
ABSTRACT

ROHAL, JAMES JOSEPH. Connectivity in Semi-Algebraic Sets. (Under the direction of Hoon
Hong.)

A semi-algebraic set is a subset of real space defined by polynomial equations and inequalities

and is a union of finitely many maximally connected components. In this thesis we consider

the problem of deciding whether two given points in a semi-algebraic set are connected; that

is, whether the two points lie in the same connected component. In particular, we consider the

semi-algebraic set defined by f 6= 0 where f is a given polynomial. The motivation comes from

the observation that many important or non-trivial problems in science and engineering can be

often reduced to that of connectivity. Due to its importance, there has been intense research

effort on the problem. We will describe a symbolic-numeric method for solving this problem

based on gradient ascent. In the first part of this thesis we will describe the symbolic part of

the method. In a forthcoming second paper, we will describe the numeric part of the method.

The second part of this thesis focuses on proving the partial correctness and termination of the

symbolic method assuming the correctness of the numeric part. In the third part of the thesis

we give an upper bound on the length of a path connecting the two input points if they lie in a

same connected component. In the last part of the thesis we give experimental timing results for

the symbolic-numeric method.

© Copyright 2014 by James Joseph Rohal

All Rights Reserved

Connectivity in Semi-Algebraic Sets

by
James Joseph Rohal

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Applied Mathematics

Raleigh, North Carolina

2014

APPROVED BY:

Jonathan Hauenstein Mohab Safey El Din

Erich Kaltofen Agnes Szanto

Hoon Hong
Chair of Advisory Committee

DEDICATION

To my family, who always believed in me.

ii

BIOGRAPHY

James J. Rohal was born in Cleveland, OH and spent his childhood in Broadview Heights,

OH, where he attended Brecksville-Broadview Heights High School (BBHHS). Following in

the footsteps of one of his wonderful mentors from BBHHS, James enrolled at The College

of Wooster with the intention of becoming a psychologist. Motivated by friendly competition

with his friends, he found himself gravitating towards the field of mathematics and away from

psychology. In the summer of his sophmore year he participated in the Applied Mathematics

Research Experience where he helped design a web application for the Prentke-Romich company.

This experience led James to pursue web design as a hobby which he continues to do today.

During his junior year, he attended the Budapest Semesters in Mathematics (BSM) program

where his love for mathematics bloomed. He went on to participate in an NSF funded Research

Experience for Undergraduates at the University of Akron, which gave him his first taste of

mathematics research. After completing his B.A. in Mathematics at The College of Wooster

in Spring 2007, he decided to pursue a M.S. in Applied Mathematics from Miami University,

which he completed in Summer 2009. During his years at Miami, he started to believe that his

career should be in academia. In Fall 2007, the program at Miami gave him his own class to

teach. With shaking hands, he handed out his first syllabus and learned just how much fun it is

to teach. James went on to North Carolina State University to ultimately receive his Ph.D in

Applied Mathmatics in Summer 2014. During his years at North Carolina State University, he

reflected on his career path, ultimately realizing that he still wanted to mentor and help people.

He realized that all of his previous academic mentors have given him the skills to mentor other

people. Naturally, James decided to pursue an academic career path by becoming an assistant

professor. After a grueling job hunt, he landed a job as assistant professor at West Liberty

University and eagerly awaits what comes next.

iii

ACKNOWLEDGEMENTS

If you were to tell me eleven years ago that my academic career will culminate with me becoming

an assistant professor, I would have told you that you were crazy. Yet, I somehow survived the

entire ordeal. However, that would not have been possible without the help of my friends, family,

and many professors along the way. You have all helped me maintain my sanity throughout this

process and for that I wish to thank you from the bottom of my heart.

Let me begin with my friends. So many of you have pushed me to keep going when I faltered

and helped provide the necessary distractions to live a normal life outside of academics. To

Sofia, Jon, Scott, Stephen, Adam, Josh, and Ryan, you have all been my retreat; the people I go

to when I need to be picked up. Without you, this thesis would not have been completed. To

everyone else that I have met through the math department and over the course of my stay in

North Carolina, you have made this past five years the most memorable of my life.

It goes without saying, my family members are the most amazing people in the world. There

are no bigger cheerleaders than my parents. No finite number of words in this Acknowledgments

section can begin to thank them for everything they have done for me. Without a doubt, they

have been the most influential people in my life and have pushed me to achieve so much.

Finally, I would like to thank every professor that has ever aided me along my journey. To

my committee members, thank you for taking the time to facilitate my completion of the Ph.D.

It has been an honor working under your guidance, and I hope that the future will lead to many

collaborations. To my advisor, Hoon Hong, the entire journey could not have been made without

you. Your training has helped shape me in to the researcher that I am today. The greatest lesson

you ever taught me was to become a “superman” and to “fight against yourself” to become a

better person. There is no doubt that one day I will become a “superman.” This thesis is just

the first step in that goal.

iv

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

Chapter 1 Introduction . 1
1.1 Problem Statement . 5
1.2 Previous Work . 7
1.3 Algorithm . 8

1.3.1 Description of Algorithm Connectivity 9
1.3.2 Specification of Subalgorithm Destination 16

1.4 Overview of Results . 17
1.4.1 Partial Correctness . 18
1.4.2 Termination . 21
1.4.3 Length Bound . 21
1.4.4 Experimental Results . 25

Chapter 2 Partial Correctness . 27
2.1 Preliminaries . 27
2.2 Proof of Main Result . 35

Chapter 3 Termination . 39
3.1 Preliminaries . 39
3.2 Proof of Main Result . 40

Chapter 4 Length Bound . 47
4.1 Preliminaries . 47

4.1.1 Bound on Trajectory Length in a Ball . 47
4.1.2 Ball Enclosing Connectivity Path . 53

4.2 Proof of Main Result . 59

Chapter 5 Experimental Results . 69
5.1 Non-Trivial Examples . 70
5.2 Computational Timings . 79

Chapter 6 Conclusion and Outlook . 84

BIBLIOGRAPHY . 86

v

LIST OF TABLES

Chapter 1 Introduction . 1
Table 1.40 Approximate steepest ascent path lengths for a sample connectivity path

connecting p and q. 23

Chapter 5 Experimental Results . 69
Table 5.11 Abbreviations used throughout Section 5.2. 79
Table 5.12 Number of instances generated for each degree. 81
Table 5.13 Average running times for sparse and dense polynomial instances. 82
Table 5.15 Other computed averages for dense and sparse polynomial instances. . . . 83

vi

LIST OF FIGURES

Chapter 1 Introduction . 1
Figure 1.1 A circle and two points. 1
Figure 1.2 A curve and two points. 2
Figure 1.3 A surface and two points. 2
Figure 1.5 Plotting f = 0 using different numbers of sample points, where f is from

(1.4). 4
Figure 1.10 Sample inputs for Problem 1.7. 7
Figure 1.11 Connectivity and Destination algorithms. 10
Figure 1.13 Illustration of Step 2 of Connectivity. 11
Figure 1.14 Illustration of the points in R. 12
Figure 1.15 Illustration of step 5 of Connectivity. 13
Figure 1.16 Illustration of steps 7 and 8 of Connectivity. 15
Figure 1.21 Illustration of various steepest ascent paths. 17
Figure 1.26 Illustration of the contours of a routing function g along with its routing

points. 19
Figure 1.29 Illustration of the outgoing eigenvectors of (Hess g)(r2). 19
Figure 1.32 Illustration of a connectivity path connecting p and q. 21
Figure 1.39 A sample connectivity path connecting p and q. 22
Figure 1.46 Illustration of the ridge and valley set of g. 24
Figure 1.48 Illustration of several superlevel sets of g. 26

Chapter 2 Partial Correctness . 27
Figure 2.3 Illustration of the stable manifolds for the routing points of g. 28
Figure 2.23 A decomposition of a connected component of g. 36

Chapter 3 Termination . 39
Figure 3.12 Illustration of how to avoid the “bad” set of parameters. 45

Chapter 4 Length Bound . 47
Figure 4.1 Illustration of Ω curve. 48
Figure 4.33 Illustration of the induction base case. 61
Figure 4.34 A connected component containing more than one routing point. 62
Figure 4.35 Superlevel set of routing point lowest in height. 63
Figure 4.37 Illustration of points x′ and y′. 64
Figure 4.38 Illustration of points x′ and y′. 65
Figure 4.39 Illustration of Case 1.1.1. 66
Figure 4.40 Illustration of Case 1.1.2. 67
Figure 4.41 Illustration of Case 1.1.2. 68

Chapter 5 Experimental Results . 69
Figure 5.3 Illustration of the connectivity path for examples with n = 2. 71
Figure 5.5 Illustration of the connectivity path for example with n = 2. 75
Figure 5.8 Illustration of the connectivity path for examples with n = 3. 77

vii

Figure 5.10 Illustration of the connectivity path for example with n = 3. 78
Figure 5.14 Plot of the data from Table 5.13. 82

Chapter 6 Conclusion and Outlook . 84
Figure 6.1 Interval ODE enclosures. 85

viii

Chapter 1

Introduction

Let us begin by looking at Figure 1.1.

Figure 1.1 A circle and two points.

Ask yourself the following question.

Q1: Can I draw a continuous curve starting at the blue point and ending at the green

point without crossing the black curve?

We can immediately see that the answer is yes. Let us look at an example that is a little more

complex. Ask yourself the same question after studying Figure 1.2. The answer in this instance

is no. Answering the question might have been a bit more difficult because of the narrow gaps

in the curves.

Let us generalize question Q1 to a higher dimension. Rather than having a curve we cannot

cross, we will have a surface we cannot cross. The points in question will be points in three

dimensions. In Figure 1.3, we show one surface, two points, and three different views of these

three objects; the three views are the result of slight rotations counterclockwise about the

vertical axis. Ask yourself the following question.

1

CHAPTER 1. INTRODUCTION

Figure 1.2 A curve and two points.

Figure 1.3 A surface and two points.

Q2: Can I draw a continuous curve starting at the blue point and ending at the green

point without crossing the gray surface?

The answer to the question is no. It may be difficult to tell from the pictures, but the green point

lies inside one of the blobs while the blue point lies outside of all three blobs. Unfortunately, we

cannot generalize this question to higher dimensions because we are unable to visualize higher

dimensional surfaces very well.

Now rather than relying on pictures to describe our curves and surfaces, let us represent

these objects using polynomials. We will represent a curve by a single polynomial equation in

two variables and will represent a point by a tuple of numbers. We can rephrase question Q1 in

the following way.

Q3: Can I draw a continuous curve starting at (p1, p2) and ending at (q1, q2) without

crossing f(x1, x2) = 0?

In Figure 1.1, the black circle represents the curve f(x1, x2) = 0 where f = x21 + x22 − 1. The

blue and green points represent the tuples (−1, 1) and (1, 1), respectively. One can easily check

2

CHAPTER 1. INTRODUCTION

by hand that

f (−1, 1) > 0 and f(1, 1) > 0,

and conclude that there exists a curve connecting the two given points without crossing f = 0.

Hence the answer to question Q3 would be yes. Question Q3 becomes more difficult to answer

when the polynomial f is more complicated. For example, the black curve in Figure 1.2 is the

set of points where f(x1, x2) = 0 and

f = 4096x161 − 16384x141 + 26624x121 − 22528x101 − 1024x81x
4
2 + 1024x81x

2
2

+ 10496x81 + 2048x61x
4
2 − 2048x61x

2
2 − 2560x61 − 1280x41x

4
2 + 1280x41x

2
2

+ 256x41 + 256x21x
4
2 − 256x21x

2
2 − 4096x162 + 16384x142 − 26624x122

+ 22528x102 − 10560x82 + 2688x62 − 352x42 + 32x22 − 1.

(1.4)

Determining whether there exists such a curve connecting the two points
(
−1

2 ,
1
2

)
(blue point)

and
(
4
5 , 0
)

(green point) without crossing f = 0 is quite difficult now. It turns out that the

answer is no in this instance. It is trivial to generalize question Q3 to higher dimensions:

Q4: Can I draw a continuous curve starting at (p1, p2, p3) and ending at (q1, q2, q3)

without crossing f(x1, x2, x3) = 0?

In Figure 1.3, we draw the surface f(x1, x2, x3) = 0 where

f = x61 + 4x41x
2
2 + 3x41x

2
3 + 2x41 + 5x21x

4
2 + 8x21x

2
2x

2
3 + 8x21x

2
2 + 3x21x

4
3 − 12x21x

2
3

− 4x21 + 2x62 + 5x42x
2
3 + 6x42 + 4x22x

4
3 − 24x22x

2
3 + x63 − 14x43 + 28x23 − 7

and draw the points (0, 2, 0) (blue) and
(
4
5 , 0, 0

)
(green). Again, determining whether we can

connect the given points using a curve that avoids f = 0 is a very difficult problem. As before,

the answer is no.

In this thesis, we will focus on how to answer questions like Q3 and Q4 algorithmically.

Humans seem to have a natural ability to answer questions Q1 and Q2. As a result, researchers

have approached these types of question using methods from the field of computer vision. On

the other hand, humans do not appear to be able to answer questions Q3 and Q4 as easily.

We consider questions like Q3 and Q4 in this thesis because it is possible to answer these

questions rigorously; that is, we can guarantee the correctness of our response to the questions.

Representing a curve using a picture can be misleading and can lead to possibly incorrect

3

CHAPTER 1. INTRODUCTION

answers. For instance, in Figure 1.5 we draw the curve f = 0 using the ContourPlot command

in Mathematica, where f is from (1.4). In Figure 1.5a, many more sample points are used to

draw the curve while far fewer sample points are used to draw the curve in Figure 1.5b. As

mentioned earlier, we cannot connect the blue and green point in Figure 1.5a by a continuous

curve that does not cross the black curve. However, it appears that in Figure 1.5b that we can

connect the blue and green points by a continuous curve that does not cross the black curve.

This discrepancy was caused by how we drew the curve f = 0.

(a) (b)

Figure 1.5 Plotting f = 0 using different numbers of sample points, where f is from (1.4).

Questions like Q3 and Q4 are called connectivity queries. The white region in which the two

points lie is called a semi-algebraic set. We are interested in determining whether two given

points in a semi-algebraic set can be connected by some continuous curve. Notice that the black

curve in Figure 1.5a splits the white region into four distinct regions. These four regions are

called semi-algebraically connected components. An alternative formulation of questions Q3 and

Q4 is to determine whether the two given points lie in a same semi-algebraically connected

component.

Many important or non-trivial problems in science and engineering can be reduced to the

problem of deciding connectivity properties of semi-algebraic sets. The original motivation came

from robot motion planning where one tries to decide collision-free motions for a robot in an

environment filled with obstacles [Ito09; Lat91]. The free space in which the robot can move can

be modeled as a semi-algebraic set. Then one wants to know whether a robot can move from an

initial configuration (a starting point) to a final configuration (an ending point) within the free

space in a continuous motion. If this is true, one must find such a continuous trajectory. Motion

planning problems show up in other diverse contexts such as computational biology, virtual

prototyping in manufacturing, architectural design, aerospace engineering, and computational

4

1.1. PROBLEM STATEMENT CHAPTER 1. INTRODUCTION

geography [LaV06]. The field of motion planning was first introduced in scientific literature by

Lozano-Perez, Wesley, and Reif [LPW79; Rei79].

In a broad sense, determining whether two points lie in a same connected component

of a semi-algebraic set is part of a growing field called algorithmic real algebraic geometry

[Bas03]. Real algebraic geometry is concerned with studying the properties of semi-algebraic sets.

Computing properties such as the connected components of a semi-algebraic set is a fundamental

problem and motivated the problem of computing the topology of semi-algebraic sets (see for

example [SS83]).

In this thesis we present a robust symbolic-numeric method based on gradient ascent for

deciding whether two given points in a semi-algebraic set are connected; that is, whether the

two points lie in a same semi-algebraically connected component. In particular, we consider

the semi-algebraic set defined by f 6= 0 where f is a given polynomial. In this chapter we will

describe the symbolic part of the method and in a forthcoming paper, describe the numeric part

of the method. The symbolic part of the method was first discussed in [Hon10]. The second

part of the thesis focuses on proving the partial correctness and termination of the symbolic

method assuming the correctness of the numeric subalgorithm. In the third part of the thesis

we give an upper bound on the length of a path connecting the input points if they lie a same

semi-algebraically connected component. In the last part of the thesis we give experimental

timing results for our method.

In the first section we give a formal statement of the problem we will be studying in this

thesis. In the second section we give an overview of the previous work done on this and related

problems. In the third section we state the steps of the symbolic-numeric algorithm. Finally,

in the fourth section we explicitly state the results in the thesis. They will be described in full

detail in the chapters following.

1.1 Problem Statement

In the most general sense, the “connectivity problem” is to decide whether two given points in

a given set can be connected via a continuous path within the set. In this thesis, we consider

a crucial special case where the given set is a particular type of semi-algebraic set, in that it

consists of the points where a given polynomial f is not equal to 0. To state the problem more

precisely we first recall a few notions.

5

1.1. PROBLEM STATEMENT CHAPTER 1. INTRODUCTION

We say S is a semi-algebraic set in Rn if it is a finite union of sets of the form



x ∈ Rn

∣∣∣∣∣∣
P (x) = 0 ∧

∧

Q∈Q
Q(x) 6= 0





where P is a polynomial in R[x1, . . . , xn] and Q is a finite subset of R[x1, . . . , xn]. Let {f ? 0} be

a shorthand notation for {x ∈ Rn | f(x) ? 0} where ? ∈ {=, 6=, >,<,≥,≤}. A semi-algebraic set

S is semialgebrically connected if S is not the disjoint union of two non-empty semi-algebraic

sets that are both closed in S. A semi-algebraically connected component of a semi-algebraic

set S is a maximal semi-algebraically connected subset of S. A semi-algebraic set has a finite

number of semi-algebraically connected components. Throughout this thesis, when we use the

shorthand notation of connected component, we mean a semi-algebraically connected component

of a given semi-algebraic set.

Example 1.6. For f ∈ R[x1, x2] defined by

f = −2x21 + x41 − 2x22 + 2x21x
2
2 + x42

the set {f 6= 0} is a semi-algebraic set that has two (semi-algebraically) connected components.

We now state our problem precisely.

Problem 1.7.

Input: f ∈ Z[x1, . . . , xn], n ≥ 2, deg f ≥ 1, squarefree, with finitely many singular points,

p, q ∈ Qn ∩ {f 6= 0}.
Output: true, if and only if the two points p and q lie in a same connected component of

the set {f 6= 0}.

Example 1.8. We illustrate the problem using a toy example. Let

f = −2x21 + x41 − 2x22 + 2x21x
2
2 + x42. (1.9)

Figure 1.10a shows the set defined by f = 0. The two points p, q in Figure 1.10b cannot be

connected via a continuous path in {f 6= 0} since they belong to different connected components.

Hence the output should be false. The two points p, q in Figure 1.10c, however, can be connected

via a continuous path in {f 6= 0} since they belong to a same connected component. Hence the

output should be true.

6

1.2. PREVIOUS WORK CHAPTER 1. INTRODUCTION

(a)

p

q

(b)

p

q

(c)

Figure 1.10 Sample inputs for Problem 1.7.

1.2 Previous Work

Initially, it was not even clear as to whether the problem of rigorously determining whether

two points lie in a same connected component of a semi-algebraic set S ⊂ Rn was decidable.

Evidence that the problem was decidable came in the form of the works by Tarski [Tar51] and

Seidenberg [Sei54], who proved the decidability of the first order theory of real closed fields.

Since then, there has been intense research effort on development of algorithms for performing

quantifier elimination in the first order theory of real closed fields. A major breakthrough came

in the form of the cylindrical algebraic decomposition algorithm developed by Collins [Col75],

which used single variable resultants to perform quantifier elimination. Schwartz and Sharir

[SS83] recognized the power of the cylindrical algebraic decomposition algorithm and used it to

answer connectivity queries.

A fundamentally different strategy for solving the connectivity problem was presented by

Canny [Can88; Can93]. Canny popularized the term roadmap, a one-dimensional semi-algebraic

set that has nonempty intersection with each semi-algebraically connected component of S.

Intuitively, a roadmap is a one dimensional skeleton of S. To determine whether two input points

lie in a same connected component of S, one can link them to the roadmap of S and check

the connectivity using the roadmap. Canny improved on the original approach by Schwartz

and Sharir by using a new algebraic tool, the multivariate resultant. Canny’s results spawned

a movement over the past 20 years to steadily improve algorithms for specializations of the

connectivity problem. The basic roadmap algorithm has been improved and extended by many

researchers [Bas96; Bas00; GR93; GV92; Hei90].

7

1.3. ALGORITHM CHAPTER 1. INTRODUCTION

In the previous papers, the construction of a roadmap of S ⊂ Rn depends on singly

exponential many recursive calls to itself on several (n− 1) dimensional slices of S. Improving

the algorithms in those papers was a notoriously difficult problem with no progress made until

very recently. In the papers by Basu, Roy, Safey El Din, and Schost [Bas12; BR13; SEDS10;

SEDS13], they used an improved recursive scheme to drop the dimension by more than one in

each recursive call.

All of the algorithms discussed so far are based on real algebraic geometry computations,

which are difficult to implement and may not be fast in practice. This inspired researchers to

search for practical solutions to solving motion planning problems using heuristic or sampling

based approaches. In these approaches, completeness of the method is sacrified. One such

method was based on potential fields [Kha86]. The idea was to create a scalar function, called

the potential function, such that the gradient direction points away from the obstacle barrier.

One can then follow the gradient field via gradient ascent (or descent) to traverse the free space.

Typically the potential function is dependent on the input configurations; that is, the potential

function is chosen in such a way that the goal configuration is a global minimum of the potential

function.

A good middle ground between the symbolic approaches mentioned earlier and purely

numeric approaches mentioned in the previous paragraph are hybrid symbolic-numeric methods.

Recently, Iraji and Chitsaz [IC14] have proposed a method for computing a roadmap using a

symbolic-numeric scheme. Their scheme bounds the roadmap using a chain of adjacent boxes,

with each containing a slice of the roadmap. The method, called NuRA, preserves completeness

of the roadmap algorithm and numerical experiments indicate it is practical.

In 2010, Hoon Hong [Hon10] published a note detailing a symbolic-numeric method for

solving the problem (Problem 1.7) we are studying in this thesis. We present this method in

the next section. The note did not provide a proof of partial correctness or termination. The

method presented by Hong was unique in the sense that it answered connectivity queries using

gradient trajectories, like in potential field methods, which typically are transcendental.

1.3 Algorithm

In this chapter, we describe a symbolic-numeric algorithm called Connectivity which first

appeared in [Hon10]. We will describe the steps of Connectivity using a toy example shown

earlier. We only give the input/output specification of a certified numeric subalgorithm called

Destination. The steps will be described in a forthcoming paper. This section is divided into

two subsections. The first subsection describes the steps of the algorithm Connectivity. The

8

1.3. ALGORITHM CHAPTER 1. INTRODUCTION

second subsection describes only the input/output specification of Destination.

1.3.1 Description of Algorithm Connectivity

We will illustrate the steps of Connectivity using the toy problem given in Example 1.8. We

provide several pictures in the hope of aiding intuitive understanding of what each step does.

Of course, the algorithms do not draw the pictures. We state the steps of Connectivity in

Figure 1.11. We use the following notation. For a family F = {f1, . . . , fn} of polynomials in

Z[x1, . . . , xn], we let V (F) denote the zero-locus in Rn of the polynomials in F . For a C2 function

g we let Hess g denote the Hessian matrix of g. For a non-zero vector v, we let v̂ = v
‖v‖ where

‖·‖ is the Euclidean norm.

Example 1.12.

Input. f = −2x21 + x41− 2x22 + 2x21x
2
2 + x42, p = (19/5,−1/2) , q = (−9/10,−14/5) are the blue

and green points in Figure 1.10c, respectively.

• Here, n = 2, deg f = 4, and f is a squarefree polynomial with exactly one singular

point at (0, 0).

1. Initially, we have

γ = 5,

c = (0, 0).

2. In the first iteration of the loop we have

U = x21 + x22 + 1,

F =
{
−2x51 − 4x22x

3
1 + 20x31 − 2x42x1 + 20x22x1 − 8x1,

−2x52 − 4x21x
3
2 + 20x32 − 2x41x2 + 20x21x2 − 8x2

}
,

g =

(
−2x21 + x41 − 2x22 + 2x21x

2
2 + x42

)2
(
x21 + x22 + 1

)5 .

The current V (F) is one-dimensional. In Figure 1.13a we illustrate the contours for the

current g in gray and V (F) in red. We perturb c on the integer grid to be c = (0, 1). In the

9

1.3. ALGORITHM CHAPTER 1. INTRODUCTION

Algorithm: t← Connectivity(f, p, q)
Input : f ∈ Z[x1, . . . , xn], n ≥ 2, deg f ≥ 1, squarefree, with finitely many singular points,

p, q ∈ Qn ∩ {f 6= 0}.
Output : t, true if and only if the two points p and q lie in a same semi-algebraically connected

component of {f 6= 0}.

1 γ ← deg(f) + 1
c ← (0, . . . , 0)

2 loop
U ← (x1 − c1)2 + · · ·+ (xn − cn)2 + 1

F ←
{

2 · (∂xi
f) · U − γ · f · (∂xi

U)
}n
i=1

g ← f2

Uγ

if

(
V (F) is zero-dimensional and
∀r ∈ V (F), g(r) 6= 0 =⇒ det(Hess g)(r) 6= 0

)
then exit loop

else c← perturb current c on the integer grid

3 R← V (F) \ V
(
f
)

4 A ← k × k matrix with all entries set to 0,
where k is the number of points in R

5 foreach r ∈ R do
Vr ← set of real algebraic orthonormal eigenvectors of (Hess g)(r)

having positive eigenvalues

foreach v ∈ Vr do
j+ ← Destination(g,R, ri,+v)
j− ← Destination(g,R, ri,−v)

Aij+ ← 1
Aij− ← 1

6 M ← the reflexive, symmetric and transitive closure of the relation
represented by the matrix A

7 if ∇g(p) 6= 0 then i← Destination
(
g,R, p, ∇̂g(p)

)

else i← index of p in R

8 if ∇g(q) 6= 0 then j ← Destination
(
g,R, q, ∇̂g(q)

)

else j ← index of q in R
9 return t← true if and only if Mij = 1

Algorithm: i← Destination(g,R, p, v)
Input : g, C2 function

R, list of real algebraic points,
p, real algebraic point,
v, real algebraic unit vector,
such that there exists a unique r ∈ R reachable from p using g and v.

Output : i, the index of the unique point r.

Figure 1.11 Connectivity and Destination algorithms.

10

1.3. ALGORITHM CHAPTER 1. INTRODUCTION

(a) (b)

c1

c2

(c)

Figure 1.13 Illustration of Step 2 of Connectivity.

second iteration of the loop we update U , F and g to be

U = x21 + (x2 − 1)2 + 1,

F =
{
−2x51 − 4x22x

3
1 − 16x2x

3
1 + 28x31 − 2x42x1

− 16x32x1 + 28x22x1 + 16x2x1 − 16x1,

− 2x52 − 6x42 − 4x21x
3
2 + 28x32 + 4x21x

2
2 − 4x22

−2x41x2 + 28x21x2 − 16x2 + 10x41 − 20x21
}
,

g =

(
−2x21 + x41 − 2x22 + 2x21x

2
2 + x42

)2
(
x21 + (x2 − 1)2 + 1

)5 .

The new V (F) is zero-dimensional. We illustrate the perturbed V (F) as the five red points

in Figure 1.13b along with the contours for the new g. For all five r ∈ V (F), four satisfy

g(r) 6= 0, and det(Hess g)(r) 6= 0 at each of those four. Hence we exit the loop.

• One method for perturbing is using graded lexicographic order, which we visualize in

Figure 1.13c. If there is an arrow having tip at α and tail at β then xα > xβ in the

graded lexicographic order. We can follow the arrows to systematically change (c1, c2)

starting at (0, 0). This generalizes, of course, to any number of variables.

• One can use standard symbolic computation methods to check whether V (F) is zero-

dimensional and to compute the real algebraic points in it. Furthermore, the elements

of Hess g are rational functions with integer coefficients, so the determinant can be

computed as well.

3. We illustrate R as the four red points in Figure 1.14. Compare this to the five red points in

11

1.3. ALGORITHM CHAPTER 1. INTRODUCTION

Figure 1.13b.

r1

r2

r3

r4

Figure 1.14 Illustration of the points in R.

• Note that each connected component of {f 6= 0} contains at least one point from the

set R.

• One may observe from the contour plot of g, that the points R are critical points of g

where g is non-zero.

• Again, we can use standard symbolic computation methods to identify which of the

points in V (F) satisfy f = 0, and then remove them.

4. We have A =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




since k = 4.

5. Suppose r = r1 or r = r4. The matrix (Hess g)(r) has no positive eigenvalues. Hence Vr = ∅
and the body of the second foreach loop does not execute.

Suppose instead that r = r2 or r = r3, then the matrix (Hess g)(r) has one positive

eigenvalue. For this eigenvalue, there are two corresponding real algebraic unit eigenvectors.

If r = r2, the two eigenvectors are [−1 0]T and [1 0]T . We draw these two vectors as a dark

green
()

and light green
()

outward pointing arrow from r2 in Figure 1.15a. If r = r3,

the two eigenvectors are [−1 0]T and [1 0]T . We draw these two vectors as a dark blue()
and light blue

()
outward pointing arrow from r3 in Figure 1.15a. Rather than

write out an explicit expression of each of these eigenvectors in the subsequent paragraphs,

12

1.3. ALGORITHM CHAPTER 1. INTRODUCTION

we will use an arrow.

r2

r3

(a)

r1

r2

r3

r4

(b)

Figure 1.15 Illustration of step 5 of Connectivity.

We let

Vr2 =
{ }

and Vr3 =
{ }

.

Figure 1.15b shows four steepest ascent paths as red curves. Two of the red curves originate

from r2. We see that steepest ascent from r2 in the initial direction approaches r4.

Similarly, we see that steepest ascent from r2 in the initial direction approaches r4.

Hence when r = r2, the inner foreach loop executes once because there is only one vector

in Vr2 and

j+ ← Destination
(
g,R, r2,

)
= 4,

j− ← Destination
(
g,R, r2,

)
= 4,

A24 ← 1,

A24 ← 1.

Two of the other steepest ascent paths originate from r3. We see that steepest ascent from

r3 in the initial direction approaches r1. Similarly, we see that steepest ascent from

r3 in the initial direction approaches r1. Hence when r = r3, the inner foreach loop

13

1.3. ALGORITHM CHAPTER 1. INTRODUCTION

executes once because there is only one vector in Vr3 and

j+ ← Destination
(
g,R, r3,

)
= 1,

j− ← Destination
(
g,R, r3,

)
= 1,

A31 ← 1,

A31 ← 1.

The matrix A has the form

A =




0 0 0 0

0 0 0 1

1 0 0 0

0 0 0 0



.

• For each r ∈ R, the Hessian (Hess g)(r) is a real symmetric matrix. It is a well known

fact that the associated eigenvalues are all real and the eigenvectors corresponding to

different eigenvalues are orthogonal. However, there is no restriction that the eigenvalues

be simple, so it is possible that the geometric multiplicity of a positive eigenvalue is

greater than one. In this case, finding two linearly independent eigenvectors for a given

positive eigenvalue will suffice, as one can use the Gram-Schmidt process to find an

orthonormal basis.

• Using standard symbolic computation techniques, we can find the eigenvalues and

eigenvectors exactly because each point in R is an algebraic number and the elements

of Hess g are rational functions with integer coefficients and the denominator is non-

vanishing.

• Note that every steepest ascent path approaches a point in the set R. In fact, g was

constructed to ensure that the path never spirals in a bounded region or goes forever

into the infinity.

• It is crucial to observe that every two points in R can be connected if and only if they

are connected via the above computed paths.

6. We have M =




1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1




.

• Note that we can use the matrix M to check whether two points ri, rj ∈ R lie in a

14

1.3. ALGORITHM CHAPTER 1. INTRODUCTION

same connected component of {f 6= 0} by checking the (i, j) entry of M .

• We call M a connectivity matrix.

7. For the input point p shown in Figure 1.16, ∇g(p) 6= 0. We draw the vector ∇̂g(p) as the

p

q

r1

r2

r3

r4

Figure 1.16 Illustration of steps 7 and 8 of Connectivity.

blue arrow
()

. We see that steepest ascent from p in the initial direction approaches

r4. Hence

i← Destination
(
g,R, p,

)
= 4.

8. For the input point q shown in Figure 1.16, ∇g(q) 6= 0. We draw the vector ∇̂g(q) as the

green arrow
()

. We see that steepest ascent from q in the initial direction approaches

r4. Hence

j ← Destination
(
g,R, q,

)
= 4.

9. We note that M44 = 1 and thus the two points p, q can be connected. We set t = true.

Output. t = true.

As an overview, the algorithm Connectivity consists of three main stages.

1. Using f , compute “interesting” points on each connected component of {f 6= 0}. Create a

function g with desirable properties, one being that g = 0 if and only if f = 0. Use g and

the “interesting” points to form some vectors.

2. Connect the “interesting” points on each connected component of {g 6= 0} using the

vectors and trajectories of ∇g to create an adjacency matrix N by using Destination.

15

1.3. ALGORITHM CHAPTER 1. INTRODUCTION

3. Determine the connectivity of p and q using N and trajectories of ∇g by making use of

Destination once again.

The first and second stage are much more time-consuming than the third one. Fortunately, one

needs to carry out the first and second stage only once for a given f , since it depends only on f .

1.3.2 Specification of Subalgorithm Destination

In this subsection, we will describe the input/output specification of a certified numeric subal-

gorithm called Destination, whose steps will be described a forthcoming paper. We begin by

introducing some definitions.

Definition 1.17. Let g : Rn → R be a C2 function. Let p be a point in Rn and v be a unit

vector in Rn. We say φ is a trajectory of ∇g if φ : I → Rn is a C2 function where I is a finite

union of open intervals of R such that

φ′(t) = ∇g
(
φ(t)

)

and g ◦ φ : I → R is injective. The pieces of the image φ(I) are called steepest ascent paths. We

say φ is a trajectory of ∇g through p using v if φ : (0,∞)→ Rn is a C2 function and

∀t > 0
(
φ′(t) = ∇g

(
φ(t)

)
and φ′(t) 6= 0

)
(1.18)

and

lim
t→0+

φ(t) = p

and

lim
t→0+

φ′(t)

‖φ′(t)‖
= v

and g ◦ φ : (0,∞)→ R is injective. We call the image φ
(
(0,∞)

)
a steepest ascent path through p

using v and denote this as SA(g, p, v). We call dest(φ) a destination of φ if the following limit

exists:

dest(φ) = lim
t→∞

φ(t).

We say a point q ∈ Rn is reachable from p using g and v if there exists φ, a trajectory of ∇g
through p using v, such that dest(φ) = q.

Example 1.19. Let

g =

(
−2x21 + x41 − 2x22 + 2x21x

2
2 + x42

)2
(
x21 + (x2 − 1)2 + 1

)5 (1.20)

16

1.4. OVERVIEW OF RESULTS CHAPTER 1. INTRODUCTION

and v = [−1 0]T . In Figure 1.21a we illustrate SA(g, r2, v) as the red curve, where v is the

arrow. We see the point r4 is reachable from r2 using g and v. Let v = ∇̂g(p). In Figure 1.21b

we illustrate SA (g, p, v) as the blue curve, where v is the arrow. We see the point r4 is reachable

from p using g and v.

r2

r4

(a)

p

r4

(b)

Figure 1.21 Illustration of various steepest ascent paths.

We state the specification for the algorithm Destination in Figure 1.11 and give a sample

input and output in the following example.

Example 1.22. Let g be as in (1.20). Let and R, v be the set of points in red and the vector

shown as the arrow in Figure 1.21a, respectively. Let p = r2. The point r4 is the unique point

that is reachable from r2 using g and v. Hence the output of Destination(g,R, p, v) would be

4.

1.4 Overview of Results

In this section we give an overview of the results in this thesis. We first give an outline and then

give more precise results in the following subsections. The proofs of the results will be presented

in the corresponding chapters.

The first two results in the thesis are proving the partial correctness and termination of

Connectivity assuming the correctness of the subalgorithm Destination. In Chapter 2 we

prove partial correctness and in Chapter 3 we prove termination. For a given polynomial f , the

17

1.4. OVERVIEW OF RESULTS CHAPTER 1. INTRODUCTION

third result in the thesis is a bound on the length of a path connecting two points in a connected

component of {f 6= 0}. Besides being an interesting question on its own, it is a possible first step

toward completing a complexity analysis of Connectivity. We present this bound in Chapter 4.

We conclude the thesis with some computational results by executing Connectivity for various

size inputs. These results will be presented in Chapter 5.

1.4.1 Partial Correctness

We will prove the partial correctness of Connectivity in Theorem 2.24. The proof essentially

amounts to showing that any two “interesting” points in the same connected component of

{g 6= 0} are connected by a particular set of steepest ascent paths. In order to make the claim

precise, we will need to recall and introduce some notations and notions.

Definition 1.23. Let g : Rn → R be a C2 function with n ≥ 2. A critical point p of g is called

a routing point of g if g(p) 6= 0. Let R be the set of routing points of g. We call g a routing

function if the following conditions are satisfied:

• For all x, g(x) ≥ 0.

• For all ε > 0, there exists δ > 0, such that for all x, ‖x‖ ≥ δ implies g(x) ≤ ε.

• R is finite.

• For all x ∈ R, x is nondegenerate.

• The norms of the first and second derivatives of g are bounded.

Intuitively, the second condition in the routing function definition says that g vanishes at

infinity; that is, as ‖x‖ → ∞, g(x)→ 0.

Example 1.24. Let

g =

(
−2x21 + x41 − 2x22 + 2x21x

2
2 + x42

)2
(
x21 + (x2 − 1)2 + 1

)5 . (1.25)

In Figure 1.26 we show the contours of g along with the routing points of g as red dots. The

black curve and black dot is the set of points where g = 0. One may easily check that g satisfies

the conditions to be called a routing function.

For the remaining examples in this section, we let g be denoted by (1.25) and let R =

{r1, r2, r3, r4} denote the set of routing points of g.

18

1.4. OVERVIEW OF RESULTS CHAPTER 1. INTRODUCTION

r1

r2

r3

r4

Figure 1.26 Illustration of the contours of a routing function g along with its routing points.

Definition 1.27. Let A be a real symmetric matrix and let v be a unit eigenvector of A with

corresponding eigenvalue λ 6= 0. We say v is an outgoing eigenvector if λ > 0.

Example 1.28. In Figure 1.29, the outgoing eigenvectors of (Hess g)(r2) are shown as arrows

pointing outward from the point r2. To be more precise,

(Hess g)(r2) ≈

[
0.000198674 0

0 −0.000342484

]

and the vectors [1 0]T and [−1 0]T are outgoing eigenvectors for (Hess g)(r2).

r2

Figure 1.29 Illustration of the outgoing eigenvectors of (Hess g)(r2).

19

1.4. OVERVIEW OF RESULTS CHAPTER 1. INTRODUCTION

Definition 1.30. Let g : Rn → R be a C2 function with n ≥ 2. Let p, q ∈ Rn with p 6= q,

g(p) > 0, and g(q) > 0. We say p and q are connected by steepest ascent paths using outgoing

eigenvectors of g if there exist functions φ1, . . . , φk+1 and routing points r1, . . . , rk such that

• if ∇g(p) = 0, then φ1 = p and r1 = p, otherwise, φ1 is a trajectory of ∇g through p using

∇̂g(p) and dest(φ1) = r1,

• if ∇g(q) = 0, then φk+1 = q and rk = q, otherwise, φk+1 is a trajectory of ∇g through q

using ∇̂g(q) and dest(φk+1) = rk,

• for all 2 ≤ i ≤ k, there exists an outgoing eigenvector vi−1 of (Hess g)(ri−1) such that φi is

a trajectory of ∇g through ri−1 using vi−1 and dest(φi) = ri, or, there exists an outgoing

eigenvector vi of (Hess g)(ri) such that φi is a trajectory of ∇g through ri using vi and

dest(φi) = ri−1.

Collectively, we call r1, . . . , rk and φ1, . . . , φk+1 a connectivity path for p and q.

Example 1.31. In Figure 1.32 we illustrate a connectivity for path p, q represented by r4, r2,

φ1, φ2, φ3. We describe what φ1, φ2, and φ3 are now.

• Since ∇g(p) 6= 0, φ1 is a trajectory of ∇g through p using ∇̂g(p) where dest(φ1) = r4. The

blue curve is SA
(
g, p, ∇̂g(p)

)
and the light blue arrow is ∇̂g(p).

• Since ∇g(q) 6= 0, φ3 is a trajectory of ∇g through q using ∇̂g(q) where dest(φ3) = r2. The

green curve is SA
(
g, q, ∇̂g(q)

)
and the light green arrow is ∇̂g(q).

• The function φ2 is a trajectory of ∇g through r2 using v (red arrow) which is an outgoing

eigenvector of (Hess g)(r2). We see dest(φ2) = r4. The red curve is SA(g, r2, v).

The partial correctness of the algorithm Connectivity relies heavily on the following

theorem and is one of the main results in this thesis.

Theorem 1.33. If g is a routing function then any two points in a same connected component

of {g 6= 0} are connected by steepest ascent paths using outgoing eigenvectors of g.

Intuitively, this theorem says that any two points in a connected component of {g 6= 0}
can be connected using a particular set of steepest ascent paths. These paths exist are because

of the nice properties a routing function has. The proof Theorem 1.33 uses non-trivial results

from Morse theory [BH04; Mat02; Nic11]. We use Morse theory to derive information about

the shape of a connected component of {g 6= 0} by studying the routing points of g. With the

proof of Theorem 1.33 in hand, we can easily prove the partial correctness of Connectivity in

Theorem 2.24.

20

1.4. OVERVIEW OF RESULTS CHAPTER 1. INTRODUCTION

p

q

r2

r4

Figure 1.32 Illustration of a connectivity path connecting p and q.

1.4.2 Termination

The termination of Connectivity relies heavily on the following theorem, which is another one

of the main results in this thesis.

Theorem 1.34. For all nonzero f ∈ R[x1, . . . , xn] there exists a semi-algebraic set S ⊂ Rn

such that dim (Rn \ S) < n and for all (c1, . . . , cn) ∈ S the mapping g : Rn → R defined by

g =
f2

(
(x1 − c1)2 + · · ·+ (xn − cn)2 + 1

)deg(f)+1
(1.35)

is a routing function.

Intuitively, this theorem says there is a set of “bad” choices (Rn \ S) for (c1, . . . , cn) which is

“small.” By choosing (c1, . . . , cn) outside of this “bad” set, the function g in (1.35) is a routing

function. The proof of this theorem uses non-trivial results from semi-algebraic geometry such

as Sard’s Theorem and the Constant Rank Theorem. We will use Theorem 1.34 to prove the

termination of Connectivity in Theorem 3.13.

1.4.3 Length Bound

The next problem we tackle is in Chapter 4. For a given polynomial f , we will compute an upper

bound on the length of a connectivity path for any two points p, q in a connected component of

21

1.4. OVERVIEW OF RESULTS CHAPTER 1. INTRODUCTION

{f 6= 0}. To do so, we will bound the length of individual steepest ascent paths in a given ball.

Before we can state the bound precisely, we introduce some notions.

Definition 1.36. Let g : Rn → R be a C2 function with n ≥ 2. Suppose p, q ∈ Qn are connected

by steepest ascent paths using outgoing eigenvectors of g and denote by r1, . . . , rk, φ1, . . . , φk+1

a connectivity path P for p and q. We define the length of the connectivity path P to be

k+1∑

i=1

Length(φi).

Example 1.37. Let (
10x31 − 10x21 + 10x22 − 1

)2
(
x21 + x22 + 1

)4 . (1.38)

In Figure 1.39 we visualize a connectivity path P given by r3, r5, r8, r4, r2, φ1, φ2, φ3, φ4, φ5, φ6 for

points p and q as the union of red steepest ascent paths and red routing points. The white arrows

v4,−v4, v5,−v5 represent the outgoing eigenvectors of (Hess g)(r4), (Hess g)(r5), respectively,

that appear in the definition of P . We give approximations of the lengths of six steepest ascent

paths connecting p and q in Table 1.40. We approximate the length of the connectivty path P

to be

2.97553 + 2 · 1.3696 + 2 · 1.96328 + 0.964633 = 10.6059.

r2

r3

r4

r5

r8

p

q

v5

v4

Figure 1.39 A sample connectivity path connecting p and q.

22

1.4. OVERVIEW OF RESULTS CHAPTER 1. INTRODUCTION

Table 1.40 Approximate steepest ascent path lengths for a sample connectivity path connecting p
and q.

φi Image of φi Adjacent Points Approximate Length(φi)

φ1 SA
(
g, p, ∇̂g(p)

)
p, r2 2.97553

φ2 SA (g, r5, v5) r3, r5 1.3696
φ3 SA (g, r5,−v5) r5, r8 1.96328
φ4 SA (g, r4,−v4) r4, r8 1.96328
φ5 SA (g, r4, v4) r4, r2 1.3696

φ6 SA
(
g, q, ∇̂g(q)

)
r1, q 0.964633

Definition 1.41. For a polynomial P ∈ Z[x1, . . . , xn] of the form

P =
∑

E

aEx
E ,

where E = (E1, . . . , En) runs over n-tuples of nonnegative integers and xE = xE1
1 · · ·xEnn , we

define the height of P to be

hgt(P) = max
E
|aE |.

If P = {P1, . . . , Pr} is a subset of Z[x1, . . . , xn], then we define the height of P to be

hgt(P) = max
{

hgt(P1), . . . ,hgt(Pr)
}
.

Example 1.42. Let

P1 = x21 + 4x1x2 − 20x2 + 3,

P2 = 2x21 − 4x1x2 + 3x1 − 1,

then

hgt(P1) = max
{
|1|, |4|, |−20|, |3|

}
= 20,

hgt(P2) = max
{
|2|, |−4|, |3|, |−1|

}
= 4.

If P = {P1, P2}, then hgt(P) = max{20, 4} = 20.

23

1.4. OVERVIEW OF RESULTS CHAPTER 1. INTRODUCTION

Definition 1.43. [Hof86] For a C2 function g : Rn → R we define the gradient extremal of g as

Θ(g) = {x ∈ Rn | ∃λ ∈ R, (Hess g)(x) · ∇g(x) = λ∇g(x)} . (1.44)

Example 1.45. We illustrate Θ(g) for (1.38) as the blue curve in Figure 1.46a. In Figure 1.46b,

we can observe that the set {g = 0} (black curve) and the routing points of g (red points) are

contained in Θ(g).

(a) (b)

Figure 1.46 Illustration of the ridge and valley set of g.

An example of when Θ(g) is not a curve can be seen when

g =

(
x21 + x22

)2
(
x21 + x22 + 1

)3 .

Here, Θ(g) = R2 and g is not a routing function because the set of points
{

(x1, x2)
∣∣ x21 + x22 = 2

}

are routing points of g that are degenerate.

We now state the length bound result. A detailed proof will be given in Chapter 4.

Theorem 1.47. Let f ∈ Z[x1, . . . , xn], n ≥ 2, degree d ≥ 2 with no singular points. Suppose

(c1, . . . , cn) ∈ Zn such that

g =
f2

(
(x1 − c1)2 + · · ·+ (xn − cn)2 + 1

)d+1

24

1.4. OVERVIEW OF RESULTS CHAPTER 1. INTRODUCTION

is a routing function. Let H = hgt(f). Let Θ(g) be the gradient extremal of g. Let D be a

connected component of {f 6= 0} and p, q ∈ Qn ∩D. Let B be a ball of radius

r = n
(
120A1A2Hd(c21 + · · ·+ c2n + 1)

)4n3(6d)3n

where

A1

A2
= min




g(p), g(q),

1
(

2dH
(
c21 + · · ·+ c2n + 2

))104n3(5d)5n





is an irreducible fraction with A1, A2 > 0. Suppose Θ(g)∩B is a compact rectifiable curve. Then

p and q can be connected in D by a connectivity path of length bounded by

4nr(6d+ 4)n−1.

The proof idea was motivated by the work of D’Acunto and Kurdyka [DK04]. The basic idea

being that we can bound the length of a trajectory of ∇g in a ball by bounding the length of Θ(g)

in a ball. To find an appropriate sized ball, we use the simple observation that a connectivity

path for p and q must be contained in {g ≥ ε} where

ε = min
{
g(p), g(q),M

}

and M is the minimum value of g(r) over all routing points r of g. For instance, for the g, p,

and q given in Example 1.37, we visualize {g ≥ g(p)}, {g ≥ g(q)}, and {g ≥ M} as the blue,

green, and red regions, respectively, in Figure 1.48. We see that

{g ≥ g(q)} ⊂ {g ≥M} ⊂ {g ≥ g(p)}

and any connectivity path P for p and q must be contained in {g ≥ ε} = {g ≥ g(p)} (the blue

region).

1.4.4 Experimental Results

The length bound we gave in Theorem 1.47 is a sort of intrinsic complexity result for the

Connectivity algorithm. Presently, we have not carried out a full complexity analysis of the

Connectivity algorithm. This is because the steps for the subalgorithm Destination have not

been fully detailed. What we present in Chapter 5 are computational results to show that the

method Connectivity is fast in practice. We accomplish this by executing the Connectivity

25

1.4. OVERVIEW OF RESULTS CHAPTER 1. INTRODUCTION

p

q

8g ¥ gHpL< 8g ¥ M <8g ¥ gHqL<

Figure 1.48 Illustration of several superlevel sets of g.

algorithm for several non-trivial inputs. We then uniformly generate points on a grid and show

how quickly we can answer connectivity queries. We also give evidence that the Connectivity

method runs faster on sparse polynomial input as opposed to dense polynomial input.

26

Chapter 2

Partial Correctness

In this chapter, we will prove the partial correctness of the algorithm Connectivity in the form

of Theorem 2.24. It essentially amounts to showing Theorem 1.33 is true. We assume throughout

this section that g : Rn → R is a C2 function with n ≥ 2. The examples in this section will

assume g takes the form

g =

(
−2x21 + x41 − 2x22 + 2x21x

2
2 + x42

)2
(
x21 + (x2 − 1)2 + 1

)5 .

In the first section we give some preliminary notions and lemmas necessary for proving Theo-

rem 1.33. We then prove Theorem 1.33 and the correctness of the algorithm Connectivity in

the second section.

2.1 Preliminaries

To prove Theorem 1.33, we will use results motivated from the field of Morse theory. In Morse

theory, one analyzes the topology of a manifold by studying differentiable functions on that

manifold. In our case, we will be studying the manifold Rn and decomposing a region into sets

of similar behavior based on trajectories.

Definition 2.1. If p ∈ Rn is a nondegenerate critical point of g, then the stable manifold of p

is defined to be

W s(p) = {x ∈ Rn | dest (φx) = p} ∪ {p}.

where φx is the trajectory of ∇g through x using ∇̂g(x).

Notice that the stable manifold of p contains p.

27

2.1. PRELIMINARIES CHAPTER 2. PARTIAL CORRECTNESS

Example 2.2. Figure 2.3 illustrates the stable manifolds for the routing points of g. The stable

manifolds for r1 and r4 are the blue and green regions, respectively. The stable manifold for r2

is the blue line while the stable manifold for r3 is the green line.

-4-2024
-6-4-202 WsHr4L

WsHr1L
WsHr2L
WsHr3L

Figure 2.3 Illustration of the stable manifolds for the routing points of g.

According to Figure 2.3, it appears we can decompose each connected component of {g 6= 0}
into a disjoint union of stable manifolds. We will use the following lemmas to show that if g

is a routing function, we can in fact decompose a connected component into a disjoint union

of stable manifolds. First, we observe the simple fact that g strictly increases along a steepest

ascent path.

Lemma 2.4. Let p ∈ Rn. If p is not a critical point of g then g increases along a trajectory of

∇g through p using ∇̂g(p).

Proof. Let p ∈ Rn with ∇g(p) 6= 0. Let φ denote a trajectory of ∇g through p using ∇̂g(p). We

have
d

dt
g
(
φ(t)

)
=
〈
∇g
(
φ(t)

)
, φ′(t)

〉
=
〈
∇g
(
φ(t)

)
,∇g

(
φ(t)

)〉
=
∥∥∇g

(
φ(t)

)∥∥2 . (2.5)

Since p is not a critical point of g,
∥∥∇g

(
φ(t)

)∥∥2 > 0 for all t > 0. It follows from (2.5) that

d

dt
g
(
φ(t)

)
> 0

for all t > 0. Hence g strictly increases along φ.

For the rest of the section we assume g is a routing function and D is a connected component

28

2.1. PRELIMINARIES CHAPTER 2. PARTIAL CORRECTNESS

of {g 6= 0}. First, we state some simple facts about g.

Lemma 2.6. g is a bounded.

Proof. The first property in the definition of routing function guarantees g is bounded below by

0. Suppose for a contradiction that g is not bounded above. Then for all M , there exists x ∈ Rn

such that |g(x)| > M . In particular, for every n ∈ N, there exists xn ∈ Rn for which |g(xn)| > n.

Fix such a sequence {xn}∞n=1. Certainly, g(xn) ≥ 0. Let

L = min
n∈N
{g(xn) | g(xn) > 0} ,

S = {x ∈ Rn | g(x) ≥ L} .

Let k be the index such that g(xk) = L. The second property in the definition of a routing

function guarantees S is bounded by letting ε = L > 0. Since the tail {xn}∞n=k is contained in S,

the Bolzano-Weierstrass theorem implies there exists a subsequence {xnj}∞j=1 which converges

to some limit M . Since g is continuous everywhere,

lim
j→∞

g(xnj) = g(M).

In particular, the sequence
{
g(xnj)

}∞
j=1

is convergent, hence bounded. However, by construction,∣∣g(xnj)
∣∣ > nj ≥ j for all j ∈ N, and hence this sequence is not bounded, a contradiction. Thus g

is bounded above. Therefore g is bounded.

Lemma 2.7. For all L > 0, {x ∈ D | g(x) ≥ L} is compact.

Proof. Let L > 0 and K = {x ∈ D | g(x) ≥ L}. Recall that g is bounded (Lemma 2.6), hence

there exists M , such that for all x ∈ Rn, |g(x)| ≤M . The set

S = g−1
(
[L,M]

)
= {x ∈ Rn | g(x) ≥ L}

is closed because it is the preimage of a closed set under a continuous function and bounded due

to the second property of g being a routing function (letting ε = L > 0). Therefore, S is compact.

The semi-algebraic set {g > 0} is a disjoint union of open semi-algebraic connected components

D1, . . . , Dk where D1 = D (without loss of generality). Since L > 0, S is contained in {g > 0}
and hence the disjoint union of D1, . . . , Dk. It follows that K = D ∩ S is compact.

We show next that the trajectories are unique assuming a certain condition.

29

2.1. PRELIMINARIES CHAPTER 2. PARTIAL CORRECTNESS

Lemma 2.8. Let p ∈ D. If ∇g(p) 6= 0, then there exists a unique trajectory φ of ∇g through p

using ∇̂g(p)

Proof. Let p ∈ D. The component D is an open subset of Rn containing p and g ∈ C2(D).

According to the Fundamental Existence-Uniqueness Theorem [Per01, Section 2.2, pp. 74], there

exists a > 0 such that

φ′(t) = ∇g
(
φ(t)

)

φ(0) = p
(2.9)

has a unique solution φ(t) on the interval [−a, a]. Let [0, β) be the right maximal interval of

existence of φ(t).

Because g is bounded (Lemma 2.6), the trajectory φ is bounded. It follows from [Per01,

Theorem 3, Section 2.4, pp. 91] that β =∞. Certainly limt→0+ φ(t) = p and

lim
t→0+

φ′(t)

‖φ′(t)‖
= ∇̂g(p).

Hence φ is the trajectory of ∇g through p using ∇̂g(p).

Remark 2.10. A similar argument to the one above shows that if p ∈ D and ∇g(p) 6= 0 then

there exists a unique C2 function φ : (−∞, 0]→ Rn satisfying

φ′(t) = −∇g
(
φ(t)

)

φ(0) = p.

Combined with the argument above, this means that there exists a unique C2 function φ : R→ Rn

satisfying (2.9). When ∇g(p) = 0, φ = p is the unique solution to (2.9), which exists for all

t ∈ R. We can conclude that the gradient vector field ∇g is complete.

Next, we have the important observation that the destination of every steepest ascent path

is a routing point of g.

Lemma 2.11. Let p ∈ D with ∇g(p) 6= 0 and φ be the trajectory of ∇g through p using ∇̂g(p).

Then dest(φ) exists and is a routing point of g in D.

Proof. Let p ∈ D with ∇g(p) 6= 0 and φ be the trajectory of ∇g through p using ∇̂g(p), whose

existence is guaranteed by Lemma 2.8. Let K = {x ∈ D | g(x) ≥ g(p)}. Lemma 2.7 implies K is

compact. Let {tn} ⊂ R+ be a sequence with limn→∞ tn =∞. Let
{
t̃n
}

denote the tail of {tn}

30

2.1. PRELIMINARIES CHAPTER 2. PARTIAL CORRECTNESS

so that
{
φ
(
t̃n
)}
⊆ K for all n. The sequence

{
φ
(
t̃n
)}

is an infinite set of points in a compact

set, so it has an accumulation point q.

First, we show q is a critical point of g. It suffices to show ∇g
(
φ(t)

)
→ 0 as t → ∞.

Differentiating φ′(t) we find

φ′′(t) =
(
∇ ∂

∂φ
∇g
(
φ(t)

))
φ′(t)

=
(
∇ ∂

∂φ
∇g
(
φ(t)

))
∇g
(
φ(t)

) (2.12)

holds for all t > 0. The first and second derivatives of g are bounded because g is a routing

function, hence we may deduce from (2.12) that φ′ is uniformly Lipschitz continuous for t > 0.

Since g is bounded (Lemma 2.6), g∞ := limt→∞ g
(
φ(t)

)
<∞, and for 0 < t <∞

g∞ ≥ g
(
φ(t)

)
> g(p),

so from (2.5) ∫ ∞

0
‖φ′(t)‖2 dt =

∫ ∞

0

d

dt
g
(
φ(t)

)
dt = g∞ − g(p) <∞. (2.13)

Since φ′ is uniformly Lipschitz continuous, (2.13) implies

lim
t→∞
∇g
(
φ(t)

)
= lim

t→∞
φ′(t) = 0

as desired.

We claim dest(φ) = limt→∞ φ(t) = q. Since nondegenerate critical points are isolated

[BH04, Lemma 3.2, Section 3.1, pp. 47], we can pick a closed neighborhood U of q where q

is the only critical point of U . Suppose for a contradiction limt→∞ φ(t) 6= q, then there is

an open neighborhood V ⊂ U of q and a sequence {sn} ⊂ R+ with limn→∞ sn = ∞ and

φ (sn) ∈ U \ V ⊆ U \ V . Thus, the sequence {φ(sn)} has an accumulation point in the compact

set U \ V which, as above, must be a critical point of g. This contradicts the choice of U , and

therefore, dest(φ) = q.

Finally, we show q is a routing point in D. We find g(q) > g(p) > 0 because g increases

along φ as t→∞ (Lemma 2.4). Hence, q ∈ D is a routing point.

We now show that the connected components of {g 6= 0} can be decomposed in to a disjoint

union of stable manifolds.

Lemma 2.14. The component D is a disjoint union of stable manifolds corresponding to the

31

2.1. PRELIMINARIES CHAPTER 2. PARTIAL CORRECTNESS

routing points contained in D; that is,

D =
∐

p∈RD

W s(p).

where RD is the set of routing points of g in D.

Proof. Let RD be the set of routing points of g in D. Let q ∈ D be arbitrary. Certainly q ∈W s(q),

so we may assume ∇g(q) 6= 0. Let φ denote the trajectory of ∇g through q using ∇̂g(q), whose

existence is guaranteed by Lemma 2.8. It follows from Lemma 2.11 that there exists a routing

point r ∈ RD such that dest(φ) = r. Hence q ∈ W s(r). This shows D is a union of stable

manifolds. It is a disjoint union due to the uniqueness of φ.

Now that we have a decomposition, the next natural question to ask is whether we can

determine the dimension of each stable manifold. The definition of a stable manifold relies on a

critical point, so one may believe that the dimension relies on the index of the critical point. To

see this, we use the Stable Manifold Theorem, a fundamental result in the field of dynamical

systems.

Lemma 2.15. If p ∈ D is a routing point of g with index k, then W s(p) is a smooth k-

dimensional manifold.

Proof. Let p be a routing point of index k of g contained in D. The result in [BH04, Theorem

4.2, Section 4.1, pp. 94] has the same conclusion but the assumptions are that g is a Morse

function defined on a finite dimensional compact smooth Riemannian manifold. The function g

restricted to D is Morse because g is a routing function. The connected component D of {g 6= 0}
is a finite dimensional smooth Riemannian manifold, but it is not compact. The compactness

assumption is used in several spots throughout the proof of the cited theorem.

(1) There exist finitely many critical points of g on the given manifold [BH04, Corollary 3.3,

Section 3.1, pp. 47].

(2) The gradient vector field ∇g generates a unique 1-parameter group of diffeomorphisms

defined on R×D [BH04, Section 4.1, pp. 94].

(3) The destination of a trajectory is a critical point [BH04, Corollary 3.19, Section 3.2, pp.

59].

All of these issues can be addressed though.

32

2.1. PRELIMINARIES CHAPTER 2. PARTIAL CORRECTNESS

(1) The manifold D contains finitely many routing points because g is a routing function.

(2) This follows from the fact that the gradient vector field ∇g is complete (Remark 2.10).

(3) This is exactly Lemma 2.11.

We expect all the routing points in a connected component to be connected via steepest

ascent paths, so we expect each component to have a “peak” to ascend to; that is, we expect

each component to have a local maximum. The simple observation follows from the routing

function properties.

Lemma 2.16. The component D contains a routing point of g having index n.

Proof. Take x0 ∈ D. Then g(x0) > 0. Let K = {x ∈ D | g(x) ≥ g(x0)}. The set K is compact

(Lemma 2.7), hence g has a maximum z on K. The maximum must occur on the interior of K.

If the interior is non-empty, then there exists an open ball B around z such that g(z) ≥ g(x) for

all x ∈ B. Hence z is a local maximum of g; that is, z is a routing point having index n. If the

interior is empty, choose x1 ∈ D such that g(x1) < g(x0), which is possible due to the second

property of g being a routing function. Let K̃ = {x ∈ D | g(x) ≥ g(x1)}. Again, the set K̃ is

compact so g has a maximum z̃ on K. The interior of K̃ is non-empty, so as argued before, z̃ is

a local maximum of g; that is z̃ is a routing point having index n.

Throughout this section we will use the notation ∂W to denote the boundary of a stable

manifold W .

Lemma 2.17. If p is a routing point of g of index n, then ∂W s(p) contains no routing points

of index n.

Proof. Let p be a routing point of g of index n. Assume for a contradiction that ∂W s(p) contains

a routing point q of index n. Hence q is a local maximum of g. Any neighborhood U of q must

contain a point y ∈W s(p) where g(y) > g(q), contradicting the fact that q is a local maximum.

Hence, ∂W s(p) contains no routing points of index n.

Lemma 2.18. Let r ∈ D be a routing point of g of index n. Let p ∈ ∂W s(r) ∩ D with

∇g(p) 6= 0 and φ be the trajectory of ∇g through p using ∇̂g(p). Then there exists a routing

point q ∈ ∂W s(r) ∩D such that dest(φ) = q.

Proof. Let r ∈ D be a routing point of g of index n. Let p ∈ ∂W s(r)∩D with ∇g(p) 6= 0 and φ

be the trajectory of ∇g through p using ∇̂g(p), whose existence is guaranteed by Lemma 2.8.

According to Lemma 2.11, there exists a routing point q ∈ D such that dest(φ) = q. Hence

33

2.1. PRELIMINARIES CHAPTER 2. PARTIAL CORRECTNESS

p ∈ W s(q). In fact, all the points along SA
(
g, p, ∇̂g(p)

)
are in W s(q). Since φ is continuous

and D is a disjoint union of stable manifolds (Lemma 2.14), we find that q ∈ ∂W s(r). Thus

q ∈ ∂W s(r) ∩D as desired.

Lemma 2.19. Let r ∈ D be a routing point of g of index n. Let p ∈ ∂W s(r) ∩D be a routing

point of g of index strictly less than n. If v is a outgoing eigenvector of (Hess g)(p) tangent to

∂W s(r), then there exists a routing point q ∈ ∂W s(r) ∩D that is reachable from p using v.

Proof. Let r ∈ D be a routing point of g of index n. Let p ∈ ∂W s(r) ∩D be a routing point of

g of index strictly less than n. Let v be a outgoing eigenvector of (Hess g)(p) tangent to ∂W s(r).

As argued in the proof of Lemma 2.15, we may use the conclusions of the Stable Manifold

Theorem [BH04, Theorem 4.2, Section 4.1, pp. 94]. This theorem guarantees the existence of

the unstable manifold

W u(p) = {x ∈ Rn | dest (φx) = p} ∪ {p}.

where φx is the trajectory of −∇g through x using −∇̂g(x). There exists a submanifold of W u(p)

that is tangent to the eigenspace spanned by outgoing eigenvectors of Hess g(p). In particular,

this submanifold corresponds to SA(g, p, v). For each s in SA(g, p, v), ∇g(s) 6= 0. We can argue

using Lemma 2.11 that there exists a routing point q ∈ D such that for each s in SA(g, p, v),

dest(φs) = q where φs is the trajectory of ∇g through s using ∇̂g(s). In particular, q is reachable

from p using g and v. Certainly q ∈ D. Since SA(g, p, v) is a continuous curve and D is a disjoint

union of stable manifolds (Lemma 2.14), we find that q ∈ ∂W s(r). Thus q ∈ ∂W s(r) ∩D as

desired.

Lemma 2.20. Let r ∈ D be a routing point of g of index n. Let q be a routing point of g on

∂W s(r) ∩D. Then q is connected to r by steepest ascent paths using outgoing eigenvectors of g.

Proof. Let r ∈ D be a routing point of g of index n. Let q be a routing point of g on ∂W s(r)∩D.

According to Lemma 2.17, q must be a routing point of index strictly less than n. Hence,

(Hess g)(q) has at least one outgoing eigenvector, call it v.

If v is not tangent to ∂W s(r), then SA(g, q, v) or SA(g, q,−v) lies in the stable manifold

W s(r) because D is a disjoint union of stable manifolds (Lemma 2.14). Hence r is reachable

from q using v (or −v). We see q is connected to r by steepest ascent paths using outgoing

eigenvectors of g.

If v is tangent to ∂W s(r), according to Lemma 2.19 there exists another routing point q2

that is reachable from q = q1 using v. The routing point q2 has index strictly less than n, so as

before, there exists a routing point q3 that is reachable from q2 using v. We repeat this process.

34

2.2. PROOF OF MAIN RESULT CHAPTER 2. PARTIAL CORRECTNESS

The function g is bounded (Lemma 2.6) and there are finitely many routing points, so eventually

the process will terminate, and we will find a routing point qk, k ≥ 1, where (Hess g)(qk) has an

outgoing eigenvector vk that is not tangent to ∂W s(r). The point r is reachable from qk using g

and vk as before. We have found a sequence of routing points q1 . . . , qk, k ≥ 2 such that qi is

reachable from qi−1 using g and an outgoing eigenvector of (Hess g)(qi−1). Thus the point q is

connected to r by steepest ascent paths using outgoing eigenvectors of g by the connectivity path

q1, . . . , qk, r and the corresponding trajectories connecting the routing points q1, . . . , qk, r.

Definition 2.21. Let p, q ∈ D, p 6= q, be routing points of g of index n. We say W s(p) is

adjacent to W s(q) if D ∩ ∂W s(p) ∩ ∂W s(q) is non-empty.

Lemma 2.22. Let p, q ∈ D, p 6= q, be routing points of g of index n. If W s(p) is adjacent to

W s(q), then D ∩ ∂W s(p) ∩ ∂W s(q) must contain a routing point of g.

Proof. Let p, q ∈ D, p 6= q, be routing points of g of index n. Assume Z = D∩∂W s(p)∩∂W s(q)

is non-empty. Suppose Z does not contain a routing point of g. As Z is non-empty, there exists

a point x ∈ Z that is not a routing point of g. According to Lemma 2.18, there exists a routing

point q ∈ Z. However, this contradicts our assumption. Hence, Z contains a routing point of

g.

2.2 Proof of Main Result

In this section we will prove Theorem 1.33 and prove the partial correctness of Connectivity

in the form of Theorem 2.24.

Proof of Theorem 1.33. Let R denote the set of routing points of g in D and p, q ∈ D, p 6= q

be arbitrary. We will show p and q are connected by steepest ascent paths using outgoing

eigenvectors of g. We may assume without loss of generality that p and q are routing points of

g, otherwise we can always ascend to one using Lemma 2.11 if ∇g(p) 6= 0 or ∇g(q) 6= 0. Let

m1, . . . ,m` denote the routing points in R having index n. We see ` ≥ 1 due to Lemma 2.16.

We see that |R| > 1 because p and q are both distinct routing points of g.

Suppose first that ` = 1. According to Lemma 2.15, W s(m1) is n-dimensional and the stable

manifolds for the points in R \ {m1} have dimension strictly less than n. As D is a disjoint

union of stable manifolds of the routing points in R (Lemma 2.14), it follows that the points in

R \ {m1} lie on ∂W s(m1). We see for all r ∈ R \ {m1}, r is connected to m1 by steepest ascent

paths using outgoing eigenvectors (Lemma 2.20), hence any two routing points in D can be

connected using steepest ascent paths using outgoing eigenvectors of g.

35

2.2. PROOF OF MAIN RESULT CHAPTER 2. PARTIAL CORRECTNESS

Now suppose ` > 1. According to Lemma 2.15, for all i, W s(mi) is n-dimensional and the

stable manifolds for the points in R \ {m1, . . . ,m`} have dimension strictly less than n. If p (or

q) is a routing point with index strictly less than n, then it must lie on the boundary of some

stable manifold W s(mi). According to Lemma 2.20, we can connect p (or q) to mi by steepest

ascent paths using outgoing eigenvectors. Hence, we may assume without loss of generality that

p and q are routing points having index n. We will connect p and q by looking at a sequence of

adjacent stable manifolds of dimension n as seen in Figure 2.23a.

p = m1

m2

m3

m4

m5

q = m6

(a)

p = m1

m2

m3

m4

m5

q = m6

(b)

Figure 2.23 A decomposition of a connected component of g.

It suffices to show that we can connect any two mi, mj whose stable manifolds W s(mi) and

W s(mj) are adjacent because D is a disjoint union of stable manifolds of the routing points in

R (Lemma 2.14). From Lemma 2.22, we know two adjacent manifolds have a routing point in

common in their boundary. According to Lemma 2.20, we can connect this common routing

point to both mi and mj by steepest ascent paths using outgoing eigenvectors. Hence we can

connect mi and mj by steepest ascent paths using outgoing eigenvectors. We illustrate this in

Figure 2.23b. This completes the proof of Theorem 1.33.

Theorem 2.24. Algorithm Connectivity is correct.

Proof. Let f , p, q be the inputs to Connectivity satisfying the specification. Suppose Con-

nectivity terminated with output t. Let

g =
f2

Uγ
where U = (x1 − c1)2 + · · ·+ (xn − cn)2 + 1, γ = deg(f) + 1

be the function formed in step 2. First, we claim that the set R formed in step 3 is the set of

36

2.2. PROOF OF MAIN RESULT CHAPTER 2. PARTIAL CORRECTNESS

routing points of g. We observe that

∇g =
f

Uγ+1
(2∇fU − γf∇U) (2.25)

so

R = {x ∈ Rn | ∇g(x) = 0, g(x) 6= 0}

= {x ∈ Rn | 2∇f(x)U(x)− γf(x)∇U(x) = 0, f(x) 6= 0} .

Let F = 2∇fU − γf∇U . We see that the V (F) contains exactly the routing points of g and

the singular points of f because U is non-zero. In step 3, we remove the finitely many singular

points of f from V (F), leaving us with the correct set of routing points. The set of routing

points is finite because V (F) is zero-dimensional.

We now claim that g is a routing function. The function g is C2 because it is a rational

function where the denominator is nonnegative. According to step 2, the finitely many routing

points of g are all nondegenerate because det(Hess g)(r) 6= 0 for all r ∈ R. The choice of

γ = deg(f) + 1 guarantees the property that g vanishes at infinity (property two) because the

degree of the numerator is smaller than the degree of the denominator. Certainly the function

g is nonnegative. To understand why the first derivative of g is bounded, we observe in (2.25)

that each component of ∇g is a rational function where the degree of the numerator is smaller

than the degree of the denominator, which is nonnegative. A similar argument holds for each

component of Hess g. Hence g satisfies the properties in the definition of a routing function.

Observe that g = 0 if and only if f = 0. Due to Theorem 1.33, we know the routing points of

g on a connected component of {f 6= 0} are connected by steepest ascent paths using outgoing

eigenvectors of g. It is important to observe that these steepest ascent paths do not cross f = 0

due to Lemma 2.4. In steps 5 and 6, we use the certified Destination algorithm to determine

which routing points are adjacent to one another via steepest ascent paths using outgoing

eigenvectors. The matrix A is the adjacency matrix for the graph whose vertices are the routing

points and whose edges are the steepest ascent paths connecting them. Hence, the matrix M ,

the reflexive, symmetric, transitive closure of A, satisfies the condition that Mij = 1 if and only

if ri, rj ∈ R lie in a same connected component of {f 6= 0}.
We claim that the point p can be connected to a routing point ri lying in the same connected

component of {f 6= 0}. If ∇g(p) = 0 then p is a routing point of g because f(p) > 0 implies

g(p) > 0; that is, there exists i such that ri = p. Otherwise, if ∇g(p) 6= 0, let φp be the

trajectory of ∇g through p using ∇̂g(p). According to Lemma 2.11, there exists i such that the

37

2.2. PROOF OF MAIN RESULT CHAPTER 2. PARTIAL CORRECTNESS

destination of φp is a routing point ri. The index i in this case can be determined using the

Destination algorithm (step 7). A similar arugment holds for q; the point q can be connected

to a routing point rj lying in the same connected component of {f 6= 0}, with this index being

determined in step 8. We use the connectivity matrix M in step 9 to determine if ri and rj lie

in a same connected component of {f 6= 0} to conclude whether p and q lie in a same connected

component.

38

Chapter 3

Termination

In this chapter, we will prove that the termination of the algorithm Connectivity in the form

of Theorem 3.13. For this, we must show that the perturbation step completes after a finite

number of iterations. We will show in Theorem 1.34 that there is only a small (measure zero) set

of parameters for which the function g formed in Connectivity is not a routing function. Hence

we are guaranteed to find a routing function by finitely many perturbation of these parameters

on the integer grid.

In the first section we state some preliminary notions and a lemma used in the proof of The-

orem 1.34. In the second section we prove Theorem 1.34 and show the algorithm Connectivity

terminates.

3.1 Preliminaries

We begin by recalling defintions from semi-algebraic geometry [Bas03]. Let A ⊂ Rm and B ⊂ Rn

be two semi-algebraic sets. A function f : A→ B is semi-algebraic if its graph is a semi-algebraic

subset of Rm+n. For open A, the set of semi-algebraic functions from A to B for which all partial

derivatives up to order ` exist and are continuous is denoted S`(A,B). The class S∞(A,B) is

the intersection of S`(A,B) for all finite `. A S∞-diffeomorphism φ from a semi-algebraic open

U ⊂ Rn to a semi-algebraic open V ⊂ Rn is a bijection from U to V such that φ ∈ S∞(U, V)

and φ−1 ∈ S∞(V,U).

Let ` ≥ 0. A semi-algebraic A ⊂ Rn is a S∞-submanifold of Rn of dimension ` if for every

x ∈ A there exists a semi-algebraic open U of Rn and an S∞-diffeomorphism φ from U to a

39

3.2. PROOF OF MAIN RESULT CHAPTER 3. TERMINATION

semi-algebraic open neighborhood V of x in Rn such that φ(0) = x and

φ
(
U ∩

(
R` × {0}

))
= A ∩ V,

where R` × {0} =
{

(a1, . . . , a`, 0, . . . , 0) ∈ Rn
∣∣ (a1, . . . , a`) ∈ R`

}
.

Lemma 3.1. Let A be an open S∞ manifold and f ∈ S∞(A,Rm). Then there exists a

semi-algebraic set S ⊆ Rm and semi-algebraic open set U ⊆ A such that for all y0 ∈ S,

dim
{
x ∈ U

∣∣ f(x)− y0 = 0
}

= dimA−m. Furthermore, dim (Rm \ S) < m.

Proof. Let A be an open S∞ manifold and f ∈ S∞(A,Rm). By the semi-algebraic version

of Sard’s Theorem [Bas03, Theorem 5.56, Section 9, pp. 192], the set C of critical values of

f is a semi-algebraic set in Rm and dim (Rm \ S) < m. Let S = Rm \ C be its complement

(which is a semi-algebraic set). For any y0 ∈ S there exists x0 ∈ A where y0 = f(x0). Let

g : A → Rm be defined by g(x) = f(x) − y0. Since y0 /∈ C, rank d g(x0) = m because f

has full rank on a neighborhood of x0. By the Constant Rank Theorem [Bas03, Theorem

5.57, Section 9, pp. 192] there exists a semi-algebraic open neighborhood U of x0 in A where

dim
{
x ∈ U

∣∣ f(x)− y0 = 0
}

= dim ker g = dimA− rank g = dimA−m.

3.2 Proof of Main Result

We now have the machinery to present the proof of Theorem 1.34.

Proof of Theorem 1.34. Assume f ∈ R[x1, . . . , xn] is non-zero. For notational purposes let

x = (x1, . . . , xn). We will find a set S so that g is a routing function in the following manner.

First, let p = (p1, . . . , pn) be the mapping where pi : A ⊂ Rn+1 → R is defined by

pi(x, t) = −∂if(x)t+ xi (3.2)

and A = {(x, t) ∈ Rn × R | t 6= 0 and f(x) 6= 0}. Observe that A is an open S∞ manifold of

dimension n+ 1 and p ∈ S∞(A,Rn). By Lemma 3.1 there exists a semi-algebraic set S1 ⊆ Rn

and semi-algebraic open set U1 ⊆ A ⊆ Rn × R such that for all y ∈ S1, dimV1 = dimA− n =

(n+ 1)− n = 1 where V1 = {(x, t) ∈ U1 | p(x, t)− y = 0}.
Let y = (y1, . . . , yn) ∈ S1. Define q : B ⊂ Rn+1 → R to be

q(x, t) =
(x1 − y1)2 + · · ·+ (xn − yn)2 + 1

tf(x)
(3.3)

40

3.2. PROOF OF MAIN RESULT CHAPTER 3. TERMINATION

where B = A ∩ V1. Observe B is an open S∞ manifold of dimension 1 and q ∈ S∞(B,R).

From Lemma 3.1 we find a semi-algebraic set S2,y ⊆ R and semi-algebraic open set U2 ⊆
B ⊆ Rn × R such that for all ỹ ∈ S2,y, dimV2,y = dimB − 1 = 1 − 1 = 0 where V2,y =

{(x, t) ∈ U2 | q(x, t)− ỹ = 0}.
We claim S2,y = R. From Lemma 3.1 we know

R \ S2,y = {critical values of q}.

For notational purposes let

W (x) = (x1 − y1)2 + · · ·+ (xn − yn)2 + 1.

so q(x, t) = W (x)
tf(x) . Consider the system ∇q(x, t) = 0:




∂x1q(x, t)
...

∂xnq(x, t)

− W (x)
f(x)t2




=




0
...

0

0



.

For all (x, t) ∈ B, we have f(x) 6= 0, t 6= 0, and W (x) 6= 0, which leads us to conclude

−W (x)

f(x)t2
= 0

is not true. Hence, the mapping q has no critical points. Since the set of critical values of q is

empty, S2,y = R.

Let S = S1. Clearly S ⊂ Rn and S is semi-algebraic. The fact dim (Rn \ S) < n follows

directly from Lemma 3.1.

Let c = (c1, . . . , cn) ∈ S, γ ∈ S2,c \ {0} = R \ {0},

U(x) = (x1 − c1)2 + · · ·+ (xn − cn)2 + 1

and

g(x) =
f(x)2

U(x)γ
.

Let R = {x ∈ Rn | ∇g(x) = 0 and f(x) 6= 0} denote the set of routing points of g. We claim R

41

3.2. PROOF OF MAIN RESULT CHAPTER 3. TERMINATION

is finite. Observe

∇g(x) =
2f(x)∇f(x)U(x)γ − γf(x)2U(x)γ−1∇U(x)

U(x)2γ
(3.4)

=
f(x)U(x)γ−1

[
2∇f(x)U(x)− γf(x)∇U(x)

]

U(x)2γ
(3.5)

=
f(x)

Uγ+1

[
2∇f(x)U(x)− γf(x)∇U(x)

]
. (3.6)

Let

P (x) =
f(x)

U(x)γ+1

Q(x) = 2∇f(x)U(x)− γf(x)∇U(x).

so ∇g(x) = P (x)Q(x). For all x, P (x) 6= 0, so x ∈ R if and only if Q(x) = 0 and f(x) 6= 0. Let

us rewrite Q(x) = 0 in the following way:

0 = 2∇f(x)U(x)− γf(x)∇U(x)



0
...

0


 =




2∂x1f(x)U(x)− 2γf(x)(x1 − c1)
...

2∂xnf(x)U(x)− 2γf(x)(xn − cn)







c1
...

cn


 =




−∂x1f(x) U(x)
γf(x) + x1
...

−∂xnf(x) U(x)
γf(x) + xn


 .

Let t = U(x)
γf(x) so

c1 = −∂x1f(x)t+ x1

... (3.7)

cn = −∂xnf(x)t+ xn

γ =
U(x)

tf(x)

Since γ 6= 0, x ∈ R if and only if x satisfies (3.7) and f(x) 6= 0. Using our previous notation,

42

3.2. PROOF OF MAIN RESULT CHAPTER 3. TERMINATION

rewrite (3.7) as

0 = p1(x, t)− c1
... (3.8)

0 = pn(x, t)− cn
0 = q(x, t)− γ.

Thus, when (c1, . . . , cn) ∈ S and γ 6= 0, x ∈ R if and only if x satisfies (3.8) and f(x) 6= 0.

Suppose now that x ∈ R. It follows that t = U(x)
γf(x) 6= 0 and q(x1, . . . , xn, t) − γ = 0, implying

(x1, . . . , xn, t) ∈ V2,c. As shown earlier, dimV2,c = 0. Combining this with the fact that R× (t 6=
0) ⊂ V2,c implies dimR = 0. The set R is finite because R is semi-algebraic and has dimension

zero.

We now show the routing points of g are nondegenerate. From (3.6) we see

(Hess g)(x) = JP (x)Q(x) + P (x)JQ(x)

where JP is the jacobian of P . When we evaluate Hess g at a point x ∈ R,

(Hess g)(x) = JP (x)Q(x) + P (x)JQ(x) = P (x)JQ(x).

Hence

det(Hess g)(x) = det
(
P (x)JQ(x)

)
= P (x)n det JQ(x).

Clearly P (x) 6= 0. When (c1, . . . , cn) ∈ S then (c1, . . . , cn) is not a critical value of p. Also γ is

not a critical value of q. Thus det JQ(x) 6= 0. It follows det(Hess g)(x) 6= 0 as desired.

What we have shown so far is that if (c1, . . . , cn) ∈ S and γ 6= 0, then the function

g =
f2(

(x1 − c1)2 + · · ·+ (xn − cn)2 + 1
)γ

has finitely many routing points that are all nondegenerate. The choice of γ = deg(f) + 1

guarantees the function g vanishes at infinity (property two) because the degree of the numerator

is smaller than the degree of the denominator. Certainly the function g is nonnegative. To

understand why the first derivative of g is bounded, we observe in (2.25) that each component

of ∇g is a rational function where the degree of the numerator is smaller than the degree of

the denominator, which is nonnegative. A similar argument holds for each component of Hess g.

43

3.2. PROOF OF MAIN RESULT CHAPTER 3. TERMINATION

Hence the function g is a routing function, as desired.

Before we present the termination proof, we make a small remark. In a careful reading of

the previous proof, one will observe that the set S is explicitly found. For a given polynomial f ,

S was chosen as

S = Rn \ {critical values of p} (3.9)

where p = (p1, . . . , pn), pi : Rn × R → R, pi(x, t) = −∂xif(x)t + xi and each of critical points

(x, t) of p must satisfy f(x) 6= 0 and t 6= 0. This explicit construction allows us to visualize the

“bad” set of parameters for which g in (1.35) may not be a routing function. We illustrate this

idea in the following example.

Example 3.10. Let us suppose f takes the form (1.9) in our toy example from Example 1.8.

In this particular example, p = (p1, p2) and

p1 = x1

(
1− t

(
x21 + x22 − 1

))
,

p2 = x2

(
1− t

(
x21 + x22 − 1

))
.

One can compute the critical points of p to be

{
(x, t) ∈ Rn × R

∣∣∣∣
(
x21 + x22 = 1 ∧ t =

1

2

)
∨
(
x21 + x22 = 1 ∧ t =

1

x21 + x22 − 1
∧ f 6= 0

)}
.

We visualize the set of critical points in Figure 3.12a as the red surface and red curve excluding

the black dashed curve and black point. The critical values of p are shown in Figure 3.12b as

the red curve and red point. Hence the white region in Figure 3.12b is the set S. By choosing a

(c1, c2) value outside of the red in Figure 3.12b; that is, by choosing (c1, c2) ∈ S, Theorem 1.34

guarantees that

g =
f2

((x1 − c1)2 + (x2 − c2)2 + 1)5
(3.11)

is a routing function. In Figure 3.12c we see that after three perturbations using graded

lexicographic order, we arrive at a (c1, c2) = (0, 2) ∈ S. Therefore, we can safely assume

g =
f2

(
x21 + (x2 − 2)2 + 1

)5

is a routing function.

In Chapter 1.3 we ran Connectivity with f as input in Example 1.12. For that run, only

44

3.2. PROOF OF MAIN RESULT CHAPTER 3. TERMINATION

(a) (b)

H0, 0L

H0, 1L

H1, 0L

H0, 2L

c1

c2

(c)

Figure 3.12 Illustration of how to avoid the “bad” set of parameters.

one perturbation was necessary to find a routing function g. The choice of (c1, c2) = (0, 1) was

sufficient because the function

g =
f2

(
x21 + (x2 − 1)2 + 1

)5

was a routing function. Interestingly, (c1, c2) = (0, 1) ∈ Rn \ S. This example seems to indicate

that the set of “bad” parameters may be even “smaller” than what we determine in Theorem 1.34.

We now present the termination proof for Connectivity.

Theorem 3.13. Algorithm Connectivity terminates.

Proof. Let f , p, q be the inputs to Connectivity satisfying the specification. To show Algorithm

Connectivity terminates, first we must show that the loop in step 2 terminates in a finite

number of iterations. Let S be the semi-algebraic set from Theorem 1.34 for the given f .

According to Theorem 1.34 the set of choices for (c1, . . . , cn) for which

g =
f2

(
(x1 − c1)2 + · · ·+ (xn − cn)2 + 1

)deg(f)+1

is not a routing function is “small” since dim(Rn \ S) < n; that is, Rn \ S is contained in a

Zariski closed set of dimension strictly less than n. Hence, after a finite number of perturbations

on the integer grid, we are guaranteed to find a parameter (c1, . . . , cn) ∈ S which will guarantee

g is a routing function.

45

3.2. PROOF OF MAIN RESULT CHAPTER 3. TERMINATION

Let (c1, . . . , cn) ∈ S and

γ = deg(f) + 1,

U = (x1 − c1)2 + · · ·+ (xn − cn)2 + 1,

V (F) =
{

2 · (∂xif) · U − γ · f · (∂xiU)
}n
i=1
.

We claim V (F) is zero-dimensional. As mentioned previously, V (F) is the union of the set of

routing points of g along with the singular points of f . Since g is a routing function, it has

finitely many routing points. Combined with the fact that f has finitely many singular points

by assumption, then V (F) must be zero-dimensional. We see that the loop terminates because

each of the finitely many routing points of g, the set of points r ∈ V (F) where f(r) 6= 0, are

nondegenerate.

The rest of the algorithm terminates because there are finitely many routing points, the

Hessian at each of these routing points has finitely many outgoing eigenvectors, and the algorithm

Destination terminates.

46

Chapter 4

Length Bound

For a routing function g, we give an upper bound on the length of a connectivity path con-

necting any two points in a semi-algebraically connected component of {g 6= 0} in the form of

Theorem 1.47. The proof relies on several preliminary lemmas which we give in the first section.

A first step in the proof of our upper bound is to show the existence of an upper bound on the

length of a single trajectory of ∇g. Such an argument is given in the first subsection for the

case when the trajectory is contained in a unit ball. We then extend this result to bound the

length of a trajectory contained in any ball. A second step in the proof, given in the second

subsection, is to identify a ball containing the connectivity path for any two given points. In the

second section of this chapter we prove Theorem 1.47.

4.1 Preliminaries

In this section we present several notions and preliminary lemmas used in the proof of Theo-

rem 1.47. The first subsection gives a bound on the length of trajectories in a given ball. The

second subsection gives a bound on the radius of a ball containing a connectivity path.

4.1.1 Bound on Trajectory Length in a Ball

In this subsection we will give an upper bound on the length of a single trajectory restricted

to a ball. We must restrict the trajectory to a ball, otherwise we could have trajectories of

infinite length. We use the idea of D’Acunto and Kurdyka [DK04] of comparing the length of a

trajectory to a length of the “thalweg” of this function — the locus of points where the level

sets are the most far apart — which has the advantage of being semi-algebraic. See [CM12;

DK05; DK06] for other applications of this idea. One can show that this thalweg is contained in

47

4.1. PRELIMINARIES CHAPTER 4. LENGTH BOUND

an algebraic set having dimension 1. The length of this algebraic curve can be estimated via the

Cauchy-Crofton formula, by counting intersection points with a generic hyperplane. This length

then can be used to give the upper bound we desire. Once a bound on the trajectory length is

found in a unit ball, an easy translation can be made to that of any ball of radius r.

Suppose g is a C1 function and consider a C1 curve Ω having the following property: for

all x ∈ Ω and for all y ∈ g−1
(
g(x)

)
we have ‖∇g(x)‖ ≤ ‖∇g(y)‖. For all x ∈ Rn, the fiber

g−1
(
g(x)

)
is a level set of g; that is,

g−1
(
g(x)

)
= {p ∈ Rn | g(p) = g(x)} .

The curve Ω is the set of points where the gradient norm is smallest along the contour. In the

picture below we see that the curve Ω travels between level sets that are furthest apart because

that is when the slope is the shallowest.

steep shallow steep

Ω

x
y

g−1
(
g(x)

)

Figure 4.1 Illustration of Ω curve.

We give a specific name to the curve Ω.

Definition 4.2. [DK05] For a function g : Rn → R, we say that a point x ∈ Rn belongs to the

ridge and valley set of g if the function ‖∇g‖2 restricted to g−1
(
g(x)

)
has a local minimum at x.

We denote by Ω(g) the ridge and valley set of g.

The terminology “ridge and valley lines” used here are motivated by its analogy with the

geographic thalweg, the line of lowest elevation within a valley, and the ridges and valleys that

appear in the Earth’s landscape. Under certain mild assumptions, if the ridge and valley set

is a curve, then it is longer than a given trajectory. Let D be an open subset of Rn and let

g : Rn → R be a C2 function in some neighborhood of D. Suppose Ω(g) ⊂ D is a C1 curve. We

assume that for each t ∈ g(D), the set g−1(t) ∩ Ω(g) consists of exactly one point and that, for

48

4.1. PRELIMINARIES CHAPTER 4. LENGTH BOUND

all but finitely many t ∈ f(D), the curve Ω(g) is transverse to g−1(t).

Lemma 4.3. [DK04, Lemma 7.9] Let X ⊂ D be the image of a trajectory of ∇g, then

Length(X) ≤ Length
(
Ω(g)

)
.

A careful reading of the proof of Lemma 4.3 gives a more precise result.

Lemma 4.4. [DK04] Let a, b ∈ R with a < b. Let Di, i ∈ I be all connected components of

g−1
(
(a, b)

)
and let λi : [αi, βi]→ Di be a trajectory of ∇g in Di and Xi be its image. Then

Length(Xi) ≤ Length
(
Ω(g) ∩Di

)
.

In particular, ∑

i∈I
Length(Xi) ≤ Length

(
Ω(g) ∩ g−1

(
(a, b)

))
.

We wish to estimate the length of the curve Ω(g). The approach taken by Kurdyka and

D’Acunto [DK04] uses the observation that Ω(g) is contained in the ridge and valley set of g.

Remark 4.5. Observe that ∇
(
‖∇g‖2

)
= 2(Hess g) · ∇g. Hence Θ(g) is the set of points where

the function ‖∇g‖2 restricted to g−1
(
g(x)

)
has a critical point at x. Thus we can study Θ(g) by

looking at 2× 2 minors of the matrix

[
2(Hess g)(x) · ∇g(x)

∇g(x)

]
.

From the previous remark, we see Ω(g) is contained in Θ(g). The dimension of Θ(g) is not

always equal to 1 as we saw in Example 1.45. However, we will be assuming that Θ(g) is a

compact rectifiable curve when restricted to a closed ball. Knowing that Θ(g) is a curve and

that it contains Ω(g) will allow us to write the bounds in Lemmas 4.3 and 4.4 in terms of Θ(g).

Furthermore, as Θ(g) is algebraic, we can estimate its length using the Cauchy-Crofton formula.

Lemma 4.6 (Cauchy-Crofton formula [CM12; Cro68; DK04; Don96; Fed96; San04]). Let Θ be

a compact rectifiable curve, and let H be the set of affine hyperplanes in Rn. Let i(Θ, H) denote

the cardinality of Θ ∩H. There exists a normalization dµ of the canonical measure d µ̃ on H
such that the length of Θ can be expressed by the following formula:

Length(Θ) =

∫

H
i(Θ, H) dµ.

49

4.1. PRELIMINARIES CHAPTER 4. LENGTH BOUND

Let us denote the open n-ball centered at x with radius r using the notation

Bn(x, r) =
{
y ∈ Rn

∣∣ ‖y − x‖ < r2
}
.

Let Bn = Bn(0, 1).

Remark 4.7. According to [Don96], the set of hyperplanes which meet the closed ball Bn is

compact, so has finite volume V , say. If Θ is the intersection of Bn with a real algebraic curve of

degree δ, then the intersection number i(Θ, H) is at most δ (almost everywhere) and it follows

that the length of Θ is at most V δ where

V =

∫

H1

dµ,

and H1 is the set of affine hyperplanes that cut the unit ball. One can compute V [DK04; Fed96],

the µ-volume of the set of affine hyperplanes having a non-empty intersection with the closed

unit ball, to be

V := ν(n) = 2Γ

(
1

2

)
Γ

(
n+ 1

2

)
Γ
(n

2

)−1
≤ 2n (4.8)

where Γ is the Euler gamma function.

Lemma 4.9. Suppose f ∈ Z[x1, . . . , xn] with n ≥ 2 and degree d ≥ 2 and (c1, . . . , cn) ∈ Zn such

that

g =
f2

(
(x1 − c1)2 + · · ·+ (xn − cn)2 + 1

)d+1

is a routing function. Suppose Θ(g) ∩ Bn is a compact rectifiable curve. The length of any

trajectory of ∇g in Bn is bounded by

2n(6d+ 4)n−1.

Proof. Suppose f ∈ Z[x1, . . . , xn] with n ≥ 2 and degree d ≥ 2 and (c1, . . . , cn) ∈ Zn such that

g =
f2

(
(x1 − c1)2 + · · ·+ (xn − cn)2 + 1

)d+1

is a routing function. We will estimate the length of a trajectory of ∇g in the closed unit ball

by estimating the length of the ridge and valley set of g restricted to the closed unit ball; that is

Ω̃(g) =
{
x ∈ Bn

∣∣ ‖∇g‖2 has a local minimum at x ∈ g−1
(
g(x)

)
∩ Bn

}
.

50

4.1. PRELIMINARIES CHAPTER 4. LENGTH BOUND

Observe that the fibers g−1(t) are compact for each t > 0 because they are closed and they

are bounded (since g is bounded by Lemma 2.6). Hence for any t > 0, the minimum of ‖∇g‖2

restricted to the hypersurface g−1(t) ∩ Bn is reached inside Bn. It follows that Ω(g) restricted to

the closed unit ball is contained in the gradient extremal of g restricted to the closed unit ball;

that is,

Ω̃(g) ⊆ Θ̃(g) =
{
x ∈ Bn

∣∣ ∃λ ∈ R, (Hess g)(x) · ∇g(x) = λ∇g(x)
}
.

We will compare the length of a trajectory of ∇g in the closed unit ball to the length of Θ̃(g). To

bound the length of Θ̃(g), we will use the Cauchy-Crofton formula. To do so, we must calculate

the the number of points of intersection of a generic affine hyperplane with Θ̃(g).

First, we claim that for a generic affine hyperplane H, the set H∩Θ̃(g) has at most (6d+4)n−1

points. According to Remark 4.5, we need only look at the 2× 2 minors of

[
2(Hess g)(x) · ∇g(x)

∇g(x)

]
. (4.10)

Write g(x) = f(x)2

U(x)γ . Then

∇g(x) =
f(x)

[
2∇f(x)U(x)− γf(x)∇U(x)

]

U(x)γ+1
=
f(x)P (x)

Q(x)

and each component is a rational function whose numerator f(x)Pi(x) has degree at most 2d+ 1

where P = (P1, . . . , Pn). Furthermore, if H = (Hess g)(x) then

Hij =

[
∂jf(x)Pi(x) + f(x)∂jPi(x)

]
Q(x)−

[
f(x)Pi(x)

]
∂jQ(x)

U(x)2γ+2

where ∂jf(x) is the partial derivative of f with respect to xj . We see the numerator of Hij is a

polynomial of degree at most 2d+ 2.

The zero set of the first n− 1 minors of (4.10) define Θ̃(g), which is a compact rectifiable

curve. This is equivalent to a system of n− 1 polynomial equations, each having degree at most

(2d+ 1) + (2d+ 2) + (2d+ 1) = 6d+ 4.

Bezout’s Theorem states that if an algebraic curve is contained in Rn is given by n − 1

polynomial equations p1 = · · · = pn = 0 where pi is a polynomial of degree di, then the number of

points of intersection with a generic affine hyperplane of Rn is bounded by d1 . . . dn−1. Applying

this result to Θ̃(g), the maximum number of points of intersection is bounded by (6d+ 4)n−1 as

desired.

51

4.1. PRELIMINARIES CHAPTER 4. LENGTH BOUND

Let φ be a trajectory of ∇g whose image X is contained in Bn. According to Lemma 4.3,

Length(X) ≤ Length
(

Ω̃(g)
)

. As Θ̃(g) contains Ω̃(g), it suffices to find a bound on the length

of Θ̃(g) to bound the length of X. According to Remark 4.7, we may apply the Cauchy-Crofton

formula to Θ̃(g) to find

Length(X) ≤ ν(n)(6d+ 4)n−1 ≤ 2n(6d+ 4)n−1

as desired.

We can extend the results to any ball of radius r in the following way. Let B denote a ball

centered at x0 of radius r. Suppose g is a routing function and φ is a trajectory of ∇g whose image

X is in B. Define the mapping T : Bn → B by T (X) = x0 +rX and define the function h = g ◦T .

There exists a trajectory α of ∇h whose image Y is contained in Bn and α(t) = T−1
(
φ(t)

)
. We

observe that φ′(t) = T ′
(
α(t)

)
α′(t) = rα′(t). Hence Length(X) = r Length(Y). This allows us to

rewrite the previous lemmas like so.

Lemma 4.11. Suppose f ∈ Z[x1, . . . , xn] with n ≥ 2 and degree d ≥ 2 and (c1, . . . , cn) ∈ Zn

such that

g =
f2

(
(x1 − c1)2 + · · ·+ (xn − cn)2 + 1

)d+1

is a routing function. Let B be a closed n-ball of radius r. Suppose Θ(g) ∩ B is a compact

rectifiable curve. The length of any trajectory of ∇g in B is bounded by

2nr(6d+ 4)n−1.

Lemma 4.12. Suppose f ∈ Z[x1, . . . , xn] with n ≥ 2 and degree d ≥ 2 and (c1, . . . , cn) ∈ Zn

such that

g =
f2

(
(x1 − c1)2 + · · ·+ (xn − cn)2 + 1

)d+1

is a routing function. Let B be a closed n-ball of radius r. Suppose Θ(g)∩B is a compact rectifiable

curve. Let a, b ∈ R with a < b. Let Di, i ∈ I be all connected components of g−1
(
(a, b)

)
∩B and

let λi : [αi, βi]→ Di be a trajectory of ∇g in Di and Xi be its image. Then

Length(Xi) ≤ Length
(
Ω(g) ∩Di

)
.

52

4.1. PRELIMINARIES CHAPTER 4. LENGTH BOUND

In particular,

∑

i∈I
Length(Xi) ≤ Length

(
Ω(g) ∩B ∩ g−1

(
(t, s)

))
≤ Length

(
Ω(g) ∩B

)
≤ 2nr(6d+ 4)n−1.

4.1.2 Ball Enclosing Connectivity Path

The second step to bounding the length of a connectivity path between two points is to identify

a ball containing the connectivity path. Such a bound will be found by bounding the level sets

of g. To calculate our bounds, we use bounds on polynomial heights. A careful reading of the

proofs of [HS00, Appendix B, Proposition B.7.2, pp. 226] give the following result on the height

of sums and products of polynomials, which we state for completeness.

Lemma 4.13. If P1, . . . , Pr ∈ Z[x1, . . . , xn], then

hgt(P1 + · · ·+ Pr) ≤ rmax
{

hgt(P1), . . . ,hgt(Pr)
}

hgt(P1 · · ·Pr) ≤ 2deg(P1···Pr)+n(r−1) hgt(P1) · · · hgt(Pr).

Throughout this subsection we let f ∈ Z[x1, . . . , xn], n ≥ 2, degree d ≥ 2 with no singular

points and suppose (c1, . . . , cn) ∈ Zn such that

g =
f2

(
(x1 − c1)2 + · · ·+ (xn − cn)2 + 1

)d+1

is a routing function. We also assume H = hgt(f).

Lemma 4.14. Suppose ε ∈ Q is given as an irreducible fraction ε = A1/A2 with A1, A2 > 0.

There exists a ball, centered at the origin, of radius

n
(
120A1A2Hd(c21 + · · ·+ c2n + 1)

)4n3(6d)3n

containing {g = ε}.

Proof. Suppose ε ∈ Q is given as an irreducible fraction ε = A1/A2 with A1, A2 > 0. Let

Q(x) = A2f(x)2 −A1U(x)d+1 where U(x) = (x1 − c1)2 + · · ·+ (xn − cn)2 + 1. Observe that

{x ∈ Rn | Q(x) = 0} =

{
x ∈ Rn

∣∣∣∣
f(x)2

U(x)d+1
=
A1

A2

}
= {x ∈ Rn | g(x) = ε} .

The level set {g = ε} is bounded (Lemma 2.7) and Q ∈ Z[x1, . . . , xn] has degree 2d + 2, so

53

4.1. PRELIMINARIES CHAPTER 4. LENGTH BOUND

according to [BR10, Section 2.2, Theorem 1, pp. 1272] there exists a ball, centered at the origin,

of radius

R = n1/2(N + 1)2ND(β+bit(N)+bit(2d+3)+3) (4.15)

containing {g = ε}, where

N = (2d+ 3)(2d+ 2)n−1,

D = n(2d+ 1) + 2,

and β is an upper bound on the bitsizes of the coefficients of Q. We wish to simplify our radius

bound in (4.15). Observe that for all x > 0, bit(x) = dlog2 xe ≤ 1 + log2 x. Let τ denote the

height of Q. Then bit(τ) = β is an upper bound on the bitsizes of the coefficients of Q and

β ≤ 1 + log2 τ,

bit(N) ≤ 1 + log2N,

bit(2d+ 3) ≤ 1 + log2(2d+ 3).

Using these inequalities, we simplify the bound R in (4.15) to

R ≤ n1/2(N + 1)2
ND

(
6+log2

(
τN(2d+3)

))
= n1/2(N + 1)26ND

(
τN(2d+ 3)

)ND
.

(4.16)

Using the inequalities

N ≤ 3n(d+ 1)n,

D ≤ 2n(d+ 1),

ND ≤ n(3d+ 3)n+1,

we update our bound from (4.16) to be

R ≤ n1/2(N + 1)
(
2τN(2d+ 3)

)ND

≤ n3n(d+ 1)n
(
2τ3n(d+ 1)n(2d+ 3)

)n(3d+3)n+1

.
(4.17)

Using very pessimistic upper bounds, we simplify (4.17) further to

R ≤ n3n(d+ 1)n
(
2τ3n(d+ 1)n(2d+ 3)

)n(3d+3)n+1

≤ n(60dτ)4n
2(6d)n+1

. (4.18)

54

4.1. PRELIMINARIES CHAPTER 4. LENGTH BOUND

We wish to find an upper bound on τ . From Lemma 4.13 we find

τ = hgt(Q)

≤ 2 max
{

hgt
(
A2f

2
)
,hgt

(
A1U

d+1
)}

= 2 max
{
A2 hgt

(
f2
)
, A1 hgt

(
Ud+1

)}
.

(4.19)

We now will calculate bounds on the height of f2 and Ud+1. Using Lemma 4.13 we find

hgt(f2) ≤ 2deg(f
2)+(2−1)nH2 = H222d+n (4.20)

and

hgt(U) = max
{

1, |−2c1|, . . . , |−2cn|, c21 + · · ·+ c2n + 1
}

= c21 + · · ·+ c2n + 1 (4.21)

so

hgt (Uγ) ≤ 2deg(U
d+1)+nd hgt(U)d+1

≤ 2d(n+2)+2
(
c21 + · · ·+ c2n + 1

)d+1
.

(4.22)

We calculate an upper bound on τ using (4.19), (4.20), and (4.22) to be

τ ≤ 2 max
{
A2H

222d+n, A12
d(n+2)+2

(
c21 + · · ·+ c2n + 1

)d+1
}

≤ A1A2H
22d(n+2)+3

(
c21 + · · ·+ c2n + 1

)d+1
.

(4.23)

Combining (4.18) with (4.23), we find

R ≤ n
(

60dA1A2H
22d(n+2)+3

(
c21 + · · ·+ c2n + 1

)d+1
)4n2(6d)n+1

≤ n
(
120A1A2Hd(c21 + · · ·+ c2n + 1)

)4n3(6d)3n
.

Our goal now is to put a ball around the level set of g corresponding to the routing point that

is lowest in height. More precisely, we want to put a ball around {g = M} where M = minr∈R g(r)

and R is the set of routing points of g. For each routing point r, g(r) > 0, so we expect M > 0.

We can then apply the previous lemma to find such a ball.

55

4.1. PRELIMINARIES CHAPTER 4. LENGTH BOUND

Lemma 4.24. Let R be the set of routing points of g and M = minr∈R g(r). Then

M ≥
((

2dH
(
c21 + · · ·+ c2n + 2

))104n3(5d)5n
)−1

Proof. Let R be the set of routing points of g and M = minr∈R g(r). The set of routing points

is defined to be

R = {x ∈ Rn | ∇g(x) = 0 ∧ g(x) 6= 0} .

The gradient of g is

∇g =
f

Ud+2

(
2∇fU − (d+ 1)f∇U

)
.

Hence

R = {x ∈ Rn | 2∇f(x)U(x)− (d+ 1)f(x)∇U(x) = 0 ∧ f(x) 6= 0}

because for all x, U(x) 6= 0 and g(x) = 0 if and only if f(x) = 0. Let

F =
{

2(∂xif)U − (d+ 1)f(∂xiU)
}n
i=1
.

The set V (F) is the zero-locus in Rn of the polynomials in F . It is the union of the set of routing

points of g and the singular points of f . The function f has no singular points by assumption,

so V (F) is exactly the set of routing points of g. We are interested in finding a bound on the

minimum value of g(x) where x ∈ V (F). If z is this minimum value, then z = g(x) for some

x ∈ V (F). Furthermore, g(x) = z if and only if f(x)2 − zU(x)d+1 = 0. Hence, it suffices to find

a lower bound on |z| where (x, z) ∈ Rn × R is a solution to the polynomial system with n+ 1

equations

2∇f(x)U(x)− (d+ 1)f(x)∇U(x) = 0

f(x)2 − zU(x)d+1 = 0.
(4.25)

Let P = F ∪ {f2 − zU} be a family of n + 1 polynomials. The set V (P) is zero-dimensional

because g has finitely many routing points. Let (x, z) ∈ V (P). According to [Emi10, Theorem 3,

Section 2, pp. 4],

|z| ≥ (2DρC)−1 := A−1 (4.26)

56

4.1. PRELIMINARIES CHAPTER 4. LENGTH BOUND

where

D ≤ (n+ 1)(2d+ 3)2(n+1),

ρ ≤ 2(n+1)(2d+3)(n+1)−1
(2d+ 3)(n+1)2(2d+3)(n+1)−1

,

C ≤ 2(n+1)((2d+3)τ)(n+1)−1
,

(4.27)

and β is a bound on the maximum bitsize of the coefficients of polynomials in P. We wish

to simplify our bound in (4.26). We do so by simplifying A. Observe that for all x > 0,

bit(x) = dlog2 xe ≤ 1 + log2 x. Let τ denote the height of P . Then bit(τ) = β is an upper bound

on the maximum bitsize of the coefficients of polynomials in P and β ≤ 1 + log2 τ . Using this

inequality and the inequalities from (4.27) we find

A ≤ 2(n+1)(2d+3)2(n+1)
2(n+1)(2d+3)n(2d+ 3)(n+1)2(2d+3)n(2τ)(n+1)(2d+3)n

≤
(
8τ(2d+ 3)

)(n+1)2(2d+3)2n+2

≤ (40τd)(2n)
2(5d)4n

(4.28)

We will now calculate an upper bound on τ . To do so, we must first calculate the height of each

of the n+ 1 polynomials in P. Using (4.21) and Lemma 4.13, we find for all 1 ≤ i ≤ n,

hgt
(
(∂xif)U

)
≤ 2deg

(
(∂xif)U

)
+n(2−1) hgt(∂xif) hgt(U)

≤ 2(d+1)+ndH(c21 + · · ·+ c2n + 1)

and

hgt
(
f(∂xiU)

)
≤ 2deg

(
f(∂xiU)

)
+n(2−1) hgt(f) hgt(∂xiU)

≤ 2(d+1)+nH max
{

2,−|2c1|, . . . ,−|2cn|
}
,

hence

hgt
(
2(∂xif)U − (d+ 1)f(∂xiU)

)
≤ 2 max

{
hgt
(
2(∂xif)U

)
, hgt

(
(d+ 1)f(∂xiU)

)}

= 2 max
{

2 hgt
(
(∂xif)U

)
, (d+ 1) hgt

(
f(∂xiU)

)}

≤ (d+ 1)H2(d+1)+n+2(c21 + · · ·+ c2n + 2).

(4.29)

57

4.1. PRELIMINARIES CHAPTER 4. LENGTH BOUND

Now, we use (4.20) and apply Lemma 4.13 again to find

hgt
(
zUd+1

)
≤ 2deg(zU

d+1)+(n+1)(d+2−1) hgt(z) hgt(U)d+1

≤ 2(2d+3)+(n+1)(d+1)
(
c21 + · · ·+ c2n + 1

)d+1
,

hence

hgt
(
f2 − zUd+1

)
≤ 2 max

{
hgt

(
f2
)
, hgt

(
zUd+1

)}

≤ 2 max
{

22d+nH2, 2(2d+3)+(n+1)(d+1)
(
c21 + · · ·+ c2n + 1

)d+1
}

≤ 25+n+d(3+n)H2
(
c21 + · · ·+ c2n + 1

)d+1
.

(4.30)

From (4.29) and (4.30) we deduce

τ ≤ 25+n+d(3+n)(d+ 1)H2
(
c21 + · · ·+ c2n + 2

)d+1
. (4.31)

Using (4.31), we will simplify (4.28) to find

A ≤
(

40 · 25+n+d(3+n)(d+ 1)H2
(
c21 + · · ·+ c2n + 2

)d+1
d
)(2n)2(5d)4n

≤
(

2dH
(
c21 + · · ·+ c2n + 2

))
(
12+n+d(3+n)

)
(2n)2(5d)4n

≤
(

2dH
(
c21 + · · ·+ c2n + 2

))104n3(5d)5n

.

Hence,

|z| ≥ A−1 ≥
((

2dH
(
c21 + · · ·+ c2n + 2

))104n3(5d)5n
)−1

as desired.

Lemma 4.32. Suppose p, q ∈ Qn ∩D where D is a connected component of {g 6= 0}. Let

A1

A2
= min




g(p), g(q),

1
(

2dH
(
c21 + · · ·+ c2n + 2

))104n3(5d)5n





be an irreducible fraction with A1, A2 > 0. There exists a ball, centered at the origin, of radius

n
(
120A1A2Hd(c21 + · · ·+ c2n + 1)

)4n3(6d)3n

58

4.2. PROOF OF MAIN RESULT CHAPTER 4. LENGTH BOUND

containing any connectivity path for p and q.

Proof. Suppose p, q ∈ Qn ∩D and let

A1

A2
= min




g(p), g(q),

1
(

2dH
(
c21 + · · ·+ c2n + 2

))104n3(5d)5n





be an irreducible fraction with A1, A2 > 0. Since A1
A2

> 0, according to Lemma 4.14, there exists

a ball B, centered at the origin, of radius

n
(
120A1A2Hd(c21 + · · ·+ c2n + 1)

)4n3(6d)3n

containing
{
g = A1

A2

}
. Suppose M = minr∈R g(r), where R is the set of routing points of g. From

Lemma 4.24, we know

M ≥ 1
(

2dH
(
c21 + · · ·+ c2n + 2

))104n3(5d)5n
,

hence the ball B contains {g = M}, {g = g(p)}, and {g = g(q)}. Furthermore, B contains

{g ≥M}, {g ≥ g(p)}, and {g ≥ g(q)} since these sets are compact (Lemma 2.7). We can connect

any two points in a connected component by steepest ascent paths using outgoing eigenvectors

(Theorem 1.33) and since g increases along a trajectory of ∇g (Lemma 2.4), these steepest ascent

paths must lie in
{
g ≥ A1

A2

}
. In particular, any connectivity path of p and q must lie in B.

4.2 Proof of Main Result

The final stage of our proof is to compute a bound on the length of a connectivity path between

two points in a same connected component. We will build the connectivity path by looking at

trajectories of ∇g between level sets of g. We then use the bounds we have derived earlier to

bound the length of the entire connectivity path. The proof of Theorem 1.47 is extremely similar

to the proof given in [DK04, Section 10, Theorem 10.3, pp. 18].

Proof of Theorem 1.47. Let f ∈ Z[x1, . . . , xn], n ≥ 2, degree d ≥ 2 with no singular points.

Suppose (c1, . . . , cn) ∈ Zn such that

g =
f2

(
(x1 − c1)2 + · · ·+ (xn − cn)2 + 1

)d+1

59

4.2. PROOF OF MAIN RESULT CHAPTER 4. LENGTH BOUND

is a routing function. Let H = hgt(f). Let Θ(g) be the gradient extremal of g. Let D be a

connected component of {f 6= 0} and p, q ∈ Qn ∩D. Let B be a ball of radius

r = n
(
120A1A2Hd(c21 + · · ·+ c2n + 1)

)4n3(6d)3n

where

A1

A2
= min




g(p), g(q),

1
(

2dH
(
c21 + · · ·+ c2n + 2

))104n3(5d)5n





is an irreducible fraction with A1, A2 > 0. Suppose Θ(g) ∩ B is a compact rectifiable curve.

According to Lemma 4.32, B contains any connectivity path for p and q.

Consider the connected components of sets {g ≥ a} ∩B, where a is a variable. We write a

decomposition into connected components like so:

{g ≥ a} ∩B =

ea⋃

i=1

Cai

where Cai is a connected component. Note that ea < ∞ for any given a > 0. Let Ω̃(g) be the

ridge and valley set of g restricted to B; that is,

Ω̃(g) =
{
x ∈ B

∣∣ ‖∇g‖2 has a local minimum at x ∈ g−1
(
g(x)

)
∩B

}
.

Let a > 0 be arbitrary. Note that for a ≥ maxr∈R g(r), the set {g > a} ∩B is empty because g

is bounded above by maxr∈R g(R) (Lemma 2.6), so we may assume a < maxr∈R g(r). We also

assume a ≥ A1
A2

so that every component Cai is contained in B.

We claim that any two points in Cai can be joined by a connectivity path of length not greater

than 2 Length
(

Ω̃(g) ∩ Cai
)

. If the claim is true, we can complete the proof in the following way.

We fix a = A1/A2, then we find from Lemma 4.12 that

2 Length
(

Ω̃(g) ∩ Cai
)
≤ 2 Length

(
Ω̃(g)

)
≤ 2 · 2nr(6d+ 4)n−1 = 4nr(6d+ 4)n−1

as desired.

To prove our claim, we use induction on the number of routing points of g in Cai . As a base

case, suppose Cai contains one and only one routing point mi.

60

4.2. PROOF OF MAIN RESULT CHAPTER 4. LENGTH BOUND

By fixing a particular value of a, in Figure 4.33 we illustrate an example where

{g ≥ a} ∩B = Ca1 ∪ Ca2 ∪ Ca3 ∪ Ca4 .

and each Cai is drawn as a gray region. The component Ca3 contains one and only one routing

point of g (red point).

C1

a C2

a

C3

a

C4

a

m3

x

y

Figure 4.33 Illustration of the induction base case.

Take two points x, y ∈ Cai with x 6= y. These points are represented as gray dots in Figure 4.33.

We may assume without loss of generality that ∇g(x) 6= 0 since Cai contains one and only one

routing point of g. As ∇g(x) 6= 0, we know there exists a trajectory of ∇g through x using

∇̂g(x) whose destination is mi (Lemma 2.11). Similarly, if ∇g(y) 6= 0, there exists a trajectory

of ∇g through y using ∇̂g(y) whose destination is mi, otherwise y = mi. We see m1, φx, φy is a

connectivity path for x and y. In Figure 4.33, we illustrate the corresponding trajectories for x

and y as gray curves. From Lemma 4.12,the length of each of the two trajectories is bounded by

Length
(

Ω̃(g) ∩ Cai
)

hence the sum of the trajectory lengths is bounded by

2 Length
(

Ω̃(g) ∩ Cai
)
.

We now continue with our induction step. Suppose the claim holds for connected components

Cai containing m ≥ 1 or less routing points. Consider a connected component Cai containing

m+ 1 routing points.

61

4.2. PROOF OF MAIN RESULT CHAPTER 4. LENGTH BOUND

By fixing a particular value of a, in Figure 4.34 we illustrate an example where

{g ≥ a} ∩B = Ca1 ∪ Ca2 ,

the gray regions being the respective connected components. We focus on the set Ca2 because it

contains more than one routing point (the red points).

C
1

a C
2

a

Figure 4.34 A connected component containing more than one routing point.

Let b = minr g(r) where the minimum is taken over all routing points r of g lying in Cai . Let

us denote by z1, . . . , z` the routing points that satisfy g(zj) = b. Note that for all j, zj cannot

have index n, otherwise we contradict minimality. Consider the connected components of

{g > b} ∩ Cai =

eb⋃

j=1

Db
j .

Note that eb <∞.

Building off our last figure, in Figure 4.35 we illustrate Ca2 as the dark gray region and

Db
1, D

b
2, D

b
3 as the three light gray regions. There are two routing points z1, z2 such that g(z1) =

g(z2) = b.

Take two points x, y ∈ Cai with x 6= y. We consider several cases.

Case 1. Suppose g(x) < b and g(y) < b. It follows that ∇g(x) 6= 0 and ∇g(y) 6= 0, so

there exist trajectories φx and φy of ∇g through x and y using ∇̂g(x) and ∇̂g(y), respectively.

Consider the portion of the image of φx and φy lying in g−1
(
(a, b)

)
; that is, there exist αx, αy > 0

such that

φx
(
(0, αx)

)
⊆ g−1

(
(a, b)

)
and φy

(
(0, αy)

)
⊆ g−1

(
(a, b)

)
.

62

4.2. PROOF OF MAIN RESULT CHAPTER 4. LENGTH BOUND

D1

b

D2

b

D3

b

C2

a

z2

z1

Figure 4.35 Superlevel set of routing point lowest in height.

The length of each of these steepest ascent paths are bounded by

Length
(

Ω̃(g) ∩ Cai ∩ g−1
(
(a, b)

))

according to Lemma 4.12, hence the sum of their lengths is bounded by

2 Length
(

Ω̃(g) ∩ Cai ∩ g−1
(
(a, b)

))
. (4.36)

Let r1, . . . , rs, s ≥ 1, be routing points and φx, . . . , φy be s+ 1 functions defining a connectivity

path P for x and y. We wish to pick a point x′ on the connectivity path P for x and y that is

arbitrarily close to limt→αx φx(t) and g(x′) > s.

If for all j,

lim
t→αx

φx(t) 6= zj

we can simply choose x′ = φx(αx + ε) for small ε > 0. Similarly for y, if for all j,

lim
t→αy

φy(t) 6= zj .

we choose y′ = φy(αy + ε) for small ε > 0.

In Figure 4.37a, we illustrate a connectivity path P in blue for a specific choice of x and y.

In Figure 4.37b we illustrate the possibility discussed above where a critical point does not lie

on the steepest ascent paths corresponding to φx and φy. In this figure, x, x′, y, y′ are the gray

points and the gray curves are the images of φx, φy, respectively.

63

4.2. PROOF OF MAIN RESULT CHAPTER 4. LENGTH BOUND

x

y

(a)

x

y

y'

x'

(b)

Figure 4.37 Illustration of points x′ and y′.

On the other hand, if for some j

lim
t→αx

φx(t) = zj

then r1 = zj , s > 1, and there exists an outgoing eigenvector v of (Hess g)(zj) such that r2

is reachable from r1 using g and v. Let ϕr1 be a trajectory through r1 using g and v. Pick

x′ = ϕr1(ε) for small ε > 0. Similarly for y, if for some j

lim
t→αy

φy(t) = zj

then rs = zj , s > 1, and there exists an outgoing eigenvector v of (Hess g)(zj) such that rs−1

is reachable from rs using g and v. Let ϕrs be a trajectory through rs using g and v. Pick

y′ = ϕrs(ε) for small ε > 0.

In Figure 4.38a, we illustrate a connectivity path P in blue for a specific choice of x and y.

The white arrows are the outgoing eigenvectors needed to connect the three blue routing points.

In Figure 4.37b we illustrate the possibility discussed above where a critical point z1, z2, lies on

the steepest ascent paths corresponding to φx, φy, respectively. In this figure, x, x′, y, y′ are the

gray points and the gray curves are the images of φx, φy, respectively.

We now consider two subcases.

Case 1.1. Suppose x′ and y′ are in different components of {g > b} ∩ Cai ; that is, suppose

without loss of generality x′ ∈ Db
1 and y′ ∈ Db

eb
. Note that eb ≥ 2 since the routing points

z1, . . . , z` are nondegenerate. Let us denote by {z′1, . . . , z′`′} ⊆ {z1, . . . , z`} the subset of routing

64

4.2. PROOF OF MAIN RESULT CHAPTER 4. LENGTH BOUND

x

y

(a)

x

y

y'

x'

z2

z1

(b)

Figure 4.38 Illustration of points x′ and y′.

points that lie on the connectivity path P . We consider two subcases.

Case 1.1.1 Suppose `′ = 1. In Figure 4.39a, we illustrate a connectivity path P in blue for a

specific choice of x and y. The white arrows are the outgoing eigenvectors needed to connect

the three blue routing points. In Figure 4.39b, we show a choice of x′ ∈ Db
1 and y′ ∈ Db

2 as gray

points and the routing point z′1 lying on the connectivity path P .

By the induction hypothesis, we can join in Db
1 the point x′ with a point x′′ lying on the

connectivity path P that is very close to z′1 by a connectivity path of length not greater than

2 Length
(

Ω̃(g) ∩Db
1

)
.

Similarly, we can join in Db
eb

the point y′ with a point y′′ lying on the connectivity path P that

is very close to z′1 by a path of length not greater than

2 Length
(

Ω̃(g) ∩Db
eb

)
.

The total length of these curves is not greater than

2
(

Length
(

Ω̃(g) ∩Db
1

)
+ Length

(
Ω̃(g) ∩Db

eb

))

In Figure 4.39c, we show the choice of x′′ ∈ Db
1 and y′′ ∈ Db

2 as gray points near the point z′1.

Finally we can join in Cai the point x′′ with y′′ by a short trajectory of ∇g that is part of

the connectivity path P . From (4.36), we deduce the the total length of the connectivity path

65

4.2. PROOF OF MAIN RESULT CHAPTER 4. LENGTH BOUND

x
y

(a)

x y

y'

x'
z
1

ç
D

1

b

D
2

b

(b)

y'

x'
z
1

ç

y''
x''

(c)

Figure 4.39 Illustration of Case 1.1.1.

joining x with y in Cai is not greater than 2 Length
(

Ω̃(g) ∩ Cai
)

as desired.

Case 1.1.2 Suppose `′ > 1. The routing points z′1, . . . , z
′
` lie on the boundaries of the

components Db
1, . . . , D

b
eb

. In Figure 4.40a, we illustrate a connectivity path P in blue for a

specific choice of x and y. The white arrows are the outgoing eigenvectors needed to connect

the five blue routing points. In Figure 4.40b, we show a choice of x′ ∈ Db
1 and y′ ∈ Db

3 as gray

points and the routing points z′1, z
′
2 lying on the boundaries of Db

1, D
b
2, D

b
3.

Suppose z′1 ∈ ∂Db
1. By the induction hypothesis, we can join in Db

1 the point x′ with a point

x′1 lying on the connectivity path P that is very close to z′1 by a connectivity path of length not

greater than

2 Length
(

Ω̃(g) ∩Db
1

)
.

We illustrate a choice of the point x′1 in Figure 4.41a.

66

4.2. PROOF OF MAIN RESULT CHAPTER 4. LENGTH BOUND

x

y

(a)

x

y

y'

x'
z1

ç

z2

ç

D1

b

D2

b

D3

b

(b)

Figure 4.40 Illustration of Case 1.1.2.

Suppose z′1, z
′
2 ∈ ∂Db

2. As mentioned earlier, we can find points x′2, x
′
3 ∈ Db

2 that are very close

to z′1, z
′
2, respectively, that lie on the connectivity path P . Again, by the induction hypothesis,

we can join in Db
2 the point x′2 and x′3 by a connectivity path of length not greater than

2 Length
(

Ω̃(g) ∩Db
2

)
.

We illustrate a choice of the points x′2, x
′
3 in Figure 4.41b.

We continue this process to generate a sequence of points x′1, . . . , x
′
h where x′h ∈ Db

eb
and x′h

is very close to z`′ . We illustrate a choice for the sequence of points x′1, x
′
2, x
′
3, x
′
4 in Figure 4.41c.

The total length of these curves is not greater than

2
(

Length
(

Ω̃(g) ∩Db
1

)
+ · · ·+ Length

(
Ω̃(g) ∩Db

eb

))

Finally we can join the points x′j−1 with x′j by a short trajectory of ∇g that is part of the

connectivity path P . From (4.36), we deduce the the total length of the connectivity path joining

x with y in Cai is not greater than 2 Length
(

Ω̃(g) ∩ Cai
)

as desired.

Case 1.2. Suppose x′ and y′ are in the same component of {g > b} ∩ Cai ; that is, suppose

x′, y′ ∈ Db
j . Such a scenario is illustrated in Figures 4.37b and 4.38b because x′, y′ are both in

Db
2. The component Db

j has m or less routing points, so by the induction hypothesis, we can

connect x′ and y′ by a connectivity path of length not greater than

2 Length
(

Ω̃(g) ∩Db
j

)
.

67

4.2. PROOF OF MAIN RESULT CHAPTER 4. LENGTH BOUND

y'

x'
z
1

ç

z
2

ç

x1
ç

(a)

y'

x'
z
1

ç

z
2

ç

x2
ç

x1
ç

x3
ç

(b)

y'

x'
z
1

ç

z
2

ç

x2
ç

x1
ç

x3
ç

x4
ç

(c)

Figure 4.41 Illustration of Case 1.1.2.

Hence by (4.36), the total length of a connectivity path joining x with y in Ati is not greater

than

2 Length
(

Ω̃(g) ∩ Cai ∩ g−1
(
(a, b)

))
+ 2 Length

(
Ω̃(g) ∩Db

j

)
≤ 2 Length

(
Ω̃(g) ∩ Cai

)

as desired.

The remaining cases where g(x) < b and g(y) > b, or, g(x) > b and g(y) > b can be handled

analogously.

68

Chapter 5

Experimental Results

In this chapter we give experimental results for different size inputs to estimate the running

time of Connectivity. The algorithm Connectivity was implemented in Maple 17 on top of

a 64-bit Windows 7 system running an Intel Core i7-920 processor at 2.67 GHz with 6 GB of

RAM. In order to measure the performance, we first need to fix the implementation details of

several steps. We have made the following choices.

• To find routing points, we use the Maple command RootFinding[Isolate], or when it

fails, the RegularChains[SemiAlgebraicSetTools][RealRootIsolate] command. Both

of these commands return a list of boxes with each box isolating exactly one routing point.

We then took the center of each box computed to be the routing point.

• To implement Destination(g,R, p, v), we construct an approximation of the steepest

ascent path through p using v and then use the endpoint of this path to determine the

index of the point in R to return. In our implementation, we first let q = p+ 0.01v, then

approximate the steepest ascent path through q by taking steps of length 0.01 in the

direction of the normalized gradient of g. After each gradient ascent step we check to

see which of the points in R is closest, and terminate ascent when one is found within a

tolerance of 0.01. The index of this closest point is the output of Destination(g,R, p, v).

In the first section we visualize the connectivity path for six non-trivial input polynomials

having n = 2 or n = 3 variables and give timing results. In the second section we give some

raw data on the computation time for running Connectivity on randomly generated input

polynomials having n = 2 variables.

69

5.1. NON-TRIVIAL EXAMPLES CHAPTER 5. EXPERIMENTAL RESULTS

5.1 Non-Trivial Examples

In this section, we present several non-trivial examples using input polynomials in two and three

variables. Each example will illustrate the routing points and all possible connectivity paths for

any two routing points.

Example 5.1. Let

f = 1280000x101 + 2560000x81x
2
2 − 2016000x81 + 1280000x71x2 + 1280000x61x

4
2

− 2336000x61x
2
2 + 793800x61 − 1280000x51x2 − 1280000x41x

4
2 + 1056000x41x

2
2

− 59080x41 + 2560000x21x
4
2 − 738560x21x

2
2 + 736x21 + 1280000x1x

3
2 − 1280x1x2

+ 1280000x62 + 222720x42 + 57576x22 − 45.

In Figure 5.3a, the curve {f 6= 0} is shown in black while the routing points and connectivity

path are shown in red. The connectivity matrix formed had size 21× 21 and took 2.36 seconds

to find. Of those 2.36 seconds, 0.55 seconds were dedicated to finding the routing points. We

randomly generated 100 pairs of points uniformly over [−3.68, 3.68]× [−1.29, 1.29] and used the

connectivity matrix to determine the connectivity of these 100 pairs of points. The computing

time was 0.14 seconds per pair on average.

In Example 5.1 we see that the curve has many “narrow” gaps. The polynomial f was

constructed so these gaps existed. The numeric methods for solving this problem would likely

miss the narrow gaps, often producing wrong outputs. However, our algorithm presented in this

thesis correctly catches all the narrow gaps.

Example 5.2. Let

f = 4096x161 − 16384x141 + 26624x121 − 22528x101 − 1024x81x
4
2 + 1024x81x

2
2

+ 10496x81 + 2048x61x
4
2 − 2048x61x

2
2 − 2560x61 − 1280x41x

4
2 + 1280x41x

2
2

+ 256x41 + 256x21x
4
2 − 256x21x

2
2 − 4096x162 + 16384x142 − 26624x122

+ 22528x102 − 10560x82 + 2688x62 − 352x42 + 32x22 − 1.

In Figure 5.3b, the curve {f 6= 0} is shown in black while the routing points and connectivity

path are shown in red. The connectivity matrix formed had size 47× 47 and took 16.58 seconds

to find. Of those 16.58 seconds, 5.55 seconds were dedicated to finding the routing points. We

randomly generated 100 pairs of points uniformly over [−4.96, 4.96]2 and used the connectivity

70

5.1. NON-TRIVIAL EXAMPLES CHAPTER 5. EXPERIMENTAL RESULTS

matrix to determine the connectivity of these 100 pairs of points. The computing time was 0.51

seconds per pair on average.

In Example 5.2, the polynomial f was taken from [Lab10]. We chose this polynomial because

plotting the implicit curve where f = 0 is very difficult. Our connectivity method can answer

connectivity queries despite this difficulty.

(a)

(b)

Figure 5.3 Illustration of the connectivity path for examples with n = 2.

71

5.1. NON-TRIVIAL EXAMPLES CHAPTER 5. EXPERIMENTAL RESULTS

Example 5.4. Let

f = 16000000000000000x201 − 6400000000000000x191 + 280000000000000000x22x
18
1

− 38400000000000000x2x
18
1 − 229120000000000000x181 − 110400000000000000x22x

17
1

+ 15360000000000000x2x
17
1 + 96768000000000000x171 + 2025000000000000000x42x

16
1

− 518400000000000000x32x
16
1 − 2200960000000000000x22x

16
1 + 205824000000000000x2x

16
1

+ 175569600000000000x161 − 782400000000000000x42x
15
1 + 203520000000000000x32x

15
1

+ 938048000000000000x22x
15
1 − 94617600000000000x2x

15
1 − 147835200000000000x151

+ 7905000000000000000x62x
14
1 − 2786400000000000000x52x

14
1 − 8640200000000000000x42x

14
1

+ 1518080000000000000x32x
14
1 − 1366374000000000000x22x

14
1 + 1439238400000000000x2x

14
1

+ 5799403584000000000x141 − 2966400000000000000x62x
13
1 + 1063680000000000000x52x

13
1

+ 3737600000000000000x42x
13
1 − 730880000000000000x32x

13
1 − 67563200000000000x22x

13
1

− 499538176000000000x2x
13
1 − 2198432716800000000x131 + 18390000000000000000x82x

12
1

− 7826400000000000000x72x
12
1 − 20083840000000000000x62x

12
1 + 5885408000000000000x52x

12
1

− 2694237000000000000x42x
12
1 + 10598894400000000000x32x

12
1 − 18950085056000000000x22x

12
1

− 1028177561600000000x2x
12
1 − 1636016433880000000x121 − 6614400000000000000x82x

11
1

+ 2864640000000000000x72x
11
1 + 8709504000000000000x62x

11
1 − 2820710400000000000x52x

11
1

− 913001600000000000x42x
11
1 − 3631300096000000000x32x

11
1 + 7986379929600000000x22x

11
1

+ 807705640960000000x2x
11
1 + 2406435642944000000x111 + 26730000000000000000x102 x

10
1

− 12830400000000000000x92x
10
1 − 31461680000000000000x82x

10
1 + 13427328000000000000x72x

10
1

+ 64411382400000000000x62x
10
1 − 3688223680000000000x52x

10
1 − 188380458016000000000x42x

10
1

+ 49495779532800000000x32x
10
1 + 57628736298120000000x22x

10
1 − 6182966429024000000x2x

10
1

− 26929214103569600000x101 − 9038400000000000000x102 x
9
1 + 4416000000000000000x92x

9
1

+ 12893440000000000000x82x
9
1 − 5933568000000000000x72x

9
1 − 28484425600000000000x62x

9
1

+ 3805657600000000000x52x
9
1 + 73433491200000000000x42x

9
1 − 17543972454400000000x32x

9
1

− 32113370053120000000x22x
9
1 + 1814309571072000000x2x

9
1 + 8785075890086400000x91

+ 24645000000000000000x122 x
8
1 − 12830400000000000000x112 x

8
1 − 34474720000000000000x102 x

8
1

+ 18552640000000000000x92x
8
1 + 225803586000000000000x82x

8
1 − 105180470400000000000x72x

8
1

− 11039219680000000000x62x
8
1 − 658880768000000000x52x

8
1 + 67714552748000000000x42x

8
1

− 2109646442400000000x32x
8
1 − 25491499234656000000x22x

8
1 + 6111542833849600000x2x

8
1

+ 20100992949910200000x81 − 7598400000000000000x122 x
7
1 + 4028160000000000000x112 x

7
1

+ 11818048000000000000x102 x
7
1 − 6833152000000000000x92x

7
1 − 83791118400000000000x82x

7
1

+ 42535587840000000000x72x
7
1 + 5296576768000000000x62x

7
1 − 1402340147200000000x52x

7
1

72

5.1. NON-TRIVIAL EXAMPLES CHAPTER 5. EXPERIMENTAL RESULTS

− 68757551073920000000x42x
7
1 + 15476629886208000000x32x

7
1 + 37956891939161600000x22x

7
1

− 3862093960499200000x2x
7
1 − 14949594244724160000x71 + 14205000000000000000x142 x

6
1

− 7826400000000000000x132 x
6
1 − 26559560000000000000x122 x

6
1 + 16038784000000000000x112 x

6
1

+ 184516767600000000000x102 x
6
1 − 109785500800000000000x92x

6
1 + 196432390880000000000x82x

6
1

− 82163109632000000000x72x
6
1 + 150851287279200000000x62x

6
1 − 40942293980160000000x52x

6
1

+ 176998962384192000000x42x
6
1 − 94154955175897600000x32x

6
1 − 41304058956936800000x22x

6
1

+ 5456562753725760000x2x
6
1 + 26164460890051600000x61 − 3782400000000000000x142 x

5
1

+ 2123520000000000000x132 x
5
1 + 6114048000000000000x122 x

5
1 − 4128921600000000000x112 x

5
1

− 47451108800000000000x102 x
5
1 + 31716089600000000000x92x

5
1 − 47738984448000000000x82x

5
1

+ 6132741734400000000x72x
5
1 + 26335874886400000000x62x

5
1 − 1946273099008000000x52x

5
1

− 63421541216473600000x42x
5
1 + 26737441898854400000x32x

5
1 − 5486983664575680000x22x

5
1

+ 936526202576640000x2x
5
1 + 1671014566272384000x51 + 4860000000000000000x162 x

4
1

− 2786400000000000000x152 x
4
1 − 14255200000000000000x142 x

4
1 + 8909280000000000000x132 x

4
1

+ 15534363000000000000x122 x
4
1 − 13214526400000000000x112 x

4
1 − 82210282336000000000x102 x

4
1

+ 33234046464000000000x92x
4
1 + 169229546759000000000x82x

4
1 − 30535950392320000000x72x

4
1

− 300606415381984000000x62x
4
1 + 50512733619929600000x52x

4
1 + 223481250322622400000x42x

4
1

− 42146648802669120000x32x
4
1 + 15319082635830960000x22x

4
1 − 7107384664239744000x2x

4
1

− 24420243398029181000x41 − 998400000000000000x162 x
3
1 + 583680000000000000x152 x

3
1

+ 1433600000000000000x142 x
3
1 − 1112064000000000000x132 x

3
1 + 14550310400000000000x122 x

3
1

− 7250602496000000000x112 x
3
1 − 4056454348800000000x102 x

3
1 + 6155685888000000000x92x

3
1

− 25215661832640000000x82x
3
1 + 6292042747648000000x72x

3
1 − 752738914086400000x62x

3
1

+ 1971981791846400000x52x
3
1 + 26792681396189120000x42x

3
1 − 8577921523345920000x32x

3
1

− 19654575438739712000x22x
3
1 + 1954136907896320000x2x

3
1 + 7843149472007998400x31

+ 880000000000000000x182 x
2
1 − 518400000000000000x172 x

2
1 − 4989440000000000000x162 x

2
1

+ 3108608000000000000x152 x
2
1 − 8728392000000000000x142 x

2
1 + 3931784000000000000x132 x

2
1

− 165097461376000000000x122 x
2
1 + 100394639718400000000x112 x

2
1 + 49791001778520000000x102 x

2
1

− 91107727988640000000x92x
2
1 + 278774168750680000000x82x

2
1 − 91487664754649600000x72x

2
1

+ 55040267542816000000x62x
2
1 + 19047256217388480000x52x

2
1 − 245267864092028080000x42x

2
1

+ 57447326101230592000x32x
2
1 + 45459012287500361000x22x

2
1 − 892863884573634400x2x

2
1

− 5692877331995819000x21 − 102400000000000000x182 x1 + 61440000000000000x172 x1

+ 57344000000000000x162 x1 − 67174400000000000x152 x1 + 5701452800000000000x142 x1

− 3368523776000000000x132 x1 + 18908028313600000000x122 x1 − 9569797898240000000x112 x1

+ 3263082703104000000x102 x1 + 2245734401792000000x92x1 − 45305339536537600000x82x1

73

5.1. NON-TRIVIAL EXAMPLES CHAPTER 5. EXPERIMENTAL RESULTS

+ 23599098092492800000x72x1 − 19369965807319360000x62x1 + 85889708701440000x52x1

+ 29797343375877504000x42x1 − 11914877542740480000x32x1 + 10550642012657342400x22x1

− 1071787432531200000x2x1 − 3500193002386180800x1 + 64000000000000000x202

− 38400000000000000x192 − 865280000000000000x182 + 539648000000000000x172

+ 14102400000000000x162 − 306599680000000000x152 + 23161462144000000000x142

− 13586078515200000000x132 + 11883006282720000000x122 + 2163636896000000x112

− 96680355552057600000x102 + 54386709247673600000x92 + 6384683842946600000x82

− 32088063513256640000x72 + 103489481900672560000x62 − 30732502775816064000x52

− 24732429078459658000x42 + 19786492596245821600x32 − 29369716183334702000x22

+ 2036619410857724000x2 + 6647095911409240641.

In Figure 5.5, the curve {f 6= 0} is shown in black while the routing points and connectivity

path are shown in red. The connectivity matrix formed had size 53× 53 and took 169.12 seconds

to find. Of those 169.12 seconds, 105.28 seconds were dedicated to finding the routing points. We

randomly generated 100 pairs of points uniformly over [−7.40, 7.74]× [−7.23, 7.74] and used the

connectivity matrix to determine the connectivity of these 100 pairs of points. The computing

time was 1.73 seconds per pair on average.

Again, in Example 5.4 we see that the curve has many “narrow” gaps. The polynomial f

was constructed so these gaps existed.

74

5.1. NON-TRIVIAL EXAMPLES CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.5 Illustration of the connectivity path for example with n = 2.

75

5.1. NON-TRIVIAL EXAMPLES CHAPTER 5. EXPERIMENTAL RESULTS

Example 5.6. Let

f = −31− 16x21 + 8x41 + 4x61 + 16x2 + 16x21x2 + 4x41x2 − 32x22 + 8x41x
2
2 + 16x32 + 8x21x

3
2

− 8x42 + 4x21x
4
2 + 4x52 + 96x23 − 64x21x

2
3 + 8x41x

2
3 − 48x2x

2
3 + 8x21x2x

2
3 − 16x22x

2
3

+ 8x21x
2
2x

2
3 + 8x32x

2
3 − 8x43 + 4x21x

4
3 + 4x2x

4
3.

In Figure 5.8a, the semi-algebraic set {f = 0} consists of one connected component which

we show in light gray while the routing points and connectivity path are shown in red. The

connectivity matrix formed had size 16 × 16 and took 14.19 seconds to find. Of those 14.19

seconds, 9.2 seconds were dedicated to finding the routing points. We randomly generated 100

pairs of points uniformly over [−2.24, 2.24]× [−0.10, 2.98]× [−2.6, 2.6] and used the connectivity

matrix to determine the connectivity of these 100 pairs of points. The computing time was 0.23

seconds per pair on average.

Example 5.7. Let

f = 20x41x2 + 20x21x2x
2
3 − 60x21x2 + 20x21 − 20x2x

2
3 + 40x2 + 20x23 − 41.

In Figure 5.8b, the semi-algebraic set {f = 0} consists of four connected components which

we show in light gray, light red, light blue, and light green, respectively, while the routing

points and connectivity path are shown in red. The connectivity matrix formed had size

20 × 20 and took 3.62 seconds to find. Of those 3.62 seconds, 1.94 seconds were dedicated

to finding the routing points. We randomly generated 100 pairs of points uniformly over

[−3.67, 3.67]× [−2.22, 1.84]× [−2.26, 2.26] and used the connectivity matrix to determine the

connectivity of these 100 pairs of points. The computing time was 0.17 seconds per pair on

average.

76

5.1. NON-TRIVIAL EXAMPLES CHAPTER 5. EXPERIMENTAL RESULTS

(a)

(b)

Figure 5.8 Illustration of the connectivity path for examples with n = 3.

77

5.1. NON-TRIVIAL EXAMPLES CHAPTER 5. EXPERIMENTAL RESULTS

Example 5.9. Let

f = x61 + 4x41x
2
2 + 3x41x

2
3 + 2x41 + 5x21x

4
2 + 8x21x

2
2x

2
3 + 8x21x

2
2 + 3x21x

4
3 − 12x21x

2
3

− 4x21 + 2x62 + 5x42x
2
3 + 6x42 + 4x22x

4
3 − 24x22x

2
3 + x63 − 14x43 + 28x23 − 7.

In Figure 5.10, the semi-algebraic set {f = 0} consists of three connected components which

we show in light gray while the routing points and connectivity path are shown in red. The

connectivity matrix formed had size 19× 19 and took 9.31 seconds to find. Of those 9.31 seconds,

1.89 seconds were dedicated to finding the routing points. We randomly generated 100 pairs

of points uniformly over [−2.43, 2.43]× [−1.78, 1.78]× [−6.60, 6.60] and used the connectivity

matrix to determine the connectivity of these 100 pairs of points. The computing time was 0.53

seconds per pair on average.

Figure 5.10 Illustration of the connectivity path for example with n = 3.

78

5.2. COMPUTATIONAL TIMINGS CHAPTER 5. EXPERIMENTAL RESULTS

5.2 Computational Timings

In this section we will show that Connectivity typically runs faster for sparse polynomial

inputs than for dense polynomial inputs. We use other computed results, such as the number of

routing points calculated, to aid in our discussion of the running times. Throughout this section

we use the abbreviations listed in Table 5.11.

Table 5.11 Abbreviations used throughout Section 5.2.

Abbreviation Meaning

d Degree of f
Time R Average time to find routing points R
Time M Average time to compute connectivity matrix M
Avg. No. CC Average number of connected components of {f 6= 0}
Avg. No. R Average number of routing points R
Avg. No. Non-Max Average number of routing points having index less than n
Avg. No. Max Average number of routing points having index n

We begin by explaining how we calculate each quantity in Table 5.11 given N polynomial

instances {f1, . . . , fN}. For each fi, we compute the total CPU time Ri it takes to execute steps

1 through 3 of algorithm Connectivity and let

Time R =
1

N

N∑

i=1

Ri.

Then for each fi, we compute the total CPU time Mi it takes to execute steps 1 through 6 of

algorithm Connectivity and let

Time M =
1

N

N∑

i=1

Mi.

For each fi, once step 5 of Connectivity has completed, we form a graph Gi using the adjacency

79

5.2. COMPUTATIONAL TIMINGS CHAPTER 5. EXPERIMENTAL RESULTS

matrix Ai and compute the number connected components Ci of the graph Gi. Then we let

Avg. No. CC =
1

N

N∑

i=1

Ci.

For each fi, once step 3 of Connectivity has completed, we count the number of routing points

Pi computed and let

Avg. No. R =
1

N

N∑

i=1

Pi.

Finally, for each fi, once step 5 of Connectivity has completed, we compute the number of

routing points having index less than n = 2, called Oi. Then we let

Avg. No. Non-Max =
1

N

N∑

i=1

Oi

Avg. No. Max =
1

N

N∑

i=1

(Pi −Oi).

To compute our instances, we used the Maple command randpoly([x1, x2], degree=d)

to randomly generate 1000 sparse polynomial instances
{
fS1 , . . . , f

S
1000

}
and the Maple com-

mand randpoly([x1, x2], degree=d, dense) to randomly generate 1000 dense polynomial

instances
{
fD1 , . . . , f

D
1000

}
, where degree 2 ≤ d ≤ 13. If in the course of running Connectivity

a steepest ascent path using outgoing eigenvectors is computed to have length longer than 1500,

then the instance was removed from calculation. The total number of instances we used are

shown in Table 5.12.

We begin our discussion by presenting the average running times for sparse polynomial and

dense polynomial instances in Table 5.13. We visualize this data in Figure 5.14 by plotting the

degree versus the average time. It would appear from Figure 5.14 that the average time to find

the routing points is roughly the same in both cases. However, by studying Table 5.13, we see the

dense instances take slightly more time on average than the sparse instances. Interestingly, the

average time required to compute the connectivity matrix in the sparse case is nearly constant

as degree increases, which is not true for the dense case.

To understand why this might be true, we present four other computations: Avg. No. CC,

Avg. No. R, Avg. No. Max, and Avg. No. Non-Max, in Table 5.15. By first studying Avg. No.

R, we immediately see that in the dense case there are more routing points on average than

in the sparse case. This may explain the slight difference in computation times for Time R. A

80

5.2. COMPUTATIONAL TIMINGS CHAPTER 5. EXPERIMENTAL RESULTS

consequence of having more routing points on average is that there may be more routing points

having index less than n. Recall that for each routing point r having index less than n, we use

the outgoing eigenvectors of (Hess g)(r) to compute a steepest ascent path. Hence, we expect in

cases where there are more routing points of index less than n, the time required to compute

the connectivity matrix should be higher as well. This is evidenced by the results in the Avg.

No. Non-Max column. We see that dense polynomial instances have on average more routing

points of index less than n than the sparse polynomial instances. This gives a reason for why

computing the connectivity matrix takes longer in the dense case than in the sparse case.

If we study the Avg. No. CC column, we see that for a sparse polynomial instance fSi ,

the number of connected components of
{
fSi 6= 0

}
is larger than the number of connected

components of
{
fDi 6= 0

}
, where fDi is a dense polynomial instance. A consequence of having

more connected components is that we have more routing points of index n. The reason being

that in Lemma 2.16 we showed each connected component has at least one routing point of

index n. This also explains why the sparse case has less routing points of index n on average

than the dense case.

Table 5.12 Number of instances generated for each degree.

d Number of Sparse Instances (N) Number of Dense Instances (N)

2 1000 998
3 1000 998
4 1000 994
5 999 996
6 997 1000
7 997 997
8 995 998
9 994 999
10 990 996
11 996 998
12 995 998
13 991 995

81

5.2. COMPUTATIONAL TIMINGS CHAPTER 5. EXPERIMENTAL RESULTS

Table 5.13 Average running times for sparse and dense polynomial instances.

(a) Sparse polynomial instances.

d Time R Time M

2 0.030853 0.617973
3 0.046903 0.415346
4 0.067771 0.628224
5 0.110179 0.694578
6 0.21477 0.793158
7 0.389042 0.582909
8 0.75642 0.871272
9 1.52629 0.699271
10 2.47424 1.04646
11 4.85625 0.919178
12 9.39308 1.09489
13 20.1636 1.0029

(b) Dense polynomial instances.

d Time R Time M

2 0.0311613 0.233683
3 0.0624419 0.415958
4 0.131546 0.757863
5 0.248677 1.30043
6 0.460523 2.1959
7 0.999128 2.90185
8 1.50305 3.98185
9 2.25379 3.74143
10 4.51773 7.13886
11 7.196 5.48099
12 11.158 8.08422
13 17.3462 16.0432

æ Average time to find routing points

à Average time to find connectivity matrix

æ æ æ æ æ
æ

æ

æ

æ

æ

æ

æ

à
à

à à à
à

à
à

à à
à à

3 4 5 6 7 8 9 10 11 12 13

Degree HdL0

5

10

15

20

Time

(a) Sparse polynomial instances.

æ Average time to find routing points

à Average time to find connectivity matrix

æ æ æ æ
æ

æ

æ

æ

æ

æ

æ

æ

à
à

à

à

à

à

à
à

à

à

à

à

3 4 5 6 7 8 9 10 11 12 13

Degree HdL0

5

10

15

Time

(b) Dense polynomial instances.

Figure 5.14 Plot of the data from Table 5.13.

82

5.2. COMPUTATIONAL TIMINGS CHAPTER 5. EXPERIMENTAL RESULTS

Table 5.15 Other computed averages for dense and sparse polynomial instances.

(a) Sparse Polynomial Instances

d Avg. No. CC Avg. No. R Avg. No. Max Avg. No. Non-Max

2 2.551 3.768 3. 0.768
3 3.018 5.783 4.311 1.472
4 3.536 6.88 5.098 1.782
5 3.95195 7.97998 5.85285 2.12713
6 4.334 9.01103 6.55366 2.45737
7 4.63089 9.90672 7.13139 2.77533
8 4.97588 10.6472 7.68141 2.96583
9 5.16298 11.1499 8.02414 3.12575
10 5.42626 11.7535 8.45556 3.29798
11 5.54719 12.3614 8.80522 3.55622
12 5.73467 12.6995 9.04322 3.65628
13 5.91423 13.4834 9.4995 3.98385

(b) Dense Polynomial Instances

d Avg. No. CC Avg. No. R Avg. No. Max Avg. No. Non-Max

2 2.52405 3.67936 2.94188 0.737475
3 2.5982 5.48497 3.89178 1.59319
4 2.91247 7.04628 4.69618 2.3501
5 2.89458 8.62851 5.4739 3.15462
6 3.136 9.93 6.123 3.807
7 3.16249 11.2919 6.80642 4.48546
8 3.38677 12.4649 7.37275 5.09218
9 3.40641 13.1131 7.71371 5.3994
10 3.64257 13.8976 8.10241 5.79518
11 3.57415 14.4269 8.3507 6.07615
12 3.76253 15.006 8.67936 6.32665
13 3.6593 15.4412 8.83216 6.60905

83

Chapter 6

Conclusion and Outlook

In this thesis we presented an algorithm Connectivity for determining whether two points lie

in a same connected component of a semi-algebraic set defined by a single polynomial inequation.

We proved the method to be partially correct using modified results from Morse theory assuming

the correctness of a certified numeric subalgorithm Destination. Furthermore, we showed the

algorithm terminates using results from semi-algebraic geometry. We gave an upper bound on

the length of a connectivity path connecting two input points lying in a connected component

of {g 6= 0}. To illustrate the efficacy of our method, we presented several non-trivial examples

and used numerical experiments.

There are several future research topics which are related or motivated by the ideas in this

thesis. As mentioned previously, we plan to describe the steps for Destination in a future

paper. One possible implementation would require that we trace the steepest ascent paths using

outgoing eigenvectors in a rigorous manner. A possible way to due this is using interval based

methods [Moo09]. Researchers have used approaches like this in the past [Veg12], however their

methods would need to be adapted carefully for our problem.

The steepest ascent paths we need to trace are solutions to an autonomous ordinary

differential equation with initial value. Techniques have already been developed [MB03; Ned99]

that allow us to put certified boxes enclosing the steepest ascent path, such as those seen in

Figure 6.1a. Ideally we would like the boxes as small as possible, however, one major problem

with verified integration is the wrapping effect. Illustrated in Figure 6.1b, the wrapping effect

is a blow up in the size of the enclosures due to repeated arithmetic operations with intervals.

Early computational tests show that when calculating steepest ascent paths using outgoing

eigenvectors, the wrapping effect causes an unfavorable buildup of errors in the long term. More

work needs to be done in this area.

84

CHAPTER 6. CONCLUSION AND OUTLOOK

(a) (b)

Figure 6.1 Interval ODE enclosures.

An alternative approach to implementing Destination could come from the field of dynamical

systems. Much research has been done on how to compute invariant manifolds with several

methods focusing on computing rigorous enclosures of (un)stable manifolds (see [Kra05] for a

survey of such methods).

A second research direction is to improve the length bound given in Chapter 4. A reasonable

first step would be to improve the radius of the bounding ball and the lower bound on the

critical values of the routing points. We also want to remove the assumption that the gradient

extremal of g is a compact rectifiable curve. Computational tests seem to suggest that that

because g is a routing function, this assumption is already true.

A third research problem is to perform a full complexity analysis of Connectivity. Certainly

this is not possible until an implementation of Destination has been fixed. To be competi-

tive with existing methods that solve the connectivity problem, we hope Connectivity has

complexity that is singly exponential. Once a full complexity analysis is done, we would like to

generalize the method discussed in this thesis to help answer connectivity queries on smooth

bounded semi-algebraic sets.

One last research direction is to focus on developing an algebraic path connecting any two

points in a connected component of {f 6= 0}. In a recent paper [FK13], researchers have been

answering connectivity queries using gradient extremal paths. It may be possible to adapt this

idea.

85

BIBLIOGRAPHY

[BH04] Banyaga, A. & Hurtubise, D. Lectures on Morse Homology. Vol. 29. Kluwer Texts
in the Mathematical Sciences. Kluwer Academic Publishers, 2004.

[BR13] Basu, S. & Roy, M.-F. “Divide and Conquer Roadmap for Algebraic Sets” (2013).
arXiv: 1305.3211 [math.AG].

[Bas96] Basu, S. et al. “Computing roadmaps of semi-algebraic sets”. Proceedings of the
twenty-eighth annual ACM symposium on Theory of computing. ACM. 1996, pp. 168–
173.

[Bas00] Basu, S. et al. “Computing roadmaps of semi-algebraic sets on a variety”. Journal
of the American Mathematical Society 13.1 (2000), pp. 55–82.

[Bas03] Basu, S. et al. Algorithms in Real Algebraic Geometry. 2nd. Vol. 10. Algorithms
and Computation in Mathematics. Springer, 2003.

[Bas12] Basu, S. et al. “A baby step-giant step roadmap algorithm for general algebraic sets”
(2012). arXiv: 1201.6439 [math.AG].

[BR10] Basu, S. & Roy, M.-F. “Bounding the radii of balls meeting every connected com-
ponent of semi-algebraic sets”. Journal of Symbolic Computation 45.12 (2010),
pp. 1270–1279.

[Can88] Canny, J. The complexity of robot motion planning. Cambridge, MA, USA: MIT
Press, 1988.

[Can93] Canny, J. “Computing roadmaps of general semi-algebraic sets”. The Computer
Journal 36.5 (1993), p. 504.

[Col75] Collins, G. “Quantifier elimination for real closed fields by cylindrical algebraic
decompostion”. Automata Theory and Formal Languages 2nd GI Conference Kaiser-
slautern, May 20–23, 1975. Springer. 1975, pp. 134–183.

[CM12] Coste, M. & Moussa, S. “Geodesic diameter of sets defined by few quadratic equations
and inequalities”. Mathematische Zeitschrift 272.1-2 (2012), pp. 239–251.

[Cro68] Crofton, M. W. “On the theory of local probability, applied to straight lines drawn
at random in a plane; the methods used being also extended to the proof of certain
new theorems in the integral calculus”. Philosophical Transactions of the Royal
Society of London 158 (1868), pp. 181–199.

[DK04] D’Acunto, D. & Kurdyka, K. “Bounds for gradient trajectories of polynomial and
definable functions with applications”. 2004.

86

http://arxiv.org/abs/1305.3211
http://arxiv.org/abs/1201.6439

BIBLIOGRAPHY BIBLIOGRAPHY

[DK05] D’Acunto, D. & Kurdyka, K. “Effective Lojasiewicz Gradient Inequality for Polyno-
mials”. Preprint (2005).

[DK06] D’Acunto, D. & Kurdyka, K. “Bounds for gradient trajectories and geodesic diameter
of real algebraic sets”. Bulletin of the London Mathematical Society 38.6 (2006),
pp. 951–965.

[Don96] Donaldson, S. “Symplectic submanifolds and almost-complex geometry”. J. Differ-
ential Geom 44.4 (1996), pp. 666–705.

[Emi10] Emiris, I. Z. et al. “The DMM bound: Multivariate (aggregate) separation bounds”.
ISSAC. Ed. by Watt, S. Munich, Germany: ACM, 2010, pp. 243–250.

[Fed96] Federer, H. Geometric Measure Theory. Springer, 1996.

[FK13] Filippidis, I. & Kyriakopoulos, K. J. “Roadmaps using gradient extremal paths”.
Robotics and Automation (ICRA), 2013 IEEE International Conference on. IEEE.
2013, pp. 370–375.

[GR93] Gournay, L. & Risler, J. “Construction of roadmaps in semi-algebraic sets”. Appli-
cable Algebra in Engineering, Communication and Computing 4.4 (1993), pp. 239–
252.

[GV92] Grigor’ev, D. & Vorobjov, N. “Counting connected components of a semialgebraic
set in subexponential time”. Computational Complexity 2.2 (1992), pp. 133–186.

[Hei90] Heintz, J. et al. “Single exponential path finding in semi-algebraic sets II: The
general case”. Proc. 60th Birthday Conf. for S. Abhyankar. 1990.

[HS00] Hindry, M. & Silverman, J. H. Diophantine geometry: an introduction. Vol. 201.
Springer, 2000.

[Hof86] Hoffman, D. K. et al. “Gradient extremals”. Theoretica chimica acta 69.4 (1986),
pp. 265–279.

[Hon10] Hong, H. “Connectivity in Semi-algebraic sets”. Symbolic and Numeric Algorithms
for Scientific Computing (SYNASC), 2010, 12th International Symposium on Sym-
bolic and Numeric Algorithms for Scientific Computing. IEEE. 2010, pp. 4–7.

[IC14] Iraji, R. & Chitsaz, H. “NuRA: Numerical Roadmap Algorithm”. CoRR (2014).

[Ito09] Ito, D. Robot Vision: Strategies, Algorithms and Motion Planning. Commack, NY,
USA: Nova Science Publishers, Inc., 2009.

87

BIBLIOGRAPHY BIBLIOGRAPHY

[Kha86] Khatib, O. “Real-time obstacle avoidance for manipulators and mobile robots”. The
international journal of robotics research 5.1 (1986), pp. 90–98.

[Kra05] Krauskopf, B. et al. “A survey of methods for computing (un) stable manifolds of
vector fields”. International Journal of Bifurcation and Chaos 15.03 (2005), pp. 763–
791.

[Lab10] Labs, O. “A List of Challenges for Real Algebraic Plane Curve Visualization Soft-
ware”. Nonlinear Computational Geometry (2010), pp. 137–164.

[Lat91] Latombe, J.-C. Robot Motion Planning. Norwell, MA, USA: Kluwer Academic
Publishers, 1991.

[LaV06] LaValle, S. Planning Algorithms. New York, NY, USA: Cambridge University Press,
2006.

[LPW79] Lozano-Pérez, T. & Wesley, M. A. “An algorithm for planning collision-free paths
among polyhedral obstacles”. Communications of the ACM 22.10 (1979), pp. 560–
570.

[MB03] Makino, K. & Berz, M. “Taylor models and other validated functional inclusion
methods”. International Journal of Pure and Applied Mathematics 4.4 (2003),
pp. 379–456.

[Mat02] Matsumoto, Y. An introduction to Morse theory. Vol. 208. Amer Mathematical
Society, 2002.

[Moo09] Moore, R. et al. Introduction to interval analysis. Society for Industrial Mathematics,
2009.

[Ned99] Nedialkov, N. et al. “Validated solutions of initial value problems for ordinary
differential equations”. Applied Mathematics and Computation 105.1 (1999), pp. 21–
68.

[Nic11] Nicolaescu, L. I. An Invitation to Morse Theory. Universitext (1979). Springer, 2011.

[Per01] Perko, L. Differential Equations and Dynamical Systems. 3rd. Vol. 7. Texts in
Applied Mathematics. Springer-Verlag, 2001.

[Rei79] Reif, J. H. “Complexity of the movers problem and generalizations extended abstract”.
Proceedings of the 20th Annual IEEE Conference on Foundations of Computer
Science. 1979, pp. 421–427.

88

BIBLIOGRAPHY BIBLIOGRAPHY

[SEDS10] Safey El Din, M. & Schost, E. “A Baby Steps/Giant Steps Probabilistic Algorithm
for Computing Roadmaps in Smooth Bounded Real Hypersurface”. Discrete and
Computational Geometry (2010).

[SEDS13] Safey El Din, M. & Schost, É. “A nearly optimal algorithm for deciding connectivity
queries in smooth and bounded real algebraic sets”. arXiv:1307.7836 (2013).

[San04] Santaló, L. A. Integral geometry and geometric probability. Cambridge University
Press, 2004.

[SS83] Schwartz, J. & Sharir, M. “On the piano movers problem: II. General techniques for
computing topological properties of real algebraic manifolds”. Advances in applied
Mathematics 4.1 (1983), pp. 298–351.

[Sei54] Seidenberg, A. “A new decision method for elementary algebra”. Annals of Mathe-
matics 60.2 (1954), pp. 365–374.

[Tar51] Tarski, A. “A decision method for elementary algebra and geometry” (1951).

[Veg12] Vegter, G. et al. “Certified computation of planar morse-smale complexes”. Pro-
ceedings of the 2012 symposuim on Computational Geometry. ACM. 2012, pp. 259–
268.

89

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Problem Statement
	Previous Work
	Algorithm
	Description of Algorithm Connectivity
	Specification of Subalgorithm Destination

	Overview of Results
	Partial Correctness
	Termination
	Length Bound
	Experimental Results

	Partial Correctness
	Preliminaries
	Proof of Main Result

	Termination
	Preliminaries
	Proof of Main Result

	Length Bound
	Preliminaries
	Bound on Trajectory Length in a Ball
	Ball Enclosing Connectivity Path

	Proof of Main Result

	Experimental Results
	Non-Trivial Examples
	Computational Timings

	Conclusion and Outlook
	Bibliography

