
ABSTRACT

BATHMANN, KRISTEN ASHLEY. State Estimation from Sparse Observation Networks and
Satellite Measurement. (Under the direction of John Harlim.)

Filtering is the process of determining the statistically best estimate of a true signal based

on partial, noisy observations. It is a two-step predictor-corrector scheme consisting of a forecast

step, followed by an analysis step that updates the prediction as observations become available.

In this thesis, two different filtering methods are applied under two different scenarios. In

the first setting, two-dimensional irregularly spaced, sparsely observed turbulent signals are

assimilated through a hierarchical Bayesian reduced stochastic filter. This approach is tested

using a two-layer quasi-geostrophic model on a two-dimensional domain with a small radius

of deformation to mimic ocean turbulence. The hierarchical strategy consists of two steps,

combining a data-driven interpolation with the Mean Stochastic Model filter (MSM). Two

interpolation schemes, a piecewise linear interpolation and ordinary kriging, are compared in this

first step. Filtered estimates obtained from ordinary kriging are superior to those obtained from

the linear interpolation when the observation networks are not too sparse, and the dynamical

constraint of the MSM becomes important when the observation noise variance is large.

In the second half of this thesis, the potential for using cloud-impacted satellite observations

to improve the analysis estimate of the Local Ensemble Transform Kalman filter is assessed.

Most data assimilation schemes with satellite data utilize only clear sky infrared radiances. How-

ever, cloudy radiances contain significant information about the atmospheric state and could

have a positive impact on weather prediction. This study is based on synthetic Atmospheric

Infrared Sounder (AIRS) measurements, incorporating the temperature and humidity profiles

of the multicloud model, a toy model that simulates tropical convection. The key parameters

that induce filter bias in the presence of a cloud are identified. In particular, the cloud cover

percent, and, more importantly, the cloud top pressure are the two most crucial parameters to

estimate correctly. Furthermore, this study also provides error bounds on the analyses based

on using cloud-impacted AIRS data. The findings here suggest that with reasonable estimates

of cloud cover percent and cloud top pressure, cloudy AIRS data can be potentially as effective

as clear sky data, and could enhance numerical weather prediction.
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Chapter 1

Introduction

Filtering is the process of determining the statistically best estimate of a true signal based on

partial, noisy observations. It is a two-step predictor-corrector scheme consisting of a forecast

step, followed by an analysis step that updates the prediction as observations become available.

The forecast treats the underlying system dynamics as a black box, while the analysis accounts

for both the prediction and the observations to update the state estimate [45]. Consider a

random variable ~um whose dynamics are governed by the discrete time model

~um+1 = ~f(~um) + ~σm+1, (1.1)

where ~f is a discrete time operator that propagates ~um ∈ CN or RN forward in time and

~σm ∈ CN or RN is a Gaussian noise vector of mean zero and covariance

〈~σm ⊗ (~σm)∗〉 = R.

The superscript asterisk denotes the conjugate transpose, and the notation 〈•〉 denotes expec-

tation with respect to the Gaussian noise joint distribution.

The goal of the Kalman filter is to estimate the true state ~um+1, given noisy observations

~vm+1 that satisfy the relation

~vm+1 = ~g(~um+1) + ~σom+1, (1.2)

where ~g ∈ RM×N is an observation operator that maps the model variable ~um+1 into the

observational space and ~σom+1 ∈ CM or RN is a Gaussian measurement error of mean zero and

diagonal covariance

〈~σom ⊗ (~σom)∗〉 = roI.

The derivation of the Kalman filter assumes Gaussian noise. For certain applications, this

assumption may not be true; in this case, one might consider another filtering method, such as
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a particle filter.

We will examine two different filtering approaches in two settings. In the first setting, we

consider observations of two-dimensional turbulent ocean dynamics in the mid-latitude. Let

uk,l,m denote the (k, l)-Fourier mode of ~um. This filter is implemented mode-by-mode. Therefore,

to simplify the discussion, we will drop the k and l in the subscript of uk,l,m. Here we model

the underlying dynamics in a Fourier domain with a simple model

um+1 = Fum + σm+1. (1.3)

Using the two-layer quasi-geostrophic (QG) model, [61, 62], we generate numerous two dimen-

sional sparse, noisy, irregularly spaced observation networks. This imitates the practical situa-

tion in which physical observations are sparse and not available at regular model grid points.

We simulate the QG model, using parameters that mimic oceanic turbulence and we only take

our observations from its large scale components, making this a difficult filtering problem. Our

goal is to assess the filtering skill when an irregularly spaced observation network is subject to

processing prior to assimilation. The filtering approach here consists of a two step hierarchical

Bayesian framework. The first step is to interpolate the irregularly spaced observations to the

regular filter model grid points. The second step is to apply a simple, reduced filter stochastic

filter in Fourier space. In this set up, the model in (1.2) simplifies to,

vm+1 = Gum+1 + σom+1,

where vm+1 is the Fourier mode of ~vm+1 and σom+1 denotes the observational noise with variance

(ro/M)I (see [45]). The component of G corresponding to mode (k, l) is equal to 1, while the

other components of G are equal to 0. We will use a numerically cheap forecast model, the

Mean Stochastic Model, [45, 48] to parametrize our forecast operator F in (1.3).

In this application, we use a Kalman filter, assuming that the observation and prior forecast

error uncertainties are Gaussian, uncorrelated, and unbiased [45]. The error distribution of the

observations vm+1 is given by the Gaussian conditional distribution

P (vm+1|um+1) ∼ N
(
Gum+1

∣∣∣∣ roM I
)
.

We denote the estimate of um+1 before updating to account for the observations vm+1 at this

time step as ubm+1. This estimate is called the prior state estimate, forecast, or background

estimate, and we use the three terms interchangeably. Then

ubm+1 = Fuam + σm+1,
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where uam denotes the posterior state estimate, or analysis at the previous time step. The

posterior state uam+1 gives the estimate of the true state after considering the observations

vm+1.

Probabilistically, the prior state probability distribution of ubm+1 accounts for all observa-

tions up to time tm as

P (ubm+1) ∼ N (ūbm+1, R
b
m+1).

Here ūbm+1 ≡
〈
ubm+1

〉
gives the mean of the prior state and

Rbm+1 ≡
〈

(ubm+1 − ūbm+1)(ubm+1 − ūbm+1)∗
〉

gives the prior error covariance. The estimate for the posterior mean is then found by maximizing

the conditional distribution

P (uam+1) ≡ P (ubm+1|vm+1) ∝ P (ubm+1)P (vm+1|ubm+1).

We then obtain the posterior error covariance by computing

Ram+1 =
〈
(um+1 − ūam+1)(um+1 − ūam+1)∗

〉
.

In the second part of this thesis, we assimilate synthetic cloudy Atmospheric Infrared

Sounder (AIRS) satellite observations equally spaced along the equator with a toy model of

tropical convection called the multicloud model [32, 33]. As we will demonstrate, the presence

of a cloud can have a significant effect on satellite observations. Less than 1% of AIRS observa-

tions are taken over a cloud-free atmospheric column [13]. Consequently, only a small percentage

of AIRS observations are currently used in forecast models. We will study the potential and

the merit of assimilating cloud-impacted AIRS data, and examine the biases that clouds can

introduce in the filtering algorithm. We use a simulation of the multicloud model to create a

true atmospheric state. To generate synthetic satellite observations, we use the prototype com-

munity Radiative Transfer Model, [22], augmented with added cloud effects. In this case, the

forecast model ~f in (1.1) represents the multicloud and is a nonlinear, deterministic operator.

The observation operator ~g in (1.2) is also nonlinear and is a composite of the radiative transfer

model, an inverse Planck function, and several dimensionalization transformations. Notice that

because we use the multicloud model to specify the true dynamics, the filter model is perfectly

specified. Therefore, this is an example of a perfect model experiment [9].

The basic Kalman filter assumes linearity in both the forecast model in (1.1) and the ob-

servation operator in (1.2) in its derivation. Because of the nonlinearity of both the multicloud

model and the radiative transfer model, we must be careful to employ an appropriate filtering
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strategy. Here we utilize the local ensemble transform Kalman filter (LETKF), a deterministic

approach, in the analysis step [28, 7]. This filter is implemented locally, meaning that for each

model grid point, we use all of the observations available within a radius D in the analysis up-

date. The LETKF uses a collection, or ensemble, of state vectors to represent the distribution of

the true state, um+1. Ensemble members are created with different initial conditions. Starting

with an ensemble {~uak}Kk=1 at time tm, the filter propagates each ensemble member forward in

time with the nonlinear forecast model ~f to obtain {~ubk}Kk=1 at time tm+1.

When observations become available, the analysis step uses the forecast ensemble {~ubk},
the local observations and their error covariance matrix, and the observation operator ~g to

compute the posterior ensemble mean and posterior error covariance matrix. The filter assumes

that the forecast (prior) ensemble mean ~̄ub gives the best estimate of the true atmospheric

state, before taking new observations into account. In the analysis, each ensemble member is

updated with the analysis (posterior) ensemble mean, ~̄ua, which represents the best estimate

of the atmospheric state after considering the observations.

The forecast error covariance depends on the perturbation of each ensemble member about

the prior ensemble mean, ~ubk − ~̄ub. The basic idea of the LETKF is to apply a transformation

to the prior ensemble perturbations so that they describe the posterior error covariance that

accounts for the observations. In a sense, the perturbations are weighted, based on the difference

between the average of {~g(ubk)} and the values of the local observations. The transformed

perturbations are used to define the posterior error covariance, and to update each ensemble

member in conjunction with the posterior mean.

The remainder of this thesis is outlined as follows. In Chapter 2, we consider a hierarchical

Bayesian filtering scheme. This study has been published in [8]. We first discuss the two-layer

QG model in the mid-latitude. Next, we discuss the two-step filtering approach; in the first

step, we consider two interpolation techniques, a two-dimensional piecewise linear interpolation

scheme and ordinary kriging, [10], a geostatistical interpolation scheme. In the second step, we

use the Mean Stochastic Model [45]. Subsequently, we present the results of several filtering

experiments and close the chapter with a summary and discussion. In Chapter 3, we assimilate

cloudy satellite observations. We first discuss the multicloud model and the radiative transfer

model. Next, we explain how we create satellite observations, and how we simulate cloud cover.

We then discuss the filtering approach. Finally, we present our numerical results and close with

a summary and discussion.
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Chapter 2

A Hierarchical Bayesian Reduced

Stochastic Filter

In this chapter, we consider a filtering approach for assimilating noisy, irregularly spaced,

sparsely observed turbulent signals with a hierarchical Bayesian reduced stochastic filter. Typ-

ical forecast models are resolved on regularly spaced grid points. In contrast, observations in

nature are usually sparse and noisy, and are not always available at regularly spaced grid points.

For example, radiosonde measurements from weather balloons are sparse over the ocean, but

denser over land. Our goal here is to extend the current reduced stochastic filtering models

to account for sparse, irregularly spaced observation networks on a two-dimensional domain,

through the use of an appropriate interpolation technique.

Let Ṽ denote the random variable of the irregularly spaced observations, and let U denote

the random variable of the forecast model state. The standard stochastic filtering approach

utilizes Bayes’ theorem to obtain the posterior statistics of the conditional distribution

P (u|ṽ) ∝ P (u)P (ṽ|u), (2.1)

where ṽ ∈ Ṽ and u ∈ U [2, 7, 14]. Here, P (u) gives the prior distribution associated with the

forecast model dynamics. The typical method for assimilating irregularly spaced observations

is to use the observation operator

ṽm = G(um) + σ̃om, σ̃om ∼ N (0, roI) (2.2)

to map the model variable um = (uj,m)Nj=1 at grid point j and discrete time step m to the

observation variable ṽm = (ṽ`,m)M`=1 at grid point `. Here, the observation ṽm is corrupted by

an i.i.d. Gaussian noise σ̃om with mean zero and variance ro. In (2.1), P (ṽ|u) gives a likelihood

function associated with this observation model..
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The hierarchical approach can be probabilistically interpreted as an application of the hier-

archical Bayesian approach [23]. The first step in this approach is to use a statistical interpola-

tion technique to interpolate the irregularly spaced observations ṽ ∈ Ṽ to the filter model grid

points. Let V denote the random variable of the interpolated observations. Then from Bayes’

theorem, we obtain

P (u|v) ∝ P (u)P (v|u),

where v ∈ V . Adding the condition of v to (2.1), we have

P (u|ṽ, v) ∝ P (u|v)P (v|u, ṽ) ∝ P (u)P (v|u)P (ṽ|v, u). (2.3)

The conditional distribution P (v|u, ṽ) represents the outcome of the statistical interpolation.

The second step of this approach is to apply P (u)P (v|u, ṽ) through a reduced stochastic filtering

algorithm. Here, the computational cost is significantly reduced compared to the standard

Bayesian approach in (2.1) with the observation model in (2.2). This process combines the

data-driven interpolation in the first step and the dynamical constraint of the prior distribution

in the second step.

We will apply the hierarchical Bayesian approach in (2.3) to filter noisy, irregularly spaced,

sparse observations of geophysical turbulence over a two-dimensional doubly periodic domain.

The two layer quasi-geostrophic (QG) model, [61, 62], simulates atmospheric and oceanic tur-

bulence. We generate our observations from the large-scale, barotropic components of a solution

of the QG model, using a long Rossby radius, corresponding with ocean dynamics. In reality,

observations of small scale processes are typically not available. Additionally, we externally

force the QG model, so that it exhibits baroclinic instability. We choose the locations of the

observations randomly, and perturb each with a noise ro.

In the first step of (2.3), we will compare the performance of two different interpolation

schemes on numerous observation networks. In particular, we compare a deterministic piecewise

linear interpolation and ordinary kriging, a spatial statistical interpolation [10]. In the linear

interpolation, we use three observations to interpolate at each model grid point. This choice

is arbitrary; compared to a one-dimensional Lagrange function, which can only be defined

with two observations, a two dimensional Lagrange function can be defined with any number

of surrounding observations. Ordinary kriging is a data driven interpolation technique. This

method treats the set of observations and interpolated observations as a random field, and

assumes Gaussian, stationary noises. The main idea of kriging is to fit the set of observations to

an empirically chosen, parametric covariance function. The expected value at each model grid

point is then found by solving a constrained minimization problem.

The assimilation of sparsely observed turbulent signals has been studied previously in a

one-dimensional setting in [23]. As in [23], we will use the Mean Stochastic Model (MSM),
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[45, 48], a filtering strategy that models turbulent fluctuations with a linear damping and white

noise, [61, 50, 51, 43, 11, 47], for the second step in (2.3). This cheap filter is comprised of block

diagonal Langevin equations in Fourier space. We obtain the MSM parameters offline by fitting

a training data set to the solutions of the Ornstein-Uhlenbeck process. For problems similar to

ours, the MSM has produced positive results, despite its simplicity [25, 26, 37].

In Section 2.1, we will review the two-layer quasi-geostrophic model, [61, 62], to be used in

our numerical experiments. In Section 2.2, we will discuss the interpolation schemes and the

steps in the hierarchical Bayesian approach in detail. We report the filtering results in Section

2.3 and summarize our findings in Section 2.4.

2.1 Quasi-geostrophic Model

We consider observations of turbulent ocean dynamics in the mid-latitude, between 30o and 65o

in the northern hemisphere. To generate our observations, we use a numerical solution of the

two-layer quasi-geostrophic (QG) model in a two-dimensional periodic domain, with instability

induced by mean vertical shear [61].

2.1.1 Background Information

In the mid-latitude, the Coriolis force, a pseudo-force associated with the effects of Earth’s

rotation, affects geophysical fluid dynamics. This force is characterized by the Coriolis parameter

f , which is proportional to Earth’s angular velocity and increases with increasing latitude (note

that f = 0 at the equator). Using a tangent plane approximation, we can approximate the

Coriolis parameter by

f = f0 + βy,

where the y direction points towards the north pole for the northern hemisphere, and fo depends

on the reference latitude.

The QG model is derived from the shallow water equations under several assumptions. In

the presence of Coriolis force ~f = fk, the single layer shallow water equations are given in [65]

by

∂~u

∂t
+ ~u · ∇~u+ ~f × ~u = −g∇zη

Dh

Dt
+∇ · (h~u) = 0, (2.4)

where ~u(x, y, t) is the horizontal velocity, η(x, y, t) is the free surface height, h(x, y, t) is the
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fluid thickness, g is the gravity constant, and

∇z =
∂

∂x
i +

∂

∂y
j.

The material derivative D/DT of a function φ that is advected by ~u is defined by

Dφ

Dt
≡ ∂φ

∂t
+ ~u · ∇φ.

For a flat-bottom system, h(x, y, t) = η(x, y, t). The first equation is (2.4) describes the mo-

mentum of the fluid, while the second equation represents mass conservation.

We can quantify the significance of rotation in a fluid with the Rossby number, which is

given by

Ro ≡
U

fL
,

where L is the horizontal length scale and U is the horizontal velocity scale. If the Rossby

number is small, the effects of rotation are important, as is the case in large-scale oceanic

flow. In this case, the Coriolis force dominates the advection terms in (2.4). The only term in

which can balance the Coriolis term in (2.4) is the free surface gradient. Therefore, we define

geostrophic balance as
~f × ~u ≈ −g∇zη.

In the QG equations, the deformation radius Ld, the scale at which Earth’s rotation be-

comes significant to fluid dynamics, is the horizontal length scale. Thus, the QG approximation

assumes a small Rossby number and hence that the fluid is in geostrophic balance. Addition-

ally in this setting, we assume that variations in the Coriolis parameter are small, therefore

|βL| << |fo|. Finally, we assume that time scales advectively, so that we can use the time scale

T = Ld/U.

2.1.2 The Model

Consider a two-layer shallow water system with a flat bottom and rigid lid, and denote fluid

thickness in each layer as hi(x, y, t) and the velocity in each layer as ~ui = (ui, vi, 0). The

vorticity ωi in each layer is defined to be the curl of the velocity field, ωi = ∇ × ~ui. Because

of the shallow water approximation, only the vertical component of vorticity is nonzero, and

therefore the vorticity simplifies to

ωi =

(
∂vi
∂x
− ∂ui
∂y

)
= ςik.
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In a rotating shallow water system, the quantity

Q ≡ ς + f

h

is called the potential vorticity. Assume that both layers are of equal mean thickness H and let

hi = H + h′i. Because the variations in the layer thickness are small, we can Taylor expand Qi

in each layer about h′i. Taking a first order approximation yields

Qi =

(
ςi + f

H

)(
1

1 +
h′i
H

)

≈
(
ςi + f

H

)(
1− h′i

H

)
≈ 1

H

(
ςi + f − ςi

h′i
H
− f h

′
i

H

)
Because the system is in geostrophic balance, the Coriolis terms and ςi dominate this equation.

Therefore,

Qi ≈
1

H

(
ςi + f − f h

′
i

H

)
.

The variations in f are small, as are the variations in layer thickness, so we can further approx-

imate

Qi ≈
1

H

(
ςi + f − fo

h′i
H

)
.

In the QG equations, Qi is advected, therefore only non-constant terms are important to the

model dynamics. Since fo and H are constant, we therefore define the quasi-geostrophic poten-

tial vorticity in each layer by

qi = βy + ςi − fo
h′i
H
.

In each layer, we define a streamfunction ψi by

ψ1 =
g

fo
(h′1 + h′2), ψ2 =

g

fo
(h′1 + h′2) +

g′h′2
fo

,

where g′ = (ρ2−ρ1)/ρ1, subscript 1 denotes the upper layer and subscript 2 denotes the bottom

layer [65]. These are defined so that

ui = −∂ψi
∂y

, vi =
∂ψi
∂x

, ςi = ∇2ψi.
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Thus the QG potential vorticity in each layer becomes

q1 = ∇2ψ1 +
f2
o

g′H
(ψ2 − ψ1) + βy +

f2
o

gH2
ψ1

q2 = ∇2ψ2 +
f2
o

g′H
(ψ1 − ψ2) + βy.

The last term in the first equation is neglected in the rigid lid approximation, because g >> g′.

Nondimensionalizing these equations, using the deformation radius Ld as the horizontal scale

of motion, we obtain

qi = ∇2ψi +
k2
d

2
(ψ3−i − ψi) + βy, j = 1, 2 (2.5)

where kd =
√

8/Ld gives the wavenumber associated with Ld.

To derive the QG equations in each layer, we start with the nondimensionalized momentum

equation in geostrophic balance in layer i,

~f × ~ui = −∇zηi. (2.6)

Here, L is the horizontal length scale, U is the horizontal velocity scale, and T = U/L is

the advective time scale. To nondimensionalize the Coriolis force, we divide by fo. Then the

dimensionless Coriolis parameter is

f = 1 +Roβ̂y,

where β = β̂U/L2. The momentum equation then becomes

~f × ~ui = −∇zηi

−vi(1 +Roβ̂y)i + ui(1 +Roβ̂y)j = −∂ηi
∂x

i +−∂ηi
∂y

j.

Following [65], we expand the variables u, v and η in an asymptotic series, using Ro as the small

parameter, and substitute them into the momentum equation. Then

ui = u0
i +Rou

1
i +R2

ou
2
i + ... vi = v0

i +Rov
1
i +R2

ov
2
i + ...

and

ηi = η0
i +Roη

0
i + ...

We first substitute the expansions for u and v into (2.6) and equate the powers of Ro. At the

lowest order, this yields the equalities

u0
i = −∂η

0
i

∂y
v0
i =

∂η0
i

∂x
.
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Cross-differentiating, we obtain

∇ · ~u0
i = 0.

The next order momentum equation is given by

∂~u0
i

∂t
+ (~u0

i · ∇)~u0
i + β̂yk× ~u0

i − k× ~u1
i = −∇η1

i .

Taking the curl of this, we obtain the vorticity

∂ς0
i

∂t
+ (~u0

i · ∇)(ς0
i + β̂y) = −∇ · ~u0

i , (2.7)

where

ς0
i =

∂v0
i

∂x
− ∂u0

i

∂y
.

The nondimensionalized mass continuity equation is given by

RoF
Dηi
Dt

+ (1 +RoFηi)∇ · ui = 0, (2.8)

with
√
F = L/Ld. At the lowest order, the mass equation simplifies to ∇ · ~u0

i = 0, as the lowest

order momentum equation did. At the next order, we have

F
∂η0

i

∂t
+ F~u0

i · ∇η0
i +∇ · ~u1

i = 0. (2.9)

Substituting (2.9) into (2.7) gives

∂ς0
i

∂t
+ (~u0

i · ∇)(ς0
i + β̂y) = F

∂η0
i

∂t
+ F~u0

i · ∇η0
i ,

or
∂

∂t
(ς0
i − Fη0

i ) + (~u0
i · ∇)(ς0

i + β̂y − Fη0
i ) = 0.

With the nondimensionalized streamfunction ψi, this becomes

∂

∂t
(∇2ψ0

i − Fψ0
i ) + (~u0

i · ∇)(ς0
i + β̂y − Fψ0

i ) = 0,

or
D0

Dt
(∇2ψ0

i + β̂y − Fψ0
i ) = 0,

where the superscript 0 in the material derivative indicates that the lowest order velocity, ~u0
i is
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the advecting velocity. Restoring the dimensions, this yields

D

Dt
(∇2ψi + βy − 1

Ld
ψi) =

Dqi
Dt

= 0.

Expanding the material derivative, and using the properties u = −ψy and v = ψx, we obtain

the QG equation in each layer:

Dqi
Dt

=
∂qi
∂t

+ ~ui · ∇qi =
∂qi
∂t

+ ui
∂qi
∂x

+ vi
∂qi
∂y

=
∂qi
∂t
− ∂ψi

∂y

∂qi
∂x

+
∂ψi
∂x

∂qi
∂y

=
∂qi
∂t

+ J(ψi, qi).

The Jacobian function J(ψ, q) = ψxqy − ψyqx in

∂qi
∂t

+ J(ψi, qi) = 0 (2.10)

represents nonlinear advection.

Because we consider a two-layer QG model that is forced by a mean vertical shear, we take

ψ1 and ψ2 to be perturbed streamfunctions with background state

Ψ1 = −Uy, Ψ2 = Uy. (2.11)

Here U is the zonal mean shear, selected so that this model exhibits baroclinic instability with

a turbulent cascade. For details on the properties of this system, see [61] and the citations in

[62]. Substituting ψ1 = Ψ1 + ψ′1, and ψ2 = Ψ2 + ψ′2 into (2.5) yields

q′1 = ∇2ψ′1 +
k2
d

2
(ψ′2 − ψ′1) + (k2

dU + β)y

q′2 = ∇2ψ′2 +
k2
d

2
(ψ′1 − ψ′2) + (β − k2

dU)y.

We substitute both of these into (2.10). The equation for q′1 simplifies as

∂q′1
∂t

+ J(ψ1, q
′
1) =

∂q1

∂t
+

(
∂ψ′1
∂x

)(
∂q1

∂y
+ k2

dU + β

)
−
(
∂ψ′1
∂y
− U

)(
∂q1

∂x

)
=

∂q1

∂t
+ J(ψ′1, q1) + (k2

dU + β)
∂ψ′1
∂x

+ U
∂q1

∂x
,
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while the equation for q′2 simplifies as

∂q′2
∂t

+ J(ψ2, q
′
2) =

∂q2

∂t
+

(
∂ψ′2
∂x

)(
∂q2

∂y
− k2

dU + β

)
−
(
∂ψ′2
∂y

+ U

)(
∂q2

∂x

)
=

∂q2

∂t
+ J(ψ′2, q2) + (β − k2

dU)
∂ψ′2
∂x
− U ∂q2

∂x
.

The lower layer experiences a friction at its bottom; the effects of Earth’s rotation on large scale

oceanic flow is large, and results in a boundary layer, called the Ekman layer, which balances

the Coriolis force with friction [65]. In the lower level vorticity equation, Ekman friction is

represented by the additional term κ∇2ψ′2, where κ is the Ekman bottom drag coefficient.

Dropping the primes on ψ′i to simplify the notation, two-layer QG equations with a flat

bottom, and rigid lid are given in [8] by(
∂

∂t
+ U

∂

∂x

)
q1 + J(ψ1, q1) +

∂ψ1

∂x
(β + k2

dU) + ν∇8q1 = 0,(
∂

∂t
−+U

∂

∂x

)
q2 + J(ψ2, q2) +

∂ψ2

∂x
(β − k2

dU) + κ∇2ψ2 + ν∇8q2 = 0. (2.12)

Notice here the additional ν∇8qi term in each equation; here ν is a hyperviscosity coefficient,

chosen so that ν∇8q filters out energy buildup on small scales when finite discretization is

enforced. We numerically generate the true signal by resolving (2.12) with 128× 64× 2 Fourier

modes, which correspond to 128× 128× 2 grid points.

There are two important nondimensional parameters associated with this model [24]

b =
β

Uo

(
L

2π

)2

where Uo = 1 is the horizontal, nondimensionalized velocity scale and L = 2π is the domain

size in both directions, and

F =
1

L2
d

(
L

2π

)2

.

To imitate a turbulent jet in the ocean, we chose a short Rossby radius such that F = L−2
d = 40,

as in [36]. Therefore, because k2
d =
√

8/Ld = 320 is large, (2.12) is numerically stiff.

The large-scale components of this system are barotropic, while the small-scale components

are baroclinic [61, 36]. For the two layer model, the barotropic streamfunction is defined as

the average between the two layers, ψ = (ψ1 + ψ2)/2. Similarly, the barotropic QG potential

vorticity q is given by the average of the QG potential vortictes in each layer. The baroclinic
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terms are defined by ψc = (ψ1 − ψ2)/2 and qc = (q1 − q2)/2. Then (2.12) becomes

∂q

∂t
+ J(ψ, q) + β

∂ψ

∂x
+ κ∇8q +

+

[
J(ψc, cc) + U

∂∇2ψc

∂x
− κ∇2ψc

]
= 0. (2.13)

We plot the barotropic and baroclinic velocity fields at two times in Figure 2.1. Notice that

this system exhibits transitions between zonal (east/west) flow and large scale Rossby waves,

which propagate northward and southward [24].
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Figure 2.1: The barotropic velocity field (arrows) and the streamfunction, ψ, (contour) (top)
and the baroclinic velocity field and streamfunctions, ψc (bottom) at times T = 100 and 200.

We will consider M randomly located observations of the large-scale (barotropic) stream-

function corrupted by an i.i.d Gaussian noise with mean zero and variance ro, chosen to corre-

spond to approximately 10% and 25% of the climatological barotropic streamfunction variance,
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E = V ar(ψ) ≈ 69.46. In reality, observations of the small-scale (baroclinic) streamfunctions

are not usually available in the ocean, while observations of the large-scale (barotropic) stream-

functions are sparse. This setup makes this test problem difficult for filtering, as the baroclinic

terms within the brackets of (2.13) create a numerical stiffness.

2.2 Hierarchical Bayesian Filtering Approach

The proposed hierarchical Bayesian filtering approach consists of two steps: the first step is

to interpolate the irregularly spaced observations ṽ to v through an appropriate interpolation

scheme and obtain P (v|u, ṽ) in (2.3); the second step is to apply P (u)P (v|u, ṽ) through a

reduced stochastic filtering algorithm. Here we will compare two different interpolations in the

first step: a deterministic linear interpolation and a geostatistical interpolation technique called

ordinary kriging.

Let s̃i = (x̃i, ỹi) for i = 1, ...,M denote the irregularly spaced observation locations on a

[0, 2π]× [0, 2π] periodic domain and let si,j = (xi, yi), i, j = 1, ..., N with

xi = C +
2πih

N
, yj = C +

2πjh

N
,

for constant C and distance h denote the regularly spaced grid points. In our numerical experi-

ments, we interpolate to N = 6 grid points on each axis. In Sections 2.2.1 and 2.2.2, we discuss

two techniques that interpolate Z(s̃i), the noisy barotropic streamfunction,

Z(s̃i) = ψ(s̃i) + σ̃oi , σ̃oi ∼ N (0, ro), (2.14)

where ψ is a solution of (2.13), into Z(si,j). We then discuss the reduced filtering approach in

Section 2.2.3.

2.2.1 Linear Interpolation

There are non-unique criteria to interpolate two-dimensional data from irregularly spaced ob-

servation networks. For simplicity, we choose to use just three observations to interpolate at

each regular grid point. These three are selected so that they form a triangle with the grid point

in their interior and so that their distances from the interpolation grid point are minimal. Since

these criteria are arbitrary, we expect that the linear interpolation results in Section (2.3) will

not be robust when the criteria are changed.

Denote the three irregularly spaced nodes s̃m, s̃n, and s̃p, and suppose that we interpolate

15



Z(si,j). Then

Z(xi, yj) = Lm(xi, yj)Z(s̃m) + Ln(xi, yj)Z(s̃n) + Lp(xi, yj)Z(s̃p),

where

Lm(x, y) =
(ỹn − y)(x̃n − x̃p)− (x̃n − x)(ỹn − ỹp)

(ỹn − ỹm)(x̃n − x̃p)− (x̃n − x̃m)(ỹn − ỹp)

is a Lagrange function about three points. The other Lagrange functions, Ln(x, y) and Lp(x, y)

are defined in the same fashion.

In the right panel of Figure 2.2, we show an example linear interpolation of M = 36 irregu-

larly spaced, sparse observations, with locations depicted by circles, at time T = 340 time units.

For comparison, we include the truth at this time, resolved at 36 coarse grid points. There is a

relatively good agreement between the interpolated observations and the truth.

Truth at T=340
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Figure 2.2: True process, compared to a linear interpolation at T = 340, with ro = 17.3. The
circles give observation locations and the contours give the barotropic streamfunction, ψ

To quantify the uncertainty in this method, we compute the error covariance matrix in

Fourier space. For an interpolated observation zj,m = Z(xj , ym), where xj = jh, ym = mh, and

Nh = 2π for distance h, let us denote the three corresponding observations as z̃j,m,1, z̃j,m,2, and

z̃j,m,3. To simplify the notation, let us also denote Cj,m,s=Ls(xj , ym). Thus

zj,m = Cj,m,1z̃j,m,1 + Cj,m,2z̃j,m,2 + Cj,m,1z̃j,m,2.
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The discrete Fourier transform of zj,m is then given by

ẑk,l =
h2

4π2

N∑
j=1

N∑
m=1

zj,me
−ikjhe−ilmh

=
h2

4π2

N∑
j=1

N∑
m=1

3∑
s=1

Cj,m,sz̃j,m,se
−i(kj+lm)h.

Additionally, let σ̂ok,l denote the (k, l)-Fourier component of the interpolated noise, σj,m, and

let {σ̃j,m,s}s=1,2,3 denote the noises of the three irregularly spaced observations associated with

zj,m. Then the cross-covariance of the noise between wavenumbers (k, l) and (k′, l′) is given in

[8] by

〈
σ̂ok,l(σ̂

o
k′,l′)

∗〉 =

〈 h2

4π2

N∑
j=1

N∑
m=1

3∑
s=1

Cj,m,sσ̃j,m,se
i(kj+lm)h

 ×
 h2

4π2

N∑
j′=1

N∑
m′=1

3∑
s′=1

Cj′,m′,s′ σ̃j′,m′,s′e
i(k′j′+l′m′)h

〉

=

〈
h4

16π4

 N∑
j,m=1

3∑
s=1

Cj,m,sσ̃j,m,se
−i(kj+lm)h

 ×
 N∑
j′,m′=1

3∑
s′=1

Cj′,m′,s′ σ̃j′,m′,s′e
−i(k′j′+l′m′)h

〉 ,
where 〈•〉 denotes expectation with respect to the Gaussian noise distribution. The diagonal

terms, for which k = k′ and l = l′, simplify to

〈
|σok,l|

〉
=

roh4

16π4

N∑
j,m=1

N∑
j′,m′=1

3∑
s,s′=1

Cj,m,sCj′,m′,s′e
−i[k(j−j′)+l(m−m′)]h

=
roh4

16π4

 N∑
j,m=1

3∑
s=1

C2
j,m,s +

N∑
j,m=1

N∑
j′,m′=1

3∑
s,s′=1

Cj,m,sCj′,m′,s′e
−i[k(j−j′)+l(m−m′)]h

 ,

where ro =
〈
σ̃j,m,sσ̃j′,m′,s′

〉
. The C2

j,m,s term in the second line corresponds to the contributions

of the diagonal terms of the physical space covariance matrix, while the other terms correspond

to the contributions of the off-diagonal terms of the physical space covariance.

In physical space, the noise covariance matrix, illustrated in the left panel of Figure 2.3,

is diagonally dominant with nearby nonzero correlations as expected, due to the interpola-

tion. Observe that the error covariance matrix depends on observation locations, rather than
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the observations themselves. In Fourier space, the error covariance matrix of the interpolated

observations is diagonally dominant (see the right panel of Figure 2.3).

Physical Space Covariance
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Figure 2.3: The noise covariance matrices associated with linear interpolation at T = 340,
with ro = 17.3 in physical space (left) Fourier space (real components, right). The imaginary
component is one magnitude order smaller (not shown).

2.2.2 Ordinary Kriging

Kriging is a maximum likelihood estimator of a random field Z modeled by Z(s) = µ(s) + δ(s),

with Gaussian, stationary noises δ(s) ∼ N (0, C(s, s)). The key idea in kriging is to fit the

observations

~Z = [Z(s̃1), Z(s̃2), ..., Z(s̃M )]T

to an empirically chosen isotropic parametric covariance function C. By isotropic, we mean that

the covariance depends on the distance between observations, that is, C(s1, s2) = C(‖s1 − s2‖).
We will choose C from an exponential family with two parameters, and use a nonlinear

optimization algorithm to obtain the parameters. These parameters change when different sets

of observations become available at different times. In this sense, kriging is a data-driven in-

terpolation scheme, even when the observation network is fixed. To the contrary, the Lagrange

functions associated with linear interpolation are constant for a fixed observation network.

To model the covariance function C, let us first define a variogram as a functional 2γ that
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satisfies the relation

2γ(s̃i − s̃j) ≡ V ar(Z(s̃i)− Z(s̃j)) =
〈
[Z(s̃i)− Z(s̃j)]

2
〉
, (2.15)

to characterize the spatial dependence of the process Z [10]. Expanding the right hand side of

(2.15), we obtain

2γ(s̃i − s̃j) = V ar(Z(s̃i)) + V ar(Z(s̃j))− 2Cov(Z(s̃i), Z(s̃j))

= 2(ro − C(‖s̃i − s̃j‖)),

where we use ro = C(0) and the stationary assumption. This yields a convenient relation

between covariance and the variogram:

C(s̃i, s̃j) = C(‖s̃i − s̃j‖) = ro − γ(s̃i − s̃j). (2.16)

While the exact variogram cannot be known, we can estimate it by using the irregularly

spaced observations. To build a variogram estimator, denoted γ̂(r), we follow the description

in [10]. We first place the observations into bins based on distance from one another. A bin

consists of all pairs of observations which are within distance r of each other, where r is a small

distance. Then for each bin, we compute

2γ̂(r) =
1

|N(r)|
∑

i,j∈N(r)

(R(s̃i) = R(s̃j))
2,

where R(s̃i) = Z(s̃i)− µ(s̃i) is a residual and N(r) is the size of the bin. This equation defines

the variogram estimator. By computing γ̂(r) for several values of r we obtain an estimate of

the covariance structure in (2.16). Because γ̂(r) depends on the observations, kriging is data

driven.

To determine the residual R(s̃i), we must estimate the mean µ(s̃i). Various types of kriging

model the mean µ(s) differently. We consider ordinary kriging, which assumes that µ(s) is

locally constant, as is consistent with the stationary assumption. In our numerical experiments,

we estimate µ(s̃i) with median polishing, an algorithm that estimates the mean value at an

observation location by averaging the observations in the same mesh row and column.

We construct bins for several values of r so that we can estimate γ(s̃i − s̃j) in (2.16) for

numerous values of ‖s̃i − s̃j‖ . Based on the shape of the variogram estimator as a function of

r, we choose an appropriate parametric function γ̂∗(r) to model γ̂(r). An example plot of a

variogram fit at time T = 340 time units is given in Figure 2.4. The values of γ̂(r), depicted

as circles in Figure 2.4, appear to follow an exponential curve. Therefore, we choose γ from an
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exponential family,

γ̂∗(r) = σ2 exp(−ρr), r ≥ 0, (2.17)

where ρ, σ > 0 are the parameters to be determined. Note that there are many other parametric

forms that can be used beside the exponential family [10]. The appropriate form is dictated by

the data. The curve in Figure 2.4 gives the least squares fit of (2.17) with respect to ρ and σ

to γ̂(r) at time T = 340. The corresponding parameters of the residual process at this time are

σ = 0.73254 and ρ = 1.3019. The covariance is estimated by

C(s̃i, s̃j) = ro − σ2 exp(−ρ ‖s̃i − s̃j‖).
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Figure 2.4: An exponential variogram fit at T = 340, with ro = 17.3, plotted as a function of
r.

The estimator for Z at location si,j is given by the conditional expectation E(Z(si,j)|~Z). The

uncertainty of this estimator is given by the conditional covariance, Cov(Z(si,j), Z(si′,j′)|~Z).

Given the observations

~Z = [Z(s̃1), Z(s̃1), ..., Z(s̃M )]T ,
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the joint distribution (Z(si,j), ~Z) is given by

(Z(si,j), ~Z) ∼ N

(
(µ(si,j), ~µ),

[
C(si,j , si,j) c(si,j)

T

c(si,j) Σ

])
,

where

c(si,j) = [C(si,j , s̃1), C(si,j , s̃2), ..., C(si,j , s̃M )], Σi,j = C(s̃i, s̃j).

In general, kriging gives the conditional expectation E(Z(si,j)|~Z) by

E(Z(si,j)|~Z) ≡ µ(si,j) + c(si,j)
TΣ−1(~Z − ~µ)

= c(si,j)
TΣ−1 ~Z + µ(1− c(si,j)TΣ−1~1)

= ~λT ~Z + µ(1− ~λT~1),

where ~λ = Σ−1c(si,j). By the stationary assumption, we assume that, locally, µ(si,j) = µ(s̃k) =

µ; here µ(s̃k) is a component of ~µ. See Theorem 3.5 of [30] for the detailed derivation of

conditional expectation of a multivariable Gaussian distribution. Ordinary kriging requires that
~λT~1 = 1, which eliminates the dependency of the estimator on the unknown locally constant

µ(s).

Ordinary kriging is mathematically defined with the estimator

E(Z(si,j)|~Z) =
M∑
k=1

λi,j,kZ(s̃k) (2.18)

such that the mean square predicted error,

MSPE(~λ) = E

(Z(si,j)−
M∑
k=1

λi,j,kZ(s̃k)

)2
 , (2.19)

is minimized, subject to the constraint

M∑
k=1

λi,j,k = 1.

Rewrite the sum in (2.19) so that

MSPE(~λ) = V ar

(
M∑
k=0

akZk

)
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where a0 = 1, ak = −λi,j,k = −λk for k > 0, Z0 = Z(si,j) and Zk = Z(s̃k) for k > 0. Then

MSPE(~λ) = C(Z0, Z0)− 2

M∑
i=0

λiC(Zi, Z0) +

M∑
i,j=1

λiλjC(Zi, Zj).

The constraint minimization problem in (2.19) is equivalent to minimizing

MSPE(~λ) + 2α

(
M∑
k=1

λk − 1

)
≡ L(~λ, α).

By setting
∂L

∂λk
= 0, and

∂L

∂α
= 0

we obtain

−2C(Z0, Zk) + 2
M∑
j=1

KλjC(Zj , Zk) + 2α = 0

and
M∑
k=1

λk − 1 = 0.

This can be written as a linear system Γ0
~λ0 = γ0 with

Γ0 =


1

C(s̃k, s̃l)
...

1

1 · · · 1 0

 , ~λ0 =


λ1

...

λM

α

 , ~γ0 =


C(si,j , s̃1)

...

C(si,j , s̃n)

1


In our notation, the multipliers are thus given by


λi,j,1

...

λi,,jn

α

 =


1

C(s̃k, s̃l)
...

1

1 · · · 1 0


−1 

C(si,j , s̃1)
...

C(si,j , s̃n)

1

.

 (2.20)
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The conditional variance is then given as

MSPE(~λ0) = C(Z0, Z0)− 2
M∑
i=1

λiC(Zi, Z0) +
M∑
i=1

M∑
j=1

λiλjC(Zi, Zj)

= C(Z0, Z0)− 2
M∑
i=1

λiC(Zi, Z0) +
M∑
i=1

λi[C(Zi, Z0)− α]

= C(Z0, Z0)−
M∑
i=1

λiC(Zi, Z0)− α

= C(Z0, Z0)− ~λT0 ~γ0.

Then

var[Z0|~Z] = C(Z0, Z0)− ~γT0 Γ−1
0 ~γ0

and

var[Z(si,j)|~Z] = C(si,jsi,j)− [c(si,j)
T , 1]Γ−1

0 [c(si,j)
T , 1]T .

Thus the generalized covariance is

cov[Z(si,j)Z(si′,j′)|~Z] = C(si,j , si′,j′)− [c(si,j), 1]Γ−1
0 [c(si,j)

T , 1]T .

In the right panel of Figure 2.5, we show a kriging result at time T = 340. We again

include the truth for comparison. We again observe a good agreement between the truth and

the reconstructed field.

Truth at T=340
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Figure 2.5: True process, compared with kriging at T = 340, with ro = 17.3. The circles give
observation locations and the contours give the barotropic streamfunction, ψ.
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Figure 2.6 shows the associated error covariance matrix for the kriging result in both physical

space and Fourier space. By design, the error covariance matrix in Fourier space is diagonal

because of the stationarity of the covariance estimator with isotropic function C. The slight

nonzero non-diagonal terms in the Fourier domain in Figure 2.6 are numerical artifacts. In

contrast to the linear interpolation scheme, the error covariance matrix obtained from kriging

changes in time even when observation locations do not, because C(s̃i, s̃j) in (2.16) depends on

a variogram estimator that changes based on the observations.
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Figure 2.6: The noise covariance matrices associated with kriging at T = 340, with ro = 17.3
in physical space (left) and Fourier space (real components, right). The imaginary component
is one magnitude order smaller (not shown).

2.2.3 Reduced Stochastic Filter

The second step in the hierarchical Bayesian framework in (2.3) is to apply the reduced stochas-

tic filter. We will report the numerical simulations results using a simple reduced stochastic

model, the Mean Stochastic Model (MSM) [26, 48]. In this method, we fit the variance and the

integral of the autocorrelation time function for each mode to the empirical solutions of the

QG model. We will construct the MSM in Fourier space for the barotropic mode dynamics in

(2.13). Following standard closure modeling for turbulent systems [61, 50, 51, 43, 11, 47], we

replace the baroclinic terms and the nonlinear advective terms in (2.13) with stochastic noise

and linear damping terms, such that each Fourier component can be written as

dψ̂k,l(t) = (−dk,l + iωk,l)ψ̂k,l(t)dt+
¯̂
ψk,ldt+ σk,ldWk,l(t), (2.21)
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where ψ̂k,l denotes the Fourier component of the barotropic streamfunction ψ and Wk,l(t) =

(W1(t) + iW2(t))/
√

2 denotes a complex-valued Wiener process with independent standard

Wiener processes, W1 and W2. Each component of Wk,l satisfies dWj(t) = Ẇj(t)dt, where〈
Ẇj

〉
= 0. Therefore, white noise is is a derivative of the Wiener process. The exact solution

of (2.21) is given by

ψ̂k,l(t) = ψ̂k,l(0)e(−dk,l+iωk,l)t + σk,l

∫ t

0
e(−dk,l+iωk,l)(t−τ)dWk,l(τ).

For simplicity, we assume that ψ̂k,l has an initial variance of zero. The mean of ψ̂k,l(t) is given

by

¯̂
ψk,l =

〈
ψ̂k,l(t)

〉
=

〈
ψ̂k,l(0)e(−dk,l+iωk,l)t + σk,l

∫ t

0
e(−dk,l+iωk,l)(t−τ)dWk,l(τ)

〉
= e(−dk,l+iωk,l)t

〈
ψ̂k,l(0)

〉
+ σk,l

∫ t

0
e(−dk,l+iωk,l)(t−τ) 〈dWk,l(τ)〉

= e(−dk,l+iωk,l)t
〈
ψ̂k,l(0)

〉
+ σk,l

2∑
j=1

∫ t

0
e(−dk,l+iωk,l)(t−τ)

〈
Ẇj(τ)

〉
dτ

= e(−dk,l+iωk,l)t
〈
ψ̂k,l(0)

〉
.

The variance of ψ̂k,l(t) is given by

Var[ψ̂k,l(t)] =
〈

(ψ̂k,l(t)−
¯̂
ψ)(ψ̂k,l(t)−

¯̂
ψk,l)

∗
〉

=

〈
σ2
k,l

∫ t

0
e(−dk,l+iωk,l)(t−τ ′)dWk,l(τ

′)

(
σk,l

∫ t

0
e(−dk,l+iωk,l)(t−τ)dWk,l(τ)

)∗〉
=

σk,l
2
e−2dk,lt

∫ t

0

∫ t

0
edk,l(τ

′+τ)−iω(τ ′−τ)
〈
dWk,l(τ

′)dWk,l(τ)
〉
.

The components of Wk,l satisfies the properties
〈
Ẇ1(τ ′)Ẇ2(τ)

〉
=
〈
Ẇ2(τ ′)Ẇ1(τ)

〉
= 0 and〈

Ẇ1(τ ′)Ẇ1(τ)
〉

=
〈
Ẇ2(τ ′)Ẇ2(τ)

〉
= δ(τ ′− τ), where δ(x), the Dirac delta function, is defined
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such that δ(0) =∞ and
∫
R δ(x)dx = 1. Then

Var[ψ̂k,l(t)] =
2∑
j=1

σk,l
2
e−2dk,lt

∫ t

0

∫ t

0
edk,l(τ

′+τ)−iω(τ ′−τ)
〈
Ẇj(τ

′)Ẇj(τ)
〉
dτ ′dτ

=

2∑
j=1

σk,l
2
e−2dk,lt

∫ t

0

∫ t

0
edk,l(τ

′+τ)−iω(τ ′−τ)δ(τ ′ − τ)dτ ′dτ

= σ2
k,le
−2dk,lt

∫ t

0
e2dk,lτdτ

=
σ2
k,l

2dk,l
(1− e−2dk,lt).

As t approaches∞, the variance converges to the climatological variance of the forced Ornstein-

Uhlenbeck process,

Ek,l =
σ2
k,l

2dk,l
. (2.22)

The autocorrelation time of the forced Ornstein-Uhlenbeck process, is given by the limit

Tk,l + iθk,l = lim
s,t→∞

E(s, t),

where E(s, t) is given by

E(s, t) =

∫ s

0
〈(ψ̂k,l(t+ u)− ¯̂

ψk,l)E
−1
k,l (ψ̂k,l(u)− ¯̂

ψk,l)
∗〉du.
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We evaluate this expression.

E(s, t) =

∫ s

0
〈(ψ̂k,l(t+ u)− ¯̂

ψk,l)E
−1
k,l (ψ̂k,l(u)− ¯̂

ψk,l)
∗〉du

= 2dk,l

∫ s

0

〈∫ t+u

0
e(−dk,l+iωk,l)(t+u−τ)dW (τ)

∫ u

0
e(−dk,l−iωk,l)(u−τ ′)dW (τ ′)

〉
du

= 2dk,le
(−dk,l+iωk,l)t

∫ s

0
e−2dk,lu

[∫ u

0

∫ t+u

0
edk,l(τ

′+τ)−iωk,l(τ−τ ′)
〈
dW (τ ′)dW (τ)

〉]
du

= 2dk,le
(−dk,l+iωk,l)t

∫ s

0
e−2dk,lu

[∫ u

0

∫ t+u

0
edk,l(τ

′+τ)−iωk,l(τ−τ ′)δ(τ ′ − τ)dτdτ ′
]
du

= 2dk,le
(−dk,l+iωk,l)t

∫ s

0
e−2dk,lu

[∫ u

0
e2dk,lτ

′
dτ ′
]
du

= e(−dk,l+iωk,l)t

∫ s

0
e−2dk,lu

[
e2dk,lu − 1

]
du

= e(−dk,l+iωk,l)t

∫ s

0
du− e(−dk,l+iωk,l)t

∫ s

0
e−2dk,ludu

= e(−dk,l+iωk,l)ts− 1

−2dk,l
e(−dk,l+iωk,l)t[e−2dkk,ls − 1]

Applying the limit, we obtain the correlation time

Tk,l + iθk,l =
1

dk,l − iωk,l
. (2.23)

For each mode (k, l) we must determine the damping dk,l, frequency ωk,l, constant external

forcing
¯̂
ψk,l, and noise strength σk,l. As in [45], we set the constant forcing equal to the time

average of its associated Fourier component. To obtain dk,l, ωk,l, and σk,l, we fit them to

the solutions of the forced Ornstein-Uhlenbeck process given in (2.22) and (2.23), where the

climatological energy spectrum, Ek,l, and the real and imaginary components of the correlation

time, Tk,l and θk,l respectively, are empirically estimated from solutions of the true model in

(2.12). In reality, a true model may not exist, but there is usually a training data set (for

example, reanalysis in geophysical applications).

In Figure 2.7, we show the empirical distribution of the climatological energy, Ek,l. The

horizontal axis in Figure 2.7 corresponds to the barotropic modes, ordered from the largest to

the smallest variance, averaged over a long period of time [25]. The first twelve modes are ordered

as (k, l) =(1,0), (0,1), (1,1), (-1,1), (0,2), (2,0), (2,1), (-2,1), (1,2), (-1,2), (-2,2) and (2,2). The

large-scale zonal jet modes carry the second and fifth largest variances and the Rossby mode

(1,0) has the largest variance. The magnitude of the variances of the first two modes is on the

same order, which indicates competition between two distinct regimes, zonal jets and Rossby

waves. The marginal probability distribution function of the solutions of the first two modes are
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shown in Figure 2.8 whereas the remaining marginal pdf’s have Gaussian shape (see [25]). These

marginal pdfs are generated through bin counting the barotropic streamfunction, centered at 0,

such that both panels in Figure 2.8 show a histogram dψ = ψ̂ − 〈ψ̂〉, and encompass solutions

of (2.13) up to T = 400 time units [8].
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Figure 2.7: Percentage of variances of the barotropic streamfunction as a function of modes,
from largest to smallest.

We consider M irregularly spaced sparse observations of the barotropic streamfunction

through the observation model in (2.14). The first step in the hierarchical Bayesian analysis

in (2.3) produces the conditional statistics E(Z(si,j)|~Z) and Cov(Z(si,j)|~Z) for i, j = 1, . . . , N ,

to be filtered at N ×N = 6 × 6 modes. With such a coarse resolution, we at least resolve the

twelve most energetic modes (see Figure 2.7). In Figure 2.9, we show the decaying time with

dk,l, estimated by solving (2.22)-(2.23); based on this decaying time, we use the observation

time intervals Tobs = 0.01, 0.04 and 0.08, which are shorter than the model damping times on

the first 12 modes.

The discrete-time reduced filtering model for the second-step in the hierarchical Bayesian

analysis in (2.3) is defined as

ψ̂k,l,m+1 = Fk,lψ̂k,l,m + f̃k,l,m+1 + ηk,l,m+1 (2.24)

ψ̂ok,l,m =
¯̂
ψk,l,m + εok,l,m, (2.25)
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Figure 2.8: Marginal pdfs of the barotropic streamfunction ψ (centered around their means).
Solid lines indicate the real part and dashed lines the imaginary parts.
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where subscripts k, l denote the two-dimensional wavenumbers and subscript m denotes the

discrete time step with tm+1 − tm = Tobs. The parameters in (2.24) are given by exact solution
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of the forced Langevin equation in (2.21) with

Fk,l = e(−dk,l+iωk,l)Tobs ,

f̃k,l,m+1 =
¯̂
ψk,l,m(1− Fk,l),

ηk,l,m+1 ∼ N (0, Qk,l), Qk,l =
σ2
k,l

2dk,l
(1− e−2dk,lTobs).

In (2.25), ψ̂ok,l,m denotes the Fourier coefficients of the conditional estimate E(Zm(si,j)|~Zm).

The goal of the Kalman filter is to maximize the conditional distribution

P (ψ̂ak,l,m+1) ∼ P (ψ̂bk,l,m+1)P (ψ̂ok,l,m+1|ψ̂bk,l,m+1) = e−
1
2
J(ψ̂a

k,l,m+1).

This is equivalent to minimizing the cost function

J(ψ̂) =
1

rbm+1

(ψ̂ − ¯̂
ψbm+1)∗(ψ̂ − ¯̂

ψbm+1) +
1

ro
(ψ̂ok,l,m+1 − ψ̂)T (ψ̂ok,l,m+1 − ψ̂),

where ψ̂ok,l,m+1 denotes the observation Fourier component. J(ψ̂) attains its minimum for ψ̂ =
¯̂
ψak,l,m+1, which is given by

¯̂
ψak,l,m+1 =

¯̂
ψbk,l,m+1 +Kk,l,m+1(ψ̂ok,l,m+1 −

¯̂
ψbk,l,m+1),

where

Kk,l,m+1 = Rbk,l,m+1(Rbk,l,m+1 + R̂ok,l,m)−1

denotes the Kalman gain matrix. The filter completely trusts the model dynamics when Kk,l,m+1

= 0. On the other hand, when Kk,l,m+1 = 1, the filter trusts the observations.

The prior error covariance is given by

Rbk,l,m+1 = Fk,lR
a
k,l,mF

∗
k,l +Qk,l.

When the filter updates with an observation, the new posterior error covariance is obtained by

taking the expectation of (ψ̂bk,l,m+1 −
¯̂
ψak,l,m+1)(ψ̂bk,l,m+1 −

¯̂
ψak,l,m+1)∗. Therefore,

Rak,l,m+1 =
〈

(ψ̂bk,l,m+1 −
¯̂
ψak,l,m+1)(ψ̂bk,l,m+1 −

¯̂
ψak,l,m+1)∗

〉
= (I −Kk,l,m+1)

〈
(ψ̂bk,l,m+1 −

¯̂
ψbk,l,m+1)(ψ̂bk,l,m+1 −

¯̂
ψbk,l,m+1)∗

〉
(I −K∗k,l,m+1)

+ Kk,l,m+1R̂
o
k,l,mK

∗
k,l,m+1

= (I −Kk,l,m+1)Rbk,l,m+1
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The major computational reduction in the proposed filtering approach in (2.24)-(2.25) is

through the assumption that different modes are statistically uncorrelated (see the nearly di-

agonal observation error covariance matrix shown in Figures2.3 and 2.6). This assumption only

holds for appropriate interpolation schemes as investigated in detail in [23] on a simpler set-up.

To summarize, the basic Kalman filter solution to (2.24)-(2.25) produces scalar estimates of the

mean and covariance prior and posterior to observation
¯̂
ψok,l,m+1 through the following recursive

equations:

¯̂
ψbk,l,m+1 = Fk,l

¯̂
ψak,l,m + f̃k,l,m+1,

Rbk,l,m+1 = Fk,lR
a
k,l,mF

∗
k,l +Qk,l,

¯̂
ψak,l,m+1 =

¯̂
ψbk,l,m+1 + (ψ̂ok,l,m+1 −

¯̂
ψbk,l,m+1), (2.26)

Rak,l,m+1 = (I −Kk,l,m+1)Rbk,l,m,

Kk,l,m+1 = Rbk,l,m+1(Rbk,l,m+1 + R̂ok,l,m)−1.

2.3 Results

We now report the numerical results of applying the hierarchical Bayesian filtering strategy in

(2.3) in assimilating irregularly spaced, noisy observations of the barotropic streamfunction in

(2.14) to a variety of observation networks, varying the observation error variance, ro, as well as

the number of observations, M . The number of assimilation time steps is given by T = T/Tobs,

where we set T = 400 time units. For example, if Tobs = 0.01, the assimilation runs for 40,000

discrete time steps. In each case, we compare filtering skill produced by the Kalman filter in

(2.26) in assimilating the interpolated observations obtained either by the linear interpolation

or by kriging. We will refer to these two methods as the filtered linear interpolation scheme and

the filtered kriging scheme. To measure the filtering skill, we compute the Root-Mean-Square

error,

RMSE =

 1

(T − To)N2

T∑
m=To

N∑
i,j=1

(ψ̄ai,j,m − ψm(si,j))
2

1/2

, (2.27)

and the time average physical space pattern correlation,

C =
1

T − To

T∑
m=To

(ψ̄am)Tψm
‖ψ̄am‖2‖ψm‖2

, (2.28)

between the mean posterior state, ψ̄ai,j,m, and the true barotropic streamfunction, ψm(si,j),

ignoring the transient time at the first To = 200 steps. To check the effectiveness of the second

step in the proposed hierarchical Bayesian filtering scheme, we also report the estimates of the
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interpolated observations without implementing stochastic recursive filter (that is, only apply

either the linear interpolation or kriging). We will refer to these two methods as the unfiltered

linear interpolated scheme and the unfiltered kriging scheme. To demonstrate the robustness of

the filtering skill, we show the averages of the RMS error and correlation in (2.27) and (2.28)

over 50 different, randomly chosen, irregularly spaced observation networks.

First, we consider observation networks with M = N2 = 36 and ro = 6.9, where N is

the model resolution in each coordinate axis, M is the number of observations and ro is the

observational noise variance, taken to be only 10 % of the climatological (temporally averaged)

barotropic streamfunction variance, E, which is approximately 69.64. In Figure 2.10, we show

the true barotropic streamfunction and the corresponding filter estimates at time T = 340, using

a randomly chosen observation network (in circles). Comparing the estimates with the truth,

we find that the kriging scheme clearly reconstructs the true dynamics better compared to the

linear interpolation scheme. In this scenario, ordinary kriging supersedes the linear interpolation

scheme; see the first row of Figure 2.14, which displays the RMS error and correlation as

functions of observation time interval, Tobs. The RMS and correlation measures suggest that the

estimates are each approximately constant as Tobs increases. The dynamical constraint produces

improved estimates, by only 0.15 in RMS measure and 2− 3% in correlation, compared to the

unfiltered results.

Truth at T=340

 

 

0 2 4 6
0

2

4

6

−10

−5

0

5

10

0 2 4 6
0

2

4

6
Filtered Linear Interp

 

 

−10

−5

0

5

10

0 2 4 6
0

2

4

6
Filtered Kriging

 

 

−10

−5

0

5

10

Figure 2.10: The true barotropic streamfunction (left) compared with the filtered linear inter-
polation scheme (middle) and the filtered kriging scheme (right), with M = 36 and ro = 6.9 at
time T = 340. The circles depict observation locations.

Next, we consider networks with fewer observations, M = 18, but subject to the same noise

variance ro = 6.9. The filtered streamfunction estimates of both schemes are depicted in Figure

2.11. As expected, a sparse observation network deteriorates the accuracy of both methods as

compared to the previous case (see also the higher RMS errors and lower correlations in the
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second row of Figure 2.14). In this case, the sparse observation networks permit degenerate

Lagrange functions for linear interpolation as well as a poor variogram fitting in the covariance

estimation in (2.16). Based on the RMS and correlation measures, averaged over 50 different

observation networks, we find that both schemes are comparable. For some networks, the linear

interpolation scheme can actually provide a better skill relative to kriging, depending on the

distribution of the observations. However, the higher filtering skill with linear interpolation in

two-dimensions is not robust, since there are non-unique criteria for constructing the Lagrange

functions. We also find that the filtered estimates are better than the unfiltered estimates,

independent of observational time length. Here, the RMS error and correlation are consistently

improved by about 0.2 and 2 − 4%, respectively, when the dynamical constraint is imposed.

The numerical result in this scheme suggests that the data-driven step is not effective since the

data are too sparse.
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Figure 2.11: The true barotropic streamfunction (left) compared with the filtered linear inter-
polation scheme (middle) and the filtered kriging scheme (right), with M = 18 and ro = 6.9 at
time T = 340. The circles depict observation locations.

Now we consider a denser observation network, with more observations than model grid

points so that M = 49 > N2 = 36, with the same noise variance ro = 6.9.. From the filtered

streamfunction contours in Figure 2.12, it appears that both interpolation schemes produce

decent estimates of the true barotropic streamfunction. However, we find that more plentiful

observations do not improve the linear interpolation estimates significantly. Comparing the first

and third rows in Figure 2.14, we see that the average RMS error decreases from 3.7 to 3.4. The

kriging estimates, however, are largely improved in this here; the average RMS error decreases

from 3.3 to 2.6. There is a clear improvement in filtering skill relative to the case in which

M = 36 above.

Finally, we consider a higher observation noise variance, about ro = 17.3 ≈ 25%E in net-
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Figure 2.12: The true barotropic streamfunction (left) compared with the filtered linear inter-
polation scheme (middle) and the filtered kriging scheme (right), with M = 49 and ro = 6.9 at
time T = 340. The circles depict observation locations.

works with M = 36 = N2. From the filtered streamfunction contours, shown in Figure 2.13,

it is clear that, once again, the kriging scheme provides better estimates than the linear inter-

polation scheme. In this case, the average RMS errors of both schemes increase significantly

as compared to the first case with smaller noise variance (see the bottom row if Figure 2.14).

The poor estimates with the unfiltered linear interpolation and kriging are not surprising, since

the data are quite noisy. Notice that the average RMS errors and correlation for the filtered

estimates are improved by 0.2 and 3− 4%, respectively, compared to the unfiltered estimates.

This suggests that the dynamical constraint becomes more important when observations are

noisy.
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Figure 2.13: The true barotropic streamfunction (left) compared with the filtered linear inter-
polation scheme (middle) and the filtered kriging scheme (right), with M = 36 and ro = 17.3
at time T = 340. The circles depict observation locations.
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Figure 2.14: The RMS errors (left panels) and correlations (right panels) for each case. Un-
filtered kriging (dashes), filtered kriging (dashes with ‘+’ sign), unfiltered linear interpolation
(solid line), and filtered linear interpolation (solid line with circles).
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For diagnostic purposes, we also report the filtering skill for regularly spaced observations

at N × N = 36 grid points for observations with noise variance ro = 10%E and ro = 25%.

Here the filtering skills are improved. In both cases, we observe a lower RMS and corresponding

higher correlation with a shorter observational time length. Compared to using an irregularly

spaced observation with M = 36, the RMS errors here are significantly lower, a difference of

about 3 with both ro = 6.9 and of about 2.5 with ro = 17.3, while the pattern correlations are

much higher, showing an improvement of more than 10% in both cases of noise variance.

In the remainder of this section, we examine the numerical results in more detail. In Figure

2.16, we show the RMS errors of the unfiltered estimates, with linear interpolation on the

top panel and kriging on the bottom panel, as functions of time for observation time interval

Tobs = 0.01, M = N2 = 36, and ro = 17.3. Notice that the RMS errors for both schemes

oscillate and exhibit peaks at roughly the same times; maximum and minimum RMS errors

tend to occur at the same times for both methods of interpolation.
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Figure 2.15: The average RMS errors (left panels) and pattern correlations (right panels) for
numerical experiments with regularly spaced observations at the N×N = 36 model grid points,
with noise variance ro = 10%E (top panels) and ro = 25%E (bottom panels).
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Figure 2.16: The RMS errors as functions of time, with M = N2 = 36, ro = 17.3 and Tobs =
0.01. The top panel shows the RMS error of the unfiltered linearly interpolated estimates and
the bottom panel shows the RMS error of unfiltered kriging estimates.

To understand why the errors oscillate, we show the true streamfunction as well as the

filtered and unfiltered streamfunction estimates of both interpolation schemes at the time T =

363.28, when the RMS error is at a maximum, in Figure 2.17. We also plot the truth and the

estimates at time T = 61, when the RMS error is at a minimum in 2.18. Notice that there is a

zonal jet in both instances, but more importantly, the contour scaling of ψ varies between ±6

at time T = 61 and between ±20 at time T = 363.28. In either interpolation scheme, there is

difficulty in capturing these peaks. However, the filtered estimate at time T = 363.28 is more

accurate compared to the filtered estimate at time T = 61, suggesting that the filter estimates

are quite accurate when the signal-to-noise ration (between the true signal and the observation

noises) are large. On the other hand, when the signal-to-noise ratio is small, the estimates are

less accurate. In this case, one needs less noisy observations to improve the estimates.
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Figure 2.17: The truth (top panel) interpolated (middle panels) and filtered (bottom panels)
fields at time T = 363.28 (in contours). The circles depict observation locations.
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Truth at T=61
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Figure 2.18: The truth, (top panel), interpolated (middle panels) and filtered (bottom panels)
fields at time T = 61 (in contours). The circles depict observation locations.
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2.4 Summary

We investigated a hierarchical Bayesian approach for filtering irregularly spaced, sparse obser-

vations of geophysical turbulence. In particular, we blended an interpolation scheme, through

either ordinary kriging or a deterministic piecewise linear interpolation, with a reduced stochas-

tic filtering approach, the Fourier domain Mean Stochastic Model filter. The two-step hierar-

chical Bayesian approach proposed here interpolates raw data at irregularly spaced locations to

regularly spaced filter model grid points and then assimilates this processed data set with the

basic Kalman filter scheme on a diagonal Fourier domain mean stochastic model. We find that

the dynamical constraint through MSM becomes more important when the observation noise

variance is large, or when the observations are sparse. Second, when the observation network is

very sparse, we find that both the linear interpolation and kriging schemes produce compara-

ble posterior state estimates. Third, the two-step hierarchical Bayesian approach with kriging

produces significantly improved filtered solutions when the observation network is spatially

denser.

The filtered estimates with irregularly spaced observation networks are worse than the

estimates with a regularly spaced observation network (exactly at the model N × N = 36

grid points). As we have mentioned, we need denser observations to improve the interpolated

estimates in the first step of the proposed hierarchical Bayesian framework. For example, in

the case of Tobs = 0.01 and ro = 17.3, the RMS error for the filtered kriging estimates with

the irregularly spaced observations is about 3.6, much worse than the RMS error associated

with the regularly spaced observations, 0.96. On the other hand, we should also mention that

this case was considered in [25] with regularly spaced sparse observations at the filter model

grid points. There, the authors reported filtered estimates with much higher average RMS error

obtained from a perfect model simulation with the Local Least Squares-Ensemble Adjustment

Kalman Filter, 6.76 (see Table 3 of [25]). Comparing these numerical results, we conclude that

the hierarchical Bayesian approach is much better compared to the standard ensemble filtering

approach that filters directly at observation locations. However, we anticipate that improved

results with this framework are possible.

In our simulations, we assumed Gaussianity of the spatial distribution of the data, which

may not be true in various applications. In these cases, one may want to consider statistical

interpolations with appropriate distributions. For geostatistical data, however, kriging seems

to be successful in practice [10]. Additionally, higher order deterministic interpolation schemes

could easily introduce large correlations between different interpolated locations. Our two di-

mensional linear interpolation produces an interpolated error covariance matrix that is nearly

diagonal in Fourier space and the MSM filter we used ignores these non-diagonal covariance

terms. In contrast, kriging, by design, produces a Fourier domain diagonal interpolated error
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covariance matrix. This is because kriging assumes stationarity and uses isotropic covariance

models. As a consequence, the second step in our proposed hierarchical Bayesian approach can

be performed without any additional approximation when the Fourier domain diagonal reduced

stochastic models, such as MSM, are used with kriging. Finally, we expect that the results we

obtained with linear interpolation are not robust on two-dimensional domains, because there

are numerous criteria for constructing Lagrange functions. Similarly, the kriging results in this

paper are based on a specific implementation of ordinary kriging with parametric covariance

function of an exponential family. We suspect that improved estimates are possible with different

classes, or different types of kriging [10].
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Chapter 3

State Estimation from Cloudy

Satellite Observations

The Atmospheric Infrared Sounder (AIRS) is a remote sensing instrument on NASA’s Aqua

satellite. This passive sensing instrument measures the intensity of infrared radiation of varying

wavelengths at the top of the atmosphere, which depends on the chemical composition of the

atmosphere within, as well as the atmospheric state, including its temperature and humidity.

When it was launched in 2002, AIRS became the first of a new generation of sounders designed

to provide higher resolution data, leading to better numerical weather prediction [38, 39]. The

assimilation of AIRS observations that are unaffected by clouds has lead to an improvement of

weather forecast skill in both hemispheres. Compared to the High-Resolution Infrared Sounder

(HIRS), currently operating on NOAA satellites, AIRS provides improved temperature accu-

racy, spatial resolution, and vertical resolution of atmospheric temperature profiles [38]. Fur-

thermore, the assimilation of AIRS data alone produces better forecasts compared to single

instrument experiments with HIRS data or Advanced Microwave Sounding Unit-A (AMSU-A)

data, a microwave radiometer used on satellites [54].

The presence of a cloud can have a dramatic, undesired effect on passive satellite observa-

tions, as it can reflect or absorb electromagnetic radiation. In spite of this, it is not practical

to use only cloud-free satellite observations; in fact less than 1% of AIRS observations have a

clear field of view [13]. One strategy to improve this percent employs a process called cloud

clearing [13, 15, 40]. This method uses neighboring cloud-free channels to estimate the radiance

beneath the cloud. However, cloud clearing is not widely used, since the estimates tend to be

biased towards cloud-free radiances, [52], and since the corresponding error covariance matrix is

complicated [57]. Operationally, cloud-impacted AIRS data are not currently used in numerical

weather prediction [38, 54, 60, 27]. Satellite observations are first subject to a cloud detection

algorithm (see [20, 53] for descriptions of different approaches). If the field of view is found
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to be cloudy, only AIRS channels which are determined to be insensitive to the temperature

and humidity profiles below the cloud are used [27]; such channels do not suffer from the un-

desired effects of clouds, but tend to be uninformative. Unfortunately, the percentage of AIRS

measurements that are used in numerical weather prediction remains small.

In this chapter, we will experiment with the assimilation of synthetic cloudy AIRS data.

Recently, there has been evidence to suggest that data assimilation of cloudy radiances together

with clear sky radiances does have a positive impact on forecast skill [52, 56, 59]. Cloud-

impacted radiances contain considerable data that could enhance weather prediction. Our goal

is to assess the potential of using cloudy AIRS data in numerical weather prediction and to

study the biases that arise due to the presence of a cloud. In particular, we will examine the

sensitivity of the analysis skill with respect to cloud top pressure and cloud cover percent. In

an ideal scenario, we want to know the best filter analysis that we can obtain from cloudy

data. To gauge the effectiveness of the analysis step, we include the results of several numerical

experiments conducted solely with simulated clear sky AIRS observations, and solely with direct

observations of temperature and humidity.

To generate synthetic AIRS observations, we will use a numerical simulation of the multi-

cloud model, a toy model of tropical convection introduced in [32, 33], to specify the true atmo-

spheric state. Modeling tropical weather is complex because of the variety of interacting nonlin-

ear processes over numerous spatio-temporal scales [34]. This toy model captures the dynamics

of a three cloud convective structure that occurs in the tropics [41, 29, 67, 63, 21, 12, 35, 69]:

low lying congestus clouds which moisten the lower troposphere, ensuing penetrative cumulus

clouds associated with deep convection, and stratiform clouds which remain afterward. There

are three multicloud variables, congestus heating, stratiform heating, and precipitation rate,

which correlate with the type of cloud present at each time and location and its coverage per-

cent. Additionally, this model includes a switching function which turns off deep convection

and amplifies congestus heating when the atmosphere is too dry, and promotes deep convective

heating when the atmosphere is moist. We use the three heating rates along with the switch

function to simulate the effects of clouds in AIRS measurements.

We use the prototype community Radiative Transfer Model (pCRTM), [22], to produce syn-

thetic AIRS observations of brightness temperature at the top of the atmosphere in the presence

of clouds. The pCRTM uses atmospheric state values of temperature and humidity in discrete

vertical layers of the atmosphere to produce estimates of radiance intensities associated with

281 different wavelengths in the infrared spectrum. Subsequently, it converts these radiances

to brightness temperatures. We modify the pCRTM to include a cloud cover percent in each

atmospheric layer that lies beneath a cloud (if there is no cloud present, we use a cloud cover

percent of zero). Using the local ensemble transform Kalman filter (LETKF), [6, 28], we assim-

ilate these cloudy observations with the multicloud model, extending the work in assimilating
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clear sky radiances with the LETKF [17, 4].

In Section 3.1, we review the dynamical multicloud model that mimics the moist convective

tropical dynamics. In Section 3.2, we review the radiative transfer model that generates bright-

ness temperatures based on the solutions of the multicloud model. Subsequently, in section 3.3,

we describe how we generate synthetic AIRS data in the clear sky and cloudy sky configura-

tions. In Section 3.4, we describe the local ensemble transform Kalman filter and the the biases

that can occur when assimilating cloudy data. In Section 3.5, we present our numerical results.

We close with a summary and discussion in In Section 3.6.

3.1 The Multicloud Model

In our numerical experiments, we use a simulation of the multicloud model as the truth, and

as the forecast model. Therefore, these are perfect model experiments [9], because the fore-

cast model is the same model that governs the true system dynamics. There are three cloud

types that are prevalent in the tropical boundary layer, shallow congestus clouds, stratiform

clouds, and deep cumulus clouds. Congestus clouds by themselves are characteristic of unstable

atmospheric regions undergoing convection or heating from the moisture in the atmosphere.

These clouds moisten the lower troposphere and give rise to the deep convective clouds. Strat-

iform precipitation, in turn, dries the atmosphere, bringing this cycle to an end. Statiform

clouds, which have a uniform base but great height, remain. The multicloud model captures

these cloud dynamics through the parametrization of two convectively coupled heating modes: a

deep-convective mode and a stratiform mode. This model is unique because it includes cumulus

congestus clouds and factors in the amount of moisture in the middle of the troposphere with

a switch parameter Λ, in order to trigger deep convection or shut it off appropriately [32]; if

the middle troposphere is dry, congestus heating is forced to moisten the lower troposphere.

Conversely, if the middle troposphere is moist, deep convection is amplified and congestus con-

vection is shut off.

3.1.1 Background Information

When a fluid parcel changes pressure adiabatically (without exchanging heat with its surround-

ings), its temperature will change, but not because of heating. The potential temperature θ is

defined as the temperature that a fluid parcel would have if it moved adiabatically to some

reference pressure (typically 1,000 mb, the pressure at Earth’s surface) [65]. In adiabatic flow,

potential temperature is conserved, that is, for a flow with velocity ~u,

Dθ

Dt
=
∂θ

∂t
+ ~u · ∇θ = 0.
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The multicloud model incorporates potential temperature, as well as equivalent potential

temperature, θe, the potential temperature that a fluid parcel achieves if its moisture condenses

and all of the heat released goes into heating the parcel. Equivalent potential temperature is

defined so that it is approximately conserved during condensation [65].

The hydrostatic Boussinesq primitive equations are the basis for the multicloud model. The

primitive equations, which approximate atmospheric flow, consist of three parts: conservation

of momentum, conservation of mass, and a thermal energy equation to close the system. There

are several approximations made in the primitive equations: Earth’s curvature is approximated

by using a domain reduced to a periodic strip along the equator; the vertical direction z is much

smaller than the radius of the Earth (the shallow fluid approximation); density variations are

negligible, except in the buoyancy term. Using these approximations, the primitive equations

are given in [34] by

∂~v

∂t
+ ~v · ∇~v + w

∂~v

∂z
+ βy~v⊥ = −∇p+ S~v,

∂p

∂z
=

gΘ

θo
,

∂Θ

∂t
+ ~v · ∇ρ+ w

∂Θ

∂z
+
N2θo
g

w = SΘ,

∇ · ~v +
∂w

∂z
= 0.

Here ~v = (u, v) is the horizontal velocity field, where u is the zonal velocity (east/west) and v

is the meridional velocity (north/south); w is the vertical velocity; scalars Θ and p are potential

temperature and pressure perturbations; N is the Brunt-Vaisala buoyancy frequency, the fre-

quency with which a vertically displaced parcel would oscillate around its equilibrium position

under the influence of buoyancy and no other forces; ~v⊥ = (−v, u); β = 2.28× 10−11m−1s−1 is

the gradient of the Coriolis parameter at the equator; S~v and SΘ are the sources and sinks of

momentum and potential temperatures. The primitive equations are supplemented with a rigid

lid boundary condition, in which vertical velocity is zero at the surface and at the top of the

troposphere.

The Coriolis parameter quantifies the effects of Earth’s rotation as f = 2Ω sinφ. At the

equator, φ = 0 and the Coriolis force vanishes, meaning that the Earth’s rotation does not

affect atmospheric and oceanic dynamics. This gives rise to several types of waves with com-

plex meridional and zonal structure. We distinguish barotropic waves, which are capable of

propagating poleward, from baroclinic waves, which can only propagate along the equator [34].

Barotropic waves have no dependence on height z, while baroclinic waves do.

We can decompose the primitive equations into barotropic and baroclinic parts. Because of

the rigid lid boundary condition, vertical velocity and potential temperature terms are expanded
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in terms of {sin(mπz/HT )}∞m=0, where HT ≈ 16 km is the height of the tropical troposphere.

Horizontal velocity and pressure terms are expanded in terms of {cos(mπz/HT )}∞m=0. Since

barotropic flow has no height dependence, m = 0 corresponds to the barotropic mode. Let

variables with an overhead bar denote barotropic modes. Then the truncated primitive equations

projected onto the barotropic and first two baroclinic modes are given by(
V

p

)
(x, y, z, t) =

(
~̄v

p̄

)
(x, y, t)

+

(
~v1

p1

)
(x, y, t)

√
2 cos

(
πz

HT

)
+

(
~v2

p2

)
(x, y, t)

√
2 cos

(
2πz

HT

)
(3.1)

and(
W

Θ

)
(x, y, z, t) =

(
w1

θ1

)
(x, y, t)

√
2 sin

(
πz

HT

)
+

(
w2

θ2

)
(x, y, t)

√
2 sin

(
2πz

HT

)
. (3.2)

3.1.2 The Model

The multicloud model is a Galerkin projection of the primitive equations onto the first two baro-

clinic modes under consideration. This means that we use the primitive equations to describe

the first two baroclinic terms in (3.1)-(3.2). We ignore the barotropic term, so that we only

consider equatorially trapped waves in the solution. The first mode directly heats the system

through precipitation from the deep penetrative clouds. The second baroclinic mode heats the

stratiform clouds while cooling the congestus clouds, and vice versa.

Let ~vj = (uj , vj) for j = 1, 2 denote the first and second baroclinic mode wind velocity

and let θj for j = 1, 2 denote the potential temperature associated with each mode. With the

Galerkin projection, interactions between the two modes becomes a coupled system of shallow

water equations corresponding to a convective heating mode and a stratiform and congestus

mode:

∂~vj
∂t

+ βy~v⊥j −∇θj = −cd(uo)~vj −
1

τR
~vj

∂θ1

∂t
− div(~v1) =

π

2
√

2
P + S1

∂θ2

∂t
− 1

4
div(~v2) =

π

2
√

2
(Hc −Hs) + S2,

where P ≥ 0 gives the heating rate from deep convection, Hc and Hs are the congestus and

stratiform heating rates, respectively, cd is the boundary layer turbulence momentum friction,

uo = 2 m/s is the turbulent velocity scale, Sj is a radiative cooling rate associated with baroclinic
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mode j, and ~v⊥j = (−vj , uj). The nonlinearities of this model lie in the heating rates. The details

of this derivation can be found in [55, 18, 49]. Notice that the congestus clouds heat the second

baroclinic mode at rate Hc from below and that the stratiform clouds heat this mode from

above at rate Hs. This mode is therefore cooled by Hc from above and by Hs from below. We

ignore the meridional features of the tropical disturbances, thus eliminating the Coriolis term

and variations in y. This allows us to simplify these equations to

∂uj
∂t
− ∂θj
∂x

= −cd(uo)uj −
1

τR
uj

∂θ1

∂t
− ∂u1

∂x
=

π

2
√

2
P + S1

∂θ2

∂t
− 1

4

∂u2

∂x
=

π

2
√

2
(Hc −Hs) + S2. (3.3)

The radiative cooling rates S1 and S2 are given by the Newtonian cooling model

Sj = −QoR,j −
1

τD
θj , j = 1, 2, (3.4)

where QoR,j are the radiative cooling rates at radiative convective equilibrium.

The equivalent potential temperature at the boundary layer, θeb, and the vertically inte-

grated moisture content (humidity), q, are included in this model and are respectively given

by

∂θeb
∂t

=
1

hb
(E −D)

∂q

∂t
+

∂

∂x
[(u1 − δ̃u2)q] + Q̃

(
∂u1

∂x
+ λ̃

∂u2

∂x

)
=

D

HT
− P. (3.5)

A detailed derivation of the moisture equation is given in [31]. In these equations, hb ≈ 500m

is the height of the moisture boundary layer, and Q̃, λ̃ and δ̃ are parameters of the moisture

background and perturbation vertical profiles. Additionally, E represents the sea surface evapo-

rative heating and D represents downdrafts, both of which influence θeb. This model differs from

others in its use of deep convective heating/precipitation P and downdrafts D, and because it

includes congestus heating Hc the in equation for θ2.

The surface evaporation E obeys the relation

1

hb
E =

1

τe
(θ∗eb − θeb), (3.6)

where τe is the evaporative time scale and θ∗eb is the boundary layer saturation equivalent

potential temperature. Notice in this equation that evaporation will occur until the boundary
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layer is saturated, when θeb = θ∗eb. The value of θ∗eb on a warm ocean surface is fixed such that

at radiative convective equilibrium θ∗eb − θ̄eb = 10 K, [32], where θ̄eb is the equilibrium value of

θeb. Over our domain, which lies along the equator and has length 40,000 km, the value of θ∗eb
is raised from -5 K to 5 K in the center of a 10,000 km warm pool region, centered at 20,000

km.

In the mid troposphere, the equivalent potential temperature anomaly, θem, can be approx-

imated by

θem ≈ q +
2
√

2

π
(θ1 + α2θ2), (3.7)

where α2 = 0.1 allows for a small contribution of the second baroclinic mode temperature to

θem.

To quantify the level of moisture or dryness in the middle troposphere, the multicloud

model also uses a switch parameter Λ [32]. When the equivalent potential temperature at the

boundary layer and at the middle of the troposphere differ by more than a certain threshold

θ+, the atmosphere is dry and we set Λ = 1. When this difference is below a lower threshold θ−,

the atmosphere is wet and we set Λ = Λ∗ < 1. We will take Λ∗ = 0.2, θ+ = 20 K and θ− = 10

K, as in [32]. These values come from climatological values recorded in the tropics. Between θ+

and θ−, Λ is linearly interpolated so that

Λ =


1 if θeb − θem > θ+

0.08(θeb − θem)− 0.6 if θ− ≤ θeb − θem ≤ θ+

0.2 if θeb − θem < θ−.

(3.8)

This equation for Λ only holds for our values of Λ∗, θ+, and θ−. With this switch function we

can write precipitation and downdrafts as

P =
1− Λ

1− Λ∗
Po, and D = ΛDo,

while the stratiform and congestus heating rates Hs and Hc satisfy

∂Hs

∂t
=

1

τs
(αsP −Hs) (3.9)

and
∂Hc

∂t
=

1

τc

(
αc

Λ− Λ∗

1− Λ∗
D

HT
−Hc

)
. (3.10)

If the middle troposphere is dry, Λ = 1 and P = 0, so that (3.9) reduces to

∂Hs

∂t
= −Hs

τs

48



and (3.10) reduces to
∂Hc

∂t
=

1

τc

(
αcDo

HT
−Hc

)
.

The stratiform heating Hs decreases while the congestus heating Hc increases, for a time.

While the middle troposphere is dry, downdraft D is at a maximum and P = 0 so that ∂q/∂t in

(3.5) is positive, increasing the moisture content; the shallow clouds moisten and precondition

the middle troposphere to sustain deep convection and promote boundary layer clouds. This

in turn will lower the difference in potential temperatures at the boundary layer and middle

troposphere, θeb − θem, below the threshold θ+ and thus the switch function will move towards

its lower value Λ∗. When Λ = Λ∗, precipitation P = Po is at a maximum while downdraft D

is at a minimum. This time stratiform heating is favored and by (3.5) the moisture content

decreases. This leads to an increase in the difference between the boundary layer and middle

troposphere temperature, increasing Λ again.

The quantity Po gives the maximum possible value of deep convective precipitation P and

can be given by

Po =
1

τconv
[a1θeb + a2(q − q̂)− ao(θ1 + γ2θ2)]+ (3.11)

where q̂ is a threshold constant related to the level of saturation in the troposphere, τconv is the

convective time scale and f+ = max{f, 0}. The coefficient ao, is a parameter associated with

the inverse buoyancy relaxation time in [19].

The quantity Do represents the maximum possible downdrafts. The downdrafts are closed

by

Do =
mo

P̄
[P̄ + µ2(Hs −Hc)]

+(θeb − θem), (3.12)

where mo scales the downdraft mass flux, µ2 is a parameter that permits the formation of

stratiform and congestus mass flux anomalies [44], and P̄ is the precipitation heating rate at

equilibrium. For easy reference, we give a table of parameters and their values in Table 3.1 [32].

We filter eight multicloud prognostic variables, uj and θj , for j = 1, 2, θeb, q, Hc, and Hs,

resolved at 1,000 discrete grid points on a one-dimensional periodic domain in the equator,

with a spatial resolution of 40 km. These variables have nondimensional units. The length scale

is defined by the equatorial Rossby deformation radius (the scale at which Earth’s rotation

becomes significant to the system dynamics) as Ld ≈ 1500 km, while time scale is given by

T = Ld/c ≈ 8 hours. The first baroclinic dry gravity wave speed c ≈ m/s, gives the velocity

scale, and the dry-static stratification ᾱ = (HTN
2θo/πg) ≈ 15 K is the temperature scale.

This model reproduces a number of observational features of equatorial convectively coupled

waves. With the parameters in [46], the model reproduces the Madden-Julian Oscillation (MJO).

The MJO is an equatorial, planetary-scale wave envelope of complex multiscale convective

processes that begins as a standing wave in the Indian Ocean and propagates east across the

49



Table 3.1: Parameters and values of the multicloud model

Parameter Value Description

HT 16 km Height of tropical troposphere

Q 0.9 Moisture stratification factor

λ̃ 0.8 2nd baroclinic contribution to moist. conv. from background

δ̃ 0.1 2nd baroclinic contribution to moist. conv. from anomalies

τR 50 days Rayleigh wind friction relaxation time

τD 75 days Newtonian cooling relaxation time

cd 0.001 Boundary layer turbulence momentum friction

Le 1500 km Equatorial deformation radius, length scale

c 50 m/s Speed of 1st baroclinic gravity wave, velocity scale

T = Le/c 8 hours Time scale

ᾱ 15 K Dry static stratification, temperature scale

N 0.01 s−1 Brunt-Vaisala buoyancy frequency

θo 300 K Reference temperature

hb 500 m Boundary layer height

α2 0.1 Contribution of θ2 to middle troposphere θe
θ∗eb 10 K +θeb Boundary layer equivalent potential temperature

τe 8 h Evaporative time scale in boundary layer

θ± 10, 20 K Temp thresholds used to define Λ

Λ∗ 0.2 Lower threshold of Λ

τs 3 hours Stratiform heating adjustment time

αs 0.25 Stratiform heating adjustment heating coefficient

τc 1 hour Congestus heating adjustment time

αc 0.5 Congestus heating adjustment coefficient

ao 7.5 Inverse buoyancy time scale

a1 0.1 Contribution of θeb to convective parametrization

a2 0.9 Contribution of q to convective parametrization

τconv 2 hours Deep convective reference time scale

γ2 0.1 Strength of lower troposphere coupling

θ̄eb − θ̄em 14 K Discrepancy at RCE

µ2 0.5 Contribution of stratiform/congestus mass flux anomalies

Pacific at roughly 5 m/s [69]. The MJO remains unexplained, but important to tropic dynamics,

as it is responsible for intraseasonal variability in the tropics [69]. In [1], they simulated a realistic

MJO, using a coarse resolution aquaplanent global circulation model, coupled with a multicloud

model parametrization.

We give an example simulation with bulk parameters Q̃ = 0.9, τR = 50 days, θ̄eb− θ̄em = 14

K and the convective parameters in Table 3.1, as in [26]. The intraseasonal timescale is generated
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using τconv = 2 hours and τs = 3 hours and τc = 1 hour. In Figure 3.1, plot the precipitation

contours as a function of space and time. We observe both eastward and westward propagating

waves, traveling with speed 6.1 m/s. At the center of the warm pool, at 20,000 km, there are

regions of strong convective activity.

Figure 3.1: Contour plot of deep convective heating P from a numerical simulation of the
multicloud model.

3.2 Radiative Transfer Model

The Radiative Transfer Model gives the intensity of electromagnetic radiation observed at the

top of Earth’s atmosphere. We use this model to generate synthetic satellite observations.

In a non-scattering atmosphere in local thermal equilibrium, [42] gives the basic equation
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for observed intensity of wavelength λ, Iλ, as

µ
dIλ(τ, µ)

dτ
= Iλ(τ, µ)−Bλ(T (τ)), (3.13)

where µ = cos θ, θ is the emergent angle, τ is optical depth, and Bλ(T ) is Planck’s function.

Planck’s function is a relation describing the amount of electromagnetic radiation of a particular

wavelength emitted from a black body, a hypothetical object which can absorb all incident

radiation, regardless of wavelength. If a black body of temperature T , in Kelvin, emits radiation

of wavelength λ, the energy of this radiation is given by

Bλ(T ) =
2hc2λ−5

ehc/kλT − 1

with Planck constant h = 6.626 × 10−34Js, Boltzmann constant k = 1.3806 × 10−23J/deg

and speed of light c = 3 × 10−8 m/s. Notice that if the intensity of radiation is measured,

one can invert the Planck function to compute a temperature T . In this case, T is referred to

as brightness temperature. The satellite observations we use are of brightness temperatures,

calculated from radiance intensity measured at the top of the atmosphere. In the remainder of

this chapter, we use the terms brightness temperatures and radiances interchangeably.

The optical depth τ in (3.13) is a dimensionless measure of how much radiation is absorbed

when passing through a portion of the atmosphere. Optical depth increases with path length,

and depends on the density of atmospheric gases. Different atmospheric gases will absorb radi-

ation of different wavelengths. For example, carbon dioxide will absorb radiation of wavelength

equal to 4.2 micrometers and 15 micrometers. Optical depth is defined by

τ =

∫ z∞

z
κλ(z′)ρa(z

′)dz′ (3.14)

where ρa and κλ are the density and absorption coefficient of the absorbing gas, respectively.

The solution of (3.13) is

Iλ(τ, µ) = Iλ(τ∗)e−(τ∗−τ)/µ +

∫ τ∗

τ
µ−1Bλ(T (τ ′))e−(τ ′−τ)/µdτ ′, (3.15)

in which

τ∗ =

∫ z∞

0
κλ(z′)ρa(z

′)dz′

is the optical depth at the surface and Iλ(τ∗) is the radiance emitted from the surface. Notice

that temperature T is a function of optical depth. This is because the temperature profile of the

atmosphere depends on optical depth. Let us consider only the radiation of upwelling direction,
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so that θ = 0 and µ = 1. Let ελ be the surface emissivity, a measure of the Earth’s surface ability

to emit radiation of wavelength λ (for a perfect black body, ε = 1). Then we can assume that

Iλ(τ∗) = ελBv(Ts), where Ts is the surface temperature, in Kelvin. AIRS takes measurements

in the thermal IR region, with wavelengths between 3.5 and 20 micrometers, in which ελ is close

to 1 and Iλ(τ∗) ≈ Bλ(Ts).

Define monochromatic transmittance Tλ as

Tλ(τ) = e−τ ,
dTλ
dτ

= −e−τ .

Then we have

Iλ(τ, 1) = Iλ(τ) = Iλ(τ∗)Tλ(τ∗ − τ) +

∫ τ∗

τ
Bλ(T (τ ′))Tλ(τ ′ − τ)dτ ′

= Bλ(Ts)Tλ(τ∗ − τ) +

∫ τ

τ∗
Bλ(T (τ ′))

∂Tλ(τ ′ − τ)

∂τ ′
dτ ′.

At the top of the atmosphere, τ = 0 and (3.15) becomes

Iλ(0) = Bλ(Ts)Tλ(τ∗) +

∫ 0

τ∗
Bλ(T (τ))

∂Tλ(τ)

∂τ
dτ. (3.16)

If we assume that the atmosphere is in hydrostatic balance, meaning that the pressure

gradient balances with gravity as
∂p

∂z
= −gρ,

then we can use pressure to define the vertical coordinate axis. Using hydrostatic balance and

the mixing ratio q = ρa/ρ, the density of the absorbing gas is given by

ρa = qρ = −q
g

∂p

∂z

and optical depth at the surface is given by

τ∗ =

∫ ps

0
κλ(p)

q(p)

g
dp.

We also have

∂Tλ(p)

∂p
=

∂Tλ(p)

∂τ

dτ

dp

=
∂Tλ
∂τ

(
κλq

g

)
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so that
∂Tλ(τ)

∂τ
dτ =

∂Tλ(p)

∂p
dp.

Thus (3.16) becomes

Iλ(0) = Bλ(Ts)Tλ(ps) +

∫ 0

ps

Bλ[T (p)]
∂Tλ(p)

∂p
dp (3.17)

This equation describes the observed intensity of electromagnetic radiance of wavelength λ at

the top of the atmosphere in a clear field of view. The function

∂Tλ(p)

∂p
=
κλq

g
exp

(∫ p

0
κλ(p′)

q(p′)

g
dp′
)

in the integrand is called the weighting function. It weights the Planck function depending on

the density of the absorbing gas present at different layers in the atmosphere. Example weighting

functions are shown in Figure 3.2 for three different AIRS channels. The AIRS instrument has

281 infrared channels, each of which detects radiation of a different wavelength. The first panel

of Figure 3.2 shows the weighting function corresponding to channel frequency 680.14 cm−1.

In this case, the absorbing gases are dense at the top of the atmosphere, and therefore all

observed radiance at the top of the atmosphere emanates from this layer of the atmosphere.

The second panel shows the weighting function corresponding to channel frequency 1377.43

cm−1. This weighting function peaks at the top of the atmosphere, and indicates that the

absorbing gas is present in the upper and middle atmospheric layers. The third panel shows the

weighting function corresponding to channel frequency 2500.6 cm−1. The weighting function

spreads out over the entire atmosphere, and tapers off close to the surface. For this wavelength,

the absorbing gas is present throughout the atmosphere, but to a lesser slightly extent close to

the surface.

3.2.1 Adding Cloud Cover

Consider a field of view consisting of a cloud layer located at pressure pc. Denote the fraction

of cloud cover as η, the temperature at the cloud top as Tc, the surface pressure ps, and the

cloud emissivity ελ. Then the radiance observed by the satellite can be written as

Icldλ = (1− ηελ)

[
Bλ(Ts)Tλ(ps, pc) +

∫ pc

ps

Bλ[T (p)]
∂Tλ(p, pc)

∂p
dp

]
Tλ(pc, 0)

+ ηελBλ(Tc)Tλ(pc, 0) +

∫ 0

pc

Bλ[T (p)]
∂Tλ(p, 0)

∂p
dp. (3.18)
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Figure 3.2: Weighting functions for three AIRS channels.

In the first line of (3.18), the terms inside the bracket but outside the integral give radiation

emitted from the surface, while the integral gives radiance from below the cloud. In the second

line, the first term gives the radiation emitted from the cloud and the integral gives the radiation

from above the cloud.

The monochromatic transmittance in this case is defined by

Tλ(p1, p2) = exp

(
−1

g

∫ p2

p1

κλ(p)q(p)dp

)
.

Note that we have the following

Tλ(ps, pc)× Tλ(pc, 0) = Tλ(ps, 0), Tλ(p, pc)× Tλ(pc, 0) = Tλ(p, 0). (3.19)

Then (3.18) simplifies as

Icldλ = (1− ηελ)

[
Bλ(Ts)Tλ(ps, 0) +

∫ pc

ps

Bλ[T (p)]
∂Tλ(p, 0)

∂p
dp

]
+ ηελBλ(Tc)Tλ(pc, 0) +

∫ 0

pc

Bλ[T (p)]
∂Tλ(p, 0)

∂p
dp. (3.20)
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Notice in (3.20) that if the weighing function

∂Tλ(p, 0)

∂p

peaks between the cloud top and the surface of the Earth, then the observed radiance intensity

at the top of the atmosphere will be diminished by the cloud. This is because at pressures

lower than pc (at greater height), the weighting function will be small. The integral outside the

bracket in (3.20) will have little contribution to the observed radiance. Depending on how large

η is, the terms inside the bracket may also have little contribution.

We will show that clear sky brightness temperatures are larger than their corresponding

cloudy sky brightness temperatures. For a clear field of view, ηελ = 0 and the satellite measured

radiance is

Iclrλ = Bλ(Ts)Tλ(ps, 0) +

∫ 0

ps

Bv[T (p)]
∂Tλ(p, 0)

∂p
dp. (3.21)

Subtracting (3.21) from (3.20) gives

Icldλ − Iclrλ = −ηελBλ(Ts)Tλ(ps, 0)

− ηελ

∫ pc

ps

Bλ[T (p)]
∂Tλ(p, 0)

∂p
dp+ ηελBλ(Tc)Tλ(pc, 0).

This is the cloud signal in the satellite measured radiances for wavelength λ. To simplify this

equation, we integrate by parts. Let

u = Bλ[T (p)], dv =
∂Tλ(p, 0)

∂p
dp

so that

du =

(
∂Bλ
∂T

)(
∂T

∂p

)
dp, v = Tλ(p, 0).

Then

Icldλ − Iclrλ = −ηελBλ(Ts)Tλ(ps, 0)

− ηελ

(
[Bλ[T (p)]Tλ(p, 0)]pcps −

∫ pc

ps

Tλ(p, 0)

[
∂Bλ
∂T

] [
∂T

∂p

]
dp

)
+ ηελBλ(Tc)Tλ(pc, 0). (3.22)

Now

[Bλ[T (p)]Tλ(p, 0)]p=pcp=ps
= Bλ(Tc)Tλ(pc, 0)−Bλ(Ts)Tλ(ps, 0).
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Substituting this back into (3.22) cancels out all non-integral terms and so

Icldλ − Iclrλ = ηελ

∫ pc

ps

Tλ(p, 0)

[
∂Bλ
∂T

] [
∂T

∂p

]
dp. (3.23)

Since Tλ(p, 0) is an exponential function, it is always positive. Differentiating

Bλ(T ) =
2hc2λ−5

ehc/kλT − 1
,

we also have
∂Bλ
∂T

=
2h2c3λ−5ehc/kλT

kλT 2(ehc/kλT − 1)2
> 0.

Finally, if we assume the ideal gas law, p = ρaRaT, where Ra is the gas constant associated

with the absorbing gas, we have
∂T

∂p
=

1

ρaRa
> 0.

Thus the integrand in (3.23) is positive. However, in the limits of integration, pc < ps, meaning

that this integral is negative. This means that the observed intensity over a cloudy field of view

will always be less than or equal to the observed intensity if the field of view were clear.

3.3 Interpolating Multicloud Model Variables to RTM Radi-

ances

The Prototype Community Radiative Transfer Model (pCRTM), [22], is a model that simulates

satellite observations by using the radiative transfer model. This model uses known properties

of the atmospheric state, such as temperature and humidity, to compute the brightness tem-

perature at the top of the atmosphere. The pCRTM can be configured to simulate observations

from different satellite instruments, such as AIRS or Moderate-Resolution Imaging Spectrora-

diometer (MODIS). The pCRTM has L vertical discrete layers z1, ..., zL where z1 corresponds

to the layer at the top of the atmosphere, bounded by p = 0 mb, and where zL denotes the

surface layer, whose edge is located at pressure ps = 1,000 mb. The vertical height of zi falls

in the middle of the ith atmospheric layer. In our experiments, we use a vertical discretization

of L = 16 atmospheric layers to correspond to the tropospheric height HT = 16 km of the

multicloud model.

To generate satellite observations, we use a numerical simulation of the multicloud model as

the underlying true atmospheric state. Since the pCRTM takes temperature, T (p) (in K), water

vapor, qv(p) (in g/kg), and surface temperature, Ts (in K), as inputs, we need to extrapolate

the solution of the multicloud model to these units at appropriate pressure coordinate discrete
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points. Of the eight multicloud prognostic variables, we use θ1 and θ2, the potential temperature

of each mode (in K), θeb, the equivalent potential temperature anomaly at the boundary layer

(in K, at height 500 meters), and q, the vertically averaged moisture level (in K) to derive

the temperature and moisture in each atmospheric layer and the surface temperature. In the

remainder of this section, we derive the physical relations between the output of the multicloud

model and the inputs to the pCRTM.

We first need to convert between height and pressure coordinates. Hydrostatic balance is

given by
∂p

∂z
= −gρ

where ρ is the density of the atmosphere. Using the ideal gas law p = ρRT gives

∂p

∂z
= − gp

RT
.

The temperature T has a dependence on z and we assume the piecewise linear temperature

profile from [58]

T =

mz + To if z < 11 km

To + 11m if z ≥ 11 km,

with constants m and To (Note that this equation only holds for z ≤ 16 km). We integrate for

each case. First, let z < 11 km. Then

∂p

∂z
= − gp

R(mz + To)

which we can solve via separation of variables.∫
dp

p
= ln p = − g

R

∫
dz

mz + To

= − g

mR
ln(mz + To) + C

= ln(mz + To)
−g/mR + C.

Then

z = kp
−mR

g − To
m
.

If p = po when z = 0 then

k =
To
m
p

mR
g
o
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and

z =
To
m

[(
po
p

)Rm
g

− 1

]
.

Now suppose that z ≥ 11 km. At this height, the temperature profile is assumed to be

constant. For simplicity, define T1 = mz + To. Then the hydrostatic equation becomes

∂p

∂z
= − gp

RT1

which has solution

p = k exp

(
− gz

RT1

)
.

If p = po when z = 0 then k = po and

z = −RT1

g
ln

(
p

po

)
=

R(11m+ To)

g
ln

(
po
p

)
Putting both cases together, the relationship between pressure p and height z is

z =


To
m

[(
po
p

)Rm
g − 1

]
if z < 11 km

R(11m+To)
g ln

(
po
p

)
if z ≥ 11 km,

where po is the pressure at height z = 0.

The multicloud variables θ1 and θ2 have no height dependence. To build a vertical profile,

we use

Θ′(x, z, t) = G′(z)θ1(x, t) + 2G′(2z)θ2(x, t),

which follows from (3.2), where G′(z) =
√

2 sin(πz/HT ) and HT is the height of the troposphere

[32]. The term Θ′ represents a perturbation from a mean potential temperature Θ̄ so that the

vertical potential temperature is given by

Θ(x, z, t) = Θ̄ + Θ′(x, z, t).

The relationship between temperature and potential temperature is given by

T = Θ

(
p

po

) R
Cp

(3.24)

where R is the gas constant of dry air and Cp is the heat capacity of dry air at constant
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temperature [65].

In terms of the multicloud model, q gives the vertically averaged moisture content. The

pCRTM model incorporates height-dependent moisture. Let us write the total vertical moisture

content qv as

qv(x, z, t) = Q(z) + q̃(x, z, t),

and assume that we can decompose q̃ as

q̃(x, z, t) = q1(z)q2(x, t).

If we compute the vertical average (denoted in this section by 〈f〉 = (1/HT )
∫ HT

0 f(z)dz), we

obtain

〈q̃〉 = 〈q1〉q2,

since q2 has no dependence on z. Solving this equation for q2, we obtain

q̃(x, z, t) =
q1(z)

〈q1〉
〈q̃〉.

The average 〈q̃〉 is equal to the multicloud variable q. Furthermore, we will assume that Q(z)

and q1 are exponential, such that

q1 = exp

(
−z
Hq

)
, Q(z) = qoq1,

where Hq gives the vertical scale above which moisture is negligible and qo is the surface

moisture. With these exponential expressions, the total moisture is given by

qv(x, z, t) =

(
qo +

〈q̃〉
〈q1〉

)
exp

(
−z
Hq

)
.

We can write this in pressure coordinates by substituting z(p):

qv(x, p, t) =

(
qo +

〈q̃〉
〈q1〉

)
exp

(
To
mHq

(
1−

(
po
p

)Rm
g

))
.

Lastly, we convert to units of g/kg, expressing a mixing ratio, (〈q̃〉 = q has units of Kelvin),

by multiplying 〈q̃〉 by Cp/Lv. The relation between the q of the multicloud model and the qv

required by pCRTM is

qv =

(
qo +

Cpq

LvHq(1− e−1)

)
exp

(
To
mHq

(
1−

(
po
p

)Rm
g

))
, (3.25)
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where Cp is the heat capacity of water vapor at constant pressure and Lv is the latent heat of

vaporization, of water. This is the equation for z < 11 km. For z ≥ 11 km we have

qv =

(
p

po

)R(11m+To)
gHq

[
qo +

Cpq

LvHq(1− e−1)

]
. (3.26)

Assuming constant Ts and Latent heat of vaporization Lv, the equivalent potential temper-

ature at the boundary is

θeb = θ exp

(
Lvqo
CpTs

)
= Ts

(
po
p

) R
Cp

exp

(
Lvqo
CpTs

)
,

with (3.24) [65]. Expanding the left hand side and the exponential term on the right side as a

Taylor series gives the simplification

θ̄eb + θ′eb ≈
(
po
p

) R
Cp
(
Ts +

Lvqo
Cp

)
where θ′eb = θeb is outputted from the multicloud model.

Therefore, we interpolate the multicloud model variables θ1, θ2, θeb and q into temperature

T , sea surface temperature Ts and water vapor qv through the following equations, where

pressure p is given by

p =

po
(
mz
To

+ 1
)− g

Rm
if z < 11 km

po exp
(
− gz
R(11m+To)

)
if z ≥ 11 km.

The temperature T in terms of potential temperature θ is given by

T (p) = (Θ̄ +G′(z(p))θ1 + 2G′(2z(p))θ2)

(
p

po

) R
Cp

.

The water vapor qv in terms of the vertically averaged water vapor q is given by (3.25)-(3.26).

The sea surface temperature Ts is given by

Ts = (θ̄eb + θ′eb)

(
p

po

) R
Cp

− Lvqo
Cp

.

The constants used in these relations are given in Table 3.2.
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Table 3.2: The values of constants used to interpolate multicloud model variables.

Parameter Value

Cp air 1005.7 J / kg K (±2.5)

Cp water 1870 J / kg K (±25)

g 9.8 m/s

Hq 2200 m

HT 16000 m

Lv Lo − L1(T − 273.15) J / g

Lo 2501 J / g

L1 2.32 J / g K (±0.55)

m -0.0065 K / m, [58]

po 1000 mb

qo 20 g / kg

R 287.04 J / kg K

To 303 K

Θ̄ 322 K

θ̄eb 330 K

3.3.1 Adding Cloud Cover to Synthetic Satellite Observations

We now discus how to simulate cloudy AIRS data. Recall that the cloud free (or clear) observed

radiance of wavelength λ is

Iclrλ = Bλ(Ts)Tλ(ps) +

∫ 0

ps

Bλ[T (p)]
∂Tλ
∂p

dp (3.27)

where ps = 1,000 mb. For simplicity, let c denote the percent of cloud cover (c = ηε) and let

the cloud top be located at pressure pc. We can assume the cloud is a thin sheet. Then in the

presence of clouds, the observed radiance is

Icldλ = (1− c)
[
Bλ(Ts)Tλ(ps, 0) +

∫ pc

ps

Bλ(p)
∂Tλ(p, 0)

∂p
dp

]
+ cBλ(Tc)Tλ(pc, 0) +

∫ 0

pc

Bλ(p)
∂Tλ(p, 0)

∂p
dp. (3.28)

The main issue lies in determining c and pc. For simplicity we assume that there is only one

cloud that affects the computation of Icldλ : a low lying congestus cloud, a higher stratiform

cloud or a deep convective cloud. For a congestus cloud, we will take pc to be the pressure

at height 2 km, and for both the stratiform and deep convective clouds, we will take pc to be
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the pressure at 12 km. The value of c will depend on Hc, Hs and P , as well as the switching

function Λ defined in (3.8), since these variables correlate with the type of cloud present. In

the top panel of Figure 3.3, we plot the true value of Λ at one location as a function of time,

while in the bottom panel, we plot the normalized true values of P , Hs and Hc at the same

location, over time. We normalize P and Hs by dividing each by its respective overall maximal

value. To normalize Hc, we first subtract its overall minimum value, before dividing by its new

maximal value. Notice here that the normalized stratiform heating rate and precipitation rate

exhibit nearly the same behavior. Since both cloud top heights are assumed to be the same, we

will treat the deep convection heating (precipitation) and the stratiform heating as one type of

cloud in our simulations.

Notice in Figure 3.3 that a local maximum of Λ corresponds to a local maximum in the

normalized value of Hc. Therefore, in our simulations, we set the cloud type to be congestus

when Λ > 0.7. Moreover, we take the cloud fraction c to be normalized value of Hc. The

precipitation rate is near a local maximum when Λ is near a local minimum. Here, we set the

cloud type to be the deep convective cloud when Λ < 0.5, and take c to be the normalized value

of P . When 0.5 ≤ Λ ≤ 0.7, we assume that there is no cloud present, and set c = 0 and pc = 0.

To summarize, we determine the cloud cover percent and pressure with the following:

(c, pc) =


(

P
max{P} , p(12 km)

)
, if Λ < 0.5(

Hc−min{Hc}
max{Hc−min{Hc}} , p(2 km)

)
, if Λ > 0.7

(0, 0), if 0.5 ≤ Λ ≤ 0.7.

(3.29)

Figure 3.4 shows brightness temperatures calculated over a clear field of view in the left

panels for three different channels at a particular location (the weighting functions of these

channels are shown in Figure 3.2). The right panels show brightness temperatures for these

same three channels and location, but after cloud cover was added to the RTM. For the higher

frequency channels, cloudy sky brightness temperatures are consistently lower than clear sky

radiances. In the lowest frequency channel, the brightness temperatures are roughly the same

for both cases. This is because the weighting function for this channel peaks at the top of the

atmosphere, (see the first panel of Figure 3.2) and the observed radiances emanate from the at-

mospheric layer above cloud tops. Notice that the cloudy sky brightness temperatures associated

with wavenumber 1377.426 cm−1 agrees with the analogous clear sky brightness temperatures

at several times. This channel is sensitive to cloud effects, however, it is not sensitive to the

effects of low lying congestus clouds; its weighting function is nearly zero below 2 km (see the

middle panel of Figure 3.2). For this channel, deep spikes in the cloudy sky temperatures can be

explained by the presence of a deep convective cloud. The channel associated with wavenumber

2500.602 cm−1 is sensitive to all cloud types, because its weighting function weights over the
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Figure 3.3: The switch function Λ (top panel) and the normalized deep convective, stratiform,
and congestus heating rates, which correspond to the cloud fraction (bottom panel), at location
x = 20, 000 over time.

entire atmospheric column (see the right panel of Figure 3.2). Therefore, for this channel, there

is a large difference between clear and cloudy brightness temperature.

Next, we examine the brightness temperature at one particular location at times that each of

these clouds appear. Figure 3.5 shows the brightness temperature measured by each of the 281

channels at a time when each cloud type is present. Notice that the clear sky temperatures in

Figure 3.5 are higher than the cloudy sky temperatures. In the case of a congestus cloud, cloudy

cover is c = 56%. This cloud type does not have a great vertical extent, so several channels

observe nearly the same temperature in both the clear and cloudy cases. In the case of a deep

convective cloud, with cloud cover c = 100%, cloudy sky radiances are severely diminished by

the cloud.
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Figure 3.4: Clear (left) and cloudy (right) AIRS observations at one location, over time. The
top panels correspond to channel frequency 680.142 cm−1, the middle panels correspond to chan-
nel frequency 1377.426 cm−1 and the bottom panels correspond to channel frequency 2500.602
cm−1.

3.4 Data Assimilation

The data assimilation flow is illustrated in Figure 3.6. It starts with the selection of the initial

ensemble members, chosen at random times of the multicloud model true solution. One ensemble

member includes the estimates of the eight multicloud model variables u1, u2, θ1, θ2, θeb, q, Hs,

and Hc over M = 1,000 locations, equally spaced along the equator. We denote the prior state

estimate

xb = (u1, u2, θ1, θ2, θeb, q,Hs, Hc)
b,
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Figure 3.5: Congestus cloud (top), stratiform cloud (middle) and deep convective cloud (bot-
tom) effects on brightness temperatures for all channels. The black lines represent the clear sky
pCRTM radiances while gray lines represent the cloudy sky radiances.

the transformed prior state estimate ξb and the forward RTM h(ξb), which computes the bright-

ness temperature at each spatial location. The transformed estimates ξb represent the result

of extrapolating the temperature and humidity estimates to different layers of the atmosphere

(see Section 3.3). The synthetic noisy observations of brightness temperature and h(ξb) are

input into the data assimilation algorithm. The posterior state estimate xa is output from the

data assimilation algorithm. Then xa is used as an initial condition in the multicloud model to

compute the new prior state estimate xb at the next time step.

3.4.1 Local Ensemble Transform Kalman Filter

We will use the local ensemble transform Kalman filter (LETKF), developed by [6], in the data

assimilation step. Ensemble Kalman filters use an ensemble of state vectors to represent the
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Figure 3.6: Data assimilation of satellite observations with the multicloud model.

distribution of the true state. Each ensemble member is propagated forward in time individually

by the forecast model (here the forecast model is the multicloud model). Let {xbk}Kk=1 denote

this forecast ensemble, which has size K. When observations become available, the filter uses

the forecast (prior) ensemble mean,

x̄b =
1

K

K∑
k=1

xbk

as an estimate of the atmospheric state, before accounting for the observations.

We define the brightness temperature observation at wavelength λ, vλ, as a function of the

multicloud prognostic variables ξ(x) = ξ(θ1, θ2, θeb, q), by

vλ = h(ξ(x)), (3.30)

where the operator ξ incorporates the numerous dimensionalization transformations defined in

Section 3.3 and the observation operator h is composite of the Planck function Bλ(T ) and the

radiative transfer model.

The ensemble Kalman filter uses the prior ensemble {xbk}Kk=1 , the observations vλ and their

error covariance, and the nonlinear composite h◦ξ to calculate the analysis (posterior) ensemble

mean x̄a and error covariance Ra. The forecast error covariance Rb depends on the perturbation
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of each forecast ensemble member about the prior mean, and is defined by

Rb =
1

K − 1
Xb(Xb)T , (3.31)

where the kth column of Xb is given by xbk − x̄b. The key idea of the LETKF is to use a

transformation Xa = XbT so that the perturbations describe the posterior error covariance

after updating locally with available observations. The perturbations in Xb are weighted such

that the kth column of Xa is xak − x̄a. Therefore, the posterior error covariance is given by

Ra =
1

K − 1
(XbT )(XbT )T =

1

K − 1
Xa(Xa)T .

Each ensemble member updates based on its corresponding transformed perturbation.

The goal of the standard Kalman filter is to minimize the cost function

J(x) = (x− x̄b)T (Rb)−1(x− x̄b) + (vλ − h(ξ(x)))T (Ro)−1(vλ − h(ξ(x))),

where Ro gives the observation error covariance. If the observation operator h ◦ ξ is linearized

as H, then J(x) is minimized by

x̄a = x̄b +K(vλ −Hx̄b),

where the Kalman gain matrix K is given by

K = ((Rb)−1 +HT (Ro)−1H)−1HT (Ro)−1.

In terms of the Kalman gain, the posterior error covariance is given by

Ra = (I − KH)Rb. (3.32)

Notice in the right side of K that

HT (Ro)−1(HRbHT +Ro) = ((Rb)−1 +HT (Ro)−1H)RbHT .

This implies

K = RbHT (HRbHT +Ro)−1.
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Using the expression for Rb in (3.31), the Kalman gain matrix becomes

K = RbHT (HRbHT +Ro)−1

=
1

(K − 1)
(Xb(Xb)T )HT

(
1

(K − 1)
H(Xb(Xb)T )HT +Ro

)−1

= Xb(HXb)T (HXb(HXb)T + (K − 1)Ro)−1

Observe in this last expression that when the linearized operator H appears, it acts on the

perturbation matrix Xb. Therefore, rather than linearizing the complicated h ◦ ξ, we can use a

perturbation matrix V given by

V = [~h(ξb1)− ~̄v;~h(ξb2)− ~̄v; ...;~h(ξbK)− ~̄v],

where ~̄v = ~h(ξb). Then,

K = XbV T (V V T + (K − 1)Ro)−1

= Xb(V T (Ro)−1V + (K − 1)I)−1V T (Ro)−1 (3.33)

= XbJ−1V T (Ro)−1,

where

J = (K − 1)I + V T (Ro)−1V. (3.34)

When an observation vλ becomes available, the posterior ensemble mean is updated with

x̄a = x̄b +K(vλ − ~h(ξ̄b)). (3.35)

Notice in (3.35) that if the observations have large noise then the norm of K is small and

therefore the filter will tend to trust the model dynamics. On the other hand, if the observations

have small noise, the norm of K will be larger and the filter will tend to trust the observations.

To compute the transformation matrix T , we use (3.31) and (3.33) in the posterior error
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covariance expression in (3.32):

Ra = (I − KH)Rb

=
(
I −Xb(V T (Ro)−1V + (K − 1)I)−1V T (Ro)−1H

)(Xb(Xb)T

K − 1

)
=

1

K − 1
Xb

(
I −

(
V T (Ro)−1V

K − 1
+ I

)−1(
V T (Ro)−1V

K − 1

))
(Xb)T

=
1

K − 1
Xb
(
I − (A+ I)−1A

)
(Xb)T

=
1

K − 1
Xb(I +A)−1(Xb)T

where

A =
V T (Ro)−1V

K − 1
.

Thus

Ra = Xb((K − 1)I + V T (Ro)−1V )−1(Xb)T

= XbJ−1(Xb)T

=
XbTT T (Xb)T

K − 1

=
XbT (XbT )T

K − 1
,

where J is given in (3.34).

Notice that the columns of V sum to the zero vector, implying that J is not full rank. There-

fore, to compute the transformation matrix T , we compute the singular value decomposition of

J as

J = Y ΓY T .

Then the transformation matrix T is given by

T =
√
K − 1Y Γ−1/2Y T .

This choice of T permits a symmetric transformation. (In [66], this type of LETKF is called the

spherical simplex LETKF). Each posterior ensemble member xak, 1 ≤ k ≤ K is then obtained

by adding the posterior mean x̄a to the kth column of Xa = XbT .

Because we are under-sampling the atmospheric state distribution by using K ensemble

members, we inflate Xb and V by an inflation percent r, by multiplying these matrices by a

factor of
√

1 + r. The value of r is determined empirically, and partially depends on the sparsity
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of the observation network, the observational time length, and the ensemble size. This strategy

is referred to as multiplicative variance inflation in [68, 3].

In our simulations, the forecast model is discretized by 1,000 grid points, equally spaced 40

km apart along the equator, which has length 40,000 km. The multicloud model produces a

forecast every 6 hours. We implement the data assimilation algorithm locally in space, meaning

that, to correct at each model grid point, we use the available observations within a box of

radius D grid points. Therefore, Xa, Xb ∈ R8(2D+1)×K , since there are 8 multicloud prognostic

variables.

3.4.2 Biases from Cloudy Sky Observations

One can easily induce errors or biases in the observation operator in (3.30) if the observation

model and/or its parameters are not completely specified. Previously, [16] estimated the effects

of such biases in the case of clear sky AIRS measurements. A cloudy field of view can have

a detrimental effect on satellite observations and we will study the potential biases that can

arise in this situation. In particular, we will examine the sensitivity of the filter analysis to

the error in the cloud cover fraction c defined in (3.29), and the error in Λ, which specifies

cloud type and height. We will see that when c cannot be accurately known, we must carefully

select AIRS channels for assimilation, based on the cloud height. In reality, Cloud-Aerosol Lidar

and Infrared Pathfinder Satellite Observations (CALIPSO) can provide accurate estimates of

cloud top height [64]. In the remainder of this section, we describe how we choose cloud height-

dependent channels. The channels we select in this case will have weighting functions which

are nearly zero below the cloud top, so that the Planck function is only weighted above the

cloud. Therefore, the brightness temperatures associated with these channels will be minimally

unobstructed.

The congestus cloud has height 2,000 m, which is relatively close to the surface. In Figure 3.7,

we show two AIRS channels that detect radiation of frequencies 1036.5 cm−1 1377.43 cm−1.

The shaded gray area represents the part of the atmosphere below the congestus cloud top.

Notice here that the weighting function for both channels is close to zero below the cloud. This

demonstrates that these two channels are insensitive to the atmospheric dynamics below the

cloud top. Therefore, when assimilating cloud-dependent channels, we will use these two when

a congestus cloud is present.
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Figure 3.7: Weighting functions of AIRS channels that are minimally obstructed by congestus
clouds. The gray area represents the atmospheric region below a congestus cloud.

The stratiform cloud and the deep convective cloud both have height 12,000 m, which is

much closer to the top of the troposphere. Therefore, the channels that are insensitive to either

of these clouds will have weighting functions that peak at the top of the atmosphere. The two

channels we consider channels that detect radiation of frequencies 680.14 cm−1 and 681.72 cm−1,

depicted in Figure 3.8. The shaded gray area represents the part of the atmosphere below either

cloud top. While such channels are not sensitive to the effects of clouds, they cannot observe

a large part of the atmosphere, and therefore may be uninformative. Channels like these are

more likely to be assimilated with current weather forecast models [54].

Finally, if the field of view, we will use the two AIRS channels associated with radiation

of frequencies 2500.6 cm−1 and 2561.13 cm−1. As illustrated in Figure 3.9, these channels

observe the entire atmosphere. Because the weighting functions have large weight over the

entire atmospheric column, their respective channels are extremely sensitive to cloud effects.

Therefore, channels such as these are rarely used in numerical weather prediction [54].
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Figure 3.8: Weighting functions of AIRS channels that are minimally obstructed by deep con-
vective clouds and stratiform clouds. The gray area shows the atmospheric region below their
tops.

3.5 Results

We report the numerical results of several filtering experiments, after assimilating synthetic

clear and cloudy sky AIRS observations, as well as direct observations of the multicloud tem-

perature and humidity prognostic variables. We present the results of experiments that use the

empirically tuned covariance inflation r in each case. For clear sky observations, the covariance

inflation tends to between 12-16 % and for cloudy sky observations, it tends to be between 4-18

%. We numerically generate each observation of brightness temperature with noise of variance

1 Kelvin, which is consistent with the temperature accuracy of AIRS [38].

In our discussions, we define Dobs as the distance between two observations. If we observe at

every model grid point (resolved at 1,000 regularly spaced locations along the equator, with a

circumference of 40,000 km) then Dobs = 40 km. On the other hand, if we observe at every other

model grid point, at 500 equally spaced locations, then Dobs = 80 km. Finally, if we observe

at every fourth model grid point, at 250 equally distributed locations, then Dobs = 160 km.

We also define the observational time length Tobs as the time between observational updates in

the filter. Finally, we define the localization radius in terms of physical distance, in kilometers.

Therefore, a radius of D = 1 observation corresponds to a localization radius of 40 km; a radius
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Figure 3.9: Weighting functions of AIRS channels that observe the entire atmosphere.

of D = 2 observations corresponds to a localization radius of 80 km.

3.5.1 Direct Observations

We first show the results of assimilating only direct observations of the temperature variables

θ1, θ2 and θeb and of the humidity variable q in the filtering experiment. Here, we perturb an

observation of each variable with noise of variance equal to 10 percent of its overall variance.

The numerical results that we obtain with these observations can be considered to be the

theoretically best estimates that can be achieved by satellite measurement, since the RTM

uses these variables to generate brightness temperatures. In Figures 3.10 and 3.11 we show an

example of the posterior and prior state estimates of each multicloud prognostic variable, and

the precipitation rate, compared with the true signal, using observations at each of the 1,000

model grid points, an observational time length of 24 hours and a localization radius of 80 km.

Figure 3.10 shows the estimates over the spatial domain at the final time step (after 1,000 days

of simulation), while Figure 3.11 shows the estimates over the last 30 days of the simulation, at

location x = 20,000 km. For most variables, there is good agreement between the posterior and

prior estimates and the true signal. However, both the posterior and prior state estimates of

Hs and P fail to capture a few of their peaks. Notice that many of the peaks in P are slightly

underestimated. Indeed, we will see that with satellite observations, these variables are difficult
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to estimate.

Next, we examine the sensitivity of the filtering skill with respect to localization radius. In

Figure 3.12, we show the spatially and temporally averaged root mean square (RMS) error and

the temporally averaged pattern correlation between the posterior (black lines) and prior (gray

lines) state estimates of humidity q and precipitation rate P and true signal as a function of

localization radius, for Dobs = 40 km, 80 km and 160 km. In each case, the analysis estimates are

more accurate than the background estimates, as we expect, and we obtain the best results with

a longer localization radius. For Dobs = 40 km (left panels), the improvement after increasing

the radius above 80 km (middle panels) is small for each variable. Similarly, for Dobs = 80 km,

the improvement in RMS error and correlation for both variables is small with increasing radius.
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Figure 3.10: Posterior state (black asterisks) and prior state (gray circles) estimates compared
with the true signal (red line) at time T = 1,000 days, with direct observations of temperature
and humidity, Dobs = 40 km, Tobs = 24 hours, K = 16, covariance inflation r = 19% and
localization radius 80 km.
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Figure 3.11: Posterior state (black asterisks) and prior state (gray circles) estimates compared
with the true signal (red line) at location x = 20,000 km over the last 30 days, with direct
observations of temperature and humidity, Dobs = 40 km, Tobs = 24 hours, K = 16, covariance
inflation r = 19% and localization radius 80 km.

However, with Dobs = 160 km (right panels), there is an obvious improvement in the estimate

of P with increasing radius; its posterior state estimate pattern correlation increases from

approximately 0.93 to 0.98 as the radius increases from 0 to 120 km. The RMS errors associated

with q clearly decrease with increasing radius, however, the pattern correlation remains above

0.99, even for a radius of 0.

3.5.2 Synthetic Clear Sky AIRS Observations

We now report the numerical results after assimilating synthetic, clear sky AIRS observations. In

these experiments, we use two uncorrelated AIRS channels corresponding to the wavenumbers

1377.4 cm−1 and 2500.6 cm−1. For reference, the weighting functions associated with these

76



0 40 80 120
0.005

0.01

0.015

0.02

0.025

0.03

R
M

S
 e

rr
or

D
obs

 = 40 km

0 40 80 120
0.005

0.01

0.015

0.02

0.025

0.03

R
M

S
 e

rr
or

D
obs

 = 80 km

0 40 80 120
0.005

0.01

0.015

0.02

0.025

0.03

R
M

S
 e

rr
or

D
obs

 = 160 km

0 40 80 120

0.92

0.94

0.96

0.98

1

C
or

re
la

tio
n

Localization Radius, km

 

 

q
P

0 40 80 120

0.92

0.94

0.96

0.98

1

C
or

re
la

tio
n

Localization Radius, km
0 40 80 120

0.92

0.94

0.96

0.98

1

C
or

re
la

tio
n

Localization Radius, km

Figure 3.12: Spatially and temporally averaged RMS error and temporally averaged pattern
correlation between the posterior and prior state estimates of q and P and true signal as
a function of localization radius, with direct observations of the temperature and humidity,
K = 16, and Tobs = 24 hours. The black lines correspond to posterior state estimates, while the
gray lines correspond to prior state estimates.

channels are given in the right panel of Figure 3.7 and the left panel of Figure 3.9.

We first examine how the filter skill improves with increasing ensemble size. In Figure 3.13,

we show the temporally and spatially averaged RMS error between posterior state estimates of

the partially observable variable q and the unobservable variable Hc and their true signals as a

function of ensemble size K. As K increases from 8 to 16, there is a clear, albeit slight, decrease

in RMS error for each variable. We found that, for every variable, this decrease is small, on

the order of 10−2 or less, as the ensemble size increases above 16. Therefore, in the remaining

experiments, we take K = 16.

We again show an example of the analysis and background estimates of each variable com-

pared with the true signal, using Dobs = 40 km, Tobs = 24 hours, K = 16 and a localization

radius of 80 km. In Figure 3.14, we show the estimates over the spatial domain at the last
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Figure 3.13: RMS errors between the posterior state estimates of q and Hc and their true
signals as a function of ensemble size, with clear sky observations, Dobs = 80 km, Tobs = 24
hours, and localization radius 80 km.

time step, and in Figure 3.15, we show the estimates over the last 30 days of the simulation,

at the location = 20,000 km. For several variables there again is good agreement between the

estimates and the truth. However, for Hs and P , which exhibit large peaks, we notice a bigger

discrepancy between the truth and the estimates, as compared to the results of assimilating

direct observations (see Figures 3.10 and 3.11); The precipitation rate is grossly underestimated

at several times. Additionally, in Figure 3.10, the estimates of P indicate nonzero precipitation

when it is actually zero.

The filter estimates are more sensitive to localization radius size when assimilating clear

sky AIRS observations as compared to direct observations. Figure 3.16 shows the spatially and

temporally averaged RMS error and the temporally averaged pattern correlation between the

posterior (black lines) and prior (gray lines) state estimates of q and P and their true signals,

as a function of localization radius, for Dobs = 40, 80, and 160 km, and Tobs = 24 hours. For

an observational spacing of 40 km (left panels) and 80 km (middle panels) , there is a slight

improvement in the estimates of both variables as the radius increases. With a spacing of 40 km

the estimates of q and P most noticeably improve when the radius increases from 0 to 40 km.

However, with Dobs = 160 km (right panels), we observe the poorest skill with a radius of 40

km; the RMS error increases (while pattern correlation decreases) as the radius increases from

0 to 40 km. Furthermore, with a radius of 40 km, the prior state estimates of both variables

are actually better than the posterior estimates. With such a sparse observation network, it
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Figure 3.14: Posterior state (black asterisks) and prior state (gray circles) estimates compared
with the true signal (red line) at time T = 1,000 days, with clear sky observations, Dobs = 80
km, Tobs = 24 hours, K = 16, covariance inflation r = 16% and localization radius 80 km.

is difficult to achieve a good filter skill. For the observable variable q, notice that the pattern

correlation remains high, above 0.97, in every case except for Dobs = 160 km with a radius of

40 km. The pattern correlation associated with P , however, is lower than it was in the case of

direct observations (see Figure 3.12). Here the correlation is consistently below 0.92 and drops

as low as 0.7 in one instance.

3.5.3 Synthetic Cloudy Sky AIRS Observations

Finally, we present the results achieved after assimilating cloudy sky AIRS observations. To

begin, we compare different channel selection schemes; we compare analyses from assimilating

the six channels depicted in Figures 3.7-3.9, to the analyses after using two channels at a time,

chosen based on the cloud height as described in the previous section. Figure 3.17 shows the
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Figure 3.15: Posterior state (black asterisks) and prior state (gray circles) estimates compared
with the true signal (red line) at location x = 20,000 km over the last 30 days, with clear
sky observations, Dobs = 80 km, Tobs = 24 hours, K = 16, covariance inflation r = 16% and
localization radius 80 km.

spatially averaged RMS errors associated with the analysis estimates of u1, θ2, q and P as

functions of time, using both channel selection schemes, with perfectly specified cloud cover

percent and height. In this simulation, the assimilation is performed with a localization radius

of 80 km, Tobs = 24 hours and Dobs = 40 km. For comparison, we also include the RMS errors

based on assimilating these six channels with a clear sky. We observe that in the presence of

clouds, using all six channels rather than two cloud-dependent channels improves the filtering

skill. Indeed, the RMS error is close to that associated with clear sky observations. This result

suggests that if we can ascertain the cloud cover percent and cloud top height, we can improve

our filter estimates by assimilating more channels, even those that weight below the cloud tops.

To study the sensitivity of the filtering skill to the error in cloud cover percent and type,

we assimilate these six channels after corrupting the true values of c and Λ with noises of
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Figure 3.16: Spatially and temporally averaged RMS error and temporally averaged pattern
correlation between the posterior (black lines) and prior (gray lines) state estimates of q and
P and true signal, as a function of localization radius, with K = 16, Tobs = 24 and clear sky
AIRS observations.

variances equal to ten percent of each variable’s respective climatological variance. In Figure

3.18, we show the spatially averaged RMS error associated with u1, θ2, q and P as a function

of time, obtained from noisy c, noisy Λ, and from noisy c and Λ both. For comparison, we also

include the result of assimilating these six channels with perfectly specified c and Λ. When Λ

is corrupted with noise, the cloud type is not accurately specified at times, leading to a large

discrepancy in cloud height at these instances. The difference between the observations and

the interpolated observations h(ξb) can be large in channels whose weighting functions peak in

the lower atmosphere. In this case, the filter skill deteriorates; the RMS error of the posterior

estimates of each variable is higher here then when using cloud-dependent channels with the

true Λ. In fact, when we use the forecast to approximate Λ, the filter numerically blows up in

finite time when using either channel selection scheme. This suggests the cloud height is the
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most important parameter to estimate when assimilating cloudy observations.

When the cloud cover percent c is noisy, but Λ is perfectly specified, the filter skill is

comparable to when cloud cover is perfectly specified (compare the red and black curves in

Figure 3.18). However, there are a few times when there are large disparities between the two.

If the cloud cover percent cannot be accurately determined, the discrepancy between the

interpolated observations, h(ξ(xb)) in and the observations (the biases) can be large in channels

whose weighting functions peak below the cloud top. In our simulations, we find the filter

numerically blows up when using the six channels represented by Figures 3.7-3.9 and estimating

the cloud cover percent from the background estimates of P and Hc, even when the cloud height

is perfectly specified. In this case, one can still attain reasonably good estimates by choosing

channels that weight only above the cloud. In Figure 3.19, we show the spatially averaged RMS

errors associated with the posterior estimates of u1, θ2, q and P as a function of time, after

using the background heating rates to estimate the cloud cover percent. We also include the

result of assimilating two cloud-dependent channels with perfectly specified c and Λ, and of

assimilating the six channels with a clear field of view. Here the RMS errors of P and u1 is as

good as when the true cloud cover percent is specified. For the observable variables θ2 and q,

the RMS errors are slightly higher when the filter uses its background heating rates to estimate

the cloud cover percentage.

Now that we understand how to choose channels for assimilation, we will examine the

numerical results obtained by using the channel selection method described in the previous

section in more detail. To begin, we compare the posterior and prior state estimates of the

multicloud prognostic variables using Dobs = 40 km, Tobs = 24 hours and a localization radius of

80 km, as we did after assimilating clear sky observations, and direct observations of temperature

and humidity. In Figure 3.20 we show the estimates over the spatial domain at the final time

step, and in Figure 3.21, we show the estimates over the last 30 days of the simulation, at

x = 20,000 km. Compared to the results of assimilating direct observations of temperature

and humidity (see Figures 3.10 and 3.11) and of assimilating clear sky AIRS observations (see

Figures 3.14 and 3.15), there is a bigger discrepancy between the truth and the analysis and

background estimates. The difference between the estimates and the true values of P and Hs

is more obvious here, especially for Hs. Here the filter poorly estimates the peaks in Hs and P .

Also, the filter seems to poorly estimate q and θ1 at times.

To demonstrate that Hs is the key variable to accurately estimate the precipitation, we show

a numerical result in which we insert the true value of Hs in our data assimilation scheme. This

simulation provides a minimum error estimate (in a sense where Hs is accurately assimilated)

for assimilating a mixed set of observations, cloudy AIRS data and direct observations of the

stratiform heating rate. In Figure 3.22, we show the posterior and prior state estimates of the

other multicloud model variables over the last 30 days of the simulation. Notice here that with
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Figure 3.18: Spatially averaged RMSE between the posterior state estimates of u1, θ2, q and
P and their true signals over time with K = 16, Tobs = 24 hours, and localization radius 80 km.
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Figure 3.20: Posterior state (black asterisks) and prior state (gray circles) estimates compared
with the true signal (red line) at time T = 1,000 days, with cloudy sky AIRS observations,
Dobs = 40 km, Tobs = 24 hours, K = 16, covariance inflation r = 14% and localization radius
80 km.

the additional direct observation of Hs, the filter estimates for q, θ1 and P improve. In fact,

the filter estimates of all the multicloud prognostic variables have smaller RMS error. We plot

the precipitation contours in Figure 3.23, comparing the case in which we assimilate true value

of Hs (bottom right panel) with the case in which we only assimilate noisy AIRS observations

(bottom left panel). For reference, we include the true precipitation contours in the top panel.

We observe that inidividual waves are moving toward the warm pool centered at 20,000 km,

promoting deep convection at regions within the warm pool. Again, there is a discrepancy

between the truth and the estimated precipitation. However, when the true value of Hs is used

in the filter, the estimates improve.

Next we will experiment with different observation networks. In Figure 3.24, we show the
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Figure 3.21: Posterior state (black asterisks) and prior state (gray circles) estimates compared
with the true signal (red line) at location x = 20,000 km over the last 30 days, with cloudy sky
AIRS observations, Dobs = 40 km, Tobs = 24 hours, K = 16, covariance inflation r = 14% and
localization radius 80 km.

spatially and temporally averaged RMS error between the posterior (black lines) and prior

(gray lines) state estimates of each variable and their true signals as a function of Dobs. For

comparison, we include the filter results based on assimilating clear sky observations, and based

on assimilating direct observations of temperature and humidity. For each type of observation,

and for each variable, there is an increase in RMS error as the observation network becomes

sparser. In most cases, the posterior state estimates are more accurate that the prior state

estimates, as expected. When the prior state estimate happens to be better than the posterior

state estimate, for example, see the RMS error of u1 with cloudy sky observations in Figure

3.24, the difference is extremely small. Even with a spatially dense clear sky satellite observa-

tion network, we cannot attain results that are comparable to using only direct observations.

Observe, however, that for most variables, with a denser network, the RMS errors associated
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Figure 3.22: Posterior state (black asterisks) and prior state (gray circles) estimates compared
with the true signal (red line) at location x = 20,000 km over the last 30 days, with cloudy sky
AIRS observations and direct observations of Hs, Dobs = 40 km, Tobs = 24 hours, K = 16 and
localization radius 80 km.

with cloudy sky observations are nearly as good as or better than the RMS errors associated

with sparser clear sky observations.

In Figure 3.25, we show spatially and temporally averaged RMS error between the analysis

(black lines) and background (gray lines) estimates of each multicloud variable and its true

signal as a function of Tobs. Again for comparison, we include the results of using clear sky

observations, as well as the results of using direct observations of temperature and humidity.

For the direct observations, the RMS error associated with each variable, with the exception

of u2 and Hc, increases as Tobs increases from 6 hours to 12 hours, and then actually decreases

as the Tobs increases to 24 hours. In this case, for Tobs = 6 hours, the prior state estimates of

u1 and u2 are more accurate than their respective posterior state estimates. For cloudy sky

observations, the RMS error strictly increases with increasing observational time length, and
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Figure 3.23: The true precipitation contours (top), and estimated precipitation contours (bot-
tom). The bottom right panel shows the result of using the true value of Hs in the filter. Here,
Tobs = 6 hours, Dobs = 40 km and D = 2.

the posterior state estimates are more accurate than prior state estimates, with the exception

of u1. Notice that for clear sky observations, the increase in RMS error for each variable after

increasing Tobs from 12 hours to 24 hours is very small (in the case of Hc, it actually decreases

slightly). To the contrary, the RMS errors associated with cloudy sky observations exhibit a

large increase with increasing observational time length. For Tobs = 6 hours, the cloudy sky

estimates are comparable to the clear sky estimates with Tobs = 12 hours. This, together with

the findings from Figure 3.24, suggests that assimilating both a temporally and/or spatially

denser cloudy sky observation network can produce posterior and prior state estimates that are

comparable to estimates obtained from assimilating a temporally and/or spatially sparse clear

sky observation network.

The filter estimates with cloudy sky observations do not appear to be sensitive with respect
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to localization radius (see Figure 3.26, which shows the average RMS and correlation of q and P

as a function of localization radius). With a dense observation network, the filter skill improves

slightly with a longer radius, while for Dobs = 80 km, there is not much difference in filter skill

as the radius increases. For a sparse observation network, we appear to have the best filter skill

with a localization radius of zero. In this case, for a radius of 40 km, the prior state estimates of

both variables are better than the posterior state estimate, which we also observed when using

clear sky observations (see the right panels of Figure 3.16).
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Figure 3.26: Temporally and Spatially averaged RMS error and temporally averaged pattern
correlation between the posterior (black lines) and prior (gray lines) state estimates and true
signal as a function of localization radius, with cloudy sky AIRS observations, Tobs = 24 hours,
and K = 16.
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3.6 Summary

In this chapter, we assessed the potential for using cloudy sky AIRS observations to improve

practical weather forecasting skill and identified the key parameters that induce biases in the

filter estimates in the presence of, at most, one cloud at a time. Our study was based on synthetic

cloudy AIRS observations, generated from a numerical solution of the multicloud model, [32, 33],

a toy model of convectively coupled tropical waves that incorporates cloud dynamics at the

equator. This model has three variables, congestus heating rate, Hc, stratiform heating rate,

Hs and precipitation rate P , that respectively correlate to the presence of three cloud types that

are prevalent in the tropics. In our experiments, we used these heating rates and the multicloud

model switching function Λ to simulate cloud cover in the satellite data. The cloudy AIRS

brightness temperatures were calculated by inserting the true values of temperature, moisture

and heating rates into the prototype Community Radiative Transfer Model. Using these cloudy

observations, we assessed the filter estimates in different scenarios, incorporating either the true

cloud cover percent c and Λ, noisy c and/or noisy Λ, or an estimate of c, calculated from the

background estimates.

From our numerical study, we conclude that the most important parameter to estimate in

assimilating cloudy AIRS data is the cloud top pressure (which correlates with the cloud type in

our experiments). Without a decent estimate of Λ, the biases become too large and can lead to

filter divergence (solutions which blow up in finite time). The second most important parameter

is the cloud cover percent. If this parameter can be reasonably estimated in addition to the cloud

height, we can use more channels, including those with weighting functions that peak below

the cloud. However, if the cloud percent cannot be ascertained, one can still obtain reasonable

results by assimilating channels whose weighting function peak in the upper atmosphere and

are negligible below the cloud top, since these channels are less sensitive to cloud effects [54]. In

our numerical experiments, the filter diverges in finite time when we assimilate channels with

weighting functions that peak below the clouds, when the cloud cover percents are estimated

from the filter background estimates.

We also found that if we only assimilate AIRS channels whose weighting functions peak in

the upper part of the atmosphere, the state estimation of the precipitation rate is not com-

pletely recovered, even when the cloud type and coverage percent are perfectly specified. We

demonstrated that additional direct observations of the prognostic variables can improve the

filter estimates; there was a dramatic improvement in the precipitation estimation when direct

observations of the true stratiform heating rate were assimilated in addition to cloudy AIRS

data. When using only direct observations of temperature and humidity, the estimates of each

variable, including precipitation, are quite accurate. We conclude that different types of obser-

vations, especially direct observations of prognostic variables, can help uncover the observability
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issues that arise in assimilating cloudy sky AIRS data.

Assimilating a temporally (or spatially) denser network of cloudy observations produces

analysis and background estimates that are comparable to the estimates obtained after assimi-

lating a temporally (or spatially) sparse clear sky observation network. When the observations

are spatially dense, we find that the filter estimates improve as the localization radius increases.

In contrast, for a spatially sparse network, the filter estimates degrade as the localization radius

increases. This is true for each type of observation considered in this chapter: direct observations

and both clear and cloudy sky AIRS radiances.

Currently, the only AIRS observations that are used in weather systems are the cloud

free channels [60]. Although AIRS data are believed to be important for improving weather

prediction, the percentage of AIRS observations that are assimilated remains small. The findings

here can provide useful guidelines as well as the limitations for using cloud AIRS observations

in practical data assimilation. Our encouraging results obtained by using channels that observe

the entire atmospheric column rely on accurate estimates of the cloud cover percent and cloud

top pressure. In reality, cloud top pressure can be accurately estimated by CALIPSO [64],

while the estimation of cloud cover percent is challenging. Of course, biases can also arise from

other issues that are not discussed here, such as the satellite scan angle, calibration error, and

modeling errors in the radiative transfer model. The issue of bias correction is addressed in

[5, 57, 52, 16]. There are also other parameters that are not considered here, such as cloud

mask [59].
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