ABSTRACT

BATHMANN, KRISTEN ASHLEY. State Estimation from Sparse Observation Networks and
Satellite Measurement. (Under the direction of John Harlim.)

Filtering is the process of determining the statistically best estimate of a true signal based
on partial, noisy observations. It is a two-step predictor-corrector scheme consisting of a forecast
step, followed by an analysis step that updates the prediction as observations become available.
In this thesis, two different filtering methods are applied under two different scenarios. In
the first setting, two-dimensional irregularly spaced, sparsely observed turbulent signals are
assimilated through a hierarchical Bayesian reduced stochastic filter. This approach is tested
using a two-layer quasi-geostrophic model on a two-dimensional domain with a small radius
of deformation to mimic ocean turbulence. The hierarchical strategy consists of two steps,
combining a data-driven interpolation with the Mean Stochastic Model filter (MSM). Two
interpolation schemes, a piecewise linear interpolation and ordinary kriging, are compared in this
first step. Filtered estimates obtained from ordinary kriging are superior to those obtained from
the linear interpolation when the observation networks are not too sparse, and the dynamical
constraint of the MSM becomes important when the observation noise variance is large.

In the second half of this thesis, the potential for using cloud-impacted satellite observations
to improve the analysis estimate of the Local Ensemble Transform Kalman filter is assessed.
Most data assimilation schemes with satellite data utilize only clear sky infrared radiances. How-
ever, cloudy radiances contain significant information about the atmospheric state and could
have a positive impact on weather prediction. This study is based on synthetic Atmospheric
Infrared Sounder (AIRS) measurements, incorporating the temperature and humidity profiles
of the multicloud model, a toy model that simulates tropical convection. The key parameters
that induce filter bias in the presence of a cloud are identified. In particular, the cloud cover
percent, and, more importantly, the cloud top pressure are the two most crucial parameters to
estimate correctly. Furthermore, this study also provides error bounds on the analyses based
on using cloud-impacted AIRS data. The findings here suggest that with reasonable estimates
of cloud cover percent and cloud top pressure, cloudy AIRS data can be potentially as effective

as clear sky data, and could enhance numerical weather prediction.
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Chapter 1

Introduction

Filtering is the process of determining the statistically best estimate of a true signal based on
partial, noisy observations. It is a two-step predictor-corrector scheme consisting of a forecast
step, followed by an analysis step that updates the prediction as observations become available.
The forecast treats the underlying system dynamics as a black box, while the analysis accounts
for both the prediction and the observations to update the state estimate [45]. Consider a

random variable i,,, whose dynamics are governed by the discrete time model

—

ﬁm+1 = f(ﬁm) + 0_:m+1> (1'1)

where f is a discrete time operator that propagates i, € CV or RY forward in time and

Fm € CN or RY is a Gaussian noise vector of mean zero and covariance

The superscript asterisk denotes the conjugate transpose, and the notation (e) denotes expec-
tation with respect to the Gaussian noise joint distribution.
The goal of the Kalman filter is to estimate the true state ,,11, given noisy observations

Um+1 that satisfy the relation

5m+1 = g'(ﬁerl) + E;)n—f—la (1-2)

where § € RM*N is an observation operator that maps the model variable ,,,; into the
observational space and 75, ; € CM or RY is a Gaussian measurement error of mean zero and

diagonal covariance

The derivation of the Kalman filter assumes Gaussian noise. For certain applications, this

assumption may not be true; in this case, one might consider another filtering method, such as



a particle filter.

We will examine two different filtering approaches in two settings. In the first setting, we
consider observations of two-dimensional turbulent ocean dynamics in the mid-latitude. Let
Uk,1.m denote the (k,I)-Fourier mode of u,,. This filter is implemented mode-by-mode. Therefore,
to simplify the discussion, we will drop the k and [ in the subscript of ug ,,. Here we model

the underlying dynamics in a Fourier domain with a simple model
Umt1 = Fuy + 0mat- (1.3)

Using the two-layer quasi-geostrophic (QG) model, [61, 62], we generate numerous two dimen-
sional sparse, noisy, irregularly spaced observation networks. This imitates the practical situa-
tion in which physical observations are sparse and not available at regular model grid points.
We simulate the QG model, using parameters that mimic oceanic turbulence and we only take
our observations from its large scale components, making this a difficult filtering problem. Our
goal is to assess the filtering skill when an irregularly spaced observation network is subject to
processing prior to assimilation. The filtering approach here consists of a two step hierarchical
Bayesian framework. The first step is to interpolate the irregularly spaced observations to the
regular filter model grid points. The second step is to apply a simple, reduced filter stochastic

filter in Fourier space. In this set up, the model in (1.2) simplifies to,
VUil = Gy + 0'214_1,

where v, 11 is the Fourier mode of 0,1 and o7, , ; denotes the observational noise with variance
(r°/M)Z (see [45]). The component of G corresponding to mode (k,!) is equal to 1, while the
other components of G are equal to 0. We will use a numerically cheap forecast model, the
Mean Stochastic Model, [45, 48] to parametrize our forecast operator F in (1.3).

In this application, we use a Kalman filter, assuming that the observation and prior forecast
error uncertainties are Gaussian, uncorrelated, and unbiased [45]. The error distribution of the

observations v,,+1 is given by the Gaussian conditional distribution

,,,,O
—T).
)

We denote the estimate of u,,41 before updating to account for the observations vy,41 at this

P(vmia|umy1) ~ N <Gum+1

time step as ufn 41- This estimate is called the prior state estimate, forecast, or background

estimate, and we use the three terms interchangeably. Then

b a
U1 = Fup, + omy,



where u® denotes the posterior state estimate, or analysis at the previous time step. The
posterior state uy, ., gives the estimate of the true state after considering the observations
Umnt1-
Probabilistically, the prior state probability distribution of ufn 41 accounts for all observa-
tions up to time ¢, as
P(ulr)n+1) ~ N(l_%bnﬂv an-s-l)-
b

Here %, ; = (u},, ) gives the mean of the prior state and
b — b b b b
Rm+1 == <(um+1 - um—‘,—l)(um—i-l - um+1)*>

gives the prior error covariance. The estimate for the posterior mean is then found by maximizing

the conditional distribution
P(ug 1) = P(ub, 1 |vmg1) o P(uby 1) P(vma]ud, ).

We then obtain the posterior error covariance by computing

Ry = ((umg1r — @ 1) (Uingr — Uy 1)™) -

In the second part of this thesis, we assimilate synthetic cloudy Atmospheric Infrared
Sounder (AIRS) satellite observations equally spaced along the equator with a toy model of
tropical convection called the multicloud model [32, 33]. As we will demonstrate, the presence
of a cloud can have a significant effect on satellite observations. Less than 1% of AIRS observa-
tions are taken over a cloud-free atmospheric column [13]. Consequently, only a small percentage
of AIRS observations are currently used in forecast models. We will study the potential and
the merit of assimilating cloud-impacted AIRS data, and examine the biases that clouds can
introduce in the filtering algorithm. We use a simulation of the multicloud model to create a
true atmospheric state. To generate synthetic satellite observations, we use the prototype com-
munity Radiative Transfer Model, [22], augmented with added cloud effects. In this case, the
forecast model f in (1.1) represents the multicloud and is a nonlinear, deterministic operator.
The observation operator ¢ in (1.2) is also nonlinear and is a composite of the radiative transfer
model, an inverse Planck function, and several dimensionalization transformations. Notice that
because we use the multicloud model to specify the true dynamics, the filter model is perfectly
specified. Therefore, this is an example of a perfect model experiment [9].

The basic Kalman filter assumes linearity in both the forecast model in (1.1) and the ob-
servation operator in (1.2) in its derivation. Because of the nonlinearity of both the multicloud

model and the radiative transfer model, we must be careful to employ an appropriate filtering



strategy. Here we utilize the local ensemble transform Kalman filter (LETKF), a deterministic
approach, in the analysis step [28, 7]. This filter is implemented locally, meaning that for each
model grid point, we use all of the observations available within a radius D in the analysis up-
date. The LETKEF uses a collection, or ensemble, of state vectors to represent the distribution of
the true state, uy,+1. Ensemble members are created with different initial conditions. Starting
with an ensemble {Uﬁ}lf:l at time t,,, the filter propagates each ensemble member forward in
time with the nonlinear forecast model f to obtain {ﬁi}szl at time ¢p,41.

When observations become available, the analysis step uses the forecast ensemble {f[i},
the local observations and their error covariance matrix, and the observation operator § to
compute the posterior ensemble mean and posterior error covariance matrix. The filter assumes
that the forecast (prior) ensemble mean @’ gives the best estimate of the true atmospheric
state, before taking new observations into account. In the analysis, each ensemble member is
updated with the analysis (posterior) ensemble mean, @*, which represents the best estimate
of the atmospheric state after considering the observations.

The forecast error covariance depends on the perturbation of each ensemble member about
the prior ensemble mean, ﬁz — @°. The basic idea of the LETKF is to apply a transformation
to the prior ensemble perturbations so that they describe the posterior error covariance that
accounts for the observations. In a sense, the perturbations are weighted, based on the difference
between the average of {G(ul)} and the values of the local observations. The transformed
perturbations are used to define the posterior error covariance, and to update each ensemble
member in conjunction with the posterior mean.

The remainder of this thesis is outlined as follows. In Chapter 2, we consider a hierarchical
Bayesian filtering scheme. This study has been published in [8]. We first discuss the two-layer
QG model in the mid-latitude. Next, we discuss the two-step filtering approach; in the first
step, we consider two interpolation techniques, a two-dimensional piecewise linear interpolation
scheme and ordinary kriging, [10], a geostatistical interpolation scheme. In the second step, we
use the Mean Stochastic Model [45]. Subsequently, we present the results of several filtering
experiments and close the chapter with a summary and discussion. In Chapter 3, we assimilate
cloudy satellite observations. We first discuss the multicloud model and the radiative transfer
model. Next, we explain how we create satellite observations, and how we simulate cloud cover.
We then discuss the filtering approach. Finally, we present our numerical results and close with

a summary and discussion.



Chapter 2

A Hierarchical Bayesian Reduced
Stochastic Filter

In this chapter, we consider a filtering approach for assimilating noisy, irregularly spaced,
sparsely observed turbulent signals with a hierarchical Bayesian reduced stochastic filter. Typ-
ical forecast models are resolved on regularly spaced grid points. In contrast, observations in
nature are usually sparse and noisy, and are not always available at regularly spaced grid points.
For example, radiosonde measurements from weather balloons are sparse over the ocean, but
denser over land. Our goal here is to extend the current reduced stochastic filtering models
to account for sparse, irregularly spaced observation networks on a two-dimensional domain,
through the use of an appropriate interpolation technique.

Let V denote the random variable of the irregularly spaced observations, and let U denote
the random variable of the forecast model state. The standard stochastic filtering approach

utilizes Bayes’ theorem to obtain the posterior statistics of the conditional distribution
P(u|v) < P(u)P(v|u), (2.1)

where 9 € V and u € U [2, 7, 14]. Here, P(u) gives the prior distribution associated with the
forecast model dynamics. The typical method for assimilating irregularly spaced observations

is to use the observation operator
Om = Gup) + 065, a0, ~N(0,7°T) (2.2)

to map the model variable wu,, = (u]m)jvzl at grid point j and discrete time step m to the
observation variable v, = (6Z,m)gj\i , at grid point . Here, the observation v, is corrupted by
an i.i.d. Gaussian noise 69, with mean zero and variance r°. In (2.1), P(9|u) gives a likelihood

function associated with this observation model..



The hierarchical approach can be probabilistically interpreted as an application of the hier-
archical Bayesian approach [23]. The first step in this approach is to use a statistical interpola-
tion technique to interpolate the irregularly spaced observations @ € V to the filter model grid
points. Let V' denote the random variable of the interpolated observations. Then from Bayes’
theorem, we obtain

P(u|v) o< P(u)P(v|u),

where v € V. Adding the condition of v to (2.1), we have
P(u|v,v) < P(u|v)P(v|u,v) o< P(u)P(v|u)P(0|v,u). (2.3)

The conditional distribution P(v|u,?) represents the outcome of the statistical interpolation.
The second step of this approach is to apply P(u)P(v|u, ?) through a reduced stochastic filtering
algorithm. Here, the computational cost is significantly reduced compared to the standard
Bayesian approach in (2.1) with the observation model in (2.2). This process combines the
data-driven interpolation in the first step and the dynamical constraint of the prior distribution
in the second step.

We will apply the hierarchical Bayesian approach in (2.3) to filter noisy, irregularly spaced,
sparse observations of geophysical turbulence over a two-dimensional doubly periodic domain.
The two layer quasi-geostrophic (QG) model, [61, 62], simulates atmospheric and oceanic tur-
bulence. We generate our observations from the large-scale, barotropic components of a solution
of the QG model, using a long Rossby radius, corresponding with ocean dynamics. In reality,
observations of small scale processes are typically not available. Additionally, we externally
force the QG model, so that it exhibits baroclinic instability. We choose the locations of the
observations randomly, and perturb each with a noise r°.

In the first step of (2.3), we will compare the performance of two different interpolation
schemes on numerous observation networks. In particular, we compare a deterministic piecewise
linear interpolation and ordinary kriging, a spatial statistical interpolation [10]. In the linear
interpolation, we use three observations to interpolate at each model grid point. This choice
is arbitrary; compared to a one-dimensional Lagrange function, which can only be defined
with two observations, a two dimensional Lagrange function can be defined with any number
of surrounding observations. Ordinary kriging is a data driven interpolation technique. This
method treats the set of observations and interpolated observations as a random field, and
assumes Gaussian, stationary noises. The main idea of kriging is to fit the set of observations to
an empirically chosen, parametric covariance function. The expected value at each model grid
point is then found by solving a constrained minimization problem.

The assimilation of sparsely observed turbulent signals has been studied previously in a
one-dimensional setting in [23]. As in [23], we will use the Mean Stochastic Model (MSM),



[45, 48], a filtering strategy that models turbulent fluctuations with a linear damping and white
noise, [61, 50, 51, 43, 11, 47], for the second step in (2.3). This cheap filter is comprised of block
diagonal Langevin equations in Fourier space. We obtain the MSM parameters offline by fitting
a training data set to the solutions of the Ornstein-Uhlenbeck process. For problems similar to
ours, the MSM has produced positive results, despite its simplicity [25, 26, 37].

In Section 2.1, we will review the two-layer quasi-geostrophic model, [61, 62], to be used in
our numerical experiments. In Section 2.2, we will discuss the interpolation schemes and the
steps in the hierarchical Bayesian approach in detail. We report the filtering results in Section

2.3 and summarize our findings in Section 2.4.

2.1 Quasi-geostrophic Model

We consider observations of turbulent ocean dynamics in the mid-latitude, between 30° and 65°
in the northern hemisphere. To generate our observations, we use a numerical solution of the
two-layer quasi-geostrophic (QG) model in a two-dimensional periodic domain, with instability

induced by mean vertical shear [61].

2.1.1 Background Information

In the mid-latitude, the Coriolis force, a pseudo-force associated with the effects of Earth’s
rotation, affects geophysical fluid dynamics. This force is characterized by the Coriolis parameter
f, which is proportional to Earth’s angular velocity and increases with increasing latitude (note
that f = 0 at the equator). Using a tangent plane approximation, we can approximate the

Coriolis parameter by

f:f0+5ya

where the y direction points towards the north pole for the northern hemisphere, and f, depends
on the reference latitude.

The QG model is derived from the shallow water equations under several assumptions. In
the presence of Coriolis force f = fk, the single layer shallow water equations are given in [65]
by

?;;Jrﬁ-VﬁJrfxﬁ = —gV.n§
Dh

- TV () =0, (24)

where @(z,y,t) is the horizontal velocity, n(x,y,t) is the free surface height, h(z,y,t) is the



fluid thickness, g is the gravity constant, and

a. 0,
Vz—%l—i-aiy.

The material derivative D/DT of a function ¢ that is advected by  is defined by

D¢ _ 0¢
—=—+41u-Vo.
Dt = TV
For a flat-bottom system, h(z,y,t) = n(z,y,t). The first equation is (2.4) describes the mo-
mentum of the fluid, while the second equation represents mass conservation.
We can quantify the significance of rotation in a fluid with the Rossby number, which is

given by
U

ﬁ?
where L is the horizontal length scale and U is the horizontal velocity scale. If the Rossby

R, =

number is small, the effects of rotation are important, as is the case in large-scale oceanic
flow. In this case, the Coriolis force dominates the advection terms in (2.4). The only term in
which can balance the Coriolis term in (2.4) is the free surface gradient. Therefore, we define
geostrophic balance as

fx U~ —gV,n.

In the QG equations, the deformation radius L4, the scale at which Earth’s rotation be-
comes significant to fluid dynamics, is the horizontal length scale. Thus, the QG approximation
assumes a small Rossby number and hence that the fluid is in geostrophic balance. Addition-
ally in this setting, we assume that variations in the Coriolis parameter are small, therefore
|BL| << |fo|. Finally, we assume that time scales advectively, so that we can use the time scale
T=Ly/U.

2.1.2 The Model

Consider a two-layer shallow water system with a flat bottom and rigid lid, and denote fluid
thickness in each layer as h;(z,y,t) and the velocity in each layer as @; = (u;,v;,0). The
vorticity w; in each layer is defined to be the curl of the velocity field, w; = V X u;. Because
of the shallow water approximation, only the vertical component of vorticity is nonzero, and

therefore the vorticity simplifies to

o — (91]2'_61” — ck
o\ oz Oy -




In a rotating shallow water system, the quantity

s+ f

©="

is called the potential vorticity. Assume that both layers are of equal mean thickness H and let
hi = H + hl. Because the variations in the layer thickness are small, we can Taylor expand Q;

in each layer about h}. Taking a first order approximation yields

G+ f 1
“ <H’>&+%>
G+ f h;
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Because the system is in geostrophic balance, the Coriolis terms and ¢; dominate this equation.

Therefore,

1 !
Qz‘%H(Gzﬁ-f—fH)-

The variations in f are small, as are the variations in layer thickness, so we can further approx-

imate

1 B
QimH<§i+f_foH>'

In the QG equations, ); is advected, therefore only non-constant terms are important to the
model dynamics. Since f, and H are constant, we therefore define the quasi-geostrophic poten-

tial vorticity in each layer by
h!
¢ =Py +s— foﬁ'
In each layer, we define a streamfunction ; by
g'hy

m=—u+@,w:fu+@+f,

f f

where ¢’ = (p2— p1)/p1, subscript 1 denotes the upper layer and subscript 2 denotes the bottom
layer [65]. These are defined so that

" _ Oy v~f8¢i
oy Y9z

g g
o o

G = V2.




Thus the QG potential vorticity in each layer becomes

2

2
@ = Ve )+ Byt

= V2 0 — )
q2 o + S0 (Y1 —2) + By
The last term in the first equation is neglected in the rigid lid approximation, because g >> ¢'.

Nondimensionalizing these equations, using the deformation radius Ly as the horizontal scale

of motion, we obtain
k2 .
4 = Vi + ?d(d%fi — i)+ By, j=1,2 (2.5)

where kg = /8 /Lg gives the wavenumber associated with L.
To derive the QG equations in each layer, we start with the nondimensionalized momentum

equation in geostrophic balance in layer 1,
]FX Ul = _vzni~ (2'6)

Here, L is the horizontal length scale, U is the horizontal velocity scale, and T' = U/L is
the advective time scale. To nondimensionalize the Coriolis force, we divide by f,. Then the

dimensionless Coriolis parameter is

f=1 +Ro/3ya

where 8 = ﬁU /L%. The momentum equation then becomes

fxi = —V.n
ol RoBy)i+ i1+ Rofy)j = — ks O
i oPY i oPY)) = O ay.]'

Following [65], we expand the variables u, v and 1 in an asymptotic series, using R, as the small

parameter, and substitute them into the momentum equation. Then
u; = ud + Roui + R2u? + ... vy =0 + Rov} + R2v? + ...

and
m =0+ Ronl + ...

We first substitute the expansions for v and v into (2.6) and equate the powers of R,. At the

lowest order, this yields the equalities

! oy ' Ox
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Cross-differentiating, we obtain
Vi =0.

The next order momentum equation is given by

8ﬁ?+(ﬁo-vmo+3 k x @ —k x @i} = —Vn}
ot i i Yy i i = ;i -

)

Taking the curl of this, we obtain the vorticity

5O .
S (@) - V(s + By) =~V -, (2.7)
where
oY B oud
ST o oy

The nondimensionalized mass continuity equation is given by

Dn;

R, F
" Dt

+ (1 4+ RoFn;) V- u; =0, (2.8)

with VF = L /Lq. At the lowest order, the mass equation simplifies to V - ﬁ? = 0, as the lowest

order momentum equation did. At the next order, we have

ony + Fil° 0 S _

F
ot

Substituting (2.9) into (2.7) gives

ds) ) 0, A on ) 0
i 0 ( Y N/ BT nFy L v
5 T (@ V) + By) 5 TG Vi
or 3
SV = Fa) + (@ V) + By — Frf) =0,
With the nondimensionalized streamfunction v;, this becomes
9 o2.,0 0 -0 0., 5 0
a(v Vi — Fy) + (@ - V)(s; + By — Fipy) =0,
or
D 9209 + By - Fu) 0
Dt ’ ’ ’

where the superscript 0 in the material derivative indicates that the lowest order velocity, ﬁ? is
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the advecting velocity. Restoring the dimensions, this yields

D 1 Dg;
— (V% — =) = =0.
Expanding the material derivative, and using the properties u = —, and v = 1), we obtain
the QG equation in each layer:
Dq;  Og; 0g; 0q; 0g;
q; qZ-HTi'qu' _ Qz_’_ui %+Ui q;

Dt ~ ot ot o By

Oqi 0 9q; | 0 9g;

ot oy oz | oz oy

_ 94 o
= o HIWiha)

The Jacobian function J(v, q) = gy — 1yqs in

9q; B
E + '](1/]27(]2) =0 (2‘10)

represents nonlinear advection.
Because we consider a two-layer QG model that is forced by a mean vertical shear, we take

11 and ¥y to be perturbed streamfunctions with background state
\Ifl = —Uy, \112 = Uy (211)

Here U is the zonal mean shear, selected so that this model exhibits baroclinic instability with
a turbulent cascade. For details on the properties of this system, see [61] and the citations in
[62]. Substituting 11 = ¥y + ¢}, and o = Uy + 9 into (2.5) yields
/ 2,0/ kﬁ / / 2
= VU + ?(1/12 — 1) + (kU + By
k‘2
dp = Vb + H(¥1 = ) + (B - kaU)y.
We substitute both of these into (2.10). The equation for ¢} simplifies as
oq / Iq1 o\ (Oq1 | o o oq1
—+J = — — + kU — -U)|—=—
o T a) ot "\ )\ gy TRUTS By D
Iq1 k) Oq1

_ Y41 / 2 1 e
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while the equation for ¢} simplifies as

94y _ a2 (0% (D@2 ., My 942
o T = ot ( o2 ) (5, —HiU+5 oy Y ) \au
8(]2 8¢2 a(]2

E+J(¢/2’QZ) (B— kiU )8m U%

The lower layer experiences a friction at its bottom; the effects of Earth’s rotation on large scale
oceanic flow is large, and results in a boundary layer, called the Ekman layer, which balances
the Coriolis force with friction [65]. In the lower level vorticity equation, Ekman friction is
represented by the additional term K/V21/Jé, where k is the Ekman bottom drag coefficient.

Dropping the primes on ¢ to simplify the notation, two-layer QG equations with a flat
bottom, and rigid lid are given in [8] by

(;5+U66)q1+‘](1/’17%) éw}l(ﬁJrkd U)+ vV = 0,
Oty

0 s,
<8t - +U8 ) a2+ J (Y2, q2) + 7(5 k3U) + kV?hg + V%, = 0. (2.12)

Notice here the additional V3¢ term in each equation; here v is a hyperviscosity coefficient,
chosen so that V3¢ filters out energy buildup on small scales when finite discretization is
enforced. We numerically generate the true signal by resolving (2.12) with 128 x 64 x 2 Fourier
modes, which correspond to 128 x 128 x 2 grid points.

There are two important nondimensional parameters associated with this model [24]

B (LY
b‘m(w)

where U, = 1 is the horizontal, nondimensionalized velocity scale and L = 27 is the domain

1 [ L\?
F=— (2] .
Lz,<z7r>

To imitate a turbulent jet in the ocean, we chose a short Rossby radius such that F' = L(f = 40,
as in [36]. Therefore, because k2 = v/8/Lq = 320 is large, (2.12) is numerically stiff.

The large-scale components of this system are barotropic, while the small-scale components

size in both directions, and

are baroclinic [61, 36]. For the two layer model, the barotropic streamfunction is defined as
the average between the two layers, 1 = (11 + 12)/2. Similarly, the barotropic QG potential

vorticity ¢ is given by the average of the QG potential vortictes in each layer. The baroclinic

13



(1 —2)/2 and ¢ = (¢1 — q2)/2. Then (2.12) becomes

terms are defined by ¢

+J(,q) + B%JrﬁvngL

%
ot

(2.13)

We plot the barotropic and baroclinic velocity fields at two times in Figure 2.1. Notice that

this system exhibits transitions between zonal (east/west) flow and large scale Rossby waves,

which propagate northward and southward [24].
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The barotropic velocity field (arrows) and the streamfunction, 1, (contour) (top)

and the baroclinic velocity field and streamfunctions, ¥ (bottom) at times 7'

Figure 2.1:

100 and 200.

We will consider M randomly located observations of the large-scale (barotropic) stream-

function corrupted by an i.i.d Gaussian noise with mean zero and variance r°, chosen to corre-

spond to approximately 10% and 25% of the climatological barotropic streamfunction variance,
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E = Var(y) ~ 69.46. In reality, observations of the small-scale (baroclinic) streamfunctions
are not usually available in the ocean, while observations of the large-scale (barotropic) stream-
functions are sparse. This setup makes this test problem difficult for filtering, as the baroclinic

terms within the brackets of (2.13) create a numerical stiffness.

2.2 Hierarchical Bayesian Filtering Approach

The proposed hierarchical Bayesian filtering approach consists of two steps: the first step is
to interpolate the irregularly spaced observations v to v through an appropriate interpolation
scheme and obtain P(v|u,?) in (2.3); the second step is to apply P(u)P(v|u,?) through a
reduced stochastic filtering algorithm. Here we will compare two different interpolations in the
first step: a deterministic linear interpolation and a geostatistical interpolation technique called
ordinary kriging.

Let §; = (Z4,9;) for i = 1,..., M denote the irregularly spaced observation locations on a
[0, 27] x [0, 27| periodic domain and let s; ; = (xi,v:), 4,7 = 1,..., N with

2mih 2mjh

for constant C' and distance h denote the regularly spaced grid points. In our numerical experi-
ments, we interpolate to N = 6 grid points on each axis. In Sections 2.2.1 and 2.2.2, we discuss

two techniques that interpolate Z(3;), the noisy barotropic streamfunction,
Z(8) = (&) + a7, a7 ~N(0,7), (2.14)

where 9 is a solution of (2.13), into Z(s; ;). We then discuss the reduced filtering approach in
Section 2.2.3.

2.2.1 Linear Interpolation

There are non-unique criteria to interpolate two-dimensional data from irregularly spaced ob-
servation networks. For simplicity, we choose to use just three observations to interpolate at
each regular grid point. These three are selected so that they form a triangle with the grid point
in their interior and so that their distances from the interpolation grid point are minimal. Since
these criteria are arbitrary, we expect that the linear interpolation results in Section (2.3) will
not be robust when the criteria are changed.

Denote the three irregularly spaced nodes s,,, s,, and §,, and suppose that we interpolate

15



Z(S@j). Then

where

Z(xi,y5) = Lin(@i,Y;)Z(5m) + Ln(®i,y5) Z(8n) + Lp(wi,Y5) Z(5p),

Ly (z,y) =

(#n

—Y) (@ — Tp) — (@n — 2)(Fn — Up)

(gn - gm)(i‘n - i‘p) - (jn - jm)(?jn - gp)

is a Lagrange function about three points. The other Lagrange functions, L, (z,y) and Ly(z,y)

are defined in the same fashion.

In the right panel of Figure 2.2, we show an example linear interpolation of M = 36 irregu-

larly spaced, sparse observations, with locations depicted by circles, at time 7" = 340 time units.

For comparison, we include the truth at this time, resolved at 36 coarse grid points. There is a

relatively good agreement between the interpolated observations and the truth.

0

Truth at T=340
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Figure 2.2: True process, compared to a linear interpolation at T' = 340, with r° = 17.3. The
circles give observation locations and the contours give the barotropic streamfunction, v

To quantify the uncertainty in this method, we compute the error covariance matrix in

Fourier space. For an interpolated observation z;, = Z(z;,ym), where z; = jh, y, = mh, and

Nh = 27 for distance h, let us denote the three corresponding observations as z; .1, Zj,m,2, and

Zjm,3. To simplify the notation, let us also denote Cj, s=Ls(2;, ym). Thus

ZJ7m =

16

j7m712j7m71 + Cjzm72gj7m72 + Cj,m,lgj,m,Z-



The discrete Fourier transform of z;,, is then given by

N N
2 _ ) —ikjh —ilmh
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Additionally, let 67, denote the (k,l)-Fourier component of the interpolated noise, o m,, and
let {Gjm,s}s=1,2,3 denote the noises of the three irregularly spaced observations associated with

zjm- Then the cross-covariance of the noise between wavenumbers (k,) and (k’,1’) is given in
[8] by

e NN 3 o
(6r(60 1)) = < gzchj,m,s&j,m,sel(k]+lm)h X
j=1m=1s=1
N N 3
( 5 Z Z ZCj’,m’,s’&j’,m’,s’6i(klj/+l/m/)h >
j'=1 1s'=1

3
~ —i(kj+Im)h
> " Cjim,sGjm s R

=1s=1

[]= ﬁ\

3

h4
- 1674 | .
]7

N 3
Z » TSN T
Z lezmlvs/ajlymlzsle l(k / +l " )h ’

j'm/=1s'=1

where (o) denotes expectation with respect to the Gaussian noise distribution. The diagonal

terms, for which & = k’ and [ = I, simplify to

oh4 al —i[k(5—75" m—m/
<|O-Ig,l|> = ﬁ Z Z Z Cj,m,st’,m’,s’e k(G =3)+U Ik

7m=1j"m'=1s,s'=1
roht SRR —ilk(j—5")+l(m—m’)]h
= 16 YIDICINE Slb SUD SRCHRCNPE LT ,
7‘(‘ b k) b b
jm=1s=1 jm=1j" m'=1s,s'=1

where r° = <6j7m7 sOj/ m!, s/> The C]2 m,s term in the second line corresponds to the contributions
of the diagonal terms of the physical space covariance matrix, while the other terms correspond
to the contributions of the off-diagonal terms of the physical space covariance.

In physical space, the noise covariance matrix, illustrated in the left panel of Figure 2.3,
is diagonally dominant with nearby nonzero correlations as expected, due to the interpola-

tion. Observe that the error covariance matrix depends on observation locations, rather than
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the observations themselves. In Fourier space, the error covariance matrix of the interpolated

observations is diagonally dominant (see the right panel of Figure 2.3).

Physical Space Covariance Fourier Space Covariance
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Figure 2.3: The noise covariance matrices associated with linear interpolation at T' = 340,
with 7° = 17.3 in physical space (left) Fourier space (real components, right). The imaginary
component is one magnitude order smaller (not shown).

2.2.2 Ordinary Kriging

Kriging is a maximum likelihood estimator of a random field Z modeled by Z(s) = u(s) +d(s),
with Gaussian, stationary noises 6(s) ~ N(0,C(s,s)). The key idea in kriging is to fit the
observations

Z =Z(%1), Z(32), . Z(5a)|"

to an empirically chosen isotropic parametric covariance function C. By isotropic, we mean that
the covariance depends on the distance between observations, that is, C(s1,s2) = C(||s1 — s2]|).
We will choose C from an exponential family with two parameters, and use a nonlinear
optimization algorithm to obtain the parameters. These parameters change when different sets
of observations become available at different times. In this sense, kriging is a data-driven in-
terpolation scheme, even when the observation network is fixed. To the contrary, the Lagrange
functions associated with linear interpolation are constant for a fixed observation network.

To model the covariance function C| let us first define a variogram as a functional 2+ that
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satisfies the relation
2v(3: — 3j) = Var(Z(3:) — 2(3))) = ([Z2(5:) = Z(3;))%) , (2.15)

to characterize the spatial dependence of the process Z [10]. Expanding the right hand side of
(2.15), we obtain

M (5 —5) = Var(Z(z)) + Var(Z(5;)) — 2Cov(Z(5:), 2(5;))
= 2(r° = C([|5 = 550)),

where we use r° = (C(0) and the stationary assumption. This yields a convenient relation

between covariance and the variogram:
C(5i,85) = C(lI8i = 55l) = r® = ~(8i = 55). (2.16)

While the exact variogram cannot be known, we can estimate it by using the irregularly
spaced observations. To build a variogram estimator, denoted 4(r), we follow the description
in [10]. We first place the observations into bins based on distance from one another. A bin
consists of all pairs of observations which are within distance r of each other, where r is a small

distance. Then for each bin, we compute

’N(T)| 4,JEN(r)
where R(3;) = Z(5;) — p1(8;) is a residual and N (r) is the size of the bin. This equation defines
the variogram estimator. By computing 4(r) for several values of r we obtain an estimate of
the covariance structure in (2.16). Because (r) depends on the observations, kriging is data
driven.

To determine the residual R(3;), we must estimate the mean p(3;). Various types of kriging
model the mean u(s) differently. We consider ordinary kriging, which assumes that p(s) is
locally constant, as is consistent with the stationary assumption. In our numerical experiments,
we estimate u(8;) with median polishing, an algorithm that estimates the mean value at an
observation location by averaging the observations in the same mesh row and column.

We construct bins for several values of r so that we can estimate v(8; — 5;) in (2.16) for
numerous values of ||§; — §;|| . Based on the shape of the variogram estimator as a function of
r, we choose an appropriate parametric function 4*(r) to model 4(r). An example plot of a
variogram fit at time 7" = 340 time units is given in Figure 2.4. The values of 4(r), depicted

as circles in Figure 2.4, appear to follow an exponential curve. Therefore, we choose ~ from an
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exponential family,

ok

4*(r) = o2 exp(—pr), T >0, (2.17)

where p, o > 0 are the parameters to be determined. Note that there are many other parametric
forms that can be used beside the exponential family [10]. The appropriate form is dictated by
the data. The curve in Figure 2.4 gives the least squares fit of (2.17) with respect to p and o
to 4(r) at time T' = 340. The corresponding parameters of the residual process at this time are
o = 0.73254 and p = 1.3019. The covariance is estimated by

C(5;,3;) =1°— o exp(—p |15 — 5)).

Variogram Fit

2.2

0.8 1 12 14 16 18 2
r

Figure 2.4: An exponential variogram fit at T = 340, with r° = 17.3, plotted as a function of
r.

The estimator for Z at location s; ; is given by the conditional expectation E(Z(s; ;) |Z). The
uncertainty of this estimator is given by the conditional covariance, Cov(Z(s;;), Z (si/7j/)\Z).
Given the observations

Z=2(51),2(31), .. 2G|,
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the joint distribution (Z(s; ;), Z) is given by

(Z(si3), Z) ~ N ((N(si,j>vﬁ)a

where
c(sij) = [C(si,51),C(siy,52), -, C(si4,5m)],  Ziyj = C(5:,55).

In general, kriging gives the conditional expectation E(Z (sz])\Z ) b

—

E(Z(sij)|Z) p(sig) +c(si) "2 NZ — i)
= (s0)TS7IZ 4 p(1 = e(si )T E7H)

= N'Z+p1=231),

where X = Y7 te(s; 4). By the stationary assumption, we assume that, locally, u(s; ;) = u(3;) =
w; here p(Sx) is a component of ji. See Theorem 3.5 of [30] for the detailed derivation of
conditional expectation of a multivariable Gaussian distribution. Ordinary kriging requires that

MT = 1, which eliminates the dependency of the estimator on the unknown locally constant

p(s).
Ordinary kriging is mathematically defined with the estimator

E(Z(si;)|Z) = Z)\Jstk (2.18)

such that the mean square predicted error,

2
MSPE(X) = < (5i) ZA,MZ 3k> , (2.19)

is minimized, subject to the constraint

M
> Aigr=1
k=1

Rewrite the sum in (2.19) so that

M
MSPE(X) = Var (Z aka>

k=0
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where ag = 1, a, = =X\ j = =M for k >0, Zog = Z(s; ;) and Z, = Z(5)) for k > 0. Then

M M
MSPE(X) = C(Zo, Zo) —2Y _NC(Zi, Zo) + Y \iXC(Zi, Z)).
i=0 ij=1

The constraint minimization problem in (2.19) is equivalent to minimizing

M
MSPE(X) + 2a <Z A — 1) = L(X, ).
k=1
By setting
OL OL
=0 d == =0
e M Ba
we obtain
M
—2C(Zo, Zr) + 2> KN C(Z;, Zk) + 20 =0
j=1
and

M
ZAk—1=o.
k=1

This can be written as a linear system FOXO = 7o with

1 )\1 C(Si’j, §1)
o= C 5k 51) ; . Xo= E ;o o=
1 A C(i,5,3n)
1 1|0 a 1

In our notation, the multipliers are thus given by

i1 1 C(si,51)
: _ C(5k,5) : '
i, jn 1 C(Sij,5n)
o 1 .. 1 \ 0 1
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The conditional variance is then given as

M M M
MSPE(Xo) = C(Zo,Z0) =2 NC(Zi,Z0)+ > > XiNC(Zi, Z;)
i=1 =1 j=1

M M
= C(Zo, Z0) =2 NC(Zi, Z0) + > MlC(Zi, Zo) — o
i=1 =1

M
= C(Zo, Zo) — Z)\iC(Zi7ZO) —
=1

= C(Zo, Zo) — XA

Then
var[Z0|2] = C(ZQ, ZQ) — f?OTl“O_l%

and

—,

varZ(si )| 2] = Clsigsig) — le(sig)" 1T e(sig) ", 1)
Thus the generalized covariance is

—,

covlZ(sij) Z(siv )| Z) = Csig, s ) — [e(sig), Ug e(sig) T, 1T

In the right panel of Figure 2.5, we show a kriging result at time 7' = 340. We again
include the truth for comparison. We again observe a good agreement between the truth and

the reconstructed field.

Truth at T=340 Kriging
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Figure 2.5: True process, compared with kriging at T" = 340, with r® = 17.3. The circles give
observation locations and the contours give the barotropic streamfunction, .
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Figure 2.6 shows the associated error covariance matrix for the kriging result in both physical
space and Fourier space. By design, the error covariance matrix in Fourier space is diagonal
because of the stationarity of the covariance estimator with isotropic function C. The slight
nonzero non-diagonal terms in the Fourier domain in Figure 2.6 are numerical artifacts. In
contrast to the linear interpolation scheme, the error covariance matrix obtained from kriging
changes in time even when observation locations do not, because C(3;,3;) in (2.16) depends on

a variogram estimator that changes based on the observations.

Physical Space Covariance Fourier Space Covariance
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Figure 2.6: The noise covariance matrices associated with kriging at 7' = 340, with r° = 17.3
in physical space (left) and Fourier space (real components, right). The imaginary component
is one magnitude order smaller (not shown).

2.2.3 Reduced Stochastic Filter

The second step in the hierarchical Bayesian framework in (2.3) is to apply the reduced stochas-
tic filter. We will report the numerical simulations results using a simple reduced stochastic
model, the Mean Stochastic Model (MSM) [26, 48]. In this method, we fit the variance and the
integral of the autocorrelation time function for each mode to the empirical solutions of the
QG model. We will construct the MSM in Fourier space for the barotropic mode dynamics in
(2.13). Following standard closure modeling for turbulent systems [61, 50, 51, 43, 11, 47|, we
replace the baroclinic terms and the nonlinear advective terms in (2.13) with stochastic noise

and linear damping terms, such that each Fourier component can be written as

dp o (t) = (—dpy + iwp) e (Bt + g ydt + o, d Wi (£), (2.21)
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where 1/3;@1 denotes the Fourier component of the barotropic streamfunction ¢ and Wy (t) =
(Wyi(t) + iWa(t))/v/2 denotes a complex-valued Wiener process with independent standard

Wiener processes, Wi and Ws. Each component of Wy satisfies dW;(t) = W;(t)dt, where
<Wj> = 0. Therefore, white noise is is a derivative of the Wiener process. The exact solution
of (2.21) is given by

t
V() = ¢k7l(0)e(*dk,l+iwk,l)t + ok / e(*dk,ﬁiv-)k,l)(t*‘f)deJ(7-)_
0

For simplicity, we assume that &k,l has an initial variance of zero. The mean of @Zsm(t) is given

by
Yy = <¢;c,l(t)>
t
= <¢k7l(0)e(dk,l+iwk,l)t+o-k7l/ e(dk,l+iwk,l)(t7)de’l(7)>
0

t
= elTdhrtion)t <¢k,z(0)> +0k7l/ AT (W (7))
0

2t
_ (=dpg et /7 (=dg 1 tiwe, ) E=7) /117,
e <¢k,l(0)> +Gk7lj§1/o e <W](7‘)>d7'
_ oldiatiwg)t <¢k,l(0)> ,

The variance of ¢k7l(t) is given by

(W) = D@ra®) = )"
t n ”
= <O'l%,l/ 6(*dk,l+iwk,l)(t77—’)de’l(7_/) <0'k;,l/ 6(koJriwa)(tT)deJ(T)) >
0 0

t ot
= U;’lem’”t/ / e (7' 47)~iw(r' =) <de,l(T/)de,l(T)>.
0 Jo

Var [y, (t)]

The components of W, ; satisfies the properties <W1(T’)W2(T)> = <W2(T’)W1 (7')> = 0 and
<W1(T’)W1 (7')> = <WQ<T/)W2(T)> = 0(7" — 1), where §(z), the Dirac delta function, is defined
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such that §(0) = oo and [, 6(x)dz = 1. Then

2 t ot
Varlfi ()] = 3 Tole /0 /0 et D)) (Vi ()W (r) ) didr
j=1

2 t ot
= Y Tt / / 74TV AT =) 50 1yl
0 Jo

j=1

t
— O']%JC_Qdk’lt/ €2dk’l7—d7_
0

2
N )
2dk:,l

As t approaches 0o, the variance converges to the climatological variance of the forced Ornstein-
Uhlenbeck process,
iy
By, = —.
Rl =5 dis

(2.22)

The autocorrelation time of the forced Ornstein-Uhlenbeck process, is given by the limit
Tk,l + i&kJ = lim 5(5, t),
s,t—00
where E(s,t) is given by

E(s.t) = /0 (st + 1) — i) Bt ($a(e) — )"l
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We evaluate this expression.
E6t) = [ AWt +0) = D) B i) — G
0
s t+u u
_ 9, / < / (i) (EHu=) 117 () / e(—dk,z—iwk,z)(u—v’)dW<T/)> du
0 0 0

s rru  ptt+u
= Qdk,le(_dk»lﬂwkal)t/ e~ 2dk,1u / / ot (7 7)o 1 (T=7") <dW(7'/)dW(7')>:| du
0 LJO JO

s M ru t4+u
= Qkoe(—dk,l-I-iwk,l)t/ 6_2dk’lu / / @dk,l(T/+T)—iwk,l(T—T/)5(7./ _ T)deT,:| Ju
0 L/ O 0
ropru

S
—_ N _ !
= 2dk,z€( dk'lJrlw’“’l)t/ e~ 2,11 / 217 dTI:| du
0 L/ O

S
— e(dk,HriWk,l)t/ e 2dk1u [62dk,lu _ 1} du
0

S S
— e(—dk,z-i-iwk,l)t/ du_e(_dk,l+iwk,l)t/ e 2dk1u gy,
0 0

1
—2dk,l

(—dk,l-l—iwk,z)ts _ e(—dk,z+iwk,l)t[e—Qdkk,ZS _ 1]

= €

Applying the limit, we obtain the correlation time

1

Ty +i0y ) = ——7—.
dp, — iwg

(2.23)

For each mode (k,l) we must determine the damping dy, ;, frequency wy, ;, constant external
forcing QZkJ, and noise strength o;. As in [45], we set the constant forcing equal to the time
average of its associated Fourier component. To obtain dj;, wy;, and oy, we fit them to
the solutions of the forced Ornstein-Uhlenbeck process given in (2.22) and (2.23), where the
climatological energy spectrum, Ej,;, and the real and imaginary components of the correlation
time, T}; and 0} respectively, are empirically estimated from solutions of the true model in
(2.12). In reality, a true model may not exist, but there is usually a training data set (for
example, reanalysis in geophysical applications).

In Figure 2.7, we show the empirical distribution of the climatological energy, Fj ;. The
horizontal axis in Figure 2.7 corresponds to the barotropic modes, ordered from the largest to
the smallest variance, averaged over a long period of time [25]. The first twelve modes are ordered
as (k,1) =(1,0), (0,1), (1,1), (-1,1), (0,2), (2,0), (2,1), (-2,1), (1,2), (-1,2), (-2,2) and (2,2). The
large-scale zonal jet modes carry the second and fifth largest variances and the Rossby mode
(1,0) has the largest variance. The magnitude of the variances of the first two modes is on the
same order, which indicates competition between two distinct regimes, zonal jets and Rossby

waves. The marginal probability distribution function of the solutions of the first two modes are
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shown in Figure 2.8 whereas the remaining marginal pdf’s have Gaussian shape (see [25]). These
marginal pdfs are generated through bin counting the barotropic streamfunction, centered at 0,
such that both panels in Figure 2.8 show a histogram dy = 1[1 - (1@, and encompass solutions
of (2.13) up to T' = 400 time units [8].

Barotropic Streamfunction Mode Variance
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Figure 2.7: Percentage of variances of the barotropic streamfunction as a function of modes,
from largest to smallest.

We consider M irregularly spaced sparse observations of the barotropic streamfunction
through the observation model in (2.14). The first step in the hierarchical Bayesian analysis
in (2.3) produces the conditional statistics E(Z(sl])\Z) and Cov(Z(si7j)|Z_') fori,j=1,...,N,
to be filtered at N x N = 6 x 6 modes. With such a coarse resolution, we at least resolve the
twelve most energetic modes (see Figure 2.7). In Figure 2.9, we show the decaying time with
dj, estimated by solving (2.22)-(2.23); based on this decaying time, we use the observation
time intervals T, = 0.01,0.04 and 0.08, which are shorter than the model damping times on
the first 12 modes.

The discrete-time reduced filtering model for the second-step in the hierarchical Bayesian

analysis in (2.3) is defined as

Tﬂk,l,mﬂ = Fk,ﬂﬁk,l,m + frdmtt + M dmit (2.24)
Voim = Vkim + R (2.25)
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Figure 2.8: Marginal pdfs of the barotropic streamfunction 1 (centered around their means).
Solid lines indicate the real part and dashed lines the imaginary parts.
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Figure 2.9: Damping time, 1/d of the MSM.

where subscripts k,l denote the two-dimensional wavenumbers and subscript m denotes the

discrete time step with ¢, 41 — t;, = T,ps. The parameters in (2.24) are given by exact solution
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of the forced Langevin equation in (2.21) with

—dy 1w )T

Fpy = e(—dkit+iwy 1) obs

framer = Uram(l— Fry),
2

Ok, _
Metmtr ~ N(0,Qrp), Qry= 2 (1 — e~ 21 Tobs).

In (2.25), wk 1.m denotes the Fourier coefficients of the conditional estimate E(Zm(si’j)\Zm).

The goal of the Kalman filter is to maximize the conditional distribution

P i) ~ PO st PO 08 mar) = €37 Phtimsn)
klm+1 k,l,m+1 ke lm+11Vk 1 m+1) = € Lm+1/

This is equivalent to minimizing the cost function

1 - . . -
@) = (0 =01 (= Oh) + R = D) R g — D),

m+1

vi/here ig,l,m 41 denotes the observation Fourier component. J (1&) attains its minimum for zﬂ =

U4 | ma1> Which is given by

~ . Tb ~ :b
Yk tm+1 = Veimi1 T Ketmt1 (VR 1ms1 — Ykime1)s

where

_ b 1
Ky i m+1 = Rk,l,m+1(R klm+1 T Rk,l,m)

denotes the Kalman gain matrix. The filter completely trusts the model dynamics when Kj, ; 41
= 0. On the other hand, when Kj,; 41 = 1, the filter trusts the observations.

The prior error covariance is given by

b _ a *
Ry 11 = Freg R Fro + Qrt-

When the filter updates with an observation, the new posterior error covariance is obtained by

taking the expectation of (1&2 Ll — 1[),% . mH)(z/AJ,I; Ll — 12}1‘; Img1)" Therefore,
/\b ~ /\b ~
klmtl = <(¢k,l,m+1 — Ve rm+1) Wk tmt1 — wg,l,m+1)*>
b b b b
= (T - Kikim+1) <(¢k,z,m+1 — Vktm+1) (R pms1 — ¢k,l,m+1)*> (T - Kipme1)

+ Kk,l,m‘FlRZ,l,sz,l,m—i—l
b
(I - Kk,l,m+1)Rk;,l,m+1
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The major computational reduction in the proposed filtering approach in (2.24)-(2.25) is
through the assumption that different modes are statistically uncorrelated (see the nearly di-
agonal observation error covariance matrix shown in Figures2.3 and 2.6). This assumption only
holds for appropriate interpolation schemes as investigated in detail in [23] on a simpler set-up.
To summarize, the basic Kalman filter solution to (2.24)-(2.25) produces scalar estimates of the

mean and covariance prior and posterior to observation wk 1.m+1 through the following recursive

equations:
1Zlg,l,m+1 = Fk,zlzg,z,m + frpmt1s
RZ,l,mH = FyaRg s+ Qrys
&z,l,erl = z%;,l,mﬂ + (&I(;,l,m+1 - @/}Ig,l,erl)v (2.26)
R%,l,erl = (I - Kk,l,m+l)Rz,l,m7
Kiim+1 = Rz,l,m+1(R2,l,m+l + Rz,z,m)_l

2.3 Results

We now report the numerical results of applying the hierarchical Bayesian filtering strategy in
(2.3) in assimilating irregularly spaced, noisy observations of the barotropic streamfunction in
(2.14) to a variety of observation networks, varying the observation error variance, r°, as well as
the number of observations, M. The number of assimilation time steps is given by T = T /T ps,
where we set T' = 400 time units. For example, if Ty, = 0.01, the assimilation runs for 40,000
discrete time steps. In each case, we compare filtering skill produced by the Kalman filter in
(2.26) in assimilating the interpolated observations obtained either by the linear interpolation
or by kriging. We will refer to these two methods as the filtered linear interpolation scheme and
the filtered kriging scheme. To measure the filtering skill, we compute the Root-Mean-Square

error,
1/2

RMSE = 7 T N2 Z Z im — U (si,j))2 ’ (2.27)

m=Ty, 1,j=1

and the time average physical space pattern correlation,

()" Ym
C=
T - T Z N ll2llvmll2’

(2.28)

between the mean posterior state, ¢ and the true barotropic streamfunction, ¥, (s;;),

%,J,m>

ignoring the transient time at the first T, = 200 steps. To check the effectiveness of the second

step in the proposed hierarchical Bayesian filtering scheme, we also report the estimates of the
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interpolated observations without implementing stochastic recursive filter (that is, only apply
either the linear interpolation or kriging). We will refer to these two methods as the unfiltered
linear interpolated scheme and the unfiltered kriging scheme. To demonstrate the robustness of
the filtering skill, we show the averages of the RMS error and correlation in (2.27) and (2.28)
over 50 different, randomly chosen, irregularly spaced observation networks.

First, we consider observation networks with M = N? = 36 and 7° = 6.9, where N is
the model resolution in each coordinate axis, M is the number of observations and r° is the
observational noise variance, taken to be only 10 % of the climatological (temporally averaged)
barotropic streamfunction variance, F, which is approximately 69.64. In Figure 2.10, we show
the true barotropic streamfunction and the corresponding filter estimates at time T" = 340, using
a randomly chosen observation network (in circles). Comparing the estimates with the truth,
we find that the kriging scheme clearly reconstructs the true dynamics better compared to the
linear interpolation scheme. In this scenario, ordinary kriging supersedes the linear interpolation
scheme; see the first row of Figure 2.14, which displays the RMS error and correlation as
functions of observation time interval, T,s. The RMS and correlation measures suggest that the
estimates are each approximately constant as T,;s increases. The dynamical constraint produces
improved estimates, by only 0.15 in RMS measure and 2 — 3% in correlation, compared to the

unfiltered results.

Truth at T=340 Filtered Linear Interp Filtered Kriging
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Figure 2.10: The true barotropic streamfunction (left) compared with the filtered linear inter-
polation scheme (middle) and the filtered kriging scheme (right), with M = 36 and 7° = 6.9 at
time T' = 340. The circles depict observation locations.

Next, we consider networks with fewer observations, M = 18, but subject to the same noise
variance r° = 6.9. The filtered streamfunction estimates of both schemes are depicted in Figure
2.11. As expected, a sparse observation network deteriorates the accuracy of both methods as

compared to the previous case (see also the higher RMS errors and lower correlations in the
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second row of Figure 2.14). In this case, the sparse observation networks permit degenerate
Lagrange functions for linear interpolation as well as a poor variogram fitting in the covariance
estimation in (2.16). Based on the RMS and correlation measures, averaged over 50 different
observation networks, we find that both schemes are comparable. For some networks, the linear
interpolation scheme can actually provide a better skill relative to kriging, depending on the
distribution of the observations. However, the higher filtering skill with linear interpolation in
two-dimensions is not robust, since there are non-unique criteria for constructing the Lagrange
functions. We also find that the filtered estimates are better than the unfiltered estimates,
independent of observational time length. Here, the RMS error and correlation are consistently
improved by about 0.2 and 2 — 4%, respectively, when the dynamical constraint is imposed.
The numerical result in this scheme suggests that the data-driven step is not effective since the

data are too sparse.

Truth at T=340 Filtered Linear Interp Filtered Kriging
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Figure 2.11: The true barotropic streamfunction (left) compared with the filtered linear inter-
polation scheme (middle) and the filtered kriging scheme (right), with M = 18 and 7° = 6.9 at
time T' = 340. The circles depict observation locations.

Now we consider a denser observation network, with more observations than model grid
points so that M = 49 > N? = 36, with the same noise variance r® = 6.9.. From the filtered
streamfunction contours in Figure 2.12, it appears that both interpolation schemes produce
decent estimates of the true barotropic streamfunction. However, we find that more plentiful
observations do not improve the linear interpolation estimates significantly. Comparing the first
and third rows in Figure 2.14, we see that the average RMS error decreases from 3.7 to 3.4. The
kriging estimates, however, are largely improved in this here; the average RMS error decreases
from 3.3 to 2.6. There is a clear improvement in filtering skill relative to the case in which
M = 36 above.

Finally, we consider a higher observation noise variance, about r° = 17.3 ~ 25%F in net-
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Figure 2.12: The true barotropic streamfunction (left) compared with the filtered linear inter-
polation scheme (middle) and the filtered kriging scheme (right), with M = 49 and r° = 6.9 at
time T" = 340. The circles depict observation locations.

works with M = 36 = N?2. From the filtered streamfunction contours, shown in Figure 2.13,
it is clear that, once again, the kriging scheme provides better estimates than the linear inter-
polation scheme. In this case, the average RMS errors of both schemes increase significantly
as compared to the first case with smaller noise variance (see the bottom row if Figure 2.14).
The poor estimates with the unfiltered linear interpolation and kriging are not surprising, since
the data are quite noisy. Notice that the average RMS errors and correlation for the filtered
estimates are improved by 0.2 and 3 — 4%, respectively, compared to the unfiltered estimates.

This suggests that the dynamical constraint becomes more important when observations are

noisy.
Truth at T=340 Filtered Linear Interp Filtered Kriging
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Figure 2.13: The true barotropic streamfunction (left) compared with the filtered linear inter-
polation scheme (middle) and the filtered kriging scheme (right), with M = 36 and r° = 17.3
at time 7" = 340. The circles depict observation locations.
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Figure 2.14: The RMS errors (left panels) and correlations (right panels) for each case. Un-
filtered kriging (dashes), filtered kriging (dashes with ‘+’ sign), unfiltered linear interpolation
(solid line), and filtered linear interpolation (solid line with circles).
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For diagnostic purposes, we also report the filtering skill for regularly spaced observations
at N x N = 36 grid points for observations with noise variance r° = 10%E and r° = 25%.
Here the filtering skills are improved. In both cases, we observe a lower RMS and corresponding
higher correlation with a shorter observational time length. Compared to using an irregularly
spaced observation with M = 36, the RMS errors here are significantly lower, a difference of
about 3 with both 7° = 6.9 and of about 2.5 with r° = 17.3, while the pattern correlations are
much higher, showing an improvement of more than 10% in both cases of noise variance.

In the remainder of this section, we examine the numerical results in more detail. In Figure
2.16, we show the RMS errors of the unfiltered estimates, with linear interpolation on the
top panel and kriging on the bottom panel, as functions of time for observation time interval
Tops = 0.01, M = N? = 36, and r° = 17.3. Notice that the RMS errors for both schemes
oscillate and exhibit peaks at roughly the same times; maximum and minimum RMS errors

tend to occur at the same times for both methods of interpolation.
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Figure 2.15: The average RMS errors (left panels) and pattern correlations (right panels) for
numerical experiments with regularly spaced observations at the N x N = 36 model grid points,
with noise variance ° = 10%E (top panels) and r° = 25%FE (bottom panels).
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Figure 2.16: The RMS errors as functions of time, with M = N? = 36, r° = 17.3 and T, =
0.01. The top panel shows the RMS error of the unfiltered linearly interpolated estimates and
the bottom panel shows the RMS error of unfiltered kriging estimates.

To understand why the errors oscillate, we show the true streamfunction as well as the
filtered and unfiltered streamfunction estimates of both interpolation schemes at the time 1" =
363.28, when the RMS error is at a maximum, in Figure 2.17. We also plot the truth and the
estimates at time 7" = 61, when the RMS error is at a minimum in 2.18. Notice that there is a
zonal jet in both instances, but more importantly, the contour scaling of 1) varies between +6
at time T = 61 and between £20 at time T" = 363.28. In either interpolation scheme, there is
difficulty in capturing these peaks. However, the filtered estimate at time 7" = 363.28 is more
accurate compared to the filtered estimate at time 7' = 61, suggesting that the filter estimates
are quite accurate when the signal-to-noise ration (between the true signal and the observation
noises) are large. On the other hand, when the signal-to-noise ratio is small, the estimates are

less accurate. In this case, one needs less noisy observations to improve the estimates.
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Figure 2.17: The truth (top panel) interpolated (middle panels) and filtered (bottom panels)
fields at time 7" = 363.28 (in contours). The circles depict observation locations.
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Truth at T=61
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Figure 2.18: The truth, (top panel), interpolated (middle panels) and filtered (bottom panels)
fields at time T' = 61 (in contours). The circles depict observation locations.
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2.4 Summary

We investigated a hierarchical Bayesian approach for filtering irregularly spaced, sparse obser-
vations of geophysical turbulence. In particular, we blended an interpolation scheme, through
either ordinary kriging or a deterministic piecewise linear interpolation, with a reduced stochas-
tic filtering approach, the Fourier domain Mean Stochastic Model filter. The two-step hierar-
chical Bayesian approach proposed here interpolates raw data at irregularly spaced locations to
regularly spaced filter model grid points and then assimilates this processed data set with the
basic Kalman filter scheme on a diagonal Fourier domain mean stochastic model. We find that
the dynamical constraint through MSM becomes more important when the observation noise
variance is large, or when the observations are sparse. Second, when the observation network is
very sparse, we find that both the linear interpolation and kriging schemes produce compara-
ble posterior state estimates. Third, the two-step hierarchical Bayesian approach with kriging
produces significantly improved filtered solutions when the observation network is spatially
denser.

The filtered estimates with irregularly spaced observation networks are worse than the
estimates with a regularly spaced observation network (exactly at the model N x N = 36
grid points). As we have mentioned, we need denser observations to improve the interpolated
estimates in the first step of the proposed hierarchical Bayesian framework. For example, in
the case of T, = 0.01 and r° = 17.3, the RMS error for the filtered kriging estimates with
the irregularly spaced observations is about 3.6, much worse than the RMS error associated
with the regularly spaced observations, 0.96. On the other hand, we should also mention that
this case was considered in [25] with regularly spaced sparse observations at the filter model
grid points. There, the authors reported filtered estimates with much higher average RMS error
obtained from a perfect model simulation with the Local Least Squares-Ensemble Adjustment
Kalman Filter, 6.76 (see Table 3 of [25]). Comparing these numerical results, we conclude that
the hierarchical Bayesian approach is much better compared to the standard ensemble filtering
approach that filters directly at observation locations. However, we anticipate that improved
results with this framework are possible.

In our simulations, we assumed Gaussianity of the spatial distribution of the data, which
may not be true in various applications. In these cases, one may want to consider statistical
interpolations with appropriate distributions. For geostatistical data, however, kriging seems
to be successful in practice [10]. Additionally, higher order deterministic interpolation schemes
could easily introduce large correlations between different interpolated locations. Our two di-
mensional linear interpolation produces an interpolated error covariance matrix that is nearly
diagonal in Fourier space and the MSM filter we used ignores these non-diagonal covariance

terms. In contrast, kriging, by design, produces a Fourier domain diagonal interpolated error
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covariance matrix. This is because kriging assumes stationarity and uses isotropic covariance
models. As a consequence, the second step in our proposed hierarchical Bayesian approach can
be performed without any additional approximation when the Fourier domain diagonal reduced
stochastic models, such as MSM, are used with kriging. Finally, we expect that the results we
obtained with linear interpolation are not robust on two-dimensional domains, because there
are numerous criteria for constructing Lagrange functions. Similarly, the kriging results in this
paper are based on a specific implementation of ordinary kriging with parametric covariance
function of an exponential family. We suspect that improved estimates are possible with different

classes, or different types of kriging [10].
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Chapter 3

State Estimation from Cloudy

Satellite Observations

The Atmospheric Infrared Sounder (AIRS) is a remote sensing instrument on NASA’s Aqua
satellite. This passive sensing instrument measures the intensity of infrared radiation of varying
wavelengths at the top of the atmosphere, which depends on the chemical composition of the
atmosphere within, as well as the atmospheric state, including its temperature and humidity.
When it was launched in 2002, ATRS became the first of a new generation of sounders designed
to provide higher resolution data, leading to better numerical weather prediction [38, 39]. The
assimilation of AIRS observations that are unaffected by clouds has lead to an improvement of
weather forecast skill in both hemispheres. Compared to the High-Resolution Infrared Sounder
(HIRS), currently operating on NOAA satellites, AIRS provides improved temperature accu-
racy, spatial resolution, and vertical resolution of atmospheric temperature profiles [38]. Fur-
thermore, the assimilation of AIRS data alone produces better forecasts compared to single
instrument experiments with HIRS data or Advanced Microwave Sounding Unit-A (AMSU-A)
data, a microwave radiometer used on satellites [54].

The presence of a cloud can have a dramatic, undesired effect on passive satellite observa-
tions, as it can reflect or absorb electromagnetic radiation. In spite of this, it is not practical
to use only cloud-free satellite observations; in fact less than 1% of AIRS observations have a
clear field of view [13]. One strategy to improve this percent employs a process called cloud
clearing [13, 15, 40]. This method uses neighboring cloud-free channels to estimate the radiance
beneath the cloud. However, cloud clearing is not widely used, since the estimates tend to be
biased towards cloud-free radiances, [52], and since the corresponding error covariance matrix is
complicated [57]. Operationally, cloud-impacted AIRS data are not currently used in numerical
weather prediction [38, 54, 60, 27]. Satellite observations are first subject to a cloud detection

algorithm (see [20, 53] for descriptions of different approaches). If the field of view is found
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to be cloudy, only AIRS channels which are determined to be insensitive to the temperature
and humidity profiles below the cloud are used [27]; such channels do not suffer from the un-
desired effects of clouds, but tend to be uninformative. Unfortunately, the percentage of AIRS
measurements that are used in numerical weather prediction remains small.

In this chapter, we will experiment with the assimilation of synthetic cloudy AIRS data.
Recently, there has been evidence to suggest that data assimilation of cloudy radiances together
with clear sky radiances does have a positive impact on forecast skill [52, 56, 59]. Cloud-
impacted radiances contain considerable data that could enhance weather prediction. Our goal
is to assess the potential of using cloudy AIRS data in numerical weather prediction and to
study the biases that arise due to the presence of a cloud. In particular, we will examine the
sensitivity of the analysis skill with respect to cloud top pressure and cloud cover percent. In
an ideal scenario, we want to know the best filter analysis that we can obtain from cloudy
data. To gauge the effectiveness of the analysis step, we include the results of several numerical
experiments conducted solely with simulated clear sky AIRS observations, and solely with direct
observations of temperature and humidity.

To generate synthetic AIRS observations, we will use a numerical simulation of the multi-
cloud model, a toy model of tropical convection introduced in [32, 33], to specify the true atmo-
spheric state. Modeling tropical weather is complex because of the variety of interacting nonlin-
ear processes over numerous spatio-temporal scales [34]. This toy model captures the dynamics
of a three cloud convective structure that occurs in the tropics [41, 29, 67, 63, 21, 12, 35, 69]:
low lying congestus clouds which moisten the lower troposphere, ensuing penetrative cumulus
clouds associated with deep convection, and stratiform clouds which remain afterward. There
are three multicloud variables, congestus heating, stratiform heating, and precipitation rate,
which correlate with the type of cloud present at each time and location and its coverage per-
cent. Additionally, this model includes a switching function which turns off deep convection
and amplifies congestus heating when the atmosphere is too dry, and promotes deep convective
heating when the atmosphere is moist. We use the three heating rates along with the switch
function to simulate the effects of clouds in AIRS measurements.

We use the prototype community Radiative Transfer Model (pCRTM), [22], to produce syn-
thetic AIRS observations of brightness temperature at the top of the atmosphere in the presence
of clouds. The pCRTM uses atmospheric state values of temperature and humidity in discrete
vertical layers of the atmosphere to produce estimates of radiance intensities associated with
281 different wavelengths in the infrared spectrum. Subsequently, it converts these radiances
to brightness temperatures. We modify the pCRTM to include a cloud cover percent in each
atmospheric layer that lies beneath a cloud (if there is no cloud present, we use a cloud cover
percent of zero). Using the local ensemble transform Kalman filter (LETKF), [6, 28], we assim-

ilate these cloudy observations with the multicloud model, extending the work in assimilating
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clear sky radiances with the LETKF [17, 4].

In Section 3.1, we review the dynamical multicloud model that mimics the moist convective
tropical dynamics. In Section 3.2, we review the radiative transfer model that generates bright-
ness temperatures based on the solutions of the multicloud model. Subsequently, in section 3.3,
we describe how we generate synthetic AIRS data in the clear sky and cloudy sky configura-
tions. In Section 3.4, we describe the local ensemble transform Kalman filter and the the biases
that can occur when assimilating cloudy data. In Section 3.5, we present our numerical results.

We close with a summary and discussion in In Section 3.6.

3.1 The Multicloud Model

In our numerical experiments, we use a simulation of the multicloud model as the truth, and
as the forecast model. Therefore, these are perfect model experiments [9], because the fore-
cast model is the same model that governs the true system dynamics. There are three cloud
types that are prevalent in the tropical boundary layer, shallow congestus clouds, stratiform
clouds, and deep cumulus clouds. Congestus clouds by themselves are characteristic of unstable
atmospheric regions undergoing convection or heating from the moisture in the atmosphere.
These clouds moisten the lower troposphere and give rise to the deep convective clouds. Strat-
iform precipitation, in turn, dries the atmosphere, bringing this cycle to an end. Statiform
clouds, which have a uniform base but great height, remain. The multicloud model captures
these cloud dynamics through the parametrization of two convectively coupled heating modes: a
deep-convective mode and a stratiform mode. This model is unique because it includes cumulus
congestus clouds and factors in the amount of moisture in the middle of the troposphere with
a switch parameter A, in order to trigger deep convection or shut it off appropriately [32]; if
the middle troposphere is dry, congestus heating is forced to moisten the lower troposphere.
Conversely, if the middle troposphere is moist, deep convection is amplified and congestus con-

vection is shut off.

3.1.1 Background Information

When a fluid parcel changes pressure adiabatically (without exchanging heat with its surround-
ings), its temperature will change, but not because of heating. The potential temperature 6 is
defined as the temperature that a fluid parcel would have if it moved adiabatically to some
reference pressure (typically 1,000 mb, the pressure at Earth’s surface) [65]. In adiabatic flow,
potential temperature is conserved, that is, for a flow with velocity ,

Do 00
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The multicloud model incorporates potential temperature, as well as equivalent potential
temperature, 0., the potential temperature that a fluid parcel achieves if its moisture condenses
and all of the heat released goes into heating the parcel. Equivalent potential temperature is
defined so that it is approximately conserved during condensation [65].

The hydrostatic Boussinesq primitive equations are the basis for the multicloud model. The
primitive equations, which approximate atmospheric flow, consist of three parts: conservation
of momentum, conservation of mass, and a thermal energy equation to close the system. There
are several approximations made in the primitive equations: Earth’s curvature is approximated
by using a domain reduced to a periodic strip along the equator; the vertical direction z is much
smaller than the radius of the Earth (the shallow fluid approximation); density variations are
negligible, except in the buoyancy term. Using these approximations, the primitive equations

are given in [34] by

ov Lo, o N
N + U'Vv+w%+ﬁyv = —Vp + S5,
op _ 99
9z 6,
00 . 00 N2,
o + U-Vp—i-wg—i- p w = Se,
. ow
V-v + %—0

Here ¢ = (u, v) is the horizontal velocity field, where u is the zonal velocity (east/west) and v
is the meridional velocity (north/south); w is the vertical velocity; scalars © and p are potential
temperature and pressure perturbations; N is the Brunt-Vaisala buoyancy frequency, the fre-
quency with which a vertically displaced parcel would oscillate around its equilibrium position
under the influence of buoyancy and no other forces; 7~ = (—v,u); 8 = 2.28 x 10~ "m~1s7 1 is
the gradient of the Coriolis parameter at the equator; Sy and Sg are the sources and sinks of
momentum and potential temperatures. The primitive equations are supplemented with a rigid
lid boundary condition, in which vertical velocity is zero at the surface and at the top of the
troposphere.

The Coriolis parameter quantifies the effects of Earth’s rotation as f = 2Qsin¢@. At the
equator, ¢ = 0 and the Coriolis force vanishes, meaning that the Earth’s rotation does not
affect atmospheric and oceanic dynamics. This gives rise to several types of waves with com-
plex meridional and zonal structure. We distinguish barotropic waves, which are capable of
propagating poleward, from baroclinic waves, which can only propagate along the equator [34].
Barotropic waves have no dependence on height z, while baroclinic waves do.

We can decompose the primitive equations into barotropic and baroclinic parts. Because of

the rigid lid boundary condition, vertical velocity and potential temperature terms are expanded
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in terms of {sin(mnz/Hr)}>°_,, where Hr ~ 16 km is the height of the tropical troposphere.

m=0»
Horizontal velocity and pressure terms are expanded in terms of {cos(mmz/Hr)}>°_,. Since
barotropic flow has no height dependence, m = 0 corresponds to the barotropic mode. Let
variables with an overhead bar denote barotropic modes. Then the truncated primitive equations

projected onto the barotropic and first two baroclinic modes are given by

( v ) (. 2rt) = ( ) (2.3,1)
p p

+ ( 2 > (z,y,t)V2cos (;Z) + ( Z ) (x,y,t)V2cos (i{?)(?"l)
and

(4 )emeo= (5 Ywnonzan(z2) + (2 ) oo (3E)- a2

3.1.2 The Model

The multicloud model is a Galerkin projection of the primitive equations onto the first two baro-
clinic modes under consideration. This means that we use the primitive equations to describe
the first two baroclinic terms in (3.1)-(3.2). We ignore the barotropic term, so that we only
consider equatorially trapped waves in the solution. The first mode directly heats the system
through precipitation from the deep penetrative clouds. The second baroclinic mode heats the
stratiform clouds while cooling the congestus clouds, and vice versa.

Let ¥; = (uj,vj) for j = 1,2 denote the first and second baroclinic mode wind velocity
and let 0; for j = 1,2 denote the potential temperature associated with each mode. With the
Galerkin projection, interactions between the two modes becomes a coupled system of shallow

water equations corresponding to a convective heating mode and a stratiform and congestus

mode:
0v; I
5 + ,By —VO; = —cq(uo)Vj — —TRvj
001
_ et P
5 div(v7) 2\[ + 51
00, 1
—_— = = ——(H.— H, ,
5 4dw( 2) Ni( )+ S2

where P > 0 gives the heating rate from deep convection, H, and Hg are the congestus and
stratiform heating rates, respectively, c¢q is the boundary layer turbulence momentum friction,

U, = 2m/s is the turbulent velocity scale, S; is a radiative cooling rate associated with baroclinic
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mode 7, and 17jL = (—vj,u;). The nonlinearities of this model lie in the heating rates. The details
of this derivation can be found in [55, 18, 49]. Notice that the congestus clouds heat the second
baroclinic mode at rate H. from below and that the stratiform clouds heat this mode from
above at rate Hg. This mode is therefore cooled by H. from above and by H, from below. We
ignore the meridional features of the tropical disturbances, thus eliminating the Coriolis term

and variations in y. This allows us to simplify these equations to

auj 80J . 1
Tt on — Caluou = —ou
891 6u1 .
o e = 2fp 51
892 18’11,2
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The radiative cooling rates S7 and Sy are given by the Newtonian cooling model

1 .
= _Q(I)-'{,j - %9]) J = 1727 (34)

where Q°R7 ; are the radiative cooling rates at radiative convective equilibrium.

The equivalent potential temperature at the boundary layer, 6., and the vertically inte-
grated moisture content (humidity), ¢, are included in this model and are respectively given
by

904 1.
5 h—b(E D)
aq a ~ 8u1 8u2 _ D
a+%[(ul_5u2) ]+Q<+)\ax) = HiT_P' (3.5)

A detailed derivation of the moisture equation is given in [31]. In these equations, hj, ~ 500m
is the height of the moisture boundary layer, and Q, A and & are parameters of the moisture
background and perturbation vertical profiles. Additionally, F represents the sea surface evapo-
rative heating and D represents downdrafts, both of which influence 6.;. This model differs from
others in its use of deep convective heating/precipitation P and downdrafts D, and because it
includes congestus heating H,. the in equation for 6s.

The surface evaporation E obeys the relation

1
e L o .
B = (0~ ba) (3.6)

where 7. is the evaporative time scale and 67, is the boundary layer saturation equivalent

potential temperature. Notice in this equation that evaporation will occur until the boundary
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layer is saturated, when 6, = 67,. The value of 67, on a warm ocean surface is fixed such that
at radiative convective equilibrium 6%, — 0., = 10 K, [32], where 0, is the equilibrium value of
Bep. Over our domain, which lies along the equator and has length 40,000 km, the value of 67,
is raised from -5 K to 5 K in the center of a 10,000 km warm pool region, centered at 20,000
km.

In the mid troposphere, the equivalent potential temperature anomaly, 0.,,, can be approx-

imated by
2v2

Oem ~ q + 7(01 + az62), (3.7)
where ag = 0.1 allows for a small contribution of the second baroclinic mode temperature to
Ocrn-

To quantify the level of moisture or dryness in the middle troposphere, the multicloud
model also uses a switch parameter A [32]. When the equivalent potential temperature at the
boundary layer and at the middle of the troposphere differ by more than a certain threshold
6T, the atmosphere is dry and we set A = 1. When this difference is below a lower threshold 6,
the atmosphere is wet and we set A = A* < 1. We will take A* = 0.2, 7 =20 K and 0~ = 10
K, as in [32]. These values come from climatological values recorded in the tropics. Between 6

and 07, A is linearly interpolated so that

1 if O — Oy > 0T
A =140.080cp — erm) —0.6 if 07 <O — ey < 0T (3.8)
0.2 if oty — O < 0.

This equation for A only holds for our values of A*, %, and #~. With this switch function we

can write precipitation and downdrafts as

1-A
P = mpo, and D= ADO,

while the stratiform and congestus heating rates H, and H, satisfy

0H, 1

and OH, 1/ A—A*D
c - — -~ _H). 1
ot Te (ac 1—A* Hp C) (3.10)

If the middle troposphere is dry, A =1 and P = 0, so that (3.9) reduces to

OH,  H,

ot Te
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and (3.10) reduces to

0H, _ 1 a.D, A
8t Te HT

The stratiform heating H; decreases while the congestus heating H. increases, for a time.
While the middle troposphere is dry, downdraft D is at a maximum and P = 0 so that dq/0t in
(3.5) is positive, increasing the moisture content; the shallow clouds moisten and precondition
the middle troposphere to sustain deep convection and promote boundary layer clouds. This
in turn will lower the difference in potential temperatures at the boundary layer and middle
troposphere, 0., — ¢y, below the threshold 1 and thus the switch function will move towards
its lower value A*. When A = A*, precipitation P = P, is at a maximum while downdraft D
is at a minimum. This time stratiform heating is favored and by (3.5) the moisture content
decreases. This leads to an increase in the difference between the boundary layer and middle
troposphere temperature, increasing A again.
The quantity P, gives the maximum possible value of deep convective precipitation P and
can be given by
P, = ! [a10cy + az(q — §) — ao(61 + 72602)]" (3.11)

Tconv

where ¢ is a threshold constant related to the level of saturation in the troposphere, T¢ony is the
convective time scale and f* = max{f,0}. The coefficient a,, is a parameter associated with
the inverse buoyancy relaxation time in [19].
The quantity D, represents the maximum possible downdrafts. The downdrafts are closed
by
Do = Z2 [P + o Hy = H) (6ot — Oern), (3.12)

where m, scales the downdraft mass flux, ps is a parameter that permits the formation of
stratiform and congestus mass flux anomalies [44], and P is the precipitation heating rate at
equilibrium. For easy reference, we give a table of parameters and their values in Table 3.1 [32].
We filter eight multicloud prognostic variables, u; and 6;, for j = 1,2, 0, q, Hc, and H,
resolved at 1,000 discrete grid points on a one-dimensional periodic domain in the equator,
with a spatial resolution of 40 km. These variables have nondimensional units. The length scale
is defined by the equatorial Rossby deformation radius (the scale at which Earth’s rotation
becomes significant to the system dynamics) as Ly ~ 1500 km, while time scale is given by
T = Lg/c =~ 8 hours. The first baroclinic dry gravity wave speed ¢ &~ m/s, gives the velocity
scale, and the dry-static stratification & = (HrN20,/mg) ~ 15 K is the temperature scale.
This model reproduces a number of observational features of equatorial convectively coupled
waves. With the parameters in [46], the model reproduces the Madden-Julian Oscillation (MJO).
The MJO is an equatorial, planetary-scale wave envelope of complex multiscale convective

processes that begins as a standing wave in the Indian Ocean and propagates east across the
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Table 3.1: Parameters and values of the multicloud model
Parameter Value Description
Hr 16 km Height of tropical troposphere
Q 0.9 Moisture stratification factor
A 0.8 27 haroclinic contribution to moist. conv. from background
0 0.1 27 haroclinic contribution to moist. conv. from anomalies
TR 50 days Rayleigh wind friction relaxation time
D 75 days Newtonian cooling relaxation time
cd 0.001 Boundary layer turbulence momentum friction
L. 1500 km Equatorial deformation radius, length scale
c 50 m/s Speed of 1% baroclinic gravity wave, velocity scale
= L¢/c | 8 hours Time scale
@ 15 K Dry static stratification, temperature scale
N 0.01 s~ ! Brunt-Vaisala buoyancy frequency
0, 300 K Reference temperature
hy 500 m Boundary layer height
Qa9 0.1 Contribution of #5 to middle troposphere 6,
s 10 K +6, Boundary layer equivalent potential temperature
Te 8h Evaporative time scale in boundary layer
0+ 10, 20 K Temp thresholds used to define A
A* 0.2 Lower threshold of A
Ts 3 hours Stratiform heating adjustment time
Qs 0.25 Stratiform heating adjustment heating coefficient
Te 1 hour Congestus heating adjustment time
Q. 0.5 Congestus heating adjustment coefficient
Go 7.5 Inverse buoyancy time scale
aq 0.1 Contribution of ., to convective parametrization
as 0.9 Contribution of ¢ to convective parametrization
Teonv 2 hours Deep convective reference time scale
Y9 0.1 Strength of lower troposphere coupling
Ocp — Ocrn, 14 K Discrepancy at RCE
W 0.5 Contribution of stratiform/congestus mass flux anomalies

We give an example simulation with bulk parameters Q = 0.9, 7 = 50 days, 0 — Oem = 14

model parametrization.

Pacific at roughly 5 m/s [69]. The MJO remains unexplained, but important to tropic dynamics,
as it is responsible for intraseasonal variability in the tropics [69]. In [1], they simulated a realistic

MJO, using a coarse resolution aquaplanent global circulation model, coupled with a multicloud

K and the convective parameters in Table 3.1, as in [26]. The intraseasonal timescale is generated
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using Teonv = 2 hours and 7, = 3 hours and 7. = 1 hour. In Figure 3.1, plot the precipitation

contours as a function of space and time. We observe both eastward and westward propagating

waves, traveling with speed 6.1 m/s. At the center of the warm pool, at 20,000 km, there are

regions of strong convective activity.

Time, days

Figure 3.1:

Precipitation Contours K/day
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Contour plot of deep convective heating P from a numerical simulation of the

multicloud model.

3.2 Radiative Transfer Model

The Radiative Transfer Model gives the intensity of electromagnetic radiation observed at the

top of Earth’s atmosphere. We use this model to generate synthetic satellite observations.

In a non-scattering atmosphere in local thermal equilibrium, [42] gives the basic equation
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for observed intensity of wavelength A, I, as

dl 71
A0 1)

dr = I)\(Ta M) - BA(T(T))v (3.13)

where p = cos @, 0 is the emergent angle, 7 is optical depth, and By(T') is Planck’s function.
Planck’s function is a relation describing the amount of electromagnetic radiation of a particular
wavelength emitted from a black body, a hypothetical object which can absorb all incident
radiation, regardless of wavelength. If a black body of temperature T, in Kelvin, emits radiation

of wavelength X, the energy of this radiation is given by

2heAN\T5

BA(T) = ohe/RAT _ |

with Planck constant h = 6.626 x 10734Js, Boltzmann constant k& = 1.3806 x 10723.J/deg
and speed of light ¢ = 3 x 107® m/s. Notice that if the intensity of radiation is measured,
one can invert the Planck function to compute a temperature 7. In this case, T is referred to
as brightness temperature. The satellite observations we use are of brightness temperatures,
calculated from radiance intensity measured at the top of the atmosphere. In the remainder of
this chapter, we use the terms brightness temperatures and radiances interchangeably.

The optical depth 7 in (3.13) is a dimensionless measure of how much radiation is absorbed
when passing through a portion of the atmosphere. Optical depth increases with path length,
and depends on the density of atmospheric gases. Different atmospheric gases will absorb radi-
ation of different wavelengths. For example, carbon dioxide will absorb radiation of wavelength

equal to 4.2 micrometers and 15 micrometers. Optical depth is defined by

T = /zoo kx(2)pa(2')d2 (3.14)

where p, and k) are the density and absorption coefficient of the absorbing gas, respectively.
The solution of (3.13) is

*

L7, p) = Iy(r)e 7= 4 / u BA(T(7))e T gy, (3.15)

-
in which

™ = / b ka(2)pa(2')d2
0

is the optical depth at the surface and I(7*) is the radiance emitted from the surface. Notice
that temperature T is a function of optical depth. This is because the temperature profile of the

atmosphere depends on optical depth. Let us consider only the radiation of upwelling direction,
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so that 8 = 0 and p = 1. Let €y, be the surface emissivity, a measure of the Earth’s surface ability
to emit radiation of wavelength A (for a perfect black body, e = 1). Then we can assume that
I(7") = exBy(Ts), where Ty is the surface temperature, in Kelvin. AIRS takes measurements
in the thermal IR region, with wavelengths between 3.5 and 20 micrometers, in which € is close
to 1 and I\(7%) = B)(T5).

Define monochromatic transmittance T as

Then we have

*

Lr1)=L(r) = LT —1)+ / BAT(+)Ta(+' — )dr’

T (7 —
= B\(Ts)Th(t" —7)+ /B)\ 8,\((;'/ T)d’i'/.
At the top of the atmosphere, 7 = 0 and (3.15) becomes
8T
1,(0) = Bx(T. / BA(T A( ™) dr. (3.16)

If we assume that the atmosphere is in hydrostatic balance, meaning that the pressure

gradient balances with gravity as

Op

82 = _gp7

then we can use pressure to define the vertical coordinate axis. Using hydrostatic balance and

the mixing ratio ¢ = p,/p, the density of the absorbing gas is given by

Pa _QP——Ea

and optical depth at the surface is given by

T = /Ops ﬁA(p)Q(j)dp.

We also have

9T\ (p) IT\(p) dr
dp or dp

_ 9T (rxg
ot \ g
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so that

0T\ (1), _ 9TA(p)

or ap P

Thus (3.16) becomes

0T\ (p)
dp

0
1,(0) = By(T)Th (ps) + / By [T ()] 222 gy (3.17)

ps

This equation describes the observed intensity of electromagnetic radiance of wavelength A at

the top of the atmosphere in a clear field of view. The function

azgzgp) _ % exp < /0 ' m(p')(l(;/)dp/>

in the integrand is called the weighting function. It weights the Planck function depending on
the density of the absorbing gas present at different layers in the atmosphere. Example weighting
functions are shown in Figure 3.2 for three different AIRS channels. The AIRS instrument has
281 infrared channels, each of which detects radiation of a different wavelength. The first panel
of Figure 3.2 shows the weighting function corresponding to channel frequency 680.14 cm™!.
In this case, the absorbing gases are dense at the top of the atmosphere, and therefore all
observed radiance at the top of the atmosphere emanates from this layer of the atmosphere.
The second panel shows the weighting function corresponding to channel frequency 1377.43
cm . This weighting function peaks at the top of the atmosphere, and indicates that the
absorbing gas is present in the upper and middle atmospheric layers. The third panel shows the
weighting function corresponding to channel frequency 2500.6 cm™'. The weighting function
spreads out over the entire atmosphere, and tapers off close to the surface. For this wavelength,
the absorbing gas is present throughout the atmosphere, but to a lesser slightly extent close to

the surface.

3.2.1 Adding Cloud Cover

Consider a field of view consisting of a cloud layer located at pressure p.. Denote the fraction
of cloud cover as 7, the temperature at the cloud top as T, the surface pressure ps, and the

cloud emissivity €. Then the radiance observed by the satellite can be written as

B = ()[BT + [ BTEIT A a] 73(5,0
0
BTG 0 + [ BT (3.18)

Pc
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Figure 3.2: Weighting functions for three AIRS channels.

In the first line of (3.18), the terms inside the bracket but outside the integral give radiation
emitted from the surface, while the integral gives radiance from below the cloud. In the second
line, the first term gives the radiation emitted from the cloud and the integral gives the radiation
from above the cloud.

The monochromatic transmittance in this case is defined by

1 D2
Tx(p1,p2) = exp <—/ m(p)q(p)dp> :
Y p1
Note that we have the following
Tx(ps, pe) X Ta(pe,0) = Ta(ps,0),  Ta(p,pe) X Ta(pe, 0) = Ta(p, 0). (3.19)

Then (3.18) simplifies as

5= (1-ne) [B@ne.0 + [ Bire) e
0
BTG 0 + [ Bre)] (3.20)
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Notice in (3.20) that if the weighing function

aT)\ (p) O)
dp

peaks between the cloud top and the surface of the Earth, then the observed radiance intensity
at the top of the atmosphere will be diminished by the cloud. This is because at pressures
lower than p. (at greater height), the weighting function will be small. The integral outside the
bracket in (3.20) will have little contribution to the observed radiance. Depending on how large
7 is, the terms inside the bracket may also have little contribution.

We will show that clear sky brightness temperatures are larger than their corresponding
cloudy sky brightness temperatures. For a clear field of view, ney = 0 and the satellite measured

radiance is
aT)\ (p7 0)

. 21
o dp (3.21)

0
I = B(To) T3 (ps, 0) + / B,[T(p)

Subtracting (3.21) from (3.20) gives

I — I = —nexBA(Ts)Ta(ps, 0)

— e / " B, [T (p)]aTAB(g’ 0

s

dp + nexBx(Te)Tx(pe, 0).

This is the cloud signal in the satellite measured radiances for wavelength A. To simplify this

equation, we integrate by parts. Let

. . aT/\(pa 0)
u = By\[T(p)], dv—iap dp
so that 5B T
_ (922 (94 _
Then
4 - I —nexB(Ts)Tx(ps, 0)
Pe 0B, orT
o (irmon, - [ 100 2] 2] )
o (B o~ [* w0 |52 (5]
+  nexBa(Te)Ta(pe, 0). (3.22)
Now

[BA[T(0)]Tx(p, 0);=p: = Ba(Te)Ta(pe, 0) — BA(Ts)Ta(ps 0)-
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Substituting this back into (3.22) cancels out all non-integral terms and so

pe 0B oT
-1 —es [ 0.0 [52] [

5 (3.23)

Since T)(p,0) is an exponential function, it is always positive. Differentiating

2hcANTP
BA(T) = ohe/EAT _ 1

we also have
B, 2h263)\—56hc/k)\T

oT — IAT2(che/T —1)p =

Finally, if we assume the ideal gas law, p = p,R,T, where R, is the gas constant associated

with the absorbing gas, we have
or 1

— = 0.
dp  paRa ~

Thus the integrand in (3.23) is positive. However, in the limits of integration, p. < ps, meaning
that this integral is negative. This means that the observed intensity over a cloudy field of view

will always be less than or equal to the observed intensity if the field of view were clear.

3.3 Interpolating Multicloud Model Variables to RTM Radi-

alnces

The Prototype Community Radiative Transfer Model (pCRTM), [22], is a model that simulates
satellite observations by using the radiative transfer model. This model uses known properties
of the atmospheric state, such as temperature and humidity, to compute the brightness tem-
perature at the top of the atmosphere. The pCRTM can be configured to simulate observations
from different satellite instruments, such as AIRS or Moderate-Resolution Imaging Spectrora-
diometer (MODIS). The pCRTM has L vertical discrete layers z1, ..., z;, where z; corresponds
to the layer at the top of the atmosphere, bounded by p = 0 mb, and where zj, denotes the
surface layer, whose edge is located at pressure ps = 1,000 mb. The vertical height of z; falls
in the middle of the i*" atmospheric layer. In our experiments, we use a vertical discretization
of L = 16 atmospheric layers to correspond to the tropospheric height Hr = 16 km of the
multicloud model.

To generate satellite observations, we use a numerical simulation of the multicloud model as
the underlying true atmospheric state. Since the pCRTM takes temperature, T'(p) (in K), water
vapor, ¢,(p) (in g/kg), and surface temperature, Ty (in K), as inputs, we need to extrapolate

the solution of the multicloud model to these units at appropriate pressure coordinate discrete
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points. Of the eight multicloud prognostic variables, we use 87 and 65, the potential temperature
of each mode (in K), 6.5, the equivalent potential temperature anomaly at the boundary layer
(in K, at height 500 meters), and ¢, the vertically averaged moisture level (in K) to derive
the temperature and moisture in each atmospheric layer and the surface temperature. In the
remainder of this section, we derive the physical relations between the output of the multicloud
model and the inputs to the pCRTM.

We first need to convert between height and pressure coordinates. Hydrostatic balance is
given by

9 _
0z 9p

where p is the density of the atmosphere. Using the ideal gas law p = pRT gives

op_ _9p
0z RT
The temperature T has a dependence on z and we assume the piecewise linear temperature

profile from [58]
mz+ T, if z <11 km

T, +11m if z > 11 km,

with constants m and T, (Note that this equation only holds for z < 16 km). We integrate for
each case. First, let z < 11 km. Then

o ____ 9
0z R(mz+1Tp)

which we can solve via separation of variables.
| g / dz
Ly = -2
D P R J mz+1T,
= —%ln(szrTo) +C
= In(mz+T,)" 9™ 1+ C.

Then T
mR
z2=kp ¢ — 2.
m
If p = p, when z = 0 then
TO mR
k - 7pog
m
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and
T,

m

OMl

Now suppose that z > 11 km. At this height, the temperature profile is assumed to be

constant. For simplicity, define 77 = mz + T,. Then the hydrostatic equation becomes

o _ _g9p
0z RTl

ke gz
=kexp| ——= |-
b p RT,

If p = p, when z = 0 then k£ = p, and

which has solution

o)
;o= (2
g Po
_ R(llm—{—To)ln(m)
g p

Putting both cases together, the relationship between pressure p and height z is

Rm
- %{(wg _1] if » < 11 km
ﬂﬂﬂt@hn(&> if 2> 11 km
g P B ’

where p, is the pressure at height z = 0.
The multicloud variables #; and 6> have no height dependence. To build a vertical profile,

we use

O (z,z,t) = G'(2)01(z,t) + 2G' (22)05(z, 1),

which follows from (3.2), where G’(z) = v/2sin(rz/Hr) and Hr is the height of the troposphere
[32]. The term © represents a perturbation from a mean potential temperature © so that the

vertical potential temperature is given by

O(x,2,t) = O + O'(x, 2, 1).

The relationship between temperature and potential temperature is given by

T_o <P> % (3.24)

Po

where R is the gas constant of dry air and C), is the heat capacity of dry air at constant
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temperature [65].
In terms of the multicloud model, ¢ gives the vertically averaged moisture content. The
pCRTM model incorporates height-dependent moisture. Let us write the total vertical moisture

content g, as
q(z,2,t) = Q(2) + q(x, 2, 1),

and assume that we can decompose ¢ as

Q(Ia th) = Q1(z)q2(xvt)‘

If we compute the vertical average (denoted in this section by (f) = (1/Hr) fOHT f(2)dz), we

obtain

(@) = (@),

since g2 has no dependence on z. Solving this equation for g2, we obtain

iz 1) = (q1)

The average (q) is equal to the multicloud variable g. Furthermore, we will assume that Q(z)

and ¢ are exponential, such that

—Z

q1 = exp <H> , Q2) = a1,
q

where H, gives the vertical scale above which moisture is negligible and g, is the surface

moisture. With these exponential expressions, the total moisture is given by

Q(w, 2,t) = (qo - (<j1>>> exp (I_{j) .

We can write this in pressure coordinates by substituting z(p):

Qo(®,p,t) = (qo + <<51>>> exp (mj};q (1 - <];O>I?>> .

Lastly, we convert to units of g/kg, expressing a mixing ratio, ((§) = ¢ has units of Kelvin),

by multiplying (G) by C},/L,. The relation between the ¢ of the multicloud model and the g,
required by pCRTM is

o= (i et oo (e (1- (2) 7)), (3.5
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where C), is the heat capacity of water vapor at constant pressure and L, is the latent heat of

vaporization, of water. This is the equation for z < 11 km. For z > 11 km we have

R(11m+Ty,) o
p 9Hq pd
o= | — o+ —— . 2
4 <p0> [q - Lqu(l - 61)} (3.26)

Assuming constant T and Latent heat of vaporization L, the equivalent potential temper-

ature at the boundary is

L'UO
O = 9exp<0;>
pls

R
Do \ °r Lyqo
g T pu—
S(p) P <Cst>,

with (3.24) [65]. Expanding the left hand side and the exponential term on the right side as a

Taylor series gives the simplification

R
= Do\ % Lyq
tartyx (5)7 (s )

where 6., = 0 is outputted from the multicloud model.

Therefore, we interpolate the multicloud model variables 61, 02, 6., and ¢ into temperature
T, sea surface temperature Ty and water vapor ¢, through the following equations, where

pressure p is given by
i
. po<%z+1> B if 2 < 11 km
Do €XP <—m> if z > 11 km.

The temperature 1" in terms of potential temperature 6 is given by

T(p) = (6 + C'(=(p)0r + 26" (22(p))6) (;’) v

The water vapor ¢, in terms of the vertically averaged water vapor ¢ is given by (3.25)-(3.26).

The sea surface temperature Ty is given by

R
A p Lyqo
Ts = <9eb + 0éb) (p> - Cq :
o P

The constants used in these relations are given in Table 3.2.
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Table 3.2: The values of constants used to interpolate multicloud model variables.

Parameter Value
Cp air 1005.7 J / kg K (£2.5)

C), water 1870 J / kg K (£25)
g 9.8 m/s
H, 2200 m
Hrp 16000 m
L, L,—Li(T—27315)J / g
L, 25017/ g
Ly 2.32J / g K (£0.55)
m -0.0065 K / m, [58]
Do 1000 mb
o 20g / kg
R 287.04J / kg K
T, 303 K
© 322 K
Oct 330 K

3.3.1 Adding Cloud Cover to Synthetic Satellite Observations

We now discus how to simulate cloudy AIRS data. Recall that the cloud free (or clear) observed
radiance of wavelength A is

0
" = BALIT ) + [ BT () 22 dp (3.27)

op
where p; = 1,000 mb. For simplicity, let ¢ denote the percent of cloud cover (¢ = ne) and let
the cloud top be located at pressure p.. We can assume the cloud is a thin sheet. Then in the

presence of clouds, the observed radiance is

5= -0 [BEne.o+ [ el
0
£ B0+ [ Be) (3.25)

The main issue lies in determining ¢ and p.. For simplicity we assume that there is only one
cloud that affects the computation of I f\ld: a low lying congestus cloud, a higher stratiform
cloud or a deep convective cloud. For a congestus cloud, we will take p. to be the pressure

at height 2 km, and for both the stratiform and deep convective clouds, we will take p. to be
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the pressure at 12 km. The value of ¢ will depend on H., Hs and P, as well as the switching
function A defined in (3.8), since these variables correlate with the type of cloud present. In
the top panel of Figure 3.3, we plot the true value of A at one location as a function of time,
while in the bottom panel, we plot the normalized true values of P, H; and H. at the same
location, over time. We normalize P and Hg by dividing each by its respective overall maximal
value. To normalize H., we first subtract its overall minimum value, before dividing by its new
maximal value. Notice here that the normalized stratiform heating rate and precipitation rate
exhibit nearly the same behavior. Since both cloud top heights are assumed to be the same, we
will treat the deep convection heating (precipitation) and the stratiform heating as one type of
cloud in our simulations.

Notice in Figure 3.3 that a local maximum of A corresponds to a local maximum in the
normalized value of H.. Therefore, in our simulations, we set the cloud type to be congestus
when A > 0.7. Moreover, we take the cloud fraction ¢ to be normalized value of H.. The
precipitation rate is near a local maximum when A is near a local minimum. Here, we set the
cloud type to be the deep convective cloud when A < 0.5, and take ¢ to be the normalized value
of P. When 0.5 < A < 0.7, we assume that there is no cloud present, and set ¢ =0 and p. = 0.

To summarize, we determine the cloud cover percent and pressure with the following:

(spy (12 k) ) if A < 0.5
(¢, pe) = (mmg;g;{ﬁg}} (2 km)) . ifA>07 (3.29)
(0,0), if0.5<A<07.

Figure 3.4 shows brightness temperatures calculated over a clear field of view in the left
panels for three different channels at a particular location (the weighting functions of these
channels are shown in Figure 3.2). The right panels show brightness temperatures for these
same three channels and location, but after cloud cover was added to the RTM. For the higher
frequency channels, cloudy sky brightness temperatures are consistently lower than clear sky
radiances. In the lowest frequency channel, the brightness temperatures are roughly the same
for both cases. This is because the weighting function for this channel peaks at the top of the
atmosphere, (see the first panel of Figure 3.2) and the observed radiances emanate from the at-
mospheric layer above cloud tops. Notice that the cloudy sky brightness temperatures associated
with wavenumber 1377.426 cm™! agrees with the analogous clear sky brightness temperatures
at several times. This channel is sensitive to cloud effects, however, it is not sensitive to the
effects of low lying congestus clouds; its weighting function is nearly zero below 2 km (see the
middle panel of Figure 3.2). For this channel, deep spikes in the cloudy sky temperatures can be
explained by the presence of a deep convective cloud. The channel associated with wavenumber

2500.602 cm~! is sensitive to all cloud types, because its weighting function weights over the
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Figure 3.3: The switch function A (top panel) and the normalized deep convective, stratiform,
and congestus heating rates, which correspond to the cloud fraction (bottom panel), at location
x = 20,000 over time.

entire atmospheric column (see the right panel of Figure 3.2). Therefore, for this channel, there
is a large difference between clear and cloudy brightness temperature.

Next, we examine the brightness temperature at one particular location at times that each of
these clouds appear. Figure 3.5 shows the brightness temperature measured by each of the 281
channels at a time when each cloud type is present. Notice that the clear sky temperatures in
Figure 3.5 are higher than the cloudy sky temperatures. In the case of a congestus cloud, cloudy
cover is ¢ = 56%. This cloud type does not have a great vertical extent, so several channels
observe nearly the same temperature in both the clear and cloudy cases. In the case of a deep
convective cloud, with cloud cover ¢ = 100%, cloudy sky radiances are severely diminished by
the cloud.
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Figure 3.4: Clear (left) and cloudy (right) AIRS observations at one location, over time. The

top panels correspond to channel frequency 680.142 cm ™!, the middle panels correspond to chan-

nel frequency 1377.426 cm ™! and the bottom panels correspond to channel frequency 2500.602
-1

cm”.

3.4 Data Assimilation

The data assimilation flow is illustrated in Figure 3.6. It starts with the selection of the initial
ensemble members, chosen at random times of the multicloud model true solution. One ensemble
member includes the estimates of the eight multicloud model variables w1, us, 01, 02, 0ep, q, H,
and H. over M = 1,000 locations, equally spaced along the equator. We denote the prior state
estimate

ab = (u1,uz, 01,09, 0c, q, Hs, He)?,
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Figure 3.5: Congestus cloud (top), stratiform cloud (middle) and deep convective cloud (bot-
tom) effects on brightness temperatures for all channels. The black lines represent the clear sky
pCRTM radiances while gray lines represent the cloudy sky radiances.

the transformed prior state estimate £ and the forward RTM h(£%), which computes the bright-
ness temperature at each spatial location. The transformed estimates £ represent the result
of extrapolating the temperature and humidity estimates to different layers of the atmosphere
(see Section 3.3). The synthetic noisy observations of brightness temperature and h(£%) are
input into the data assimilation algorithm. The posterior state estimate z® is output from the
data assimilation algorithm. Then x¢ is used as an initial condition in the multicloud model to

compute the new prior state estimate z® at the next time step.

3.4.1 Local Ensemble Transform Kalman Filter

We will use the local ensemble transform Kalman filter (LETKF), developed by [6], in the data

assimilation step. Ensemble Kalman filters use an ensemble of state vectors to represent the
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Figure 3.6: Data assimilation of satellite observations with the multicloud model.

distribution of the true state. Each ensemble member is propagated forward in time individually
by the forecast model (here the forecast model is the multicloud model). Let {22}/ denote
this forecast ensemble, which has size K. When observations become available, the filter uses

the forecast (prior) ensemble mean,

1 K
=b b

as an estimate of the atmospheric state, before accounting for the observations.
We define the brightness temperature observation at wavelength A, vy, as a function of the

multicloud prognostic variables &(x) = £(01, 02, 0cp, q), by

ux = h(§(x)), (3.30)

where the operator £ incorporates the numerous dimensionalization transformations defined in
Section 3.3 and the observation operator h is composite of the Planck function By(7T') and the
radiative transfer model.

The ensemble Kalman filter uses the prior ensemble {xZ}szl , the observations vy and their
error covariance, and the nonlinear composite ho& to calculate the analysis (posterior) ensemble

mean Z% and error covariance R®. The forecast error covariance R depends on the perturbation
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of each forecast ensemble member about the prior mean, and is defined by

1

where the k* column of X? is given by ZL‘z — z%. The key idea of the LETKF is to use a
transformation X® = X°T so that the perturbations describe the posterior error covariance
after updating locally with available observations. The perturbations in X? are weighted such

that the k" column of X is xj, — % Therefore, the posterior error covariance is given by

1 1
a _ XbT XbT T _ Xa(xe T‘
RO = (XYY = L xe(x)

Each ensemble member updates based on its corresponding transformed perturbation.

The goal of the standard Kalman filter is to minimize the cost function
J(@) = (z =) (R") & = 2°) + (ox — h(€(@))T(R) " (v — h(E(x))),

where R° gives the observation error covariance. If the observation operator h o ¢ is linearized

as H, then J(x) is minimized by
7 = 7+ K(vy — HZ),
where the Kalman gain matrix I is given by
K= (R + HT(R)"LH)'HT(R°)~.
In terms of the Kalman gain, the posterior error covariance is given by
R*= (I - KH)R". (3.32)
Notice in the right side of I that
H'(R®)""HR'H" +R°) = ((R")™'+H"(R°)"'H)R'H".

This implies
K=RHT(HR'HT + R°)L.
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Using the expression for R’ in (3.31), the Kalman gain matrix becomes

K = R'HT(HR'H" + R%)~!
1 1

_ (Ki 1) (Xb(Xb)T)HT ((K 1)

= X'(HX")T(HX'HX"T + (K - 1)R%)™

H(X"(x")"H" + R") h

Observe in this last expression that when the linearized operator H appears, it acts on the
perturbation matrix X?. Therefore, rather than linearizing the complicated h o €, we can use a

perturbation matrix V given by

V = [h(€}) — T; h(ED) — Ts...s h(EY) — T,

K = XVIVVT 4+ (K -1)R)™!
= X'(VI(R)WV +(K -1)7)"'VvT(RrR)! (3.33)
— XbeIVT(RO)flj
where
J=(K-1)I+VT(R) V. (3.34)

When an observation vy becomes available, the posterior ensemble mean is updated with
7% = 2% + K(vy — h(%)). (3.35)

Notice in (3.35) that if the observations have large noise then the norm of K is small and
therefore the filter will tend to trust the model dynamics. On the other hand, if the observations
have small noise, the norm of X will be larger and the filter will tend to trust the observations.

To compute the transformation matrix 7', we use (3.31) and (3.33) in the posterior error
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covariance expression in (3.32):
R* = (Z-KH)R

e (P (e

1 _

= =X (T - (A+D) A (X
1 _

== 71}( b(Z + A) 1(X b)T

= (- X"(VT(R) TV + (K - D)D) VT (RY) T H) (Xb(Xb)T>

where

Thus

R* = X'(K-1I+V'(R)'V)"H(xH"
— XbJ—l (Xb)T

XbTTT(Xb)T

K-1
Xbr(xbtT)T

K-1 "~
where J is given in (3.34).

Notice that the columns of V sum to the zero vector, implying that .J is not full rank. There-

fore, to compute the transformation matrix 7', we compute the singular value decomposition of

J as
J=YTYT.

Then the transformation matrix T is given by
T=vEK—-1Yr—/2yT,

This choice of T' permits a symmetric transformation. (In [66], this type of LETKF is called the
spherical simplex LETKF). Each posterior ensemble member z¢, 1 < k < K is then obtained
by adding the posterior mean % to the k" column of X = X°T.

Because we are under-sampling the atmospheric state distribution by using K ensemble
members, we inflate X® and V by an inflation percent r, by multiplying these matrices by a

factor of v/1 + r. The value of r is determined empirically, and partially depends on the sparsity
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of the observation network, the observational time length, and the ensemble size. This strategy
is referred to as multiplicative variance inflation in [68, 3].

In our simulations, the forecast model is discretized by 1,000 grid points, equally spaced 40
km apart along the equator, which has length 40,000 km. The multicloud model produces a
forecast every 6 hours. We implement the data assimilation algorithm locally in space, meaning
that, to correct at each model grid point, we use the available observations within a box of
radius D grid points. Therefore, X?, X? R8(ZP+1)XK gince there are 8 multicloud prognostic

variables.

3.4.2 Biases from Cloudy Sky Observations

One can easily induce errors or biases in the observation operator in (3.30) if the observation
model and/or its parameters are not completely specified. Previously, [16] estimated the effects
of such biases in the case of clear sky AIRS measurements. A cloudy field of view can have
a detrimental effect on satellite observations and we will study the potential biases that can
arise in this situation. In particular, we will examine the sensitivity of the filter analysis to
the error in the cloud cover fraction ¢ defined in (3.29), and the error in A, which specifies
cloud type and height. We will see that when ¢ cannot be accurately known, we must carefully
select AIRS channels for assimilation, based on the cloud height. In reality, Cloud-Aerosol Lidar
and Infrared Pathfinder Satellite Observations (CALIPSO) can provide accurate estimates of
cloud top height [64]. In the remainder of this section, we describe how we choose cloud height-
dependent channels. The channels we select in this case will have weighting functions which
are nearly zero below the cloud top, so that the Planck function is only weighted above the
cloud. Therefore, the brightness temperatures associated with these channels will be minimally
unobstructed.

The congestus cloud has height 2,000 m, which is relatively close to the surface. In Figure 3.7,
we show two AIRS channels that detect radiation of frequencies 1036.5 cm™! 1377.43 cm™1.
The shaded gray area represents the part of the atmosphere below the congestus cloud top.
Notice here that the weighting function for both channels is close to zero below the cloud. This
demonstrates that these two channels are insensitive to the atmospheric dynamics below the
cloud top. Therefore, when assimilating cloud-dependent channels, we will use these two when

a congestus cloud is present.
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Figure 3.7: Weighting functions of AIRS channels that are minimally obstructed by congestus
clouds. The gray area represents the atmospheric region below a congestus cloud.

The stratiform cloud and the deep convective cloud both have height 12,000 m, which is
much closer to the top of the troposphere. Therefore, the channels that are insensitive to either
of these clouds will have weighting functions that peak at the top of the atmosphere. The two
channels we consider channels that detect radiation of frequencies 680.14 cm™! and 681.72 cm™!,
depicted in Figure 3.8. The shaded gray area represents the part of the atmosphere below either
cloud top. While such channels are not sensitive to the effects of clouds, they cannot observe
a large part of the atmosphere, and therefore may be uninformative. Channels like these are
more likely to be assimilated with current weather forecast models [54].

Finally, if the field of view, we will use the two AIRS channels associated with radiation
of frequencies 2500.6 cm™' and 2561.13 cm™'. As illustrated in Figure 3.9, these channels
observe the entire atmosphere. Because the weighting functions have large weight over the
entire atmospheric column, their respective channels are extremely sensitive to cloud effects.

Therefore, channels such as these are rarely used in numerical weather prediction [54].
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Figure 3.8: Weighting functions of AIRS channels that are minimally obstructed by deep con-
vective clouds and stratiform clouds. The gray area shows the atmospheric region below their
tops.

3.5 Results

We report the numerical results of several filtering experiments, after assimilating synthetic
clear and cloudy sky AIRS observations, as well as direct observations of the multicloud tem-
perature and humidity prognostic variables. We present the results of experiments that use the
empirically tuned covariance inflation r in each case. For clear sky observations, the covariance
inflation tends to between 12-16 % and for cloudy sky observations, it tends to be between 4-18
%. We numerically generate each observation of brightness temperature with noise of variance
1 Kelvin, which is consistent with the temperature accuracy of AIRS [38].

In our discussions, we define D, as the distance between two observations. If we observe at
every model grid point (resolved at 1,000 regularly spaced locations along the equator, with a
circumference of 40,000 km) then D,ps = 40 km. On the other hand, if we observe at every other
model grid point, at 500 equally spaced locations, then D,,s = 80 km. Finally, if we observe
at every fourth model grid point, at 250 equally distributed locations, then D, = 160 km.
We also define the observational time length T, as the time between observational updates in
the filter. Finally, we define the localization radius in terms of physical distance, in kilometers.

Therefore, a radius of D = 1 observation corresponds to a localization radius of 40 km; a radius
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Figure 3.9: Weighting functions of AIRS channels that observe the entire atmosphere.

of D = 2 observations corresponds to a localization radius of 80 km.

3.5.1 Direct Observations

We first show the results of assimilating only direct observations of the temperature variables
01, 0> and 6O, and of the humidity variable ¢ in the filtering experiment. Here, we perturb an
observation of each variable with noise of variance equal to 10 percent of its overall variance.
The numerical results that we obtain with these observations can be considered to be the
theoretically best estimates that can be achieved by satellite measurement, since the RTM
uses these variables to generate brightness temperatures. In Figures 3.10 and 3.11 we show an
example of the posterior and prior state estimates of each multicloud prognostic variable, and
the precipitation rate, compared with the true signal, using observations at each of the 1,000
model grid points, an observational time length of 24 hours and a localization radius of 80 km.
Figure 3.10 shows the estimates over the spatial domain at the final time step (after 1,000 days
of simulation), while Figure 3.11 shows the estimates over the last 30 days of the simulation, at
location x = 20,000 km. For most variables, there is good agreement between the posterior and
prior estimates and the true signal. However, both the posterior and prior state estimates of
H, and P fail to capture a few of their peaks. Notice that many of the peaks in P are slightly

underestimated. Indeed, we will see that with satellite observations, these variables are difficult
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to estimate.

Next, we examine the sensitivity of the filtering skill with respect to localization radius. In

Figure 3.12, we show the spatially and temporally averaged root mean square (RMS) error and

the temporally averaged pattern correlation between the posterior (black lines) and prior (gray

lines) state estimates of humidity ¢ and precipitation rate P and true signal as a function of

localization radius, for Dg,s = 40 km, 80 km and 160 km. In each case, the analysis estimates are

more accurate than the background estimates, as we expect, and we obtain the best results with

a longer localization radius. For D,,s = 40 km (left panels), the improvement after increasing

the radius above 80 km (middle panels) is small for each variable. Similarly, for D,,s = 80 km,

the improvement in RMS error and correlation for both variables is small with increasing radius.
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However, with D,,s = 160 km (right panels), there is an obvious improvement in the estimate
of P with increasing radius; its posterior state estimate pattern correlation increases from
approximately 0.93 to 0.98 as the radius increases from 0 to 120 km. The RMS errors associated
with ¢ clearly decrease with increasing radius, however, the pattern correlation remains above

0.99, even for a radius of 0.

3.5.2 Synthetic Clear Sky AIRS Observations

We now report the numerical results after assimilating synthetic, clear sky AIRS observations. In
these experiments, we use two uncorrelated AIRS channels corresponding to the wavenumbers

1377.4 cm™! and 2500.6 cm™!. For reference, the weighting functions associated with these
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Figure 3.12: Spatially and temporally averaged RMS error and temporally averaged pattern
correlation between the posterior and prior state estimates of ¢ and P and true signal as
a function of localization radius, with direct observations of the temperature and humidity,
K =16, and T,;s = 24 hours. The black lines correspond to posterior state estimates, while the
gray lines correspond to prior state estimates.

channels are given in the right panel of Figure 3.7 and the left panel of Figure 3.9.

We first examine how the filter skill improves with increasing ensemble size. In Figure 3.13,
we show the temporally and spatially averaged RMS error between posterior state estimates of
the partially observable variable ¢ and the unobservable variable H. and their true signals as a
function of ensemble size K. As K increases from 8 to 16, there is a clear, albeit slight, decrease
in RMS error for each variable. We found that, for every variable, this decrease is small, on
the order of 1072 or less, as the ensemble size increases above 16. Therefore, in the remaining
experiments, we take K = 16.

We again show an example of the analysis and background estimates of each variable com-
pared with the true signal, using Dy, = 40 km, T,5s = 24 hours, K = 16 and a localization

radius of 80 km. In Figure 3.14, we show the estimates over the spatial domain at the last
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Figure 3.13: RMS errors between the posterior state estimates of ¢ and H. and their true
signals as a function of ensemble size, with clear sky observations, D, = 80 km, T s = 24
hours, and localization radius 80 km.

time step, and in Figure 3.15, we show the estimates over the last 30 days of the simulation,
at the location = 20,000 km. For several variables there again is good agreement between the
estimates and the truth. However, for H; and P, which exhibit large peaks, we notice a bigger
discrepancy between the truth and the estimates, as compared to the results of assimilating
direct observations (see Figures 3.10 and 3.11); The precipitation rate is grossly underestimated
at several times. Additionally, in Figure 3.10, the estimates of P indicate nonzero precipitation
when it is actually zero.

The filter estimates are more sensitive to localization radius size when assimilating clear
sky AIRS observations as compared to direct observations. Figure 3.16 shows the spatially and
temporally averaged RMS error and the temporally averaged pattern correlation between the
posterior (black lines) and prior (gray lines) state estimates of ¢ and P and their true signals,
as a function of localization radius, for Dg,s = 40, 80, and 160 km, and T,,; = 24 hours. For
an observational spacing of 40 km (left panels) and 80 km (middle panels) , there is a slight
improvement in the estimates of both variables as the radius increases. With a spacing of 40 km
the estimates of ¢ and P most noticeably improve when the radius increases from 0 to 40 km.
However, with D,,s = 160 km (right panels), we observe the poorest skill with a radius of 40
km; the RMS error increases (while pattern correlation decreases) as the radius increases from
0 to 40 km. Furthermore, with a radius of 40 km, the prior state estimates of both variables

are actually better than the posterior estimates. With such a sparse observation network, it
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Figure 3.14: Posterior state (black asterisks) and prior state (gray circles) estimates compared
with the true signal (red line) at time 7" = 1,000 days, with clear sky observations, Dys = 80
km, T, = 24 hours, K = 16, covariance inflation r = 16% and localization radius 80 km.

is difficult to achieve a good filter skill. For the observable variable g, notice that the pattern
correlation remains high, above 0.97, in every case except for D, = 160 km with a radius of
40 km. The pattern correlation associated with P, however, is lower than it was in the case of
direct observations (see Figure 3.12). Here the correlation is consistently below 0.92 and drops

as low as 0.7 in one instance.

3.5.3 Synthetic Cloudy Sky AIRS Observations

Finally, we present the results achieved after assimilating cloudy sky AIRS observations. To
begin, we compare different channel selection schemes; we compare analyses from assimilating
the six channels depicted in Figures 3.7-3.9, to the analyses after using two channels at a time,

chosen based on the cloud height as described in the previous section. Figure 3.17 shows the
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Figure 3.15: Posterior state (black asterisks) and prior state (gray circles) estimates compared
with the true signal (red line) at location z = 20,000 km over the last 30 days, with clear
sky observations, Dy,s = 80 km, T, = 24 hours, K = 16, covariance inflation » = 16% and
localization radius 80 km.

spatially averaged RMS errors associated with the analysis estimates of uq, #2, ¢ and P as
functions of time, using both channel selection schemes, with perfectly specified cloud cover
percent and height. In this simulation, the assimilation is performed with a localization radius
of 80 km, T,s = 24 hours and D,,; = 40 km. For comparison, we also include the RMS errors
based on assimilating these six channels with a clear sky. We observe that in the presence of
clouds, using all six channels rather than two cloud-dependent channels improves the filtering
skill. Indeed, the RMS error is close to that associated with clear sky observations. This result
suggests that if we can ascertain the cloud cover percent and cloud top height, we can improve
our filter estimates by assimilating more channels, even those that weight below the cloud tops.

To study the sensitivity of the filtering skill to the error in cloud cover percent and type,

we assimilate these six channels after corrupting the true values of ¢ and A with noises of
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Figure 3.16: Spatially and temporally averaged RMS error and temporally averaged pattern
correlation between the posterior (black lines) and prior (gray lines) state estimates of ¢ and
P and true signal, as a function of localization radius, with K = 16, T,5s = 24 and clear sky
AIRS observations.

variances equal to ten percent of each variable’s respective climatological variance. In Figure
3.18, we show the spatially averaged RMS error associated with w1, 2, ¢ and P as a function
of time, obtained from noisy ¢, noisy A, and from noisy ¢ and A both. For comparison, we also
include the result of assimilating these six channels with perfectly specified ¢ and A. When A
is corrupted with noise, the cloud type is not accurately specified at times, leading to a large
discrepancy in cloud height at these instances. The difference between the observations and
the interpolated observations h(£°) can be large in channels whose weighting functions peak in
the lower atmosphere. In this case, the filter skill deteriorates; the RMS error of the posterior
estimates of each variable is higher here then when using cloud-dependent channels with the
true A. In fact, when we use the forecast to approximate A, the filter numerically blows up in

finite time when using either channel selection scheme. This suggests the cloud height is the

81



3 u

x 10 1
8 \ \ \ \ \ \
Clear sky RMS with all 6 channels
6 — RMS with cloud-dependent channels -

% —— RMS with all 6 channels
=
4

0 100 200 300 400 500 600 ' 700 800 90 1000
w
n
=
4

| | |

0 100 200 300 400 500 600 700 800 900 1000
w
n
=
4

# e i 1 I e 4 I
0 100 200 300 400 500 600 700 800 900 1000
x 107 P
25 ‘

| | | | |
0 100 200 300 400 500 600 700 800 900 1000
Time, days
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most important parameter to estimate when assimilating cloudy observations.

When the cloud cover percent ¢ is noisy, but A is perfectly specified, the filter skill is
comparable to when cloud cover is perfectly specified (compare the red and black curves in
Figure 3.18). However, there are a few times when there are large disparities between the two.

If the cloud cover percent cannot be accurately determined, the discrepancy between the
interpolated observations, h(£(x?)) in and the observations (the biases) can be large in channels
whose weighting functions peak below the cloud top. In our simulations, we find the filter
numerically blows up when using the six channels represented by Figures 3.7-3.9 and estimating
the cloud cover percent from the background estimates of P and H., even when the cloud height
is perfectly specified. In this case, one can still attain reasonably good estimates by choosing
channels that weight only above the cloud. In Figure 3.19, we show the spatially averaged RMS
errors associated with the posterior estimates of ui, 62, ¢ and P as a function of time, after
using the background heating rates to estimate the cloud cover percent. We also include the
result of assimilating two cloud-dependent channels with perfectly specified ¢ and A, and of
assimilating the six channels with a clear field of view. Here the RMS errors of P and u; is as
good as when the true cloud cover percent is specified. For the observable variables 6 and ¢,
the RMS errors are slightly higher when the filter uses its background heating rates to estimate
the cloud cover percentage.

Now that we understand how to choose channels for assimilation, we will examine the
numerical results obtained by using the channel selection method described in the previous
section in more detail. To begin, we compare the posterior and prior state estimates of the
multicloud prognostic variables using D ;s = 40 km, T,,s = 24 hours and a localization radius of
80 km, as we did after assimilating clear sky observations, and direct observations of temperature
and humidity. In Figure 3.20 we show the estimates over the spatial domain at the final time
step, and in Figure 3.21, we show the estimates over the last 30 days of the simulation, at
x = 20,000 km. Compared to the results of assimilating direct observations of temperature
and humidity (see Figures 3.10 and 3.11) and of assimilating clear sky AIRS observations (see
Figures 3.14 and 3.15), there is a bigger discrepancy between the truth and the analysis and
background estimates. The difference between the estimates and the true values of P and Hy
is more obvious here, especially for Hs. Here the filter poorly estimates the peaks in Hy and P.
Also, the filter seems to poorly estimate ¢ and 61 at times.

To demonstrate that H, is the key variable to accurately estimate the precipitation, we show
a numerical result in which we insert the true value of H, in our data assimilation scheme. This
simulation provides a minimum error estimate (in a sense where H, is accurately assimilated)
for assimilating a mixed set of observations, cloudy AIRS data and direct observations of the
stratiform heating rate. In Figure 3.22, we show the posterior and prior state estimates of the

other multicloud model variables over the last 30 days of the simulation. Notice here that with
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Figure 3.20: Posterior state (black asterisks) and prior state (gray circles) estimates compared
with the true signal (red line) at time 7' = 1,000 days, with cloudy sky AIRS observations,
D,s = 40 km, T,;s = 24 hours, K = 16, covariance inflation r = 14% and localization radius
80 km.

the additional direct observation of Hy, the filter estimates for ¢, #; and P improve. In fact,
the filter estimates of all the multicloud prognostic variables have smaller RMS error. We plot
the precipitation contours in Figure 3.23, comparing the case in which we assimilate true value
of Hy (bottom right panel) with the case in which we only assimilate noisy AIRS observations
(bottom left panel). For reference, we include the true precipitation contours in the top panel.
We observe that inidividual waves are moving toward the warm pool centered at 20,000 km,
promoting deep convection at regions within the warm pool. Again, there is a discrepancy
between the truth and the estimated precipitation. However, when the true value of Hy is used
in the filter, the estimates improve.

Next we will experiment with different observation networks. In Figure 3.24, we show the
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Figure 3.21: Posterior state (black asterisks) and prior state (gray circles) estimates compared
with the true signal (red line) at location x = 20,000 km over the last 30 days, with cloudy sky
ATIRS observations, Dy, = 40 km, Ty, = 24 hours, K = 16, covariance inflation r = 14% and
localization radius 80 km.

spatially and temporally averaged RMS error between the posterior (black lines) and prior
(gray lines) state estimates of each variable and their true signals as a function of D,ps. For
comparison, we include the filter results based on assimilating clear sky observations, and based
on assimilating direct observations of temperature and humidity. For each type of observation,
and for each variable, there is an increase in RMS error as the observation network becomes
sparser. In most cases, the posterior state estimates are more accurate that the prior state
estimates, as expected. When the prior state estimate happens to be better than the posterior
state estimate, for example, see the RMS error of u; with cloudy sky observations in Figure
3.24, the difference is extremely small. Even with a spatially dense clear sky satellite observa-
tion network, we cannot attain results that are comparable to using only direct observations.

Observe, however, that for most variables, with a denser network, the RMS errors associated
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Figure 3.22: Posterior state (black asterisks) and prior state (gray circles) estimates compared
with the true signal (red line) at location x = 20,000 km over the last 30 days, with cloudy sky
AIRS observations and direct observations of Hg, Ds = 40 km, T, = 24 hours, K = 16 and
localization radius 80 km.

with cloudy sky observations are nearly as good as or better than the RMS errors associated
with sparser clear sky observations.

In Figure 3.25, we show spatially and temporally averaged RMS error between the analysis
(black lines) and background (gray lines) estimates of each multicloud variable and its true
signal as a function of T,,s. Again for comparison, we include the results of using clear sky
observations, as well as the results of using direct observations of temperature and humidity.
For the direct observations, the RMS error associated with each variable, with the exception
of uo and H,, increases as Ty increases from 6 hours to 12 hours, and then actually decreases
as the T, increases to 24 hours. In this case, for T, = 6 hours, the prior state estimates of
u1 and wuo are more accurate than their respective posterior state estimates. For cloudy sky

observations, the RMS error strictly increases with increasing observational time length, and
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Figure 3.23: The true precipitation contours (top), and estimated precipitation contours (bot-
tom). The bottom right panel shows the result of using the true value of Hy in the filter. Here,
Tops = 6 hours, Dgps = 40 km and D = 2.

the posterior state estimates are more accurate than prior state estimates, with the exception
of u;. Notice that for clear sky observations, the increase in RMS error for each variable after
increasing Typs from 12 hours to 24 hours is very small (in the case of H,, it actually decreases
slightly). To the contrary, the RMS errors associated with cloudy sky observations exhibit a
large increase with increasing observational time length. For T,,; = 6 hours, the cloudy sky
estimates are comparable to the clear sky estimates with T,,; = 12 hours. This, together with
the findings from Figure 3.24, suggests that assimilating both a temporally and/or spatially
denser cloudy sky observation network can produce posterior and prior state estimates that are
comparable to estimates obtained from assimilating a temporally and/or spatially sparse clear
sky observation network.

The filter estimates with cloudy sky observations do not appear to be sensitive with respect
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Figure 3.24: Spatially and temporally averaged RMS error between the posterior (black lines)
and prior (gray lines) state estimates of the multicloud model prognostic variables and true
signal as a function of Dy, with K = 16, T,,s = 24 hours, and localization radius 80 km.
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Figure 3.25: Spatially and temporally averaged RMS error between the posterior (black lines)
and prior (gray lines) state estimates and true signal as a function of Dy, with K = 16,
Tops = 24 hours, and localization radius 80 km.
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to localization radius (see Figure 3.26, which shows the average RMS and correlation of ¢ and P
as a function of localization radius). With a dense observation network, the filter skill improves
slightly with a longer radius, while for D,,s = 80 km, there is not much difference in filter skill
as the radius increases. For a sparse observation network, we appear to have the best filter skill
with a localization radius of zero. In this case, for a radius of 40 km, the prior state estimates of
both variables are better than the posterior state estimate, which we also observed when using

clear sky observations (see the right panels of Figure 3.16).
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Figure 3.26: Temporally and Spatially averaged RMS error and temporally averaged pattern
correlation between the posterior (black lines) and prior (gray lines) state estimates and true
signal as a function of localization radius, with cloudy sky AIRS observations, T,5s = 24 hours,

and K = 16.
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3.6 Summary

In this chapter, we assessed the potential for using cloudy sky AIRS observations to improve
practical weather forecasting skill and identified the key parameters that induce biases in the
filter estimates in the presence of, at most, one cloud at a time. Our study was based on synthetic
cloudy AIRS observations, generated from a numerical solution of the multicloud model, [32, 33],
a toy model of convectively coupled tropical waves that incorporates cloud dynamics at the
equator. This model has three variables, congestus heating rate, H., stratiform heating rate,
H, and precipitation rate P, that respectively correlate to the presence of three cloud types that
are prevalent in the tropics. In our experiments, we used these heating rates and the multicloud
model switching function A to simulate cloud cover in the satellite data. The cloudy AIRS
brightness temperatures were calculated by inserting the true values of temperature, moisture
and heating rates into the prototype Community Radiative Transfer Model. Using these cloudy
observations, we assessed the filter estimates in different scenarios, incorporating either the true
cloud cover percent ¢ and A, noisy ¢ and/or noisy A, or an estimate of ¢, calculated from the
background estimates.

From our numerical study, we conclude that the most important parameter to estimate in
assimilating cloudy AIRS data is the cloud top pressure (which correlates with the cloud type in
our experiments). Without a decent estimate of A, the biases become too large and can lead to
filter divergence (solutions which blow up in finite time). The second most important parameter
is the cloud cover percent. If this parameter can be reasonably estimated in addition to the cloud
height, we can use more channels, including those with weighting functions that peak below
the cloud. However, if the cloud percent cannot be ascertained, one can still obtain reasonable
results by assimilating channels whose weighting function peak in the upper atmosphere and
are negligible below the cloud top, since these channels are less sensitive to cloud effects [54]. In
our numerical experiments, the filter diverges in finite time when we assimilate channels with
weighting functions that peak below the clouds, when the cloud cover percents are estimated
from the filter background estimates.

We also found that if we only assimilate AIRS channels whose weighting functions peak in
the upper part of the atmosphere, the state estimation of the precipitation rate is not com-
pletely recovered, even when the cloud type and coverage percent are perfectly specified. We
demonstrated that additional direct observations of the prognostic variables can improve the
filter estimates; there was a dramatic improvement in the precipitation estimation when direct
observations of the true stratiform heating rate were assimilated in addition to cloudy AIRS
data. When using only direct observations of temperature and humidity, the estimates of each
variable, including precipitation, are quite accurate. We conclude that different types of obser-

vations, especially direct observations of prognostic variables, can help uncover the observability
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issues that arise in assimilating cloudy sky AIRS data.

Assimilating a temporally (or spatially) denser network of cloudy observations produces
analysis and background estimates that are comparable to the estimates obtained after assimi-
lating a temporally (or spatially) sparse clear sky observation network. When the observations
are spatially dense, we find that the filter estimates improve as the localization radius increases.
In contrast, for a spatially sparse network, the filter estimates degrade as the localization radius
increases. This is true for each type of observation considered in this chapter: direct observations
and both clear and cloudy sky AIRS radiances.

Currently, the only AIRS observations that are used in weather systems are the cloud
free channels [60]. Although AIRS data are believed to be important for improving weather
prediction, the percentage of AIRS observations that are assimilated remains small. The findings
here can provide useful guidelines as well as the limitations for using cloud AIRS observations
in practical data assimilation. Our encouraging results obtained by using channels that observe
the entire atmospheric column rely on accurate estimates of the cloud cover percent and cloud
top pressure. In reality, cloud top pressure can be accurately estimated by CALIPSO [64],
while the estimation of cloud cover percent is challenging. Of course, biases can also arise from
other issues that are not discussed here, such as the satellite scan angle, calibration error, and
modeling errors in the radiative transfer model. The issue of bias correction is addressed in
[5, 57, 52, 16]. There are also other parameters that are not considered here, such as cloud
mask [59].
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