
ABSTRACT

YANG, MIN. Local Unitary Equivalence In Quantum Computation . (Under the direction of
Naihuan Jing.)

Determining the local unitary equivalence in quantum systems plays an important role in

distinguishing quantum states with different level of entanglement. In this dissertation, this

problem is studied through several approaches involving matrix foldings and Gel-Mann basis

etc. We find a special normal form for two partite mixed states and provide a new method to

solve general local unitary problems based on matrix foldings.
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Chapter 1

Introduction

Entanglement is one of the important phenomena in quantum information and computation

theory. The problem on how to determine and classify the level of entanglement in each quantum

state can be formulated as a mathematical problem. In this thesis, we develop new techniques

to determine the local unitary equivalence of quantum states.

1.1 Quantum information and computation theory

Information theory is a study on the qualification of information in all applicable areas, say

applied mathematics and engineering. It is well known as the fundamental theory for classic

computer [1]. The fundamental results of classical information theory are Shannon’s noiseless

channel coding theorem and Shannon’s noisy channel coding theorem, which give the limit for

information storage and communication in classic computer [2]. Quantum mechanics, as one of

the most amazing discoveries in modern science, has affect all the aspects of the microscopic

world, which include the devices related to the storage, encryption, and teleportation of classic

information and thus starts a new chapter for the information theory.

Specifically, the theory of quantum information is a result of the effort to generalize classical

information theory to the quantum world.

1.1.1 Quantum mechanics

What is quantum mechanics? Quantum mechanics is the most accurate and complete descrip-

tion of the physical world, and it is the theoretic basis for quantum information and quantum

computation [1]. In the early twentieth century, it is discovered that any object has both particle-

like and wave-like behaviors, which is shown in the Photoelectric Effect experiment by Albert

Einstein [3] and in matter wave experiment by de Broglie [4].
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This phenomenon was not well-known in the classic world before, as the wave-like behavior

of objects in the macro scale world were so subtle that one would not even notice. However,

as the structure of atoms and the technique of electronic device miniaturization had drawn

people’s attention, more and more objects in nanoscale were analyzed in the laboratory, like

laser, atom, electron, micro semiconductor [5]. These discoveries and technological inventions

operate at a scale where quantum effects are significant. It was realized that we could no longer

treat these objects as pure matter following the common sense, as the wave-like effect was no

longer negligible in this magnitude.

The central idea of quantum mechanics is to set up an energy equation from both particle

aspect and wave aspect for any object, then an object would be totally described in this differ-

ential equation, the Schrödinger’s equation. The physical nature of wave-matter duality effort is

not intuitive and hard to explain. Fortunately, quantum mechanics provides a mathematical and

conceptual framework for the laws that a quantum system must obey. With the development of

linear algebra and the effort of Born and Heisenberg, we could set up a matrix representation

of this differential equation and consider these physical observations in the equations as linear

operators, therefore the quantum state, the solution of this differential equation, would be a

linear vector. We can use mathematical tools to analyze and compute quantum information.

1.1.2 Quantum effects in information theory

Following the technology development of twentieth century, the size of all kinds of laboratory

facilities and electronic devices becomes smaller and smaller. It gradually enters the domain of

quantum mechanics, which impedes the development of classic information technology.

Quantum effort becomes the dominant factor when it goes into very small size, say less than

10 nanometre. Like the semiconductor industry, which is the critical part of classic computer

industry and developing speedily in the last fifty years according to the Moore’s law, it had to

eventually face this technical challenge; While, on the other hand, quantum computers [6] are

expected to offer substantial speed-ups over their classical counterparts and to solve problems

intractable for classical computers [7]. Besides, there are a lot of other discoveries and applica-

tions based on this important theory, for instance, instantaneous communication, teleportation,

quantum cryptography [8], et al.

Different from classic information theory, quantum information theory is the study of the

information processing tasks that can be accomplished through quantum mechanical systems.

It is a result of the effort to generalize classical information theory to the quantum world. For

example, classic information technology are based on classic information and computation with

basic unit, bit, which is implemented by semiconductors. Quantum information on the other

hand are built upon an analogue concept, quantum bits, also known as qubits, which can be
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implemented by quantum units with smaller size like quantum dots.

Unlike bit, whose status is either ”0” or ”1”, the corresponding qubit could be in infinite

many middle statuses inclusively between ”0” and ”1”. Such statuses would be described as a

linear combination of state ”0” and ”1”, often called superposition. These properties allow a

quantum system to carry more information in a single unit and more difficult to be detected

for teleportation or preservation purpose.

1.2 Quantum entanglement

Quantum entanglement is the most extraordinary phenomenon in quantum mechanics compared

with the classic physics occurrences.

This concept was in a weird sense in physics that they could not be accepted at the early

stage when it was discovered. In 1935, Albert Einstein, Boris Podolsky and Nathan Rosen

(collectively ”EPR”) posted the famous paradox about quantum entanglement in their paper

[1]. During the same year, Schrödinger, the founder of the wave equation, also posted the cat

paradox to fight against this nonclassic and unrealistic phenomenon.

The turnover took place in 1964’s, Bell first demonstrated and distinct quantum mechanics

from the classic physics world based on an experiment analog to the ”EPR” paper, and the

fellow results from other physicists also fitted perfectly with the quantum mechanics theory.

Therefore, the entanglement of quantum states, known as the unique feature of this theory, was

gradually accepted and became well-known. Nowadays, there are plenty of practical applications

like quantum computing, quantum cryptography, quantum teleportation , which are impossible

in the classic world, are based on this phenomenon.

Thus, having a better understanding of the entanglement of quantum states would help us

to utilize quantum information in a more efficient way.

A lot of effort has already been put in this direction. Based on a series of Bell inequalities,

some important criterions has been posted to determine the entanglement of quantum states.

In 1997, Asher Peres and Michal Horodecki gave the first necessary condition to determine if a

joint system of two sub systems is separable, which is known as partial positive transpose

criterion(short for PPT) [9]. And in 1999, Michal Horodecki found out another important

necessary condition for a mixed state to be separable, which is known as the reduction criterion

[10, 11]. This is the first approach to deal with the quantum entanglement problems and a lot

of following research has been done based on these important results.

So far, it is still a difficult task to determine the level of entanglement of quantum states,

or equivalently speaking, it can not be easily determined if two quantum states could be trans-

formed into each other using a series of quantum gates in practice. Classifying the local uni-

tary(LU) equivalences of quantum states is a very important approach to deal with such prob-
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lems and is chosen as the main topic in this thesis.

1.3 Outlines of the thesis

In this thesis, a lot of discussions and explorations have been carried out and some useful

algorithms have been deducted on the topic of determining the local unitary equivalence of

quantum states.

Our thesis is structured in the following way: in the second chapter, we introduce the basic

techniques and notations in linear algebra that will be commonly applied in this thesis; and

in the third chapter, the mathematical framework of quantum mechanics would be setup and

all the problems will be translated into matrix forms for further discussion. In the last two

chapters, we first analyze general local unitary problems based on the idea of matrix foldings

for pure states, and discussed how to pass the criteria from pure states to mixed states. Then

we provide a special normal form based on the Gel-Mann basis and give a series of invariant

polynomials based on this normal form to help solving LU equivalence problems in two partite

mixed states.
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Chapter 2

Linear algebra

In this chapter, we will go through some concepts and notations that would be applied in this

thesis. These definitions are very important and commonly used, when we analyze quantum

mechanics theory and quantum information in mathematics perspective.

2.1 Hilbert Space

A Hilbert space is both an inner product space and a complete metric space, which ensures the

concept of distance and angle. In physics, it is analogue to the real world, and is used as the

basic space for any physics state, like quantum states.

2.1.1 Vector spaces

A vector space over some field F , commonly denoted as V, is a set of elements, known as vectors,

that are closed under addition and scalar multiplcation. The ten axioms that a vector space

must follow are introduced in [12]. For any subspace W of a vector space V, we can always

decompose the vector space V into a direct sum of these two subspaces, V = W ⊕W⊥ , such

that W ∩W⊥ = ∅, it is known that any vector v in the vector space V can also be decomposed

as v = x+ y, such that x ∈ W, y ∈ W⊥.

The typical vector space that is used in our thesis is Cn, it is the space of all n-tuples of

complex numbers. In quantum mechanics, |ψ〉, the bra ket notation, is used as the standard

notation to describe a vector in some vector space.
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2.1.2 Inner product

Definition 2.1. Inner product is a binary operation, 〈., .〉, defined in a vector space V over the

field F :

〈., .〉 : V × V → F

that satisfies the following three axioms for any vectors x,y, z ∈ V, α ∈ F :

1. Conjugate symmetry: 〈x,y〉 = 〈y,x〉.

2. Linearity in the first argument: α〈x,y〉 = 〈αx,y〉, 〈x, z〉+ 〈y, z〉 = 〈x + y, z〉.

3. Positive-definite: 〈x,x〉 ≥ 0, 〈x,x〉 = 0⇒ x = 0.

A vector space is called an inner product space if an inner product operation is defined.

Since inner product is a positive definite bilinear form, it introduces a norm, which is generally

realized as ”length” or ”distance”, for the vectors in the inner product space. The induced norm

(length) of a vector v in the vector space V is defined as ‖v‖ =
√
〈v,v〉. Inner product also

introduces the idea of ”angle” θ between two vectors by cos(θ) = 〈x,y〉/(‖x‖‖y‖) and the idea

of ”perpendicular”, if 〈x,y〉 = 0, x and y are said to be orthogonal, i.e. perpendicular, to each

other.

A Hilbert space is a vector space where an inner product and its induced norm for ”length”

are well defined. For our vector space Cn, a standard inner product is defined to extend it into

a Hilbert space: Let v1,v2 be any two vectors in Cn, the inner product of v1,v2 in the matrix

form is defined as 〈v1,v2〉 = v†1v2 and the induced norm of v1 would be ‖v1‖ =

√
v†1v1. In

quantum computation, or in any physics system to say, the Hilbert space is the basic space to

start with, more discussion would be made in the next chapter.

2.1.3 Bases

A basis B of a vector space V over a field F is a linearly independent subset of V that spans V,

the vector number N of a basis B of is the dimension of the vector space V.

In a Hilbert spaceH, an orthogonal basis will be a set of orthonormal vectors {vi, 1 ≤ i ≤ n},
such that 〈vi, vj〉 = 0, for any i, j that i 6= j. And a normalized orthogonal basis {wi, 1 ≤ i ≤ n}
based on {vi, 1 ≤ i ≤ n} would be the orthogonal basis all of whose elements are of norm one:

{wi = v1
‖vi‖ , 1 ≤ i ≤ n}, such that 〈wi, wj〉 = δi,j , ∀1 ≤ i, j ≤ n, where, δij denote the Kronecker

delta function.

The standard basis for the Hilbert space Cn is an orthogonal basis that contains a series of

column vectors such that for each vector, one of their entry, say the i-th entity, is one while all

the other entries are zero, denoted as {ei, 1 ≤ i ≤ n}:
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e1 =



1

0

0
...

0


, e2 =



0

1

0
...

0


, · · · , ei =



0
...

1
...

0

 : i-th entry , · · · , en =



0

0

0
...

1


2.1.4 Tensor product spaces

Tensor product, denoted as ⊗, is an important method to form a composite vector space from

several vector spaces.

Let V andW be two F-vector spaces of dimension m and n respectively. The tensor product

W⊗F V consists of all linear combinations
∑

i,j,k civj⊗wk, where v1,v2, · · · ∈V, w1,w2, · · · ∈
W, c1, c2, · · · ∈ F . The tensor product W ⊗F V is of dimension mn and satisfies the following

properties:

1.

c(v1 ⊗w1) = (cv1)⊗w1 = v1 ⊗ cw1

2.

(v1 + v2)⊗w1 = v1 ⊗w1 + v2 ⊗w1

3.

v1 ⊗ (w1 + w2) = v1 ⊗w1 + v1 ⊗w2

In matrix from, the tensor product will behave in the following way, let A =

[
a11 a12

a21 a22

]
,

B =

[
b11 b12

b21 b22

]
be two two by two matrices, the tensor product of them would be:

[
a11 a12

a21 a22

]
⊗

[
b11 b12

b21 b22

]
=

[
a11 ·B a12 ·B
a21 ·B a22 ·B

]
=


a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b11 a12b12

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22


Tensor products of Hilbert spaces are also Hilbert spaces. In fact, the inner product can be

extended to the resulted space, for example, if the two vector spaces in last example are Hilbert

spaces associated with 〈, 〉1 and 〈, 〉2, respectively. Then the inner product in the resulted Hilbert

space V ⊗ W would be 〈, 〉, such that 〈v1 ⊗ w1, v2 ⊗ w2〉 = 〈v1, v2〉1 ⊗ 〈v2, w2〉2. In quantum
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computation, the tensor product of several Hilbert spaces is used to describe the state space

that consists of more than one quantum subsystems.

2.2 Linear operators

Linear operators, also known as linear transformations or linear maps, are certain vector space

homomorphisms between two vector spaces over the same field, which preserves the addition

and scalar multiplication operations.

There exists two special linear operators for any non-empty vector space V to map it into

itself, one is identity operator, IV , from V to itself, by mapping IV v = v, ∀v ∈ V; and the other

is zero operator, 0, from V to zero vector space, by mapping 0v = 0, ∀v ∈ V. For two linear

operators T1 : V1 → V2 and T2 : V2 →: V3, a combined linear operator T3 = T2 ◦ T1 : V1 → V3
can be composed from these two, defined by T3(v1) = T2 ◦ T1(v1) = T2(T1(v1)),∀v1 ∈ V1.

Definition 2.2. There are several useful types of linear operators between two Hilbert spaces:

• A linear operator U : H → H is a unitary operator, if it satisfies U †U(x) = x, UU †(y) =

y,∀x, y ∈ H, which leads to 〈x, y〉 = 〈U(x), U(y)〉,∀x, y ∈ H.

• There is a unique adjoint linear operator T † : H1 → H2 for T : H2 → H1, such that

〈T (x), y〉 = 〈x, T †(y)〉, ∀x ∈ H1, y ∈ H2.

• A linear operator maps from a Hilbert space into itself, T : H → H, is a hermitian

operator, or self-adjoint operator, if it satisfies 〈T (x), y〉 = 〈x, T †(y)〉,∀x, y ∈ H.

2.2.1 Projection operators

Definition 2.3. A projection operator is a linear operator that maps a vector space V into

itself, P : V → V, such that P ◦P = P . The image space of a projection operator P : V → V is a

subspace of the vector space V. Let x+ y be a general vector in V, where x ∈ P (V), y ∈ P (V)⊥,

then P(x+y)=x.

There are two main types of projection operators: orthogonal projection operators and

oblique projection operators, where orthogonal projection operator can be formulated in a

simple way but oblique projection may not. In our thesis, we only concern with the orthogonal

projection operators, which will be introduced in the following sections.

2.2.2 Matrix representations of linear operators

The matrix representations of a linear operator are not unique and depend on the choice of

bases for each vector space during this map. For example, let T : V → W be a linear operator,
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with Bv = {vi, 1 ≤ i ≤ n} be the basis for V, and Bw = {wi, 1 ≤ i ≤ m} be a basis for W,

then the relations from this linear map, T (vj) =
∑
Tijwi, 1 ≤ j ≤ n, 1 ≤ i ≤ m, would form the

matrix representation of T, [T ]{Bv ,Bw} = {Ti,j}m×n, which is a m by n matrix, with respect to

the basis Bv for V, and Bw for W.

• A unitary linear operator U : H → H will have a unitary matrix representation no matter

which bases are chosen, i.e. UU † = U †U = IH.

• A Hermitian linear operator T : H → H will have a Hermitian matrix representation no

matter which bases are chosen, i.e. U = U †.

• The orthogonal projection operator will have a semi-positive definite Hermitian matrix

representation no matter which bases are chosen, and it can be formulated based on the

selection of the basis for the projection space. Let {vi, 1 ≤ i ≤ k} be basis elements for the

projection space for P : V → V, then an orthogonal projection operator can be formed as

P =
∑k

i=1 viv
†
i .

Where † denotes transpose conjugate operation on matrix.

2.3 Singular value decomposition

Singular value decomposition is an important matrix decomposition in a rotation perspective

compared with the eigendecomposition. The standard singular value decomposition of an m×n
real or complex matrix M is a factorization of the form M = UΣV †, where U is an m × m
real or complex unitary matrix, Σ is an m × n rectangular diagonal matrix with non-negative

real numbers on the diagonal, and V is an n× n real or complex unitary matrix. The diagonal

entries Σi,i = σi are known as the singular values of M.

The m columns of U and the n columns of V are called the left-singular vectors and right-

singular vectors of M, respectively. Moreover, the left-singular vectors of M are eigenvectors of

MM †; the right-singular vectors of M are eigenvectors of M †M ; the non-zero singular values

of M are the square roots of the non-zero eigenvalues of both M †M and MM †.

It worths to mention that the singular value decomposition is not unique.

2.4 Smith normal form

The Smith normal form is a normal form that can be defined for a matrix of any shape with

entries in a principal ideal domain (P.I.D.).
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Definition 2.4. Let matrix A be nonzero m by n matrix over a principal ideal domain R, then

there exists some invertible matrices P ∈ Rm×m, Q ∈ Rn×n that PAQ be a m by n matrix

such that all its nonzero elements are on its diagonal and they divides each other from top to

bottom and all its zero elements stay at the bottom.

i.e. PAQ =



d1 0 · · · 0 0 · · ·
0 d2 · · · 0 0 · · ·
· · · · · · · · · · · · · · · · · ·
0 0 · · · dm 0 · · ·
0 0 · · · 0 0 · · ·
· · · · · · · · · · · · · · · · · ·


n×m

Here, di ∈ C[λ] such that di|di+1, ∀1 ≤ i ≤ r and r ≤ n, r ≤ m.

Existence and Uniqueness: The Smith normal form can be deduced step by step though

some invertible row and column operations similarly defined as the elementary operations for

the Gauss elimination:

1. add one row/column by another row/column multiplied by f(λ).

2. Multiply one row/column by a nonzero scale.

3. switch two row/column.

As all the elementary operations could be equivalently carried out though left and right

multiplication of some corresponding invertible matrices (elementary operation matrices), exis-

tence of the Smith normal form is garanteed. The proof of the uniqueness of such normal form

is complicated and is shown in [13].

The common P.I.D. include the integer domain Z, and F [λ], which is a P.I.D. extended from

a field F by adding a new variable λ. We will use the smith normal form over the P.I.D. C[λ]

over field C in the later chapter to get our results.
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Chapter 3

States in quantum system

Some basic concepts and latest developments in quantum information and quantum computa-

tion are introduced in this chapter. Instead of a comprehensive discussion in the physics nature

of quantum mechanics, we will introduce the mathematics framework and explain all the rules

and restrictions satisfied by a quantum system with only the critical reasoning. After this chap-

ter, we will focus on the mathematics essence of these quantum information problems, and use

the mathematics tools introduced in the last chapter to complete the further discussion.

3.1 Quantum state and its state space

In quantum information or any quantum mechanics related area, a quantum system could

be quantitively described just as the other physical system, and we named the description as

quantum state. Rather than the exact amount in classic information, it describes the chance

of happening for each state of the quantum system. From the statistic perspective, it is a

random variable, rather than a fact. The magnitude of each value in quantum state gives the

corresponding probability that the object will be in that state at a given time, while the phase of

each value gives the relative phase difference of all its states in a superposition. It is important

for us to figure out if two quantum states are equivalent with each other through different states.

This description varies when it comes to different types of quantum systems. The most

common quantum system is an isolated quantum system, but some composite quantum system

may also be considered and be described in a different manner.

3.1.1 Pure quantum state

Postulation 1: Associated to any isolated physical system is a complex Hilbert space known

as the state space of the system.The system is completely described by its state vector, which

is a unit vector in the system ’s state space [1].

11



If a quantum system is an isolated quantum system, say the energy spectrum of an electron,

then the quantum state is recognized as a pure state inside its state space. To be more specific,

it would be given as a column vector in a Hilbert Space H, called the state vector, and the

associated Hilbert space is known as the state space for such quantum states. Bra ket notation

is used when it refers to a quantum system with associated properties. A state vector is denoted

as |ψ〉, known as ket, over the field of complex number C, rather than the mathematics notation,

v, associated with an inner product, 〈|ψ〉, |φ〉〉 as 〈ψ|φ〉, where 〈ψ| denotes the dual vector of

|ψ〉 in the dual Hilbert Space, H∗, of H, it is a linear functional 〈|ψ〉, 〉 such that 〈ψ|ψ〉 = 1,

which is known as the normalization condition. In matrix representation, this dual vector 〈ψ|
is exactly the transpose conjugate of the state vector |ψ〉, denoted as 〈ψ| = (|ψ〉)T = (|ψ〉)†.

There is a huge difference between classic states and quantum states in information theory,

even through they have the similar forms . For example, the basic unit in classic information is

bit, 1/0, which has two status, 0 and 1. Comparably, the basic unit in quantum information is

qubit, which also has two status, |0〉 and |1〉. However, a state in a classic bit is either in status

0 or status 1, but a state in a qubit will have infinity many possible status including |0〉 and

|1〉.Let |ψ〉 be a pure state in one qubit, it would be a vector in H2, such that 〈ψ|ψ〉 = 1.It is

equivalent to say that |ψ〉 = α|0〉+ β|1〉, where α, β ∈ C, |α|2 + |β|2 = 1. It is an intermedium

status between |0〉 and |1〉 where the length of α and β contains the probability information for

each status and the normalization condition 〈ψ|ψ〉 = |α|2 + |β|2 = 1 comes from the probability

nature of a quantum state.

Similar with the concept of multi bits, a quantum state described in an integral Hilbert

space H is said to be of one partite and the one described in a composite Hilbert space as a

tensor product of several component Hilbert subspaces is said to be of multipartite. For instance,

|ψ〉 =

n1−1∑
i=0

n2−1∑
j=0

n3−1∑
k=0

aijk|i〉(1) ⊗ |j〉(2) ⊗ |k〉(3)

is a three partite pure state in a tensor Hilbert space with n1, n2, n3 dimension for each

component Hilbert subspace over the complex field, i.e. Hn1⊗Hn2⊗Hn3(C), or Cn1⊗Cn2⊗Cn3 .

Here, {|i〉(l), 0 ≤ i ≤ n1−1} is a set of orthonormal basis for the lth component Hilbert subspace

and the superscript indicate to which partite does the basis element belongs.

A multi-qubit state refers to the quantum states on a tensor Hilbert subspace that each

component Hilbert space is of dimensional two, with |0〉(i) and |1〉(i) as its basis for the ith partite

of the state. For example, a bell state 1/
√

2(|00〉+ |11〉) = 1/
√

2(|0〉(1) ⊗ |0〉(2) + |1〉(1) ⊗ |1〉(2))
is a typical two qubit pure state in H2 ⊗H2.

The standard basis of a one partite N dimensional pure state |ψ〉 would be the same as that
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of a vector space in matrix form:

|0〉 =


1

0
...

0

 , |1〉 =


0

1
...

0

 , · · · , |N − 1〉 =


0

0
...

1


Similarly, the standard basis of a multipartite pure state would be the tensors of the basis

elements in each component subspace, take two qubit space as an example, the basis would be:

|00〉 = |0〉 ⊗ |0〉 =

[
1

0

]
⊗

[
1

0

]
=


1

0

0

0

 , |01〉 =

[
1

0

]
⊗

[
0

1

]
,=


0

1

0

0

 , |10〉 =


0

0

1

0

 , |11〉 =


0

0

0

1


This standard basis of a quantum state is also known as the computational basis.

3.1.2 Phase of a state

It is mentioned in the previous section that the phase of the entries of a quantum state gives

information about the relative phase of the states in a superposition, and we will give more

details here. let |ψ〉 = a|φ1〉+ b|φ2〉 be a one partite pure state(superposition) with two states

|φ1〉 and |φ2〉, where a = |a|exp(iθa), b = |b|exp(iθb) and |a|2 + |b|2 = 1, then the state could

also be expressed as |ψ〉 = exp(iθa) · (|a| · |φ1〉 + exp(iθa − θb) · |b| · |φ2〉), where exp(iθa) work

as a global phase term and exp(iθa − θb) work as the relative phase term between two state in

this superposition.

In quantum system, the entries of the state vector refers to probability information, thus

the global phase is meaningless, or unphysical, as it does not provide any information of a

quantum state, whilst the relative phase term provides the phase difference, the interface in-

formation, between the two states in the superposition. For example, if two states share the

same magnitudes for all their entries, then even if these two states are different by a the global

phase, they would be treated as the same, i.e. |ψ〉 ≡ exp(iθ)|ψ〉, for any angle θ; while, if

the relative phase is the different in these two states, then these two states are different, i.e.

|φ1〉+ exp(iθa)|φ2〉 6= |φ1〉+ exp(iθb)|φ2, if exp(iθa) 6= exp(iθb).

Therefore we are interested in the techniques that will not change the ”relative position”

between any partites in the quantum system, which will be discussed in the later passage.
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3.1.3 Density operator and mixed state

We already know that there exists a unique projection operator for any nonzero vector in last

chapter. Similarly in quantum mechanics, for any pure quantum state |ψ〉, there exists a unique

linear operator |ψ〉〈ψ|, known as a measurement operator in physics, which corresponds to that

state and use the state as its unique eigenvector. A measurement on a pure state, |ψ〉, of any

state vector, |φ〉, in the same state space, can be obtained as the eigenvalue λ by applying the

corresponding measurement operator to that vector, i.e. (|ψ〉〈ψ|)(|φ〉) = λ|φ〉. The uniqueness

of such operator allows us to use this operator as an alternative way to describe quantum states

and this operator is known as the density operator for a quantum state.

Besides a pure state as some isolated quantum system, this operator could also be used to

describe some complicate quantum system which is a mixture of several correlated systems with

associated chance, known as a mixed state. For example if a quantum system will appear in n

different states |ψi〉, 1 ≤ i ≤ n with chance pi, then its mixed state ρ is defined to be statistical

ensemble of several pure quantum states, which share the same state space, in form of their

density operator, ρ =
∑n

i=1 pi|ψi〉〈ψi|. In general, such mixed state could not be described as a

column vector in a Hilbert space like pure state.

Mathematically speaking, the density operator for a quantum state, no matter pure or

mixed, would be a linear operator acting on the common state space of all its component pure

quantum states. Correspondingly, the operator space for density operators would be the Hilbert

space of all the linear operators acting on its state vector space with a well defined inner product.

3.2 Density matrices and related features

Density matrix, on the other hand, refers to the matrix representation of the density operator

with respect to certain basis. For example, a density matrix ρ for a two partite quantum state

of dimensional two on both partite will be a linear operator acting on Hilbert Space H2 ⊗H2,

and the inner product for any density operator ρ1, ρ2 on state space H2 ⊗ H2 in matrix form

would be 〈ρ1, ρ2〉 = tr(ρ†1ρ2).

3.2.1 Basis for density operator

A basis of a density operator could be induced from the basis for each partite of the quantum

state. Let ρ be the density operator of a M partite quantum state with n1, n2, · · · , nM dimension

for each partite, i.e. ρ is a linear operator acting on the Hilbert space Hn1 ⊗Hn2 ⊗ · · · ⊗ HnM .

Let {|i1〉(1), 0 ≤ i1 ≤ n1−1}, {|i2〉(2), 0 ≤ i2 ≤ n2−1}, ..., {|iM 〉(M), 0 ≤ iM ≤ nM −1} be some

chosen bases for each Hilbert subspace Hn1 ,Hn2 , · · ·HnM , , where the superscript indicates

which partite does the basis element belongs to. Then a basis for this quantum state would be
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formed as {|i1〉(1)⊗|i2〉(2)⊗· · ·⊗ |iM 〉(M)〈i1|(1)⊗〈i2|(2)⊗· · ·⊗〈iM |(M), 0 ≤ i1 ≤ n1−1, 0 ≤ i2 ≤
n2 − 1, · · · , 0 ≤ iM ≤ nM − 1}, the superscript may sometimes be neglected for convenience.

The computational basis for a density operator follows the same idea with that of a pure

state. Take 2-qubit quantum state as example, the computational basis is formed as:

|00〉〈00| =


1

0

0

0


[
1 0 0 0

]
=


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , |00〉〈01| =


0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , · · ·

Remark: The density matrix for a density operator without special notice would be in its

standard basis.

3.2.2 Properties of a density matrix

A density matrix ρ =
∑
pi|ψi〉〈ψi| in its computational basis (if it is pure, then there would be

only one term: ρ = |ψ〉〈ψ|) will have the following properties/axioms:

1. ρ is a nonnegative definite hermitian matrix.

ρ† = (
∑
pi|ψi〉〈ψi|)† =

∑
pi(|ψi〉〈ψi|)† = ρ and for any vector |u〉 in the same Hilbert

space of {|ψi〉}, we have:

〈u|ρ|u〉 = 〈u|
∑

pi|ψi〉〈ψi||u〉 =
∑

pi · 〈u|ψi〉〈ψi|u〉 ≥ 0, as pi > 0

(Notation: A† = ĀT for any matrix A)

Remark: According to Schur decomposition, all the density matrices(nonnegative definite

hermitian matrices) will share the same eigenvalues with its singular values.

2. tr(ρ) = 1 for any quantum state, no matter pure or mixed.

tr(ρ) = tr(
∑

pi|ψi〉〈ψi|) =
∑

pi · tr(|ψi〉〈ψi|) =
∑

pi · tr(〈ψi|ψi〉) =
∑

pi = 1

If a matrix satisfies these two axioms, then it is a density matrix. Moreover, a density matrix

ρ is a pure state if tr(ρ2) = 1, and a mixed state if tr(ρ2) < 1.

tr(ρ2pure) = tr(|ψ〉〈ψ||ψ〉〈ψ|) = tr(|ψ〉〈ψ|) = tr(〈ψ|ψ〉) = 1

tr(ρ2mixed) = tr((
∑

pi|ψi〉〈ψi|)2) = tr(
∑

p2i |ψi〉〈ψi|) =
∑

p2i tr(|ψi〉〈ψi|) =
∑

p2i < 1
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For example, two two-qubit quantum state density matrices are given below, one mixed

state ρ1 = (|00〉〈00|+ |01〉〈01|)/2 and one pure state ρ2 = |ψ〉〈ψ| with |ψ〉 = (|01〉+ |00〉)/
√

2:

ρ1 =
|0〉〈0|+ |1〉〈1|

2
=


1/2 0 0 0

0 1/2 0 0

0 0 0 0

0 0 0 0

 ,

ρ2 =
|00〉〈00|+ |01〉〈01|+ |00〉〈01|+ |01〉〈00|

2
=


1/2 1/2 0 0

1/2 1/2 0 0

0 0 0 0

0 0 0 0



3.2.3 Reduced density operator

A density operator on a composite Hilbert space would be hard to analyze if it can not be break

down into smaller systems. Thus we need an reverse operation to the tensor product in order

to analyze the structure of a multipartite quantum state.

Definition Assume a density operator ρAB is a composite system as a tensor of two subsys-

tems, one of the subsystem is A, and the other is B, then ρA, ρB are known as reduced density

operators of the origin density operator:

ρA ≡ trB(ρAB), ρB ≡ trA(ρAB)

Here, trA, are known as the partial trace operator, a linear operator, over system A, while

trB the partial trace operator over system B. In details, any system ρ = |ai〉〈aj | ⊗ |bk〉〈bl|,
trA(ρ) = trA(|ai〉〈aj | ⊗ |bk〉〈bl|) = (〈aj |ai〉)|bk〉〈bl|. For the special case, if ρAB = ρ1⊗ ρ2, where

ρ1, ρ2 are density matrices for the subsystems of the composite system ρAB (tr(ρ1) = tr(ρ2) =

1)), then ρA = trB(ρ1 ⊗ ρ2) = ρ1trB(ρ2) = ρ1.

Ex. let ρ be a two qubit density matrix with its standard basis, {|i1〉|j1〉〈i2|〈j2| = |i1〉〈i2| ⊗
|j1〉〈j2|, 0 ≤ i1, i2, j1, j2 ≤ 1} and ρ =

∑
i1,i2,j1,j2

ai1,i2,j1,j2 |i1〉〈i2| ⊗ |j1〉〈j2|.

tr1(ρ) =
∑

i1,j1,i2,j2

ai1i2j1j2tr1(|i1〉〈i2| ⊗ |j1〉〈j2|) , tr2(ρ) =
∑

i1,j1,i2,j2

ai1i2j1j2tr2(|i1〉〈i2| ⊗ |j1〉〈j2|)

=
∑

i1,j1,i2,j2

ai1i2j1j2(〈i1|i2〉)|j1〉〈j2| =
∑

i1,j1,i2,j2

ai1i2j1j2(〈j1|j2〉)|i1〉〈i2|

=
∑
j1,j2

(
∑
i

aiij1j2)|j1〉〈j2| =
∑
i1,i2

(
∑
j

ai1i2jj)|i1〉〈i2|
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To be more specific:

tr1(
(|00〉+ |11〉)(〈00|+ 〈11|)

2
) = tr1(

(|00〉〈00|+ |11〉〈00|+ |00〉〈11|+ |11〉〈11|)
2

)

=
(〈0|0〉|0〉〈0|+ 〈1|0〉|1〉〈0|+ 〈0|1〉|0〉〈1|+ |〈1|1〉|1〉〈1|)

2

=
(|0〉〈0|+ |1〉〈1|)

2

Fact: It is easy to check that the reduced operator of a density operator is still nonnegative

definite hermitian with trace one, thus is still a density matrix.

3.2.4 Quantum entanglement in density matrix

In this section, we are going to discuss the differences between quantum states with or without

entanglement presented in matrix form.

The class of quantum states that are completely non entangled is also known as separable

states. A separable state, no matter pure or mixed, could be present as a density matrix as the

tensor product of some sub density matrices in each partite. Moreover, If the state is a pure

state in this case, it could also be presented as a column vector which could be formed as the

tensor product of some column vectors in each component Hilbert subspace for each partite.

For example, |ψ1〉 = |00〉+|10〉−|01〉−|11〉
2 is a separable two qubit quantum states, with |ψ1〉(1) =

|0〉+|1〉√
2

in the first qubit, and |ψ1〉(2) = |0〉−|1〉√
2

in the second qubit.

|ψ1〉 =
|00〉+ |10〉 − |01〉 − |11〉

2
=


1/2

−1/2

1/2

−1/2


= (
|0〉+ |1〉√

2
)⊗ (

|0〉 − |1〉√
2

) =

[
1/
√

2

1/
√

2

]
⊗

[
1/
√

2

−1/
√

2

]

|ψ1〉〈ψ1| = (
|0〉+ |1〉√

2
⊗ |0〉 − |1〉√

2
)(
〈0|+ 〈1|√

2
⊗ 〈0| − 〈1|√

2
) =


1/4 −1/4 1/4 −1/4

−1/4 1/4 −1/4 1/4

1/4 −1/4 1/4 −1/4

−1/4 1/4 −1/4 1/4


|ψ1〉〈ψ1| = ((

|0〉+ |1〉√
2

)(
〈0|+ 〈1|√

2
))⊗ ((

|0〉 − |1〉√
2

)(
〈0| − 〈1|√

2
)) =

[
1/2 1/2

1/2 1/2

]
⊗

[
1/2 −1/2

−1/2 1/2

]

Comparably, an entangled state could not be decomposed into a tensor product of sub
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states in each partite. E.g. |ψ〉 = (|00〉 + |11〉)/(
√

2) is an entangled two qubit pure state and

ρ = 1/2(|00〉〈00|+ |11〉〈11|) is an entangled two qubit mixed state:

|ψ〉〈ψ| = (
|00〉+ |11〉√

2
)(
〈00|+ 〈11|√

2
) =


1/2 0 0 1/2

0 0 0 0

0 0 0 0

1/2 0 0 1/2

 6= tr2(|ψ〉〈ψ|)⊗ tr1|ψ〉〈ψ|

|ψ〉 =
|00〉+ |11〉√

2
=


1/
√

2

0

0

1
√

2

 = 1/
√

2

[
1

0

]
⊗

[
1

0

]
+ 1/

√
2

[
0

1

]
⊗

[
0

1

]
6= |ψ〉(1) ⊗ |ψ〉(2).

ρ =


1/2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1/2

 6= tr2(ρ)⊗ tr1(ρ)

You can check that it is impossible to decompose these quantum states as a tensor of some sub

state(density matrix) in each partite.

Moreover, an entangled pure state will have mixed reduced density operator, take the state

|ψ〉 in last example as an example, the reduced density operator of |ψ〉〈ψ| by the partial trace

on the first partite will be:

tr1|ψ〉〈ψ| = tr1(
|00〉〈00|+ |11〉〈00|+ |00〉〈11|+ |11〉〈11|

2
)

=
〈0|0〉|0〉〈0|+ 〈1|0〉|1〉〈0|+ 〈0|1〉|0〉〈1|+ 〈1|1〉|1〉〈1|

2
=
|0〉〈0|+ |1〉〈1|

2
=

[
1/2 0

0 1/2

]

It could also be explained in a statistic perspective similar with the idea of the phase of

a state: there is no entanglement in a quantum state suggests that the sub random variables

correspond to each partite of the state are independent from each other; while that a state

is entangled means that some of the corresponding random variables of its partite are corre-

lated with each other. If two quantum states are highly correlated, in other words completely

entangled, then you can measure one of the state to infer the state of the other.
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Chapter 4

LU equivalence of quantum states

As mentioned in the introduction, determining the LU equivalence of quantum states is an

important way to classify the quantum states with different level of the entanglement. In this

section, we start to deduct criterions to determine the LU equivalence of two partite quantum

states.

4.1 Unitary transformations between quantum states

It is known that for any two pure states in the same Hilbert space these, they could be trans-

formed into each other by some unitary transformation. This is because quantum state is ”nor-

malized” with the same norm one and there would always exist some unitary transformation

to convert one pure state into the other. However, it is not so intuitive to check if two mixed

states(density matrix form) are unitary equivalent:

Let ρ be some density matrix on the Hilbert space Cn, or equivalently saying a mixed state,

then the image of a unitary transformation U ∈ U(n) acting on ρ is UρU †. It is also known as

a unitarily similar term or the adjoint operation result of ρ under U. Since the global phase is

unphysical in quantum information, we can restrict the unitary matrix group U(n) to SU(n)

without losing generality. In addition, MU will be defined as UMU † , for any square matrix M

and any unitary matrix U of the same dimension following the general notation.

If two density operators are unitarily similar to each other, they are said to be unitary

equivalent, and they would belong to the same unitary equivalence class.

Fact: Two density operators on the same Hilbert space (with the same subsystem structure)

would have the same eigenvalues or singular values (including zero ones) and the same rank, if

they are in the same unitary equivalence class.

For example, density operators of all pure states on the same space would belong to the same

unitary equivalence class as they all have the same eigenvalue/singular values during which the
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unique nonzero value is one.

4.2 LU transformation in quantum system

LU transformation is a kind of unitary transformation such that the relation between these

partites of a quantum state will not be changed under such transformation.

In a LU transformation, each subsystem, known as the local system, of a multipartite

quantum state would also be under a unitary transformation. Suppose there is a quantum

state on the same composite Hilbert space H which is composed of M local Hilbert space,

H1,H2, · · · ,HM with dimension d1, d2, ..., dM , respectively, i.e. H = H1⊗H2⊗· · ·⊗HM . Then

we can construct a unitary transformation by composing a series of unitary transformations

U1 ∈ SU(d1), U2 ∈ SU(d2), · · ·UM ∈ SU(dM ) which match the dimension of each partite,

respectively.

To be more specific, if the state is a pure state |ψ〉, then the unitary transformation would

be present either in state vector form as (U1 ⊗U2 ⊗ · · · ⊗UM )|ψ〉, or in density matrix form as

(U1 ⊗U2 ⊗ · · · ⊗UM )|ψ〉〈ψ|(U1 ⊗U2 ⊗ · · · ⊗UM )†; And if the state is a mixed state ρ, the only

available form is the density form: (U1 ⊗ U2 ⊗ · · · ⊗ UM )ρ(U †1 ⊗ U
†
2 ⊗ · · · ⊗ U

†
M )

Then the linear transformation U1 ⊗ U2 ⊗ · · · ⊗ UM is said to be a LU transformation, and

two states are said to be LU equivalent if there is some LU transformation to convert one to the

other. Moreover, similar with unitary equivalence class, LU equivalent is also an equivalence

relation and we could use this relation to classify all the quantum states on the same Hilbert

space (with the same subspace structure as well) into LU equivalence classes.

To determine LU equivalence of quantum states, one important tool is the partial trace

which is mentioned in last chapter. Let U1 ⊗ U2 be a LU transformation on a bipartite state

in its computational basis, ρ =
∑

i1,j1,i2,j2
ai1i2j1j2 |i1〉(1) ⊗ |j1〉(2)〈i2|(1)〈j2|(2), the partial trace

operation on each partite will keep the local information, including the unitary transformation

on the partite that has not been traced out, i.e.

tr1

(
U1 ⊗ U2ρU

†
1 ⊗ U

†
2

)
= tr1

 ∑
i1,j1,i2,j2

ai1i2j1j2U1|i1〉(1)〈i2|(1)U †1 ⊗ U2|j1〉(2)〈j2|(2)U †2


=
∑
j1,j2

(
∑
i1,i2

ai1i2j1j2〈i2|(1)U
†
1U1|i1〉(1) ⊗ U2|j1〉(2)〈j2|(2)U †2)

= U2

∑
j1,j2

(
∑
i

aij1ij2 |j1〉(2)〈j2|(2)))

U †2 = U2tr1(ρ)U †2

20



Similarly, tr2(U1 ⊗ U2ρU
†
1 ⊗ U †2) = U1tr2(ρ)U †1 . This property allows us to use partial trace

operator to gather information for a LU transformation on a multi-partite quantum states.

When we deal with problems regarding multipartite quantum states, partial trace operator is

of most importance.

Fact: If two multipartite state are LU equivalent, then the result density matrices of these

two states by the partial trace with respect to any subsystem of them will be unitary equivalent.

4.3 LU transformation in different matrix folding

Basically, a new matrix folding of a matrix is a new arrangement of the elements of the matrix

in a different manner. It could be treated as a linear map that would transform the dimension

of the matrix. We may get some new perspective of the same matrix and its related unitary

transformation under different matrix folding. Similar idea is also introduced in Higher-order

singular value decomposition related papers [15].

We will start with the state without any subsystem. Let ρ be a one partite mixed state

acting on a Hilbert space with dimensional d, then it would be a d × d square matrix in its

computational basis {|i〉〈j|, 0 ≤ i ≤ d− 1, 0 ≤ j ≤ d− 1}, i.e. ρ =
∑

i

∑n
j=1 aij |i〉〈j|. However,

we can map this density operator ρ on Hilbert space Cd into a tensor vector space Cd ⊗ Cd,
and get another matrix folding manner for ρ by the linear map φ0 : Cd×d → Cd ⊗ Cd, by

|i〉〈j| 7→ |i〉 ⊗ |j〉, thus φ0(ρ) = φ0(
∑

i

∑n
j aij |i〉〈j|) =

∑
i

∑
j aijφ0(|i〉〈j|) =

∑
i

∑
j aij |i〉 ⊗ |j〉.

Under a unitary transformation U ∈ SU(d), a basis element |i〉〈j| of ρ will be trans-

formed into U |i〉〈j|U †, and its corresponding basis element in the new matrix folding would

be φ0(U |i〉〈j|U †) = U |i〉 ⊗ U |j〉 = U ⊗ U(|i〉 ⊗ |j〉) = U ⊗ U(|i〉 ⊗ |j〉).
And ρ under a unitary transformation U, UρU †, in its computational basis would be map to

φ0(UρU
†) = φ0(U(

∑
i

∑
j aij |i〉〈j|)U †) =

∑
i

∑
j aijφ0(U |i〉〈j|U †) =

∑
i

∑
j aijU⊗U(|i〉⊗|j〉) =

U ⊗ Uφ0(ρ) in this matrix folding.

For example, let ρ = 3/4|0〉〈0|+1/4|1〉〈1| be a one-qubit state, then it would be transformed

into φ0(ρ) = 1/4|0〉 ⊗ |0〉 + 3/4|1〉 ⊗ |1〉 under the new matrix folding, similarly if ρ is under

unitary transformation U =

[
3/5 −4/5

4/5 3/5

]
, then this unitary transformation would be converted

into the new matrix folding, φ0(UρU
†), as following:

ρ =

[
3/4 0

0 1/4

]
, φ0(ρ) =


3/4

0

0

1/4

 , UρU † =

[
0.43 0.24

0.24 0.57

]
, φ0(UρU

†) =


0.43

0.24

0.24

0.57


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And you can check that: φ0(UρU
†) = U ⊗ Uφ0(ρ)

U ⊗ Uφ0(ρ) =

[
3/5 −4/5

4/5 3/5

]
⊗

[
3/5 −4/5

4/5 3/5

]
3/4

0

0

1/4

 =


0.43

0.24

0.24

0.57

 = φ0(UρU
†)

Unfortunately, it is still not easy to check if two vector are unitary equivalent under unitary

matrix with the form U ⊗ U . Considering the norm for this matrix folding, we will have the

same result of the criterion which is used to determine the pure state density matrix into our

matrix folding:

Fact: If two density matrix ρ and ρ′ are unitary equivalent, then their column vector foldings,

φ0(ρ) and φ0(ρ
′) have the same norm. Moreover, any density matrix in its computational basis

ρ =
∑

i,j aij |i〉〈j| is a pure state, ρ = |ψ〉〈ψ| if and only if its column vector folding, φ0(ρ) =∑
i,j aij |i〉 ⊗ |j〉 = |ψ〉 ⊗ |ψ〉, has norm one, i.e.

∑
i,j aija

∗
ij = 1(tr(ρ2) = 1), while ρ is a mixed

state, ρ =
∑

i pi|ψi〉〈ψi|, if and only if its column vector folding, φ0(ρ) =
∑
pi|ψi〉 ⊗ |ψi〉, has

norm less than one, , i.e.
∑

i,j aija
∗
ij < 1(tr(ρ2) < 1).

4.3.1 Matrix folding in two partite quantum states

The new matrix folding of the density operator could also be applied to two partite case and as

the structure is more complicated in this case, there are more than one approach to form the

matrix folding. We classify all matrix foldings in multipartite case into two types. Let ρ be a

two partite mixed state acting on a composite Hilbert space with dimensional d1 and d2, then

it would be a d1d2 × d1d2 square matrix in its computational basis {|i1j1〉〈i2j2|, 0 ≤ i1, i2 ≤
d1 − 1, 0 ≤ j1, j2 ≤ d2 − 1}, i.e. ρ =

∑
i1,i2

∑
j1,j2

ai1j1i2j2 |i1j1〉〈i2j2|, and let U ⊗ V be a LU

transformation on ρ, where U ∈ SU(d1), V ∈ SU(d2). The two types of matrix folding will be

in the following way:

Type I: A quantum state in this type of matrix folding will be in a column vector form,

maps for this type of matrix foldings are analogue with the ones in one partite case.

For example, φ20 : Cd1×d2 ⊗ Cd1×d2 → Cd1 ⊗ Cd1 ⊗ Cd2 ⊗ Cd2 with the mapping, |i1〉(1) ⊗
|j1〉(2)〈i2|(1)⊗〈j2|(2) 7→ |i1〉(1)⊗|i2〉(1)⊗|j1〉(2)|j2〉(2) is a type I matrix folding and it will convert

ρ in its computational basis into a column vector. If under the LU transformation U ⊗ V , ρ in

this matrix folding will be transformed into φ20((U ⊗ V )(ρ)(U ⊗ V )†) = U ⊗ U ⊗ V ⊗ V φ(2)0.0(ρ),

where the superscript of the map φ20 denote the number of partite in the state involved. There

are many useful results based on this type of matrix foldings in the following sections.

There are other ways to form similar type I matrix folding as well. φ20.1 : Cd1d2×d1d2 →
Cd1 ⊗ Cd2 ⊗ Cd1 ⊗ Cd2 with the mapping, |i1〉(1) ⊗ |j1〉(2)〈i2|(1) ⊗ 〈j2|(2) 7→ |i1〉(1) ⊗ |j1〉(2) ⊗
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|i2〉(1) ⊗ |j2〉(2) is another map that gives a different column vector form of the state . If under

the LU transformation U ⊗ V , ρ in this matrix folding will be transformed into φ20.1((U ⊗
V )(ρ)(U ⊗ V )†) = U ⊗ V ⊗ U ⊗ V φ20.1(ρ).

Type II: This type of matrix folding will form a new matrix with different structure:

We will convert this ρ, on Cd1 ⊗ Cd2 , into an ordinary matrix, by the linear map φ21 :

Cd1d2×d1d2 → Cd21×d22 , by |i1〉(1) ⊗ |j1〉(2)〈i2|(1) ⊗ 〈j2|(2) 7→ |i1〉(1) ⊗ |i2〉(1)〈j1|(2) ⊗ 〈j2|(2), where

the superscript indicate which partite the state belongs to.

Under the LU transformation U ⊗ V , ρ would be converted into U ⊗ V ρ(U ⊗ V )†. A basis

element |i1〉(1)⊗ |j1〉(2)〈i2|(1)⊗〈j2|(2) of ρ will be transformed into U |i1〉(1)⊗V |j1〉(2)〈i2|(1)U †⊗
〈j2|(2)V †, and its corresponding basis element in the new representation would be:

φ21(U |i1〉(1) ⊗ V |j1〉(2)〈i2|(1)U † ⊗ 〈j2|(2)V †) = U ⊗U(|i1〉(1) ⊗ |i2〉(1)〈j1|(2) ⊗ 〈j2|(2))(V ⊗ V )†:

φ21(U |i1〉(1) ⊗ V |j1〉(2)〈i2|(1)U † ⊗ 〈j2|(2)V †) = U |i1〉(1) ⊗ U |i2〉(1)〈j1|(2)V † ⊗ 〈j2|(2)V †

= U |i1〉(1) ⊗ U |i2〉(1)〈j1|(2)V † ⊗ 〈j2|(2))V †

= U ⊗ U(|i1〉(1) ⊗ |i2〉(1)〈j1|(2) ⊗ 〈j2|(2))(V ⊗ V )†

And ρ would be map to φ21(U ⊗ V ρ(U ⊗ V )†) = U ⊗ Uφ(ρ)(V ⊗ V )† in this matrix folding:

φ21(U ⊗ V ρ(U ⊗ V )†) = φ21(U ⊗ V
∑
i1,j1

∑
i2,j2

ai1j1i2j2 |i1j1〉〈i2j2|(U ⊗ V )†)

=
∑
i1,j1

∑
i2,j2

ai1j1i2j2φ
2
1(U ⊗ V |i1〉(1) ⊗ |j1〉(2)〈i2|(1) ⊗ 〈j2|(2)(U ⊗ V )†)

=
∑
i1,j1

∑
i2,j2

ai1j1i2j2U ⊗ U(|i1〉(1) ⊗ |i2〉(1)〈j1|(2) ⊗ 〈j2|(2))(V ⊗ V )†

= U ⊗ Uφ21(ρ)(V ⊗ V )†

where U ⊗ U is in SU(d1)⊗ SU(d1), V ⊗ V is in SU(d2)⊗ SU(d2).

For example, let ρ = 3/4|00〉〈00| + 1/4|12〉〈12| be a two partite quantum state on Hilbert

space H2⊗H3, then it would be transformed into φ(ρ) = 3/4|0〉(1)⊗|0〉(1)〈0|(2)〈0|(2)+1/4|1〉(1)⊗
|1〉(1)〈2|(2) ⊗ 〈2|(2) under the new matrix folding, similarly if ρ is under the LU transformation

U ⊗ V =

[
3/5 −4/5

4/5 3/5

]
⊗

1 0 0

0 12/13 −5/13

0 5/13 12/13

, then this unitary transformation would be
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converted into the new matrix folding, φ(U ⊗ V ρ(U ⊗ V )†), as following:

ρ =



3/4 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1/4


, φ(ρ) =


3/4 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1/4



(U ⊗ V )ρ(U ⊗ V )† =



0.270 0.000 0.000 0.360 0.000 0.000

0.000 0.024 −0.057 0.000 −0.018 0.043

0.000 −0.057 0.137 0.000 0.043 −0.102

0.360 0.000 0.000 0.480 0.000 0.000

0.000 −0.018 0.043 0.000 0.013 −0.032

0.000 0.043 −0.102 0.000 −0.032 0.077



φ21((U ⊗ V )ρ(U ⊗ V )†) =


0.27 0 0 0 0.024 −0.057 0 −0.057 0.137

0.36 0 0 0 −0.018 0.043 0 0.043 −0.102

0.36 0 0 0 −0.018 0.043 0 0.043 −0.102

0.48 0 0 0 0.013 −0.032 0 −0.032 0.077


And you can check that: φ21((U ⊗ V )ρ(U ⊗ V )†) = U ⊗ Uφ21(ρ)(V ⊗ V )†. Notice that density

operator in this matrix folding will no longer following the same properties of a density ma-

trix(they may not even be square matrices sometimes). And all the density operators in the

same LU equivalence class would share the same singular values in this matrix folding, so we

can get a small lemma here.

Lemma 4.1. If two bipartite quantum states ρ, ρ′ on the same Hilbert space are LU equivalent,

then the two density operators in the type II matrix folding, φ21(ρ) and φ21(ρ
′), will have the

same singular values.

4.3.2 Matrix folding in multipartite quantum states

This matrix folding could be extended into multipartite as well, and there are many choices for

that, one of them is analogue to the one in two partite quantum states, similar result can also

be found in [15]:

Take three-partite quantum mixed state ρ acting on the Hilbert space Hd1 ⊗Hd2 ⊗Hd3 as

an example, the computational basis is:

{|i1〉(1)⊗|j1〉(2)⊗|k1〉(3)〈i2|(1)⊗〈j2|(2)⊗〈k2|(3), 0 ≤ i1, i2 ≤ d1−1, 0 ≤ j1, j2 ≤ d2−1, 0 ≤ k1, k2 ≤ d3−1}
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Type I: column vector form. I will directly give the result of the map φ30, as it is based on

the same principles: φ30 : Cd1d2d3×d1d2d3 → Cd1 ⊗Cd1 ⊗Cd2 ⊗Cd2 ⊗Cd3 ⊗Cd3 will map ρ in its

computational basis to a column vector by:

|i1〉(1)⊗|j1〉(2)⊗|k1〉(3)〈i2|(1)⊗〈j2|(2)⊗〈k2|(3) 7→ |i1〉(1)⊗|i2〉(1)⊗|j1〉(2)⊗|j2〉(2)⊗|k1〉(3)⊗|k2〉(3).
The result of LU transformation in this map will be:

φ30(U1 ⊗ U2 ⊗ U3(ρ)(U1 ⊗ U2 ⊗ U3)
†) = U1 ⊗ U1 ⊗ U2 ⊗ U2 ⊗ U3 ⊗ U3φ

3
0(ρ)

Type II: New matrix form.

We can also setup three linear maps:

φ31.1 : M(d1 · d2 · d3,C)→ C(d21)×(d22·d23) by:

|i1〉(1)⊗|j1〉(2)⊗|k1〉(3)〈i2|(1)⊗〈j2|(2)⊗〈k2|(3)
φ31.17→ (|i1〉(1)⊗|i2〉(1))(〈j1|(2)⊗〈j2|(2)⊗〈k1|(3)⊗〈k2|(3))

φ31.2 : M(d1 · d2 · d3,C)→ C(d22)×(d23·d21) by:

|i1〉(1)⊗|j1〉(2)⊗|k1〉(3)〈i2|(1)⊗〈j2|(2)⊗〈k2|(3)
φ31.27→ (|j1〉(2)⊗|j2〉(2))(〈k1|(3)⊗〈k2|(3)⊗〈i1|(1)⊗〈i2|(1))

φ31.3 : M(d1 · d2 · d3,C)→ C(d23)×(d21·d22), by:

|i1〉(1)⊗|j1〉(2)⊗|k1〉(3)〈i2|(1)⊗〈j2|(2)⊗〈k2|(3)
φ31.37→ (|k1〉(3)⊗|k2〉(3))(〈i1|(1)⊗〈i2|(1)⊗〈j1|(2)⊗〈j2|(2))

For example, let ρ1 be a three-qubit state 1/2|000〉〈000|+ 1/2|111〉〈111|, also known as the

GHZ state in three qubit system, then it will be convert into some matrix that may not be

square in these matrix folding:

ρ1 =



0.5 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0.5


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φ31.1(ρ1) =


0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5


Then under a LU transformation ρ will behave differently in these three matrix folding,

according to the previous discussion:

φ31.1(U1 ⊗ U2 ⊗ U3(ρ)(U1 ⊗ U2 ⊗ U3)
†) = (U1 ⊗ U1)φ

3
1.1(ρ)(U2 ⊗ U2 ⊗ U3 ⊗ U3)

†

φ31.2(U1 ⊗ U2 ⊗ U3(ρ)(U1 ⊗ U2 ⊗ U3)
†) = (U2 ⊗ U2)φ

3
1.2(ρ)(U3 ⊗ U3 ⊗ U1 ⊗ U1)

†

φ31.3(U1 ⊗ U2 ⊗ U3(ρ)(U1 ⊗ U2 ⊗ U3)
†) = (U3 ⊗ U3)φ

3
1.3(ρ)(U1 ⊗ U1 ⊗ U2 ⊗ U2)

†

Proposition 4.2. If two multipartite quantum states ρ, ρ′ on the same Hilbert space are LU

equivalent, then the two density operators in any of these type II matrix folding will have the

same singular values.

4.4 LU transformations in pure states

4.4.1 LU equivalences in bipartite pure states

We have introduced matrix foldings of a density matrix in the previous section, and now we

will apply this technique to determine the LU transformations in bipartite states through some

inverse maps of type I.

Let |ψ〉 be a bipartite state in the Hilbert space Cd1⊗Cd2 , with computational basis {|i〉(1)⊗
|j〉(2), 0 ≤ i ≤ d1 − 1, 0 ≤ j ≤ d2 − 1}, i.e.

|ψ〉 =

d1−1∑
i=0

d2−1∑
j=0

aij |i〉(1) ⊗ |j〉(2)

(φ0)
−1 : Cd1 ⊗Cd2 → Cd1×d2 , by |i〉(1)⊗ |j〉(2) 7→ |i〉(1)〈j|(2) is the inverse map of φ0, we can

get a matrix presentation of the state |ψ〉 through this map:

(φ0)
−1(|ψ〉) =

d1−1∑
i=0

d2−1∑
j=0

|i〉(1)〈j|(2)

And let U ⊗ V , where U ∈ SU(d1), V ∈ SU(d2) be a LU transformation on |ψ〉, i.e.
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U ⊗ V (|ψ〉). It is equivalent to U((φ0)
−1(|ψ〉))V † in this inverse map:

(φ0)
−1(U ⊗ V (|ψ〉)) = (φ0)

−1(

d1−1∑
i=0

d2−1∑
j=0

U |i〉(1) ⊗ V |j〉(2))

=

d1−1∑
i=0

d2−1∑
j=0

U |i〉(1)〈j|(2)V †

= U((φ0)
−1(|ψ〉))V †

Theorem 4.3. Two bipartite pure state |ψ1〉 and |ψ2〉 on the same Hilbert space Cd1⊗Cd2 are

LU equivalent, if and only if their matrix representations, (φ0)
−1(|ψ1〉) and (φ0)

−1(|ψ2〉), have

the same singular values.

Proof. It has been proved that, as if |ψ1〉 and |ψ2〉 are LU equivalent under U ⊗ V ∈ SU(d1)⊗
SU(d2), then U((φ0)

−1(|ψ1〉))V † = (φ0)
−1(|ψ2〉), thus they will have the same singular values.

Similarly, if (φ0)
−1(|ψ1〉) and (φ0)

−1(|ψ2〉), have the same singular values, it is equivalent

to say that U0((φ0)
−1(|ψ1〉))V †0 = (φ0)

−1(|ψ2〉), for some U0 ∈ SU(d1), V0 ∈ SU(d2). If we

apply φ0, the inverse map of (φ0)
−1, then we have: φ0(U0((φ0)

−1(|ψ1〉))V †0 ) = U0 ⊗ V0|ψ1〉 =

φ0(((φ0)
−1(|ψ2〉))) = |ψ〉 , where U0 ⊗ V0 ∈ SU(d1)⊗ SU(d2).

Example: Let |ψ1〉 = 0.6|00〉 + 0.8|12〉 be a state in C2 ⊗ C3, and |ψ2〉 =

[
3/5 −4/5

4/5 3/5

]
⊗1 0 0

0 12/13 −5/13

0 5/13 12/13

 |ψ1〉 be a pure state local unitary equivalent to |ψ1〉. We will show that

their singular values in the matrix folding under φ−10 are the same with the ones of |ψ1〉:

|ψ1〉 =



0.6

0

0

0

0

0.8


, with φ−10 (|ψ1〉) =

[√
2/2 0 0

0 0
√

2/2

]
, and φ−10 (|ψ1〉)φ−10 (|ψ1〉)† =

[
1/2 0

0 1/2

]
,

thus singular values are 0.8 and 0.6. After computation, we have |ψ2〉 =



0.36

0.2464

−0.59072

0.48

−0.1848

0.44304


, with
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φ−10 (|ψ2〉) =

[
0.36 0.2464 −0.59072

0.48 −0.1848 0.44304

]
, and φ−10 (|ψ2〉)φ−10 (|ψ2〉)† =

[
0.53926 −0.13445

−0.13445 0.46084

]
,

with the same singular values 0.8 and 0.6.

Remark: In the bipartite case, the singular values of this matrix folding for the pure state

will be the same as the coefficients in the maximal entangled states in the same LU equivalent

class,
∑

i αi|i〉 ⊗ |i〉 [16].

4.4.2 LU equivalence in multipartite pure state

Similar with the case of matrix folding, we can use different matrix foldings under inverse maps

of type I to get some result of LU equivalence in multipartite case. For instance, we can setup a

series of inverse maps of type I for three partite pure state |ψ〉 =
∑

i,j,k aijk|i〉(1)⊗ |j〉(2)⊗ |k〉(3)

in Cb1 ⊗ Cb2 ⊗ Cb3 :

(φ30.1)
−1 : Cb1 ⊗ Cb2 ⊗ Cb3 → Cb1×b2b3 , by sending |i〉(1) ⊗ |j〉(2) ⊗ |k〉(3) 7→ |i〉(1)〈j|(2) ⊗ 〈k|(3)

(φ30.2)
−1 : Cb1 ⊗ Cb2 ⊗ Cb3 → Cb2×b3b1 , by sending |i〉(1) ⊗ |j〉(2) ⊗ |k〉(3) 7→ |i〉(2)〈j|(3) ⊗ 〈k|(1)

(φ30.3)
−1 : Cb1 ⊗ Cb2 ⊗ Cb3 → Cb3×b1b2 , by sending |i〉(1) ⊗ |j〉(2) ⊗ |k〉(3) 7→ |i〉(3)〈j|(1) ⊗ 〈k|(2)

And the result of a LU transformation U1 ⊗ U2 ⊗ U3 ∈ SU(d1) ⊗ SU(d2) ⊗ SU(d3) acting on

|ψ〉 will be equivalent to the following in these matrix foldings:

(φ30.1)
−1(U1 ⊗ U2 ⊗ U3)|ψ〉 = U1(φ

3
0.1)
−1(|ψ〉)(U2 ⊗ U3)

†

(φ30.2)
−1(U1 ⊗ U2 ⊗ U3)|ψ〉 = U2(φ

3
0.2)
−1(|ψ〉)(U3 ⊗ U1)

†

(φ30.3)
−1(U1 ⊗ U2 ⊗ U3)|ψ〉 = U3(φ

3
0.3)
−1(|ψ〉)(U1 ⊗ U2)

†

Similar with theorem 4.1, we can get anther lemma.

Lemma 4.4. If two multipartite pure states in the same Hilbert space are LU equivalent, then

these two states will have the same singular values in any of these inverse map of type I matrix

folding.

4.5 LU transformations in mixed states

In general, LU equivalence problems in mixed states are complicated to solve. One approach to

deal with these problems is to transform them into the ones in pure states.
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Proposition 2 in [17] is an important result that can change problems in mixed states into

the ones in pure states. In this proposition, an associated pure state |Ψ0〉 =
∑n

i=1

√
pi|i〉 ⊗ |ψi〉

is formed for any mixed state ρ =
∑n

i=1 pi|ψi〉〈ψi|, 0 < pi < 1 with respect to pure states

(eigenvectors) {|ψi〉}. The formation of an associated state for a mixed state, ρ, depends on

the choice of eigenvectors {|ψi〉}. Therefore, if all the nonzero eigenvalues of a mixed state ρ

are distinct, the mixed state would have a unique associated pure state; while, if some of the

mixed state’s nonzero eigenvalues are the same, then its associated states may not be uniquely

determined. It is shown in the proposition that if two mixed states ρ1 and ρ2, if with unique

associated pure state, acting on the same Hilbert space are LU equivalent if and only if their

unique associated pure states are LU equivalent to each other.

Here, I would like to provide a different method in matrix folding to handle the uniqueness

problem, and prove that the proposition is true even if the associated pure state is not uniquely

determined.

Proposition 4.5. For a mixed state ρ =
∑n

i=1 pi|ψi〉〈ψi| with one associated pure state |Ψ1〉 =∑n
i=1

√
pi|i〉 ⊗ |ψi〉, then any other associated pure state |Ψ2〉, if exists, for ρ can be converted

into |Ψ1〉 through a LU transformation which is composed of a series of identity maps except

for the additional partite, i.e. |Ψ2〉 =
∑n

i=1

√
piU0|i〉 ⊗ |ψi〉 = U0 ⊗ I|Ψ1〉.

It is equivalent to say that all the associated pure states for ρ belong to the same local

unitary equivalent class |Ψ〉U⊗I = {|Ψ0〉||Ψ0〉 = (
∑n

i=1

√
piU |i〉 ⊗ |ψi〉),∀U ∈ U(n)}.

Proof.

Lemma 4.6. For any two m by n(m > n) matrix in the complex field, A and B, if AA† = BB†,

then there exists some unitary matrix V ∈ U(n), such that A = BV .

Proof. AA† = BB† suggests that you can find some unitary matrix U ∈ U(m) for both AA† and

BB† such that they are simultaneously diagonalized, i.e. U(AA†)U † = U(BB†)U † = Σ, where

Σ is a diagonal matrix with nonnegative real number on its diagonal(spectral decomposition).

Therefore, by the definition of singular value decomposition, you can find a complete set of

(left/right) eigenvectors that are shared by both AA† and BB†, or equivalently speaking, a

complete set of left singular vectors for both A and B.

Then A and B will have some singular value decompositions such that they have the same

left singular matrix U for A and B, i.e. A = UΣ′V †1 , B = UΣ′V †2 , U ∈ U(m), V1, V2 ∈ U(n) and

Σ′ is a m by n matrix all of whose nonzero entries are in the diagonal and Σ′Σ′† = Σ. Therefore,

A = BV with V = V2V
†
1 ∈ U(n).

For the mixed state ρ =
∑n

i=1 pi|ψi〉〈ψi| with eigenvectors {|ψi〉}. It is equivalent to say that

ρ = (
∑n

i=1

√
pi|ψi〉〈i|)(

∑n
j=1
√
pj |j〉〈ψj |) = AA†, if we let A =

∑n
i=1

√
pi|ψi〉〈i|. Its associated
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pure state will have the relation: |Ψ1〉 =
∑n

i=1

√
pi|i〉 ⊗ |ψi〉 = φ0(A), where φ0 is the matrix

folding introduced in last section.

Then for another spectral decomposition ρ =
∑n

i=1 pi|ψ′i〉〈ψ′i| based on {|ψ′i〉}, ρ will have

another associated pure state |Ψ2〉 =
∑n

i=1

√
pi|i〉 ⊗ |ψ′i〉. It is equivalent to say that: ρ =

(
∑n

i=1

√
pi|ψ′i〉〈i|)(

∑n
j=1
√
pj |j〉〈ψ′j |) = (

∑n
i=1

√
pi|ψi〉〈i|U †0)(U0

∑n
j=1
√
pj |j〉〈ψj |) = BB† for

some unitary transformation U0 ∈ U(n) by Lemma 4.6, if we let B =
∑n

i=1

√
pi|ψi〉〈i|U †0 .

Similar with the associated pure state |Ψ1〉, |Ψ2〉 =
∑n

i=1

√
pi|i〉 ⊗ |ψ′i〉 = φ0(B)

=
∑n

i=1

√
pi(U0|i〉)⊗ |ψi〉 = U0 ⊗ I|Ψ1〉 by φ0.

Therefore, the associated pure states of the mixed state ρ =
∑n

i=1 pi|ψi〉〈ψi| belong to an

equivalent class: |Ψ〉U⊗I = {|Ψ0〉||Ψ0〉 = U ⊗ I(
∑n

i=1

√
pi|i〉 ⊗ |ψi〉),∀U ∈ U(n)}.

Moreover, if we set ρ0 be the equivalent class {M |M = AU,U ∈ U(n)} = φ−10 (|Ψ〉U⊗I), with

ρ = ρ0ρ
†
0. Therefore, ρ can be map to the associated pure state equivalent class by a special

map φ with mapping, φ(ρ0ρ
†
0) 7→ φ0(ρ0), based on the idea of φ0.

Suppose ρ′ is LU to ρ under some LU transformation, i.e. ρ′ = U1 ⊗ U2 ⊗ · · · ⊗ Un(ρ)(U1 ⊗
U2 ⊗ · · · ⊗Un)†, then ρ′ = U1 ⊗U2 ⊗ · · · ⊗Un(ρ0)(ρ0)

†(U1 ⊗U2 ⊗ · · · ⊗Un)† which will be map

to U ⊗ U1 ⊗ U2 ⊗ · · · ⊗ Un|Ψ0〉 = In ⊗ U1 ⊗ U2 ⊗ · · · ⊗ Un|Ψ〉U⊗I via the same map φ.

Through matrix folding, we set up the equivalence relation between the LU problems in

mixed states and pure states. Since there are a lot of other discussion regarding the LU equiv-

alence in mutipartite pure states, like Kraus [16], this method provides a new perspective to

analysis the LU equivalence in mixed states.
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Chapter 5

Algorithms to determine the local

unitary equivalence in two partite

mixed states

In the last chapter, we have described the local unitary transformations in the computational

basis and its behavior in different matrix folding. Here, we will use a special basis for a given

quantum state, and then determine the conditions if two mixed states could be mutually trans-

form into each other. The reason that we want to analyze two partite mixed state is because

that a three partite pure state can be reduced into a two partite mixed state with equivalent

behavior, thus a complete study of two partite mixed state helps to solve the LU problem in

three partite pure states [1]. Moreover, any multipartite mixed state can be analysis by a similar

approach by separated into two parts. Therefore, the result of two partite mixed state is very

useful in all the LU problems.

5.1 Invariant polynomials in bipartite mixed states

Gell-Mann type basis is a special type of basis that consists of orthonormal and hermitian ele-

ments. All the entries in this matrix representation will be real numbers, this property restricts

the field for the matrix and simplified our analysis and computation in practice.

5.1.1 The Gell-Mann type basis

Let ρ be some density operator acting on a Hilbert space H of dimension d equipped with the

standard inner product 〈u, v〉 = uv†. On the space of linear operators on H the standard inner

product is 〈f, g〉 = tr(fg†). Assume that the subspace A of hermitian operators on H is of
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dimension N , then ρ is a special positive operator in this space with tr(ρ) = 1.

We fix an orthonormal basis {λi} of A such that tr(λiλ
†
j) = δij . In particular, we can assume

for one partite case that λ0 is the identity operator with certain scale, which is restricted by

the assumption. In the case of d = 2, the Pauli spin matrices up to scale are such an example:

λ0 = I2/
√

2, λ1 = (|0〉〈0|−|1〉〈1|)/
√

2, λ2 = (|0〉〈1|+ |1〉〈0|)/
√

2, and λ3 = (i|0〉〈1|−i|1〉〈0|)/
√

2.

In general, they can be chosen as the generalized Pauli spin matrices or Gell-Mann type matrices,

which are hermitian and traceless except λ0. Then any ρ can be expressed as

ρ =
d2−1∑
i=0

uiλi =
1

d
Id +

d2−1∑
i=1

uiλi, ui ∈ R. (5.1)

Here all the coefficients ui are real numbers.

For the same one partite state ρ acting on Hilbert space H of dimension d like last section,

we fix an orthonormal basis {λi} of A such that tr(λiλ
†
j) = δij . In particular, we can assume

for one partite case that λ0 is the identity operator with certain scale, which is restricted by

the assumption. In the case of d = 2, the Pauli spin matrices up to scale are such an example:

λ0 = I2/
√

2, λ1 = (|0〉〈0|−|1〉〈1|)/
√

2, λ2 = (|0〉〈1|+ |1〉〈0|)/
√

2, and λ3 = (i|0〉〈1|−i|1〉〈0|)/
√

2.

In general, they can be chosen as the generalized Pauli spin matrices or Gell-Mann type matrices,

which are hermitian and traceless except λ0. Then any ρ can be expressed as

ρ =
d2−1∑
i=0

uiλi =
1

d
Id +

d2−1∑
i=1

uiλi, ui ∈ R. (5.2)

Here all the coefficients ui are real numbers.

The matrix representation of ρ works multi-partite quantum states as well. In fact, the

orthogonal basis for the tensor product spaces be taken as the tensor product of the Gell-Mann

bases on the individual factors. For instance, let ρ be the density matrix of a mixed bipartite

state on Hd1⊗Hd2 , and {λ(k)i , 0 ≤ i ≤ d2k−1, k = 1, 2} be the Gell-Mann bases for each partite,

then ρ can be expressed in Gell-Mann basis in the following form:

ρ =
1

d1d2
Id1d2 +

N1∑
i=1

uiλ
(1)
i ⊗ λ

(2)
0 +

N2∑
j=1

vjλ
(1)
0 ⊗ λ

(2)
j

+

N1∑
i=1

N2∑
j=1

wijλ
(1)
i ⊗ λ

(2)
j , Nk = d2k − 1, k = 1, 2 (5.3)
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where

ui = 〈ρ, λ(1)i ⊗ λ
(2)
0 〉 = tr(ρ(λ

(1)
i ⊗ λ

(2)
0 ))

vj = 〈ρ, λ(1)0 ⊗ λ
(2)
j 〉 = tr(ρ(λ

(1)
0 ⊗ λ

(2)
j ))

wij = 〈ρ, λ(1)i ⊗ λ
(2)
j 〉 = tr(ρ(λ

(1)
i ⊗ λ

(2)
j )).

Since all further discussion in this chapter will generally based on these special basis, it is

convenient to make some definition before hands:

Definition. For the density matrix ρ of a bipartite mixed state on Hd1 ⊗Hd2 with respect to

the Gell-Mann basis {λ(1)i ⊗λ
(2)
j , 0 ≤ i ≤ d21−1, 0 ≤ j ≤ d22−1}, we denote Nk as d2k−1, k = 1, 2,

u(ρ) as [u1, u2, · · · , uN1 ]T , v(ρ) as [v1, v2, · · · , vN2 ]T , and W (ρ) as the N1 by N2 matrix such

that the element in its ith row, jth column will be wij , where ui, vj , wij are the corresponding

coefficients in this basis shown in equation 5.3 that, 1 ≤ i ≤ N1, 1 ≤ j ≤ N2. Thus, each

mixed bipartite quantum state with density matrix ρ is associated with corresponding triple

(W (ρ), u(ρ), v(ρ)). Two mixed bipartite quantum state are the same if and only if their triple

are the same.

Lemma 5.1. Suppose {vi, 1 ≤ i ≤ N = d2 − 1} is an orthonormal traceless and hermitian

basis of sld(C) satisfying 〈vi, vj〉 = tr{viv†j} = δij , for all 1 ≤ i, j ≤ N , and U is some element

in SU(N), then {vUi , 1 ≤ i ≤ N} will also been an orthonormal traceless and hermitian basis

of sld(C). Moreover, if vUi =
∑N

j=1mijvj , for some mij in R, then mij satisfies
∑N

k=1mikm̄jk =∑N
k=1mikmjk = δij , for all 1 ≤ i, j ≤ N.

i.e.


vU1
vU2
· · ·
vUN

 =


Uv1U

†

Uv2U
†

· · ·
UvNU

†

 = M


v1

v2

· · ·
vN

 ,M ∈ SO(N).

Proof. For any unitary matrix U, vUi is still in sln(C), thus it can be expressed as a linear

combination of the traceless hermitian basis as
∑N

j=1mijvj , for some mij in C. Moreover, as

vi are hermitian, vUi is also hermitian, vUi = UviU
† = Uv†iU

† = (vUi )†. thus, vUi = (vUi )† =∑N
j=1mijvj =

∑N
j=1 m̄ijvj ⇒ mij = m̄ij , thus mij are real numbers, for all 1 ≤ i, j ≤ N. And

tr(vUi v
U
j ) = tr(UvivjU

†) = tr(vivjU
†U) = tr(vivj), which indicate:

tr((
N∑
k=1

mikvk)(
N∑
l=1

mjlvl)) =
N∑
k=1

N∑
l=1

mikmjl tr(vkvl)

33



=

N∑
k=1

mikmjk = tr(vivj) = δij ⇒
N∑
k=1

mikmjk = δij

i.e.


vU1
vU2
· · ·
vUN

 =


Uv1U

†

Uv2U
†

· · ·
UvNU

†

 = M


v1

v2

· · ·
vN

 ,M ∈ SO(N).

Remark. The conclusion in Lemma 5.1 is a necessary condition in general, as even if there

exists M in O(N), satisfying the relation the lemma, there does not always exist such a unitary

matrix that [vU1 , v
U
2 , ..., v

U
N ]T = M [v1, v2, ..., vN ].

5.1.2 Local unitary equivalence

Theorem 5.2. For any two mixed bipartite quantum state on Hd1 ⊗Hd2 with density ρ′ and

ρ associated with (W (ρ), u(ρ), v(ρ)) and (W (ρ′), u(ρ′), v(ρ′)), respectively, if ρ is local unitary

equivalent to ρ′, then there exists A in SO(N1), B in SO(N2), such that u(ρ′) = ATu(ρ),

v(ρ′) = BT v(ρ), W (ρ′) = ATW (ρ)B.

Proof. Under local unitary transformation U1 ⊗ U2, bipartite mixed state ρ on Hd1 ⊗ Hd2

will become:

ρ′ = ρU1⊗U2 =
1

d1d2
Id1d2 +

N1∑
i=1

ui(λ
(1)
i )U1 ⊗ λ(2)0

+

N2∑
j=1

vjλ
(1)
0 ⊗ (λ

(2)
j )U2 +

N1∑
i=1

N2∑
j=1

wij(λ
(1)
i )U1 ⊗ (λ

(2)
j )U2

From Lemma 5.1, it is shown that there exists some aij , bij ∈ R such that (λ
(1)
i )U1 =∑N1

j=1 aijλ
(1)
j , (λ

(2)
i )U2 =

∑N2
j=1 bijλ

(2)
j , satisfying

∑N1
k=1 aikajk =

∑N2
k=1 bikbjk = δij .

i.e.


(λ

(1)
1 )U1

(λ
(1)
2 )U1

· · ·
(λ

(1)
N1

)U1

 = A


λ
(1)
1

λ
(1)
2

· · ·
λ
(1)
N1

 ,


(λ
(2)
1 )U2

(λ
(2)
2 )U2

· · ·
(λ

(2)
N2

)U2

 = B


λ
(2)
1

λ
(2)
2

· · ·
λ
(2)
N2


for some A ∈ O(N1), B ∈ O(N2), then,

N1∑
i=1

ui(λ
(1)
i )U1 ⊗ λ(2)0 =

N1∑
i=1

N2∑
j=1

uiaijλ
(1)
j ⊗ λ

(2)
0
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=

N∑
i=1

(

N2∑
j=1

ujaji)λ
(1)
i ⊗ λ

(2)
0 , i.e. u(ρU1⊗U2) = ATu(ρ)

N1∑
i=1

viλ
(1)
0 ⊗ (λ

(2)
i )U2 =

N1∑
i=1

N2∑
j=1

vibijλ
(1)
0 ⊗ λ

(2)
j

=

N1∑
i=1

(

N2∑
j=1

vjbji)λ
(1)
0 ⊗ λ

(2)
j , i.e. u(ρU1⊗U2) = BT v(ρ)

N1∑
i=1

N2∑
j=1

wij(λ
(1)
i )U1 ⊗ (λ

(2)
j )U2 =

N1∑
k=1

N2∑
l=1

wkl(

N1∑
i=1

akiλi)⊗ (

N2∑
j=1

bljλj)

=

N1∑
i=1

N2∑
j=1

(

N1∑
k=1

N2∑
l=1

akiwklblj) λi ⊗ λj ,

Since the matrix M preserves the bilinear form tr(vivj), the matrix M is orthogonal.

i.e. W (ρU1⊗U2) = ATW (ρ)B

Theorem 5.2 gives us a necessary condition in general for the reason in the remark of Lemma

1. But it is a sufficient and necessary condition when it is a two qubit case.

Theorem 5.3. For two 2-qubit quantum state ρ′ and ρ associated with (W (ρ), u(ρ), v(ρ)) and

(W (ρ′), u(ρ′), v(ρ′)), respectively. Then ρ is local unitary equivalent to ρ′ if and only if there

exists A,B in SO(3), such that u(ρ′) = ATu(ρ), v(ρ′) = BT v(ρ), W (ρ′) = ATW (ρ)B.

Proof. It only needs to prove the backwards. Suppose there exists A,B in O(3) such that

u(ρ′) = ATu(ρ), v(ρ′) = BT v(ρ), W (ρ′) = ATW (ρ)B. And the Gell Mann Type basis of ρ and

ρ′ be the Pauli matrices up to scale, i.e. ρ, ρ′ are in V3 = 1/2I2 + SpanR{σ1, σ2, σ3}.
Set up a lie group homomorphism by considering the group action U(2) on {σ1, σ2, σ3} by

adjoint operation:

φ : U(2)→ GL(3,R), with U 7→ AdU , ∀U ∈ U(2)

It is equivalent to consider this homomorphism in the lie algebra representation:

ψ : u(2)→ gl(3,R), with u 7→ adu, ∀u ∈ u(2)

By definition, u(2) = {A ∈ M(2,C)|A = −A∗} = SpanR{h1 = ie11, h2 = ie22, a = e12 + e21,
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b = ie12 − ie21}. The map is as following:

adh1 =

0 0 0

0 0 1

0 −1 0

 , adh2 =

0 0 0

0 0 −1

0 1 0



ada =

 0 0 2

0 0 0

−2 0 0

 , adb =

 0 2 0

−2 0 0

0 0 0


Notice that SpanR{adh1 , adh2 , ada, adb} = so(3,R), i.e. imψ = so(3). Equivalently, imφ =

SO(3), it suggests that if there exists A, B in SO(3) that u(ρ′) = ATu(ρ), v(ρ′) = BT v(ρ),

and W (ρ′) = ATW (ρ)B. Then there exists some element U1, U2 in U(2) such that φ(U1) = A,

φ(U2) = B, thus U1 ⊗ U2ρ(U1 ⊗ U2)
† = ρ′.

5.2 The normal form of a bipartite mixed state

To classify the local unitary equivalence of mixed bipartite quantum states, we introduce a new

concept, the Normal Form of Bipartite Quantum States:

Definition 5.4. For a bipartite quantum state ρ inHd1⊗Hd2 , associated with (W (ρ), u(ρ), v(ρ)),

this form defined as the Smith normal form of λW (ρ)+u(ρ)v(ρ)T , a N1 = d21−1 by N2 = d22−1

matrix such that all its nonzero elements are on its diagonal and they divides each other from

top to bottom and all its zero elements stay at the bottom [24, 25, 26].

i.e.



d1(λ) 0 · · · 0 0 · · ·
0 d2(λ) · · · 0 0 · · ·
· · · · · · · · · · · · · · · · · ·
0 0 · · · dm(λ) 0 · · ·
0 0 · · · 0 0 · · ·
· · · · · · · · · · · · · · · · · ·


N×M

Here, di(λ) ∈ C[λ] such that di(λ)|di+1(λ), ∀1 ≤ i ≤ m and m ≤ N.

The smith normal form of the matrix λW (ρ) + u(ρ) with all entries in its principal ideal

domain C[λ] is uniquely determined by definition. It is obtained though left and right multipli-

cation of some invertible matrices P (λ) ∈ Gl(N1,C[λ]), Q1 ∈ Gl(N2,C[λ]) with nonzero scale

determinant to λW (ρ) + u(ρ), i.e. P (λ)(λW (ρ) + u(ρ))Q(λ).
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5.2.1 Result in the normal form of states

Proposition 5.5. For any bipartite quantum state ρ′ and ρ associated with (W (ρ), u(ρ), v(ρ))

and (W (ρ′), u(ρ′), v(ρ′)). If ρ is local unitary equivalent to ρ′, then the normal forms of ρ and

ρ′ will be the same.

Lemma 5.6. For any matrices W,W ′ ∈ MN (C), column vectors u, v, u′ and v′ ∈ CN , there

exists U1, U2 ∈ U(N), such that U1WU †2 = W ′, u′ = U1u and v′ = U2v if and only if u, u’ have

the same length, i.e. u†u = u′†u′ and there exists V1, V2 ∈ U(N) such that V1WV †2 = W ′ and

V1uv
†V †2 = u′v′†.

Proof. The former statement naturally leads to the latter one, we only need to prove the

backwards. Suppose u†u = u′†u′ and there exists V1, V2 ∈ U(N), that u†u = u′†u′, V1WV †2 = W ′

and V1uv
†V †2 = u′v′† :

V1uv
†V †2 = u′v′† suggests that V1u = (v

′†V2v
v†v

)u′. If we denotes the coefficient of u′ as α, then

α be a scale with length 1, under the assumption u, u’ have the same length.

Similarly, V1uv
†V †2 = u′v′† suggests that (V2v)† = (

u†V †
1 u

′

u†u
)v′† and β be a scale with length 1,

if we denote the coefficient of v′† as β. And α and β are inverse to each other, since V1uv
†V †2 =

αu′βv′† = u′v′.

Let U1 = βV1, U2 = βV2, then U1U
†
1 = (ββ̄)V1V

†
1 = U2U

†
2 = I, i.e. U1, U2 ∈ U(N), then, U1,

U2 be in U(N), and U1WU †2 = W ′, u′ = U1u and v′ = U2v

Lemma 5.7. For any matricesX,X ′, Y and Y ′ ∈MN (C), there exists U1, U2 ∈ U(N), such that

U1XU
†
2 = X ′, U1Y U

†
2 = Y ′ if and only if there exists U1, U2 ∈ U(N), such that U1(X+λY )U †2 =

(X ′ + λY ′).

Proof. Suppose there exists U1, U2 ∈ U(N), that U1XU
†
2 = X ′, U1(λY )U †2 = λU1Y U

†
2 = λY ′,

thus U1(X + λY )U †2 = (X ′ + λY ′).

Proof of backwards. Suppose there exists U1, U2 ∈ U(N), such that U1(X + λY )U †2 =

(X ′ + λY ′). Consider the limit of this structure:

lim
λ→0

U1(X + λY )U †2 = lim
λ→0

U1XU
†
2 = X ′;

lim
λ→∞

U1(X + λY )U †2
λ

= lim
λ→0

U1(
X

λ
+ Y )U †2 = Y ′

, where X
λ → 0, as λ→∞.
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Proof of the propostion. By Theorem 5.2, we know if ρ is equivalent to ρ′, then there exists

U1, U2 in SO(N), such that u(ρ′) = UT1 u(ρ), v(ρ′) = UT2 v(ρ), W (ρ′) = UT1 W (ρ)U2. By lemma

5.4., we get V1W (ρ)V †2 = W (ρ′) and V1u(ρ)v(ρ)†V †2 = u(ρ′)v(ρ′)† for some V1, V2 ∈ U(N).

By lemma 5.6, it is suggested that there exists U1, U2 ∈ U(N), such that U1(λW (ρ) +

u(ρ)v(ρ)†)U †2 = λW (ρ′) + u(ρ′)v(ρ′)†, thus they will have the same normal form, i.e. they have

the same invariant polynomials. �

5.2.2 Examples for the invariant polynomials

1

26


9 5− i −4 + i 1 + 4i

5 + i 2 5 + 6i 5− i
−4− i 5− 6i 6 7

1− 4i 5 + i 7 9

 , 1

52


13 2 12 −1

−2 5 −2 −1

1 −9 6 −2

0 2 10 4


After changing the basis through our algorithm, we get the matrix in our hermitian Basis, and

its normal form will been as following:
5
52λ−

1
676 − 1

26λ−
3

338 − 1
52λ+ 1

1352

− 9
52λ+ 1

1352
3
26λ+ 3

676 − 1
26λ−

1
2704

1
26λ

5
26λ

1
13λ

 ,
1 0 0

0 λ 0

0 0 λ2 − 139
2236λ


We can get a local unitary equivalent state by some local unitary transformation, U1 ⊗

U2ρ(U1⊗U2)
†, and go through the whole process again, here we use U1⊗U2 =

[
3/5 4/5i

−4/5i −3/5

]
⊗[

5/13 12/13

−12/13 5/13

]
. Go through the same steps to the new state, the representation in our

hermitian basis is given and the normal form is also computed and listed below, it comes out

that the normal form of our new state by local unitary transformation is the same as that of

the origin state: 
1
4

601
4394 − 417

2197 − 1
52

7
650

28933
219700 − 15893

109850 − 103
1300

− 1
52 −1791

8788 − 183
4394

1
26

12
325 − 6653

109850 − 9349
109850

1
325

 ,
1 0 0

0 λ 0

0 0 λ2 − 139
2236λ



Example 2. A random mixed two partite quantum state ρ in H2 ⊗H3 generated by maple.

Its representation under our hermitian basis can be obtained through the same procedures:
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1

40



9 6− I 8 + 5I 5 + 4I 2 + 5I 3 + 6I

6 + I 4 8− I 4− I 8I 3I

8− 5I 8 + I 5 2 + 6I 2− I 3 + 2I

5− 4I 4 + I 2− 6I 9 3 + 6I 2I

2− 5I −8I 2 + I 3− 6I 6 8 + 4I

3− 6I −3I 3− 2I −2I 8− 4I 7



√
6

12
9
80

1
16

1
10

7
80

1
5

3
80

1
20

√
3

120

−
√
6

120
3
80 − 7

80
1
10

3
80 0 − 1

16
1
80

√
3

240√
6

30
3
40

3
40

1
16 0 1

40
1
20

1
16 −

√
3

240

−
√
6

120 − 1
20 − 1

40 − 3
20 − 1

80 − 1
40 − 1

40
1
20 −

√
3

30


1 0 0 0 ... 0

0 λ 0 0 ... 0

0 0 λ2 0 ... 0


Similarly, a local unitary equivalent state will be generated by some local unitary transforma-

tion: U1 ⊗ U2 =

[
3/5 4/5i

−4/5i −3/5

]
⊗

 5/13 12i/13 0

−12i/13 −5/13 0

0 0 1



√
6

12 − 9
80

215
2704

1
260

227
1040

1
260 − 111

1040
31

3380

√
3

120
7
√
6

120 − 3
80 − 817

338000
41

6500
27

2000 − 3
100 − 3199

26000
23897
992875

37
√
3

1200

−
√
6

30
3
40 − 657

6760
23

1040 − 3
130

1
104

1
13 − 25

2704

√
3

240

−
√
6

120
1
20

9403
169000 − 51

500 − 493
26000 − 71

2600
107
1000

4501
84500 −

√
3

75


1 0 0 0 ... 0

0 λ 0 0 ... 0

0 0 λ2 0 ... 0


It is shown from the result that the local unitary equivalent states will have the same normal

form. However, use the normal form to determine the local unitary transformation between two

5.3 Other method to determine the conditions

5.3.1 Algorithm through Specht’s theorem

Definition 5.8. Two matrices A and B are said to be unitarily equivalent if there exists a

Unitary matrix U , such that U(A)U † = B. And a word of two variables x and y are defined

to be W (x, y) = xm1ym2xm3ym4 · · ·xmi · · · ymp , where mi, 1 ≤ i ≤ p are non-negative integers,
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such that the degree of the word is m1 +m2 + · · ·+mp.

Use these definitions, we can introduce the Specht’s theorem:

Two matrices A and B are unitarily equivalent if and only if tr W(A, A*) = tr W(B, B*) for

all words W. This is a sufficient and necessary condition to check if two matrices are unitarily

equivalent discovered by Wilhelm Specht in 1940, and we can extend this theorem to our case.

Theorem 5.9. For two bipartite quantum state ρ′ and ρ associated with (W (ρ), u(ρ), v(ρ)) and

(W (ρ′), u(ρ′), v(ρ′)). If ρ is local unitary equivalent to ρ′, then tr((W (ρ) +λu(ρ)v(ρ)†)(W (ρ)†+

λv(ρ)u(ρ)†))n = tr((W (ρ′) + λu(ρ′)v(ρ′)†)(W (ρ′)† + λv(ρ′)u(ρ′)†))n for all positive integer n.

Proof. It has been proved that, there exists some unitary matrices A,B, such that AW (ρ)B† =

W (ρ′), Au(ρ) = u(ρ′), Bv(ρ) = v(ρ′), or A(W (ρ) + λu(ρ)v(ρ)†)B† = W (ρ′) + λu(ρ′)v(ρ′)†, for

any λ. Then it would satisfy the Specht’s theorem.

This theorem is a strong condition which gives us a series of invariant polynomials in terms

of λ instead of numbers, which could be translate into ordinary trace invariants. Ex. tr((X1 +

λY1)(X1 +λY1)
†) = tr((X2 +λY2)(X2 +λY2)

†) is one condition, it is equivalent to tr(X1X
†
1) =

tr(X2X
†
2), tr(X1Y

†
1 + Y1X

†
1) = tr(X2Y

†
2 + Y2X

†
2) and tr(Y1Y

†
1 ) = tr(Y2Y

†
2 ); Similarly, tr((X1 +

λY1)(X
†
1+λY †1 ))2 = tr((X2+λY2)(X

†
2+λY †2 ))2 is equivalent to tr(X1X1) = tr(X2X2), tr(X1Y1+

Y1X1) = tr(X2Y2 + Y2X2) and tr(Y1Y1) = tr(Y2Y2).

In general, there will be infinite many invariants that needs to check according to the lemma.

Fortunately, in the practice, most of the invariants are duplicated and could be reduced to finite

some.
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