
ABSTRACT

ADAMS, STEPHEN MICHAEL. On the Cross Section Lattice of Reductive Monoids. (Under
the direction of Mohan Putcha.)

Let M be an irreducible algebraic monoid with reductive unit group G. There exists an

idempotent cross section Λ of G × G orbits that forms a lattice under the partial order e ≤
f ⇐⇒ GeG ⊆ GfG, where the closure is in the Zariski topology. This cross section lattice is

important in describing the structure of reductive monoids.

In this paper we study some properties of cross section lattices, particularly in the case where

there are one or two minimal nonzero elements. We determine when these cross sections lattices

are modular and distributive, and how distributive cross section lattices can be expressed as

a product of chains. We also compute the zeta polynomials and characteristic polynomials of

cross section lattices as well as describe the importance of corank in describing J -irreducible

cross section lattices.
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Chapter 1

Introduction

The study of reductive monoids began around 1980 and was developed independently by Mohan

Putcha and Lex Renner. The theory is a rich blend of semigroup theory, algebraic groups, and

torus embeddings. Monoids occur naturally in mathematics and the sciences since every linear

algebraic monoid is isomorphic to a submonoid of the set of n × n matrices. Applications of

monoids are abundant and include the areas of combinatorics and computer science.

A monoid is a semigroup with an identity element. As such it has a group of units G which

is necessarily nonempty. A reductive monoid is a monoid whose unit group G is a reductive

group. Reductive monoids are regular and are hence determined by the group of units and the

set of idempotent elements. The structure of these reductive monoids is of particular interest.

We can define a partial order on the set of G × G orbits of the monoid. These orbits form a

lattice called the cross section lattice. Given this cross section lattice and a type map, we can

construct the monoid M up to a central extension.

The purpose of this paper is to describe some properties of the cross section lattices of

reductive monoids. Our results focus on two specific cases: the J -irreducible case and the

2-reducible case where the cross section lattice has one and two minimal nonzero elements,

respectively. In Chapter 2 we introduce the background material from algebraic geometry and

algebraic groups that is required to define a reductive monoid. We then introduce all of the

concepts from lattice theory that are used throughout the paper. Chapter 3 introduces the

concept of the cross section lattice of a reductive monoid. This chapter contains the majority

of the theory of cross section lattices that serves as the basis upon which the rest of the paper

is built as well as several useful examples.

In Chapter 4 we determine when the cross section lattices of J -irreducible and 2-reducible

monoids are distributive. Chapter 5 investigates when the cross section lattices of distributive

monoids can be expressed as a direct product of chains. The zeta polynomial is then calculated

as an application. Chapter 6 details the Möbius function of a cross section lattice which is then

1



used to calculate the lattice’s characteristic polynomial. Chapter 7 briefly discusses the rank

of cross section lattices and then investigates the consequences of corank in the J -irreducible

case. Finally, Chapter 8 summarizes possible directions of future research.
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Chapter 2

Preliminaries

The study of reductive monoids is a rich blend of semigroup theory, algebraic geometry, and

algebraic group theory. Our goal is to study the cross section lattice of a reductive monoid, which

allows us to describe the structure of the monoid. The proofs of results in Chapters 4, 5, 6, and

7 are based entirely on lattice theory and the combinatorics of invariants of the monoid. As

such, this chapter contains all of the algebraic background material necessary to introduce the

notion of cross section lattices and nothing more. No knowledge of algebraic geometry, algebraic

groups, or monoids is assumed. However, it will be assumed that the reader is familiar with the

fundamentals of group theory and ring theory.

The material presented on algebraic geometry and algebraic groups comes from [4]. Addi-

tional material on root systems comes from [3]. For reductive monoids, we rely on [7], [14], and

[16]. The majority of the lattice theory is from [17]. The reader who is interested in familiarizing

themselves beyond the bare necessities is encouraged to peruse the relevant references.

2.1 Algebraic Geometry

Throughout we will assume that k is an algebraically closed field.

Let I ⊆ k[x1, . . . , xn] be an ideal. Since k is a field it is Noetherian and hence k[x1, . . . , xn]

is Noetherian by the Hilbert Basis Theorem. I is therefore finitely generated, that is, I =

〈f1, . . . , fm〉 for some polynomials f1, . . . , fm ∈ k[x1, . . . , xn]. The zero set of I is

V(I) = {(a1, . . . , an) ∈ kn | fi(a1, . . . , an) = 0, 1 ≤ i ≤ m}.

This is the set of all points in kn that vanish on every polynomial in I.

A set X ⊆ kn is an affine variety if it is the set of common zeros of a finite collection of

polynomials. That is, an affine variety is of the form X = V(I) for some ideal I.
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Example 2.1.1. Let SLn(k) be the group of n × n matrices of determinant 1 whose entries

are elements of k. Since SLn(k) has n2 entries, we can easily identify SLn(k) as a subset of

kn
2
. If we view each of the entries xij of a matrix A ∈ SLn(k) as a variable, the determinant

of A is a polynomial in these n2 variables. SLn(k) therefore satisfies the polynomial equation

det(A) = 1, and hence SLn(k) is an affine variety.

Example 2.1.2. Let GLn(k) ⊆ kn
2

be the set of invertible n × n matrices whose entries

are elements of k. Notice that GLn(k) ∼=

{(
A 0

0 x

)
| A ∈ GLn(k), x det(A) = 1

}
⊆ kn

2+1.

Therefore GLn(k) is an affine variety.

Example 2.1.3. Let Bn(k) ⊂ GLn(k) be the set of invertible upper triangular matrices. If

A = (aij), then the entry aij = 0 for all i > j. Bn(k) is therefore the zero set of finitely many

polynomials and it is therefore an affine variety. Similarly, Dn(k), the set of invertible diagonal

matrices, and Un(k) = {(aij) ∈ Bn(k) | aii = 1}, the set of unipotent upper triangular matrices,

are affine varieties.

Let X ⊆ kn. Let I(X) be the set of all polynomials that have X as a vanishing set. That is,

I(X) = {f ∈ k[x1, . . . , xn] | f(x) = 0 ∀x ∈ X}.

It is easy to see that I(X) is an ideal. Furthermore

X ⊆ V(I(X))

I ⊆ I(V(I)),

however neither inclusion must hold with equality. The first will hold ifX is an affine variety. The

second will hold if I is a radical ideal, that is, I = {f ∈ k[x1, . . . , xn] | f i ∈ I for some i ∈ N}.
Let X and Y be affine varieties. A morphism is a mapping φ : X → Y such that

φ(x1, . . . , xn) = (ψ1(x1, . . . , xn), . . . , ψm(x1, . . . , xn)),

where ψi ∈ k[x1, . . . , xn]/I(x) for each i.

Affine varieties and morphisms are necessary to define algebraic groups in the next section.

It will be useful to topologize kn by saying a set is closed if and only if it is an affine variety.

The closure of a set A, denoted A, is the smallest closed set containing A. It is not difficult to

check that the axioms for a topology are met and the resulting topology is called the Zariski

topology. Points in the Zariski topology are closed and every subcover has a finite subcover.

However, open sets are dense and hence kn is not a Hausdorff space. For this reason kn is often

said to be quasicompact, the term compact being reserved for a Hausdorff space. Despite this
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minor set back, kn with the Zariski topology is a noetherian space, that is, closed sets satisfy

the descending chain condition that if X1 ⊇ X2 ⊇ · · · is a sequence of closed subsets of kn,

then Xi = Xi+1 = · · · for some integer i.

Example 2.1.4. Let f(x) = x2 − 1 ∈ C[x]. Then f has two zeros so the set {−1, 1} is closed

in the Zariski topology. In fact, any finite subset {c1, . . . , cn} of C is the set of zeros of the

polynomial
n∏
i=1

(x− ci). All such sets are closed in the Zariski topology.

Example 2.1.5. Let GLn(k) be the group of n × n invertible matrices whose entries are

elements of k. Notice that if X is a noninvertible n× n matrix, then det(X) = 0. That is, the

set of noninvertible matrices is closed in the Zariski topology. Therefore GLn(k) is an open

subset of Mn(k), the set of n × n matrices. Notice that GLn(k) is dense in Mn(k), that is,

GLn(k) = Mn(k).

A topological space is irreducible if it cannot be written as the union of two proper nonempty

closed sets. Equivalently, a topological space is irreducible if and only if the intersection of two

nonempty open sets is nonempty. A variety is irreducible if it is nonempty and not the union

of two proper subvarieties.

Example 2.1.6. kn with the Zariski topology is irreducible since any open set is dense, and

hence two nonempty open subsets have nonempty intersection. In particular, notice that if X

is an open set in kn, then X = kn.

Theorem 2.1.7. Let X be a noetherian topological space. Then X has only finitely many

maximal irreducible subspaces and their union is X.

Theorem 2.1.7 allows us to express a noetherian space, such as kn with the Zariski topol-

ogy, as a union of maximal irreducible subspaces. These subspaces are called the irreducible

components of X.

2.2 Algebraic Groups

Let G be an affine variety that satisfies the axioms of a group. If the two maps µ : G×G→ G,

where µ(x, y) = xy, and ι : G → G, where ι(x) = x−1, are morphisms of varieties, then G is

called an affine algebraic group. A linear algebraic group is an affine algebraic group that is a

subgroup of GLn(k). In view of Theorem 2.3.5 in the next section, we are primarily interested

in linear algebraic groups.

Example 2.2.1. We have seen that GLn(k), SLn(k), Dn(k), Bn(k), and Un(k) are all affine va-

rieties. Furthermore, they all satisfy the axioms of a group. Matrix multiplication and inversion

are morphisms and therefore all five sets are linear algebraic groups.
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The irreducible components of an affine algebraic group G are the irreducible components of

G when considered as an affine variety. These irreducible components are called the connected

components of G, as the term “irreducible” has a different meaning in regards to algebraic

groups. There is a unique connected component, denoted G◦, that contains the identity element

1 ofG. This connected component is called the identity component ofG.G◦ is a normal subgroup

of G. G is said to be connected if G = G◦.

Example 2.2.2. GLn(k), SLn(k), Dn(k), Bn(k), and Un(k) are all connected linear algebraic

groups.

Let G be a connected linear algebraic group. The radical of G, denoted R(G), is the unique

maximal connected normal solvable subgroup of G. An element x ∈ G is unipotent if its only

eigenvalue is 1. The unipotent radical of G, denoted Ru(G), is the subgroup of R(G) consisting

of all the unipotent elements of G. If G 6= {1}, then G is called semisimple if R(G) = {1} and

reductive if Ru(G) = {1}. Notice that if G is semisimple, then it is reductive. The converse,

however, it not necessarily true. G is a simple group if it has no closed connected normal

subgroups other than itself and {1}.

Example 2.2.3. GLn(k) is reductive. SLn(k) is semisimple and hence also reductive. It is

also simple. Bn(k) is not reductive for n ≥ 2 because its unipotent radical is Un(k), which is

nontrivial.

An affine algebraic group is a torus if it is isomorphic to k∗×· · ·×k∗. Equivalently, a linear

algebraic group is a torus if it is isomorphic to a subgroup of Dn(k). A torus is a maximal torus

if it is not properly contained in a larger torus.

A Borel subgroup of an affine algebraic group is a maximal closed connected solvable sub-

group B of G. All Borel subgroups of G are conjugate to B. Furthermore, the maximal tori of

G are those of the Borel subgroups of G. The maximal tori are also all conjugate. If B and B−

are Borel subgroups such that B ∩B− = T is a maximal torus, then B− is called the opposite

Borel subgroup of B relative to T. A proper subgroup P of G is parabolic if it contains a Borel

subgroup as a subset. That is, the parabolic subgroups are the subgroups of G that are between

B and G.

Let T be a maximal torus and N = NG(T ) = {x ∈ G | x−1Tx = T} be the normalizer of T

in G. The Weyl group of G is W = N/T . Since all maximal tori are conjugate, the Weyl group

is independent of the choice of T .

Example 2.2.4. Let G = GLn(k). Then the subgroup of invertible upper triangular matrices

Bn(k) is a Borel subgroup containing the maximal torus Dn(k). The opposite Borel subgroup of

Bn(k) relative to Dn(k) is B−n (k), the subgroup of invertible lower triangular matrices. Notice

6



that Bn(k)∩B−n (k) = Dn(k). The parabolic subgroups are the subgroups comprised of invertible

upper block triangular matrices. Notice that these subgroups of G contain Bn(k) as a subgroup.

The Weyl group is isomorphic to Sn, the symmetric group on n elements.

Definition 2.2.5. A root system is a real vector space E together with a finite subset Φ such

that

a) Φ spans E, and does not contain 0.

b) If α ∈ Φ, then the only other multiple of α in Φ is −α.

c) If α ∈ Φ, then there is a reflection sα : E → E such that sα(α) = −α and sα leaves Φ

stable.

d) If α, β ∈ Φ, then sα(β)− β is an integral multiple of α.

The elements of Φ are called roots. A subset ∆ = {α1, . . . , αk} is called a base if ∆ is a basis

of E and each α ∈ Φ can be expressed as a linear combination α =
∑
ciαi, where the ci are

integers that are all either nonnegative or nonpositive. Bases exist and every root is an element

of at least one base. The elements of ∆ are called simple roots. A reflection sα corresponding to

the simple root α ∈ ∆ is called a simple reflection. The group W generated by the set of simple

reflections {sα | α ∈ ∆} is called the Weyl group. The Weyl group permutes the set of bases

transitively. There is an inner product (α, β) on E relative to which W consists of orthogonal

transformations. Furthermore, sα(β) = β−〈β, α〉, where 〈β, α〉 = 2(β, α)/(α, α). Φ is said to be

irreducible if it cannot be partitioned into a union of two mutually orthogonal proper subsets.

Every root system is the disjoint union of irreducible root systems.

If G is a semisimple affine algebraic group with maximal torus T , then E = X(T )⊗R with

Φ as described above is a root system. The Weyl group is W = NG(T )/T and G is generated

by the Borel subgroup B containing T and the normalizer NG(T ).

A graph H is a set V = {v1, . . . , vn} of vertices with a set E = {e1, . . . , em} of edges. The

edges are two-element subsets of V . Each edge ek therefore corresponds to an unordered pair

(vi, vj) of elements of V . Graphs can be denoted pictorially by drawing points corresponding

to each vertex of V and connecting two vertices vi and vj with a line segment if there exists

ek ∈ E such that ek = (vi, vj). In this case we say that vi and vj are adjacent. A path is a

sequence of edges that connect a sequence of vertices of a graph where no vertex is repeated.

A graph is connected if any two vertices can be connected by a path. A connected component

is a maximal connected subgraph. Notice that a graph is then connected if and only if it has

one connected component.

The structure of affine algebraic groups can be described by the set of simple roots. We can

create a graph called the Dynkin diagram as follows: Two nodes corresponding to the simple
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roots α and β are connected by 〈α, β〉〈β, α〉 edges. 〈α, β〉〈β, α〉 can be equal to 0, 1, 2, or 3.

We will say that α and β are adjacent if they are connected by an edge in the Dynkin diagram

of ∆. Two simple roots α and β are adjacent if and only if sαsβ 6= sβsα. The Dynkin diagram

is used to describe the structure of the algebraic group. The possible Dynkin diagrams for

simple algebraic groups are listed in Figure 2.1. Notice that all of these Dynkin diagrams are

connected graphs. If the algebraic group G is not simple, its Dynkin diagram is the disjoint

union of Dynkin diagrams from Figure 2.1.

In Chapter 3 we will see how Dynkin diagrams can be used to help describe the structure

of reductive monoids.

Let G be a reductive group and let B be a Borel subgroup of G containing a maximal torus

T . Let S be the set of simple reflections corresponding to the base ∆ determined by B and T .

For I ⊂ S, let WI be the subgroup of W generated by I. Let PI = BWIB.

Theorem 2.2.6.

a) The only subgroups of G containing B are of the form PI for I ⊂ S.

b) If PI is conjugate to PJ , then I = J .

c) The following are equivalent.

i) I = J .

ii) WI = WJ .

iii) PI = PJ .

Notice that by Theorem 2.2.6 the PI are the parabolic subgroups of G.

2.3 Reductive Monoids

Let S be a nonempty set with an associative binary operation ·. Then the set S is a called a

semigroup. If there exists an element 1 ∈ S such that 1 · x = x · 1 = x for all x ∈ S, then 1 is

called an identity element of S and S is called a monoid. An invertible element of a monoid M

is called a unit. The set of units forms a group and this group of units is denoted by G. Notice

that the identity element 1 ∈ M is a unit and therefore G is necessarily nonempty. If there

exists an element 0 ∈ S such that 0 · x = x · 0 = 0 for all x ∈ S, then 0 is called a zero element

of S and S is called a semigroup with 0. Any semigroup without an identity element can be

turned into a monoid S∪{1} by adjoining an element 1 to S and defining 1 ·x = x ·1 = x for all

x ∈ S and 1 · 1 = 1. The set S ∪{1} is often denoted S1 and S1 = S if S is a monoid. Similarly,

if S is a semigroup without zero then we can adjoin a zero element 0 by defining 0 ·x = x ·0 = 0

8



An(n ≥ 1) :

Bn(n ≥ 2) :

Cn(n ≥ 3) :

Dn(n ≥ 4) :

E6 :

E7 :

E8 :

F4 :

G2 :

Figure 2.1: Dynkin diagrams of simple algebraic groups
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for all x ∈ S and 0 · 0 = 0. Identity elements and zero elements of a semigroup S are unique

and distinct provided |S| > 1.

We can think of a monoid as being like a group where not all of the elements are necessarily

invertible. From this perspective we can consider the analogy that a monoid is to a group as

a ring is to a field, and that, as is the case when comparing rings with fields, the structure of

monoids differs greatly from that of groups.

Example 2.3.1. Let 2Z be the set of even integers under multiplication. 2Z is a semigroup with

zero element 0 because 2Z is closed under multiplication and the multiplication is associative.

It is not a monoid because it does not have an identity element. The set 2Z ∪ {1}, however, is

a monoid under multiplication.

Example 2.3.2. The set 2Z under addition is a monoid because the addition is associative

and 0 ∈ 2Z is an additive identity.

Notice that in the previous example the group of units is G = 2Z. That is, the monoid is

actually a group. In fact, all groups are monoids. However, no interesting insight can be gleaned

from viewing a group as a monoid. It is therefore clear that we should focus our attention on

monoids that are not actually groups.

Example 2.3.3. Consider Mn(k), the set of n × n matrices whose entries are from the alge-

braically closed field k. Then Mn(k) paired with matrix multiplication is a semigroup because

matrix multiplication is associative. Notice that Mn(k) contains In, the n× n identity matrix.

Therefore Mn(k) is actually a monoid. However, Mn(k) is not a group because it contains ma-

trices of determinant 0. The group of units is G = GLn(k), the set of invertible n×n matrices.

Notice that G = Mn(k).

Let x, y ∈ S. Green’s Relations are as follows:

a) xRy if xS1 = yS1.

b) xLy if S1x = S1y.

c) xJ y if S1xS1 = S1yS1.

d) xHy if xRy and xLy.

e) xDy if xRz and zLy for some z ∈ S1.

Example 2.3.4. Let a, b ∈ M = Mn(k). aLb if and only if a and b are row equivalent. aRb if

and only if a and b are column equivalent. aJ b if and only if rank(a) = rank(b). Furthermore

J = D.
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Green’s Relations are useful in describing the structure of semigroups. We will primarily be

concerned with the J -relation. We will see in Chapter 3 how this relation gives rise to the cross

section lattice of a reductive monoid.

A linear algebraic monoid M is an affine variety with an associative morphism µ : M×M →
M and an identity element 1 ∈M . M is irreducible if it cannot be expressed as the union of two

proper closed subsets. The irreducible components of M are the maximal irreducible subsets of

M . There is a unique irreducible component M◦ of M that contains the identity. In this case

M◦ = G◦, the Zariski closure of the identity component of G. In particular if M is an irreducible

linear algebraic monoid, then M = G. It is therefore easy for us to generate monoids from their

group of units. In fact, the structure of the monoid is determined in part by the structure of

its group of units. This phenomenon is examined in more detail in Chapter 3.

Theorem 2.3.5. Let M be a linear algebraic monoid. Then M is isomorphic to a closed

submonoid of some Mn(k).

Theorem 2.3.5 tells us that we can view any linear algebraic monoid in terms of matrices.

This is particularly convenient when constructing examples. It is for this reason that we think

of the group of units G as a linear algebraic monoid rather than an affine algebraic monoid.

Let M be a linear algebraic monoid. The set of idempotents of M is E(M) = {e ∈M | e2 =

e}. M is regular if for each a ∈ M there exists x ∈ M such that axa = a. M is unit regular if

M = GE(M) = E(M)G. The property of being unit regular is quite desirable because it allows

us to build the monoid given the group of units and the set of idempotents. If M is a regular

irreducible linear algebraic monoid, then it is unit regular.

An irreducible linear algebraic monoid is reductive if its group of units G is a reductive

algebraic group. If M has a zero element, then M is reductive if and only if M is regular.

Reductive monoids are then determined by the group of units and the set of idempotents. As

a consequence the structure of linear algebraic monoids is most interesting when the group of

units G is a reductive algebraic group. We shall therefore only consider reductive monoids and

it will be understood from this point forward that, unless otherwise stated, we mean “reductive

monoid” whenever we use the term “monoid,” whether the word “reductive” is omitted for the

sake of terminological brevity or as a result of carelessness on the part of the author.

2.4 Lattices

In Chapter 3 we wish to describe the structure of the G×G orbits of a reductive monoid as a

lattice. In this section we therefore collect all of the required notions from lattice theory that

will be used not only in the next chapter, but throughout the remainder of the paper.
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A partially ordered set, or poset for short, is a set P with a binary relation ≤ satisfying the

following axioms:

a) Reflexivity : x ≤ x for all x ∈ P .

b) Antisymmetry : If x ≤ y and y ≤ x, then x = y.

c) Transitivity : If x ≤ y and y ≤ z, then x ≤ z.

A poset is finite if it has finitely many elements. We will only consider finite posets. The dual

of a poset P , denoted P ∗, is the poset with the underlying set as P such that x ≤ y in P ∗ if

and only if y ≤ x in P .

If x ≤ y but x 6= y, then we write x < y. To elements x and y of P are comparable if either

x ≤ y or y ≤ x; otherwise they are said to be incomparable. If x < y and there is no z ∈ P
such that x < z < y, then y is said to cover x. P has a least element, denoted 0̂, if there exists

an element 0̂ ∈ P such that 0̂ ≤ x for all x ∈ P . Similarly, P has a greatest element, denoted

1̂, if there exists 1̂ ∈ P such that x ≤ 1̂ for all x ∈ P . Two posets P and Q are isomorphic if

there exists a bijection φ : P → Q such that both φ and its inverse are order-preserving, that

is, x ≤ y in P if and only if φ(x) ≤ φ(y) in Q.

Example 2.4.1. The set [n] = {1, 2, . . . , n} of the first n natural numbers forms a poset with

order relation ≤. All elements of [n] are comparable and y covers x if and only if y = x + 1.

The least element of [n] is 0̂ = 1 and the greatest element is 1̂ = n.

Given two elements x and y of a poset P , z ∈ P is an upper bound if x ≤ z and y ≤ z. z is a

least upper bound if there does not exist an upper bound w such that w < z. If the least upper

bound of x and y exists, it is denoted x∨ y and is called the join of x and y. Lower bounds and

greatest lower bounds can be defined similarly. If the greatest lower bound of x and y exists, it

is denoted x ∧ y and is called the meet of x and y. Joins and meets, if they exist, are unique.

An element x ∈ P is join-irreducible if x cannot be written as a join of two elements y and z

where y < x and z < x. A lattice is a poset L in which every pair of elements has a least upper

bound and a greatest lower bound, both of which are in L. An atom of L is an element that

covers 0̂. A coatom is an element that is covered by 1̂.

Example 2.4.2. Let S be a finite set of n elements. Let Bn be the set of subsets of S with

the partial order given by X ≤ Y if and only if X ⊆ Y . Then Bn is a lattice called a Boolean

lattice. Notice that as a set Bn ∼= 2S , the power set of S. The least element of Bn is 0̂ = ∅ and

the greatest element is 1̂ = S. If X and Y are elements of Bn (and hence subsets of S), the join

of X and Y is X ∨ Y = X ∪ Y while the meet is X ∧ Y = X ∩ Y .
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An (induced) subposet of P is a subset Q of P with the same partial order as P . That is, Q

is an induced subposet if Q ⊆ P and if x ≤ y in Q, then x ≤ y in P . When discussing induced

subposets, the word “induced” is often omitted. A sublattice M of a lattice L is a subposet that

is closed under the operations of ∨ and ∧. The operations ∨ and ∧ are commutative, associative,

and idempotent, that is, x ∧ x = x ∨ x = x for all x ∈ L. An important example of a subposet

is the interval [x, y] = {z ∈ P | x ≤ z ≤ y}, defined whenever x ≤ y.

Example 2.4.3. Let S be a finite set of n elements and X ⊂ S be a proper, nonempty

subset. Let Xc = S\X be the complement of X. Then {∅, X,Xc, S} is a sublattice of Bn since

X ∨Xc = X ∪Xc = S and X ∧Xc = X ∩Xc = ∅. [0̂, X] is the sublattice of all subsets of X.

Notice that [0̂, X] ∼= B|X|.

We can represent the elements of a poset P along with the cover relations pictorially in a

Hasse diagram. The Hasse diagram is a graph whose vertices are the elements of P . The vertices

corresponding to two elements x, y ∈ P are connected by an edge if and only if y covers x, in

which case y is drawn “above” x. If they exist, 0̂ will be at the bottom of the Hasse diagram

and 1̂ will be at the top.

Example 2.4.4. Let S = {x, y, z} and B3
∼= 2S be a Boolean lattice whose order relations are

determined by set inclusion. The minimal element ofB3 is 0̂ = ∅, which will be at the bottom

of the Hasse diagram. ∅ is covered by the one element subsets {x}, {y}, and {z}. These subsets

all appear above ∅ in the Hasse diagram and all three are connected to ∅ by an edge. {x, y} and

{x, z} cover {x} so they are both above {x} in the Hasse diagram and are connected to {x} by

an edge. This process is repeated until all cover relations are represented. The Hasse diagram

is depicted in Figure 2.2. Notice that, for example, there is no edge connecting {x} and {y, z}
because these two elements are incomparable. Additionally, {x} and {x, y, z} are comparable

but not connected by an edge because {x, y, z} does not cover {x}.

A chain, or totally ordered set, is a poset in which any two elements are comparable. A

subset C of a poset P is called a chain if it is a chain when thought of as a subposet of P . The

chain of n elements is denoted Cn. The length of a finite chain Cn, denoted `(Cn), is defined

by `(Cn) = |Cn| − 1 = n− 1. The rank of a finite poset P is the maximum of the length of all

chains in P . If every maximal chain has the same length n, then P is said to be graded of rank

n. In this case there exists a unique rank function ρ : P → {0, 1, . . . , n} such that ρ(x) = 0 if

x is a minimal element of P , and ρ(y) = ρ(x) + 1 is y covers x. If ρ(x) = i, then we say that

the rank of x is i and the corank of x is n − i. Notice that the corank of x is the rank of x in

the dual P ∗. Let pi be the number of elements of P of rank i. P is said to be rank symmetric

if pi = pn−i for all i. P is locally rank symmetric if every interval in P is rank symmetric.
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∅

{x} {y} {z}

{x, y} {x, z} {y, z}

{x, y, z}

Figure 2.2: Hasse diagram of B3

Example 2.4.5. [n] is a chain because any two elements of [n] are comparable. The length of

a maximal chain is n − 1, so [n] is graded of rank n − 1. For i ∈ [n], ρ(i) = i − 1. Notice that

[n] ∼= Cn.

Example 2.4.6. The Boolean lattice Bn ∼= 2[n] is not a chain. Consider, for example, {1}, {2} ⊆
2[n]. {1} 6⊆ {2} and {2} 6⊆ {1}, and hence {1} and {2} are incomparable. The sublattice

{∅, {1}, {1, 2}, {1, 2, 3}, . . . , [n]} is a chain of length n. All maximal chains have length n, so 2[n]

is graded of rank n. If X ⊆ 2[n], then ρ(X) = |X|.

Given two posets P and Q, there are several ways we can build new posets, two of which

will be of interest to us. The direct product of P and Q, denoted P ×Q, is the poset whose set

of elements is {(x, y) | x ∈ P, y ∈ Q} with order relation (x, y) ≤ (x′, y′) in P × Q if x ≤ x′

in P and y ≤ y′ in Q. The direct product of P with itself n times is denoted Pn. The Hasse

diagram of P × Q can be drawn by placing a copy Qx of Q at every vertex of P and then

connecting the corresponding vertices of Qx and Qy if and only if y covers x in P . P ×Q and

Q× P are isomorphic, although it may not be immediately clear by looking at their respective

Hasse diagrams.

Example 2.4.7. The Hasse diagram of B2 × C2 is shown in Figure 2.3a while the Hasse

diagram of C2×B2 is shown in Figure 2.3b. Comparing the Hasse diagram of C2×B2 with that

of B3 in Figure 2.2 makes it clear that C2 × B2
∼= B3. This is not as clear by comparing the

Hasse diagrams of B2×C2 and B3. This example shows that the Hasse diagrams of isomorphic

posets may look different although they are isomorphic as graphs; this is particularly true as

the number of elements of the posets increases. It will be advantageous for us to draw the Hasse

diagram for this example to look like that of B3 in Figure 2.2 as it emphasizes the rank of

elements as we move from the bottom of the lattice to the top.
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(a) B2 × C2 (b) C2 ×B2

Figure 2.3: The direct product of lattices is commutative

Example 2.4.8. Bn ∼= Cn2 .

The ordinal sum of two posets P and Q , denoted P ⊕Q is the poset whose set of elements

is P ∪ Q with order relation x ≤ y in P ⊕ Q if (a) x, y ∈ P and x ≤ y in P , or (b) x, y ∈ Q
and x ≤ y in Q, or (c) x ∈ P and y ∈ Q. In general, the ordinal sum of two posets is not

commutative.

Example 2.4.9. The n element chain Cn ∼= C1 ⊕ · · · ⊕ C1 (n times).

Example 2.4.10. The Hasse diagrams of B2⊕C2 and C2⊕B2 are shown in Figure 2.4. Notice

that these Hasse diagrams are different and hence B2 ⊕ C2 6∼= C2 ⊕B2.

Theorem 2.4.11. Let L be a finite lattice. The following are equivalent.

a) L is graded, and the rank function ρ satisfies ρ(x) + ρ(y) ≥ ρ(x ∧ y) + ρ(x ∨ y) for all

x, y ∈ L.

b) If x and y both cover x ∧ y, then x ∨ y covers both x and y.

A finite lattice satisfying either of the properties of Theorem 2.4.11 is said to be upper

semimodular. A finite lattice L is lower semimodular if its dual L∗ is upper semimodular. L

is modular if it is both upper semimodular and lower semimodular. That is, ρ(x) + ρ(y) =
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(a) B2 ⊕ C2 (b) C2 ⊕B2

Figure 2.4: The ordinal sum of lattices is not commutative

ρ(x ∧ y) + ρ(x ∨ y) for all x, y ∈ L. Equivalently, L is modular if and only if for all x, y, z ∈ L
such that x ≤ z, we have x ∨ (y ∧ z) = (x ∨ y) ∧ z. This condition allows us to extend the idea

of a modular lattice to lattices that are not graded.

A lattice L is distributive if the meet operation distributes over the join. That is, for all

x, y, z ∈ L we have x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z). Equivalently, x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).
Notice that if L is distributive and x ≤ z, then

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

= (x ∨ y) ∧ z.

So all distributive lattices are modular. The converse, however, is not true.

Example 2.4.12. The Boolean lattice Bn is distributive and hence modular.

Example 2.4.13. The Hasse diagrams of three important lattices are show in Figure 2.5.

a) The lattice M5 in Figure 2.5a is modular. Since M5 is graded, this is easily seen by

verifying that ρ(x) + ρ(y) ≥ ρ(x ∧ y) + ρ(x ∨ y) for all x, y ∈ L. M5, however, is not

distributive. This is seen by noticing that x ∨ (y ∧ z) = x 6= 1̂ = (x ∨ y) ∧ (x ∨ z).

b) The lattice N5 in Figure 2.5b is not graded. Furthermore, x ≤ z and x ∨ (y ∧ z) = x 6=
z = (x ∨ y) ∧ z. Therefore N5 is not modular and hence it is not distributive. N5 is the

smallest non-modular lattice.
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0̂

x y z

1̂

(a) M5

0̂

x

z

y

1̂

(b) N5

0̂

x

z y

1̂

(c) N7

Figure 2.5: Some important nondistributive lattices

c) The lattice N7 in Figure 2.5c is graded and has {0̂, x, y, z, 1̂} ∼= N5 as a sublattice. There-

fore N7 is neither modular nor distributive by the same argument as in part b).

It can often be tedious to check whether or not a lattice is modular or distributive by

checking the respective conditions. This is particularly true when a lattice has many elements,

only a few of which may not satisfy these conditions. The following theorem will give us a more

efficient means to determine whether or not a lattice is modular or distributive:

Theorem 2.4.14. Let L be a finite lattice.

a) L is modular if and only if no sublattice is isomorphic to N5.

b) L is distributive if and only if no sublattice is isomorphic to either M5 or N5.

Example 2.4.15. With Theorem 2.4.14 in tow it is now trivial that M5 and N5 are not

distributive and that M5 is modular while N5 is not. Additionally, N7 is neither modular nor

distributive since it has N5 as a sublattice.

Let L be a lattice with 0̂ and 1̂. The complement of x ∈ L, if it exists, is an element y ∈ L
such that x ∧ y = 0̂ and x ∨ y = 1̂. L is said to be complemented if every element of L has

a complement. If every interval [x, y] in L is complemented, then L is said to be relatively

complemented.

Example 2.4.16. Let S be a set of n elements. Let A ⊆ 2S ∼= Bn. A ∧ (S\A) = ∅ and

A∨(S\A) = S and hence Bn is complemented. Furthermore, any subinterval of Bn is isomorphic

to a Boolean lattice. Therefore Bn is relatively complemented. In fact, a distributive lattice is

complemented if and only if it is bounded and relatively complemented.
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Table 2.1: Möbius function of N5

0̂ x y z 1̂

0̂ 1 −1 −1 0 1
x - 1 - −1 0
y - - 1 - −1
z - - - 1 −1

1̂ - - - - 1

Example 2.4.17. N5 is complemented but it is not relatively complemented. To see this,

consider the interval [0̂, z] of N5 as in Figure 2.5b. The element x ∈ [0̂, z] does not have a

complement so the interval [0̂, z] is not complemented.

The Möbius function of a poset P is defined by

µ(x, y) =


1 if x = y

−
∑
x≤z<y

µ(x, z) for all x < y in P

0 otherwise.

(2.1)

Example 2.4.18. Consider the lattice N5 in Figure 2.5b. In order to calculate µ(0̂, 1̂) we can

use equation (2.1) but we have to do so inductively:

µ(0̂, 0̂) = 1

µ(0̂, x) = −µ(0̂, 0̂) = −1

µ(0̂, y) = −µ(0̂, 0̂) = −1

µ(0̂, z) = −(µ(0̂, 0̂) + µ(0̂, x)) = 0

µ(0̂, 1̂) = −(µ(0̂, 0̂) + µ(0̂, x) + µ(0̂, y) + µ(0̂, z)) = 1

All values of the Möbius function µ(a, b) are given by Table 2.1. The dashes in the table indicate

that the Möbius function is not defined. For example, µ(x, y) is not defined because x and y

are incomparable.

Let P be a graded poset with 0̂ of rank n. The characteristic polynomial of P is

χ(P, x) =
∑
y∈P

µ(0̂, y)xn−ρ(y) =

n∑
i=0

wix
n−i.

18



The coefficient wi is the i-th Whitney number of P of the first kind,

wi =
∑
y∈P
ρ(y)=i

µ(0̂, y)

The characteristic polynomial is an important invariant of a poset that is used in the study of

arrangements of hyperplanes in vector spaces.

Example 2.4.19. Let S be a set of n elements so Bn ∼= 2S . Let A and B be two comparable

elements of Bn with A ≤ B. Then µ(A,B) = (−1)|B|−|A|. In particular, µ(0̂, A) = (−1)|A|. Since

there are

(
n

i

)
elements of Bn of rank i, wi = (−1)i

(
n

i

)
. Therefore

χ(Bn, x) =
n∑
i=0

wix
n−i =

n∑
i=0

(−1)i
(
n

i

)
xn−i = (x− 1)n

by the Binomial Theorem.

A multiset is a set-like object where the multiplicity of each element can be greater than one

and is significant. For example, {1, 1, 2, 2, 3} is a multiset which is different from the multiset

{1, 1, 2, 3}. The number of multisets of k elements chosen from a set of n elements is denoted

by
((n
k

))
, read “n multichoose k”. The following formula can be used to count the number of

multisets:

((n
k

))
=

(
n+ k − 1

k

)
(2.2)

A multichain of a poset P is a chain with repeated elements. A multichain is then just a

multiset of a chain. A multichain of length n is a sequence of elements x0 ≤ x1 ≤ · · · ≤ xn of P .

Let P be a finite poset. If n ≥ 2, define Z(P, n) to be the number of multichains x1 ≤
x2 ≤ · · · ≤ xn−1. Z(P, n) is a polynomial in n and is called the zeta polynomial of P . The zeta

polynomial has the following properties: Z(P,−1) = µ(0̂, 1̂), Z(P, 0) = 0, Z(P, 1) = 1, Z(P, 2)

is the number of vertices of P , and Z(P, 3) is the number of total relations in P .

Theorem 2.4.20. Let P be a finite poset.

a) Let bi be the number of chains x1 < x2 < · · · < xi−1 in P . Then

Z(P, n) =
∑
i≥2

bi

(
n− 2

i− 2

)
. (2.3)

b) Z(P ×Q,n) ∼= Z(P, n)Z(Q,n)
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Example 2.4.21. Consider P = B2. There are two chains of length 1 and one chain of length

2. By equation 2.3,

Z(C2, n) = 2

(
n− 2

0

)
+

(
n− 2

1

)
= 2 + n− 2 = n.

Since Bk ∼= Ck2 , Z(Bn) = nk by Theorem 2.4.20.

Example 2.4.22. Let P = N5. Then

Z(N5, n) = 5

(
n− 2

0

)
+ 8

(
n− 2

1

)
+ 5

(
n− 2

2

)
+

(
n− 2

3

)
=

1

6
n3 + n2 − 1

6
n.

Notice that µ(0̂, 1̂) = Z(N5,−1) = 1, which agrees with the value calculated in Example

2.4.18. Z(N5, 2) = 5, the number of vertices of N5. Z(N5, 3) = 13, the total number of relations

in N3.

The following definitions are from Stanley [18]. A modular lattice L is said to be a q-lattice

if every interval of rank two is either a chain or has q + 1 elements of rank one. A 0-lattice is a

chain and a modular 1-lattice is the same thing as a distributive lattice. q-lattices can be defined

for nonmodular lattices, but they will not be of interest to us in this paper; the interested reader

should consult [18] for the definition. A lattice L is semiprimary if L is modular and whenever

x ∈ L is join-irreducible then the interval [0̂, x] is a chain. A semiprimary lattice is primary if

every interval is either a chain or contains at least three atoms. L is q-primary if it is both a

q-lattice and a primary lattice.

The following result is due to Regonati [12]:

Theorem 2.4.23. Let L be a finite modular lattice. L is locally rank symmetric if and only if

L can be written as a direct product of q-primary lattices.

Example 2.4.24. The chain Cn is a 0-lattice. It is also a semiprimary lattice since Cn is

modular and [0̂, x] is a chain for all x ∈ Cn. Cn is also primary since every interval is a chain.

Therefore Cn is a 0-primary lattice.

Example 2.4.25. Consider the lattice L whose Hasse diagram is shown in Figure 2.6. L is

modular by Theorem 2.4.14 and hence it is a 0-lattice. The join-irreducible elements of L are

0̂, x, y, and z. The intervals [0̂, 0̂], [0̂, x], [0̂, y], and [0̂, z] are all chains, so L is a semiprimary

lattice. The interval [x, 1̂], however, is not a chain and it has only two atoms, y and z. Therefore

L is not primary and hence is not a q-primary lattice. Notice that L is not rank symmetric so

it is not locally rank symmetric, and hence with Theorem 2.4.23 in mind our conclusion should

not be terribly surprising.
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0̂

x

y z

1̂

Figure 2.6: A lattice that is not q-primary
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Chapter 3

Cross Section Lattices

With a modest knowledge of the theory of reductive monoids and lattices, we are now ready

to introduce the idea of a cross section lattice. Whenever possible the original citations for all

results have been included. The reader should be aware, however, that almost all results can be

found in one or more of [7], [14], and [16].

3.1 Cross Section Lattices

Throughout we will assume that M is a reductive monoid with 0.

Let M be a reductive monoid with 0 with group of units G and set of idempotents E(M).

We saw in Chapter 2 that M is unit regular and hence M = GE(M) = E(M)G. That is,

the structure of a reductive monoid is determined by the group of units and the idempotent

elements. This is our first hint that the structure of reductive monoids is worth investigating in

more detail. It turns out, however, that we can do more. Our goal is to describe the structure of

the G×G orbits of M . From this we can create the type map from which M can be constructed

up to a central extension.

Suppose a, b ∈M . Then

aJ b ⇐⇒ GaG = GbG ⇐⇒ MaM = MbM.

That is, two elements of M are in the same J -class if and only if they are in the same G×G
orbit. Furthermore, we can define a partial order the J -classes as follows:

Ja ≤ Jb ⇐⇒ GaG ⊆ GbG ⇐⇒ a ∈MbM,

where Ja and Jb denote the J -classes of two elements a and b of M , respectively, and the

closure of GbG is in the Zariski topology. The following theorem is due to Putcha [7]:
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Theorem 3.1.1. Let M be a reductive monoid. Let U(M) denote the set of J -classes of M .

U(M) is a finite lattice with the partial order defined above.

Fix a Borel subgroup B of G and a maximal torus T contained in B. We can define a partial

order on E(T ), the set of idempotents of T , as follows: Let e, f ∈ E(T ).

e ≤ f ⇐⇒ ef = fe = e.

We are now ready to define the cross section lattice of a reductive monoid. Cross section

lattices were first introduced in 1983 by Putcha [6].

Definition 3.1.2. Let M be a reductive monoid with unit group G and maximal torus T

contained in a Borel subgroup B of G. Then Λ ⊆ E(T ) is a cross section lattice of M relative

to B and T if

a) |Λ ∩ J | = 1 for all J ∈ U(M), and

b) If e, f ∈ Λ then Je ≤ Jf if and only if e ≤ f .

The cross section lattice of M is then an order preserving cross section of the J -classes of

M where each J -class is represented by an idempotent. Since the G × G orbit of 0 is of little

interest, we will often be concerned with finding Λ\{0̂} rather than Λ. Omitting 0̂ from our

discussion of the cross section lattice will also often make the statements of theorems a little

cleaner. The downside, of course, is that Λ\{0̂} is not actually a lattice unless there is a minimal

nonzero element of Λ. See Section 3.2 for details. We hope the reader will agree, however, that

this does not raise any significant difficulties.

The following was first observed by Putcha in [5]:

Theorem 3.1.3. Let M be a reductive monoid with maximal torus T contained in a Borel

subgroup B of G. Let W = NG(T )/T be the Weyl group. Then

a) Cross section lattices exist.

b) Any two cross section lattices are conjugate by an element of W .

c) There is a one-to-one correspondence between the cross section lattices and Borel sub-

groups of G containing T .

Example 3.1.4. Let M = Mn(k). Then G = GLn(k). Choose a maximal torus T = Dn(k)

contained in the Borel subgroup B = Bn(k). T = Dn(k), the set of diagonal matrices. Then the

set of idempotents is E(T ) = {(aij)|aij = 0 if i 6= j and aij = 0 or 1 if i = j}. By Example 2.3.4

two matrices are in the same J -class if and only if they have the same rank. Let ek = Ik⊕0n−k,
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where Ik is the k × k identity matrix and 0n−k is the (n − k) × (n − k) zero matrix. Λ\{0̂} =

{e1, . . . , en} is the cross section lattice of M relative to B and T . Notice that Λ contains exactly

one element of rank i for 1 ≤ i ≤ n. Furthermore eiej = ejei = ei for all i 6= j. Also notice that

the lattice of J -classes U is isomorphic to the chain Cn.

Example 3.1.5. Let M = Mn(k). Then G = GLn(k). Choose a maximal torus T = Dn(k)

contained in the Borel subgroup B−n (k), the set of invertible lower triangular matrices. Let

e′k = 0n−k ⊕ Ik. Then Λ′\{0̂} = {e′1, . . . , e′n} is the cross section lattice of M relative to B′ and

T . Notice that the Weyl group is W = NG(T )/T ∼= Sn. Let σ ∈W be given by the n×n matrix

σ =



1

1

. .
.

1

1


.

Then σ−1Λ′σ = Λ.

Example 3.1.6. Let M = Mn(k) and T = Dn(k) as in Examples 3.1.4 and 3.1.5. Let e =

Ik⊕0n−k and f = 0k⊕In−k for some value of k such that k > n−k. Suppose e, f ∈ Λ′′ ⊆ E(T ).

Notice that ef = fe 6= e and ef = fe 6= f . Therefore e and f are incomparable in the lattice

E(T ). But e and f have different ranks and U(M) is a chain as seen in Example 3.1.4. Since

n > n − k it follows that Je > Jf and Λ′′ cannot be the cross section lattice of M relative to

any Borel subgroup B′′ and T since Λ′′ and U(M) have a different partial order.

Cross section lattices are not unique but they are related to each other in a very precise way.

Since all cross section lattices are conjugate, we are not concerned so much with any particular

cross section lattice. In particular, we will fix a Borel subgroup B and a maximal tours T and

refer to the corresponding cross section lattice Λ as the cross section lattice of M if there is no

chance of confusion.

Example 3.1.6 shows that both conditions of Definition 3.1.2 must hold in order for Λ ⊆ E(T )

to be a cross section lattice. That is, the cross section lattice is not just a cross section of the

J -classes, but rather it must also preserve the order of UJ (M). It should therefore not come

as a surprise to the reader that the problem of coming up with the cross section lattice of M

relative to a given Borel subgroup B and a maximal torus T merely through inspection can be

a nontrivial task. Fortunately Putcha [8] noticed the following:

Theorem 3.1.7. Let M be a reductive monoid with unit group G and maximal torus T con-

tained in a Borel subgroup B of G.
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a) Λ = {e ∈ E(T ) | Be = eBe} ∼= G\M/G.

b) M =
⊔
e∈Λ

GeG

c) P (e) = {x ∈ G | xe = exe} is a parabolic subgroup of G.

Definition 3.1.8. Let M be a reductive monoid with unit group G and maximal torus T

contained in a Borel subgroup B. Let ∆ be the set of simple roots of G relative to B and T and

let S be the corresponding set of simple reflections. Let Λ be the cross section lattice of M .

a) The type map is the map λ : Λ → 2∆ where λ(e) ⊆ ∆ is the unique subset such that

P (e) = Pλ(e).

b) λ∗(e) =
⋂
f≤e

λ(f)

c) λ∗(e) =
⋂
f≥e

λ(f)

Theorem 3.1.9. Let e, f ∈ Λ

a) λ(e) = λ∗(e) t λ∗(e).

b) λ(e) ∩ λ(f) ⊆ λ(e ∨ f) ∩ λ(e ∧ f).

c) If e ≤ f , then λ∗(f) ⊆ λ∗(e) and λ∗(e) ⊆ λ∗(f).

Example 3.1.10. Let M = Mn(k), B = Bn(k), and T = Dn(k). We saw in Example 3.1.4 that

the cross section lattice of M is Λ\{0} = {e1, . . . , en} where ek = Ik ⊕ 0n−k for 1 ≤ k ≤ n. The

partial order of Λ is e0 < e1 < · · · < en. The set of simple roots is ∆ = {α1, . . . , αn−1} which is

of the type An−1. The Weyl group is W ∼= Sn = 〈s1, . . . , sn−1〉 where si = (si si+1) corresponds

to αi for 1 ≤ i ≤ n − 1. Let x =

(
X1 X2

X3 X4

)
where X1 is a k × k matrix, X2 is a k × (n − k)

matrix, X3 is a (n− k)× k matrix, and X4 is a (n− k)× (n− k) matrix. xek =

(
X1 0

X3 0

)
and

ekxek =

(
X1 0

0 0

)
. Therefore if x ∈ P (ek), then it must be that X3 is the (n−k)×k zero matrix

and hence P (ek) is the set of all matrices of the form

(
X1 X2

0 X4

)
. Notice that this is a subgroup

of upper block triangular matrices which is a parabolic subgroup of GLn(k) by Example 2.2.4.

Therefore λ(e) is the subset of S such that the parabolic subgroup Pλ(ek) = P (ek). Recall

that Pλ(ek) = BWλ(ek)B, where Wλ(ek) is the subgroup of W generated by λ(ek). λ(ek) is

then isomorphic to the set of permutation matrices that permute columns 1 through k as
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well as columns k + 2 through n. That is, λ(ek) = {α1, . . . , αk−1} t {αk+1, . . . , αn−1}. Then

λ∗(ek) = {α1, . . . , αk−1} and λ∗(ek) = {αk+1, . . . , αn−1}. Notice that λ(ek) = λ∗(ek) t λ∗(ek).
Additionally, λ∗(ei) ⊆ λ∗(ej) and λ∗(ej) ⊆ λ∗(ei) if i ≤ j.

The following is from [7].

Theorem 3.1.11. Let M be a reductive monoid with unit group G and cross section lattice Λ

and type map λ. Let e ∈ Λ.

a) Let

eMe = {x ∈M | x = exe}.

Then eMe is a reductive monoid with group of units eCG(e). A cross section lattice of

eMe is eΛ = {f ∈ Λ | fe = f}. λ∗ restricted to eMe is the λ∗ of eMe.

b) Let

Me = {x ∈ G | ex = xe = e}0.

Then Me is a reductive monoid with group of units {x ∈ G | ex = xe = e}0. A cross

section lattice of Me is Λe = {f ∈ Λ | fe = e}. λ∗ restricted to Me is the λ∗ of Me.

Given a reductive monoid M , Theorem 3.1.11 allows us to construct new reductive monoids

whose cross section lattices are related to the cross section lattice Λ of M . In particular, the

cross section lattice of eMe is isomorphic to the interval [e, 1̂] of Λ and the cross section lattice

of Me is isomorphic to the interval [0̂, e] of Λ.

A reductive monoid M is said to be semisimple if dim(Z(G)) = 1. The following theorem

is from [7].

Theorem 3.1.12. Let M be a semisimple monoid with cross section lattice Λ and set of simple

roots ∆ relative to a maximal torus T and Borel subgroup B. Then there exists eα ∈ Λ\{0̂}
such that λ(eα) = ∆\{α}. Moreover, eα is unique.

We will now introduce some more terminology concerning cross section lattices that will be

useful in Section 3.3. The rest of the material in this section was first presented in [11].

Definition 3.1.13. Let M be a reductive monoid with cross section lattice Λ and let Λ1 be

the set of minimal nonzero elements of Λ.

a) The core C of Λ is

C = {e ∈ Λ | e = e1 ∨ · · · ∨ ck, for some ei ∈ Λ1}.

b) Define θ : Λ\{0̂} → C by θ(e) = ∨{f ∈ Λ1 | f ≤ e}.
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c) Define Λh = θ−1(h) for h ∈ C.

The core of Λ is then all of the elements of Λ that can be expressed as the join of one or

more minimal nonzero elements of Λ. If e ∈ Λh where h ∈ C, then e ≥ h and h is the maximal

element of the core such that e and h are comparable. Clearly then Λ\{0̂} =
⊔
h∈C Λh. We will

see in Section 3.3 that the structure of each Λh can vary quite a bit depending upon h ∈ C.

Proposition 3.1.14. Let M be a reductive monoid with k minimal nonzero elements e1, . . . , ek.

Suppose λ∗(e1 ∨ · · · ∨ ek) = ∅. Then λ∗(ei1 ∨ · · · ∨ eit) = λ∗(ei1) ∩ · · · ∩ λ∗(eit).

Proof. Let Λ be the cross section lattice of M and let C be the core. If h ∈ C, then h ≤ e1∨· · ·∨
ek. Therefore λ∗(h) ⊆ λ∗(e1∨· · ·∨ek) = ∅ and hence λ∗(h) = ∅ for all h ∈ C. Then λ(h) = λ∗(h).

We proceed by induction. Suppose λ∗(ei1 ∨ · · · ∨ eit−1) = λ∗(ei1) ∩ · · · ∩ λ∗(eit−1). By Theorem

3.1.9b, λ∗(ei1)∩· · ·∩λ∗(eit−1)∩λ∗(eit) = λ∗(ei1 ∨· · ·∨eit−1)∩λ∗(eit) ⊆ λ∗(ei1 ∨· · ·∨eit−1 ∨eit).
However, eij ≤ ei1 ∨ · · · ∨ eit so λ∗(ei1 ∨ · · · ∨ eit) ⊆ λ∗(eij ) for each 1 ≤ j ≤ t. Therefore

λ∗(ei1 ∨ · · · ∨ eit) ⊆ λ∗(ei1) ∩ · · · ∩ λ∗(eit).

Definition 3.1.15. Let M be a semisimple monoid with cross section lattice Λ.

a) Define π : ∆→ C by π(α) = θ(eα).

b) Define ∆h = π−1(h) for h ∈ C.

We will be primarily interested in semisimple monoids as they have the most interesting

structure. In this case we are able to partition the set of simple roots by ∆ =
⊔
h∈C ∆h.

The type map is the ultimate combinatorial invariant of a reductive monoid. It allows us to

determine the structure of the G×G orbits and how they can be “pieced together” to build the

monoid. From this perspective the type map can be thought of as the monoid version of the

Dynkin diagram that describes the structure of algebraic groups and Lie algebras. Our goal is

therefore to determine the type map in terms of some minimal information about the monoid.

The following theorem provides us with a good start.

Theorem 3.1.16.

a) If e ∈ Λh, then λ∗(e) = {α ∈ λ∗(h) | sαsβ = sβsα for all β ∈ λ∗(e)}.

b) If e ∈ Λh and f ∈ Λk, then e ≤ f if and only if h ≤ k and λ∗(e) ⊆ λ∗(f).

Theorem 3.1.16 provides us with two important consequences. If we happen to know λ∗(e),

then we can determine λ∗(e) and hence λ(e) = λ∗(e) t λ∗(e). Furthermore, we can use λ∗ to

determine the partial order on Λ. Our main objective then is to determine λ∗ for a given monoid.

This is a very difficult task in general. In Sections 3.2 and 3.3 we will look at two special cases

where we will be able to determine λ∗ and hence the cross section lattice and the type map.
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3.2 J -irreducible Reductive Monoids

In this section we will examine a special class of monoids with a single minimal nonzero G×G
orbit. The results are precise. Given some minimal invariants of the monoid we will be able to

explicitly calculate the type map and cross section lattice. All of the results in the section are

due to Putcha and Renner [10].

Definition 3.2.1.

a) A reductive monoid M is J -irreducible if there is a unique minimal nonzero element e0

of the cross section lattice Λ. The type of M is I = λ∗(e0).

b) A reductive monoid M is J -coirreducible if there is a unique element e0 of the cross

section lattice Λ of corank 1. The cotype of M is J = λ∗(e0).

c) M is J -linear if Λ is a chain.

A J -irreducible monoid is a special case of Definition 3.1.13 where Λ1 = C = {e0}, Λe0 =

Λ\{0}, and ∆e0 = ∆. Putcha showed in [7] that J -irreducible and J -coirreducible monoids

are semisimple. Notice that, by definition, J -linear monoids are J -irreducible, although the

converse is not necessarily true.

Notice that if e0 is a minimal element of the cross section lattice, then by Definition 3.1.8

λ∗(e0) =
⋂
f≤e

λ(f) = λ(e0).

Also, since λ(e0) = λ∗(e0)tλ∗(e0), it follows that λ∗(e0) = ∅. Calculating λ∗ for the rest of the

cross section lattice, however, is not immediately clear. The following theorem allows us to do

so in terms of the type I and the set of simple roots ∆.

Theorem 3.2.2. Let M be a J -irreducible monoid of type I and set of simple roots ∆.

a) Let X ⊆ ∆. X = λ∗(e) for some e ∈ Λ\{0̂} if and only if no connected component of X

lies entirely in I.

b) For any e ∈ Λ\{0̂}, λ∗(e) = {α ∈ I\λ∗(e) | sαsβ = sβsα for all β ∈ λ∗(e)}.

c) λ is injective.

Example 3.2.3. Let M = Mn(k). Then G = GLn(k). Choose a maximal torus T = Dn(k)

contained in the Borel subgroup B = Bn(k). Let ek = Ik⊕0n−k. The set of simple roots is ∆ =

{α1, . . . , αn−1} and is of type An−1. We saw in Example 3.1.4 that Λ\{0̂} = {e1, . . . , en} is the

cross section lattice of M with partial order e1 < e2 < · · · < en. The minimal nonzero element
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α1 α2 αn−2 αn−1

(a) Dynkin diagram of ∆

∅

{α1}

...

{α1, . . . , αn−2}

{α1, . . . , αn−1}

(b) Cross section lattice Λ\{0̂}

Figure 3.1: J -irreducible monoid with ∆ = {α1, . . . , αn−1} and I = {α2, . . . , αn−1}

of Λ is e1. From Example 3.1.10 we have the type of M is λ∗(e1) = {α2, . . . , αn−1}. To find the

subsets X ⊆ ∆ such that X = λ∗(e) for some e ∈ Λ\{0̂}, we need to determine the subsets of

∆ that have no connected component contained in {α2, . . . , αn−1}. These are precisely ∅ and

the connected subsets of ∆ that contain α1. That is, λ∗(e1) = ∅ and λ∗(ei) = {α1, . . . , αi−1}
for 2 ≤ i ≤ i− 1. This agrees with our calculations from Example 3.1.10. The Dynkin diagram

and cross section lattice are shown in Figure 3.1.

Comparing the Dynkin diagram with the cross section lattice in Figure 3.1 probably does

not instill much enthusiasm in the reader. After all, they look very similar to each other, except

that the cross section lattice is drawn vertically to emphasize the lattice structure. They are not

identical, however, as the Dynkin diagram has n−1 nodes while the cross section lattice Λ\{0̂}
has n elements. Example 3.2.3 is not particularly interesting, however, and was chosen due to

the simplicity of calculating the cross section using several different techniques and not for the

aesthetics of the resulting figures. It may not be immediately clear to the reader that Dynkin

diagrams and cross section lattices are different enough from each other to warrant further study;

a simple realization, however, can do the trick without the need for any explicit calculations.

This realization is that the cross section lattice Λ of a reductive monoid is precisely what the

name indicates: it is a lattice. Even in the J -irreducible case this lattice can be constructed

using the Dynkin diagram of ∆ and the type I of the monoid, and Λ will indeed be a lattice

regardless of the number of connected components of ∆. That is, Λ is connected when viewed

as a graph even when ∆ is not. It is the author’s hope that this realization along with the
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∅

4

34

234

1234

5

45

345

2345

12345

(a) Cross section lattice Λ\{0̂}

λ∗(e) λ∗(e) λ(e)

∅ 123 123

4 12 412

5 123 1235

34 1 134

45 12 1245

234 ∅ 234

345 1 1345

1234 ∅ 1234

2345 ∅ 2345

12345 ∅ 12345

(b) Type map of M

Figure 3.2: J -irreducible monoid with ∆ = {α1, α2, α3, α4, α5} and I = {α1, α2, α3}

following examples will convince the reader that the topic is worthy of study.

Example 3.2.4. Let M be a J -irreducible monoid of type I = {α1, α2, α3} and set simple

roots ∆ = {α1, α2, α3, α4, α5}, where sαisαj 6= sαjsαi if |i − j| = 1. ∆ is then of the type A5.

The subsets X ⊆ ∆ that are in the image of λ∗ are the subsets with no connected component

contained in I = {α1, α2, α3}. These subsets are ∅, {α4}, {α5}, {α3, α4}, {α4, α5}, {α2, α3, α4},
{α3, α4, α5}, {α1, α2, α3, α4}, {α2, α3, α4, α5}, and {α1, α2, α3, α4, α5}. The cross section lattice

Λ\{0̂} is shown in Figure 3.2a, where the vertices of Λ\{0̂} are labeled by the indices of the

respective subsets of ∆.

We can also use Theorem 3.2.2 to determine the subsets X ⊆ ∆ that are in the image of

λ∗. For example, suppose λ∗(e) = {α4, α5}. Then λ∗(e) is all of the elements of I = {α1, α2, α3}
that are not adjacent to either α4 or α5 in the Dynkin diagram of ∆. Therefore λ∗(e) = {α1, α2}.
The table in Figure 3.2b shows the values of λ∗, λ∗, and λ for each element of Λ\{0̂} labeled

by their respective indices. The bolded entries represent the elements whose type is of the form

∆\{α} for some α ∈ ∆. Notice that M is semisimple. Also notice that λ is injective although

λ∗ is not. λ∗ will be injective if and only if M is J -irreducible.

Notice that we don’t need an explicit description of the J -irreducible monoid M in order

to determine λ and Λ. We don’t even need to specify the group of units G, maximal torus T ,
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or Borel subgroup B. The only information we need is the type of the minimal idempotent e0

and the graph structure of the Dynkin diagram of ∆.

3.3 2-reducible Reductive Monoids

As in the J -irreducible case, we can explicitly calculate the type map and cross section lattice

of a monoid with two minimal, nonzero elements. The results in this section were developed by

Putcha and Renner [11], [14].

Definition 3.3.1. A reductive monoidM is 2-reducible if there are exactly two minimal nonzero

elements e+ and e− of the cross section lattice. I+ = λ∗(e+) and I− = λ∗(e−) are the types of

M .

Let M be a 2-reducible monoid with minimal nonzero elements e+ and e−. The core of M

is C = {e+, e−, e0}, where e0 = e+ ∨ e−. The types of M are I+ = λ∗(e+) and I− = λ∗(e−). Let

I0 = λ∗(e0). Then I0 = I+ ∩ I− by Proposition 3.1.14. Furthermore, Λ = Λ+ t Λ− t Λ0 where

a) Λ+ = Λe+ = {e ∈ Λ\{0} | e ≥ e+, e � e−}

b) Λ− = Λe− = {e ∈ Λ\{0} | e ≥ e−, e � e+}

c) Λ0 = Λe0 = {e ∈ Λ\{0} | e ≥ e0}

Theorem 3.3.2. If M is not semisimple, then dim(Z(G)) = 2. Additionally, λ∗ is determined

by

a) λ∗(Λ+) = {X ⊆ ∆ | no component of X is contained in I+}

b) λ∗(Λ−) = {X ⊆ ∆ | no component of X is contained in I−}

c) λ∗(Λ0) = {X ⊆ ∆ | no component of X is contained in I0}

and λ∗ is determined by Theorem 3.2.2.

The structure and connections with geometry, however, are more interesting when M is

semisimple. We will therefore assume that all 2-reducible monoids are semisimple unless other-

wise stated.

Let M be a semisimple 2-reducible monoid. We can then decompose the set of simple roots

as ∆ = ∆+ t∆− t∆0. Let eα be the unique element of Λ\{0̂} such that λ(eα) = ∆\{α}. Then

a) ∆+ = {α ∈ ∆ | eα ∈ Λ+}

b) ∆− = {α ∈ ∆ | eα ∈ Λ−}
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0̂

∅ ∅

{α} ∅ {β}

{α, β}

(a) Cross section lattice Λ

λ∗(e) λ∗(e) λ(e)

Λ+
∅ ∅ ∅
{α} ∅ {α}

Λ−
∅ ∅ ∅
{β} ∅ {β}

Λ0
∅ ∅ ∅

{α, β} ∅ {α, β}

(b) Type map of M

Figure 3.3: 2-reducible monoid with ∆ = {α, β}, I+ = I− = I0 = ∅, ∆+ = {β}, ∆− = {α}

c) ∆0 = {α ∈ ∆ | eα ∈ Λ0}

The following theorem allows us to construct the cross section lattice of a semisimple 2-

reducible monoid in terms of the invariants I+, I−, ∆+, and ∆−.

Theorem 3.3.3. Let M be a semisimple 2-reducible monoid. Then

a) λ∗(Λ+) = {X ⊆ ∆ | no component of X is contained in I+ and ∆+ * X}

b) λ∗(Λ−) = {X ⊆ ∆ | no component of X is contained in I− and ∆− * X}

c) λ∗(Λ0) = {X ⊆ ∆ | no component of X is contained in I0, and either ∆+ * X,∆− *
X or else ∆+ t∆− ⊆ X}

Furthermore, λ∗ is injective on Λ+, Λ−, and Λ0.

Example 3.3.4. Let M be a semisimple 2-reducible monoid with connected set of simple roots

∆ = {α, β} and I+ = I− = I0 = ∅, ∆+ = {β}, ∆− = {α}. Notice that since I+, I−, and I0 are

all empty, no component of any subset of X can be contained in any of these sets. λ∗(Λ+) is

then the set of all subsets of ∆ that don’t have ∆+ as a subset. Therefore λ∗(Λ+) = {∅, {α}}.
Similarly, λ∗(Λ−) = {∅, {β}}. λ∗(Λ0) is the set of all subsets of ∆ that either don’t have ∆+

and ∆− as subsets, or have both ∆+ and ∆− as subsets. Therefore λ∗(Λ0) = {∅, {α, β}}. The

cross section lattice Λ and the type map are shown in Figure 3.3.

Notice that there exists eβ ∈ Λ+ such that λ∗(eβ) = {α} = ∆\{β}. Similarly there exists

eα ∈ Λ+ such that λ∗(eα) = {β} = ∆\{α}. Also, λ∗ is injective on Λ+, Λ−, and Λ0. However, λ∗

is not injective on all of Λ\{0}. In fact, for any 2-reducible monoid λ∗(e+) = λ∗(e−) = λ∗(e0) =

∅, so λ∗ can never be injective on the entire cross section lattice for a 2-reducible monoid. Notice

that since the types I+ = I− = I0 = ∅, λ∗ = λ and hence λ is not injective on Λ\{0} either.
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Example 3.3.5. Let M be a semisimple 2-reducible monoid with connected set of simple roots

∆ = {α, β, γ} where sαsβ 6= sβsα and sβsγ 6= sγsβ. Let I+ = {β, γ}, I− = {α, β}, ∆+ = {α},
∆− = {β}. Then

λ(e−) = λ∗(e−) t λ∗(e−) = ∅ t I− = {α, β} =⇒ γ ∈ ∆−,

a contradiction. Therefore M is not semisimple and hence no semisimple 2-reducible monoid

exists with the given choices of I+, I−, ∆+, and ∆−.

Example 3.3.5 brings us to the unfortunate realization that there may not exist a semisimple

2-reducible monoid for arbitrary I+, I−, ∆+, and ∆−. One question we may want to ask is which

choices of these invariants will give rise to a semisimple 2-reducible monoid? A complete solution

to this problem is not known. Some restrictions, however, are as follows:

Theorem 3.3.6. a) I+, I− ⊂ ∆ are the types for some 2-reducible semisimple monoid if

and only if I+ 6= I− or else I+ = I− and |∆\I+| ≥ 2.

b) ∆+ 6= ∅ and ∆− 6= ∅.

c) There exists a 2-reducible semisimple monoid with I+ = I− = ∅ if and only if ∆+ 6= ∅,
∆− 6= ∅, and ∆+ ∩∆− = ∅.

d) If ∆ is of the type An with I+ = ∆\{α1} and I− = ∆\{αi}, then either

i) ∆+ = {α1, . . . , αj} and ∆− = {αj+2, . . . , αn} for some 1 ≤ j ≤ i− 1, or

ii) ∆+ = {α1, . . . , αj+1} and ∆− = {αj+2, . . . , αn} for some 0 ≤ j ≤ i− 1

Notice that the 2-reducible monoid in Example 3.3.4 is permissible by Theorem 3.3.6. Ex-

ample 3.3.5, however, is not. I+ = ∆\{α} and I− = ∆\{γ}, but ∆− = {β} is not allowed since

in either case we must have γ ∈ ∆−.
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Chapter 4

Distributive Cross Section Lattices

In [15] Renner shows that the type of a J -irreducible monoid is combinatorially smooth if

the cross section lattice is distributive. This provides us with a motivation to study when a

given monoid is distributive. In Section 4.1 we show that a J -irreducible cross section lattice

is distributive if and only if it is modular. We then devise a method to determine if the cross

section lattice is distributive in terms of its type. In Section 4.2 we show that a 2-reducible

cross section lattice is distributive if and only if it is modular.

4.1 Distributive J -irreducible Cross Section Lattices

Before we try to describe when a given J -irreducible cross section is distributive, we prove the

following proposition which will come in handy throughout this section.

Proposition 4.1.1. Let M be a J -irreducible reductive monoid and let λ∗(e) = U and λ∗(f) =

V . The following are true.

a) λ∗(e) ∪ λ∗(f) is in the image of λ∗.

b) λ∗(e ∨ f) = λ∗(e) ∪ λ∗(f).

Proof.

a) Suppose not. Then there is a connected component C of λ∗(e) ∪ λ∗(f) that is contained

in I. If C ⊆ λ∗(f) then C would be connected in λ∗(f). Then a connected component of

λ∗(f) would be contained in I, a contradiction. Therefore C 6⊆ λ∗(f) hence C ∩λ∗(e) 6= ∅.
Similarly C ∩ λ∗(f) 6= ∅. The connected components of λ∗(e) will be contained in the

connected components of λ∗(e) ∪ λ∗(f). Let C ′ be a connected component of C ∩ λ∗(e).
Then C ′ ⊆ C ⊆ I, a contradiction.
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1 2 3

4

5

(a) Dynkin diagram of type D5

∅

2 3 5

12 23 25 34 35

123 125 234 235 345

1234 1235 2345

12345

(b) Cross section lattice Λ\{0̂}

Figure 4.1: J -irreducible monoid with ∆ = {α1, . . . , α5} and I = {α1, α4}

b) Let h ∈ Λ\{0̂} such that λ∗(h) = λ∗(e) ∪ λ∗(f). Since λ∗(e) ⊆ λ∗(h) and λ∗(f) ⊆ λ∗(h),

h ≥ e ∨ f . On the other hand, λ∗(e) ⊆ λ∗(e ∨ f) and λ∗(f) ⊆ λ∗(e ∨ f). So λ∗(h) =

λ∗(e) ∪ λ∗(f) ⊆ λ∗(e ∨ f). Therefore h ≤ e ∨ f and hence h = e ∨ f . The result follows

since λ∗ is injective.

Example 4.1.2. Let M be a J -irreducible of type I = {α1, α4} and set of simple roots

∆ = {α1, . . . , α5} of type D5. The Dynkin diagram of ∆ is shown in Figure 4.1a and the cross

section lattice Λ\{0̂} is shown in Figure 4.1b. Notice that the union of any two elements in the

image of λ∗ is in the image and this union is the join.

It should be pointed out that Proposition 4.1.1 is not necessarily true for 2-reducible

monoids.
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0̂

x y z

1̂

(a) M5

0̂

x

z

y

1̂

(b) N5

0̂

x

z y

1̂

(c) N7

Figure 4.2: Some important nondistributive lattices

Example 4.1.3. Let M be a 2-reducible semisimple monoid with set of simple roots ∆ =

{α1, α2, α3} with ∆+ = {α1}, ∆− = {α2, α3}, and I+ = I− = I0 = ∅. Notice that such a

monoid exists by Theorem 3.3.6. No component of {α2} is contained in I0 and neither ∆+ nor

∆− are subsets of {α2}. Therefore there exists e ∈ Λ0 such that λ∗(e) = {α2}. Similarly there

exists f ∈ Λ0 such that λ∗(f) = {α3}. Although no component of {α2, α3} is contained in I0,

∆− is a subset of {α2, α3} while ∆+ is not. Therefore there does not exist an element h ∈ Λ0

such that λ∗(h) = {α2, α3}. Therefore e ∨ f = 1̂ and hence λ∗(e) ∪ λ∗(f) 6= λ∗(e ∨ f).

We saw in Section 2.4.14 how we can determine whether a given lattice is modular or

distributive in terms of the special lattices M5 and N5. For convenience these lattices have been

reproduced in Figure 4.2.

Proposition 4.1.4. Let M be a J -irreducible reductive monoid. Λ\{0̂} does not contain M5

as a sublattice.

Proof. Consider {e, e1, e2, e3, f} ⊆ Λ\{0̂} such that e < ei < f , ei ∧ ej = e, and ei ∨ ej = f for

all i 6= j. Then {e, e1, e2, e3, f} ∼= M5. λ∗(e1) ⊆ λ∗(f) and λ∗(e2) ⊆ λ∗(f), so λ∗(e1) ∪ λ∗(e2) ⊆
λ∗(f). λ∗(e1)∪ λ∗(e2) is in the image of λ∗ by Proposition 4.1.1, so λ∗(h) = λ∗(e1)∪ λ∗(e2) for

some h ∈ Λ\{0̂}. Therefore e1 ≤ h and e2 ≤ h and hence e1 ∨ e2 ≤ h. However, e1 ∨ e2 = f ,

so f ≤ h. On the other hand, λ∗(h) = λ∗(e1) ∪ λ∗(e2) ⊆ λ∗(f) so h ≤ f . Therefore h = f

and hence λ∗(e1) ∪ λ∗(e2) = λ∗(f). Similarly λ∗(e1) ∪ λ∗(e3) = λ∗(e2) ∪ λ∗(e3) = λ∗(f). Let

Ai = λ∗(f)\λ∗(ei) for i = 1, 2, 3. Then Ai ⊆ λ∗(ej) for all i 6= j. Let e′ ∈ [e, e1] such that e′

covers e. Since M is semisimple, there exists α ∈ ∆ such that λ∗(e′) = λ∗(e) t {α}. α ∈ λ∗(e1)

since e′ ≤ e1. Suppose α ∈ λ∗(e2). Then λ∗(e′) = λ∗(e)t{α} ⊆ λ∗(e2). Therefore e1∧e2 ≥ e′ > e,
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a contradiction. So α 6∈ λ∗(e2). That is, α ∈ A2. But A2 ⊆ λ∗(e3). Therefore α ∈ λ∗(e3) and

e1 ∧ e3 > e, a contradiction.

Corollary 4.1.5. Let M be a J -irreducible reductive monoid. Λ\{0̂} is distributive if and only

if it is modular.

Proof. Suppose Λ\{0̂} is distributive. Then by Theorem 2.4.14 Λ\{0̂} does not have N5 as a

sublattice and hence Λ\{0̂} is modular.

Now suppose Λ\{0̂} is modular. Then by Theorem 2.4.14 Λ\{0̂} does not have N5 as a

sublattice and by Proposition 4.1.4 Λ\{0̂} does not have M5 as a sublattice, and hence Λ\{0̂}
is distributive.

In general, it is possible for a lattice to be modular but not distributive. The lattice M5 in

Figure 4.2a is an example. Corollary 4.1.5, however, shows that the concept of modular and

distributive lattices are equivalent in J -irreducible cross section lattices. With this knowledge

in hand, we would like to be able to determine when a J -irreducible cross section lattice is

distributive/modular in terms of the set of simple roots and the type of the monoid. The

following lemma will be useful in doing so.

Lemma 4.1.6. Let M be a J -irreducible reductive monoid and let {e1, e2, e3, e4, e5} be a sub-

lattice isomorphic to N5. Then there exist e′2 and e′4 in Λ\{0̂} such that {e1, e
′
2, e3, e

′
4, e5} is a

sublattice isomorphic to N5 with λ∗(e′2) ∩ λ∗(e′4) = λ∗(e1).

Proof. Let A = (λ∗(e2)∩ λ∗(e4))\λ∗(e1). If A = ∅, then e2 = e′2 and e4 = e′4 and the statement

is trivial. So let α ∈ A. λ∗(e1)t{α} is not in the image of λ∗ because if it were then e2∧e4 > e1.

So α ∈ I and α is not adjacent to an element of λ∗(e1). Notice that A ⊆ I. We would like to be

able to remove the elements of A from λ∗(e2), but doing so may leave a connected component

that is contained in I. So we need to remove any extraneous elements of I as well. To do

this let A′ be the path (or paths) of elements of (I\A) ∩ λ∗(e2) with no elements adjacent

to an element of λ∗(e1) but at least one element adjacent to an element of A. It is possible

that A′ could be empty. Let B = A t A′. Then by construction no component of λ∗(e2)\B or

λ∗(e4)∪B is contained in I. So there exists e′2 and e′4 in Λ\{0̂} such that λ∗(e′2) = λ∗(e2)\B and

λ∗(e′4) = λ∗(e4) ∪ B. Furthermore, λ∗(e′2) ∩ λ∗(e′4) = λ∗(e1). Notice that since B ⊆ λ∗(e2) and

no element of B is adjacent to an element of λ∗(e1), there is an element γ ∈ λ∗(e′2) = λ∗(e2)\B
that is not in λ∗(e1). That is, e′2 6= e1. Furthermore, γ ∈ λ∗(e5) but γ /∈ λ∗(e′4), so e′4 6= e5.

All that remains is to show that {e1, e
′
2, e3, e

′
4, e5} is a sublattice isomorphic to N5. By

construction, e1 ≤ e′2 ≤ e3 ≤ e5 and e1 ≤ e′4 ≤ e5. Since λ∗(e′2) ∩ λ∗(e′4) = λ∗(e1), e′2 ∧ e′4 = e1.

By Proposition 4.1.1, λ∗(e′2 ∨ e′4) = λ∗(e′2) ∪ λ∗(e′4) = λ∗(e2) ∪ λ∗(e4) = λ∗(e5), so e′2 ∨ e′4 = e5.

Since e3 ∨ e4 = e5 and e4 ≤ e′4 ≤ e5, e3 ∨ e′4 = e5. If β ∈ B, then β ∈ I and β is not adjacent to
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an element of λ∗(e1). So λ∗(e1) t B′ is not in the image of λ∗ for any ∅ 6= B′ ⊆ B. Therefore

e3 ∧ e′4 = e3 ∧ e4 = e1.

Example 4.1.7. Let M be a J -irreducible monoid of type I = {α4, α5, α6} with set of sim-

ple roots ∆ = {α1, . . . , α7} of type A7. There exist elements e1, e2, e3, e4, e5 ∈ Λ\{0̂} such

that λ∗(e1) = {α1}, λ∗(e2) = {α1, α2, α5, α6, α7}, λ∗(e3) = {α1, α2, α4, α5, α6, α7}, λ∗(e4) =

{α1, α3, α4, α5}, and λ∗(e5) = {α1, α2, α3, α4, α5, α6, α7} since no component of these sets is

contained in I. λ∗(e2) ∩ λ∗(e4) = {α1, α5} but this is not in the image of λ∗ since the compo-

nent {α5} is contained in I. Therefore e2 ∧ e4 = e1. Similarly e3 ∧ e4 = e1. λ∗(e2) ∪ λ∗(e4) =

λ∗(e3)∪λ∗(e4) = λ∗(e5), so e2∨e4 = e3∨e4 = e5 by Proposition 4.1.1. Therefore {e1, e2, e3, e4, e5}
is a sublattice that is isomorphic to N5.

Using the notation in the proof of Lemma 4.1.6, A = (λ∗(e2) ∩ λ∗(e4))\λ∗(e1) = {α5}.
A′ = {α6} so B = {α5, α6}. Notice that no component of λ∗(e2)\B = {α1, α2, α7} or λ∗(e4) ∪
B = {α1, α3, α4, α5, α6} is contained in I. Therefore there exist e′2, e

′
4 ∈ Λ\{0̂} such that

λ∗(e′2) = {α1, α2, α7} and λ∗(e′4) = {α1, α3, α4, α5, α6}. Then e′2 ∧ e′4 = e3 ∧ e′4 = e1 and

e′2 ∨ e′4 = e3 ∨ e′4 = e5 and hence {e1, e
′
2, e3, e

′
4, e5} is isomorphic to N5.

We are now ready to prove the main result of this section.

Theorem 4.1.8. Let M be a J -irreducible reductive monoid with set of simple roots ∆. Let

∆ = ∆1 t · · · t∆k, where the ∆i’s are the connected components of ∆ and let Ii = I ∩∆i for

1 ≤ i ≤ k. Then Λ\{0̂} is distributive if and only if ∆i\Ii is connected for all i.

Proof. Suppose ∆i\Ii is not connected for some i. We would like to show that Λ\{0̂} is not

distributive. Let I ′i be a connected component of Ii such that ∆i\I ′i is not connected. Such a

connected component is guaranteed to exist since ∆i\Ii is not connected. We will construct a

sublattice isomorphic to N5 of rank 3 for the cases |I ′i| = 1, |I ′i| = 2, |I ′i| > 2.

Suppose I ′i = {β}. Since ∆i\{β} is not connected, there exist α, γ ∈ ∆i\{β} such that

sαsβ 6= sβsα and sβsγ 6= sγsβ. Clearly α and γ are in different connected components of ∆i\{β}
and neither is contained in I. Let λ∗(e1) = ∅, λ∗(e2) = {α}, λ∗(e3) = {α, β}, λ∗(e4) = {β, γ},
and λ∗(e5) = {α, β, γ}. No connected component of these sets is contained in I so they are all

in the image of λ∗. Clearly e2 ∧ e4 = e1, e2 ∨ e4 = e5, and e3 ∨ e4 = e5. Since β ∈ I ′i ⊆ I, {β} is

not in the image of λ∗. Therefore e3 ∧ e4 = e1 and {e1, e2, e3, e4, e5} is a sublattice isomorphic

to N5 of rank 3. The Hasse diagram of the interval [e1, e5] is shown in Figure 4.3.

Now suppose I ′i = {β1, β2}. Since I ′i is a connected component of Ii, sβ1sβ2 6= sβ2sβ1 .

Since ∆i\{β1, β2} is not connected, there exist α, γ ∈ ∆i\{β1, β2} such that sαsβ1 6= sβ1sα

and sβ2sγ 6= sγsβ2 . Clearly α and γ are in different connected components of ∆i\{β1, β2} and

neither is in I. Let λ∗(e1) = {α}, λ∗(e2) = {α, β1}, λ∗(e3) = {α, β1, β2}, λ∗(e4) = {α, β2, γ},
and λ∗(e5) = {α, β1, β2, γ}. No connected component of these sets is contained in I so they are
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∅

{α} {γ}

{α, β} {α, γ} {β, γ}

{α, β, γ}

α β γ

Figure 4.3: |I ′i| = {β}

all in the image of λ∗. Clearly e2 ∧ e4 = e1, e2 ∨ e4 = e5, and e3 ∨ e4 = e5. Since β2 ∈ I ′i ⊆ I and

sαsβ2 6= sβ2sα, {α, β2} is not in the image of λ∗. Therefore e3 ∧ e4 = e1 and {e1, e2, e3, e4, e5} is

a sublattice isomorphic to N5 of rank 3. The Hasse diagram of the interval [e1, e5] is shown in

Figure 4.4.

Finally, suppose I ′i = {β1, . . . , βk} where k ≥ 3. We will assume that since I ′i is a connected

component of Ii, I
′
i is a path such that sβj−1

sβj 6= sβjsβj−1
for 2 ≤ j ≤ k. The case where

I ′i contains an endpoint of ∆i if ∆i is of the type Dn, E6, E7, or E8 is not interestingly

different. Since ∆i\I ′i is not connected, there exist α, γ ∈ ∆i\I ′i such that sαsβ1 6= sβ1sα and

sβksγ 6= sγsβk . Clearly α and γ are in different connected components of ∆i\I ′i and neither

is in I. Let λ∗(e1) = {α, β1, . . . , βk−2}, λ∗(e2) = {α, β1, . . . , βk−1}, λ∗(e3) = {α, β1, . . . , βk},
λ∗(e4) = {α, β1, . . . , βk−2, βk, γ}, and λ∗(e5) = {α, β1, . . . , βk, γ}. No connected component of

these sets is contained in I so they are all in the image of λ∗. Clearly e2 ∧ e4 = e1, e2 ∨ e4 = e5,

and e3 ∨ e4 = e5. Since βk ∈ I ′i ⊆ I and sβk−2
sβk 6= sβksβk−2

, {α, β1, . . . , βk−2, βk} is not in the

image of λ∗. Therefore e3 ∧ e4 = e1 and {e1, e2, e3, e4, e5} is a sublattice isomorphic to N5 of

rank 3. The Hasse diagram of the interval [e1, e5] is shown in Figure 4.5.

Now suppose {e1, e2, e3, e4, e5} is a sublattice of Λ\{0̂} that is isomorphic to N5. We need

to show that ∆i\Ii is not connected for some i. If λ∗(e2) ∩ λ∗(e4) 6= λ∗(e1), then by Lemma

4.1.6 there exist e′2, e
′
4 ∈ Λ\{0̂} such that {e1, e

′
2, e3, e

′
4, e5} is a sublattice isomorphic to N5 with

λ∗(e′2) ∩ λ∗(e′4) = λ∗(e1). So let us assume, without loss of generality, that λ∗(e2) ∩ λ∗(e4) =
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{α}

{α, β1} {α, γ}

{α, β1, β2} {α, β1, γ} {α, β2, γ}

{α, β1, β2, γ}

α β1 β2 γ

Figure 4.4: |I ′i| = {β1, β2}

λ∗(e1). Since M is semisimple, there exists β ∈ λ∗(e3)\λ∗(e2) such that λ∗(e2) t {β} is in the

image of λ∗. Since β /∈ λ∗(e2), λ∗(e2)∩λ∗(e4) = λ∗(e1), and λ∗(e2)∪λ∗(e4) = λ∗(e5) it must be

that β ∈ λ∗(e4). However, λ∗(e1)t{β} is not in the image of λ∗, for if it were then e3∧ e4 6= e1.

Therefore β ∈ I and β is not adjacent to any elements of λ∗(e1). Since λ∗(e2) t {β} is in the

image of λ∗, β is an element of a path of elements of I with at least one element adjacent to

some α ∈ λ∗(e2) such that α /∈ I. Similarly, since λ∗(e4) is in the image of λ∗ and β ∈ λ∗(e4), β

is an element of a path of elements of I with at least one element adjacent to some γ ∈ λ∗(e4)

such that γ /∈ I. β is therefore an element of a path of elements of I at least one of which is

adjacent to α ∈ ∆i\Ii and another is adjacent to γ ∈ ∆i\Ii for some i. Therefore ∆i\Ii is not

connected.

The following corollary was first observed, without proof, by Putcha and Renner in [10].

Corollary 4.1.9. Let M be a J -irreducible reductive monoid with connected set of simple roots

∆ and type I. Then Λ\{0̂} is distributive if and only if ∆\I is connected.

Example 4.1.10. Consider the J -irreducible monoid of type I = {α1, α4} and set of simple

roots ∆ = {α1, . . . , α5} of type D5 from Example 4.1.2. ∆\I = {α2, α3, α5} is connected so the

cross section lattice Λ\{0̂} is distributive by Corollary 4.1.9. This can be verified by noticing

that no sublattice of Λ\{0̂} in Figure 4.1b is isomorphic to N5.
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{α, β1, . . . , βk−2}

{α, β1, . . . , βk−1} {α, β1, . . . , βk−2, γ}

{α, β1, . . . , βk} {α, β1, . . . , βk−1, γ} {α, β1, . . . , βk−2, βk, γ}

J ∪ {α, β, γ, δ}

α β1 βk γ

Figure 4.5: |I ′i| = {β1, . . . , βk}, k ≥ 3
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134

1345 1347

13456 13457 13467

134567

Figure 4.6: A sublattice of a nondistributive cross section lattice that is isomorphic to N7

Corollary 4.1.11. Let M be a J -irreducible reductive monoid with cross section lattice Λ\{0̂}.
If Λ\{0̂} has a sublattice isomorphic to N5, then Λ\{0̂} has a sublattice isomorphic to N5 of

rank 3.

Proof. If Λ\{0} has a sublattice isomorphic to N5, then Λ\{0̂} is not distributive and hence

∆i\Ii is not connected for some i. A method for constructing a sublattice of Λ\{0̂} isomorphic

to N5 of rank 3 is described in the proof of Theorem 4.1.8.

Corollary 4.1.12. Let M be a J -irreducible reductive monoid with nondistributive cross section

lattice Λ\{0̂}. Then Λ\{0̂} has a sublattice isomorphic to N5 of rank 3.

Notice that if M is a nondistributive J -irreducible monoid, then its cross section lattice has

a sublattice {e1, e2, e3, e4, e5} of rank 3 that is isomorphic to N5. The interval [e1, e5] will be

isomorphic to the lattice N7 in Figure 4.2c.

Example 4.1.13. Consider the J -irreducible monoid from Example 4.1.7. The sublattice

{e1, e2, e3, e4, e5} is isomorphic to N5 where λ∗(e1) = {α1}, λ∗(e2) = {α1, α2, α5, α6, α7},
λ∗(e3) = {α1, α2, α4, α5, α6, α7}, λ∗(e4) = {α1, α3, α4, α5}, and

λ∗(e5) = {α1, α2, α3, α4, α5, α6, α7}. There exists a sublattice {e′1, e′2, e′3, e′4, e′5} that is isomor-

phic to N5 where λ∗(e′1) = {α1, α3, α4}, λ∗(e′2) = {α1, α3, α4, α5}, λ∗(e′3) = {α1, α3, α4, α5, α6},
λ∗(e′4) = {α1, α3, α4, α6, α7}, and λ∗(e′5) = {α1, α3, α4, α5, α6, α7}. The interval [e′1, e

′
5] is shown

in Figure 4.6. Notice that this interval is isomorphic to N7.
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∅

2 3 5

12 23 25 34 35 45

123 125 234 235 245 345

1234 1235 1245 2345

12345

(a) Λ\{0̂} with type I = {α1, α4} and set of simple roots ∆ of type A2 ⊕A3

(b) Intervals of length 3 that are isomorphic to N7

Figure 4.7: A nondistributive cross section lattice
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Example 4.1.14. Let M be a J -irreducible of type I = {α1, α4} and set of simple roots

∆ = {α1, α2} t {α3, α4, α5} of type A2 ⊕ A3. Let I1 = {α1}, I2 = {α4}, ∆1 = {α1, α2} and

∆2 = {α3, α4, α5}. The cross section lattice Λ\{0̂} is shown in Figure 4.7a. Even though ∆1\I1 =

{α2} is connected, Λ\{0̂} is not distributive because ∆2\I2 = {α3, α5} is not connected. Notice

that it only takes ∆i\Ii to be not connected for a single value of i in order for the cross section

lattice to be nondistributive. There are three intervals of Λ\{0̂} of length 3 that are isomorphic

to N7: [∅, 345], [2, 2345], and [12, 12345]. These intervals are highlighted in Figure 4.7b.

4.2 Distributive 2-reducible Cross Section Lattices

In Section 4.1 we showed that the cross section lattice of a J -irreducible monoid is distributive

if and only if it is modular. We were able to due so by showing that a J -irreducible cross

section lattice could not contain a sublattice isomorphic to M5. We would like to prove an

analogous result of Corollary 4.1.5 for 2-reducible semisimple monoids. This case, however, is

more complicated as the following example illustrates.

Example 4.2.1. Let ∆ = {α1, · · · , α10} with corresponding set of simple reflections S =

{s1, · · · , s10}. Let ∆ be of type A10 so that sisi+1 6= si+1si for i = 1, · · · , n − 1. Let I+ =

{α2, α3, α6, α9}, I− = {α3, α4, α7}, ∆+ = {α3, α6, α9}, and ∆− = {α1, α2, α4, α5, α7, α8, α10}.
Then I0 = I+ ∩ I− = {α3} and ∆0 = ∆\(∆+ t ∆−) = ∅. No connected component of

{α1, α2, α3, α5, α6} is contained in I+ and ∆+ 6⊆ {α1, α2, α3, α5, α6}. Therefore there exists

e1 ∈ Λ+ such that λ∗(e1) = {α1, α2, α3, α5, α6}. Similarly there exist e2, e3 ∈ Λ+ such that

λ∗(e2) = {α1, α3, α4, α8, α9} and λ∗(e3) = {α1, α6, α7, α9, α10}. Notice that λ∗(e1) ∩ λ∗(e2) =

{α1, α3}. However, there is no element e ∈ Λ+ such that λ∗(e) = {α1, α3} because {α3} is a com-

ponent of {α1, α3} that is contained in I+. However, there exists e ∈ Λ+ such that λ∗(e) = {α1}
and hence e1 ∧ e2 = e. Similarly e1 ∧ e3 = e2 ∧ e3 = e.

On the other hand, ∆+ ⊆ λ∗(e1)∪λ∗(e2), so f = e1∨e2 6∈ Λ+. Since λ∗(e1)∪λ∗(e2) ⊆ λ∗(f),

it follows that f ∈ Λ0 and ∆+ t ∆− ⊆ λ∗(f). Since ∆+ t ∆− = ∆, λ∗(f) = ∆. Similarly

e1 ∨ e3 = e2 ∨ e3 = f .

Example 4.2.1 provides several insights into the structure of cross section lattices of 2-

reducible reductive monoids. First of all, Proposition 4.1.1 does not hold in the 2-reducible

case. Additionally {e, e1, e2, e3, f} is a sublattice isomorphic to M5, which was not possible in

the J -irreducible case. This suggests that the problem of determining the relationship between

modular and distributive cross section lattices in the 2-reducible case may be more complicated

than the J -irreducible case. The following example provides a hopeful insight.

Example 4.2.2. Let ∆, I+, I−, ∆+, and ∆− be as in Example 4.2.1. No component of

{α1, α2, α5, α6} is contained in I+ and ∆+ 6⊆ {α1, α2, α5, α6}. Therefore there exists e′ ∈ Λ+
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such that λ∗(e′) = {α1, α2, α5, α6}. Since e1, e
′ ∈ Λ+ and λ∗(e′) ⊆ λ∗(e1), it follows by Theorem

3.1.16 that e′ ≤ e1. Since λ∗(e′)∩λ∗(e2) = {α1} = λ∗(e), it follows that e′∧e2 = e. Furthermore,

λ∗(e′)∪λ∗(e2) = λ∗(e1)∪λ∗(e2), so e′∨e2 = e1∨e2 = f . Therefore {e, e′, e1, e2, f} is a sublattice

that is isomorphic to N5.

Example 4.2.2 shows that even though a cross section lattice can have a sublattice isomorphic

to M5, it may be possible to find a sublattice that is isomorphic is N5. The following lemmas

will allow us to prove that this must be the case.

Throughout the remainder of the section let {e, e1, e2, e3, f} be a sublattice of Λ that is

isomorphic to M5 where ei ∧ ej = e and ei ∨ ej = f for i, j = 1, 2, 3 and i 6= j. The following

notation will be useful in the following lemmas.

Definition 4.2.3. Let e, e1, e2, and e3 be as above. Define Aij ⊆ ∆ by

Aij = (λ∗(ei) ∩ λ∗(ej))\λ∗(e)

for i 6= j.

Lemma 4.2.4.

a) If {e, e1, e2, e3} ⊆ Λ+ and f ∈ Λ0, then Aij is nonempty for all i 6= j.

b) If {e, e1, e2} ⊆ Λ+, {e3, f} ⊆ Λ0, and ∆+ t ∆− ⊆ λ∗(e3), then Aij is nonempty for all

i 6= j.

c) If {e, e1, e2} ⊆ Λ+, {e3, f} ⊆ Λ0, and ∆+,∆− 6⊆ λ∗(e3), then Aij is nonempty for some

i 6= j.

d) If {e, e1, e2, e3, f} ⊆ Λ0 and ∆+ t∆− ⊆ λ∗(e), then Aij is nonempty for all i 6= j.

e) If {e, e1, e2, e3, f} ⊆ Λ0 and ∆+,∆− 6⊆ λ∗(f), then Aij is nonempty for all i 6= j.

f) If {e, e1, e2, e3, f} ⊆ Λ0, ∆+,∆− 6⊆ λ∗(e), λ∗(ei), and ∆+ t ∆− ⊆ λ∗(f), then Aij is

nonempty for some i 6= j.

Proof.

a) Let {e1, e2, e3} ⊆ Λ+ and f ∈ Λ0. No component of λ∗(ei) is contained in I+ for i = 1, 2, 3

and hence no component of λ∗(ei)∪λ∗(ej) is contained in I+. Since ei∨ej 6∈ Λ+ for i 6= j,

by Theorem 3.3.2 it must be that ∆+ ⊆ λ∗(ei) ∪ λ∗(ej) for i 6= j. Since, for example,

∆+ 6⊆ λ∗(e2), there exists α ∈ ∆+ such that α ∈ λ∗(e1) and α 6∈ λ∗(e2). Since α 6∈ λ∗(e2)

and ∆+ ⊆ λ∗(e2) ∪ λ∗(e3), α ∈ λ∗(e3). That is, A13 6= ∅. A similar argument shows that

A12 and A23 are nonempty as well.
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b) Let {e1, e2} ⊆ Λ+, {e3, f} ⊆ Λ0, and ∆+t∆− ⊆ λ∗(e3). No component of λ∗(e1)∪λ∗(e2)

is contained in I+. Since e1 ∨ e2 ∈ Λ0, ∆+ ⊆ λ∗(e1) ∪ λ∗(e2). Since ∆+ 6⊆ λ∗(e2), there

exists α ∈ ∆+ such that α ∈ λ∗(e1) and α 6∈ λ∗(e2). Since ∆+ t∆− ⊆ λ∗(e3), α ∈ λ∗(e3)

and hence α ∈ A13. Similarly A23 is nonempty.

No component of λ∗(e1) is contained in I+ and hence no component of λ∗(e1) is con-

tained in I0. Since no component of λ∗(e3) is contained in I0, it follows that no component

of λ∗(e1)∪λ∗(e3) is contained in I0. Since ∆+t∆− ⊆ λ∗(e3), ∆+t∆− ⊆ λ∗(e1)∪λ∗(e3).

Therefore λ∗(e1) ∪ λ∗(e3) = λ∗(f). Since λ∗(e1) 6⊆ λ∗(e3), there exists β ∈ λ∗(e1) such

that β 6∈ λ∗(e3). Similarly λ∗(e2) ∪ λ∗(e3) = λ∗(f), so β ∈ λ∗(e2) and hence β ∈ A12.

c) Let {e1, e2} ⊆ Λ+, {e3, f} ⊆ Λ0, and ∆+,∆− 6⊆ λ∗(e3). Since e1 ∨ e2 = f ∈ Λ0, ∆+ ⊆
λ∗(e1) ∪ λ∗(e2) and hence ∆+ t∆− ⊆ λ∗(f).

First suppose that no component of λ∗(e3) is contained in I+. Then since ∆+ 6⊆ λ∗(e3),

there exists e′3 ∈ Λ+ such that λ∗(e′3) = λ∗(e3). If e1∨ e′3 = e2∨ e′3 = f , then we are in the

case of part a). So suppose, without loss of generality, e1∨e′3 6= f . No component of λ∗(e1)

is contained in I+ and hence no component of λ∗(e1) is contained in I0. Additionally no

component of λ∗(e3) = λ∗(e′3) is contained in I0. Therefore no component of λ∗(e1)∪λ∗(e3)

is contained in I0. Since e1∨ e3 = f and ∆+t∆− ⊆ λ∗(f), either ∆+ ⊆ λ∗(e1)∪λ∗(e3) =

λ∗(e1) ∪ λ∗(e′3) or ∆− ⊆ λ∗(e1) ∪ λ∗(e3) = λ∗(e1) ∪ λ∗(e′3). Therefore if e1 ∨ e′3 ∈ Λ0 it

must be that e1 ∨ e′3 = f . So e1 ∨ e′3 ∈ Λ+. Then ∆+ 6⊆ λ∗(e1) ∪ λ∗(e′3) = λ∗(e1) ∪ λ∗(e3).

So ∆− ⊆ λ∗(e1) ∪ λ∗(e3). Since ∆− 6⊆ λ∗(e3), there exists α ∈ ∆− such that α ∈ λ∗(e1)

and α 6∈ λ∗(e3). ∆+ ⊆ λ∗(e1) ∪ λ∗(e2), there exists β ∈ ∆+ such that β ∈ λ∗(e1) and

β 6∈ λ∗(e2).

If ∆+ ⊆ λ∗(e2) ∪ λ∗(e3), then β ∈ λ∗(e3) and hence β ∈ A13. If, on the other hand,

∆+ 6⊆ λ∗(e2)∪λ∗(e3) then ∆+ 6⊆ λ∗(e2)∪λ∗(e′3) and hence e2∨e′3 ∈ Λ+. Since e2∨e3 = f

and ∆+ t ∆− ⊆ λ∗(f) it must be that ∆− ⊆ λ∗(e2) ∪ λ∗(e3). So there exists γ ∈ ∆−

such that γ ∈ λ∗(e2) but γ 6∈ λ∗(e3). But ∆− ⊆ λ∗(e1) ∪ λ∗(e3), so γ ∈ λ∗(e1) and hence

γ ∈ A12.

Now suppose a component of λ∗(e3) is contained in I+. So there does not exist an

element e′3 ∈ Λ+ such that λ∗(e′3) = λ∗(e3). As before ∆+ ⊆ λ∗(e1) ∪ λ∗(e2) ⊆ λ∗(f).

No component of λ∗(e1) ∪ λ∗(e3) is contained in I0. If ∆+,∆− 6⊆ λ∗(e1) ∪ λ∗(e3), then

e1 ∨ e3 < f . So either ∆+ ⊆ λ∗(e1) ∪ λ∗(e3) or ∆− ⊆ λ∗(e1) ∪ λ∗(e3). Suppose ∆+ ⊆
λ∗(e1)∪λ∗(e3). Then there exists α ∈ ∆+ such that α ∈ λ∗(e3) and α 6∈ λ∗(e1). Since ∆+ ⊆
λ∗(e1) ∪ λ∗(e2), α ∈ λ∗(e2) and hence α ∈ A23. Suppose instead ∆− ⊆ λ∗(e1) ∪ λ∗(e3).

By a similar argument to the above either ∆+ ⊆ λ∗(e2)∪λ∗(e3) or ∆− ⊆ λ∗(e2)∪λ∗(e3).

If ∆+ ⊆ λ∗(e2) ∪ λ∗(e3) then there exists β ∈ ∆+ such that β ∈ λ∗(e3) and β 6∈ λ∗(e2).
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Since ∆+ ⊆ λ∗(e1) ∪ λ∗(e2), β ∈ λ∗(e1) and hence β ∈ A13. If ∆− ⊆ λ∗(e2) ∪ λ∗(e3) then

there exists γ ∈ ∆− such that γ ∈ λ∗(e2) and γ 6∈ λ∗(e3). Since ∆− ⊆ λ∗(e1) ∪ λ∗(e3),

γ ∈ λ∗(e1) and hence γ ∈ A23.

In any case at least one of A12, A13 or A23 is nonempty.

d) Let {e, e1, e2, e3, f} ⊆ Λ0 and ∆+ t ∆− ⊆ λ∗(e). Then ∆+ t ∆− ⊆ λ∗(ei) for all i. No

component of λ∗(ei) or λ∗(ej) is contained in I0, so no component of λ∗(ei) ∪ λ∗(ej)
is contained in I0. Therefore λ∗(ei) ∪ λ∗(ej) = λ∗(f). Since λ∗(e1) 6⊆ λ∗(e3), there exists

α ∈ λ∗(e1) such that α 6∈ λ∗(e3). So then α ∈ λ∗(f) = λ∗(e2)∪λ∗(e3). Therefore α ∈ λ∗(e2)

and hence α ∈ A12. Similarly A13 and A23 are nonempty.

e) Let {e, e1, e2, e3, f} ⊆ Λ0 and ∆+,∆− 6⊆ λ∗(f). Then ∆+,∆− 6⊆ λ∗(ei) for all i. No

component of λ∗(ei) or λ∗(ej) is contained in I0, so no component of λ∗(ei) ∪ λ∗(ej)
is contained in I0. Therefore λ∗(ei) ∪ λ∗(ej) = λ∗(f). Since λ∗(e1) 6⊆ λ∗(e3), there exists

α ∈ λ∗(e1) such that α 6∈ λ∗(e3). So then α ∈ λ∗(f) = λ∗(e2)∪λ∗(e3). Therefore α ∈ λ∗(e2)

and hence α ∈ A12. Similarly A13 and A23 are nonempty.

f) Let {e, e1, e2, e3, f} ⊆ Λ0, ∆+,∆− 6⊆ λ∗(e), and ∆+ t ∆− ⊆ λ∗(f). If ∆+,∆− 6⊆
λ∗(e1), λ∗(e2) and ∆+t∆− ⊆ λ∗(e3) the proof that Aij is nonempty for all i 6= j is similar

to the proof of b). If ∆+,∆− 6⊆ λ∗(e1), λ∗(e2), λ∗(e3) the proof that Aij is nonempty for

some i 6= j is similar to the proof of c).

Finally, suppose ∆+,∆− 6⊆ λ∗(e1) and ∆+ t ∆− ⊆ λ∗(e2), λ∗(e3). No component

of λ∗(ei) or λ∗(ej) is contained in I0, so no component of λ∗(ei) ∪ λ∗(ej) is contained

in I0. Since ∆+ t ∆− ⊆ λ∗(e2), λ∗(e3), ∆+ t ∆− ⊆ λ∗(ei) ∪ λ∗(ej) for all i 6= j and

hence λ∗(ei) ∪ λ∗(ej) = λ∗(f). Since λ∗(e2) 6⊆ λ∗(e3), there exists β ∈ λ∗(e2) such that

β 6∈ λ∗(e3). Since λ∗(e2) ⊆ λ∗(f) = λ∗(e1) ∪ λ∗(e3), β ∈ λ∗(e1) and hence β ∈ A12.

Lemma 4.2.5.

a) Let {e, e1, e2} ⊆ Λ+ and f ∈ Λ0. If α ∈ Aij, then α ∈ I+.

b) Let {e, ei, ej , f} ⊆ Λ0 and ∆+ t∆− ⊆ λ∗(e). If α ∈ Aij, then α ∈ I0.

c) Let {e, ei, ej , f} ⊆ Λ0 and ∆+,∆− 6⊆ λ∗(f). If α ∈ Aij, then α ∈ I0.

d) Let {e, ei, ej , f} ⊆ Λ0, ∆+,∆− 6⊆ λ∗(e), λ∗(ei), and ∆+ t ∆− ⊆ λ∗(f). If α ∈ Aij, then

α ∈ I0.
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Proof. We will prove part a). The proofs of the other parts are similar.

Let {e, e1, e2} ⊆ Λ+ and f ∈ Λ0. Let α ∈ Aij . λ∗(e)t{α} cannot be in λ∗(Λ+) for if it were

then ei ∧ ej > e. Since ∆+ 6⊆ λ∗(ei), ∆+ 6⊆ λ∗(e) t {α}. Therefore a component of λ∗(e) t {α}
is contained in I+. That is, α ∈ I+.

Lemma 4.2.6.

a) Let {e, ei, ej} ⊆ Λ+, f ∈ Λ0, and Aij be nonempty. Then there exists e′ ∈ Λ+ and α ∈ Aij
such that λ∗(e′) = λ∗(ei)\{α}.

b) Let {e, ei, ej , f} ⊆ Λ0, ∆+ t∆− ⊆ λ∗(e), and Aij be nonempty. Then there exists e′ ∈ Λ0

and α ∈ Aij such that λ∗(e′) = λ∗(ei)\{α}.

c) Let {e, ei, ej , f} ⊆ Λ0, ∆+,∆− 6⊆ λ∗(f), and Aij be nonempty. Then there exists e′ ∈ Λ0

and α ∈ Aij such that λ∗(e′) = λ∗(ei)\{α}.

d) Let {e, ei, ej , f} ⊆ Λ0, ∆+,∆− 6⊆ λ∗(e), λ∗(ei), ∆+ t∆− ⊆ λ∗(f), and Aij be nonempty.

Then there exists e′ ∈ Λ0 and α ∈ Aij such that λ∗(e′) = λ∗(ei)\{α}.

Proof. We will prove part a). The proofs of the other three parts are similar.

Let α ∈ Aij . By Lemma 4.2.5 α ∈ I+ and α is not adjacent to an element of λ∗(e). Since

α ∈ λ∗(ei), α is adjacent to some δ1 ∈ λ∗(ei)\(λ∗(e) t {α}) that itself is in a chain of elements

of λ∗(ei) that are adjacent to an element of λ∗(e). Similarly, since α ∈ λ∗(ej), α is adjacent to

some δ2 ∈ λ∗(ej)\(λ∗(e) t {α}) that itself is in a chain of elements of λ∗(ej) that are adjacent

to an element of λ∗(e). If α is an endpoint of λ∗(ei), then λ∗(ei)\{α} is in Λ+. So suppose α

is not an endpoint of λ∗(ei). If we cannot pick δ1 and δ2 in such a way that δ1 6= δ2, then α is

an endpoint of a path of elements A ⊆ Aij such that A\{α} ⊆ I+ is a connected component of

λ∗(ei)\{α}. Let α′ be another endpoint of this path. Then λ∗(ei)\{α′} and λ∗(ej)\{α′} are in

λ∗(Λ+). So suppose δ1 6= δ2. If α is adjacent to only two elements of ∆, then it must be that

δ2 ∈ λ∗(ei) since α is not an endpoint of λ∗(ei). Furthermore, the path of λ∗(ei)\{α} containing

δ2 must be a subset of I+. Notice that δ2 ∈ Aij . We will then choose δ2 to take the place of α

and repeat this process until we find an α′ ∈ Aij such that α′ is adjacent to some δ ∈ λ∗(ej)
such that δ 6∈ I+. Such an α′ and δ are guaranteed to exist since the original δ2 was an element

of a path of elements of λ∗(ej) that was adjacent to an element of λ∗(e). Then no component

of λ∗(ei)\{α′} is contained in I+ and hence there exists e′ ∈ Λ+ such that λ∗(e′) = λ∗(ei)\{α′}.
On the other hand, suppose α is adjacent to three elements of ∆: δ1 ∈ λ∗(ei), δ2 ∈ λ∗(ej),

and δ3, no two of which are equal. δ3 is an endpoint of ∆ by the choice of δ1 and δ2. If either

δ3 6∈ λ∗(ei) or δ3 6∈ I+, then δ3 has no effect on whether or not a component of λ∗(ei)\{α} is

contained in I+. So suppose δ3 ∈ λ∗(ei) ∩ I+. If δ3 6∈ λ∗(ej), then choose δ2 to take the place

of α and proceed as before. If δ3 ∈ λ∗(ej), then δ3 ∈ Aij and both λ∗(ei)\{δ3} and λ∗(ei)\{δ3}
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are in λ∗(Λ+) since δ3 is an endpoint of both λ∗(ei) and λ∗(ej). In any case, there exists some

α′ ∈ Aij and e′ ∈ Λ+ such that λ∗(e′) = λ∗(ei)\{α′}.

Proposition 4.2.7. Let M be a 2-reducible semisimple reductive monoid with cross section

lattice Λ. If Λ has a sublattice isomorphic to M5, then it has a sublattice isomorphic to N5.

Proof. First consider the case where one element of {e1, e2, e3} is in Λ+ and another is in Λ−.

Without loss of generality, suppose e1 ∈ Λ+ and e2 ∈ Λ−. Then e1 ∧ e2 = e = 0̂. If e3 ∈ Λ+,

then e1 ∧ e3 = e+ > 0̂, a contradiction. Similarly if e3 ∈ Λ−, then e2 ∧ e3 = e− > 0. If e3 ∈ Λ0,

then e1 ∧ e3 = e+ > 0̂. In any case elements of {e1, e2, e3} cannot be in both Λ+ and Λ−.

Suppose {e, e1} ⊆ Λ+ and {e2, e3, f} ⊆ Λ0. Then e1 ∧ e2 ∈ Λ+ and e2 ∧ e3 ∈ Λ0, so

e1 ∧ e2 6= e2 ∧ e3. That is, {e, e1, e2, e3, f} cannot be isomorphic to M5.

Now suppose that {e, e1, e2, e3} ⊆ Λ+. and f ∈ Λ+. Then fMf is a J -irreducible monoid

with {e, e1, e2, e3, f} as a sublattice isomorphic to M5. This is not possible by Proposition 4.1.4.

Suppose {e, e1, e2, e3} ⊆ Λ+ and {f} ⊆ Λ0. By Lemma 4.2.6 there exists α ∈ A12 such that

λ∗(e1)\{α} is in λ∗(Λ+). Notice that since α ∈ (λ∗(e1) ∩ λ∗(e2))\λ∗(e) and λ∗(e1) 6= λ∗(e2),

|λ∗(e1)\λ∗(e)| ≥ 2. Therefore e1 > e′ > e. Since e′ and e2 are both in Λ+ and λ∗(e′) ∪ λ∗(e2) =

λ∗(e1) ∪ λ∗(e2), it follows that e′ ∨ e2 = e1 ∨ e2 = f . Furthermore, e′ ∧ e2 = e1 ∧ e2 = e since

e1 covers e′. Therefore {e, e′, e1, e2, f} is a sublattice of Λ that is isomorphic to N5. Similarly if

{e1, e2} ⊆ Λ+ and {e3, f} ⊆ Λ0 then there is a sublattice {e, e′, e1, e2, f} of Λ that is isomorphic

to N5.

Similarly suppose {e, e1, e2, e3, f} ⊆ Λ0 and either ∆+ t∆− ⊆ λ∗(e); ∆+,∆− 6⊆ λ∗(f); or

∆+,∆− 6⊆ λ∗(e), λ∗(ei) and ∆+ t ∆− ⊆ λ∗(f). Then a similar argument to the above shows

that there exists a sublattice {e, e′, ei, ej , f} of Λ that is isomorphic to N5.

Suppose {e, e1, e2, e3, f} ⊆ Λ0, ∆+,∆− 6⊆ λ∗(e), and ∆+ t ∆− ⊆ λ∗(ei) for all i. Then

∆+ t∆− ⊆ λ∗(f). Notice that A = λ∗(e) ∪∆+ ∪∆− 6∈ λ∗(Λ0) for if it were then ei ∧ ej > e

for all i 6= j. So a component of λ∗(e) ∪ ∆+ ∪ ∆− is contained in I0. Call this component I ′.

There are at most two endpoints of I ′ that are not endpoints of ∆. Let these endpoints be α

and β. The case where there is only one endpoint is similar. Notice that λ∗(ei)∪λ∗(ej) = λ∗(f)

for i 6= j, so if γ ∈ λ∗(e1)\A then γ is an element of either λ∗(e2)\A or λ∗(e3)\A. So then

λ∗(e) t {γ} is not in λ∗(Λ0). Since γ 6∈ ∆+ t∆−, it must be that ∆+,∆− 6⊆ λ∗(e) t {γ} and

hence a component of λ∗(e)t{γ} is contained in I0. That is, γ ∈ I0 and hence λ∗(ei)\A ⊆ I0 for

all i. {α, β} ⊆ I ′ ⊆ λ∗(ei) for all i. Therefore either α or β is connected to an element of ∆\I0 by

a path of elements of λ∗(ei) ∩ I0. That is, there exist elements {δ1, . . . δk} ⊂ (λ∗(ei) ∩ λ∗(ej)\A
for some i 6= j such that At{δ1, . . . , δk} ∈ λ∗(Λ0). But then ei ∧ ej > e. This is a contradiction

and therefore this case is not possible.

We have now exhausted all cases. In every case the sublattice isomorphic to M5 was either

not possible or we were able to find a sublattice isomorphic to N5.
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Corollary 4.2.8. Let M be a 2-reducible semisimple reductive monoid with cross section lattice

Λ. Λ is distributive if and only if it is modular.

Proof. Suppose Λ is distributive. Then by Theorem 2.4.14 Λ does not have N5 as a sublattice

and hence Λ is modular.

Suppose Λ is not distributive. Then by Theorem 2.4.14 Λ has a sublattice isomorphic to

either M5 or N5. If Λ has a sublattice isomorphic to M5, then by Proposition 4.2.7 Λ has a

sublattice isomorphic to N5. Therefore if Λ is not distributive then Λ has a sublattice isomorphic

to N5 and hence is not modular.

Corollary 4.2.8 tells us that the cross section lattice of a 2-reducible semisimple monoid is

distributive if and only if it is modular. We had a similar result for the cross section lattices of

J -irreducible monoids. It is then natural to make the following conjecture:

Conjecture 4.2.9. Let M be a semisimple k-reducible reductive monoid with cross section

lattice Λ. Λ is distributive if and only if it is modular.

There is an obvious difficulty in proving such a conjecture. In proving the result for the

J -irreducible and 2-reducible cases we relied heavily upon Theorem 3.2.2 and Theorem 3.3.2

which allowed us to describe the image of λ∗ in terms of the set of simple roots and the type(s)

of the monoid. In order to generalize our results we will either need to develop a characterization

of the cross section lattices of k-reducible monoids when k > 2, or we will have to devise another

method to prove our conjecture.

We know that the cross section lattice of a 2-reducible semisimple monoid is distributive if

and only if it is modular. Following the blueprint laid out in studying distributive J -irreducible

cross section lattices, a natural question to ask is under what conditions will a 2-reducible cross

section lattice be distributive/modular. We do not have an answer to this problem. One major

difficulty was realized in Example 3.3.5: there may not exist a 2-reducible semisimple reductive

monoid corresponding to arbitrarily chosen ∆+, ∆−, I+, and I−. It is therefore difficult to create

examples (or non-examples) that actually exist. The reader should notice that the question of

the equivalence of distributive and modular cross section lattices in this chapter was approached

purely from a combinatorial viewpoint. That is, aside from the characterization of the cross

section lattice in terms of the set of simple roots and the type(s) of the monoid, no algebraic

techniques were used in our proofs. In particular, the results in Section 4.2 concerning the

cross section lattices of 2-reducible monoids is valid for any lattice described by Theorem

3.3.2 regardless of whether or not it corresponds to an actual monoid. It seems possible that

a classification of distributive 2-reducible monoids in terms of ∆+, ∆−, I+, and I− may be
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different than a classification of distributive lattices that are described by Theorem 3.3.2. It

may therefore be advantageous to try to extend the list of possible 2-reducible monoids that is

given by Theorem 3.3.6.

The difficulties described above arise when trying to generalize most results concerning J -

irreducible monoids to the 2-reducible case. The reader should keep this in mind as the majority

of the remainder of this paper will focus on the J -irreducible case.
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Chapter 5

Direct Products of J -Irreducible
Reductive Monoids

Given a reductive monoid M , our goal is to understand its structure. This structure is encoded

by the type map, which we think of as the monoid equivalent of the Dynkin diagram that is so

important in describing the structure of semisimple Lie algebras. The type map in turn can be

described by the cross section lattice Λ of M . The structure of the cross section lattice can be

extremely complicated in general. In Chapter 3 we saw that the structure of the cross section

lattice of a J -irreducible reductive monoid can be described very precisely. This structure,

however, can still be complicated. In Chapter 4 we were able to determine precisely when such

a monoid is distributive. In this special case the structure is a little more tractable.

In Section 5.1 we study how distributive J -irreducible monoids can be expressed as direct

products of chains. We then use these results in Section 5.2 to compute zeta polynomial of these

cross section lattices.

5.1 Direct Products

We begin by showing how the cross section lattice of a J -irreducible monoid with disconnected

set of simple roots can be written as a product of cross section lattices.

Proposition 5.1.1. Let M be a J -irreducible monoid of type I with set of simple roots ∆ =

∆1 t ∆2, where ∆1 and ∆2 are the connected components of ∆. Let Λ′ = Λ\{0̂} be the cross

section lattice of M . Let Λ′i = Λi\{0̂} be the cross section lattice of the J -irreducible monoid

Mi of type Ii = I ∩∆i for i = 1, 2. Then Λ′ ∼= Λ′1 × Λ′2.

Proof. Let e ∈ Λ′. There exists X ⊆ ∆ such that λ∗(e) = X. Let X1 = X∩∆1 and X2 = X∩∆2.

Since no component of X is contained in I, no component of X1 is contained in I1. So there
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exists e1 ∈ Λ′1 such that λ∗1(e1) = X1, where λ1 is the type map of M1. Similarly there exists

e2 ∈ Λ′2 such that λ∗2(e2) = X2.

Let ϕ : Λ′ → Λ′1 × Λ′2 be given by ϕ(e) = e1 × e2. ϕ is injective because the type maps

of J -irreducible monoids are injective. Let e1 × e2 ∈ Λ′1 × Λ′2. Then there exist X1, X2 ⊆ ∆

such that X1 = λ∗1(e1) and X2 = λ∗2(e2). No component of X1 tX2 is contained in I, so there

exists e ∈ Λ′ such that λ∗(e) = X1 tX2. So ϕ(e) = e1× e2. Therefore ϕ is surjective and hence

bijective.

Let e, f ∈ Λ′ such that e ≤ f . Let λ∗(e) = X and λ∗(f) = Y . Then X ⊆ Y . Let λ∗(e) =

e1×e2 and λ∗(f) = f1×f2. Let λ∗(ei) = Xi = X∩∆i and λ∗(fi) = Yi = Y ∩∆i for i = 1, 2. Since

X ⊆ Y , X1 ⊆ Y1 and X2 ⊆ Y2. So e1 ≤ f1 in Λ′1 and e2 ≤ f2 in Λ′2. Therefore e1 × e2 ≤ f1 × f2

in Λ′1 × Λ′2 and hence ϕ(e) ≤ ϕ(f).

Since ϕ is bijective and order preserving, Λ′ ∼= Λ′1 × Λ′2.

Corollary 5.1.2. Let M be a J -irreducible monoid of type I with set of simple roots ∆ =

∆1 t · · · t ∆k, where ∆i is a connected component of ∆ for i = 1, . . . , k. Let Λ′ = Λ\{0̂} be

the cross section lattice of M . Let Λ′i = Λi\{0̂} be the cross section lattice of the J -irreducible

monoid Mi of type Ii = I ∩∆i for i = 1, . . . , k. Then Λ′ ∼= Λ′1 × · · · × Λ′k.

The following theorem is due to Can [1]:

Theorem 5.1.3. Let M be a distributive J -irreducible monoid of type I with minimal nonzero

element e0. Let the set of simple roots ∆ be connected and of type An, Bn, Cn, F4, or G2. If

|∆\I| > 1 then Λ\{0̂} is isomorphic to a product of chains. If |∆\I| = 1 then Λ\{0̂, e0} is

isomorphic to a product of chains.

Example 5.1.4. Let M be a J -irreducible monoid of type I = {α1, α4} and set of simple

roots ∆ = {α1, . . . , α4} of type A4. The cross section lattice Λ\{0̂} is shown in Figure 5.1a.

∆\I = {α2, α3} is connected, so Λ\{0̂} is distributive by Corollary 4.1.9. Therefore Λ\{0̂}
is isomorphic to a product of chains by Theorem 5.1.3. It is easy to see by inspection that

Λ\{0̂} ∼= C2
3 . This product is shown in Figure 5.1b with some edges colored blue to emphasize

the product.

Example 5.1.5. Let M be a J -irreducible monoid of type I = {α1, α3, α4, α5} and set of

simple roots ∆ = {α1, . . . , α5} of type A5. The cross section lattice Λ\{0̂} is shown in Figure

5.2a. ∆\I = {α2} is connected, so Λ\{0̂} is distributive by Corollary 4.1.9. Therefore Λ\{0̂, e0}
is isomorphic to a product of chains by Theorem 5.1.3. It is easy to see by inspection that

Λ\{0̂, e0} ∼= C4 × C2. This product is shown in Figure 5.2b.

Notice that Λ\{0̂} ∼= e0⊕ (C4×C2). In general if ∆\I = {α}, then {α} is the only singleton

subset of ∆ with no component contained in I. That is, Λ only has one element of rank 1. Then

Λ\{0̂} is of the form e0 ⊕ Λ′, where Λ′ is isomorphic to a product of chains.
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∅

2 3

12 23 34

123 234

1234

(a) Λ\{0̂} with type I = {α1, α4} (b) C3 × C3

Figure 5.1: A distributive cross section lattice as a product of chains

∅

2

12 23

123 234

1234 2345

12345

(a) Λ\{0̂} with type I = {α1, α3, α4, α5} (b) C4 × C2

Figure 5.2: A distributive cross section lattice as a product of chains
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Theorem 5.1.3 tells us that distributive cross section lattices can be represented as a product

of chains if the set of simple roots is connected and is of the type An, Bn, Cn, F4, or G2. It does

not, however, tell us what that product is. In Example 5.1.4 and Example 5.1.5 we were able to

determine what this product was by looking at the cross section lattice. This has two drawbacks.

We were only able to recognize how to express the cross section lattices in the previous examples

as products of chains because the examples were specifically chosen because of their simplicity.

As the number of elements of the cross section lattice increases it becomes much more difficult

to express it as a product of chains merely through inspection. More importantly, we would

like to be able to determine the cross section lattice without explicitly computing λ∗ for each

element of Λ\{0̂}. The following two propositions tell us how we can do so when the set of

simple roots is connected and of the type An, Bn, Cn, F4, or G2.

Proposition 5.1.6. Let M be a distributive J -irreducible monoid of type I and let ∆ =

{α1, . . . , αn} be connected and of type An, Bn, Cn, F4, or G2.

a) If I = {α1, . . . , αk} and |∆\I| ≥ 2, then Λ\{0̂} ∼= Ck+2 × Cn−k−1
2 .

b) If I = {α1, . . . , αn−1}, then Λ\{0̂, e0} ∼= Cn.

Proof.

a) If I = {α1, . . . , αk}, then ∆\I is connected and hence Λ\{0̂} is distributive by Corollary

4.1.9 and isomorphic to a product of chains by Theorem 5.1.3.

We will first find the number of elements of Λ\{0̂}. This is equal to the number of

subsets of ∆ with no component contained in I = {α1, . . . , αk}. Since |∆\I| = n−k, there

are 2n−k subsets X of ∆ such that X ∩ I = ∅. If X is in the image of λ∗ and X ∩ I 6= ∅,
then {αk, αk+1} ⊆ X. There are k possibilities ofX∩I: {αk}, {αk−1, αk}, . . . , {α1, . . . , αk}.
There are 2n−k−1 possibilities of X ∩ {αk+2, . . . , αn}. There are therefore

2n−k + k · 2n−k−1 = (k + 2) · 2n−k−1

possible subsets of X that are in the image of λ∗.

Notice that Cn is a chain of n elements, so its length is n− 1. Furthermore, Cm ×Cn
has mn elements and the length of a maximal chain is (m − 1) + (n − 1) = m + n − 2

elements. Since Λ\{0̂} is a product of chains, Λ\{0̂} ∼= Ci1 ×Ci2 ×· · ·Cil for some l. Since

Λ\{0̂} has (k + 2) · 2n−k−1 elements and the length of a maximal chain is n, it follows

that i1 · · · il = (k + 2) · 2n−k−1 and i1 + · · · + il − l = n. Notice that if i1 = k + 2 and

ij = 2 for 2 ≤ j ≤ n− k, then i1 · · · in−k = (k+ 2) · 2n−k−1 and i1 + · · ·+ in−k − (n− k) =

k + 2 + (n − k − 1) · 2 − n + k = n. Furthermore, this is the only solution. Therefore

Λ\{0̂} ∼= Ck+2 × Cn−k−1
2 .
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b) If I = {α1, . . . , αn−1}, then the only subsets of ∆ with no component contained in I are

∅, {αn}, {αn−1, αn}, . . . , {α1, . . . , αn}. Then Λ\{0̂} is a chain of n+ 1 elements, and hence

Λ\{0̂} ∼= Cn+1.

Proposition 5.1.7. Let M be a distributive J -irreducible monoid of type I and let ∆ =

{α1, . . . , αn} be connected and of type An, Bn, Cn, F4, or G2.

a) If I = {α1, . . . , αk}t{αl, . . . , αn} and |∆\I| ≥ 2, then Λ\{0̂} ∼= Ck+2×Cn−l+3×C l−k−3
2 .

b) If I = {α1, . . . , αk} t {αk+2, . . . , αn}, then Λ\{0̂, e0} ∼= Ck+1 × Cn−k.

Proof.

a) Let I = I1 t I2 = {α1, . . . , αk} t {αl, . . . , αn}. Then ∆\I = {αk+1, . . . , αl−1} is connected

and hence Λ\{0̂} is distributive by Corollary 4.1.9 and isomorphic to a product of chains

by Theorem 5.1.3. Additionally, since |∆\I| = l− k− 1 ≥ 2, it follows that l− k− 3 ≥ 0.

The number of elements of λ∗ that are subsets of ∆\I is 2l−k−1. If X ⊆ ∆ is in the

image of λ∗ such that X ∩ I1 6= ∅ and X ∩ I2 = ∅, then {αk, αk+1} ⊆ X. There are then

k · 2l−k−2 such subsets X. Similarly, if X ⊆ ∆ is in the image of λ∗ such that X ∩ I2 6= ∅
and X ∩ I1 = ∅, then there are (n − l + 1) · 2l−k−2 such subsets X. If X ⊆ ∆ is in the

image of λ∗ such that X ∩ I1 6= ∅ and X ∩ I2 6= ∅, then there are k(n− l+ 1) · 2l−k−3 such

subsets X. The total number of elements in Λ\{0̂} is therefore

|Λ\{0̂}| = 2l−k−1 + k · 2l−k−2 + (n− l + 1) · 2l−k−2 + k · (n− l + 1) · 2l−k−3

= [4 + 2k + 2(n− l + 1) + k(n− l + 1)] · 2l−k−3

= (k + 2)(n− l + 3) · 2l−k−3.

Since Λ\{0̂} is a product of chains, Λ\{0̂} ∼= Ci1 × Ci2 × · · ·Cim , where i1 · · · im =

(k + 2)(n − l + 3) · 2l−k−3 and i1 + · · · + im − m = n. Notice that if i1 = k + 2, i2 =

n − l + 3, and i3 = · · · = il−k−1 = 2, then i1 · · · il−k−1 = (k + 2)(n − l + 3) · 2l−k−3 and

i1 + · · · il−k1−(l−k−1) = (k+2)+(n− l+3)+2(l−k−3)−(l−k−1) = n. Furthermore,

this is the only possibility. Therefore Λ\{0̂} ∼= Ck+2 × Cn−l+3 × C l−k−3
2 .

b) Let I = I1 t I2 = {α1, . . . , αk} t {αk+2, . . . , αn}. Then ∆\I = {αk+1} is connected and

hence Λ\{0̂, e0} is distributive by Corollary 4.1.9 and isomorphic to a product of chains

by Theorem 5.1.3.

The number of elements of λ∗ that are subsets of ∆\I = {αk+1} is 2. However, we

disregard the empty set because λ∗(e0) = ∅ and we are only concerned with counting the
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elements of Λ\{0̂, e0}. If X ⊆ ∆ is in the image of λ∗ such that X∩I1 6= ∅ and X∩I2 = ∅,
then there are k such subsets X. If X ⊆ ∆ is in the image of λ∗ such that X ∩ I2 6= ∅ and

X ∩ I1 = ∅, then there are n− k− 1 such subsets X. If X ⊆ ∆ is in the image of λ∗ such

that X ∩ I1 6= ∅ and X ∩ I2 6= ∅, then there are k(n − k − 1) such subsets X. The total

number of elements in Λ\{0̂, e0} is therefore

|Λ\{0̂, e0}| = 1 + k + n− k − 1 + k(n− k − 1)

= n+ kn− k2 − k

= (n− k)(k + 1).

Since Λ\{0̂, e0} is a product of chains, Λ\{0̂, e0} ∼= Ci1×Ci2×· · ·Cim , where il · · · im =

(n− k)(k+ 1) and i1 + · · ·+ im −m = n− 1, the length of a maximal chain of Λ\{0̂, e0}.
Notice that if i1 = n − k, and i2 = k + 1, then i1 · i2 = (n − k)(k + 1) and i1 + i2 −
2 = (n − k) + (k + 1) − 2 = n − 1. Furthermore, this is the only possibility. Therefore

Λ\{0̂, e0} ∼= Cn−k × Ck+1.

Example 5.1.8. Consider the monoid from Example 5.1.4 where I = {α1, α4} and ∆ =

{α1, . . . , α4}. n = 4, k = 1, and l = 4 so by Proposition 5.1.7 Λ\{0̂} ∼= C3 × C3 × C0
2
∼= C2

3 .

Similarly, consider the monoid from Example 5.1.5 where I = {α1, α3, α4, α5} and ∆ =

{α1, . . . , α5}. n = 5 and k = 1 so Λ\{0̂, e0} ∼= C2 × C4.

Example 5.1.9. Let ∆ = D4 = {α1, α2, α3, α4}, where sα1sα2 6= sα2sα1 , sα2sα3 6= sα3sα2 ,

and sα2sα4 6= sα4sα2 . Let I = {α1, α4}. Notice that ∆\I is connected and therefore Λ\{0̂}
is distributive. However, Λ\{0̂} is not rank symmetric and hence not locally rank symmetric.

Therefore by Theorem 2.4.23, Λ\{0̂} cannot be expressed as a direct product of chains or

even as a direct product of primary q-lattices. However, it can easily be seen that Λ\{0̂} ∼=
C2× (C1⊕ (C2×C2)). Figure 5.3a shows the cross section lattice Λ\{0̂}. Figure 5.3b shows the

two copies of C1 ⊕+(C2 × C2) that appear in the cross section lattice.

Example 5.1.9 shows that the structure of distributive cross section lattices can be much

more complicated when ∆ is of the type Dn. The cross section lattice may still be a product of

chains, as is seen in the trivial case when I = ∅. In this case Λ\{0̂} is isomorphic to the Boolean

lattice Cn2
∼= 2|∆|. However, Example 5.1.9 shows that this is not necessarily the case. It should

be pointed out, however, that the cross section lattice is “almost” isomorphic to a product of

chains in the sense that C1⊕ (C2×C2) is a product of two chains with a new 0̂ adjoined to the

bottom of the lattice. Although the structure of the cross section lattice in this case is difficult

to describe in general, it appears that Λ\{0̂} can have one of two forms, described as follows:
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∅

2 3

12 24 23

124 123 234

1234

(a) Λ\{0̂}

∅

(b) C2 × (C1 ⊕ (C2 × C2))

Figure 5.3: ∆ of type D4, I = {α1, α4}

Conjecture 5.1.10. Let M be a distributive J -irreducible monoid of type I and let ∆ be

connected of type Dn.

a) If |∆\I| ≥ 2, then Λ\{0̂} is either a product of chains or the product of a product of

chains with a lattice of the form Ci ⊕ (Cj × Ck).

b) If |∆\I| = 1, then Λ\{0̂, e0} is the product of a product of chains with a lattice of the

form Ci ⊕ (Cj × Ck).

Let M be a distributive J -irreducible monoid of type I where ∆ = ∆1 t · · · t ∆k is not

connected. Let the ∆i be the connected components of ∆ for 1 ≤ i ≤ k. If we are able to

express the distributive J -irreducible monoid Mi of type Ii = I ∩ ∆i as a product of chains

using Proposition 5.1.6, Proposition 5.1.7, or Conjecture 5.1.10, then we can use Corollary 5.1.2

to express the cross section lattice of M as a product of lattices. In particular, if ∆i is of type

An, Bn, Cn, F4, or G2 and |∆i\Ii| ≥ 2 for all i, then the cross section lattice Λ\{0̂} of M will

be a product of chains.

Example 5.1.11. Let M be a J -irreducible monoid with set of simple roots ∆ = {α1, . . . , α4}t
{α5, . . . , α9}t{α10, α11} of type A4⊕A5⊕A2. Let the type of M be I = {α3, α4, α5, α9}. Then

Λ\{0̂} ∼= C4 ×C2 ×C3 ×C3 ×C2 ×C2
2
∼= C4

2 ×C2
3 ×C4. Notice that Λ\{0̂} has 24 · 32 · 4 = 576

elements. The preceding propositions allow us to calculate the cross section lattice in just a few

minutes. Calculating it explicitly would take an inordinately long time.
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Example 5.1.12. Let M be a J -irreducible monoid with ∆ = ∆1t∆2 = {α1, α2}t{α3, α4, α5}
where ∆1 is of type A2 and ∆2 is of type A3. Let I = {α1, α3, α5}. Then I1 = {α1} and

I2 = {α3, α5}. Notice that ∆1\I1 = {α2} and ∆2\I2 = {α4} are connected, and hence Λ\{0̂} is

distributive.

Let Mi be the J -irreducible monoid with set of simple roots ∆i and let Ii be the type for i =

1, 2. Let Λi be the cross section lattice. Λ1\{0̂} ∼= C3. By Proposition 5.1.7 Λ2\{0̂, e0} ∼= C2
2 , and

hence Λ2\{0̂} ∼= C1⊕C2
2 . Then by Corollary 5.1.2, Λ\{0̂} ∼= Λ1\{0̂}×Λ2\{0̂} ∼= C3× (C1⊕C2

2 ).

Notice that even though the connected components of ∆ are of type A2 and A3, the cross

section lattice Λ\{0̂} is not a product of chains since |∆2\I2| = 1. Figure 5.4a shows the cross

section lattice Λ\{0̂}. Figure 5.4b shows the cross section lattice as the product C3× (C1⊕C2
2 ).

5.2 Zeta Polynomials

Calculating the zeta polynomial of a lattice is difficult in general because it requires us to be

able to count all of the multichains of the lattice. When we are able to express a cross section

lattice as a product of chains, however, we can avoid this issue by instead only calculating the

number of multichains for the respective chains in the product. The zeta polynomial has some

interesting combinatorial properties which are listed in Chapter 2. At the very least, it provides

us with an interesting application of the results from the previous section.

Proposition 5.2.1. Let M be a distributive J -irreducible monoid of type I and let ∆ =

{α1, . . . , αn} be connected and of type An, Bn, Cn, F4, or G2.

a) If I = {α1, . . . , αk} and |∆\I| ≥ 2, then Z(Λ\{0̂}, x) = xn−k−1

(
x+ k

k + 1

)
.

b) If I = {α1, . . . , αn−1}, then Z(Λ\{0̂}, x) =

(
x+ k − 2

k − 1

)
.

c) If I = {α1, . . . , αk} t {αl, . . . , αn} and |∆\I| ≥ 2, then

Z(Λ\{0̂}, x) = xl−k−3

(
x+ k

k + 1

)(
x+ n− l + 1

n− l + 2

)
.

d) If I = {α1, . . . , αk} t {αk+2, . . . , αn}, then

Z(Λ\{0̂, e0}, x) =

(
x+ k − 1

k

)(
x+ n− k − 2

n− k − 1

)
.

Proof. Z(Λ\{0̂}, x) is the number of multichains e1 ≤ e2 ≤ · · · ≤ ex−1, where x ≥ 2 is an
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∅

2 4

12 24 34 45

124 234 245 345

1234 1245 2345

12345

(a) Λ\{0̂}

(b) C3 × (C1 ⊕ C2
2 )

Figure 5.4: ∆ of type A2 ∪A3, I = {α1, α3, α5}
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integer. The number of multichains of length x− 1 in the chain Ck can be calculated as

Z(Ck, x) =

((
k

x− 1

))
=

(
x+ k − 2

k − 1

)
.

Additionally, Z(P×Q, x) = Z(P, x)Z(Q, x) for any two posets P and Q. The results then follow

from Propositions 5.1.6 and 5.1.7.
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Chapter 6

Möbius Functions and Characteristic

Polynomials

The Möbius function is an important invariant of a lattice that helps describe its structure.

Its generating function is the characteristic polynomial. In Section 6.1 we see how the Möbius

function of a cross section lattice can be computed in terms of relatively complemented intervals.

In Section 6.2 we calculate the characteristic polynomial of a certain class of cross section

lattices.

6.1 Möbius Functions of Cross Section Lattices

In [9] Putcha calculated the Möbius function of an arbitrary cross section lattice:

Theorem 6.1.1. Let M be a reductive monoid with cross section lattice Λ.

a) Let e, f ∈ Λ, e ≤ f . Then

µ(e, f) =

{
(−1)rk(e)+rk(f) if [e, f ] is relatively complemented,

0 otherwise.

b) Let e, f ∈ Λ, e ≤ f . Then [e, f ] is relatively complemented if and only if λ∗(e)∩λ∗(f) = ∅.

Theorem 6.1.1 holds for any reductive monoid M , not just J -irreducible or 2-reducible

monoids. Therefore calculating the Möbius function of a cross section lattice is an issue of

determining when an interval is relatively complemented. This problem was solved by Can in

[1] for the J -irreducible case:

Theorem 6.1.2. Let M be a J -irreducible monoid with cross section lattice Λ. An interval of

Λ\{0̂} is relatively complemented if and only if it is isomorphic to a Boolean lattice.
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Example 6.1.3. Let M be the J -irreducible monoid of type I = {α1, α2, α3} and set simple

roots ∆ = {α1, α2, α3, α4, α5}. We calculated the cross section lattice and type map in Example

3.2.4. The cross section lattice Λ\{0̂} and type map have been reproduced in in Figure 6.1a and

Figure 6.1b, respectively. Using Theorem 6.1.2 we can easily tell which intervals are relatively

complemented. The Möbius function on Λ\{0̂} is shown in Figure 6.1c.

One question we may ask is if the result of Theorem 6.1.2 generalizes to k-reducible monoids.

The answer is no.

Example 6.1.4. Let M be a semisimple 2-redicuble monoid with types I+ = I− = ∅ and set

of simple roots ∆ = {α1, α2, α3} where sαisαj 6= sαjsαi if |i − j| = 1. Let ∆+ = {α1, α2} and

∆− = {α3}. Notice that by Theorem 3.3.6 such a monoid exists. The cross section lattice Λ

is shown in Figure 6.2a, where the vertices are labeled by the indices of the αi. The interval

[∅, 123] is shown in Figure 6.2b, where ∅ ∈ Λ+. This interval is relatively complemented but it

is not a Boolean lattice.

6.2 Characteristic Polynomials of Cross Section Lattices

Proposition 6.2.1. Let M be a J -irreducible reductive monoid of type I, where |I| = k. The

characteristic polynomial of Λ\{0̂} is χ(Λ\{0̂}, x) = xk(x− 1)n−k.

Proof. χ(Λ\{0̂}, x) =
n∑
i=0

wix
n−i, where wi =

n∑
e∈Λ\{0̂}
rk(e)=i

µ(e0, e) is the ith Whitney number of

Λ\{0̂} of the first kind. Since rk(e0) = 0, by Theorem 6.1.1 we have

µ(e0, e) =

{
(−1)rk(e) if [e0, e] is relatively complemented,

0 otherwise.

[e0, e] is relatively complemented if and only if λ∗(e0) ∩ λ∗(e) = I ∩ λ∗(e) = ∅. To find wi we

therefore need to find the number of subsets of ∆\I with i elements. This is

(
|∆| − |I|

i

)
=(

n− k
i

)
and wi is positive if i is even and negative if i is odd. Additionally wi = 0 if i > n−k.

Notice that by the Binomial Theorem

(x− 1)n−k =

n−k∑
i=0

(
n− k
i

)
(−1)ixn−k−i.
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∅

4

34

234

1234

5

45

345

2345

12345

(a) Cross section lattice Λ\{0̂}

λ∗(e) λ∗(e) λ(e)

∅ 123 123

4 12 412

5 123 1235

34 1 134

45 12 1245

234 ∅ 234

345 1 1345

1234 ∅ 1234

2345 ∅ 2345

12345 ∅ 12345

(b) Type map of M

∅ 4 5 34 45 234 345 1234 2345 12345

∅ 1 -1 -1 0 1 0 0 0 0 0
4 - 1 - -1 -1 0 1 0 0 0
5 - - 1 - -1 - 0 - 0 0
34 - - - 1 - -1 -1 0 1 0
45 - - - - 1 - -1 - 0 0
234 - - - - - 1 - -1 -1 1
345 - - - - - - 1 - -1 0
1234 - - - - - - - 1 - -1
2345 - - - - - - - - 1 -1
12345 - - - - - - - - - 1

(c) Möbius function

Figure 6.1: J -irreducible monoid with ∆ = {α1, α2, α3, α4, α5} and I = {α1, α2, α3}
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0̂

∅ ∅

1 2 3 ∅ 1 2

13 23 1 2 12

123

(a) Cross section lattice Λ

∅

1 2 3 ∅

13 23 1 2

123

(b) Relatively complemented interval [∅, 123], where ∅ ∈ Λ+

Figure 6.2: 2-reducible monoid with ∆ = {α1, α2, α3}, I+ = I− = ∅, ∆+ = {α1, α2} and
∆− = {α3}

65



Therefore

xk(x− 1)n−k =
n−k∑
i=0

(
n− k
i

)
(−1)ixn−i

=
n∑
i=0

wix
n−i

= χ(Λ\{0̂}, x).

Notice that Proposition 6.2.1 does not depend upon whether or not ∆ is connected since

Theorem 6.1.1 does not depend upon whether or not ∆ is connected.

Example 6.2.2. Consider the J -irreducible monoid from Example 6.1.3 whose Möbius function

is shown in Figure 6.2b. The ith Whitney numbers of Λ\{0̂} of the first kind wi =
n∑

e∈Λ\{0̂}
rk(e)=i

µ(e0, e)

are w0 = 1, w1 = −2, w2 = 1, w3 = w4 = w5 = 0. The characteristic polynomial is then

χ(Λ\{0̂}, x) =
n∑
i=0

wix
n−i = x5−2x4 +x3 = x3(x−1)2. Notice that in this example k = |I| = 3,

n = 5, and χ(Λ\{0̂}, x) = xk(x− 1)n−k.

Recall that the core of a monoid M is the set C = ∨{h ∈ Λ1}, where Λ1 is the set of minimal

nonzero elements of the cross section lattice. We will say that the core is full if {0̂} tC ∼= 2Λ1 .

Notice that J -irreducible and 2-reducible monoids have full core.

Proposition 6.2.3. Let M is a semisimple k-reducible monoid with full core and cross section

lattice Λ. Then χ(Λ, x) = xn−k+1(x− 1)k.

Proof. Let Λ1 = {e1, . . . , ek} be the minimal nonzero elements of Λ and let C = ∨{h ∈ Λ1} be

the core of Λ. Notice that {0̂} t C ∼= 2Λ1 , so [0, h] is relatively complemented for all h ∈ C.

Let e ∈ Λ\({0̂ t C)}. Then e ∈ Λh for some h ∈ C. Suppose [0, e] is relatively complemented.

Then there exists x ∈ [0, e] such that x ∧ h = 0 and x ∨ h = e. Clearly x 6= h. If x ∈ C, then

x∨h = h 6= e. If x ∈ Λh, then x∧h = h 6= 0. Therefore [0, e] cannot be relatively complemented

unless e ∈ C. The only elements e ∈ Λ of rank i such that [0, e] is relatively complemented are

the elements of C of rank i. There are

(
k

i

)
such elements so wi = (−1)i

(
k

i

)
if i ≤ k and 0

otherwise. Notice that by the Binomial Theorem

(x− 1)k =
k∑
i=0

(
k

i

)
(−1)ixk−i.
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Therefore

xn−k+1(x− 1)k =
k∑
i=0

(
k

i

)
(−1)ixn−i+1

=
n+1∑
i=0

wix
n−i+1

= χ(Λ, x).

Corollary 6.2.4.

a) Let M be a J -irreducible monoid. Then χ(Λ, x) = xn(x− 1).

b) Let M be a 2-reducible semisimple monoid. Then χ(Λ, x) = xn−1(x− 1)2.

Example 6.2.5. Consider the J -irreducible monoid from Example 6.1.3 whose cross section

lattice Λ\{0̂} is in Figure 6.1a. The Hasse diagram of Λ is 0̂ ⊕ Λ\{0̂}. The only interval of Λ

that is relatively complemented is [0, ∅]. The characteristic polynomial is therefore χ(Λ, x) =

x6 − x5 = x5(x− 1) = xn(x− 1).
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Chapter 7

Rank and Corank in Cross Section

Lattices

In Chapter 3 we saw how the cross section lattice and hence the structure of a J -irreducible

reductive monoid M can be described in terms of the minimal nonzero G × G orbit of the

monoid. In such a case we can define a rank function on the lattice Λ\{0̂} and there is a unique

element of the cross section lattice of rank 0. Do the maximal G×G orbits that are not equal

to M tell us anything about the monoid? That is, do the elements of the cross section lattice of

corank 1 help describe the structure of the monoid? The answer to this question is yes, although

the information they provide is not as rich as the type of M .

Section 7.1 contains some general remarks about rank in cross section lattices. The main

result of this chapter is in Section 7.2 where we find some descriptions of a J -irreducible cross

section lattice in terms of the elements of corank 1.

7.1 Rank of Cross Section Lattices

The following definition introduces some notation that will be convenient throughout this chap-

ter.

Definition 7.1.1. Let M be a reductive monoid with cross section lattice Λ.

a) Let Λi be the set of elements of Λ of rank i.

b) Let Λj be the set of elements of Λ of corank j.

Let Λ be the cross section lattice of a semisimple reductive monoid M . Recall that Λ\{0̂} is

a ranked poset. That is, the length of any maximal chain is the same and is equal to the rank

of the maximal element of Λ\{0̂}. If the set of simple roots is ∆ such that |∆| = n, then the
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0̂

∅ ∅

2 3 ∅ 1 2

23 2 13 12

123

Figure 7.1: 2-reducible monoid with ∆ = {α1, α2, α3}, I+ = I− = ∅, ∆+ = {α1} and ∆− =
{α3}

length of any maximal chain is n. In terms of Definition 7.1.1, M is J -irreducible if and only

if |Λ0| = 1 and M is J -coirreducible if and only if |Λn−1| = 1. If M is J -irreducible, then it is

easy to define the rank function: ρ(e) = |λ∗(e)| for all e ∈ Λ\{0̂}. This is a little harder to do

in the 2-reducible case.

Example 7.1.2. Let M be a 2-reducible reductive monoid with ∆ = {α1, α2, α3}, I+ = I− = ∅,
∆+ = {α1}, and ∆− = {α3}. The cross section lattice Λ is shown in Figure 7.1.

Notice that it is possible for two elements e and f of the cross section lattice to have the

same rank while λ∗(e) and λ∗(f) have different cardinalities. Furthermore, two elements of the

same partition of Λ (in this case Λ0) can have the same rank but their image under λ∗ can have

different cardinalities.

Even though the rank of elements of a J -irreducible cross section lattice are easy to describe

in terms of the type map, Example 7.1.2 shows that describing the rank of an arbitrary cross

section lattice is more difficult. This is particularly true when M is semisimple. Notice that if

M is a 2-reducible reductive monoid that is not semisimple, then by Theorem 3.3.2 the length

of a maximal chain will be n+ 1.

It should be pointed out that we are considering the rank of the poset Λ\{0̂} rather than the

lattice Λ. No difficulties arise and we could just as easily discuss the rank of Λ instead but we
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choose not to do so due to the nice symmetry of the length of maximal chains and the number

of simple roots in the J -irreducible case.

7.2 Corank of J -irreducible Cross Section Lattices

We saw in Chapter 3 how we can construct the cross section lattice (and hence the type map)

of a J -irreducible monoid in terms of the minimal nonzero element e0. See Theorem 3.2.2 for

details. Our goal in this section is to describe the cross section lattice of M in terms of the

elements of Λ of corank 1. Throughout let M be a J -irreducible reductive monoid of type

I = λ∗(e0). Let Λ\{0̂} be a cross section lattice of M and let ∆ be the set of simple roots.

We first look at J -irreducible monoids that are also J -coirreducible. The results are sur-

prisingly precise.

Proposition 7.2.1. Let M be a J -irreducible monoid that is also J -coirreducible of cotype

J = ∆\{α}. The following are true:

a) ∆ is connected.

b) The Dynkin diagram of ∆ is of the type An, Bn, Cn, F4, or G2.

c) M is J -linear.

d) α is an endpoint of the Dynkin diagram of ∆.

e) The type of M is I = ∆\{β}, where β is the other endpoint of the Dynkin diagram of ∆.

Proof. We induct on the dimension of M . If dim(M) = 2 then ∆ = {α, β} and e0 will cover

e0. Let λ∗(e0) = ∆\{α} = {β}. Since M is J -coirreducible, {α} is not in the image of λ∗.

Therefore α ∈ I and hence I = ∆\{β} = {α}. Additionally notice that ∆ is connected for if it

weren’t a component, namely {α}, would be contained in I, a contradiction since λ∗(1) = ∆.

Now suppose dim(M) = n + 1 and let λ∗(e0) = ∆\{α} so no component of ∆\{α} is

contained in I. Let f ∈ Λ\{0̂} be covered by e0. Then there exists γ ∈ ∆\{α} such that

λ∗(f) = ∆\{α, γ}. No component of ∆\{α, γ} is contained in I. However, since M is J -

coirreducible, a component of ∆\{γ} is contained in I. Therefore {α} is a connected component

of ∆\{γ} and α ∈ I. Then sαsδ = sδsα for all δ ∈ ∆\{γ}. There are two possibilities: {α} is a

connected component of ∆, or sαsγ 6= sγsα. Suppose {α} is a connected component of ∆. Since

α ∈ I, ∆ is not in the image of λ∗, a contradiction since λ∗(1) = ∆. Therefore sαsγ 6= sγsα and

hence α is an endpoint of the Dynkin diagram of ∆. Suppose there exists f ′ ∈ Λ\{0̂} such that

f ′ 6= f and λ∗(f ′) = ∆\{α, δ} for some δ ∈ ∆\{α, γ}. Then by the above reasoning sαsδ 6= sδsα

but this isn’t possible since sαsδ = sδsα for all δ ∈ ∆\{γ}. Therefore f is the unique element

of Λ\{0̂} of corank 2.
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Let ∆′ = ∆\{α}. Then e0Me0 is J -coirreducible of type J ′ = ∆′\{γ}. By the induction

hypothesis e0Me0 is J -irreducible of type I ′ = ∆′\{β} = ∆\{α, β}. Additionally ∆′ is con-

nected and the Dynkin diagram is of the type An, Bn, Cn, F4, or G2 with endpoints γ and β.

Since sαsγ 6= sγsα and sαsδ = sδsα for all δ ∈ ∆\{γ}, ∆ is connected and the Dynkin diagram

is of the type An, Bn, Cn, F4, or G2 with endpoints α and β. e0Me0 is J -irreducible of type

I ′ = I ∩ λ∗(e0), so ∆\{α, β} ⊆ I. Since α ∈ I and I 6= ∆, I = ∆\{β}. Finally since e0Me0 is

J -linear and f is the unique element of Λ\{0̂} of corank 2, M is J -linear.

Corollary 7.2.2. Let M be a J -irreducible reductive monoid with cross section lattice Λ\{0̂}.
If |Λi| = 1 for some i < n, then |Λk| = 1 for k = 0, . . . , i− 1. Furthermore, ∆ is connected.

Proof. Let |Λi| = 1 where 1 ≤ i < n. Let ei be the unique element of Λ\{0̂} of rank i. Let f

cover ei. Then fMf is J -coirreducible. Since f ≥ e for all e ∈ Λ\{0̂} of rank less than or equal

to i, fMf is J -linear. Notice that if |Λ1| = 1, there is only one singleton subset of ∆ with no

component contained in I. Therefore I = ∆\{α} for some α ∈ ∆. If ∆ is not connected, then

a connected component of ∆ must be contained in I, which is not possible.

Example 7.2.3. Let M be a J -coirreducible monoid with set of simple roots ∆ = {α1, . . . , α4}
of type A4 and cotype J = {α1, α2, α3}. Then the type of M is I = {α2, α3, α4}. Notice that the

image of λ∗ contains the empty set as well as the connected subsets of ∆ that contain α1 and

hence M is J -linear. In particular J is the only subset of three elements with no component

contained in I. The cross section lattice is shown in Figure 7.2a.

Example 7.2.4. Let M be a 2-reducible monoid with set of simple roots ∆ = {α1, α2, α3},
I+ = {α2, α3}, I− = {α1, α2}, ∆+ = {α1}, and ∆− = {α3}. Such a monoid exists by Theorem

3.3.6. The cross section lattice is shown in Figure 7.2b. Notice that M is J -coirreducible but

not J -linear.

Example 7.2.4 shows that the results of Theorem 7.2.1 and Corollary 7.2.2 do not generalize

to k-reducible monoids. The reader should notice by comparing Theorem 3.2.2 with Theorem

3.3.3 that the structure of semisimple monoids can be quite different when there are one or

two minimal nonzero elements of the cross section lattice. It should therefore not be terribly

surprising that many results about J -irreducible monoids do not generalize.

As mentioned above the structure of a semisimple reductive monoid can be quite different

depending upon whether there are one or two minimal nonzero elements. It turns out that J -

irreducible monoids with two elements of corank 1 are much easier to describe. The trade-off,

however, is that our results are not quite as descriptive.
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∅

1

12

123

1234

(a) J -irreducible cross section lattice of cotype
J = {α1, α2, α3}

0̂

∅ ∅

∅

13

1234

(b) I+ = {α2, α3}, I− = {α1, α2}, ∆+ = {α1},
and ∆− = {α3}

Figure 7.2: Examples of J -coirreducible cross section lattices

Proposition 7.2.5. Let M be a J -irreducible monoid of type λ∗(e0) = I with connected set of

simple roots ∆. Let λ∗(Λ1) = {∆\{α},∆\{β}}. Then the following are true:

a) α and β are endpoints of the Dynkin diagram of ∆.

b) If the Dynkin diagram of ∆ is of type Dn, E6, E7, or E8, then I = ∆\{γ} where γ is the

third endpoint of the Dynkin diagram of ∆.

c) If the Dynkin diagram of ∆ is of type An, Bn, Cn, F4, or G2 then I = ∆\{γ, δ} where

sγsδ 6= sδsγ or else I = ∆\{γ} where γ is not an endpoint of the Dynkin diagram of ∆.

Proof.

a) First notice that if |∆| = 2, then ∆ = {α, β} and λ∗(Λ1) = {{α}, {β}} where α and β are

endpoints of the Dynkin diagram of ∆, which is of type A2, B2, C2, or G2. This is only

possible if I = ∅ = ∆\{α, β} where sαsβ 6= sβsα.

Let |∆| > 2 and suppose that α is not an endpoint of the Dynkin diagram of ∆. Then

there exists γ ∈ ∆\{α, β} that is an endpoint of the Dynkin diagram of ∆. ∆\{γ} is

not in the image of λ∗, so a connected component must be contained in I. Since γ is an
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endpoint, ∆\{γ} is connected so ∆\{γ} ⊆ I. Since ∆ 6= I it must be that I = ∆\{γ}.
Since α is not an endpoint, ∆\{α} will have at least two connected components. One will

contain γ and the other(s) will not. So then at least one connected component of ∆\{α}
is contained in I, a contradiction. Therefore α (and similarly β) must be an endpoint.

b) If the Dynkin diagram of ∆ is of type Dn, E6, E7, or E8 then there is a third endpoint

γ ∈ ∆\{α, β}. By the above reasoning I = ∆\{γ}.

c) Let ∆ be of type An, Bn, Cn, F4, or G2 and |∆| > 2. Our goal is to find all possible

subsets A ⊆ ∆ such that I = ∆\A. So let γ ∈ A, or equivalently γ 6∈ I. First suppose that

γ is an endpoint of ∆. From the above we know that no component of ∆\{γ} is contained

in I. Let δ ∈ ∆\{γ} such that sγsδ 6= sδsγ . Since |∆| > 2, δ is not an endpoint of ∆ and

hence a component of ∆\{δ} is contained in I. The components of ∆\{δ} are {γ} and

∆\{γ, δ}. Since γ 6∈ I it must be that ∆\{γ, δ} ⊆ I. Notice that δ 6∈ I for if it were then

∆\{γ} ⊆ I which is not possible. So I = ∆\{γ, δ} where sγsδ 6= sδsγ .

So suppose γ is not an endpoint. Then there exists δ, ε ∈ ∆\{γ} such that sγsδ 6= sδsγ

and sγsε 6= sεsγ . Since γ is not an endpoint at least one component of ∆\{γ} must be

contained in I. Since one of these components contains δ and the other contains ε it

follows that either δ ∈ I, ε ∈ I, or both. First suppose that δ ∈ I and ε 6∈ I. Then the

connected component of ∆\{γ} containing δ must be contained in I. If ε is an endpoint,

then I = ∆\{γ, ε}, the component of ∆\{γ} containing δ. If ε is not an endpoint, then

∆\{ε} will have two connected components. Let these two components be E1 and E2

with γ ∈ E1. Since ε is not an endpoint at least one of E1 or E2 is contained in I. Since

γ 6∈ I it must be that E2 ⊆ I and hence I = ∆\{γ, ε}. The case where ε ∈ I and δ 6∈ I is

similar. Now suppose that δ ∈ I and ε ∈ I. If δ and ε are both endpoints, then |∆| = 3

and I = {δ, ε} = ∆\{γ}. If exactly one of δ or ε is an endpoint, then by the reasoning

above I = ∆\{γ}. If neither δ nor ε are endpoints, then the components of ∆\{δ} and

∆\{ε} not containing γ will be in I. Then since {δ, ε} ⊆ I, I = ∆\{γ}.

In any case either I = ∆\{γ, δ} where sγsδ 6= sδsγ or else I = ∆\{γ} where γ is not

an endpoint of the Dynkin diagram of ∆.

Example 7.2.6. Let M be J -irreducible with set of simple roots ∆ = {α1, . . . , α4} of type D4.

The Dynkin diagram of ∆ is shown in Figure 7.3a. Let the type of M be I = {α1, α2, α4} =

∆\{α3}. The cross section lattice Λ\{0̂} is shown in Figure 7.3b. Notice that there are two

elements of the cross section lattice of corank 1. Also notice that λ∗ of these two elements are of

the form ∆\{α1} and ∆\{α4} and that α1 and α4 are the two endpoints of ∆ that are elements

of I.
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1 2

3

4

(a) Dynkin of type D4

∅

3

23

123 234

1234

(b) Cross section lattice Λ\{0̂}

Figure 7.3: J -irreducible monoid with ∆ = {α1, . . . , α4} and I = {α1, α2, α4}

Proposition 7.2.5 only considers the case of two elements of corank 1 when the set of simple

roots ∆ is connected. The following proposition considers the possibility that ∆ may not be

connected.

Proposition 7.2.7. Let M be a J -irreducible monoid of type λ∗(e0) = I. Let λ∗(Λ1) =

{∆\{α},∆\{β}}. Then either

a) ∆ is connected and is as described in Proposition 7.2.5, or

b) ∆ has two connected components ∆1 and ∆2 of type An, Bn, Cn, F4, or G2 where α is

an endpoint of ∆1 and β is an endpoint of ∆2, and

i) If |∆1| ≥ 2 and |∆2| ≥ 2, then I = ∆\{γ, δ} where γ and δ are the other endpoints

of ∆1 and ∆2.

ii) If |∆1| ≥ 2 and |∆2| = 1, then I = ∆\{γ} where γ is the other endpoint of ∆1

iii) If |∆1| = 1 and |∆2| ≥ 2, then I = ∆\{δ} where δ is the other endpoint of ∆2.

Proof. Let λ∗(Λ′) = {∆\{α},∆\{β}} and let the connected components of ∆ be ∆1, . . . ,∆k.

Clearly ∆i 6⊆ I for all 1 ≤ i ≤ k. Without loss of generality assume α ∈ ∆1. Suppose that α is
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not an endpoint of ∆1. Then there exists γ ∈ ∆\{α} such that γ 6= β and γ is an endpoint of

∆1. Since ∆\{γ} is not in the image of λ∗, a component must be contained in I. The connected

components of ∆\{γ} are ∆1\{γ}, ∆2, . . . ,∆k so ∆1\{γ} ⊆ I. Since no component of ∆\{α}
is contained in I, no component of ∆1\{α} is contained in I. Let A be a component of ∆1\{α}
that does not contain γ. Then A ⊆ ∆1\{γ} ⊆ I, a contradiction. Therefore α is an endpoint of

∆1. Similarly β is an endpoint of a connected component of ∆.

Suppose ∆ has at least two connected components and {α, β} ⊆ ∆1. Let γ ∈ ∆ be an

endpoint of ∆2 such that ∆2\{γ} 6⊆ I (such an endpoint exists since ∆2 6⊆ I). Then no

component of ∆\{γ} is contained in I, and hence |Λ1| ≥ 3, a contradiction. Therefore ∆ must

be connected if α and β are in the same connect component. Clearly then if ∆ is not connected it

has exactly two connected components. Let α ∈ ∆1 and β ∈ ∆2. If |∆1| ≥ 2 and |∆2| ≥ 2, then

by Proposition 7.2.1 both ∆1 and ∆2 are of the type An, Bn, Cn, E4, or G2 and I = ∆\{γ, δ}
where γ and δ are the other endpoints of ∆1 and ∆2. If |∆1| ≥ 2 and |∆2| = 1, then ∆1 is of

the type An, Bn, Cn, E4, or G2 and I = ∆\{γ} where γ is the other endpoint of ∆1. If |∆1| = 1

and |∆2| ≥ 2, then ∆2 is of the type An, Bn, Cn, E4, or G2 and I = ∆\{δ} where δ is the other

endpoint of ∆2.

Example 7.2.8. Let M be J -irreducible with set of simple roots ∆ = ∆1 t∆2 = {α1, α2} t
{α3, α4, α5} of type A2⊕A3. The Dynkin diagram of ∆ is shown in Figure 7.4a. Let the type of

M be I = {α1, α4, α5} = ∆\{α2, α3} where α2 and α3 are endpoints of ∆1 and ∆2, respectively.

The cross section lattice Λ\{0̂} is shown in Figure 7.4b. Notice that there are two elements of

the cross section lattice of corank 1. Also notice that λ∗ of these two elements are of the form

∆\{α1} and ∆\{α5} and that α1 and α5 are the two endpoints of ∆ that are elements of I.

Comparing Proposition 7.2.1 and Proposition 7.2.5 we see that as the number of elements of

corank 1 increases, the number of possibilities of the type of M increases and these possibilities

become more complicated. We will therefore only consider one more case: the maximal case

where all n subsets of the form ∆\{α} are in the image of λ∗.

Proposition 7.2.9. Let M be a J -irreducible monoid of type λ∗(e0) = I. Then |Λ1| = n if

and only if no endpoint of the Dynkin diagram of ∆ is contained in I.

Proof. Let |Λ1| = n. Suppose α ∈ ∆ is an endpoint of the Dynkin diagram of ∆ such that

α ∈ I. Then there exists a unique β ∈ ∆ such that sαsβ 6= sβsα. Since |Λ1| = n, ∆\{β} is in

the image of λ∗. Since {α} is a connected component of ∆\{β} and no component of ∆\{β} is

contained in I, α /∈ I. This is a contradiction and hence no endpoint of the Dynkin diagram of

∆ is contained in I.
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1 2 3 4 5

(a) Dynkin diagram of type A2 ⊕A3

∅

2 3

12 23 34

123 234 345

1234 2345

12345

(b) Cross section lattice Λ\{0̂}

Figure 7.4: J -irreducible monoid with ∆ = {α1, α2} t {α3, α4, α5} and I = {α1, α2, α4}

Now suppose no endpoint of the Dynkin diagram of ∆ is contained in I. If I = ∅, then the

image of λ∗ is 2∆, the power set of ∆, so |Λ1| = n. Let α ∈ ∆. If |∆| = 1, then I 6= ∆ otherwise

∆ would not be in the image of λ∗. So it must be that I = ∅. If |∆| > 1, then any component of

∆\{α} will contain an endpoint of the Dynkin diagram, and hence no component of ∆\{α} can

be contained in I. Therefore ∆\{α} is in the image of λ∗ for all α ∈ ∆ and hence |Λ1| = n.

Example 7.2.10. Let M be J -irreducible with set of simple roots ∆ = {α1, . . . , α4} of type

A4. The Dynkin diagram of ∆ is shown in Figure 7.5a. Let the type of M be I = {α2, α3}.
Notice that I does not contain any endpoints of ∆. The cross section lattice Λ\{0̂} is shown in

Figure 7.4b. Notice that every three element subset of ∆ is in the image of λ∗.

Example 7.2.11. Consider the monoid in Example 7.2.10. ∆\I = {α1, α4} is not connected,

so by Corollary 4.1.9 Λ\{0̂} is not distributive. More generally, let M is a J -irreducible monoid

of type I with set of simple roots ∆. Suppose |Λ1| = |∆|. By Proposition 7.2.9, no endpoint of

∆ is contained in I. Therefore such a monoid will be distributive if and only if I = ∅. In this

case Λ\{0̂} ∼= 2∆, the Boolean lattice of rank |∆|.

Notice that the previous proposition does not require that ∆ be connected. In general ∆

can have up to n connected components while |Λ1| = n. The maximal case occurs when I = ∅.
This is a special case of the following:
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1 2 3 4

(a) Dynkin diagram of type A4

∅

1 4

12 14 34

123 124 134 234

1234

(b) Cross section lattice Λ\{0̂}

Figure 7.5: J -irreducible monoid lattice with ∆ = {α1, . . . , α4} and I = {α1, α2, α4}

Proposition 7.2.12. Let M be a J -irreducible reductive monoid of type I = λ∗(e0).

a) If ∆ has k connected components, then |∆1| ≥ k.

b) If |∆1| = k, then ∆ has at most k connected components.

Proof.

a) Let the connected components of ∆ be ∆j for 1 ≤ j ≤ k. For any ∆j either |∆j | = 1 or

|∆j | > 1. If |∆j | = 1, then ∆j 6⊆ I or else ∆ wouldn’t be in the image of λ∗. If |∆j | > 1,

then ∆j has at least two endpoints. Let two of these endpoints be αj and βj . We claim that

either ∆j\{αj} is contained in I or no component of ∆j\{βj} is contained in I. So suppose

a component of ∆j\{αj} is contained in I. Let Ij = ∆j∩I. Then a component of ∆j\{αj}
is contained in Ij . Since ∆j\{αj} is connected and ∆j 6⊆ I (and hence ∆j 6⊆ Ij), it follows

that Ij = ∆j\{αj}. Since αj ∈ ∆j\{βj} and ∆j\{βj} is connected, no component of

∆j\{βj} is contained in Ij ⊆ I. Then no component of ∆j\{βj} is contained in I. Since

∆i 6⊆ I for any 1 ≤ i ≤ n it follows that no component of ∆\{βj} is contained in I. That

is, for every connected component of ∆ there is at least one element of |Λ1|, so |Λ1| ≥ k.

b) Let |∆1| = k and suppose ∆ has more than k connected components. Then there exists

a component ∆i such that ∆\{α} is not in the image of λ∗ for any α ∈ ∆i. Let α and
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β be two endpoints of ∆i. Then ∆i\{α} ⊆ I and ∆i\{β} ⊆ I. Therefore ∆i ⊆ I, a

contradiction.
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Chapter 8

Conclusion

In this paper we have focused mainly on the cross section lattices of J -irreducible reductive

monoids. The reason for this is not surprising. These monoids are the best understood and their

respective cross section lattices are the easiest to describe. However, that does not mean there

is nothing left to study. In Chapter 5 we saw how J -irreducible cross section lattices could be

expressed as a product of chains (and in some cases lattices that are “almost” chains) when the

set of simple roots is connected and of the type An, Bn, Cn, F4, or G2. We were then left with

a conjecture as to how the cross section lattice can be factored when the set of simple roots is

of the type Dn. Studying the case for E6, E7, and E8 would then be a natural conclusion to

this intriguing problem.

We also spent time studying the structure of 2-reducible semisimple monoids. While the

structure of these monoids is more complicated than that of the J -irreducible monoids, we are

still able to describe the cross section lattice (and hence the type map) precisely provided that

we have the invariant sets ∆+, ∆−, I+, and I− in hand. We saw in Example 3.3.5 that there

may not exist a corresponding 2-reducible semisimple monoid when these invariants are chosen

randomly. This is a large deterrent to our ability to study these monoids and their respective

cross section lattices. It is not impossible, however, as we were able to prove Corollary 4.2.8

which stated that such a cross section lattice is modular if and only if it is distributive. We

were able to do so by thinking the problem as an exercise in dealing with the combinatorics of

sets and removing all connections to the algebra behind these sets. This approached worked,

although the resulting proof may be more complicated than is necessary. This realization in

itself is motivation enough to try to understand which choices of these invariants are permissible.

Theorem 3.3.6 gives us some possibilities but the results are incomplete. A better understanding

of this problem will also help in generalizing many of the results of this paper concerning J -

irreducible monoids to the 2-reducible case.

Another potential area of work is to come up with a theorem to construct the cross section
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lattice of k-reducible semisimple monoids when k > 2. The ability to do so would provide a

great deal of insight into the structure of reductive monoids in general.

The field of reductive monoids is still relatively young, especially when compared to other

areas of algebra. The study of cross section lattices is but one small area in this field. This

paper is meant to shed some light on the structure of these lattices. It is the author’s hope

that, at the very least, the reader has developed an appreciation for the simultaneous beauty

and complexity of these lattices and that their study is only just beginning.
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