
ABSTRACT

WENTWORTH, THOMAS ALLEN. Leverage Scores: Sensitivity and Applications to
Randomized Algorithms.(Under the direction of Ilse Ipsen.)

In this thesis, we present various results pertaining to a matrix property called leverage

scores and their application to randomized row sampling. We begin by investigating three uni-

form strategies for randomized row sampling from matrices with orthonormal columns (without

replacement, with replacement, and Bernoulli sampling). Our analysis is focused on the two-

norm condition number of the sampled matrices due to it’s applications to the generation of

e�cient preconditioners for the randomized least squares solver Blendenpik. As part of our anal-

ysis, we present probabilistic bounds on the condition number of the sampled matrix in terms

of both leverage scores and coherence (the largest leverage score). We also develop algorithms

for generating test matrices with specified leverage scores.

Next, we derive leverage score perturbation bounds. These bounds show that the leverage

scores of the perturbed matrix are close to the leverage scores of the original matrix if the two

norm of the perturbation and the two norm of the left pseudoinverse of the original matrix are

small. We also bound the change in the leverage scores in terms of the principal angles between

the original matrix and the perturbed matrix.

Finally, we present kappa SQ, a Matlab software package and GUI designed to run ex-

periments on the two-norm condition number of a sampled matrix and produce paper-ready

plots.

© Copyright 2014 by Thomas Allen Wentworth

All Rights Reserved

Leverage Scores: Sensitivity and Applications to
Randomized Algorithms

by
Thomas Allen Wentworth

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Applied Mathematics

Raleigh, North Carolina

2014

APPROVED BY:

Petros Drineas Jonathan Hauenstein

Stephen Campbell Ilse Ipsen
Chair of Advisory Committee

DEDICATION

To my wife.

ii

BIOGRAPHY

Thomas Allen Wentworth was born in Stoneham, Massachusetts on December 12th, 1985. From

an early age, he showed a fascination with all things technical and scientific and would barrage

his parents, Bruce and Diana, with countless questions. This inquisitive nature flourished into

a love for all science, and in 2004, Thomas began his undergraduate studies at Rensselaer

Polytechnic Institute as a physics major. After his freshman year, having completed nearly

all of his required math courses, he added mathematics as a second major. By the end of his

junior year Thomas’ love and appreciation for the intensely logical approach to problem solving

in mathematics had convinced him to change his plans and apply to graduate programs in

mathematics.

It was around this time that Thomas met his future wife Mami. She was also a dual math

and physics major and the classes that Thomas and Mami shared a↵orded them with an ample

amount of study time in which to get to know each other. They both graduated from Rensselaer

Polytechnic Institute in 2008 and within 6 months were engaged to be married.

In August of 2008, Thomas began his graduate career in Applied Mathematics at North

Carolina State University. In December of 2011 he received his Masters of Science in Applied

Mathematics. He received a SAMSI fellowship in August of 2013. On October 7th, 2013, Thomas

and Mami had their first child, Koki. Thomas finished his doctorate in 2014.

iii

ACKNOWLEDGEMENTS

I would like to extend my most sincere thanks to those who have helped me along my path to

completing my dissertation.

First and foremost, I would like to start by thanking Mami Wentworth, my lovely wife. It is

her love and support, both emotional and mathematical, that made this dissertation possible.

I want to thank Ilse Ipsen, my advisor, for her patience and dedication to my educational

success. It is her e↵orts that have helped shape me from a student into a professional mathe-

matician. Additionally, a significant portion of the work in this thesis is due to Ilse and I would

also like to thank her for her contributions.

I would also like to thank my other committee members, Steve Campbell, Jonathan Hauen-

stein, Petros Drineas and John Morillo as well as Michael Mahoney for their time, comments

and questions.

I want to thank John Holodnak for finding errors in one of the papers that comprises this

thesis.

Finally, but not least, I would like to thank Denise Seabrooks for her invaluable help with

the administrative side of my graduate career.

iv

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . ix

Chapter 1 Introduction . 1

Chapter 2 The E↵ect of Coherence on Sampling From Matrices With Or-
thonormal Columns, and Preconditioned Least Squares Problems 3

2.1 Introduction . 3
2.1.1 Motivation . 3
2.1.2 Overview and main results . 4
2.1.3 Literature . 8
2.1.4 Notation . 9

2.2 The Blendenpik algorithm, and coherence . 9
2.2.1 Algorithm . 9
2.2.2 Coherence . 10

2.3 Sampling Methods . 11
2.3.1 Sampling without replacement . 11
2.3.2 Sampling with replacement . 12
2.3.3 Bernoulli sampling . 13
2.3.4 Relating Bernoulli sampling and sampling without replacement 13
2.3.5 Numerical experiments . 15
2.3.6 Conclusions for Section 2.3 . 18

2.4 Condition number bounds based on coherence 18
2.4.1 Bounds . 19
2.4.2 Numerical experiments . 20
2.4.3 Conclusions for Section 2.4 . 23

2.5 Condition number bounds based on leverage scores, for uniform sampling with
replacement . 23
2.5.1 Leverage scores . 24
2.5.2 Bounds . 24
2.5.3 Computable bounds . 25
2.5.4 Analytical comparison of the bounds in Sections 2.4.1 and 2.5.2 27
2.5.5 Experimental comparison of the bounds in Sections 2.4.1 and 2.5.2 . . . 27
2.5.6 Conclusions for Section 2.5 . 29

2.6 Algorithms for generating matrices with prescribed coherence and leverage scores 29
2.6.1 Matrices with prescribed leverage scores 29
2.6.2 Leverage score distributions with prescribed coherence 30
2.6.3 Structured matrices with prescribed coherence 32

2.7 Proofs for Sections 2.4 and 2.5.2 . 33
2.7.1 Matrix Cherno↵ Concentration inequality 33
2.7.2 Proof of Theorem 7 . 33

v

2.7.3 Proof of Corollary 8 . 34
2.7.4 Matrix Bernstein concentration inequality 35
2.7.5 Proof of Theorem 11 . 35

2.8 Two-norm bound for scaled matrices, and proofs for Sections 2.5.3 and 2.5.4 . . 36
2.8.1 Bound . 37
2.8.2 Proof of Corollary 13 . 40
2.8.3 Proof of Corollary 16 . 41

2.9 Existence of matrices with prescribed coherence and leverage scores 41

Chapter 3 Sensitivity of Leverage Scores . 43
3.1 Introduction . 43
3.2 Supplemental Results . 45

3.2.1 Leverage Score Perturbation in Terms of Principal Angles 45
3.2.2 Upper Bounds for the Largest Principal Angle 46

3.3 Leverage Score Perturbation in terms of Matrix Perturbation 47
3.3.1 Leverage score bound for givens rotation 49

3.4 Experiments . 49
3.5 Conclusion . 52
3.6 Proofs . 53

3.6.1 Proof of Theorem 30 . 53
3.6.2 Proof of Theorem 31 . 54
3.6.3 Proof of Theorem 32 from [41] . 55
3.6.4 Proof of Corollary 33 . 56
3.6.5 Proof of Lemma 34 . 56
3.6.6 Proof of Corollary 35 . 56
3.6.7 Proof of Corollary 36 . 57
3.6.8 Proof of Corollary 37 . 57
3.6.9 Proof of Corollary 38 . 57
3.6.10 Proof of Theorem 39 . 57

Chapter 4 kappa SQ . 59
4.1 Introduction . 59
4.2 kappa SQ Design . 60

4.2.1 kappa SQ GUI . 61
4.2.2 Algorithm Codes . 63
4.2.3 Other Functions . 70

4.3 Examples . 71
4.3.1 Example 1 . 71
4.3.2 Example 2 . 71
4.3.3 Example 3 . 73

4.4 Conclusions . 73

Chapter 5 Future Work . 74
5.1 Future work . 74

vi

REFERENCES . 75

vii

LIST OF TABLES

Table 2.1 Comparison of information from Figure 2.3, with Theorem 7 and Corollary 8. 23
Table 2.2 Lower bounds for number of sampled rows in Corollaries 8 and 15 and ap-

proximation ⌧ , for di↵erent values of coherence µ. The first value represents
minimal coherence µ = n/m. Here m = 10, 000, n = 5, � = .01, ✏ = 99/101,
with leverage scores generated by Algorithm 2.6.2. 28

Table 2.3 Lower bounds for number of sampled rows in Corollaries 8 and 15, for di↵erent
values of coherence µ. The first value represents minimal coherence µ = n/m.
Here m = 10, 000, n = 5, � = .01, ✏ = 99/101, with leverage scores generated
by Algorithm 2.6.3. 28

viii

LIST OF FIGURES

Figure 2.1 Condition numbers and percentage of rank-deficiency for matrices with low
coherence and small amounts of sampling. Here Q is m⇥n with orthonormal
columns, m = 10, 000, n = 5, coherence µ = 1.5n/m, and generated with Al-
gorithm 2.6.2. Left panels: Horizontal coordinate axes represent amounts of
sampling n  c  1, 000. Vertical coordinate axes represent condition num-
bers (SQ); the maximum is 10. Right panels: Horizontal coordinate axes
represent amounts of sampling that give rise to numerically rank deficient
matrices SQ. Vertical coordinate axes represent percentage of numerically
rank deficient matrices. 16

Figure 2.2 Condition numbers and percentage of rank-deficiency for matrices with higher
coherence and large amounts of sampling. Here Q is m⇥n with orthonormal
columns,m = 10, 000, n = 5, coherence µ = 150n/m, and generated with Al-
gorithm 2.6.3. Left panels: Horizontal coordinate axes represent amounts of
sampling 4, 000  c  m. Vertical coordinate axes represent condition num-
bers (SQ); the maximum is 10. Right panels: Horizontal coordinate axes
represent amounts of sampling that give rise to numerically rank deficient
matrices SQ. Vertical coordinate axes represent percentage of numerically
rank deficient matrices SQ; the maximum is 10 percent. 17

Figure 2.3 Condition numbers and bound from Theorem 7, and percentage of rank-
deficiency. Here Q is m ⇥ n with orthonormal columns, m = 10, 000 and
n = 5. Left panels: The horizontal coordinate axes represent amounts of sam-
pling c. The vertical coordinate axes represent condition numbers (SQ); the
maximum is 10. The dots at the bottom represent the condition numbers of
matrices sampled with Algorithm 2.3.2, while the upper line represents the
bound from Theorem 7. Right panels: The horizontal coordinate axes repre-
sent amounts of sampling that produce numerically rank deficient matrices
SQ. The vertical coordinate axes represent the percentage of numerically
rank deficient matrices SQ. 22

Figure 3.1 Here, A has orthonormal columns and thus kAk2 = �
n

(A) = 1 and kEk2 ⇡
2.6⇤10�15. The entries of E have mean 0 and variance 10�16. On the left, we
plot the absolute change in the leverage scores and the absolute bound from
Corollary 37, and on the right we plot the relative change in the leverage
scores against the relative bound from Corollary 37. 50

Figure 3.2 Here, A has orthonormal columns and thus kAk2 = �
n

(A) = 1 and kEk2 ⇡
2.5 ⇤ 10�3. The entries of E have mean 0 and variance 10�4. On the left, we
plot the absolute change in the leverage scores and the absolute bound from
Corollary 37, and on the right we plot the relative change in the leverage
scores against the relative bound from Corollary 37. 50

ix

Figure 3.3 Here, A has orthonormal columns and thus kAk2 = kA†k2 = 1 and kEk2 ⇡
1.2⇤10�4. The ‘x’ represents |`100(A)�`100(B)| and is ⇠ 5⇤10�10 below the
absolute bound implied by Corollary 37. On the left, we plot the absolute
change in the leverage scores and the absolute bound from Corollary 37, and
on the right we plot the relative change in the leverage scores against the
relative bound from Corollary 37. 52

Figure 4.1 In this plot we show the results of a numerical experiment (triangles) and a
bound on kappa SQ (line) that holds with probability 1� �. 62

Figure 4.2 In this plot we show the failure rate of a numerical experiment on kappa SQ. 62
Figure 4.3 kappaSQ GUI with advanced features shown. 64
Figure 4.4 Beautify Plots GUI. 64
Figure 4.5 The solid line shows Bound 1 and the triangles show the results of the nu-

merical experiments with sampling Sampling Method 4.2.2 and a matrix
generated by Sampling Method 4.2.7. Here Q is a matrix generated by Al-
gorithm 4.2.7 with orthonormal columns, m = 10, 000, n = 4, coherence
µ = 20n/m, . Left panel: Horizontal coordinate axes represent amounts of
sampling n  c  10, 000. Vertical coordinate axes represent condition num-
bers (SQ); the maximum is 10. Right panels: Horizontal coordinate axes
represent amounts of sampling that give rise to numerically rank deficient
matrices SQ. Vertical coordinate axes represent percentage of numerically
rank deficient matrices. 72

x

Chapter 1

Introduction

The leverage scores of a m⇥ n matrix A with full column rank are defined as follows:

`
i

(A) = keT
i

Qk22, for 1  i  m,

where Q is any basis of orthonormal columns for the column space of A. Conceptually, the

leverage scores give a “measure” of the relative importance of each row where the meaning of

the word ‘importance’ depends on the application. They were first described in [20] where the

authors used leverage scores as a regression diagnostic for least squares to help identify potential

outliers in the data. In the paper, they describe how the magnitude of the ith leverage score

gives a measure of the influence of the ith row on the least squares fit. If the ith leverage score

is large, and one questions the accuracy of the corresponding data point, then one may want to

remove the data point in order to better fit the rest of the data. Leverage scores are also used

in importance sampling for low rank matrix approximation. In [26, 14, 31], leverage scores are

used to identify important rows and columns 1 which are then used (or sampled with higher

probability) to approximate the matrix. Leverage scores have also been used in the following

[25, 13, 14, 6, 35, 12, 7].

In Chapter 2, motivated by the least squares solver Blendenpik[1], we investigate three

strategies for uniform sampling of rows from matrices Q with orthonormal columns. The goal is

to determine, with high probability, how many rows are required so that the sampled matrices

have full rank and are well-conditioned with respect to inversion. Extensive numerical exper-

iments illustrate that the three sampling strategies (without replacement, with replacement,

and Bernoulli sampling) behave almost identically, for small to moderate amounts of sampling.

In particular, sampled matrices of full rank tend to have two-norm condition numbers of at

1There are more general definitions of leverage scores than what we examine in this dissertation. Leverage
scores for the columns of a matrix can be defined as the row norms squared of the right singular vector matrix.
For more details, see [39, Eqn. 3], [31], [26, Eqn. 3].

1

most 10.

We derive a bound on the condition number of the sampled matrices in terms of the coher-

ence µ of Q where the coherence is simply the largest leverage score. This bound applies to all

three di↵erent sampling strategies; it implies a, not necessarily tight, lower bound of O (mµ lnn)

for the number of sampled rows; and it is realistic and informative even for matrices of small

dimension and the stringent requirement of a 99 percent success probability.

For uniform sampling with replacement we derive a potentially tighter condition number

bound in terms of the leverage scores of Q. To obtain a more easily computable version of

this bound, in terms of just the largest leverage scores, we first derive a general bound on the

two-norm of diagonally scaled matrices.

To facilitate the numerical experiments and test the tightness of the bounds, we present

deterministic algorithms to generate matrices with user-specified coherence and leverage scores.

In Chapter 3, we derive bounds for the leverage scores as well as leverage scores computed

from the top k left singular vectors. Our bounds show that if the principal angles between A

and B are small, then the leverage scores of B are close to the leverage scores of A. Next, we

use two results by Wedin [41, 40] to bound the principal angles from above in terms of the

singular values of A and kB � Ak2. Finally, we combine these results and derive bounds for

the leverage scores of B in terms of the singular values of A and kB � Ak2 and show that if

kB �Ak2 and �
n

(A)�1 are small, then the leverage scores of B are close to the leverage scores

of A. Additionally, we show that if kB � Ak2 is small with respect to the kth singular value

gap, then the leverage scores of A and B, as computed from the top k left singular vectors, are

close.

In Chapter 4, we present kappa SQ, a Matlab software package and GUI designed to run

experiments on the two-norm condition number of a sampled matrix, (SQ), where S is a

random row sampling matrix and produce paper-ready plots. Via a simple GUI, kappa SQ can

generate test matrices, perform various types of row sampling, measure the condition number

of the sampled matrix, calculate bounds and produce high quality plots of the results. All of

the important codes are written in separate Matlab function files in a standard format which

makes it easy for a user to either use the codes by themselves or incorporate their own codes

into the kappa SQ package.

2

Chapter 2

The E↵ect of Coherence on

Sampling From Matrices With

Orthonormal Columns, and

Preconditioned Least Squares

Problems

2.1 Introduction

This chapter was inspired by Avron, Maymounkov and Toledo’s Blendenpik algorithm and

analysis [1].

Blendenpik is an iterative method for solving overdetermined least squares/regression prob-

lems min
x

kAx� bk2 with the Krylov space method LSQR [30]. In order to accelerate conver-

gence, Blendenpik constructs a preconditioner R
s

and solves instead the preconditioned least

squares problem min
z

kAR�1
s

z � bk2. The solution to the original problem is recovered by solv-

ing a linear system with coe�cient matrix R
s

. The innovative feature is the construction of the

preconditioner R
s

by a random sampling method.

2.1.1 Motivation

The purpose of this chapter is a thorough experimental and analytical investigation of random

sampling strategies for producing e�cient preconditioners. The challenge is to ensure not only

that R
s

is nonsingular, but also that AR�1
s

is well-conditioned with respect to inversion, which

is required for fast convergence and numerical stability.

3

Here is a conceptual point of view of how Blendenpik constructs the preconditioner: First

it “smoothes out” the rows of A by applying a randomized unitary transform F , and then it

uniformly samples (i.e. selects) a small number of rows M
s

from FA. At last it computes a QR

factorization of the smaller sampled matrix, M
s

= Q
s

R
s

, where the triangular factor R
s

serves

as the preconditioner.

The neat and crucial observation in [1] is to realize that sampling rows from FA amounts,

conceptually, to sampling rows from an orthonormal basis of FA. That is, if the columns of

Q represent an orthonormal basis for the column space of FA, and if S is a sampling matrix

then SQ has the same two-norm condition number as AR�1
s

. This means, it su�ces to consider

sampling from matrices Q with orthonormal columns.

The analysis in [1] suggests that SQ is well conditioned, if Q has low “coherence”. Intu-

itively, coherence gives information about the localization or “uniformity” of the elements of

Q. Mathematically, coherence is the largest (squared) norm of any row of Q. For instance, if Q

consists of canonical vectors, then the non-zero elements are concentrated in only a few rows,

so that Q has high coherence. However, if Q is a submatrix of a Hadamard matrix, then all

elements have the same magnitude, so that Q has low coherence.

If Q has low coherence, then, in the context of sampling, all rows are equally important.

Hence any sampled matrix SQ with su�ciently many rows is likely to have full rank. The

purpose of the randomized transform F is to produce a matrix FA whose orthonormal basis Q

has low coherence.

We were intrigued by the analysis of Blendenpik because it appears to be the first to exploit

the concept of coherence for numerical purposes. We also wanted to get a better understanding

of the condition number bound for SQ in [1, Theorem 3.2], which contains an unspecified

constant, and of the e↵ect of uniform sampling strategies.

2.1.2 Overview and main results

We survey the contents of the chapter , with a focus on the main results.

From preconditioned matrices to sampled matrices with orthonormal columns (Sec-

tion 2.2)

We start with a brief sketch of the Blendenpik least squares solver (Section 2.2.1), and make

the important transition from preconditioned matrices AR�1
s

to sampled matrices SQ with

orthonormal columns, made possible by the observation ([1, 33] and Lemma 1) that both have

4

the same two-norm condition number1,

(AR�1
s

) = (SQ).

Then we discuss the notion of coherence and its properties (Section 2.2.2). For a m⇥ n matrix

Q with orthonormal columns, QTQ = I
n

, the coherence

µ ⌘ max
1jm

keT
j

Qk22

is the largest squared row norm2.

Sampling methods (Section 2.3)

We discuss three randomized methods for producing sampling matrices S: Sampling without

replacement (Section 2.3.1), sampling with replacement (Section 2.3.2), and Bernoulli sampling

(Section 2.3.3). We show that Bernoulli sampling can be viewed as a form of sampling without

replacement (Section 2.3.4).

The sampling matrices S from all three methods are constructed so that STS is an unbiased

estimator of the identity matrix. The action of applying S to a matrix Q with orthonormal

columns, SQ, amounts to randomly sampling rows from Q.

The numerical experiments (Section 2.3.5) illustrate two points: First, the three sampling

methods behave almost identically, in terms of the percentage of sampled matrices SQ that have

full rank and their condition numbers, in particular for small to moderate sampling amounts.

Second, those sampled matrices SQ that have full rank tend to be very well-conditioned, with

condition numbers (SQ)  10.

As a consequence (Section 2.3.6), we recommend sampling with replacement for Blendenpik,

because it is fast, and it is easy to implement.

Numerical experiments

Since random sampling methods can be expected to work well in the asymptotic regime of very

large matrix dimensions, we restrict all numerical experiments to matrices of small dimension.

Furthermore, we consider only matrices that have many more rows than columns, m � n.

This is the situation where random sampling methods can be most e�cient. In contrast, random

sampling methods are not e�cient for matrices that are almost square, because the number of

rows in SQ has to be at least equal to n, otherwise rank(SQ) = n is not possible.

1Here (X) ⌘ kXk2 kX†k2 denotes the Euclidean two-norm condition number with respect to inversion of a
full rank matrix X. The matrix X† is the Moore-Penrose inverse of X.

2The superscript T denotes transpose, and I
n

is the n⇥ n identity matrix with columns e
j

.

5

Condition number bounds based on coherence (Section 2.4)

We derive a probabilistic bound, in terms of coherence, for the condition numbers of the sampled

matrices (Theorem 7 in Section 2.4.1). The bound applies to all three sampling methods. From

this we derive the following lower bound, not necessarily tight, on the required number of

sampled rows.

Preview of Corollary 8 Given a failure probability 0 < � < 1, and a tolerance 0  ✏ < 1.

To achieve the condition number bound (SQ) 
q

1+✏

1�✏

, the number of rows from Q, sampled

by any of three methods, should be at least

c � 3mµ
ln(2n/�)

✏2
. (2.1)

This suggests that one has to sample more rows for SQ if Q has high coherence (µ close

to 1), if one wants a low condition number bound (small ✏), or if one wants a high success

probability (small �).

Numerical experiments (Section 2.4.2) illustrate that the bounds are informative for matrices

with su�ciently low coherence µ and su�ciently high aspect ratio m/n. Our bounds have the

following advantages (Section 2.4.3):

1. They are tighter than those in [1, Theorem 3.2] because they are non-asymptotic, with

all constants explicitly specified.

2. They apply to three di↵erent sampling methods.

3. They imply a lower bound, of ⌦ (mµ lnn), on the required number of sampled rows.

4. They are realistic and informative – even for matrices of small dimension and the stringent

requirement of a 99 percent success probability.

Condition number bounds based on leverage scores, for uniform sampling with

replacement (Section 2.5)

The goal is to tighten the coherence-based bounds from Section 2.4 by making use of all the

row norms of Q, instead of just the largest one. To this end we introduce leverage scores

(Section 2.5.1), which are the squared row norms of Q,

`
j

= keT
j

Qk22, 1  j  m.

We use them to derive a bound for uniform sampling with replacement (Theorem 11 in Sec-

tion 2.5.2). Then we present a more easily computable bound, in terms of just a few of the

6

largest leverage scores (Section 2.5.3). It implies the following lower bound, not necessarily

tight, on the number of samples.

Preview of Corollary 15 Given a failure probability 0 < � < 1, a tolerance 0  ✏ < 1,

and a labeling of leverage scores in non-increasing order,

µ = `[1] � · · · � `[m].

To achieve the condition number bound (SQ) 
q

1+✏

1�✏

, the number of rows from Q, sampled

uniformly with replacement, should be at least

c � 2
3m (3⌧ + ✏µ)

ln(2n/�)

✏2
, (2.2)

where t ⌘ b1/µc and ⌧ ⌘ µ
P

t

j=1 `[j] + (1� t µ) `[t+1].

We show (Section 2.5.4) that (2.2) is indeed tighter than (2.1). This is confirmed by nu-

merical experiments (Section 2.5.5). The di↵erence becomes more drastic for matrices Q with

widely varying non-zero leverage scores, and can be as high as ten percent. Hence (Section 2.5.6),

when it comes to lower bounds for the number of rows sampled uniformly with replacement,

we recommend (2.2) over (2.1).

Algorithms for generating matrices with prescribed coherence and leverage scores

(Section 2.6)

The purpose is to make it easy to investigate the e�ciency of the sampling methods in Sec-

tion 2.3, and test the tightness of the bounds in Sections 2.4 and 2.5.

To this end we present algorithms for generating matrices with prescribed leverage scores

and coherence (Section 2.6.1), and for generating particular leverage score distributions with

prescribed coherence (Section 2.6.2). Furthermore we present two classes of structured matrices

with prescribed coherence that are easy and fast to generate (Section 2.6.3). The basis for the

algorithms is the following majorization result.

Preview of Theorem 25 Given integers m � n and a vector ` with m elements that satisfy

0  `
j

 1 and
P

m

j=1 `j = n, there exists a m⇥ n matrix Q with orthonormal columns that has

leverage scores keT
j

Qk22 = `
j

, 1  j  m, and coherence µ = max1jm

`
j

.

Bound for two-norms of diagonally scaled matrices (Section 2.8)

The bound (2.2) is based on a special case of the following general bound for the two-norm of

diagonally scaled matrices.

7

Preview of Theorem 22 Let Z be a m ⇥ n matrix with rank(Z) = n and largest squared

row norm µ
z

⌘ max1jm

keT
j

Zk22. Let D be a m ⇥ m non-negative diagonal matrix, and a

labeling of diagonal elements in non-increasing order,

kDk2 = d[1] � · · · � d[m] � 0.

If t ⌘ ⌅(kZ†k22 µz

)�1
⇧

, then either

kDZk22  µ
z

t

X

j=1

d2[j] +
�kZk22 � t µ

z

�

d2[t+1] if kZk22 � t µ
z

 µ
z

or

kDZk22  µ
z

t+1
X

j=2

d2[j] +
�kZk22 � t µ

z

�

d2[1]. if kZk22 � t µ
z

> µ
z

.

Proofs (Sections 2.7, 2.8 and 2.9)

All proofs, except those for Sections 2.2 and 2.3, have been relegated to these three sections.

Section 2.7 contains the proofs for Sections 2.4 and 2.5, which are based on two matrix con-

centration inequalities: A Cherno↵ bound (Section 2.7.1), and a Bernstein bound (Section 2.7.4).

Section 2.8 contains the proofs for the easily computable bounds in Sections 2.5.3 and 2.5.4,

together with the majorization results (Section 2.8.1) required for the proofs.

The majorization results in Section 2.9 represent the foundation for the algorithms in Sec-

tion 2.6.

2.1.3 Literature

Existing randomized least squares methods are based on randomized projections. This means,

conceptually they multiply A by a random matrix F , and then sample a few rows from FA.

The algorithms in [4, 12, 15] solve a smaller sampled problem by a direct method. Like

Blendenpik [1], the algorithm in [33] computes a preconditioner from the QR factorization of

a sampled submatrix, but then solves the preconditioned problem by applying the conjugate

gradient method to the normal equations. The parallel solver LSRN [27] computes a precon-

ditioner from the SVD of a sampled submatrix, and then solves the preconditioned problem

with an iterative method. This solver applies to general matrices rather than just those of full

column rank.

As for randomized algorithms in general, the excellent surveys [19, 25] provide clear analyses

and good intuition.

8

2.1.4 Notation

The norm k · k2 denotes the Euclidean two-norm, and the two-norm condition number with

respect to inversion of a realm⇥nmatrix Z with rank(Z) = n is denoted by (Z) ⌘ kZk2kZ†k2,
where Z† is the Moore-Penrose inverse. The k ⇥ k identity matrix is I

k

=
⇣

e1 . . . e
k

⌘

, and

its columns are the canonical vectors e
j

, 1  j  k.

The probability of an event X is denoted by Pr[X], and the expected value of a random

variable X is denoted by E[X].

2.2 The Blendenpik algorithm, and coherence

We describe the Blendenpik algorithm for solving least squares problems (Section 2.2.1), and

present the notion of coherence (Section 2.2.2).

2.2.1 Algorithm

The Blendenpik algorithm [1, Algorithm 1] solves full column rank least squares problems with

the Krylov space method LSQR [30] and a randomized preconditioner. Algorithm 2.2.1 presents

a conceptual sketch of Blendenpik. The subscript “s” denotes quantities associated with the

sampled matrix.

Algorithm 2.2.1 Sketch of Blendenpik [1]

Input: m⇥ n matrix A with m � n and rank(A) = n, m⇥ 1 vector b
m⇥m random unitary matrix F
k ⇥ n sampling matrix S with k � n

Output: Solution of min
x

kAx� bk2

M = FA {Improve coherence}
M

s

= SM {Sample for preconditioner}
Thin QR factorization M

s

= Q
s

R
s

{Generate preconditioner}
Determine solution y to min

z

kAR�1
s

z � bk2 {Solve preconditioned problem}
Solve R

s

x̂ = y {Recover solution to original problem}

The matrix F is the product of a random diagonal matrix with ±1 entries, and a unitary

transform, such as a Walsh Hadamard transform, or a discrete Fourier, Hartley or cosine trans-

form [1, Section 3.2]. The transformed matrix M = FA is m⇥n with m � n and rank(M) = n.

9

The sampling matrix S selects k � n rows from the transformed matrix M . We discuss

di↵erent types of sampling matrices in Section 2.3. The k ⇥ n sampled matrix M
s

has a thin

QR decomposition M
s

= Q
s

R
s

where Q
s

is k ⇥ n with orthonormal columns and R
s

is n ⇥ n

upper triangular.

The basis for the analysis is the thin QR decomposition M = QR, where Q is m⇥ n with

orthonormal columns and R is n⇥n upper triangular. This QR decomposition is not computed.

The next result links the condition number of the preconditioned matrix to that of the matrix

SQ, see also [1, Section 3.1] and [33, Theorem 1].

Lemma 1 With the notation in Algorithm 2.2.1, if rank(M
s

) = n, then

(AR�1
s

) = (SQ).

Proof. From FA = M = QR and the fact that the 2-norm is invariant under premultiplica-

tion by matrices with orthonormal columns, it follows that

(AR�1
s

) = (MR�1
s

) = (RR�1
s

) = (R
s

R�1) = (M
s

R�1) = (SMR�1)

= (SQ).

In Sections 2.4 and 2.5 we derive bounds for the condition number of the preconditioned

matrix, (AR�1
s

). Our bounds are tighter than those in [1, Theorem 3.2], because they have all

constants explicitly specified, and apply to three di↵erent sampling strategies. Since Lemma 1

implies (AR�1
s

) = (SQ), we state the bounds for (SQ) only. An important ingredient in

these bounds is the coherence of Q.

2.2.2 Coherence

Coherence gives information about the localization or “uniformity” of the elements in an or-

thonormal basis. The more general concept of mutual coherence between two orthonormal bases

was introduced in [10, §VII], in the context of signal processing and computational harmonic

analysis, to describe a condition for the existence of sparse representations of signals. What we

use here is a special case, and can be viewed as a measure for how close an orthonormal basis

is to sharing a vector with a canonical basis.

Definition 2 (Definition 3.1 in [1], Definition 1.2 in [7]) Let Q be a real m ⇥ n matrix

with orthonormal columns, QTQ = I
n

, then the coherence of Q is

µ ⌘ max
1jm

keT
j

Qk22.

10

If the columns of Q are an orthonormal basis for the column space of a matrix M , then the

coherence of M is µ.

The second part of Definition 41 emphasizes that coherence is really a property of the

column space, hence basis-independent. In other words, if Q̂ = QV , where V is a real n ⇥ n

orthogonal matrix, then Q̂ and Q have the same coherence.

The range for coherence is n

m

 µ  1. If Q is a m⇥ n submatrix of the m⇥m Hadamard

matrix, then µ = n/m. If a column of Q is a canonical vector, then µ = 1. Hence an orthonormal

basis has high coherence if it shares a vector with a canonical basis.

There are other definitions of coherence that di↵er from the above by factors depending on

the matrix dimensions [32, Definition 1], [35, Definition 1]. However, the notion of statistical

coherence in Bayesian analysis [24] appears to be unrelated.

2.3 Sampling Methods

We present three di↵erent types of sampling methods: Sampling without replacement (Sec-

tion 2.3.1), sampling with replacement (Section 2.3.2), and Bernoulli sampling (Section 2.3.3).

We show that Bernoulli sampling can be viewed as a form of sampling without replacement

(Section 2.3.4). The numerical experiments illustrate that there is little di↵erence among the

three methods for small to moderate amounts of sampling (Section 2.3.5). Hence we recommend

sampling with replacement for Algorithm 2.2.1 (Section 2.3.6).

The sampling matrices S in all three methods are scaled so that STS is an unbiased estimator

of the identity matrix.

2.3.1 Sampling without replacement

The obvious sampling strategy, in Algorithm 2.3.1, picks the requested number of rows, so that

the sampling matrix S is just a scaled submatrix of a permutation matrix.

Uniform sampling without replacement can be implemented via random permutations3. A

permutation ⇡1, . . . ,⇡m of the integers 1, . . . ,m is a random permutation, if it is equally likely

to be one of m! possible permutations [29, pages 41 and 48].

The following lemma presents the probability that sampling without replacement picks a

particular row.

Lemma 3 If Algorithm 2.3.1 samples c out of m indices, then the probability that a particular

index is picked equals c/m.

3We thank an anonymous reviewer for this advice.

11

Algorithm 2.3.1 Uniform sampling without replacement [16, 18]

Input: Integers m � 1 and 1  c  m
Output: c⇥m sampling matrix S with E[STS] = I

m

Let k1, . . . , km be a random permutation of 1, . . . ,m

S =
p

m

c

�

e
k1 . . . e

k

c

�

T

Proof. The probability that some index, say r, is not sampled in the first trial is 1� 1
m

= m�1
m

.

Now there are onlym�1 indices left. So the probability that index r is not sampled in the second

trial is 1� 1
m�1 = m�2

m�1 . Repeating this argument shows that with probability
Q

c

t=1
m�t

m�t+1 = m�c

m

index r is not sampled in c trials.

The complementary event, the probability that index r is sampled, equals 1� m�c

m

= c

m

.

2.3.2 Sampling with replacement

This is the sampling strategy that appears to be analyzed in [1]. It samples exactly the requested

number of rows, but with replacement, which means a row may be sampled more than once.

Algorithm 2.3.2 is the same as the EXACTLY(c) algorithm [15, Algorithm 3] with uniform

probabilities, which is also used in the BasicMatrixMultiplication Algorithm [11, Fig. 2].

Algorithm 2.3.2 Uniform sampling with replacement [11, 15]

Input: Integers m � 1 and 1  c  m
Output: c⇥m sampling matrix S with E[STS] = I

m

for t = 1 : c do
Sample k

t

from {1, . . . ,m} with probability 1/m,
independently and with replacement

end for

S =
p

m

c

�

e
k1 . . . e

k

c

�

T

Sampling with replacement (Algorithm 2.3.2) is often easier to analyze and implement than

sampling without replacement (Algorithm 2.3.1), and it can also be more robust to errors [29,

§1.2].

12

2.3.3 Bernoulli sampling

The sampling strategy in Algorithm 2.3.3 is implemented in Blendenpik [1, Algorithm 1]. Fol-

lowing [18, Section A], we use the term Bernoulli sampling, because the strategy treats each

row as an independent, identically distributed Bernoulli random variable. Each row is either

sampled or not, with the same probability for each row. Algorithm 2.3.3 produces a m ⇥ m

square matrix S – in contrast to Algorithms 2.3.1 and 2.3.2, which produce c⇥m matrices.

Algorithm 2.3.3 Bernoulli sampling [1, 16, 18]

Input: Integers m � 1 and 1  c  m
Output: m⇥m sampling matrix S with E[STS] = I

m

S = 0
m⇥m

for t = 1 : m do

S
tt

=
p

m

c

(

1 with probability c

m

0 with probability 1� c

m

end for

The number of sampled rows, which is equal to the number of non-zero diagonal elements in

S, is not known a priori, but the expected number of sampled rows is c. The lemma below shows

that the actual number of rows picked by Bernoulli sampling is characterized by a binomial

distribution [34, Section 2.2.2].

Lemma 4 If Algorithm 2.3.3 samples from m indices with probability � ⌘ c/m, then the prob-

ability that it picks exactly k indices equals
�

m

k

�

�k (1� �)m�k.

Proof. Determining the diagonal elements of them⇥m sampling matrix S in Algorithm 2.3.3

can be viewed as performing m independent trials, where trial t is a success (S
tt

6= 0) with

probability �, and a failure (S
tt

= 0) with probability 1 � �. The probability of k successes is

given by the binomial distribution
�

m

k

�

�k (1� �)m�k.

2.3.4 Relating Bernoulli sampling and sampling without replacement

We show that Bernoulli sampling (Algorithm 2.3.3) is the same as first determining the number

of samples with a binomial distribution (motivated by Lemma 4), and then sampling without

replacement (Algorithm 2.3.1). This is described in Algorithm 2.3.4 below.

Below we describe the sense in which Algorithm 2.3.4 “behaves like” Bernoulli sampling in

Algorithm 2.3.3.

13

Algorithm 2.3.4 Simulating Algorithm 2.3.3 with Algorithm 2.3.1

Input: Integers m � 1 and 1  c  m
Output: c̃⇥m sampling matrix S with E[STS] = I

m

that “behaves like” a sampling matrix generated by Algorithm 2.3.3

� ⌘ c/m

Sample c̃ from {1, . . . ,m} where Pr[c̃ = k] =
�

m

k

�

�k (1� �)m�k

Use Algorithm 2.3.1 to sample c̃ indices k1, . . . , kc̃ uniformly and without replacement

S =
p

m

c̃

�

e
k1 . . . e

k

c̃

�

T

Lemma 5 The probability that Algorithm 2.3.4 picks a particular index equals � = c/m.

Proof. Motivated by Lemma 4, the actual number of samples k in Algorithm 2.3.4 is given

by a binomial distribution. Once a specific k has emerged, one applies Lemma 3 to conclude

that the probability that Algorithm 2.3.1 picks some index r is k/m.

Now the probability that Algorithm 2.3.4 picks some index r is obtained by conditioning

[34, Section 3.5] on the number of samples, k, and equals

m

X

k=0

Pr [k indices sampled] Pr [index r sampled| k indices sampled]

=
m

X

k=1

✓

m

k

◆

�k (1� �)m�k

k

m

= �
m�1
X

k=0

✓

m� 1

k

◆

�k (1� �)m�1�k = � (� + (1� �))m�1 = �,

where the first equality follows from the zero summand for k = 0.

Finally, we can conclude that sampling with Algorithm 2.3.4 is the same as sampling with

Algorithm 2.3.3.

Theorem 6 Both, Algorithms 2.3.4 and 2.3.3 pick a particular set of indices i1, . . . , ic with

probability �c(1� �)m�c.

Proof. The probability that Algorithm 2.3.3 samples indices i1, . . . , ic is equal to �c(1��)m�c.

We show that the same is true for Algorithm 2.3.4. The choice of the sampling distribution

in Algorithm 2.3.4 implies that it samples c̃ = c indices with probability
�

m

c

�

�c (1 � �)m�c.

Since there are
�

m

c

�

ways to sample c out of m indices, the probbility that the particular index

set i1, . . . , ic is picked, given that c indices are being sampled is 1/
�

m

c

�

. Thus, the probability

14

that Algorithm 2.3.4 picks indices i1, . . . , ic equals

1
�

m

c

�

✓

m

c

◆

�c(1� �)m�c = �c(1� �)m�c.

2.3.5 Numerical experiments

We present two representative comparisons of the three sampling strategies, with two plots

for each strategy: The condition numbers of full-rank sampled matrices SQ, and the failure

percentage, that is the percentage of sampled matrices SQ that are numerically rank deficient

(as determined by the Matlab command rank).

The experiments are limited to very tall and skinny matrices (with many more rows than

columns, m � n), because that’s when the sampling strategies are most e�cient. In particular,

since c � n is required for SQ to have full column rank, sampling methods are ine�cient when

n is not much smaller than m, in which case a deterministic algorithm would be preferable.

Experimental setup

The m ⇥ n matrices Q with orthonormal columns have m = 104 rows and n = 5 columns.

The condition numbers and failure percentages are plotted against various sampling amounts

c, with 30 runs for each c. For the failure percentages we display only those sampling amounts

c that give rise to rank-deficient matrices, in these particular 30 runs. For Algorithm 2.3.3 the

horizontal axis represents the numerator c in the probability, that is, the expected number of

sampled rows. All three strategies sample from the same matrix.

We consider two di↵erent types of matrices: Matrices with low coherence µ = 1.5n/m in

Figure 2.1; and matrices with higher coherence µ = 150n/m and many zero rows in Figure 2.2.

Our numerical experiments indicate that these coherence values are representative, in the sense

that di↵erent values of coherence would not produce any other interesting e↵ects.

Figure 2.1

Shown are condition numbers and percentage of rank deficient matrices for a matrix Q with

low coherence µ = 1.5n/m generated by Algorithm 2.6.2. At most 10 percent of the rows are

sampled. The three strategies exhibit almost identical behavior: The sampled matrices SQ of

full rank are very well conditioned, with (SQ)  5. Numerically rank-deficient matrices SQ

occur only for sampling amounts c  47.

15

250 500 750 1000
1

2

5

10

c

κ
(S

Q
)

5 10 15 21
0

25

50

75

100

c

%
 o

f
ra

n
k
 d

e
fi

c
ie

n
t

S
Q

(a) Algorithm 2.3.1: Sampling without replacement

250 500 750 1000
1

2

5

10

c

κ
(S

Q
)

5 10 20 30 35
0

25

50

75

100

c

%
 o

f
ra

n
k
 d

e
fi

c
ie

n
t

S
Q

(b) Algorithm 2.3.2: Sampling with replacement

250 500 750 1000
1

2

5

10

c

κ
(S

Q
)

5 10 20 30 40 46
0

25

50

75

100

c

%
 o

f
ra

n
k
 d

e
fi

c
ie

n
t

S
Q

(c) Algorithm 2.3.3: Bernoulli sampling

Figure 2.1: Condition numbers and percentage of rank-deficiency for matrices with low coher-
ence and small amounts of sampling. Here Q is m⇥ n with orthonormal columns, m = 10, 000,
n = 5, coherence µ = 1.5n/m, and generated with Algorithm 2.6.2. Left panels: Horizontal
coordinate axes represent amounts of sampling n  c  1, 000. Vertical coordinate axes repre-
sent condition numbers (SQ); the maximum is 10. Right panels: Horizontal coordinate axes
represent amounts of sampling that give rise to numerically rank deficient matrices SQ. Vertical
coordinate axes represent percentage of numerically rank deficient matrices.

16

4000 5000 6000 7000 8000 9000 10000
1

2

5

10

c

κ
(S

Q
)

4000 4500 5000 5222
0

1

3

5

7

10

c

%
 o

f
ra

n
k
 d

e
fi

c
ie

n
t

S
Q

(a) Algorithm 2.3.1: Sampling without replacement

4000 5000 6000 7000 8000 9000 10000
1

2

5

10

c

κ
(S

Q
)

4000 4500 5000 5500 6000 6500 7000 7500 7732
0

1

3

5

7

10

c

%
 o

f
ra

n
k
 d

e
fi

c
ie

n
t

S
Q

(b) Algorithm 2.3.2: Sampling with replacement

4000 5000 6000 7000 8000 9000 10000
1

2

5

10

c

κ
(S

Q
)

4000 4500 5000 5301
0

1

3

5

7

10

c

%
 o

f
ra

n
k
 d

e
fi

c
ie

n
t

S
Q

(c) Algorithm 2.3.3: Bernoulli sampling

Figure 2.2: Condition numbers and percentage of rank-deficiency for matrices with higher co-
herence and large amounts of sampling. Here Q ism⇥n with orthonormal columns,m = 10, 000,
n = 5, coherence µ = 150n/m, and generated with Algorithm 2.6.3. Left panels: Horizontal
coordinate axes represent amounts of sampling 4, 000  c  m. Vertical coordinate axes repre-
sent condition numbers (SQ); the maximum is 10. Right panels: Horizontal coordinate axes
represent amounts of sampling that give rise to numerically rank deficient matrices SQ. Vertical
coordinate axes represent percentage of numerically rank deficient matrices SQ; the maximum
is 10 percent.

17

Figure 2.2

Shown are condition numbers and percentage of rank deficient matrices for a matrix Q, gener-

ated by Algorithm 2.6.3, with coherence 150n/m and many zero rows. The number of sampled

rows ranges from c = 4000 to m. The sampled matrices SQ of full rank are very well condi-

tioned, with (SQ)  10. Even for c = 4, 000, as many 10 percent of the sampled matrices

can still be rank-deficient. All three algorithms have to sample more than half of the rows of Q

in order to always produce matrices SQ with full column rank. Specifically in these particular

runs, Algorithms 2.3.1 and 2.3.3 need to sample c � 5, 222 and c � 5, 301 rows, respectively,

while Algorithm 2.3.1 needs c � 7732.

Note that the condition numbers of matrices from Algorithms 2.3.1 and 2.3.3 approach 1 as

more and more rows are sampled. This is because no row is sampled more than once; and for

c = m all rows are sampled.

Again, the three strategies exhibit almost identical behavior: The sampled matrices SQ of

full rank are very well conditioned, with (SQ)  10. However, due to the higher coherence,

numerically rank-deficient matrices occur more frequently.

2.3.6 Conclusions for Section 2.3

The numerical experiments illustrate that the three sampling strategies behave almost identi-

cally, in particular for small to moderate sampling amounts, and that sampled matrices of full

rank tend to be very well-conditioned4. Furthermore, Section 2.3.4 shows that Bernoulli sam-

pling can be viewed as a form of sampling without replacement, and the numerical experiments

confirm the similarity in behavior.

Among the three strategies, we recommend sampling with replacement (Algorithm 2.3.2)

for small to moderate amounts of sampling in Algorithm 2.2.1. It is fast and easy to implement

in both.

2.4 Condition number bounds based on coherence

We derive bounds for the condition numbers of matrices produced by the sampling strategies in

section 2.3, in terms of coherence. These bounds are based on a specific concentration inequality

and imply a, not necessarily tight, lower bound for the number of sampled rows (Section 2.4.1).

Numerical experiments illustrate that the bounds are informative (Section 2.4.2). We end this

section by summarizing the main features of the bounds (Section 2.4.3).

4We have not been able to show rigorously why the condition numbers tend to be less than 10.

18

2.4.1 Bounds

We show that the three sampling strategies in Section 2.3 all have the same condition number

bound, in terms of coherence.

Theorem 7 below is based on a matrix Cherno↵ concentration inequality (Section 2.7.1).

We chose this particular inequality because extensive numerical experiments with our Matlab

toolbox kappaSQ v3 [22] suggest that it tends to produce the tightest bound.

Theorem 7 Let Q be a real m ⇥ n matrix with QTQ = I
n

and coherence µ. Let S be a

sampling matrix produced by Algorithms 2.3.1, 2.3.2, or 2.3.3 with n  c  m. For 0 < ✏ < 1

and f(x) ⌘ ex(1 + x)�(1+x) define

� ⌘ n
⇣

f(�✏)c/(mµ) + f(✏)c/(mµ)
⌘

.

If � < 1, then with probability at least 1� � we have rank(SQ) = n and

(SQ) 
r

1 + ✏

1� ✏
.

Proof. The proof is based on results from [16, 36, 37] and is relegated to Section 2.7.2.

Since 0 < f(±✏) < 1 for 0 < ✏ < 1, Theorem 7 implies that the sampling strategies in

Section 2.3 are more likely to produce full-rank matrices as the number c of sampled rows

increases. Furthermore, for a given total number of rows m, matrices Q with fewer columns n

and lower coherence µ are more likely to give rise to sampled matrices SQ that have full rank.

Theorem 7 implies the following lower bound on the number of samples, but we make no

claims about the tightness of this bound.

Corollary 8 Under the assumptions of Theorem 8,

c � 3mµ
ln(2n/�)

✏2

samples are su�cient to achieve (SQ) 
q

1+✏

1�✏

with probability at least 1� �.

Proof. See Section 2.7.3.

Corollary 8 implies that the sampling strategies in Section 2.3 should sample at least c =

⌦ (mµ lnn) rows to produce a full rank, well-conditioned matrix. In particular, if Q has minimal

coherence µ = n/m, then Corollary 8 implies that the number of sampled rows should be at

least

c � 3n
ln(2n/�)

✏2
, (2.3)

19

that is c = ⌦ (n lnn).

To achieve (SQ)  10 with probability at least .99 requires that the number of sampled

rows be at least

c � 3.2mµ (ln(2n) + 4.7) . (2.4)

Here we chose ✏0 = 99/101, so that the condition number bound equals
q

1+✏0
1�✏0

= 10.

Remark 9 Theorem 7 is informative only for su�ciently low coherence values.

For instance, consider the higher coherence matrices from Figure 2.2 in Section 2.3.5 with

m = 10, 000, n = 5 and coherence µ = 150n/m. Choose ✏ = 99/101 so that (SQ)  10, and a

failure probability � = .01. Then Corollary 8 implies the lower bound c � 12, 408, which means

that the number of sampled rows would have to be larger than the total number of rows.

2.4.2 Numerical experiments

We compare the bound for the condition numbers of the sampled matrices (Theorem 7) with the

true condition numbers of matrices produced by sampling with replacement (Algorithm 2.3.2).

There are several reasons why it su�ces to consider only a single sampling strategy: The

three sampling methods all have the same bound (Theorem 7); Bernoulli sampling is a form

of sampling without replacement (Section 2.3.4); and all three sampling methods exhibit very

similar behavior for matrices of low coherence (Sections 2.3.5 and 2.3.6). Furthermore, this

allows a clean comparison with the bounds in Section 2.5 which apply only to Algorithm 2.3.2.

Experimental setup

The m ⇥ n matrices Q with orthonormal columns have m = 104 rows and n = 5 columns.

The left panels in Figure 2.3 show the condition numbers of the full-rank sampled matrices SQ

produced by Algorithm 2.3.2 against di↵erent sampling amounts c, with 30 runs for each c. The

right panels in Figure 2.3 show the percentage of rank deficient matrices SQ against di↵erent

sampling amounts c. We display only those sampling amounts c that give rise to rank-deficient

matrices, in these particular 30 runs.

The left panels in Figure 2.3 also show the condition number bound 
✏

⌘
q

1+✏

1�✏

from

Theorem 7. For each value of c, we obtain ✏ as the solution of the nonlinear equation F
c

(x)2 = 0

associated with Theorem 7 and defined as

F
c

(x) ⌘ � � n
⇣

f(�x)c/(mµ) + f(x)c/(mµ)
⌘

.

We impose the stringent requirement of � = .01, corresponding to a 99 percent success probabil-

20

ity. Since an explicit expression seems out of reach, we use unconstrained nonlinear optimization

(a Nelder-Mead simplex direct search) to solve F
c

(x)2 = 0. This is done in Matlab with a code

equivalent to

✏ =
�

�

fminsearch(F
c

(x)2, 0, 10�30)
�

� ,

where fminsearch starts at the point 0, and terminates when |F
c

(✏)|2  10�30. If 0 < ✏ < 1

then 
✏

is plotted, otherwise nothing is plotted.

As explained in Remark 9, Theorem 7 is not informative for higher coherence values, so we

consider matrices with the following properties: Minimal coherence µ = n/m in Figure 2.3(a);

low coherence µ = 1.5n/m in Figure 2.3(b); slightly higher coherence µ = 15n/m with many

zero rows in Figure 2.3(c). The matrices for Figures 2.3(a) and 2.3(b) were generated with

Algorithm 2.6.2, while the matrix for Figure 2.3(c) was generated with Algorithm 2.6.3.

Figure 2.3

The left panels illustrate that Theorem 7, constrained to a 99 percent success probability,

correctly predicts the magnitude of the condition numbers, i.e. (SQ)  10. Hence Theorem 7

provides informative qualitative bounds for matrices with very low coherence, as well as for

matrices with slightly higher coherence and many zero rows.

Table 2.1

This is a comparison of the numerical experiments in Figure 2.3 with the bounds from Theorem 7

and Corollary 8, both restricted to a 99 percent success probability.

The third column depicts the highest values of c for which a rank-deficient matrix occurs,

during these particular 30 runs. It should be kept in mind that these values are highly dependent

on the particular sampling runs. This column is to be compared to the fourth column which

contains the lowest values of c where Theorem 7 starts to apply. Although there is a gap

between the occurrence of the last rank deficiency and the onset of Theorem 7, the values have

qualitatively the same order of magnitude.

The rightmost column in Table 2.1 contains the values of the lower bound (2.4), and is to

be compared to the column with the starting values for Theorem 7. Although (2.4) is weaker

than Theorem 7, its values are close to the starting values of Theorem 7, especially for lower co-

herence. Hence, the lower bound (2.4) captures the correct magnitude of the sampling amounts

where Theorem starts to become informative.

Table 2.1 illustrates that, although Theorem 7 and Corollary 8 tend to become more pes-

simistic with increasing coherence, they still provide qualitative information for matrices with

low coherence – even when restricted to a 99 percent success probability.

21

5 500 1000
1

2

5

10

c

κ
(S

Q
)

5 10 20 30 31
0

25

50

75

100

c

%
 o

f
ra

n
k
 d

e
fi

c
ie

n
t

S
Q

(a) Q has minimal coherence µ = n/m. Sampling amounts are n  c  1, 000.

250 500 750 1000
1

2

5

10

c

κ
(S

Q
)

5 10 15 20 25 31
0

25

50

75

100

c

%
 o

f
ra

n
k
 d

e
fi

c
ie

n
t

S
Q

(b) Q has low coherence µ = 1.5n/m. Sampling amounts are n  c  1, 000.

43 1000 2000 3000
1

2

5

10

c

κ
(S

Q
)

5 100 200 300 400 500 600 700 740
0

25

50

75

100

c

%
 o

f
ra

n
k
 d

e
fi

c
ie

n
t

S
Q

(c) Q has slightly higher coherence µ = 15n/m and many zero rows. Sampling sampling amounts are

n  c  3, 000.

Figure 2.3: Condition numbers and bound from Theorem 7, and percentage of rank-deficiency.
Here Q is m ⇥ n with orthonormal columns, m = 10, 000 and n = 5. Left panels: The hori-
zontal coordinate axes represent amounts of sampling c. The vertical coordinate axes represent
condition numbers (SQ); the maximum is 10. The dots at the bottom represent the condition
numbers of matrices sampled with Algorithm 2.3.2, while the upper line represents the bound
from Theorem 7. Right panels: The horizontal coordinate axes represent amounts of sampling
that produce numerically rank deficient matrices SQ. The vertical coordinate axes represent
the percentage of numerically rank deficient matrices SQ.

22

Table 2.1: Comparison of information from Figure 2.3, with Theorem 7 and Corollary 8.

Figure coherence µ last rank deficiency Theorem 7 (2.4)
occurs at c = starts at c =

2.3(a) n/m 31 81 83
2.3(b) 1.5 n/m 31 121 125
2.3(c) 15 n/m 740 1207 1241

2.4.3 Conclusions for Section 2.4

The bounds in Theorem 7 and Corollary 8 have the following advantages:

1. They are non-asymptotic bounds, where all constants have explicit numerical values, hence

they are tighter than the bounds in [1, Theorem 3.2].

2. They apply to three di↵erent sampling methods.

3. They imply a lower bound, of ⌦ (mµ lnn), on the required number of sampled rows.

Although we did not give a formal proof of tightness, numerical experiments illustrate that

sampling only the required number of rows implied by the bound is realistic. numerical

experiments illustrate that the bound is realistic.

4. Even under the stringent requirement of a 99 percent success probability, they are infor-

mative for matrices of small dimension because they correctly predict the magnitude of

the condition numbers for the sampled matrices.

Note that the bounds in Theorem 7 and Corollary 8 are informative only for matrices that

are tall and skinny (m � n) and have low coherence. The restriction to tall and skinny matrices

is not an imposition, because it is required for the e↵ectiveness of the sampling strategies, see

Section 2.3.5.

In the next section we try to relax the restriction to low coherence matrices, by more

thoroughly exploiting the information available from the row norms of Q.

2.5 Condition number bounds based on leverage scores, for uni-

form sampling with replacement

The goal is to tighten Theorem 7 by making use of all the row norms of Q, instead of just

the largest one. To this end we introduce leverage scores (Section 2.5.1), which are the squared

23

row norms of Q. We use them to derive a bound for uniform sampling with replacement (Sec-

tion 2.5.2), and for more easily computable versions of the bound (Section 2.5.3). Analytical

(Section 2.5.4) and experimental (Section 2.5.5) comparisons demonstrate that the implied

lower bound on the number of sampled rows is better than the coherence-based bounds in

Section 2.4. A review with some reflection ends this section (Section 2.5.6).

2.5.1 Leverage scores

So-called statistical leverage scores were first introduced in 1978 by Hoaglin and Welsch [20] to

detect outliers when computing regression diagnostics, see also [8, 38]. Mahoney and Drineas

pioneered the use of leverage scores for importance sampling strategies in randomized matrix

computations [25].

Specifically, if M is a real m⇥ n matrix with rank(M) = n, then the m⇥m hat matrix

H ⌘ M(MTM)�1MT

is the orthogonal projector onto the column space of M , and its diagonal elements are called

leverage scores [20, Section 2]. Hence, leverage scores are basis-independent. For our purposes,

though, it su�ces to define them in terms of a thin QR decomposition M = QR, so that the

hat matrix can be expressed as H = QQT .

Definition 10 If Q is a m⇥ n matrix with QTQ = I
n

, then its leverage scores are

`
j

⌘ keT
j

Qk22, 1  j  m.

The m⇥m diagonal matrix of leverage scores is

L ⌘ diag(`1, . . . , `m).

Note that the coherence is the largest leverage score,

µ = max
1jm

`
j

= kLk2.

2.5.2 Bounds

The bound in Theorem 11 below involves leverage scores and is based on a matrix Bernstein

concentration inequality (Section 2.7.4), rather than on the matrix Cherno↵ concentration in-

equality (Section 2.7.1) for Theorem 7. Although the Bernstein inequality may not always be

as tight, we did not see how to insert leverage scores into the Cherno↵ inequality.

24

Theorem 11 Let Q be a m ⇥ n real matrix with QTQ = I
n

, leverage scores `
j

, 1  j  m,

and coherence µ. Let S be a sampling matrix produced by Algorithm 2.3.2 with n  c  m. For

0 < ✏ < 1 set

� ⌘ 2n exp

✓

�3
2

c✏2

m (3kQTLQk2 + ✏µ)

◆

.

If � < 1, then with probability at least 1� � we have rank(SQ) = n and

(SQ) 
r

1 + ✏

1� ✏
.

Proof. The proof uses results from [2, 32] and is relegated to Section 2.7.5.

Like Theorem 7, Theorem 11 implies that sampling with replacement is more likely to

produce full-rank matrices as the number c of sampled rows increases. Furthermore, for a given

total number of rows m, matrices Q with fewer columns n and lower coherence µ are more

likely to yield sampled matrices SQ that have full rank. The dependence of kQTLQk2 on µ is

discussed below.

Remark 12 The norm kQTLQk2 has simple and tight bounds in terms of the coherence,

µ2  kQTLQk2  µ. (2.5)

The lower bound follows from kQTLQk2 = kL1/2Qk22 and

kL1/2Qk2 � keT
j

L1/2Qk2 = `
1/2
j

keT
j

Qk2 = `
j

, 1  j  m,

which implies kL1/2Qk2 � µ.

The bounds (2.5) are attained for extreme values of the coherence:

• In case of minimal coherence µ = `
j

for all 1  j  m, we have L = µI
m

. Thus

kQTLQk2 = µkQTQk2 = µ, and the upper bound is attained.

• In case of maximal coherence µ = 1, we have µ2 = µ. Thus kQTLQk2 = µ2 = µ, and

both, lower and upper bounds are attained.

2.5.3 Computable bounds

We present easily computable bounds for kQTLQk2, based on coherence and several of the

largest leverage scores.

To this end, we use a labeling of the leverage scores in non-increasing order,

µ = `[1] � · · · � `[m].

25

Corollary 13 Under the assumptions of Theorem 11, if t ⌘ b1/µc, then

kQTLQk2  µ
t

X

j=1

`[j] + (1� t µ) `[t+1]  µ.

If, in addition, t is an integer, then kQTLQk2  µ
P

t

j=1 `[j].

Proof. See Section 2.8.2.

The number of large leverage scores appearing in Corollary 13 depends on the coherence:

Few leverage scores for high coherence, but more for low coherence. Henceforth we will use the

approximation from Corollary 13 instead of the true value kQTLQk2, for two reasons: First,

numerical experiments show that the approximation tends to be very accurate. Second, the

approximation is convenient, because it requires only a leverage score distribution rather than

a full-fledged matrix Q.

Remark 14 Corollary 13 is tight for the extreme cases of minimal and maximal coherence.

• In case of minimal coherence µ = `
j

for all 1  j  m, Remark 12 implies kQTLQk2 = µ.

The bound in Corollary 13 is kQTLQk2  µ, thus tight.

• In case of maximal coherence µ = 1, Remark 12 implies kQTLQk2 = µ2 = µ. Corollary 13

holds with t = 1 and gives the bound kQTLQk2  µ, which is tight as well.

Inserting this approximation for kQTLQk2 into the expression for � in Theorem 11 yields

a, not necessarily tight, lower bound on the number of samples.

Corollary 15 Under the assumptions of Theorem 11,

c � 2
3m (3⌧ + ✏µ)

ln(2n/�)

✏2
,

where ⌧ ⌘ µ
P

t

j=1 `[j] + (1 � t µ) `[t+1], samples are su�cient to achieve (SQ) 
q

1+✏

1�✏

with

probability at least 1� �.

In particular, if Q has minimal coherence µ = n/m, then Corollary 15 implies that the

number of sampled rows should be at least

c � 3n
ln(2n/�)

✏2
.

This is the same as the coherence-based lower bound (2.3).

26

To achieve (SQ)  10 with probability at least .99 requires that the number of sampled

rows be at least

c � m (2.1⌧ + .7µ) (ln(2n) + 4.7) . (2.6)

2.5.4 Analytical comparison of the bounds in Sections 2.4.1 and 2.5.2

An analytical comparison between Theorems 7 and 11 is not obvious, because they are based

on di↵erent concentration inequalities. Instead we compare the implied lower bounds for the

number of sampled rows, and show that the leverage-score based bound in Corollary 15 is at

least as tight as the coherence-based bound in Corollary 8.

Corollary 16 Under the assumptions of Theorem 11 and Corollary 13,

2
3m (3⌧ + ✏µ)

ln(2n/�)

✏2
 3mµ

ln(2n/�)

✏2
.

Hence Corollary 15 is at least as tight as Corollary 8.

Proof. See Section 2.8.3.

2.5.5 Experimental comparison of the bounds in Sections 2.4.1 and 2.5.2

We present numerical experiments to compare the lower bounds for the number of sampled

rows in Corollaries 8 and 15, for di↵erent values of coherence. This gives quantitative insight

into the comparison in Corollary 16, and illustrates the reduction in the number of sampled

rows from Corollary 15, as compared to Corollary 8.

Experimental setup

As in previous sections, we use m ⇥ n matrices with m = 104 rows and n = 5 columns. The

success probability is .99; and ✏ = 99/101, so that the bound for (SQ) is equal to 10. Hence

the bounds in Corollaries 8 and 15 amount to (2.4) and (2.6), respectively.

We consider two di↵erent leverage scores distributions: A distribution generated by Algo-

rithm 2.6.2 with one large leverage score in Table 2.2; and a distribution generated by Algo-

rithm 2.6.3 with as many zeros as possible in Table 2.3.

Table 2.2

This table shows the lower bounds on the number of sampled rows, for a leverage score dis-

tribution generated with Algorithm 2.6.2 that consists of one large leverage score, equal to

27

Table 2.2: Lower bounds for number of sampled rows in Corollaries 8 and 15 and approximation
⌧ , for di↵erent values of coherence µ. The first value represents minimal coherence µ = n/m.
Herem = 10, 000, n = 5, � = .01, ✏ = 99/101, with leverage scores generated by Algorithm 2.6.2.

µ/(n/m) 1 5 10 15 20 25 50 100

Cor. 8 108 540 1,079 1,618 2,157 2,697 5,393 10,786
Cor. 15 96 191 310 432 556 682 1,3343 2,777
⌧/(n/m) 1.00 1.01 1.04 1.10 1.19 1.30 2.22 9.95

the coherence, and all remaining leverage scores being non-zero and identical. The bounds, as

well as the approximation ⌧ to kQTLQk2, are displayed for eight di↵erent values of coherence,

ranging from minimal coherence µ = n/m to µ = 100n/m.

Table 2.2 illustrates that with increasing coherence, the number of sampled rows implied

by Corollary 15 is only about 20 percent of that from Corollary 8. This is because ⌧ increases

much more slowly than µ. For instance, ⌧ ⇡ µ/10 when µ = 100n/m.

Table 2.3

This table shows the lower bounds on the number of sampled rows. The corresponding leverage

score distribution is generated with Algorithm 2.6.3 and consists of as many zeros as possible.

All non-zero leverage scores, expect possibly one, are equal to the coherence µ, so that ⌧ ⇡ µ.

The bounds are displayed for eight di↵erent values of coherence, ranging from minimal coherence

µ = n/m to µ = 100n/m.

The bounds for Corollary 8 are the same as in Table 2.2, because the coherence values

are the same. Since ⌧ = µ, the di↵erence between Corollaries 8 and 15 is not as drastic as in

Table 2.2, yet it increases with increasing coherence. For µ = 100n/m, Corollary 15 remain

informative, while Corollary 8 does not.

2.5.6 Conclusions for Section 2.5

The goal of this section was to derive condition number bounds that are based on leverage

scores rather than just coherence, when rows are sampled uniformly with replacement (Algo-

rithm 2.3.2). Corollary 16 and the numerical experiments illustrate that the lower bound on

the number of sampled rows implied by Corollary 15 is smaller than that from Corollary 8.

Although the coherence based bound in Theorem 7 is derived from a stronger concentration

inequality than the one for Theorem 11, this di↵erence disappears in the weakening necessary

to obtain lower bounds for the amount of sampling. Even in cases when the leverage score

28

Table 2.3: Lower bounds for number of sampled rows in Corollaries 8 and 15, for di↵erent values
of coherence µ. The first value represents minimal coherence µ = n/m. Here m = 10, 000, n = 5,
� = .01, ✏ = 99/101, with leverage scores generated by Algorithm 2.6.3.

µ/(n/m) 1 5 10 15 20 25 50 100

Cor. 8 108 540 1,079 1,618 2,157 2,697 5,393 10,787
Cor. 15 96 477 954 1,431 1,908 2,385 4,770 9,539

measure ⌧ is the same as the coherence, Corollary 15 still retains a small advantage, which can

increase with increasing coherence. Hence Corollary 15 tends to remain informative for larger

values of coherence, even when Corollary 8 fails.

The di↵erence in implied sampling amounts becomes more drastic in the presence widely

varying non-zero leverage scores, and can be as high as ten percent. This is because the

coherence-based bound in Corollary 8 cannot take advantage of the distribution of the leverage

scores.

Hence, when it comes to lower bounds for the number of rows sampled uniformly with

replacement, we recommend Corollary 15.

We have yet to derive leverage score based bounds for the other two sampling strategies, uni-

form sampling without replacement (Algorithm 2.3.1) and Bernoulli sampling (Algorithm 2.3.3).

2.6 Algorithms for generating matrices with prescribed coher-

ence and leverage scores

In order to investigate the e�ciency of the sampling methods in Section 2.3, and test the

tightness of the bounds in Sections 2.4 and 2.5, we need to generate matrices with orthonormal

columns that have prescribed leverage scores and coherence. The algorithms are implemented

in the Matlab package kappa SQ v3 [22].

We present algorithms for generating matrices with prescribed leverage scores and coherence

(Section 2.6.1), and for generating particular leverage score distributions with prescribed co-

herence (Section 2.6.2). Such distributions can then, in turn, serve as inputs for the algorithm

in Section 2.6.1. Furthermore we present two classes of structured matrices with prescribed

coherence that are easy and fast to generate (Section 2.6.3).

29

2.6.1 Matrices with prescribed leverage scores

We present an algorithm that generates matrices with orthonormal columns that have prescribed

leverage scores. In Section 2.9 we prove an existence result to show that this is always possible.

Algorithm 2.6.1 is a transposed version of [9, Algorithm 3]. It repeatedly applies m ⇥ m

Givens rotations G
ij

that rotate two rows i and j, and are computed from numerically stable

expressions [9, section 3.1]. At most m � 1 such rotations are necessary. Since each rotation

a↵ects only two rows, Algorithm 2.6.1 requires O(mn) arithmetic operations.

Algorithm 2.6.1 Generating a matrix with prescribed leverage scores [9]

Input: Integers m and n with m � n � 1
Vector ` with elements 0  `1  · · ·  `

m

 1 and
P

m

j=1 `j = n

Output: m⇥ n matrix Q with QTQ = I
n

and leverage scores keT
j

Qk22 = `
j

, 1  j  m

Q =
�

I
n

0
n⇥(m�n)

�

T {Initialization}
repeat

Determine indices i < k < j with
keT

i

Qk22 < `
i

, keT
k

Qk22 = `
k

, keT
j

Qk22 > `
j

if `
i

� keT
i

Qk22  keT
j

Qk22 � `
j

then

Apply rotation G
ij

to rows i and j so that keT
i

G
ij

Qk22 = `
i

else
Apply rotation G

ij

to rows i and j so that keT
j

G
ij

Qk22 = `
j

end if
Q = G

ij

Q {Update}
until no more such indices exist

2.6.2 Leverage score distributions with prescribed coherence

We present algorithms that generate leverage score distributions for prescribed coherence. The

resulting distributions then serve as inputs for Algorithm 2.6.1. These particular leverage score

distribution help to distinguish the e↵ect of coherence, which is the largest leverage score, from

that of the remaining leverage scores.

One large leverage score

Given a prescribed coherence µ, Algorithm 2.6.2 generates a distribution consisting of one large

leverage score equal to µ and the remaining leverage scores being identical and non-zero.

30

Algorithm 2.6.2 Generating a leverage score distribution with prescribed coherence: One large
leverage score

Input: Integers m and n with m � n � 1
Real number µ with n/m  µ  1

Output: Vector ` with elements `1 = µ, 0 < `
j

 1 and
P

m

j=1 `j = n

`1 = µ
for j = 2 : m do

`
j

= n�µ

m�1
end for

In the special case of minimal coherence µ = n/m, Algorithm 2.6.2 generates m identical

leverages equal to µ, which is the only possible leverage score distribution in this case.

Many zero leverage scores

Given a prescribed coherence, Algorithm 2.6.3 generates a distribution with as many zero lever-

age scores as possible. This serves as an “adversarial” distribution for the sampling algorithms

in Section 2.3.

Given a prescribed coherence µ, Algorithm 2.6.3 first determines the smallest number of

rows m
s

that can realize this coherence, sets m
s

� 1 leverage scores equal to µ, assigns another

leverage score to to take up the possibly non-zero slack, and sets the remaining leverage scores

to zero.

Algorithm 2.6.3 Generating a leverage score distribution with prescribed coherence: Many
zero leverage scores

Input: Integers m and n with m � n � 1
Real number µ with n/m  µ  1

Output: Vector ` with elements `1 = µ, 0  `
j

 1 and
P

m

j=1 `j = n

m
s

= dn/µe {Number of nonzero rows}
for j = 1 : m

s

� 1 do
`
j

= µ
end for
`
m

s

= n� (m
s

� 1)µ
for j = m

s

+ 1 : m do
`
j

= 0
end for

31

2.6.3 Structured matrices with prescribed coherence

We present two classes of structured matrices with orthonormal columns that have prescribed

coherence. Although the structure puts constraints on the matrix dimensions, the generation

of these matrices is faster than running Algorithm 2.6.1. Note that the matrices produced by

Algorithm 2.6.1 also have structure, but it is not easily characterized.

Stacks of diagonal matrices Given matrix dimensions m and n, where s = m/n is an

integer, and prescribed coherence µ. The m⇥ n matrix Q below has orthonormal columns and

coherence µ, and consists of s stacks of n⇥ n diagonal matrices,

Q =

0

B

B

B

B

@

p
µ I

n

� I
n

...

� I
n

1

C

C

C

C

A

where � ⌘
s

1� µ
m

n

� 1
.

Matrices with Hadamard structure Given matrix dimensions m and n, where m = 2k

and n < m is also a power of two, and prescribed coherence µ. The m⇥ n matrix

Q = D
k

I
n

0

!

has orthonormal columns and coherence µ, and is defined recursively as follows. For

↵ ⌘
v

u

u

t

µ� n�1
m�1

1� n�1
m�1

, � ⌘
r

1� ↵2

m� 1

define square matrices B
j

of dimension 2j and square matrices D
j

of dimension 2j+1 as follows,

B0 = �, B
j+1 =

�B
j

B
j

B
j

B
j

!

0  j  k � 1

D1 =

↵ ��

� ↵

!

, D
j+1 =

D
j

�B
j

B
j

D
j

!

.

Note that only the final matrix Q has orthonormal columns and coherence µ while, in general,

the intermediate matrices B
j

and D
j

do not. We omit the messy induction proof, because it

does not provide much insight.

32

2.7 Proofs for Sections 2.4 and 2.5.2

For the coherence-based bounds in Section 2.4 we first present a matrix concentration inequality

(Section 2.7.1), and then the proofs of Theorem 7 (Section 2.7.2) and Corollary 8 (Section 2.7.3).

For the bound based on leverage scores in Section 2.5.2, we first present a matrix concen-

tration inequality (Section 2.7.4), and then the proof of Theorem 11 (Section 2.7.5).

2.7.1 Matrix Cherno↵ Concentration inequality

The matrix concentration inequality below is the basis for Theorem 7 and Corollary 8.

Denote the eigenvalues of a Hermitian matrix Z by �
j

(Z), and the smallest and largest

eigenvalues by �
min

(Z) ⌘ min
j

�
j

(Z) and �
max

(Z) ⌘ max
j

�
j

(Z), respectively.

Theorem 17 (Corollary 5.2 in [37]) Let X
j

be a finite number of independent random n⇥n

Hermitian positive semidefinite matrices with max
j

kX
j

k2  ⌧ . Define

!
min

⌘ �
min

0

@

X

j

E[X
j

]

1

A !
max

⌘ �
max

0

@

X

j

E[X
j

]

1

A ,

and f(x) ⌘ ex(1 + x)�(1+x). Then for any 0  ✏ < 1

Pr

2

4�
min

0

@

X

j

X
j

1

A  (1� ✏) !
min

3

5  n f(�✏)!min

/⌧ ,

and for any ✏ � 0

Pr

2

4�
max

0

@

X

j

X
j

1

A � (1 + ✏) !
max

3

5  n f(✏)!max

/⌧ .

2.7.2 Proof of Theorem 7

We present a separate proof for each sampling method.

Algorithm 2.3.1: Sampling without replacement The proof follows directly from [36,

Lemma 3.4].

Algorithm 2.3.2: Sampling with replacement The proof is based on Theorem 17, and

turns out to be somewhat similar to that of [36, Lemma 3.4].

33

Set X
t

⌘ m

c

QT e
k

t

eT
k

t

Q, 1  t  c. Then X
t

is n ⇥ n Hermitian positive semidefinite and

kX
t

k2  m

c

keT
k

t

Qk22  mµ

c

. Hence we set ⌧ = mµ/c. Furthermore,

E[X
t

] =
m

X

j=1

1
m

�

m

c

QT e
j

eT
j

Q
�

= 1
c

m

X

j=1

QT e
j

eT
j

Q = 1
c

I
n

.

Hence the eigenvalues of the sum are �
j

(
P

c

t=1E[X
t

]) = �
j

(I
n

) = 1, 1  j  n, and we set

!
min

= !
max

= 1. Applying Theorem 17 to
P

c

t=1Xt

= QTSTSQ gives

Pr
⇥

�
min

�

QTSTSQ
�  1� ✏

⇤  nf(�✏)c/(mµ)

Pr
⇥

�
max

�

QTSTSQ
� � 1 + ✏

⇤  nf(✏)c/(mµ).

The result follows from Boole’s inequality [34, p. 16].

Algorithm 2.3.3: Bernoulli sampling The proof is similar to the one above, and a special

case of [16, Theorem 6.1].

Set

X
j

⌘ m

c

8

<

:

QT e
j

eT
j

Q with probability c

m

0
n⇥n

with probability 1� c

m

, 1  j  m.

Then X
j

is n⇥ n Hermitian positive semidefinite, kX
j

k2  m

c

keT
j

Qk22  mµ

c

. As above, we set

⌧ = mµ/c. Furthermore,

E[X
j

] = c

m

· m

c

QT e
j

eT
j

Q+ (1� c

m

) · 0
n⇥n

= QT e
j

eT
j

Q,

which implies
P

m

j=1E[X
j

] =
P

m

j=1Q
T e

j

eT
j

Q = I
n

. Now proceed as in the above proof for

Algorithm 2.3.2, and apply Theorem 17 to
P

m

j=1Xj

= QTSTSQ.

2.7.3 Proof of Corollary 8

First we simplify the bound in Theorem 7 based on the inequality f(�x)  f(x) for 0 < x < 1

. This implies for Theorem 7 that

� ⌘ n
⇣

f(�✏)c/(mµ) + f(✏)c/(mµ)
⌘

�  2n f(✏)c/(mµ).

Solving for c gives

c � mµ
ln(2n/�)

� ln f(✏)
.

34

If we can show that � ln f(✏) > ✏2/3, then the above lower bound for c definitely holds if

c � 3mµ
ln(2n/�)

✏2
.

To show � ln f(✏) > ✏2/3 for 0 < ✏ < 1, apply the definition f(x) = ex(1 + x)�(1+x)

so that h(x) ⌘ � ln f(x) = (1 + x) ln (1 + x) � x. Expand into the power series ln (1 + x) =
P1

j=1 (�1)j+1 xj

j

. For 0 < x < 1 this yields h(x) = 1
2x

2 � 1
6x

3 + E(x), where

E(x) ⌘
1
X

j=4

(�1)j
xj

(j � 1)j
=

1
X

j=2

✓

2j + 1� (2j � 1)x

(2j � 1)2j(2j + 1)

◆

x2j > 0,

since each summand is positive for 0 < x < 1. Thus for 0 < x < 1 we obtain

h(x) >
1

2
x2 � 1

6
x3 =

3� x

6
x2 � x2

3
.

2.7.4 Matrix Bernstein concentration inequality

The matrix concentration inequality below is the basis for Theorem 11. It is a version specialized

to square matrices of [32, Theorem 4]. In numerical experiments we found it to be tighter than

[15, Theorem 4] and the Frobenius norm bound [11, Theorem 2].

Theorem 18 (Theorem 4 in [32]) Let X
j

be m independent random n ⇥ n matrices with

E[X
j

] = 0
n⇥n

, 1  j  m. Let ⇢
j

⌘ max{kE[X
j

XT

j

]k2, kE[XT

j

X
j

]k2} and max1jm

kX
j

k2 
⌧ . Then for any ✏ > 0

Pr

2

4k
m

X

j=1

X
j

k2 > ✏

3

5  2n exp

�3
2

✏2

3
P

m

j=1 ⇢j + ⌧✏

!

.

2.7.5 Proof of Theorem 11

The proof is similar to that of [2, Lemma 3]. Represent the outcome of uniform sampling with

replacement in Algorithm 2.3.2 by QTSTSQ =
P

c

t=1 Yt, where Y
t

⌘ m

c

QT e
k

t

eT
k

t

Q are n ⇥ n

matrices, 1  t  c, with expected value

E[Y
t

] =
m

X

j=1

1

m

m

c
QT e

j

eT
j

Q =
1

c

m

X

j=1

QT e
j

eT
j

Q =
1

c
I
n

.

Thus, the zero mean versions are X
t

⌘ Y
t

� 1
c

I
n

. To apply Theorem [32, Theorem 4] to the X
t

we need to verify that they fulfill the required conditions. First, by construction, E[X
t

] = 0,

35

1  t  c. Second, since Y
t

and I
n

are symmetric positive semidefinite,

kX
t

k2  max{kY
t

k2, k1
c
I
n

k2} =
1

c
max{m keT

k

t

Qk22, 1}  mµ

c
,

where the last inequality follows from the definition of µ, and µ � n/m. Hence we set ⌧ = mµ/c.

Third, since X
t

is symmetric,

XT

t

X
t

= X
t

XT

t

= X2
t

= Y 2
t

� 2

c
Y
t

+
1

c2
I
n

.

From E[Y
t

] = 1
c

I
n

follows

E[X2
t

] = E[Y 2
t

]� 2

c
E[Y

t

] +
1

c2
I
n

= E[Y 2
t

]� 1

c2
I
n

. (2.7)

Since Y 2
t

= m

2

c

2 `
k

t

QT e
k

t

eT
k

t

Q, we obtain

E[Y 2
t

] =
m

X

j=1

1

m

m2

c2
`
j

QT e
j

eT
j

Q =
m

c2
QT

0

@

m

X

j=1

`
j

e
j

eT
j

1

A Q =
m

c2
QTLQ.

Substituting this into (2.7) yields

E[X2
t

] = 1
c

2

�

mQTLQ� I
n

�

.

Positive semi-definiteness gives

kE[X2
t

]k2  1

c2
max{m kQTLQk2, 1} =

m

c2
kQTLQk2.

We set ⇢
t

= m

c

2 kQTLQk2. Applying [32, Theorem 4] to

c

X

t=1

X
t

=
c

X

t=1

�

Y
t

� 1
c

I
n

�

= (SQ)T (SQ)� I
n

shows that kPc

t=1Xt

k2  ✏ with probability at least 1� �.

2.8 Two-norm bound for scaled matrices, and proofs for Sec-

tions 2.5.3 and 2.5.4

We derive a bound for the two-norm of diagonally scaled matrices (Section 2.8.1), which leads

immediately to the proofs of Corollary 13 (Section 2.8.2), and Corollary 16 (Section 2.8.3).

36

2.8.1 Bound

We present two majorization bounds for Hadamard products of vectors (Lemmas 21 and 20),

and use them to derive a bound for the two-norm of diagonally scaled matrices (Theorem 22).

Definition 19 (Definition 4.3.41 in [21]) Let a and b be vectors with m real elements. The

elements, labelled in algebraically decreasing order, are a[1] � · · · � a[m] and b[1] � · · · � b[m].

The vector a weakly majorizes the vector b, if

k

X

j=1

a[j] �
k

X

j=1

b[j], 1  k  m.

The vector a majorizes the vector b, if a weakly majorizes b and also
P

m

j=1 a[j] =
P

m

j=1 b[j].

The first lemma follows from a stronger majorization inequality for functions that are mono-

tone and lattice superadditive.

Lemma 20 (Theorem II.4.2 in [3]) If b and x are vectors with m non-negative elements,

then
k

X

j=1

b
j

x
j


k

X

j=1

b[j] x[j], 1  k  m.

The second lemma is a variant of a well-known majorization result for Hadamard products

of vectors [21, Lemma 4.3.51]. Since the version below is slightly di↵erent, we include a proof

from first principles.

Lemma 21 Let x, a and b be vectors with m non-negative elements. If a weakly majorizes b,

then
k

X

j=1

a[j] x[j] �
k

X

j=1

b[j] x[j], 1  k  m.

Proof. The following arguments hold for 1  k  m � 1. Start out with the upper bound,

and separate the last summand,

k+1
X

j=1

a[j] x[j] =
k

X

j=1

a[j] x[j] + a[k+1] x[k+1]. (2.8)

37

Re-writing the right sum and applying x[j] � x[k+1] � 0, 1  j  k, gives

k

X

j=1

a[j] x[j] =
k

X

j=1

b[j] x[j] +
k

X

j=1

(a[j] � b[j])x[j]

�
k

X

j=1

b[j] x[j] +
k

X

j=1

(a[j] � b[j])x[k+1]

=
k

X

j=1

b[j] x[j] +

0

@

k

X

j=1

a[j] �
k

X

j=1

b[j]

1

A x[k+1].

Insert this into (2.8) and gather common terms,

k+1
X

j=1

a[j] x[j] �
k

X

j=1

b[j] x[j] +

0

@

k+1
X

j=1

a[j] �
k

X

j=1

b[j]

1

A x[k+1]

�
k

X

j=1

b[j] x[j] + b[k+1] x[k+1] =
k+1
X

j=1

b[j] x[j],

where the second inequality follows from the majorization
P

k+1
j=1 a[j] �

P

k+1
j=1 b[j].

Now we are ready to bound the two norm of a row scaled matrix DZ, where Z is m⇥ n of

full column rank, and D = diag
⇣

d1 . . . d
m

⌘

is a non-negative m⇥m diagonal matrix. The

obvious bound is

kDZk2  kDk2 kZk2 = d[1] kZk2. (2.9)

However, the bound in Theorem 22 below, which incorporates the largest row norm of Z and

several of the largest (in magnitude) diagonal elements of D, turns out to be tighter.

Theorem 22 Let Z be a real m ⇥ n matrix with rank(Z) = n, smallest singular value �
z

=

1/kZ†k2, and largest squared row norm µ
z

⌘ max1jm

keT
j

Zk22. If t ⌘
⌅

�2
z

/µ
z

⇧

, then

kDZk22 
8

<

:

µ
z

P

t

j=1 d
2
[j] +

�kZk22 � t µ
z

�

d2[t+1] if kZk22 � t µ
z

 µ
z

µ
z

P

t+1
j=2 d

2
[j] +

�kZk22 � t µ
z

�

d2[1] otherwise.

Proof. Let z be a n ⇥ 1 vector with kzk2 = 1 and kDZk2 = kDZzk2. Furthermore let

z
j

⌘ eT
j

Zz, 1  j  m, be the elements of Zz, so that kZzk22 =
P

m

j=1 z
2
j

.

38

Apply Lemma 20 Since d2
j

� 0 and z2
j

� 0, 1  j  m, we can apply Lemma 20 with

x
j

= d2
j

and b
j

= z2
j

, to obtain

kDZk22 = kDZzk22 =
m

X

j=1

d2
j

z2
j

=
m

X

j=1

b
j

x
j


m

X

j=1

b[j] x[j].

Verify assumptions of Lemma 21 In order to apply Lemma 21 with

a
j

= µ
z

, 1  j  t, a
t+1 = kZzk22 � t µ

z

, a
j

= 0, t+ 2  j  m,

we need show that the assumptions are satisfied, meaning all vector elements are non-negative

and the majorization condition holds. Clearly a
j

� 0 for 1  j  t and t + 2  j  m. This

leaves a
t+1. From rank(Z) = n follows that �

z

> 0. The definition of t implies 0  t  �2
z

/µ
z

,

so that

0  �2
z

� t µ
z

= min
kyk2=1

kZyk22 � t µ
z

 kZzk22 � t µ
z

= a
t+1.

Thus, all vector elements are non-negative.

To show the majorization condition, start with the Cauchy-Schwartz inequality,

b
j

= z2
j

= (eT
j

Z z)2  keT
j

Zk22 kzk22 = keT
j

Zk22  µ
z

, 1  j  m.

This yields, regardless of whether a
t+1 = kZzk22 � t µ

z

 µ
z

or not,

k

X

j=1

a[j] �
k

X

j=1

µ
z

�
k

X

j=1

z2[j] =
k

X

j=1

b[j], 1  k  t.

Moreover, for 1  k  m� t,

t+k

X

j=1

a[j] =
t

X

j=1

µ
z

+ (kZzk22 � t µ
z

) = kZzk22 �
t+k

X

j=1

z2[j] =
t+k

X

j=1

b[j].

This gives the weak majorization condition
P

k

j=1 a[j] �
P

k

j=1 b[j], 1  k  m.

Apply Lemma 21 Since the assumptions of Lemma 21 are satisfied, we can conclude that
P

m

j=1 b[j] x[j] 
P

m

j=1 a[j] x[j]. At last, substitute into this majorization relation the expressions

for a and b. If kZk22 � t µ
z

 µ
z

, then

m

X

j=1

a[j] x[j] = µ
z

t

X

j=1

d2[j] + (kZzk22 � t µ
z

) d2[t+1]  µ
z

t

X

j=1

d2[j] + (kZk22 � t µ
z

) d2[t+1],

39

otherwise

m

X

j=1

a[j] x[j] = (kZzk22 � t µ
z

) d2[1] + µ
z

t+1
X

j=2

d2[j]  (kZk22 � t µ
z

) d2[1] + µ
z

t+1
X

j=2

d2[j].

Theorem 22 is tighter than (2.9) because d2[j]  kDk22 implies

kDZk22 
8

<

:

µ
z

P

t

j=1 d
2
[j] +

�kZk22 � t µ
z

�

d2[t+1] if kZk22 � t µ
z

 µ
z

µ
z

P

t+1
j=2 d

2
[j] +

�kZk22 � t µ
z

�

d2[1] otherwise

 tµ
z

kDk22 �
�kZk22 � t µ

z

� kDk22 = kDk22kZk22.

Corollary 23 Let Z be a real m⇥n matrix with ZTZ = I
n

, and coherence µ
z

⌘ max1jm

keT
j

Zk22.
If t ⌘ b1/µ

z

c, then
kDZk22  µ

z

t

X

j=1

d2[j] + (1� t µ
z

) d2[t+1].

Proof. Applying Theorem 22 and assuming 1� t µ
z

 µ
z

gives

kDZk22  µ
z

t

X

j=1

d2[j] + (1� t µ
z

) d2[t+1].

The assumption 1� t µ
z

 µ
z

is justified because

1� t µ
z

= 1� b1/µ
z

c µ
z

 1� (1/µ
z

� 1)µ
z

= µ
z

.

2.8.2 Proof of Corollary 13

Apply Corollary 23 with D = L1/2, Z = Q, µ
z

= µ, and t = b1/µc to prove the first inequality,

kQTLQk2 = kL1/2Qk22  µ

t

X

j=1

`[j] + (1� t µ) `[t+1].

As for the second inequality, `[j]  µ implies

µ

t

X

j=1

`[j] + (1� t µ) `[t+1]  tµ2 + (1� tµ)µ = µ.

40

If, in addition, t is an integer, then t = 1/µ and 1� t µ = 0.

2.8.3 Proof of Corollary 16

Define the common term � ⌘ m ln(2n/�)/✏2 in both bounds, and write Corollary 8 as c � 3µ�,

and Corollary 15 as c � (2⌧ + 2
3✏µ) �. From ✏ < 1 and ⌧  µ follows

2⌧ + 2
3✏µ  3µ.

2.9 Existence of matrices with prescribed coherence and lever-

age scores

This section is the basis for Algorithm 2.6.1. We review a well-known majorization result (Theo-

rem 24). We use it to show (Theorem 25) that, given prescribed matrix dimensions and leverage

scores, there always exists a matrix Q with orthonormal columns that has the required dimen-

sions and (squared) row norms equal to the leverage scores.

Our approach is again based on majorization, see Definition 19, and in particular on the

fact that the eigenvalues of a real symmetric matrix majorize its diagonal elements.

Theorem 24 (Theorem 4.3.48 in [21]) Let a and � be vectors with real elements a
j

and

�
j

, respectively, 1  j  m. If � majorizes a, then there exists a m⇥m real symmetric matrix

with eigenvalues �
j

and diagonal elements a
j

, 1  j  m.

With the help of Theorem 24 we show that there exists a matrix with orthonormal columns

that has prescribed leverage scores and coherence.

Theorem 25 Given integers m and n with m � n � 1; and a vector ` with m elements `
j

that

satisfy 0  `
j

 1 and
P

m

j=1 `j = n. Then there exists a m ⇥ n matrix Q with orthonormal

columns that has leverage scores keT
j

Qk22 = `
j

, 1  j  m, and coherence µ = max1jm

`
j

.

Proof. Let � be a vector with m elements that satisfy �
j

= 1 for 1  j  n, and �
j

= 0 for

n+ 1  j  m. We are going to construct a matrix Q by applying Theorem 24 to � and `. To

this end, we first need to show that � majorizes `.

Majorization We distinguish the cases 1  k  n and n+ 1  k  m.

Case 1  k  n: From `
j

 1 follows

k

X

j=1

�
j

= k �
k

X

j=1

`[j].

41

Case n+ 1  k  m: From `
j

� 0 and
P

m

j=1 `j = n follows

k

X

j=1

�
j

= n =
k

X

j=1

`[j] +
m

X

j=k+1

`[j] �
k

X

j=1

`[j].

Hence
k

X

j=1

�
j

�
k

X

j=1

`[j], 1  k  m,

which means that � weakly majorizes `. Since also
P

m

j=1 �j

= n =
P

m

j=1 `[j], we can conclude

that � majorizes `.

Construction of Q Theorem 24 implies that there exists a real symmetric matrix W with

eigenvalues �
j

and diagonal elements W
jj

= `
j

, 1  j  m. Since W has n eigenvalues equal to

one, and all other eigenvalues equal to zero, it has an eigenvalue decomposition

W = Q̂

I
n

0

0 0

!

Q̂T = QQT ,

where Q̂ is a m⇥m real orthogonal matrix, and Q ⌘ Q̂
⇣

I
n

0
⌘

T

has n orthonormal columns.

ThereforeQ has leverage scores keT
j

Qk22 = eT
j

QQT e
j

= W
jj

= `
j

and coherence µ = max1jm

`
j

.

42

Chapter 3

Sensitivity of Leverage Scores

3.1 Introduction

We provide a brief overview of leverage scores and principal angles.

Leverage Scores

Statistical leverage scores were introduced in 1978 by Hoaglin and Welsch [20] to detect outliers

when computing regression diagnostics, see also [8, 38]. To be specific, consider the least squares

problem min
x

kAx� bk2, where A is a real m⇥ n matrix with rank(A) = n. The so-called hat

matrix H = A(ATA)�1AT is the orthogonal projector onto range(A), and determines the fit,

b̂ = Hb. The diagonal elements of the hat matrix are called the leverage scores of A,

`
j

(A) ⌘ H
jj

, 1  j  m,

because `
j

(A) reflects the leverage of the jth point b
j

on the corresponding fit b̂
j

. To see this,

suppose that `
k

(A) = 1 for some k. Then b̂
k

= b
k

. Because b
k

has maximal leverage, it completely

determines the corresponding element of the fit. That is, kth canonical vector, e
k

, is in the

column space of A, and b
k

can be fitted completely without a↵ecting fit of the other elements

of b. In contrast, if `
k

(A) = 0 then b
k

has zero leverage on the fit b̂
k

and b̂
k

= 0. That is, e
k

is

perpendicular to the column space of A.

Leverage scores can be stably computed from a thin QR decomposition A = QR, where Q is

m⇥n with orthonormal columns, via `
j

(A) = keT
j

Qk22. Leverage scores can also be expressed in

terms of the left singular vectors of A that are associated with the non-zero singular values. In

fact, for any n⇥ n orthogonal matrix W , keT
j

Qk2 = keT
j

QWk2 which leads us to the following

definition of the leverage scores of a matrix A.

43

Definition 26 Given a m ⇥ n real matrix A with m � n and full column rank, let Q be any

orthonormal basis for the column space of A. Then, the leverage scores of A are defined as

`
i

(A) = keT
i

Qk22, for 1  i  m.

Leverage scores are the basis for many sampling strategies in randomized matrix computations

[25], including low rank approximations [13], CUR decompositions [14], subset selection [6],

Nyström approximations [35], least squares [12], and matrix completion [7].

One can also define the leverage scores of the space spanned by the k dominant left singular

vectors. This type of leverage scores is useful when dealing with numerically low rank matrices

[13] and low rank matrix approximations [14, 26]. We let `
i,k

denote the leverage scores computed

in this manner and provide the following definition.

Definition 27 Given a m⇥n real matrix A, let �1(A), . . . ,�min(m,n)(A) be the singular values

of A in descending order and let Q
k

be any orthonormal basis for the space spanned by the k

dominant left singular vectors of A where 0 < k  min(m,n). If �
k

(A)��
k+1(A) > 0, then the

leverage scores of A computed from the k dominant left singular vectors are defined as

`
i,k

(A) = keT
i

Q
k

k22,

for 1  i  m and 1  k  m� 1.

Principal Angles

The principal angles, also called the canonical angles, between two matrices, A and B, describe

the angles between their subspaces. They give a measure of the distance between the column

space of A and the column space of B. These angles can be described in terms of a singular

value decomposition.

Definition 28 (§12.4.3, [17]) Given m ⇥ n real, full column rank matrices A and B, let Q

and Q̃ be any bases of orthonormal columns for A and B, respectively. Let QT Q̃ = Y ⌃ZT be a

thin SVD, where Y and Z are n⇥ n orthogonal matrices containing the left and right singular

vectors of QT Q̃, respectively. Define

✓
j

= arccos(⌃
j,j

) 2 [0,⇡/2] ,

for 1  j  n, to be the principal angles between A and B. The columns of QY and Q̃Z are

called the principal vectors of A and B, respectively. The principal angles are ordered such that

0  ✓1  . . .  ✓
n

 ⇡/2.

44

We also use an alternative definition for ✓
n

from [28].

Definition 29 (§5.15, [28]) Given two real m ⇥ n matrices, A and B, let P
A

and P
B

be

orthogonal projectors onto the column space of A and B, respectively, and define

✓
n

= arcsin (k(I � P
B

)P
A

k2)

be the maximal principal angle between the two subspaces.

For ✓
n

, these two definitions are essentially the same. To see the connection, observe that

cos(✓
n

) = kQT Q̃k2 = kQQT Q̃Q̃T k2 = kP
B

P
A

k2.

3.2 Supplemental Results

Below we present two theorems and a lemma leading up to a leverage score perturbation bound.

We consider two m⇥n matrices of full column rank, A and B, and bound `
i

(B) in terms of `
i

(A)

and the principal angles between the column spaces of A and B. Next, we bound the largest

principal angle in terms of kB � Ak2 and kA†k2. Finally, we present a second upper bound on

the largest principal angle. These results are used to obtain our main results in Section 3.3.

3.2.1 Leverage Score Perturbation in Terms of Principal Angles

Theorem 30 below uses principal angles and the triangle inequality to bound `
i

(B) in terms of

`
i

(A).

Theorem 30 Let A and B be m⇥n real, full column rank matrices, and let ✓
j

, for 1  j  n,

be the principal angles between the column spaces of A and B. Then,

`
i

(B) 
⇣

cos(✓1)
p

`
i

(A) + sin(✓
n

)
p

1� `
i

(A)
⌘2

, for 1  i  m.

In addition, for each i, if
p

`
i

(A)� sin(✓
n

) � 0 and cos(✓1) > 0, then

p

`
i

(A)� sin(✓
n

)

cos(✓1)

!2

 `
i

(B).

Proof. See Section 3.6.1.

Theorem 31 below uses principal angles to bound |`
i

(A)� `
i

B|.

45

Theorem 31 Let A and B be m⇥n real, full column rank matrices, and let ✓
j

, for 1  j  n,

be the principal angles between the column spaces of A and B. Then,

|`
i

(B)� `
i

(A)|  2
p

`
i

(A)
p

1� `
i

(A) sin(✓
n

) + sin(✓
n

)2

for 1  i  m.

Proof. See Section 3.6.2.

Theorem 30 and Theorem 31 show that the leverage scores of A and B are close if the principal

angles between their column spaces are small. If A and B have the same column space, then all

of the principal angles are zero and Theorem 30 and Theorem 31 confirm that their leverage

scores are equal. On the other hand, if A and B are completely orthogonal to each other, then

Theorem 30 implies that `
i

(B) + `
i

(A)  1.

3.2.2 Upper Bounds for the Largest Principal Angle

In Theorem 32, we show a bound by Wedin on the maximal principal angle between A and B

in terms of kB �Ak2, and kA†k2.

Theorem 32 [41, Equation 4.4] Let A and B be m ⇥ n real, full column rank matrices with

m > n. Then,

sin(✓
n

)  kB �Ak2kA†k2.

Proof. See Section 3.6.3.

Theorem 32 shows that the largest principal angle is small if the di↵erence between A and

B and kA†k2 are small.

In Theorem 33, we show a bound on the maximal angle between the space spanned by the

top k left singular vectors of A, and the space spanned by the top k left singular vectors of B. We

begin by setting up a little notation. For any m⇥n matrix A, let �
i

(A), for 1  i  min(m,n),

denote the ith singular value of A where �1(A) � . . . � �min(m,n)(A) � 0.

This bound is a modification of [40, Equation 3.1].

Corollary 33 ([40]) Let A and B be m ⇥ n matrices and let Q
k

and Q̃
k

be the k dominant

left singular vectors of A and B, respectively. If 2kB �Ak2  �
k

(A)� �
k+1(A), then

sin(✓
k

(Q
k

, Q̃
k

))  kB �Ak2
�
k

(A)� �
k+1(A)� kB �Ak2  2kB �Ak2

�
k

(A)� �
k+1(A)

for 1  k  min(m,n)� 1.

46

Proof. See section 3.6.4.

Corollary 33 shows that the largest principal angle between Q
k

and Q̃
k

is small if the relative

di↵erence between A and B is small compared to the singular value gap between the kth and

k + 1th singular values of A.

In Lemma 34, we present a second upper bound on the largest principal angle between

the column spaces of A and B. We use this lemma to remove the condition cos(✓1) > 0 from

Theorem 30 in the proof for Corollary 35.

Lemma 34 Given m⇥n, real, full column rank matrices A and B, let ✓
j

, for 1  j  n, be the

principal angles between the columns spaces of A and B. If kB�Ak2  kA†k�1
2 , then ✓

n

< ⇡/2.

Proof. See Section 3.6.5.

3.3 Leverage Score Perturbation in terms of Matrix Perturba-

tion

Here we combine our previous results to obtain leverage score perturbation bounds. First, we

give two sided bounds for both `
i

(B) and `
i,k

(B).

Corollary 35 Given m ⇥ n real matrices A and B with m > n such that A has full column

rank and kB �Ak2 < kA†k�1
2 . Then,

`
i

(B) 
⇣

p

`
i

(A) + kA†k2kB �Ak2
p

1� `
i

(A)
⌘2

, for 1  i  m.

In addition, for each 1  i  m, if
p

`
i

(A)� kA†k2kB �Ak2 � 0, then

⇣

p

`
i

(A)� kA†k2kB �Ak2
⌘2  `

i

(B).

Proof. See Section 3.6.6.

Corollary 36 Given m⇥ n real matrices A and B. If 2kB �Ak2  �
k

(A)� �
k+1(A), then

`
i,k

(B) 
✓

q

`
i,k

(A) +
kB �Ak2

�
k

(A)� �
k+1(A)� kB �Ak2

q

1� `
i,k

(A)

◆2

for 1  i  m and 1  k  min(m,n) � 1. In addition, for each 1  i  m, if
p

`
i,k

(A) �
kB�Ak2

�

k

(A)��

k+1(A)�kB�Ak2 � 0, then

✓

q

`
i,k

(A)� kB �Ak2
�
k

(A)� �
k+1(A)� kB �Ak2

◆2

 `
i,k

(B).

47

Proof. See Section 3.6.7.

Corollary 35 shows that the leverage scores of A and B are close if kA†k2 and the di↵erence

between A and B are small. Corollary 36 shows that if kB � Ak2 is small with respect to the

kth singular value gap of A, then the leverage scores of A and B, as computed by the top k left

singular vectors, are close.

While trying to examine Corollary 35 and Corollary 36, we found that the results are

somewhat di�cult to plot. Even with logarithmically scaled axes, the upper and lower bounds

are indistinguishable since their di↵erence is much smaller than their magnitude. To aid in

examining our results, we use Theorem 31 along with Theorem 32 and Corollary 33 to obtain

bounds on |`
i

(A) � `
i

(B)| and |`
i,k

(A) � `
i,k

(B)|. While the bounds below are slightly less

descriptive than Corollary 35 and Corollary 36, they have the advantage that one can actually

see the results in a plot.

Corollary 37 Given m ⇥ n real matrices A and B with m > n such that A has full column

rank and kB �Ak2 < kA†k�1
2 . Then,

|`
i

(B)� `
i

(A)|  2
p

`
i

(A)
p

1� `
i

(A)kA†k2kB �Ak2 +
⇣

kA†k2kB �Ak2
⌘2

, for 1  i  m.

and if `
i

(A) > 0, then

|`
i

(B)� `
i

(A)|
`
i

(A)
 2

s

1� `
i

(A)

`
i

(A)
kA†k2kB �Ak2 +

kA†k2kB �Ak2
p

`
i

(A)

!2

, for 1  i  m.

Proof. See Section 3.6.8.

Corollary 38 Given m⇥ n real matrices A and B such that

2kB �Ak2 < �
k

(A)� �
k+1(A)

. Let

� = kB�Ak2
�

k

(A)��

k+1(A)�kB�Ak2 <
2kB �Ak2

�
k

(A)� �
k+1(A)

.

Then,

|`
i,k

(B)� `
i,k

(A)|  2
q

`
i,k

(A)
q

1� `
i,k

(A)� + �2,

for 1  i  m and 1  k  min(m,n)� 1. And if `
i,k

(A) > 0, then

|`
i,k

(B)� `
i,k

(A)|
`
i

(A)
 2

s

1� `
i,k

(A)

`
i,k

(A)
� +

�
p

`
i,k

(A)

!2

, for 1  i  m.

48

Proof. See Section 3.6.9.

3.3.1 Leverage score bound for givens rotation

In this subsection, we bound the leverage scores of a matrix G
i,j

A where G
i,j

is a Givens matrix

that rotates row i with row j by � radians.

Theorem 39 Given the m ⇥ n real, full columns rank matrix A with m > n, let G
i,j

be the

m⇥m Givens rotation matrix that rotates row i with row j by � radians. Then,

`
i

(G
i,j

A)  cos(�)2`
i

(A) + sin(�)2`
j

(A) + | sin(2�)|
q

`
i

(A)`
j

(A)

and

`
i

(G
i,j

A) � cos(�)2`
i

(A) + sin(�)2`
j

(A)� | sin(2�)|
q

`
i

(A)`
j

(A).

Proof. See Section 3.6.10.

This bound shows that the change in leverage score is small if the rotation angle of G
i,j

is small.

3.4 Experiments

In this section, we examine the tightness and behavior of Corollary 37 with a few carefully

constructed examples. In all of the examples, we set m = 500 and n = 15 and we use Algorithm

2.6.1 to construct the unperturbed matrix A with orthonormal columns. We use this algorithm

because it allows us to create a matrix with a wide distribution of leverage scores. It is important

to note that since Corollary 37 depends on kB � Ak2kA†k2, we would not gain any insight on

the performance of the bound by considering matrices with di↵erent singular values. It is for

this reason that we only consider matrices A with orthonormal columns.

In Figures 3.1, 3.2 and 3.3, the horizontal coordinate axis represents the leverage scores

of A (the unperturbed leverage scores) and the vertical coordinate axis represents either the

absolute or relative magnitude of the change in leverage scores. The dots represent the absolute

di↵erence between the leverage scores of A and B, |`
i

(B)� `
i

(A)|, and the black line represents

the bound from Corollary 37.

Example 1

Here we present two plots to show how well Corollary 37 predicts the behavior of the leverage

scores of B = A+E where E is a matrix whose entries are independent realizations of a normal

random variable.

49

10
−15

10
−10

10
−5

10
0

10
−26

10
−24

10
−22

10
−20

10
−18

10
−16

10
−14

l
i
(A)

|
l i(A

)
−

 l i(A
+

E
)

|

[h!]

10
−15

10
−10

10
−5

10
0

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

l
i
(A)

|
l i(A

)
−

 l i(A
+

E
)

|
/

|
l i(A

)
|

[h!]

Figure 3.1: Here, A has orthonormal columns and thus kAk2 = �
n

(A) = 1 and kEk2 ⇡
2.6 ⇤ 10�15. The entries of E have mean 0 and variance 10�16. On the left, we plot the absolute
change in the leverage scores and the absolute bound from Corollary 37, and on the right we
plot the relative change in the leverage scores against the relative bound from Corollary 37.

10
−15

10
−10

10
−5

10
0

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

l
i
(A)

|
l i(A

)
−

 l i(A
+

E
)

|

[h!]

10
−15

10
−10

10
−5

10
0

10
−10

10
−5

10
0

10
5

10
10

l
i
(A)

|
l i(A

)
−

 l i(A
+

E
)

|
/
|
l i(A

)
|

[h!]

Figure 3.2: Here, A has orthonormal columns and thus kAk2 = �
n

(A) = 1 and kEk2 ⇡
2.5 ⇤ 10�3. The entries of E have mean 0 and variance 10�4. On the left, we plot the absolute
change in the leverage scores and the absolute bound from Corollary 37, and on the right we
plot the relative change in the leverage scores against the relative bound from Corollary 37.

50

In Figures 3.1 and 3.2, we see that Corollary 37 accurately bounds the absolute di↵erence

between the leverage scores of A and B. In particular, we see the following behaviors.

• Small leverage scores have a larger relative perturbation.When kB�Ak2 is small,

as in Figure 3.1, the relative bound on the leverage score perturbation is O
⇣

q

1�`

i

(A)
`

i

(A)

⌘

,

which is larger for small `
i

(A). On the other hand, when kB � Ak2 is large, as in Figure

3.2, the relative perturbation bound on the small leverage scores is O
✓

⇣

kB�Ak2kA†k2
`

i

(A)

⌘2
◆

,

which is again larger for small `
i

(A).

• The absolute perturbation bound for Small leverage scores is flat when kB�Ak2
is large.When kB�Ak2 is large, as in Figure 3.2, the

�kA†k2kB �Ak2
�2

term in Corollary

37 becomes dominant. Thus, the absolute perturbation bound for small leverage scores

below a certain threshold is flat as it does not significantly depend on `
i

(A). The intuition

for this is that even a zero leverage score can be increased by a certain amount for a given

kB �Ak2 and this amount becomes significant for small leverage scores.

• Large leverage scores have a small relative perturbation even when kB �
Ak2kA†k2 is large. From Figure 3.2 we can see that even when kB�Ak2kA†k2 ⇡ 2.5⇤10�3,

the relative perturbation of the large leverage scores remains small. This is because, for

`
i

(A) ⇡ 1, the relative perturbation bound is O(kB �Ak2kA†k2).

At first glance, Corollary 37 does not look particularly tight as there is a large gap between

the experimental data and the bound. This is because the elements of the perturbation, E,

were sampled from a normal random variable and thus its a↵ects are spread out among all of

the leverage scores.

Example 2

By carefully constructing E, it is possible to focus its a↵ects on a particular leverage score. In

Figure 3.3, we have constructed E in a way that attempts to maximize `100(B)�`100(A)
kB�Ak2 .1

Figure 3.3 shows that the bound from Corollary 37 can be very tight for particular leverage

scores.

A note on Corollary 38. We don’t show experiments for Corollary 38 since the plots look

qualitatively identical to those shown above. To see why, recall that Corollary depends on

�  2
kB �Ak2

�
k

(A)� �
k+1(A)

1The algorithm used to construct this example is similar to a gradient descent method where we examine
@`

i

(G
i,j

A)/@kG
i,j

Ak2.

51

10
−15

10
−10

10
−5

10
0

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

l
i
(A)

|
l i(A

)
−

 l i(A
+

E
)

|

Detail at l
100

(A)

[h!]

10
−15

10
−10

10
−5

10
0

10
−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

l
i
(A)

|
l i(A

)
−

 l i(A
+

E
)

|
/

|
l i(A

)
|

Detail at l
100

(A)

[h!]

Figure 3.3: Here, A has orthonormal columns and thus kAk2 = kA†k2 = 1 and kEk2 ⇡
1.2 ⇤ 10�4. The ‘x’ represents |`100(A) � `100(B)| and is ⇠ 5 ⇤ 10�10 below the absolute bound
implied by Corollary 37. On the left, we plot the absolute change in the leverage scores and the
absolute bound from Corollary 37, and on the right we plot the relative change in the leverage
scores against the relative bound from Corollary 37.

and that Corollary 37 depends on
kB �Ak2
�
n

(A)
.

Thus, one can see that the main di↵erence between the two corollaries is that Corollary 37

depends on the smallest singular value of A whereas Corollary 38 depends on the kth singular

value gap.

3.5 Conclusion

We have proven multiple perturbation bounds for leverage scores. Theorem 30 shows that if

the principal angles between A and B are small, then the leverage scores of A and B are close.

Corollary 35 and Corollary 37 show the leverage scores of A and B are close if kA†k2 and the

two-norm di↵erence between A and B are small. Finally, Corollary 36 and Corollary 38 show

that if two-norm di↵erence between A and B is small with respect to the kth singular value

gap, then the leverage scores of A and B, as computed from the top k left singular vectors, are

close.

52

3.6 Proofs

3.6.1 Proof of Theorem 30

Let Q and Q̃ be the respective column spaces of A and B and let Y and Z be n⇥ n matrices

with orthonormal columns as described in Definition 28. Define the m⇥m orthogonal matrix

C =
h

QY Q?

i

. Then CT Q̃Z =

"

⌃

D

#

, where D = QT

?Q̃Z, hence Q̃Z = C

"

⌃

D

#

= QY ⌃+Q?D.

Since the leverage scores of B do not depend on the choice of basis (Definition 26),

`
i

(B) = keT
i

Q̃Zk22 = keT
i

(QY ⌃+Q?D)k22.

The triangle and Cauchy-Schwarz inequality gives us

`
i

(B)  �keT
i

Qk2k⌃k2 + keT
i

Q?k2kDk2
�2

=
⇣

p

`
i

(A) cos(✓1) + keT
i

Q?k2kDk2
⌘2

.

Since C is an orthogonal matrix,

1 = keT
i

Ck22 = keT
i

Qk22 + keT
i

Q?k22 = `
i

(A) + keT
i

Q?k22

implies

`
i

(B) 
⇣

p

`
i

(A) cos(✓1) +
p

1� `
i

(A)kDk2
⌘2

.

Also, since CT Q̃ has orthonormal columns, we have ⌃2 +DTD = I, and it follows that

kDk2 =
p

kI � ⌃2k2 =
p

1� cos(✓
n

)2 = sin(✓
n

).

Finally,

`
i

(B) 
⇣

cos(✓1)
p

`
i

(A) + sin(✓
n

)
p

1� `
i

(A)
⌘2

.

Reversing the roles of A and B gives

`
i

(A) 
⇣

cos(✓1)
p

`
i

(B) + sin(✓
n

)
p

1� `
i

(B)
⌘2 

⇣

cos(✓1)
p

`
i

(B) + sin(✓
n

)
⌘2

.

Rearranging the terms gives

p

`
i

(B) �

p

`
i

(A)� sin(✓
n

)

cos(✓1)

!

.

53

In addition, for 1  i  m, if
p

`
i

(A)� sin(✓
n

) � 0,

`
i

(B) �

p

`
i

(A)� sin(✓
n

)

cos(✓1)

!2

.

3.6.2 Proof of Theorem 31

Let Q and Q̃ be the respective column spaces of A and B and let Y and Z be n⇥ n matrices

with orthonormal columns as described in Definition 28. Define the m⇥m orthogonal matrix

C =
h

QY Q?

i

. Then CT Q̃Z =

"

⌃

D

#

, where D = QT

?Q̃Z, hence Q̃Z = C

"

⌃

D

#

= QY ⌃+Q?D.

Since the leverage scores of B do not depend on the choice of basis (Definition 26),

`
i

(B) = keT
i

Q̃Zk22 = keT
i

(QY ⌃+Q?D)k22.

We begin with

|`
i

(B)� `
i

(A)| = |keT
i

(QY ⌃+Q?D)k22 � keT
i

Qk22|.

Note that keT
i

QY k2 = keT
i

Qk2. We now consider two cases.

• Case 1: keT
i

(QY ⌃+Q?D)k22 � keT
i

Qk22. Using the triangle inequality, and the fact that

k⌃k22  1, gives us

|`
i

(B)� `
i

(A)|  �keT
i

Qk2k⌃k2 + keT
i

Q?k2kDk2
�2 � keT

i

Qk22
 keT

i

Qk22(k⌃k22 � 1) + 2keT
i

Qk2keT
i

Q?k2k⌃k2kDk2 + keT
i

Q?k22kDk22
 2keT

i

Qk2keT
i

Q?k2k⌃k2kDk2 + keT
i

Q?k22kDk22.

• Case 2: keT
i

(QY ⌃+Q?D)k22 < keT
i

Qk22. Using the reverse triangle inequality and rear-

ranging terms gives us

|`
i

(B)� `
i

(A)|  keT
i

Qk22 � keT
i

(QY ⌃+Q?D)k22
 keT

i

Qk22 � |keT
i

QY ⌃k2 � keT
i

Q?Dk2|2

 keT
i

Qk22 � (keT
i

QY ⌃k2 � keT
i

Q?Dk2)2

 keT
i

Qk22 � keT
i

QY ⌃k22 + 2keT
i

QY ⌃k2keT
i

Q?Dk2 � keT
i

Q?Dk22
 keT

i

Qk22 � keT
i

QY ⌃k22k⌃�1k22k⌃�1k�2
2 + 2keT

i

QY ⌃k2keT
i

Q?Dk2
 keT

i

Qk22(1� k⌃�1k�2
2) + 2keT

i

Qk2k⌃k2keT
i

Q?k2kDk2.

Note that kB �Ak2 < kA†k�1
2 ensures that ⌃ is invertible.

54

Thus,

|`
i

(B)� `
i

(A)|  keT
i

Qk22(1� k⌃�1k�2
2) + 2keT

i

Qk2keT
i

Q?k2k⌃k2kDk2 + keT
i

Q?k22kDk22.

This simplifies to

|`
i

(B)� `
i

(A)|  `
i

(A)(1� cos(✓
n

)2) + 2
p

`
i

(A)keT
i

Q?k2 cos(✓1)kDk2 + keT
i

Q?k22kDk22.

Since C is an orthogonal matrix,

1 = keT
i

Ck22 = keT
i

Qk22 + keT
i

Q?k22 = `
i

(A) + keT
i

Q?k22

implies that

|`
i

(B)� `
i

(A)|  `
i

(A)(1� cos(✓
n

)2) + 2
p

`
i

(A)
p

1� `
i

(A) cos(✓1)kDk2 + (1� `
i

(A))kDk22.

Since CT Q̃ has orthonormal columns, we have ⌃2 +DTD = I, and it follows that

kDk2 =
p

kI � ⌃2k2 =
p

1� cos(✓1)2 = sin(✓1).

This gives,

|`
i

(B)� `
i

(A)|  `
i

(A)(1� cos(✓
n

)2)+2
p

`
i

(A)
p

1� `
i

(A) cos(✓1) sin(✓n)+(1� `
i

(A)) sin(✓1)
2.

Finally, since sin(✓1) < sin(✓
n

) and sin(✓
n

)2 + cos(✓
n

)2 = 1 we have,

|`
i

(B)� `
i

(A)|  2
p

`
i

(A)
p

1� `
i

(A) sin(✓
n

) + sin(✓
n

)2.

3.6.3 Proof of Theorem 32 from [41]

Here, for completeness, we restate the proof found in [41, Page 278]. Start with Definition 29

for ✓
n

. Observe that [41, Equation 4.2] impies

(I � P
B

)(B �A) = (I � P
B

)P
A

A

because P
A

= AA†. Multiplying on the right by A† gives

(I � P
B

)(B �A)A† = (I � P
B

)P
A

.

55

Thus,

sin(✓
n

(A,B)) = k(I � P
B

)P
A

k2 = k(I � P
B

)(B �A)A†k2  kB �Ak2kA†k2.

3.6.4 Proof of Corollary 33

Let Q
k

and Q̃
k

be bases of orthonormal columns for the column space of A
k

and B
k

, respectively.

Using [40, Inequality 3.1], one obtains the following statement. If there exists ↵ � 0 and � > 0

such that,

�
k

(B) � ↵+ � and �
k+1(A)  ↵,

then

✓
n

(Q
k

, Q̃
k

) = ✓
n

(A
k

, B
k

)  ✏

�
 kB �Ak2

�
.

Choose ↵ = �
k+1(A) and � = �

k

(A)� �
k+1(A)� kB �Ak2. The inequality

|�
i

(A)� �
i

(B)|  kB �Ak2,

for 1  i  min(m,n), from [17, Corollary 8.6.2] proves that �
k

(B) � ↵+ � holds for our choice

of �. This gives the desired result.

Note that the result still holds true for kB �Ak2 < �
k

(A)� �
k+1(A), however

kB �Ak2
�
k

(A)� �
k+1(A)� kB �Ak2  1

is only true for 2kB �Ak2  �
k

(A)� �
k+1(A).

3.6.5 Proof of Lemma 34

We prove the contrapositive; if ✓
n

= ⇡/2, then kB �Ak2 > �
n

(A).

If ✓
n

= ⇡/2, then ⌃
n,n

= cos(✓
n

) = 0. This implies that QT Q̃ has a zero singular value and

thus, ATB also has a zero singular value. Thus, there exists a vector x, where kxk2 = 1, such

that xTBTAx = 0. Additionally, since A and B are full column rank, Ax and Bx are non-zero.

Hence, Pythagoras implies the strict inequality, k(B � A)xk2 = kBx � Axk2 > kAxk2. Using
kB �Ak2 � k(B �A)xk2 and kAxk2 � �

n

(A) gives us our desired result,

kB �Ak2 > �
n

(A).

3.6.6 Proof of Corollary 35

Start with Theorem 30. We begin by removing the condition that cos(✓1) > 0 since Lemma

34 ensures that this is always true when kB � Ak2  �
n

(A). Finally, Theorem 32 allows us to

56

substitute arcsin(kA†k2kB �Ak2) for ✓n.

3.6.7 Proof of Corollary 36

Start with Theorem 30 with Q
k

in place of A and Q̃
k

in place of B where Q
k

and Q̃
k

are bases

of orthonormal columns for the column space of A
k

and B
k

, respectively. Use Corollary 33 to

substitute kB �Ak2
�
k

(A)� �
k+1(A)� kB �Ak2

for ✓
n

and note that 2kB �Ak2 < �
k

(A)� �
k+1(A) implies that cos(✓1) � cos(✓

n

) > 0.

3.6.8 Proof of Corollary 37

Start with Theorem 31 and use Theorem 32 to substitute arcsin((A)") for ✓
n

.

3.6.9 Proof of Corollary 38

Start with Theorem 31 with Q
k

in place of A and Q̃
k

in place of B where Q
k

and Q̃
k

are bases

of orthonormal columns for the column space of A
k

and B
k

, respectively. Use Theorem 33 to

substitute � for ✓
n

.

3.6.10 Proof of Theorem 39

Let Q be a basis of orthonormal columns for A. Then, G
i,j

Q is a basis for G
i,j

A and

G
i,j

Q = cos(�)eT
i

Q+ sin(�)et
j

Q.

From here we can compute the ith leverage score of G
i,j

Q,

`
i

(G
i,j

Q) = k cos(�)eT
i

Q+sin(�)et
j

Qk22 = cos(�)2keT
i

Qk22+sin(�)2keT
j

Qk22+2 cos(�) sin(�)eT
i

QQT e
j

.

Using the double angle formula for sin and recognizing that the row norms are leverage scores

yields,

`
i

(G
i,j

Q) = cos(�)2`
i

(Q) + sin(�)2`
j

(Q) + sin(2�)eT
i

QQT e
j

.

Using the Cauchy-Schwarz inequality gives us our upper bound,

`
i

(G
i,j

Q)  cos(�)2`
i

(Q) + sin(�)2`
j

(Q) + | sin(2�)| |eT
i

QQT e
j

|
 cos(�)2`

i

(Q) + sin(�)2`
j

(Q) + | sin(2�)| keT
i

Qk2keT
j

Qk2
= cos(�)2`

i

(Q) + sin(�)2`
j

(Q) + | sin(2�)|
q

`
i

(Q)`
j

(Q).

57

A similar process gives us our lower bound,

`
i

(G
i,j

Q) � cos(�)2`
i

(Q) + sin(�)2`
j

(Q)� | sin(2�)| |eT
i

QQT e
j

|
� cos(�)2`

i

(Q) + sin(�)2`
j

(Q)� | sin(2�)| keT
i

Qk2keT
j

Qk2
= cos(�)2`

i

(Q) + sin(�)2`
j

(Q)� | sin(2�)|
q

`
i

(Q)`
j

(Q).

58

Chapter 4

kappa SQ

4.1 Introduction

We wrote the kappa SQ software package to assist us with our research on various algorithms

for uniform row sampling. In our research, a m ⇥ n matrix Q with orthonormal columns and

m � n is sampled by a row sampling matrix S to create the c ⇥ n sampled matrix SQ. We

then address the question, given ⌘ > 0, what is the probability that rank(SQ) = n and the

two-norm condition number (SQ) = kSQk2k(SQ)†k2  1+ ⌘? This question is important due

to its applications to randomized least squares solvers such as LSRN [27] and, in particular, the

Blendenpik algorithm [1].

The Blendenpik algorithm uses randomized sampling to solve an overdetermined least-

squares problem min
x

kAx�bk2 faster than LAPACK. It starts by finding the QR factorization,

Q
s

R
s

= SA, of the randomly sampled matrix SA and then, if SA has full colun rank, solves the

preconditioned least squares problem min
z

kAR�1
s

z�bk2 via LSQR. The solution to the original

least squares problem can be found by solving a much smaller linear system with coe�cient

matrix R
s

. The key to this method is that if (AR�1
s

) ⇡ 1, then LSQR will converge quickly.

The connection between our work, kappa SQ and the Blendenpik algorithm is that if SA

is full rank, then (SQ) = (AR�1
s

). This means that sampling rows from A is, conceptually,

the same as sampling rows from Q and that (AR�1
s

) depends only on the columns space of A

(and the sampling matrix). Thus, it su�ces to examine the behavior of (SQ).

This code examines (SQ) in two main ways. First, it can perform numerical experiments

where (SQ) is measured. And second, our code can plot bounds for (SQ). In the literature,

these bounds are often expressed in terms of two matrix properties that have been shown to be

related to row sampling, leverage scores, and coherence.

Leverage scores were first introduced in 1978 by Hoaglin and Welsch [20] to detect outliers

when computing regression diagnostics. They give a measurement of the distribution of the

59

elements in an orthonormal basis. The leverage scores of a matrix A are defined in terms of any

orthonormal basis, Q, for the column space of A.

Definition 40 The leverage scores of the real m⇥ n matrix A with m � n are

`
j

(A) = `
j

(Q) ⌘ keT
j

Qk22, 1  j  m.

Since leverage scores are simply row norms from matrices with orthonormal columns, the in-

equality 0  `
i

(A)  1 holds and
P

m

i=1 `i(A) = n. If `
i

(A) = 1 then the i0th row contains all of

the information for a particular column. On the other hand, if `
i

(A) = 0, then the i0th row of

A is zero and contains no data. Thus, leverage scores give a quantification of the importance

of each row with respect to sampling. We use leverage scores as an input to both generate test

matrices and to bound the condition number of a sampled matrix. Our code for computing

leverage scores is leverageScores.m.

In our work, coherence is simply the largest leverage score.

Definition 41 (Definition 3.1 in [1], Definition 1.2 in [7]) The coherence of A is

µ(A) ⌘ max
1jm

`
j

(Q) = max
1jm

keT
j

Qk22.

Although coherence contains far less information about a matrix than the leverage scores, it can

still be useful in bounding the condition number of a sampled matrix (see Bound 1) and may be

easier to estimate than leverage scores Due to the properties of leverage scores, the inequality

n/m  µ(A)  1 holds, and if µ(A) ⇡ n/m, then `
i

(A) ⇡ n/m. Our code for computing

coherence is coherence.m.

4.2 kappa SQ Design

Kappa SQ was designed to perform all of the computations from Chapter 2 and output paper-

ready plots. It can assist researchers in the following ways.

First, the GUI for kappa SQ has been designed to assist the user set-up, perform and

plot experiments on (SQ). There are two types of experiments, the computation of (possibly

probabilistic) bounds on (SQ) and the computation of (SQ) for a given or generated test

matrix Q. The GUI has also been coded to allow a user to easily incorporate their own codes by

simply placing a properly formatted Matlab function in the “boundsAndAlgorithms” directory.

Second, kappa SQ includes a collection of codes for various algorithms and bounds pertain-

ing to the field of randomized row sampling. These codes are all written as Matlab function

files that can be used on their own or with the kappa SQ GUI. The codes include functions for

60

row sampling, test matrix generation, leverage score distribution generation and functions to

compute bounds for (SQ). The included codes are outlined in section 4.2.2.

The kappa SQ codes can be broken up into two main groups, the GUI and “Algorithm

Codes.” Below, we describe these codes and their functions.

4.2.1 kappa SQ GUI

The kappa SQ GUI is designed to produce plots of both numerical experiments, where (SQ)

is actually measured, and of bounds on (SQ). To perform a numerical experiment, kappa SQ

will perform sampling on a matrix and then measure the condition number of the sampled

matrix, (SQ). Occasionally, the sampled matrix, SQ, is not full rank. This event is termed a

“failure” event and kappa SQ also keeps track of these.

When kappa SQ has completed its computations, it will output plots like those shown in

Figures 4.1 and 4.2. For the moment, do not worry about the specifics of each plot other than

the following. The triangles in figure 4.1 show the measured condition number of the sampled

matrix, (SQ), and the line plots a bound on (SQ). For the sections of the domain where

a line is not plotted, the bound does not apply. All of the bounds included with (SQ) are

probabilistic bounds and therefore only hold with probability at least 1� �. Therefore, at least

100(1� �)% of the measured (SQ) should be below the line. In Figure 4.2, the “failure rate,”

the percent of numerical experiments that resulted in a failure event, is plotted. Despite the fact

that for many experiments the failure rate will be 0% for most values, it is still an important

quantity because figure 4.1 only plots the the “good” events (where SQ has full column rank).

When a user executes kappaSQ.m, he or she is presented with the kappa SQ GUI (see Figure

4.3). It is broken up into sections; the first two correspond to inputs the user must provide to

produce a plot and the last two are for plot editing and and to display important information.

Below we describe these sections and, in the process, how to use the GUI to produce plots.

“Step 1: Select Bounds and/or Numerical Experiments.” This section allows the

user to select what he or she would like to plot. The first listbox contains possible bounds

that the user can plot. The second listbox contains various sampling methods. In kappa SQ,

numerical experiments are first defined in terms of what sampling algorithm the user would like

to use. By selecting a sampling method, the user is telling kappa SQ that he or she wishes to

do a numerical experiment with that sampling method. Selecting multiple sampling methods

will perform multiple experiments.

“Step 2: Matrix Properties / Parameters.” This section allows the user to provide

the required inputs. Only inputs that are required will be visible. As an example, if the user

chose to plot Bound 1, then this section would ask for the user to provide values for m,n, µ, �

and c as those values are required to compute Bound 1. In addition, either c or µ must be a

61

50 100 150 200 250 300 350 400 450 500

10

20

c

κ
(S

Q
)

m=500, n=4, c=n:m, µ=2*n/m, δ=.01, runs=200, li = Lev. Score Dist 1,
Matrix = Matrix Gen. 1

Sampling 2
Bound 1

Figure 4.1: In this plot we show the results of a numerical experiment (triangles) and a bound
on kappa SQ (line) that holds with probability 1� �.

50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

c

F
a
ilu

re
 %

Failure Probability: m=500, n=4, c=n:m, µ=2*n/m, δ=.01, runs=200, li
= Lev. Score Dist 1, Matrix = Matrix Gen. 1

Sampling 2

Figure 4.2: In this plot we show the failure rate of a numerical experiment on kappa SQ.

62

vector and whichever is a vector will be placed on the x-axis.

Of particular interest in this section are the “Matrix Generation” and “li” (`
i

) inputs. When

a test matrix is required (ex: when running a numerical experiment), kappa SQ will generate a

matrix using the algorithm specified in this listbox. Similarly, when a leverage score distribution

is required, kappa SQ will generate one by the method specified in the “li” listbox.

“Plot Button.” Once the user has completed steps 1 and 2, he or she may click the plot

button to run and plot the experiment.

“Help!” This button will open the kappa SQ help file. This file includes a FAQ section and

a list of included functions.

Adv. Features: “Batch Features.” This section can be viewed by clicking on the “Adv.

Features” button. After performing steps 1 and 2, the user can instead add the current ex-

periment to a batch of jobs to be run later in serial. This is particularly useful if the chosen

experiments require a long time to run, or if the user has many experiments to run. In addition,

if the user keeps all of their experiments defined in a batch file, they can easily repeat all of the

experiments for their work.

Adv. Features: “Other Features.” This section contains a button called “Beautify

Plots” which will open the plot editing window shown in Figure 4.4. This window assists the

user with modifying many of the common plot settings and creating a script that will apply

these settings to future plots. In addition, the plot editing window will generate a command

which will apply these settings without the GUI. KappaSQ can be set to run this command

for all future plots by checking the “beautify command” checckbox and entering the command.

Thus, the user only needs to set up their plots once. Finally, this section also has an option to

plot a standard confidence interval for the failure probability.

Below we will discuss the various included codes that the kappa SQ GUI uses in the above

sections to produce plots.

4.2.2 Algorithm Codes

In this section, we describe the various algorithms and bounds that are included in the kappa SQ

package. These algorithms can be broken up into four main groups, bounds, matrix generation,

sampling methods and leverage score distributions.

Sampling methods

We include four di↵erent row sampling methods from the literature, Sampling without Replace-

ment, Sampling with Replacement, Bernoulli Sampling, and Sampling Proportional to Leverage

Scores. In Chapter 2, the first three of these sampling methods are described by constructing a

sampling matrix S such that SQ is the sampled matrix. In the kappa SQ package, we instead

63

Figure 4.3: kappaSQ GUI with advanced features shown.

Figure 4.4: Beautify Plots GUI.

64

code these algorithms to compute B =⌘ SQ directly. Each sampling method inputs the initial

matrix, Q, and the desired (or desired expected) number of rows to be sampled, c, and outputs

the sampled matrix, SQ.

Sampling Method 4.2.1, Sampling Without Replacement. This algorithm samples

exactly the desired number of rows such that no row is sampled more than once by sampling

uniformly from the m!/(m � c)! possible permutations of c rows. We implement this by first

randomly permuting all of the rows and then sampling the first c rows. In the algorithm below

we use the term random permutations. A permutation ⇡1, . . . ,⇡m of the integers 1, . . . ,m is

a random permutation, if it is equally likely to be one of m! possible permutations [29, pages

41 and 48]. The matlab command randperm(m) will generate a random permutation of the

integers 1, . . . ,m. Our code for this sampling method is Sample randperm.m.

Algorithm 4.2.1 Sampling Without Replacement, [16, 18]

Input: A m⇥ n matrix Q and an integer c, such that 1  c  m.
Output: A c⇥m sampled matrix B.
v = randperm(m) s = v(1 : c) B =

p

m/c Q(s, :)

Sampling Method 4.2.2, Sampling With Replacement (Exactly(c)). This algorithm

samples exactly the desired number of rows with a uniform probability distribution and with

replacement. Our code for implementing this sampling method is Sample exactlyC.m.

Algorithm 4.2.2 Sampling With Replacement, [11, 15]

Input: A m⇥ n matrix Q and an integer c, such that 1  c  m.
Output: A c⇥m sampled matrix B.
Let ⇡1, . . . ,⇡c be integers uniformly sampled from{1, . . . ,m} with replacement s =
⇥

⇡1, . . . , ⇡
c

⇤

B =
p

m/c Q(s, :)

Sampling Method 4.2.3, Bernoulli Sampling. In this sampling method, each row is

either sampled, with probability c/m, or not sampled with probability 1� c/m. Thus, whether

or not each row is sampled is an independent Bernoulli trial and the expected total number

of rows sampled is c. Our implementation of this algorithm di↵ers slightly from Algorithm

2.3.3. In Algorithm 2.3.3, rows that are not sampled are set to 0, while in our code they are

removed. Removing the zero rows is more memory e�cient, avoids unnecessary matrix-matrix

65

multiplications and does not a↵ect (SQ). Our code for this algorithm is Sample bernoulli.m.

Algorithm 4.2.3 Bernoulli Sampling, [1, 16, 18]

Input: A m⇥ n matrix Q and an integer c, such that 1  c  m.
Output: A c⇥m sampled matrix B.
Let ⇡ be a m⇥1 vector of m independent realizations of a boolean random variable with success
probability c/m Let s be a ĉ⇥ 1 vector containing the indices where ⇡

i

= 1, where 1  i  m
and ĉ = the number of nonzero entries in ⇡ B =

p

m/c Q(s, :)

Sampling Method 4.2.4, Sampling Proportional to Leverage Scores. In this sam-

pling method, c rows are sampled with probability `
i

(Q)/n with replacement. Our code for

implementing this sampling method is Sample leverageScores.m

Algorithm 4.2.4 Sampling Proportional to Leverage Scores

Input: A m⇥ n matrix Q and an integer c, such that 1  c  m and the leverage scores `(Q).
Output: A c⇥m sampled matrix B.
Let ⇡1, . . . ,⇡c be integers sampled from {1, . . . ,m} with probabilities {`1(Q)/n, . . . , `

m

(Q)/n}
and replacement s =

⇥

⇡1, . . . , ⇡
c

⇤

B =
p

m/c Q(s, :)

Bounds

We include codes for the two probabilistic bounds for (SQ) from Chapter 2 and four other

weaker bounds that were included in the first version of our paper [23].

Bound 1, Coherence based bound. This bound is expressed in terms of coherence and

comes from a matrix Cherno↵ concentration inequality [37, Corollary 5.2]. It applies to all of

the sampling methods 4.2.2 except for Sampling Proportional to Leverage Scores (Sampling

Method 4.2.4). Our code for this bound is Bound muBound.m.

Bound 1 (Theorem 7) Let Q be a real m ⇥ n matrix with QTQ = I
n

and coherence µ. Let

SQ be a sampling matrix produced by Algorithms 4.2.1, 4.2.2, or 4.2.3 with n  c  m. For

0 < ✏ < 1 and f(x) ⌘ ex(1 + x)�(1+x) define

� ⌘ n
⇣

f(�✏)c/(mµ) + f(✏)c/(mµ)
⌘

. (4.1)

66

If � < 1, then with probability at least 1� � we have rank(SQ) = n and

(SQ) 
r

1 + ✏

1� ✏
.

Bound 2, Leverage score based bound. This bound is based on leverage scores and

only applies to sampling without replacement (Sampling Method 4.2.1). It is based on a ma-

trix Bernstein concentration inequality [32, Theorem 4]. Our code for this bound is Bound -

leverageScoresBound.m.

Bound 2 (Theorem 11) Let Q be a m⇥n real matrix with QTQ = I
n

, leverage scores `
j

(Q),

1  j  m, and coherence µ. Let L be a diagonal matrix such that L
j,j

= `
j

(Q). Let S be a

sampling matrix produced by Algorithm 4.2.2 with n  c  m. For 0 < ✏ < 1 set

� ⌘ 2n exp

✓

�3
2

c✏2

m (3kQTLQk2 + ✏µ)

◆

.

If � < 1, then with probability at least 1� � we have rank(SQ) = n and

(SQ) 
r

1 + ✏

1� ✏
.

Bound 3, Weaker coherence based bound. This bound is based on a probabilistic

two-norm bound for a Monte Carlo matrix multiplication algorithm that samples according to

Sampling Method 4.2.2 [15, Theorem 4]. Our code for this bound is weakerBound 1.m.

Bound 3 ([23, Theorem 3.2]) Given 0 < ✏ < 1 and 0 < � < 1, let Q be a m⇥ n real matrix

with QTQ = I
n

and coherence µ. Let c be an integer so that

min
n

n, ⇣ ln
⇣

⇣/
p
�
⌘o

 c  m, where ⇣ ⌘ 96mµ

✏2
.

If S is a c⇥m matrix produced by Sampling Method 4.2.2 with uniform probabilities p
k

= 1/m,

1  k  m, then with probability at least 1� �, we have rank(SQ) = rank(M
s

) = n and

(SQ) = (AR�1
s

) 
r

1 + ✏

1� ✏
.

Bound 4, Weaker coherence based bound. This bound is based on a special case of

the noncommutative Bernstein inequality [32, Theorem 4] and applies to sampling Sampling

Method 4.2.2. Our code for this bound is weakerBound 3.m.

67

Bound 4 ([23, Corollary 3.10]) Given c � n and 0 < � < 1, let Q be a m ⇥ n real matrix

with QTQ = I
n

and coherence µ. Let ⇢ ⌘ 2
3 ln(2n/�) and

✏1 ⌘ µm

2c

✓

⇢+

r

12c⇢

mµ
+ ⇢2

◆

.

Let S be a m ⇥m matrix produced by Algorithm 4.2.2. If ✏1 < 1 then with probability at least

1� �, we have rank(SQ) = n and

(SQ) 
r

1 + ✏1
1� ✏1

.

Bound 5, Weaker coherence based bound. This bound is based on a Frobenius norm

bound for a Monte Carlo matrix multiplication algorithm that samples according to Sampling

Method 4.2.2 and applies to sampling Sampling Method 4.2.2. Our code for this bound is

weakerBound 4.m.

Bound 5 ([23, Theorem 3.5]) Given 0 < � < 1 and c � n, let Q be a m⇥n real matrix with

QTQ = I
n

and coherence µ. Let

✏2 ⌘
r

mn µ

c
+mµ

r

8 log(1/�)

c
.

Let S be a c ⇥ m matrix produced by Algorithm 4.2.2 with uniform probabilities p
k

= 1/m,

1  k  m. If ✏2 < 1, then with probability at least 1� �, we have rank(SQ) = n and

(SQ) 
r

1 + ✏2
1� ✏2

.

Bound 6, Weaker coherence based bound. This bound is again based on the noncom-

mutative Bernstein inequality in [32, Theorem 4] and applies to sampling Sampling Method

4.2.3. Our code for this bound is weakerBound 6.m.

Bound 6 ([23, Corollary 4.3]) Given m � n, 0 < � < 1 and 0 < � < 1, let Q be a m ⇥ n

real matrix with QTQ = I
n

and coherence µ. Let ⇢ ⌘ 2
3 ln(2n/�) and

✏̂3 ⌘ µ

2

✓

�⇢+

r

1� �

�
12m⇢+ �2⇢2

◆

, � =

8

<

:

1 if � � 1� �

1��

�

if 1� � > �

Let S be a m ⇥m matrix produced by Algorithm 4.2.3. If ✏̂3 < 1 then with probability at least

68

1� �, we have rank(SQ) = n and

(SQ) 
r

1 + ✏̂3
1� ✏̂3

.

Leverage score distribution

We include code for two functions which define leverage score distributions.

Leverage Score Distribution 4.2.5, Good leverage score distribution. The first

function is designed to be an ideal case for row sampling. It outputs a leverage score distribution

with one leverage score is set equal to the coherence and the remaining leverage scores all

identical. Thus, most rows are equally “important” and uniform row sampling should work

well. The code for this algorithm is liDist oneBig.m.

Algorithm 4.2.5 Good leverage score distribution Algorithm 2.6.2

Input: Integers m and n such that m � n � 1, and desired coherence µ.
Output: A m⇥ 1 vector, ` of leverage scores such that max ` = µ.
` = [µ; ones(m� 1, 1)(n�mu)/(m� 1)]

Leverage Score Distribution 4.2.6, Bad leverage score distribution. The second

function is designed to be a particularly bad case for row sampling. It outputs a leverage score

distribution with the maximal number of entries set equal to the coherence and at most one

additional non-zero entry. Matrices with this leverage score distribution will have the maximal

number of zero rows for the given coherence. Zero rows are bad for uniform row sampling since

zero rows contain no information. The code for this algorithm is liDist manyBig.m.

Algorithm 4.2.6 Bad leverage score distribution Algorithm 2.6.3

Input: Integers m and n such that m � n � 1, and desired coherence µ.
Output: A m⇥ 1 vector, ` of leverage scores such that max ` = µ.
m̃ = bn/µc if m̃ < m then

` = [µones(m̃, 1);n� m̃µ, zeros(m� m̃, 1)]
else

` = µones(m̃, 1)
end

69

Test matrix generation

Included in kappa SQ, we provide code for a deterministic matrix generation algorithm.

Matrix Generation 4.2.7, Deterministic matrix generation algorithm. This algo-

rithm inputs the desired matrix dimensions and leverage scores and outputs a test matrix,

Q, with these properties. To compute Q, the algorithm applies m � 1 Givens rotations to the

matrix Q =
h

I
n

zeros(n,m� n)
i

T

. Each Givens rotation alters the leverage scores of two

rows such that at least one of the two rows has the desired leverage score. The reason that

only m� 1 Givens rotations are required is that the leverage scores sum to n and thus the final

leverage sore is determined by the other m�1 leverage scores. We note here that this algorithm

is a transposed version of [9, Algorithm 3] and that the Givens rotations are computed from

numerically stable expressions [9, section 3.1]. The code for this algorithm is mtxGen li.m.

Algorithm 4.2.7 Matrix Generation 4.2.7

Input: Integers m and n such that m � n � 1, and a m ⇥ 1 vector l of the desired leverage
scores.

Output: A m⇥ n matrix Q with orthonormal columns and the desired leverage scores.

Q =
⇥

I
n

zeros(n,m� n)
⇤

T

[l, I]=sort(l);% Sort and store original order i = m � n j =
m� n+ 1 for dummyV ar = 1 : m� 1 do

if
�

�l
i

� keT
i

Qk2
�

� <
�

�

�

l
j

� keT
j

Qk2
�

�

�

then

Rotate rows i and j of Q so that keT
i

Qk22 = l
i

i = i� 1
else

Rotate rows i and j of Q so that keT
j

Qk22 = l
j

j = j + 1

end

end
Q(I, :) = Q;% Undo sorting

4.2.3 Other Functions

We also include two simple functions to assist with choosing nice, aesthetically pleasing, ranges

for c and µ named logPoints.m and logPointsDouble.m, respectively. These functions produce

ranges that are more heavily weighted towards the smaller end of the desired range. Most of

the interesting action in the final plots occurs near smaller c or µ values and, in addition, larger

values of c are more computationally expensive. We describe these functions in the kappa SQ

help file which can be accessed by pressing the help button in the gui (see Section 4.2.1).

70

4.3 Examples

Here we show a few examples of some of the ways that the kappa SQ GUI can be used.

4.3.1 Example 1

In this example, we show how to perform a basic experiment with the GUI. In this experiment

we compare Bound 1 to a numerical experiment with sampling Sampling Method 4.2.2. Since

Bound 1 applies to this sampling method, the results should show that at least 100(1 � �)%

of the measured (SQ) are less than the bound. In order for kappa SQ to run a numerical

experiment, it must have a test matrix to work on. Here, we will chose to generate a test matrix

with Sampling Method 4.2.7 and leverage scores defined by Sampling Method 4.2.5.

To set up the experiment, start by selecting the desired bound and sampling method. Then,

move on to step 2 and input the following values, m=500, n=4 c=n:m, mu=2n/m, runs=10, and

delta=.01. For the “Matrix Generation” listbox, select “Matrix Generation 4.2.7” (Sampling

Method 4.2.7). This will cause the leverage score listbox to appear since this matrix genera-

tion algorithm requires a leverage score distribution. Select “Leverage Score Distribution 1”

(Sampling Method 4.2.5) for the leverage score distribution. In figure 4.3 we show how the GUI

should at this point. When ready, click the plot button to begin the experiment. We show the

resulting plot in figure 4.5.

4.3.2 Example 2

Here we show how to set up a kappa SQ batch to perform multiple experiments in serial. To

create a new batch, first click the “Adv. Features” button to expand the GUI and then click on

the “New Batch” button to start a new batch. Next, set up an experiment by performing steps

1 and 2 as described in the first example. Then, instead of clicking the plot button, click the

“Add to Batch” button. This will add the current experiment to the batch. Repeat this process

for the remaining experiments. The user may use the arrow buttons to navigate and the “X”

button to delete previously entered experiments. When ready, click the “Save Batch” button

to save the current experiments to a file and then the “Run Batch” button to have kappa SQ

run all of the experiments. Plot images will be saved automatically with a file name based on

the batch file name and their job number.

71

50 100 150 200 250 300 350 400 450 500

10

20

c

κ
(S

Q
)

m=500, n=4, c=n:m, µ=2*n/m, δ=.01, runs=200, li = Lev. Score Dist 1,
Matrix = Matrix Gen. 1

Sampling 2
Bound 1

Figure 4.5: The solid line shows Bound 1 and the triangles show the results of the numerical
experiments with sampling Sampling Method 4.2.2 and a matrix generated by Sampling Method
4.2.7.
Here Q is a matrix generated by Algorithm 4.2.7 with orthonormal columns,m = 10, 000, n = 4,
coherence µ = 20n/m, . Left panel: Horizontal coordinate axes represent amounts of sampling
n  c  10, 000. Vertical coordinate axes represent condition numbers (SQ); the maximum
is 10. Right panels: Horizontal coordinate axes represent amounts of sampling that give rise
to numerically rank deficient matrices SQ. Vertical coordinate axes represent percentage of
numerically rank deficient matrices.

72

4.3.3 Example 3

Here we show how the built in plot editing tools can be used to expedite plot editing, how to

create a script that will apply these settings to future plots and set up kappa SQ to run that

script after every experiment. To start, run an experiment as described in example 1. Then,

click the ”Adv. Features“ button to expand the GUI and then click on the “Beautify Plots”

button. This will open the plot editing window. (See figure 4.4).

This window allows the user to easily edit many di↵erent plot settings. While using this

window, any changes will instantly be applied to the plots, so we suggest positioning the plots

and the GUI window such that they can all be seen. When done editing, press the button

labeled ”Save Commands To .m File“ to create a .m file that will apply these settings to future

plots. To have kappa SQ apply these plot settings automatically to all new plots, write the

command for this file in the box labeled ”Enter your command here“ in the main GUI window

and check the ”Beautify Command“ checkbox. (See figure 4.3).

4.4 Conclusions

The kappa SQ package is designed to assist researchers examine the behavior of (SQ). The

package includes codes for generating matrices with specific leverage score distributions, gen-

erating two specific leverage score distributions, four types of row sampling algorithms and

computing bounds on (SQ). These codes can be used on their own, or with the kappa SQ

GUI which is capable of setting up and running numerical experiments, computing bounds,

and producing quality plots with the help of custom plot-editing tools. In addition, the GUI

has been designed to detect properly formatted Matlab function files, which allows the user to

incorporate their own codes into the GUI.

73

Chapter 5

Future Work

5.1 Future work

The following is a list of what we would like to accomplish next.

• Tightening of Corollary 8 so that it retains the strength of the Cherno↵ concentration

inequality inherent in Theorem 11.

• Extension of the condition number bounds in Section 2.5 to uniform sampling without

replacement (Algorithm 2.3.1) and Bernoulli sampling (Algorithm 2.3.3).

• Determination of a statistically significant number of runs for each sampling amount c,

for two purposes:

1. To assert, within a specific confidence interval, bounds on the condition numbers of

the actually sampled matrices.

2. To assert with a specific confidence that the probabilistic expressions in Sections 2.4

and 2.5 do indeed represent bounds.

• For uniform sampling, determine when one should use a randomized preprocessing trans-

formation, such as the randomize Hadamard transformation [5, 1], rather than just sam-

pling more rows.

• Derive bounds for the condition number of a sampled matrix if sampling is performed

with leverage score probabilities as in Sampling Method 4.2.4.

• Derive bounds for the sensitivity of leverage scores where the perturbation is multiplica-

tive.

74

REFERENCES

[1] Haim Avron, Petar Maymounkov, and Sivan Toledo. Blendenpik: supercharging Lapack’s

least-squares solver. SIAM J. Sci. Comput., 32(3):1217–1236, 2010.

[2] Laura Balzano, Benjamin Recht, and Robert Nowak. High-dimensional matched subspace

detection when data are missing. CoRR, abs/1002.0852, 2010.

[3] Rajendra Bhatia. Matrix analysis, volume 169 of Graduate Texts in Mathematics. Springer-

Verlag, New York, 1997.

[4] Christos Boutsidis and Petros Drineas. Random projections for the nonnegative least-

squares problem. Linear Algebra Appl., 431(5-7):760–771, 2009.

[5] Christos Boutsidis and Alex Gittens. Improved matrix algorithms via the subsampled

randomized Hadamard transform. SIAM J. Matrix Anal. Appl., 34(3):1301–1340, 2013.

[6] Christos Boutsidis, Michael W. Mahoney, and Petros Drineas. An improved approximation

algorithm for the column subset selection problem. CoRR, abs/0812.4293, 2010.

[7] Emmanuel J. Candès and Benjamin Recht. Exact matrix completion via convex optimiza-

tion. Found. Comput. Math., 9(6):717–772, 2009.

[8] Samprit Chatterjee and Ali S. Hadi. Influential observations, high leverage points, and

outliers in linear regression. Statist. Sci., 1(3):379–416, 1986. With discussion.

[9] Inderjit S. Dhillon, Robert W. Heath, Jr., Mátyás A. Sustik, and Joel A. Tropp. Gener-

alized finite algorithms for constructing Hermitian matrices with prescribed diagonal and

spectrum. SIAM J. Matrix Anal. Appl., 27(1):61–71 (electronic), 2005.

[10] David L. Donoho and Xiaoming Huo. Uncertainty principles and ideal atomic decomposi-

tion. IEEE Trans. Inform. Theory, 47(7):2845–2862, 2001.

[11] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. Fast Monte Carlo algorithms for

matrices. I. Approximating matrix multiplication. SIAM J. Comput., 36(1):132–157, 2006.

75

[12] Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Sampling algorithms for l2

regression and applications. In Proc. 17th Ann. ACM-SIAM Symp. on Discrete Algorithms,

SODA ’06, pages 1127–1136, New York, NY, USA, 2006. ACM.

[13] Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Subspace sampling and

relative-error matrix approximation: column-based methods. In Approximation, random-

ization and combinatorial optimization, volume 4110 of Lecture Notes in Comput. Sci.,

pages 316–326. Springer, Berlin, 2006.

[14] Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Relative-error CUR matrix

decompositions. SIAM J. Matrix Anal. Appl., 30(2):844–881, 2008.

[15] Petros Drineas, Michael W. Mahoney, S. Muthukrishnan, and Tamás Sarlós. Faster least

squares approximation. Numer. Math., 117(2):219–249, 2011.

[16] Alex Gittens and Joel A. Tropp. Tail bounds for all eigenvalues of a sum of random

matrices, 2011.

[17] Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns Hopkins Studies in

the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, third edition,

1996.

[18] David Gross and Vincent Nesme. Note on sampling without replacing from a finite collec-

tion of matrices, 2010.

[19] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: prob-

abilistic algorithms for constructing approximate matrix decompositions. SIAM Rev.,

53(2):217–288, 2011.

[20] D. C. Hoaglin and R. E. Welsch. The Hat matrix in regression and ANOVA. Amer. Statist.,

32(1):17–22, 1978.

[21] Roger A. Horn and Charles R. Johnson. Matrix analysis. Cambridge University Press,

Cambridge, second edition, 2013.

76

[22] I. C. F. Ipsen and T. Wentworth. kappaSQ v3, 2013.

http://www4.ncsu.edu/˜ipsen/papers.html.

[23] Ilse C. F. Ipsen and Thomas Wentworth. The e↵ect of coherence on sampling from ma-

trices with orthonormal columns, and preconditioned least squares problems (v1). CoRR,

abs/1203.4809v1, 2012.

[24] D. V. Lindley. The Bayesian approach. Scand. J. Statist., 5(1):1–26, 1978. With discussion.

[25] Michael W. Mahoney. Randomized algorithms for matrices and data. CoRR,

abs/1104.5557, 2011.

[26] Michael W. Mahoney and Petros Drineas. CUR matrix decompositions for improved data

analysis. Proc. Natl. Acad. Sci. USA, 106(3):697–702, 2009. With supplementary material

available online.

[27] Xiangrui Meng, Michael A. Saunders, and Michael W. Mahoney. LSRN: A Parallel Iterative

Solver for Strongly Over- or Underdetermined Systems. SIAM J. Sci. Comput., 36(2):C95–

C118, 2014.

[28] Carl Meyer. Matrix analysis and applied linear algebra. Society for Industrial and Applied

Mathematics (SIAM), Philadelphia, PA, 2000. With 1 CD-ROM (Windows, Macintosh

and UNIX) and a solutions manual (iv+171 pp.).

[29] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms

and Probabilistic Analysis. Cambridge University Press, New York, NY, USA, 2005.

[30] Christopher C. Paige and Michael A. Saunders. LSQR: an algorithm for sparse linear

equations and sparse least squares. ACM Trans. Math. Software, 8(1):43–71, 1982.

[31] Dimitris Papailiopoulos, Anastasios Kyrillidis, and Christos Boutsidis. Provable determin-

istic leverage score sampling. CoRR, abs/1404.1530, 2014.

77

[32] Benjamin Recht. A simpler approach to matrix completion. J. Mach. Learn. Res., 12:3413–

3430, 2011.

[33] Vladimir Rokhlin and Mark Tygert. A fast randomized algorithm for overdetermined linear

least-squares regression. Proc. Natl. Acad. Sci. USA, 105(36):13212–13217, 2008.

[34] Sheldon M. Ross. Introduction to Probability Models, Ninth Edition. Academic Press, Inc.,

Orlando, FL, USA, 2006.

[35] Ameet Talwalkar and Afshin Rostamizadeh. Matrix coherence and the nystrom method.

CoRR, abs/1004.2008, 2010.

[36] Joel A. Tropp. Improved analysis of the subsampled randomized Hadamard transform.

Adv. Adapt. Data Anal., 3(1-2):115–126, 2011.

[37] Joel A. Tropp. User-friendly tail bounds for sums of random matrices. Found. Comput.

Math., 12(4):389–434, 2012.

[38] P. F. Velleman and R. E. Welsch. E�cient computing of regression diagnostics. Amer.

Statist., 35(4):234–242, 1981.

[39] Shusen Wang. On the lower bounds of the nyström method. CoRR, abs/1303.4207, 2013.

[40] Per-Æke Wedin. Perturbation bounds in connection with singular value decomposition.

BIT Numerical Mathematics, 12(1):99–111, 1972.

[41] Per-Æke Wedin. On angles between subspaces of a finite dimensional inner product space.

In Bo K̊agström and Axel Ruhe, editors, Matrix Pencils, volume 973 of Lecture Notes in

Mathematics, pages 263–285. Springer Berlin Heidelberg, 1983.

78

