithm, the map A(C,C ′) : P(C)→ P(C ′) is
surjective. If a vector δs ∈ P(C), then so is the vector

δ′ = δs − δs(λsj(s), λ
s
k(s))e(λ

s
j(s), λ

s
k(s)),

obtained by zeroing out the (λsj(s), λ
s
k(s)) coordinate. However, A(C,C ′)δs = A(C,C ′)δ′, which

implies that A(C,C ′) : P̃(C)→ P(C ′) is surjective.
To see that P̃(C) = A(C,C ′)−1(P(C ′))∩Rs(s−1)/2−1

≥0 , note that the inequalities that describe
P̃(C) are precisely the pullbacks of the inequalities that describe P(C ′), plus nonnegativity
constraints, since none of the inequalities on P(C) coming from the covering relation πs l πs−1

are needed.
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Lemma 4.3.11. Let D ⊆ Rm be a polyhedral cone, φ : Rn → Rm be a coordinate substitution
with associated map α, and C ⊆ Rn a polyhedral cone such that φ(C) = D. Suppose that
C = Rn

≥0 ∩ φ−1(D). Let V be the set of extreme rays of C. Then extreme rays of D consist of
all vectors obtained by the following procedure:

For each extreme ray
∑

j ajej ∈ V , include all vectors of the form
∑

j aj/cβ(j)eβ(j) ranging
over all functions β : [m]→ [n] such that α(β(j)) = j for all j.

Proof. It suffices to show that under the hypotheses of the Lemma, every extreme ray of C
maps onto an extreme ray of D. Indeed, if that is the case, the extreme rays of C are precisely
the vertices of the polytopes φ−1(v) ∩ Rn

≥0 as v ranges over the extreme rays of V . Note that
since φ is a coordinate substitution φ−1(v) is isomorphic to a product of simplices, the simplices
being defined over coordinate subsets over the form α−1(j). The vertices of these products of
simplices have the form of the statement of the Lemma.

Hence, it suffices to verify the claim that every extreme ray of C maps onto an extreme ray
of D. So suppose that v′ is an extreme ray of C such that φ(v′) = v is not an extreme ray of
D. Then there exists w, u ∈ D, not equal to v such that v = w + u. Using these vectors, we
construct w′, u′ ∈ C not equal to v′ such that v′ = w′ + u′. For each i such that α(i) = j define

w′i =
wj
vj
v′i and u′i =

uj
vj
v′i.

Clearly with this choice, we have v′ = w′ + u′ since vj = wj + uj , and both w′ and u′ consist
of nonnegative vectors. Also, since w, u are not equal to v, neither are w′, u′ equal to v′. So we
must show that φ(w′) = w and φ(u′) = u. But

φ(w′)j =
∑

i:α(i)=j

wj
vj
ci =

wj
vj

∑
i:α(i)=j

ci =
wj
vj
vj = wj .

A similar statement holds for u′, which completes the proof.

We now have all the ingredients to prove Theorem 4.3.7.

Proof of Theorem 4.3.7. Let C = πs l · · ·l πt. First of all, note that if s = t, then P(C) is the
positive orthant in Rs(s−1)/2, whose extreme rays are the standard unit vectors.

Now assume that s > t. According to Lemma 4.3.8, the vector 1s is an extreme ray of P(C).
Letting C ′ = πs−1 l · · ·l πt, Proposition 4.3.10 we see that all other extreme rays of P(C) can
be obtained by applying Lemma 4.3.11 to the extreme rays of P(C ′). Repeating this procedure
for the extreme rays of P(C) that do not map to 1s−1 ∈ P(C ′), we see that every extreme ray
of P(C) besides 1s can either be obtained as a vertex of the polyhedron A(C,Cu)−1(1u) where
Cu = πu l · · ·l πt, or as a vertex of A(C,Ct)−1(eλk,λl).
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To complete the proof of the theorem we must analyze the vertices of A(C,Ct)−1(eλk,λl) and
show that the vertices of A(C,Cu)−1(1u) are precisely the induced vectors from the traversals
of πu. For both of these statements, we can use Lemma 4.3.11.

Indeed, A(C,Cu) is the map such that

(A(C,Cu)δ)(λ, λ′) =
1

|λ| · |λ′|
∑
x∈λ
y∈λ′

δ(x, y).

This implies, by Lemma 4.3.11 that the vertices of

A(C,Ct)−1(eλ,λ′)

are |λ| · |λ′|ek,l such that k ∈ λ and l ∈ λ′. Since we can ignore the scaling factor |λ| · |λ′|
when describing extreme rays, taking the union over all pairs λ, λ′ ∈ πt, yields the set of rays
{ek,l : k, l are not in the same part of the partition πt} from Theorem 4.3.7.

Similarly, applying Lemma 4.3.11 to the map A(C,Cu) and the vector 1u yields the set of
induced vectors associated to the partition πu. Indeed, the coordinate 1 in the (λ, λ′) position
of 1u produces an entry of |λ| · |λ′| in exactly one of the positions δ(x, y) such that x ∈ λ, y ∈ λ′.
This completes the proof of Theorem 4.3.7.

We now show that Theorem 4.3.7 implies that the UPGMA cones have exponentially many
extreme rays.

Proposition 4.3.12. The cones P(C) have exponentially many extreme rays.

Proof. Given πs = λs1| · · · |λss, the number of traversals is the product of the pairwise products
of the cardinalities of the blocks of πs. So the number of extreme rays induced by πs is

∏
{i,j}⊂([s]

2 )

|λsi ||λsj | =
s∏
i=1

|λsi |s−1.

Given a maximal chain C ∈ Πn, the total number of extreme rays will be

n∑
s=2

s∏
i=1

|λsi |s−1

which is exponential in n.

To summarize, we note that Propositions 4.3.3, 4.3.4, 4.3.12 and Theorem 4.3.7 yield The-
orem 4.3.1.
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4.4 Applications of Theorem 4.3.7

We use the characterization of the extreme rays in Theorem 4.3.7 of the cones P(C) to provide
easy geometric applications. First, the set P(T ) of all dissimilarity maps for which UPGMA
returns a given tree is not a convex set in general. Second, the partition of the positive orthant
into the cones P(C) does not have the structure of a polyhedral fan (Definition 1.2.8). Third,
we show that among all possible tree topologies, the comb tree topology minimizes the number
of rays in a UPGMA cone. A comb tree is pictured in Figure 4.1.

Corollary 4.4.1. The UPGMA regions P(T ) = ∪P(C) are not convex in general.

Proof. We give an example for n = 4. Let T be the fork tree on 4 leaves shown in Figure 4.4.
Then P(T ) = P(C1) ∪ P(C2) where

C1 = 1|2|3|4 l 3|4|12 l 12|34 l 1234,

and
C2 = 1|2|3|4 l 1|2|34 l 34|12 l 1234.

Now v1 = (0, 0, 2, 2, 0, 1) is an extreme ray of P (C1) induced by a traversal of 3|4|12 and
v2 = (1, 0, 2, 2, 0, 0) is an extreme ray of P(C2) induced by a traversal of 1|2|34. Let δ be the
convex combination

δ =
1
2
v1 +

1
2
v2 =

(
1
2
, 0, 2, 2, 0,

1
2

)
.

If δ is input into UPGMA, the algorithm will return a tree with either {1, 3} or {2, 4} as the
leaf set of a clade (Definition 1.4.5), so δ is not in P(T ). So, in general, UPGMA regions are
not convex unless P(T ) = P(C) for a single chain C in Πn.

Figure 4.4: A fork tree with leaf set [4].
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Corollary 4.4.2. The UPGMA cones do not partition Rn(n−1)/2
≥0 into a fan.

Proof. Consider the two chains in Π4

C1 = 1|2|3|4 l 3|4|12 l 4|123 l 1234

and
C2 = 1|2|3|4 l 2|4|13 l 4|123 l 1234.

The vector (0, 0, 0, 1, 1, 1) generates an extreme ray of P (C1)∩P (C2) which we verified using
the software polymake [37]. If P (C1)∩P (C2) were a face of P (C1) and P (C2), then (0, 0, 0, 1, 1, 1)
would generate a ray of P (C1) and P (C2). However, by Theorem 4.3.7, extreme rays of P (C1)
and P (C2) must correspond to partitions in Π4. Only partitions with 3 blocks induce vectors
with 3 nonzero coordinates, and no partition of the set [4] has 3 blocks of equal cardinality. So,
no traversal of a partition in Π4 induces a multiple of (0, 0, 0, 1, 1, 1), and P (C1)∩P (C2) is not
a face of a UPGMA cone. Recall from Definition 1.2.8 that two cones in a fan must intersect
in a face of both. Therefore the UPGMA cones are not a fan.

The next corollary concerns the comb tree topology, which is the most unbalanced tree
topology. Recall that Figure 4.1 shows a comb tree.

Corollary 4.4.3. For each n, the comb tree topology minimizes the number of extreme rays
over all UPGMA cones in Rn(n−1)/2

≥0 .

Proof. Fix n. We will show that for each 1 ≤ s ≤ n, the partitions whose parts have cardinalities
1, 1, . . . , 1, n − s + 1 minimize the number of traversals for all partitions with s blocks. For all
integers x, y > 0, we have xy ≥ (x + y − 1)(1). So for πs = λs1| · · · |λss, the number of extreme
rays induced by πs satisfies∏

{i,j}⊂([s]
2 )

|λsi ||λsj | ≥
∏

{i,j}⊂([s]
2 )

(1)(|λsi |+ |λsj | − 1).

The only type of partition in Πn with s parts such that all pairs {i, j} ⊂
(

[s]
2

)
satisfy either

|λis| = 1 or |λjs| = 1 is the type with s − 1 singleton blocks and one block of size n − s + 1.
Therefore partitions of this type minimize the number of associated induced vectors.

If C is a maximal chain in Πn such that every πs in C is of this type, then the tree returned
by δ ∈ P(C) has the comb tree topology. Therefore this tree topology minimizes the possible
number of extreme rays for any cone P(C) ⊂ Rn(n−1)/2

≥0 .
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4.5 Spherical Volumes of UPGMA Regions

A natural way to measure the region P(T ) is to estimate the spherical volume (Definition 4.1.2)
of the regions P(T ) = ∪P(C). In other words, we estimate the

((
n
2

)
− 1
)
-dimensional area of the

surface arising as the intersection of the cones P(C) ⊂ P(T ) with the unit sphere Sn(n−1)/2−1

in Rn(n−1)/2
≥0 .

We estimated the spherical volume of UPGMA cones in two ways using Mathematica,
polymake [37], and the software [45] that accompanied the paper [31] of Kord Eickmeyer, Peter
Huggins, Lior Pachter, and Ruriko Yoshida. For the first method, we sampled points from the
positive orthant using a uniform spherical distribution and input the samples into UPGMA,
recording which ranked tree the algorithm returned on the input point. The volume of P(T ) is
then the fraction of the total sample points returning T . We calculated volumes for n = 4, 5, 6, 7
using this method.

For the second method, we used a Monte Carlo integration strategy to estimate the surface
area of the cones. The basic strategy can be described as follows. Recall that a cone in Rd is
simplicial if the extreme rays of the cone are a linearly independent set of vectors in Rd. Given
a simplicial cone cone(V ) spanned by vectors V = {v1, . . . , vk}, it is easy to generate uniform
samples from the simplex conv(V ). The map that takes a point x ∈ conv(V ) onto the surface
cone(V )∩Sn(n−1)/2−1 is simply x→ x/‖x‖2. The spherical volume is then the average value of
the Jacobian of this map. For n = 4, 5, 6, we used the software [45] to accomplish this method.
This software requires as input triangulations of point configurations that we computed using
the software polymake [37].

For n = 7, some triangulations for maximal chains in Π7 were too large to compute and
use. When it was not possible to compute the triangulation for the cone of a full chain, we
computed a triangulation of a cone associated to a grounded partial chain C ′ (Definition 4.3.2),
used that triangulation to generate random samples, and then applied the UPGMA algorithm
to see which chain was produced. In other words, we generated random points from the partial
cone P(C ′) and computed the average of the product of the Jacobian and the indicator function
of whether a point was in the cone P(C). We used Mathematica to implement this modification
of the sampling strategy employed in [31].

Tables 4.1, 4.2, 4.3, and 4.4 summarize the results of our computations for n = 4, 5, 6, 7
leaf trees by displaying results for the regions P(T ). So, these tables give estimates of the
spherical volumes of the regions P(T ). The column labeled Tree gives a representative of the
combinatorial tree type in Newick format, which represents the clustering structure of the tree
using parentheses. For example, the Newick format of the tree in Figure 4.2 is (((12)3)(45)),
whereas ((((12)3)4)5) is a comb tree with leaf set [5]. The column labeled #Chains refers to
the number of cones producing a fixed tree of the combinatorial type represented in the column
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Table 4.1: Spherical volumes of UPGMA regions P(T ) for n = 4.

Tree # Chains Volume Fraction of
Orthant

1 (((12)3)4) 1 0.0238 0.5895

2 ((12)(34)) 2 0.0662 0.4099

labeled Tree. The column labeled Volume gives the total volume of all of the cones associated
to the given tree, and the column labeled Fraction of Orthant gives the portion of the positive
orthant in Rn(n−1)/2 that returns the given tree type under UPGMA.

Recall that P(T ) = ∪P(C) where C ranges over the chains in Πn corresponding to T . So,
the number of cones associated to a tree T depends on the number of rank functions that T
admits. For example, in the table for n = 5, the tree T2 = (((12)3)(45)) has 4!/(4 · 2 · 1 · 1) = 3
rank functions by Equation 1.2, and so there are 3 cones in P(T2).

The Mathematica software and input files for these computations are available at [25].

Table 4.2: Spherical volumes of UPGMA regions P(T ) for n = 5.

Tree # Chains Volume Fraction of
Orthant

1 ((((12)3)4)5) 1 8.57× 10−5 0.206

2 (((12)3)(45)) 3 5.01× 10−4 0.604

3 (((12)(34))5) 2 3.14× 10−4 0.189

4.6 Discussion

The spherical volume computations suggest some conjectures which might hold true for large
n. As Corollary 4.4.3 shows, the cone associated to the single rank function on the comb tree
yields the cone P(C) with the fewest number of extreme rays. Our computations up to n = 7
suggest that this is also the cone with the smallest spherical volume. The size of the region
P(T ) appears to be roughly proportional to the number of chains C that yield the tree T and
appears to be smallest for the comb tree. Furthermore, the relative proportion of the positive
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Table 4.3: Spherical volumes of UPGMA regions P(T ) for n = 6.

Tree # Chains Volume Fraction of
Orthant

1 (((((12)3)4)5)6) 1 2.05× 10−8 0.042

2 ((((12)3)4)(56)) 4 2.10× 10−7 0.216

3 ((((12)3)(45))6) 3 2.16× 10−7 0.223

4 (((12)3)((45)6)) 6 4.50× 10−7 0.229

5 ((((12)(34))5)6) 2 1.05× 10−7 0.054

6 (((12)(34))(56)) 8 9.06× 10−7 0.231

orthant taken up by the comb tree topology appears to be the smallest. We predict that these
patterns hold for larger numbers of taxa as well.

The Neighbor-Joining (NJ) algorithm (Algorithm 5.4.6) is similar to UPGMA but returns
arbitrary tree metrics that may be realized by unrooted trees. See Figure 1.8 for a picture
of two unrooted phylogenetic [5]-trees. Like every distance-based phylogenetic reconstruction
method, NJ partitions Rn(n−1)/2 into a family of regions indexed by the combinatorial type
of tree returned by the algorithm. The selection criteria and distance recalculations in the NJ
algorithm may all be expressed as linear combinations of the original dissimilarity map inputs,
so as is the case with UPGMA, each NJ region is a union of polyhedral cones. NJ does not
return rooted trees so there is no notion of a rank function, but as with UPGMA the union is
taken over all orderings on the internal vertices that correspond to steps of the NJ algorithm.
The inequalities determined by steps in the NJ algorithm determine the H-representation of
the NJ cones.

However, a complete description for all n of the extreme rays of the NJ cones is unknown.
Such a description would allow one to establish an analogue of Theorem 4.3.7 for NJ. Such a
result would be desirable, not only to facilitate more analyses similar to those undertaken in
this chapter, but also to aid in the study of other geometric problems associated to NJ such
as the problems we will encounter in Chapter 5. One issue with the NJ cones that complicates
the situation is that they have a non-trivial lineality space (Definition 1.2.7), so there is more
than one representation for an extreme ray. In the paper [32] of Kord Eickmeyer and Ruriko
Yoshida, a detailed study of the extreme rays for n = 5 is undertaken, in which the extreme
rays of a cone are considered as projections onto the orthogonal complement of the lineality
space of the cone.
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Table 4.4: Spherical volumes of UPGMA regions P(T ) for n = 7.

Tree # Chains Volume Fraction of
Orthant

1 ((((((12)3)4)5)6)7) 1 2.75× 10−13 0.0050

2 (((((12)3)4)5)(67)) 5 4.82× 10−12 0.0435

3 (((((12)3)4)(56))7) 4 6.32× 10−12 0.0570

4 ((((12)3)4)((56)7)) 10 1.95× 10−11 0.1762

5 (((((12)3)(45))6)7) 3 4.45× 10−12 0.0402

6 ((((12)3)(45))(67)) 15 5.72× 10−11 0.2581

7 ((((12)3)((45)6))7) 6 1.66× 10−11 0.0747

8 (((12)3)((45)(67))) 20 9.00× 10−11 0.2030

9 (((((12)(34))5)6)7) 2 1.73× 10−12 0.0078

10 ((((12)(34))5)(67)) 10 2.63× 10−11 0.0593

11 ((((12)(34))(56))7) 8 3.33× 10−11 0.0753
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Chapter 5

Distance-Based Phylogenetic

Methods Near a Polytomy

5.1 Introduction

Recall that any distance-based phylogenetic reconstruction method f (Definition 1.4.16) takes
a dissimilarity map (Definition 1.4.8) as an input and outputs a tree metric (Definition 1.4.9).
So every such method f partitions the set of all dissimilarity maps Rn(n−1)/2 into regions

{C(T ) : f(x) is a tree metric realized by the combinatorial tree T for all x ∈ C(T )}.

We can then compare the regions C(T ) for different methods to evaluate their relative per-
formance. Among the most intuitively appealing distance-based phylogenetic methods is the
least-squares phylogeny (LSP):

Problem 5.1.1. The least-squares phylogeny problem asks, for a given dissimilarity map δ,
what is the tree metric d that minimizes the ordinary Euclidean distance given by the formula√ ∑

x,y∈X
(δ(x, y)− d(x, y))2.

William Day showed that the least-squares phylogeny problem is NP-hard [28]. Accordingly,
many distance-based phylogenetic algorithms have been developed which attempt to build up
the tree piece by piece while locally optimizing the Euclidean distance at each step. Two popular
agglomerative distance-based methods designed according to this philosophy are the Unweighted
Pair-Group Method with Arithmetic Mean, or UPGMA (Algorithm 4.2.1), which we studied in
Chapter 4, and the Neighbor-Joining algorithm, or NJ (Algorithm 5.4.6). Both UPGMA and
NJ run in polynomial time. As LSP is NP-hard, UPGMA and NJ cannot solve LSP exactly.
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So it is natural to ask: how well do these distance-based algorithms perform when attempting
to solve the LSP problem? Under what circumstances do distance-based heuristics return the
same combinatorial tree as the least-squares phylogeny?

A motivation for the study conducted in this chapter is the following well-known consistency
result of Kevin Atteson [4].

Theorem 5.1.2 (Atteson, 1999). Let d be a tree metric such that the smallest edge weight in
a binary tree realization (T,w) of d is w(e) > 0. Suppose a dissimilarity map δ ∈ Rn(n−1)/2

satisfies ‖δ − d‖∞ < w(e)/2. Then NJ (δ) = d̂, where d̂ and d are realized by trees with the
same tree topology.

Theorem 5.1.2 says the following: if δ is a dissimilarity map which is sufficiently close to
some tree metric d realized by a binary tree all of whose branch lengths are bounded away from
zero, then NJ applied to δ returns a tree with the same combinatorial type as d. In other words,
if our data gives us an input that is close enough in the input space to the correct tree shape,
NJ will correctly infer the evolutionary history.

Recall that the Euclidean norm is equivalent to the ∞-norm, or in other words for x ∈ Rd,
‖x‖∞ ≤ ‖x‖2 ≤

√
d‖x‖∞. Therefore, sufficiently close to an input δ, NJ gives a tree shape

consistent with LSP when all edge lengths of a binary tree are bounded away from zero. But,
if we allow edge lengths to be equal to zero, this is equivalent to collapsing an edge in a binary
tree to obtain a non-binary tree, which results in a polytomy vertex (Definition 1.4.3).

In a rooted tree, a polytomy represents a speciation event where many different species were
produced. Polytomies routinely arise in phylogenetic inference from collections of species for
which there is not enough data to decide which sequence of binary events is most relevant. This
leads us to the main question of study in this chapter:

Problem 5.1.3. How do the distance based-heuristics UPGMA and NJ compare to LSP when
the true tree metric has a polytomy?

The idea of comparing two distanced-based methods using polyhedral geometry already
appears in the paper [31] of Kord Eickmeyer, Peter Huggins, Lior Pachter, and Ruriko Yoshida
as well as the paper [43] of David Haws, Terrell Hodge, and Yoshida. In both of these papers,
Neighbor-Joining is compared to the Balanced Minimum Evolution (BME) criterion. In the
case of the distance-based heuristics UPGMA and NJ the resulting regions in the partition of
the input space Rn(n−1)/2 are polyhedral cones because the decision criteria of both of these
algorithms are represented by families of linear inequalities which determine anH-representation
of the cones.

For LSP, the regions are potentially more complicated semialgebraic sets, or solutions to
families of polynomial inequalities. While we do not yet know a complete description of the
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regions induced by LSP, a local analysis of the performance of LSP and distance-based heuristics
near a polytomy can be done using polyhedral geometry. The resulting analysis depends heavily
on the geometry of phylogenetic tree space (Definition 1.4.15) near tree metrics that contain
a polytomy. It is this analysis which comprises the bulk of this chapter. The results in this
chapter are joint work with Seth Sullivant, and appear in the paper [26].

This chapter is organized as follows: in Section 5.2, we review basic properties of tree space,
including a description of the different cones in the standard decomposition. We provide the
description of both tree space Tn and equidistant tree space ET n. Section 5.3 contains a detailed
analysis of the local geometry of tree space near tree metrics called tritomies that are realized
by trees which have a polytomy with three associated binary resolutions. In particular, for
both equidistant and ordinary tree metrics, the local geometry depends only on the sizes of the
daughter clades (Definition 1.4.5) around the tritomy, and not the particular tree structure of
those daughter clades.

In Section 5.4, we apply the results from Section 5.3 to understand the local geometry of
the decompositions induced by LSP and UPGMA near tree metrics that contain a tritomy. We
also explain why these results imply that UPGMA poorly matches LSP in some circumstances,
and we discuss computational evidence towards the study of NJ from this perspective. Section
5.5 contains concluding remarks primarily about the possibility of extending results for NJ.

5.2 Tree space

Our analysis of the behavior of phylogenetic algorithms near a tree metrics containing a poly-
tomy depends heavily on the geometry of the spaces of tree metrics Tn and equidistant tree
metrics ET n on n leaves defined in Definition 1.4.15. Both Tn and ET n are polyhedral fans
(Definition 1.2.8). The fan Tn has one maximal cone for each unrooted binary tree. The space
of ultrametrics ET n has one maximal cone for each rooted binary tree. The extreme rays of
these maximal cones are known in both cases. The space ET 3 is shown in Figure 5.1.

Definition 5.2.1. For each i 6= j ∈ X, recall eij ∈ Rn(n−1)/2 denotes the dissimilarity map
such that eij(i, j) = 1 and eij(x, y) = 0 for all other pairs x, y. Let A1, A2, . . . , Ak be a collection
of disjoint subsets of X. Define the dissimilarity map δA1|A2|···|Ak

δA1|A2|···|Ak =
∑
ij

eij

where the sum ranges over all unordered pairs (i, j) such that i and j belong to different blocks.

In the special case where A|B is a partition of X, A|B is usually called a split. The resulting
dissimilarity map δA|B is called a cut-semimetric or split-psuedometric. Each edge in a tree T
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Figure 5.1: The space ET 3 with labeled extreme rays.

induces a split of the leaves of T obtained from the partition of the leaves that arises from
removing the indicated edge. The set of all splits implied by a tree T is denoted Σ(T ). Recall
that cone(Y ) ⊂ Rd is simplicial if Y is a linearly independent set of elements of Rd.

Proposition 5.2.2. Let T be a phylogenetic X-tree. The set of all tree metrics compatible with
T is a simplicial cone, whose extreme rays are the set of vectors {δA|B : A|B ∈ Σ(T )}.

This is a polyhedral geometry rewording of Theorem 7.1.8 in the book Phylogenetics by
Charles Semple and Mike Steel [57]. Note that the description from Proposition 5.2.2 holds
regardless of whether or not the tree T is binary. In particular, we see that the intersection
of all cones associated to a collection of trees corresponds to the cone associated to the tree
obtained from a common coarsening of all trees in the given collection.

The cones of the space of equidistant trees ET n are not simplicial in general, but they can be
subdivided into cones based on ranked trees, which are simplicial. We describe these cones now.
Recall that we introduced the lattice Πn of partitions of the set [n] = {1, . . . , n} in Example
1.1.4.

Proposition 5.2.3. Let
C = πn l πn−1 l · · ·l π1

be a maximal chain in Πn, corresponding to a ranked phylogenetic tree. The cone of equidistant
tree metrics compatible with C is a simplicial cone whose extreme rays are the set of vectors
{δπi : i = 2, . . . , n}.

This is a polyhedral geometry rewording of Theorem 7.2.8 of [57].

Example 5.2.4. If an equidistant tree metric d ∈ R10
≥0 is compatible with the maximal chain

in Example 1.4.7 then d satisfies

d(1, 2) ≤ d(3, 4) ≤ d(1, 3) = d(1, 4) = d(2, 3) = d(2, 4) ≤
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d(1, 5) = d(2, 5) = d(3, 5) = d(4, 5)

and is in the simplicial cone with extreme rays

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1), (0, 1, 1, 1, 1, 1, 1, 1, 1, 1),

(0, 1, 1, 1, 1, 1, 1, 0, 1, 1), (0, 0, 0, 1, 0, 0, 1, 0, 1, 1)

where the coordinates of R10 are labeled with the pairs i < j ∈ [5] in the lexicographic order.

Note that Proposition 5.2.3 also holds true when working with chains that are not maximal,
which correspond to either trees with polytomies or situations where there are ties in the
rankings of the internal vertices. These chains correspond to intersections of the maximal cones
associated to the maximal chains in the partition lattice Πn, which, as we saw in Section 1.4,
correspond to rooted, ranked phylogenetic [n]-trees.

Figure 5.2: Two tritomies, rooted and unrooted.

5.3 Geometry of Tree Space Near a Tritomy

The goal of this section is to describe the geometry of tree space near a polytomy, in particular
in the special case of tritomies. For rooted trees, a tritomy is an internal vertex that has three
direct descendants. In an unrooted tree a tritomy is an internal vertex with four neighbors.
Figure 5.2 shows a rooted tritomy tree and an unrooted tritomy tree.

When we speak of the “geometry of tree space near a tritomy”, we mean to describe the
geometry of tree space near a generic tree metric that is realized by a tree with a single tritomy
and no other polytomies. The set of all such tritomy tree metrics, for a fixed topological structure
on the tree T , is a polyhedral cone of dimension one less than the dimension of tree space. Let
CT denote this polyhedral cone. The tree T with a single tritomy can be resolved to three binary
trees. Denote them T1, T2, and T3. The polyhedral cone of a tritomy CT is the intersection of
the three resolution cones CT1 , CT2 , and CT3 associated to the three different ways to resolve
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Figure 5.3: The fan KT with labeled cones.

the tritomy tree into a binary tree.
For both equidistant tree space ET n and ordinary tree space Tn, the cones CT and their

resolution cones CTi , for i = 1, 2, and 3 satisfy dimCT = dimCTi − 1. This is easily seen by the
simplicial structure of the cones CT for any tree T , according to Propositions 5.2.2 and 5.2.3.
Hence, locally near a generic point x of CT , tree space looks like Rk ×KT where k = dimCT

and KT is a one-dimensional polyhedral fan that depends on T but does not depend on x.
Furthermore, the fan KT can be chosen to live in a space orthogonal to the span of CT , and
span KT is two-dimensional. Figure 5.3 shows the fan KT in (span CT )⊥ when T is the rooted
tritomy tree with leaf set [3].

The goal of this section is to describe the structure of that fan KT . The analysis depends
on the particular structure of the generators of the various cones involved, and the cases of
equidistant tree metrics and arbitrary tree metrics must be handled separately. We treat these
cases in Sections 5.3.1 and 5.3.2, respectively.

5.3.1 Equidistant Tree Space

In this section we determine the geometry of the fan KT for a tritomy tree T in equidistant tree
space. This tritomy tree has a node with three children. Denote the daughter clades of these
children (that is, the set of leaves below each of the children of the tritomy, see Definition 1.4.5)
by A, B, and C. Let TAB, TAC , and TBC denote the three resolution trees, where for example
TAB is the binary resolution where A ∪ B forms the leaf set of a clade. Note that since all the
linear spaces that are involved are the same, instead of working with a fixed tree we can work
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with the corresponding rank function and chain in Πn, which are derived from the order of
agglomeration of subsets of the leaf set induced by the tree topology as illustrated in Example
1.4.7. This is what we will do in this section.

Let
K = πn l πn−1 l · · ·l πk+1 l πk−1 l · · ·l π1

be the chain corresponding to the polytomy tree. Note that this is a chain in the partition
lattice which leaves out an element at the k-th level. Here πk+1 will contain among its blocks
A,B, and C, and πk−1 will contain the block A ∪ B ∪ C. The resolution trees TAB, TAC , and
TBC correspond to the three ways to add a πk to this sequence which refines πk+1 and is refined
by πk−1.

We are interested in the linear spaces spanCK .

Lemma 5.3.1. For any (not necessarily maximal) chain K = πr l · · ·lπ1, where π1 = X, the
set of vectors

{δπi − δπi−1}i=2,...,r

forms an orthogonal basis for span CK .

Proof. Since δπ2 , . . . , δπr are the extreme rays of the simplicial cone CK , they are linearly
independent and hence span the space span CK . We can easily solve for the vectors δπ2 , . . . , δπr

given δπi − δπi−1 , i = 2, . . . , r hence span CK = span {δπi − δπi−1}i=2,...,r. For all i ∈ [r], the
positions of the ones in δπi−1 are a subset of the positions of the ones in δπi . This guarantees
that δπi − δπi−1 and δπj − δπj−1 do not have any nonzero entries in the same positions when
i 6= j. Hence these vectors are orthogonal. Note that δπ1 is the zero vector if we assume that
π1 = X.

The particular structure of the vectors δπi+1 − δπi will be useful in what follows.

Lemma 5.3.2. Let π and τ be two set partitions such that π is a refinement of τ . Then

δπ − δτ =
∑

ei,j

where i, j are in different parts of π and the same part of τ .

Proof. Trivial from the definition of δπ.

Now for each of the resolution cones, for example CTAB , there is a unique ray pAB in the
fan KT that is orthogonal to spanCT . Since dimCTAB = dimCT + 1 and the cones CTAB and
CT are pointed (see the comment after Definition 1.2.7), the ray pAB is unique. The ray pAB is
orthogonal to spanCT because we choose the fan KT to be orthogonal to spanCT . We explain
how to construct that ray now.
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Lemma 5.3.3. Let a = |A|, b = |B|, and c = |C|. The vector pAB is given by

pAB = − ac+ bc

ab+ ac+ bc
δA|B +

ab

ab+ ac+ bc
(δA|C + δB|C).

Proof. It suffices to start with any vector rAB ∈ spanCTAB \ spanCT and project it onto the
orthogonal complement of spanCT . We assume the tree T is represented by the chain

K = πn l πn−1 l · · ·l πk+1 l πk−1 l · · ·l π1

and the tree TAB by the chain

KAB = πn l πn−1 l · · ·l πk+1 l πk l πk−1 l · · ·l π1.

For our vector we choose rAB = δπk − δπk−1
. This vector is clearly not in spanCK since it

involves δπk . Furthermore, rAB is already orthogonal to all the vectors in the orthogonal basis
for span CT , except for the vector δπk+1

− δπk−1
. Hence, we can project the vector rAB onto the

complement of the space spanned by δπk+1
− δπk−1

; this will be the same as projecting onto the
complement of span CT .

Note that by Lemma 5.3.2 rAB = δA∪B|C = δA|C + δB|C . Similarly δπk+1
− δπk−1

= δA|B|C =
δA|B + δA|C + δB|C . So we want to project δA|C + δB|C onto the orthogonal complement of
δA|B + δA|C + δB|C . To find pAB it is enough to compute the component of δA|C + δB|C that
is perpendicular to δA|B + δB|C + δA|C , otherwise known as the vector rejection of δB|C + δA|C

from δA|B + δB|C + δA|C . Due to the orthogonality of the vectors δA|B, δA|C , and δB|C and the
fact that, for example, (||δA|B||2)2 = |A||B|, we have

(δA|C + δB|C) · (δA|B + δB|C + δA|C)
(δA|B + δB|C + δA|C) · (δA|B + δB|C + δA|C)

=

(||δB|C ||2)2 + (||δA|C ||2)2

(||δA|B||2)2 + (||δB|C ||2)2 + (||δA|C ||2)2

So the vector rejection of δB|C + δA|C from δA|B + δB|C + δA|C becomes

δA|C + δB|C −
ac+ bc

ab+ bc+ ac
(δA|B + δB|C + δA|C) =

− ac+ bc

ab+ ac+ bc
δA|B +

ab

ab+ ac+ bc
(δA|C + δB|C).

This explicit formula for pAB implies that span KT is two-dimensional:
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Corollary 5.3.4. The space span KT is two-dimensional.

Proof. The formulae for pAB, pAC , and pBC given by Lemma 5.3.3 show that pAB and pAC are
not parallel, so that span KT is at least two-dimensional, but

pAB + pAC + pBC = 0,

where 0 denotes the zero vector in Rn(n−1)/2. So span KT is exactly two-dimensional.

Corollary 5.3.4 also follows from the fact that the set of all equidistant tree metrics is a
tropical variety in Rn(n−1)/2, as shown by David Speyer and Bernd Sturmfels in [62].

Theorem 5.3.5. The angle between the cones CTAC and CTBC is

arccos

(
−c√

(a+ c)(b+ c)

)
.

Proof. We must calculate the angle between the vectors pAC and pBC . This is

arccos
(

pAC · pBC
‖pAC‖2‖pBC‖2

)
.

Now
pAC = − ab+ bc

ab+ ac+ bc
δA|C +

ac

ab+ ac+ bc
(δA|B + δB|C)

and
pBC = − ab+ ac

ab+ ac+ bc
δB|C +

bc

ab+ ac+ bc
(δA|B + δA|C).

Thus, pAC · pBC is given by

− ab+ bc

ab+ ac+ bc
· bc

ab+ ac+ bc
· ‖δA|C‖22

+
ac

ab+ ac+ bc
· bc

ab+ ac+ bc
· ‖δA|B‖22

− ac

ab+ ac+ bc
· ab+ ac

ab+ ac+ bc
· ‖δB|C‖22

=
−a2bc

ab+ bc+ ac
.

Similar calculations show that

‖pAC‖2 =

√
abc(a+ c)
ab+ ac+ bc

and ‖pBC‖2 =

√
abc(b+ c)
ab+ ac+ bc

.

Combining these pieces produces the formula in the Theorem.
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5.3.2 Tree Space

In this section we determine the geometry of the fan KT for a tritomy tree T in unrooted tree
space Tn. The approach is similar to the analysis for equidistant tree space, but the structure of
tree space is more complicated. In particular, finding an orthogonal basis for the space spanned
by the rays of the intersection cone for a tritomy is less straightforward.

Recall that a tritomy p in an unrooted tree is an internal vertex of degree four. The edges
adjacent to p induce a four-way set partition A|B|C|D of [n]. Let TAB denote the resolution
tree in which there is an edge inducing the split A ∪B|C ∪D. Note that TAB = TCD. So there
are three resolutions TAB, TAC , and TAD of T . For the remainder of this section, let a = |A|,
b = |B|, c = |C|, and d = |D|. Let rAB = δA∪B|C∪D. Note that rAB and the projection pAB of
rAB onto (span CT )⊥ are different objects than the rAB and pAB that we defined in the case
of equidistant tree space, but we use the same notation to illustrate the parallel roles that rAB
and pAB play in this discussion.

Lemma 5.3.6. Let T be an unrooted tree with a tritomy and corresponding partition A|B|C|D
of [n]. Then rAB ∈ span CTAB \ span CT , and dim span CT = 2n− 4.

Proof. By Proposition 5.2.2 each extreme ray of CTAB (equivalently, T ) comes from a split
induced by an edge of TAB (equivalently, an edge of T ). A binary unrooted tree on n leaves has
2n− 3 edges. So the cone CTAB has 2n− 3 rays, one for each internal edge of the tree TAB. By
contracting the edge in TAB that induces the split A∪B|C ∪D we obtain T . Therefore CT has
2n − 4 extreme rays that correspond to the 2n − 4 internal edges of T . Since CT is simplicial,
dim span CT = 2n− 4.

The projections pAB, pAC , and pAD of rAB, rAC , and rAD onto (span CT )⊥ are the maximal
cones in the fan KT . As in the previous section, we use an orthogonal basis of span CT to
simplify the necessary calculations.

Let A′ denote the complement of A in the set [n]. The vectors in the set

U = {δA|A′ , δB|B′ , δC|C′ , δD|D′}

are extreme rays of T . The elements of U correspond to the four edges in T adjacent to the
tritomy p. We show in the next Lemma that to calculate pAB it is sufficient to calculate the
projection of rAB onto (span U)⊥. First we require some additional notation: let e = (u, v) be
an edge of T not adjacent to p where v is the internal vertex of T on the path to p from e. Let
e′ = (w, v) be the unique edge in T satisfying the conditions (i) e 6= e′ and (ii) w appears on
the path from v to p in T (note that it is possible that w = p). Let Ae|Be be the split of [n]
induced by e and let Ae′ |Be′ be the split of [n] induced by e′. Note Ae ( Ae′ . Let ae = |Ae| and
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ae′ = |Ae′ |. Let V be the set{
δAe|Be −

ae
ae′
δAe′ |Be′ : p /∈ e = (u, v), e′ satisfies (i), (ii)

}
.

Lemma 5.3.7. Every vector in V is orthogonal to rAB, rAC , and rAD and U ∪ V is a basis for
span CT .

Proof. Since T has exactly one tritomy, T has 2n − 4 edges. When n = 4, 2n − 4 = 4. In this
case |U| = dim span CT , and U is a basis for span CT . So, assume n > 4: then V is not empty
because we can find edges e and e′ satisfying p /∈ (u, v) = e and e′ satisfying conditions (i) and
(ii). We will first show that each element of V is orthogonal to rAB, rAC , and rAD. Let ν ∈ V,
then

ν = δAe|Be −
ae
ae′
δAe′ |Be′ .

Note that Ae′ is contained in one of A,B,C, and D. Without loss of generality we may assume
that Ae′ ⊂ A. Then it follows directly from the structure of the summands in the vector ν that

rAB · ν = (ae′)(c+ d)
(
− ae
ae′

)
+ ae(c+ d) = 0.

Similar calculations show that rAC and rAD are also orthogonal to ν.
We obtain 2n− 8 vectors in V because there are (2n− 4)− 4 edges in T that do not induce

vectors in U . So |U∪V| = 2n−4. Since U∪V is comprised of vectors that are linear combinations
of split-pseudometrics, span U ∪ V ⊂ span CT . The set U ∪ V is also linearly independent since
it can be seen as an upper triangular transformation of the set of extreme rays of CT , which
were independent. Thus U ∪ V is a basis for span CT .

Due to the structure of the vectors rAB and the elements of U , pAB is constant on the
coordinates for each δU |V . So we can write

pAB =
∑

{U,V }∈({A,B,C,D}2 )

w(AB)U |V · δU |V . (5.1)

The coefficients w(AB)U |V will facilitate computation of dot products and 2-norms.

Theorem 5.3.8. The angle between the cones CTAB and CTAC is

arccos

(
− bc+ ad√

(a+ b)(a+ c)(b+ d)(c+ d)

)
.

Proof. By Lemma 5.3.7, to find pAB, pAC , and pAD it is sufficient to calculate the projec-
tion of rAB, rAC , and rAD onto (span U)⊥. We will find pAB by calculating the coefficients
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w(AB)U |V . First, we construct a matrix MAB shown in (5.2) as follows: the rows of MAB are
indexed by the vectors (δA|A′ , δB|B′ , δC|C′ , δD|D′), and the columns are indexed by the vectors
(rAB, δA|A′ , δB|B′ , δC|C′ , δD|D′). (MAB)i,j is obtained (up to row operations) by taking the dot
product of the vector indexing row i and column j.

c+ d b+ c+ d b c d

c+ d a a+ c+ d c d

a+ b a b a+ b+ d d

a+ b a b c a+ b+ c

 (5.2)

Next, let KAB be the matrix in (5.3) with rows and columns indexed as shown.

rAB δA|A′ δB|B′ δC|C′ δD|D′

δA|B 0 1 1 0 0
δA|C 1 1 0 1 0
δA|D 1 1 0 0 1
δB|C 1 0 1 1 0
δB|D 1 0 1 0 1
δC|D 0 0 0 1 1

(5.3)

Let σAB = σ1rAB + σ2δA|A′ + σ3δB|B′ + σ4δC|C′ + σ5δD|D′ be a vector in the null space of
the matrix MAB. Up to a scalar multiple,

KAB(σAB) =



w(AB)A|B
w(AB)A|C
w(AB)A|D
w(AB)B|C
w(AB)B|D
w(AB)C|D


=



(a+ b)cd(c+ d)
−bd(bc+ ad)
−bc(ac+ bd)
−ad(ac+ bd)
−ac(bc+ ad)
ab(a+ b)(c+ d)


.

Then
pAB · pAC =

∑
{U,V }∈({A,B,C,D}2 )

|U | · |V | · w(AB)U |V · w(AC)U |V (5.4)

and

||pAB||2 =
√√√√ ∑
{U,V }∈({A,B,C,D}2 )

|U | · |V | · [w(AB)U |V ]2. (5.5)

We use (5.4) and (5.5) to obtain the formulae for the angle measures between the resolution
cones.
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Corollary 5.3.9. The space span KT is two-dimensional when T is unrooted.

Proof. As in the case of rooted trees, we can use the formula in (5.1) to show that the set
{pAB, pAC} is linearly independent, but the set {pAB, pAC , pBC} is linearly dependent.

As was the case with Corollary 5.3.4, Corollary 5.3.9 also follows from the fact that the set
of all arbitrary tree metrics is a tropical variety in Rn(n−1)/2, as shown in [62].

5.4 Distance-Based Methods Near a Tritomy

In this section, we analyze the performance of distance-based methods around a tritomy using
the results about the geometry of tree space from Section 5.3. While in many cases we do not
have a complete understanding of the geometry of these decompositions across all of Rn(n−1)/2

≥0 ,
we can describe the geometry in a small neighborhood of a tree metric with a single tritomy. It
is this geometry which we explore in the present section.

5.4.1 Least-Squares Phylogeny

Let C1, . . . , Cr be subsets of Rn(n−1)/2. The Voronoi cell Vk associated with the subset Ck is
the set of all points

{x ∈ Rn(n−1)/2 : d(x,Ck) ≤ d(x,Cj) for all j 6= k}

where d(x,Ck) = inf{||x − a||2 : a ∈ Ck}. The Voronoi decomposition is the subdivision of
Rn(n−1)/2 into Voronoi cells of the set {Ck}. When {Ck} is the collection of cones associated to
all possible combinatorial trees with leaf set [n], the Voronoi cells comprise the subdivision of
space induced by the least-squares phylogeny problem.

While the Voronoi decomposition of a finite set of points is well-known to be a polyhedral
subdivision of space, the Voronoi decomposition induced by a collection of higher-dimensional
polyhedra can be a complicated semi-algebraic decomposition. Hence, the Voronoi decompo-
sition induced by the tree cones is probably not polyhedral. We saw in Section 3 that in a
neighborhood of a tree metric T with a single tritomy, tree space has the form Rk × KT ,
where k = dim span CT and KT is a one-dimensional fan with three rays that sits naturally
inside a two-dimensional linear space span KT . In this setting it is easy to describe the Voronoi
decomposition.

Proposition 5.4.1. Let T be a tree metric with a single tritomy in Rn(n−1)/2
≥0 with local tree

space Rk×KT . The boundary between the Voronoi cells for the resolution cones CTAB and CTAC
is completely determined by the angle bisector in span KT between pAB and pAC .
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Proof. The Euclidean distance between the cones CTAB and CTAC is the sum of the distances
between them in the two orthogonal spaces span CT and span KT . Of these two distances, only
the distance in the two-dimensional space span KT is nonzero; this distance is determined by
the angle between the maximal cones in the one-dimensional polyhedral fan KT . The set of all
points in the plane span KT equidistant between two vectors emanating from the origin is the
bisector of the angle between the two vectors.

Proposition 5.4.1 allows us to easily compute the relative size of the Voronoi regions around
a polytomy for either equidistant or ordinary tree metrics. The next theorem gives a formula
for the boundary between the Voronoi regions.

Theorem 5.4.2. Let T be a ranked, rooted tree with a single tritomy. The boundary in span KT

between the Voronoi cells for the resolution cones CTAB and CTAC is spanned by the vector

pAB√
a+ b

+
pAC√
a+ c

.

Proof. By Proposition 5.4.1 the boundary we wish to compute is given by the angle bisector in
span KT between pAB and pAC , which is spanned by the normalized average of the two vectors.
By Lemma 5.3.3 we have

‖pAB‖2 =

√
abc(a+ b)
ab+ ac+ bc

and ‖pAC‖2 =

√
abc(a+ c)
ab+ ac+ bc

Therefore
pAB
‖pAB‖2

+
pAC
‖pAC‖2

=

√
ab+ ac+ bc

abc

(
pAB√
a+ b

+
pAC√
a+ c

)
,

which is a multiple of the vector that we claimed spans the boundary of the Voronoi cells for
the two cones in span KT .

Theorem 5.4.3. Let T be an unrooted tree with a single tritomy. The boundary of the Voronoi
cell in span KT between the resolution cones CTAB and CTAC is spanned by the vector

pAB√
(a+ b)(c+ d)

+
pAC√

(a+ c)(b+ d)
.

Proof. We use the fact that pAB and pAC are constant on the vectors δU |V for {U, V } ∈({A,B,C,D}
2

)
and the formulae for the coeffcients w(A,B)U |V derived in the proof of Theorem

5.3.8 to calculate the 2-norms of pAB and pAC . Up to an identical polynomial f in the variables
a, b, c and d, we have

‖pAB‖2 = f ·
√

(a+ b)(c+ d) (5.6)

88



and
‖pAC‖2 = f ·

√
(a+ c)(b+ d). (5.7)

As in Theorem 5.4.2 we know that the angle bisector between pAB and pAC gives the boundary
of the Voronoi cell in span KT . By (5.6) and (5.7) the angle bisector is a multiple of

pAB√
(a+ b)(c+ d)

+
pAC√

(a+ c)(b+ d)
.

5.4.2 UPGMA Regions Near a Polytomy

In this section we show that in some circumstances, UPGMA (Algorithm 4.2.1) fails to correctly
identify the least-squares phylogeny. The occurrence and severity of this failure depends entirely
on the relative sizes of the daughter clades A, B, and C of the tritomy.

Recall that Equation 4.1 tells us that if the blocks A,B ⊂ [n] are joined in step i of UPGMA
the distance recalculation implies

δi(A,B) =
1

|A||B|
∑

x∈A,y∈B
δn(x, y) =

1
ab

∑
x∈A,y∈B

δ(x, y),

a formula which is useful in the proof of the next proposition:

Proposition 5.4.4. Let T be a ranked, rooted tree with a single tritomy. The boundaries between
the UPGMA regions in Rn(n−1)/2

≥0 for the resolution cones CTAB , CTAC , and CTBC are orthogonal
to the plane span KT .

Proof. The boundary between the UPGMA regions for the cones CTAC and CTBC is given by
the condition

δk(A,C) = δk(B,C)

which translates into the following linear condition on the original dissimilarity map

1
ac

∑
i∈A,j∈C

δ(i, j) =
1
bc

∑
i∈B,j∈C

δ(i, j).

This hyperplane has normal vector

1
ac
δA|C −

1
bc
δB|C .
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Now
− 1
ac
pAC =

1
ab+ ac+ bc

(
−δA|B − δB|C +

ab+ bc

ac
δA|C

)
and

1
bc
pBC =

1
ab+ ac+ bc

(
δA|B + δA|C −

ab+ ac

bc
δB|C

)
.

So
− 1
ac
pAC +

1
bc
pBC =

1
ab+ ac+ bc

(
ab+ bc

ac
+ 1
)
δA|C

− 1
ab+ ac+ bc

(
ab+ ac

bc
+ 1
)
δB|C

=
1
ac
δA|C −

1
bc
δB|C .

Thus, the normal vector for the boundary between UPGMA regions for the cones CTAC and
CTBC is in span KT , and the boundary is orthogonal to span KT . The calculation is the same
for the other two pairs of cones.

Theorem 5.4.5. The boundary between the UPGMA cells for the resolution tree topologies
TAC and TBC in span KT is −pAB.

Proof. Since span KT is two-dimensional and the boundaries between the UPGMA regions for
the resolutions TAB, TAC , and TBC are orthogonal to KT by Proposition 5.4.4, it suffices to
find a vector ω ∈ span KT that satisfies

1
ac

∑
i∈A,j∈C

ωi,j =
1
bc

∑
k∈B,`∈C

ωk,` ≤
1
ab

∑
m∈A,n∈B

ωm,n.

Any such vector will span the boundary of the UPGMA cells. We have

1
ac

∑
i∈A,j∈C

−(pAB)i,j =

1
bc

∑
k∈B,`∈C

−(pAB)k,` = − ab

ab+ ac+ bc

while
1
ab

∑
m∈A,n∈B

−(pAB)m,n =
ac+ bc

ab+ ac+ bc

So −pAB satisfies the required condition.
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5.4.3 UPGMA and LSP Cells

In this section we discuss how results from Sections 5.3 and 5.4 show that UPGMA poorly
matches LSP in some circumstances. The geometry of the fan KT and the UPGMA cells in
span KT for equidistant trees depends entirely on the size of the daughter clades (see Definition
1.4.5) A,B, and C of the tritomy. Consequentially, the quality of the performance of UPGMA
near a tree metric with a tritomy depends on how similar in size the daughter clades are. When
a = b = c, the UPGMA and LSP regions near a tritomy are the same. But if one of the daughter
clades becomes much larger or much smaller than the other two daughter clades, UPGMA does
a poorer job of identifying the LSP. We also use results from Section 5.4 to show that NJ poorly
matches LSP in specific examples for small numbers of taxa.

We can use our theorems about the geometry of span KT to investigate the relative size of
the UPGMA and Voronoi cells as a, b, and c vary. By Theorem 5.3.5 the angle between CTAC
and CTBC is

arccos

(
−c√

(a+ c)(b+ c)

)
and this is also the angle measure of the UPGMA region associated with the cone CTAB . By
the angle bisector argument, we see that the angle measure of the LSP region associated to the
tree TAB near the tritomy will be:

1
2

arccos

(
−a√

(a+ b)(a+ c)

)
+

1
2

arccos

(
−b√

(a+ b)(b+ c)

)
.

When c � a ≈ b, the angle for the UPGMA region approaches π whereas the angle for the
LSP region approaches π/2. Conversely, when a ≈ b � c the angle for the UPGMA region
approaches π/2 whereas the angle for the LSP region approaches 3π/4. Tables 5.1 and 5.2
compare the sizes of the various regions for differing values of a, b, and c. We display the sizes
as the percentage of the total amount of the local volume around the tritomy that corresponds
to the UPGMA or LSP region for the cone CTAB . These tables show that while the convergence
to the limiting values is slow, already for small values of a, b, and c there may be significant
discrepancies between the region sizes for UPGMA and LSP.

Figures 5.4 and 5.5 illustrate the geometry of this phenomenon for the two extreme cases
c � a ≈ b, and a ≈ b � c. In both figures the fan KT is black, the vector pAB is labeled with
the pair AB, LSP boundaries are dark gray, and UPGMA boundaries are light gray. Note that
when c� a ≈ b, UPGMA overestimates the size of the LSP region for CTAB . When a ≈ b� c,
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Table 5.1: Region sizes for CTAB when c� a = b.

a b c UPGMA LSP

1 1 1 33.3333 33.3333

1 1 2 36.6139 31.693

1 1 4 39.7583 30.1209

1 1 8 42.4261 28.787

1 1 16 44.5139 27.7431

1 1 210 49.297 25.3515

1 1 220 49.978 25.011

Table 5.2: Region sizes for CTAB when a = b� c.

a b c UPGMA LSP

1 1 1 33.3333 33.3333

2 2 1 30.4086 34.7957

4 4 1 28.2046 35.8977

8 8 1 26.7721 36.6139

16 16 1 25.9367 37.0317

210 210 1 25.0155 37.4923

220 220 1 25.0001 37.4999
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Figure 5.4: The case c � a ≈ b. The cones in the fan KT are labeled with the tritomy
resolutions, LSP boundaries are dashed, and UPGMA boundaries are solid.

UPGMA underestimates the size of the LSP region for CTAB .

5.4.4 LSP Cells and Local NJ Behavior

The Neighbor-Joining (NJ) algorithm, due to Naruya Saitou and Masatoshi Nei [55] is a
distance-based reconstruction method that returns an unrooted tree T and a tree metric real-
ized by T . Both the selection criterion (known as the “Q-criterion”) and distance recalculation
are linear combinations of the original input coordinates. Therefore, as in the case of UPGMA,
NJ divides the input space Rn(n−1)/2

≥0 into a family of polyhedral cones studied in [31] and [43].
In practice, these cones have a simpler description when the non-negativity constraint is re-
laxed, but these considerations are beyond the scope of the analysis in this chapter, and as with
UPGMA, only inputs with positive entries are commonly used by biologists. So, for convenience
we will continue to discuss inputs that lie only in the region Rn(n−1)/2

≥0 of Rn(n−1)/2.
As discussed in Section 4.6, a complete combinatorial description of the NJ cones remains

unknown, and we do not have a closed description of the local geometry of the NJ regions
around a tritomy. However, by running NJ on points sampled uniformly from the surface of a
small sphere around a tritomy, we can obtain an empirical estimate of the local relative size of
NJ regions for small numbers of taxa.

For unrooted tree metrics, the case of interest is when a and b are larger than c and d: if
a = b = c and d is larger or smaller, the size of the LSP cells the for three resolution cones
will be symmetric. NJ poorly identifies LSP when a and b are larger than c and d even for

93



Figure 5.5: The case a ≈ b � c. The cones in the fan KT are labeled with the tritomy
resolutions, LSP boundaries are dashed, and UPGMA boundaries are solid.

small numbers of taxa. Unlike in the case of UPGMA, the relative size of the regions appears
to be dictated not only by a, b, c, and d, but also by the topology of the subtrees with leaf sets
A,B,C, and D.

Algorithm 5.4.6 (Neighbor-Joining). • Input: a dissimilarity map δ ∈ Rn(n−1)/2
≥0 on [n].

• Output: an unrooted binary tree T and a tree metric d realized by T .

• Initialize [n] = {1, 2, . . . , n}, and set d0 = δ.

• For r = 1, . . . , n− 3 do

– Identify subsets Ai, Aj of [n] minimizing

Qr(Ai, Aj) = (n− r − 1)dr−1(Ai, Aj)−

n−r+1∑
k=1

dr−1(Ai, Ak)−
n−r+1∑
k=1

dr − 1(Aj , Ak).

– Update

dr(Aij , Ak) =
1
2
dr−1(Ai, Ak)+

1
2
dr−1(Aj , Ak)−

1
2
dr−1(Ai, Aj).

• Return: unrooted binary combinatorial tree T , w : E(T )→ R and tree metric dn−3 = d.
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Figure 5.6: The case a ≈ b � c ≈ d. The cones in the fan KT are labeled with the tritomy
resolutions, and LSP boundaries are dashed lines.

Applying Theorem 5.3.8, we see that when a ≈ b � c ≈ d, the angle between the cones
CTAC and CTAD approaches π, while the angle measure of the LSP region for CTAB , bounded
by angle bisectors between the two pairs {pAB, pAC} and {pAB, pAD}, approaches π/2. Figure
5.6 shows this case. The fan KT is black, and the LSP boundaries are blue.

For small values of a, b, c, and d we present computational evidence that NJ fails to identify
LSP correctly. Consider the tree metrics d1 and d2 with topologies shown in Figures 5.7 and
5.8 and given edge weights of randomly assigned numbers between 5000 and 10000. Here A =
{1, 2, 3, 4, 5, 6}, B = {7, 8, 9, 10, 11, 12}, C = {13}, and D = {14}. Using Theorem 5.3.8 we can
calculate the angles between the pairs of cones in {CTAB , CTAC , CTAD} and find the relative
sizes of the LSP regions near the tritomies d1 and d2. Recall that one consequence of Theorem
5.3.8 is that the relative size of the LSP regions near d1 and d2 will be the same because these
proportions only depend on a, b, c, and d.

Running NJ on 1,000,000 points sampled uniformly from spheres of radius 0.05 centered
at d1 and d2 gives an empirical measure of the size of NJ regions for the three resolutions
TAB, TAC , and TAD near the two points. Software for this experiment can be found at [27]. We
compare this empirical distribution with the size of the LSP regions computed via Theorem
5.3.8 in Table 5.3. Sizes of the regions are given as percentages of the total local volume near
the tritomy.

Table 5.3 shows that NJ overestimates the size of the LSP regions near d1 and d2 clos-
est to the cone CTAB and underestimates the regions near CTAC and CTAD . Furthermore, the
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Figure 5.7: A tritomy d1 on the leaf set [14].

Figure 5.8: A tritomy d2 on the leaf set [14].

Table 5.3: NJ and LSP region sizes near d1 and d2.

Resolution of Splits LSP NJ : d1 NJ: d2

AB|CD 30.6897 38.1501 35.7037

AC|BD 34.6552 30.9344 32.1305

AD|BC 34.6552 30.9155 32.1658
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topological structure of the subclades A and B influence the local size of the NJ regions. This
shows that a direct analog of Theorem 5.4.5 will not exist for NJ. However, there may exist an
analogous theorem for NJ when the topology of the subtrees around the polytomy is taken into
account.

5.5 Discussion

Distance-based heuristics like UPGMA and NJ can be seen as approximating solutions to the
intuitively appealing but NP-hard least-squares phylogeny problem. We compared heuristics to
LSP when the true tree metric contains a tritomy. For UPGMA, our theoretical analysis shows
that the success rate of the heuristic greatly depends on how balanced the sizes of the leaf sets
of the underlying daughter clades are. As we discussed in Section 4.6, the decomposition of
Rn(n−1)/2 into NJ cones has a more complex structure. Furthermore, we have computational
evidence that the geometry of NJ and LSP near a tritomy must also depend on the tree topology
(Definition 1.4.2), or combinatorial branching structure of the tritomy tree. These complications
have thus far prevented us from completing the same theoretical analysis for NJ near a tritomy
that we performed for UPGMA. If progress is made towards finding a complete description of
the family of NJ cones, we can revisit this problem.

Due to the precise form of input data used by NJ and the outputs of the algorithm, NJ is
an approximation to LSP. However, Olivier Gascuel and Mike Steel showed that NJ performs
a heuristic search, guided by the Q-criterion at each agglomeration step, that minimizes a tree-
length estimate due to Yves Pauplin known as the “Balanced Minimum Evolution” (BME)
criterion [39, 51]. This insight was incorporated into the selection criterion and distance re-
calculation aspects of the algorithms BIONJ (due to Gascuel) [38], Weighbor (due to William
Bruno, Nicholas Socci, and Aaron Halpern) [21], and FastME (due to Richard Desper and Gas-
cuel) [29]. These algorithms take dissimilarity maps as inputs and have superior performance
to NJ in terms of topological accuracy as well as better immunity to reconstruction pathologies
known to biologists such as the long-branch attraction.

However, the subdivision of the input space induced by each of these improved algorithms is
not polyhedral and, like the collection of Voronoi cells around a tree metric with a higher-degree
polytomy, has a complicated semi-algebraic description. Any improvements to distance-based
methods implied by the results in this chapter would require a fundamentally different approach,
such as changing the Q-criterion at each step to reflect the size of the taxon groups to be joined.
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