
ABSTRACT

KAPRAUN, DUSTIN FREDERICK. Cell Proliferation Models, CFSE-Based Flow Cytometry
Data, and Quantification of Uncertainty. (Under the direction of H.T. Banks.)

The adaptive immune response is a major component of the human immune system’s de-
fense against invading pathogens. Since the success of the adaptive immune system depends on
the capacity of lymphocytes to proliferate in response to various environmental stimuli (e.g.,
viral infection or organ transplant), the ability to make accurate predictions about lymphocyte
behavior under specific conditions has important implications for immunology research. Such
predictions can be made through the use of mathematical models.

In this dissertation, we provide an overview of our work using CFSE-based flow cytometry
data in conjunction with cell proliferation models to estimate various biological quantities of
interest. We first present a brief review of cell proliferation models that can be found in the
literature and then describe two specific division- and label-structured PDE models which we
have developed and used to analyze cell proliferation parameters. The first model we consider is
based upon the premise of symmetric cell divisions, while the second allows for the possibility of
asymmetric cell divisions. Considerable attention is devoted to derivations of the PDE models
from conservation principles and explanations of the computational methods used to obtain
numerical solutions for these models.

By examining a large collection of data sets involving replicated observations of CD4+ and
CD8+ T cells collected from two healthy donors, we are able to analyze variability in CFSE-
based flow cytometry data. Then, applying a statistical model and a generalized least squares
parameter estimation scheme to our our symmetric division cell proliferation model, we are
able to analyze variability in parameter estimates across multiple donors and cell types. We
also discuss the identifiability of the various parameters involved in the symmetric division
model. Finally, we apply a similar parameter estimation scheme to our asymmetric division
model and observe and discuss differences in the results.
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Chapter 1

Introduction

1.1 Motivation

The adaptive immune response constitutes a major component of the mammalian immune
system’s defense against invading pathogens. B cells and T cells, which are the two classes
of lymphocytes that comprise the adaptive immune system, recognize invaders by specific cell
surface receptors and exert their responses through humoral and cellular effector mechanisms
(i.e., through antibodies and cytotoxic T cells). As the success of the adaptive immune system
in overcoming a perceived threat depends on the capacity of lymphocytes to proliferate, the
ability to accurately predict cell proliferation dynamics in the presence of specific environmental
stimuli has important implications for human health research in areas such as the treatment and
prevention of infectious disease and immunosuppression for patients receiving organ and tissue
transplants. Our efforts here focus on making such predictions through the use of mathematical
models, and on quantifying uncertainty in these predictions.

Over the last half-century, many mathematical models have been proposed that attempt to
describe the dynamics of a proliferating population of lymphocytes, but until fairly recently it
has been a challenge to validate such models. The discovery of the intracellular dye carboxy-
fluorescein succinimidyl ester (CFSE) was a major milestone in overcoming this obstacle. CFSE
was originally developed as a tool for labeling lymphocytes so that their movements within ani-
mal subjects could be tracked over many months [48], but subsequently researchers determined
that the dye could also be used to monitor lymphocyte proliferation [36]. Also, through the
use of fluorescently labeled antibodies specific to various lymphocyte surface markers, it is now
possible to follow the proliferative behavior of specific types of lymphocytes [35]. We provide a
detailed explanation of how CFSE and flow cytometry can be used to produce cell proliferation
data in Section 1.2.

In the research presented here, CFSE-based flow cytometry data are used to determine T cell
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proliferation and death rates (for cells having completed various numbers of divisions), and thus
to obtain a more comprehensive understanding of the adaptive immune response. Some previous
approaches to this problem are summarized in Section 1.3, and a then detailed description of
our basic approach is presented in Chapter 2. It is worth noting that the mathematical and
statistical methods described are sufficiently general that they could be applied to the analysis of
various types of cells (not just lymphocytes) labeled with any intracellular fluorescent label (not
just CFSE) that is apportioned approximately evenly upon mitosis. In Chapter 3, we describe
a study in which variability in CFSE-based flow cytometry data, as well as experimental and
biological variability in the associated proliferation parameters, are analyzed. In Chapter 4, we
make a slight detour to analyze computational methods for computing convolution integrals
associated with our cell proliferation models, and then in Chapter 5 we discuss a new model in
which the apportioning of CFSE during mitosis is not assumed to be even.

1.2 CFSE-Based Flow Cytometry Data

The basic idea behind flow cytometry cell proliferation experiments can be described as follows.
Suppose we can label all cells in a population with a “dye” that enters the cells and adheres to
molecules within their cytoplasm. If we then stimulate the cells to divide, mitosis causes each
“mother” cell to produce two “daughter” cells. Naturally, each of the daughter cells receives
a portion of the cytoplasm that originally belonged to the mother, and therefore each of the
daughter cells also receives a portion of the dye that was contained in the mother. Thus, as cell
proliferation continues, those cells that have undergone more divisions tend to have less dye
than those that have undergone fewer divisions. This allows one to use the total dye content of a
cell as an indicator of the number of divisions it has undergone. In CFSE-based flow cytometry
experiments, CFSE is the “dye” used to label the cells and flow cytometry is the means by
which one can measure the total dye content of individual cells.

A variety of methods exist for preparing and culturing cells for use in flow cytometry exper-
iments [35, 36, 39], but for the data utilized in this manuscript we consider the basic protocol
illustrated in Figure 1.1. After collecting whole blood from subjects, the first step is to isolate
the peripheral blood mononuclear cells (PBMCs) in the whole blood through centrifugation.
PBMCs include lymphocytes, which in turn include the T cells upon which we focus our re-
search efforts. Next, the PBMCs are passed through a filter that excludes clusters, or “clumps”,
of two or more cells. This proves important later, because the flow cytometer may not be able
to distinguish a cluster of cells from a single cell containing an apparently large quantity of
CFSE. The PBMCs, referred to hereafter as just “cells”, are then exposed to CFSE. As de-
scribed previously, the CFSE enters the cells and binds to proteins in the cytoplasm. After
being “stained” in this way with CFSE, the cells are stimulated to divide. Phytohaemagglu-
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Figure 1.1: Cell preparation and culturing protocol. (Image courtesy of Cristina Peligero.)

tinin (PHA) is nonspecific T cell mitogen that can be used for this purpose. Figure 1.1 also
shows a set of non-stimulated cells which can be used as an experimental control.

Once the cells have been thus prepared, they are placed into culturing wells with growth
medium and left to proliferate. In Figure 1.1, we see that wells have been “seeded” in triplicate
for each of three days. That is, three wells have been stocked with stained and stimulated cells
in preparation for measurements that will occur on Day 1 (“d1”), and likewise for Day 3 (“d3”)
and Day 5 (“d5”). (The data sets considered in this manuscript actually consist of triplicate
measurements made on each of five days.) It should be noted that experimenters take great care
to seed each of the wells in an identical way. That is, each well is prepared with approximately
the same number of cells and approximately the same quantity of growth media.

At the preordained time (e.g., after 24 hours, 72 hours, or 120 hours), the entire contents
of a given well are placed into a sample tube that contains a known number of fluorescent
beads. The cells in the tube are then exposed to other labeling agents which can be used to
distinguish particular cell types of interest, such as “helper” (CD4+) T cells and cytotoxic or
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“killer” (CD8+) T cells. Finally, a fraction (about 10 to 50%) of the contents of the sample tube
is analyzed using flow cytometry. Before continuing with a brief description of flow cytometry,
we think it worthwhile to list a few of the assumptions commonly made in conducting this type
of cell proliferation experiment: (1) we assume that each well contains an identical population
of cells at all times up until it is selected for measurement, (2) we assume that the sample
of cells acquired in the flow cytometer is representative of the population of cells in the well
from which the sample was taken, and (3) we assume that the fraction of the total well that
is actually measured can be accurately estimated by comparing the number of beads that pass
through the flow cytometer to the known total number of beads in the sample tube.

A flow cytometer is an instrument that is capable of quickly measuring various charac-
teristics of large numbers of individual cells. As illustrated in Figure 1.2, this instrument uses
hydrodynamic focusing to organize a sample of cells (and possibly other particles, such as beads)
into a single file. The cells (and in our case also the beads) then pass one at a time through an
interrogation point, where they are excited with a laser as shown in Figure 1.3. During this pro-
cess, the flow cytometer measures the fluorescence intensity (FI) at various wavelengths for each
cell in the sample and counts the number of beads in the sample. FI observed at wavelengths
in the range 515 to 545 nm corresponds to light emitted by CFSE [35, 48], while FI observed
at other wavelengths can indicate the presence of another labeling agent and can therefore be
used to identify the type of cell. Because FI induced by CFSE varies directly with the mass
of CFSE within a cell, the FI observed in the relevant range of wavelengths can be used as a
surrogate for CFSE mass contained in a particular cell [35, 48].

The output of a CFSE-based flow cytometry experiment can be summarized using his-
tograms such as those depicted in Figure 1.4. To construct these histograms, cells are placed
into bins defined by ranges of CFSE FI. Because the measured FI numbers tend to vary over
orders of magnitude during the course of typical multi-day experiment, it is common to use the
base 10 logarithm of FI as in the figure. Note that each curve in the figure provides a summary
of the information collected on a given day, and the abscissa and ordinate for each point on
the curve correspond to the lower limit of a histogram bin and the number of cells belonging
to that bin, respectively. Therefore, the total number of cells present in a well at a given point
in time can be visualized as the total area under the curve corresponding to that time.

We hypothesize that each peak in one of the histograms represents a generation of cells
having completed the same number of divisions. So in the “Day 1” histogram in Figure 1.4, we
see a single peak representing a single generation of cells – presumably these are the undivided
cells initially seeded in the well. In the “Day 2” histogram, however, we see two peaks because
cell division has commenced. The peak on the right represents undivided cells, and the peak on
the left represents cells that have divided once. Note that the FI corresponding to the center
of the left peak on Day 2 (about 104.2) is approximately one half of the FI corresponding the
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Figure 1.2: “Hydrodynamic focusing within the fluidics system of the flow cytometer.” (Source:
www.selectscience.net, 2 May 2014.)

Figure 1.3: Overview of the flow cytometry apparatus. (Source: www.semrock.com, 2 May
2014.)
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Figure 1.4: Histograms summarizing CFSE FI data at various time points.

center of the right peak (about 104.5). This is to be expected if we assume that each daughter
cell receives approximately one half of the CFSE contained in a dividing mother cell. Another
point which is clearly demonstrated by Figure 1.4 is that the peak corresponding to a given
generation tends to move to the left as time progresses. As described by Luzyanina et al. [34],
this can be explained by a natural decay of the CFSE label that occurs within the cells. (See
also references to CFSE “catabolism” by Lyons and Parish [36] and the discussion of CFSE
“efflux” by Matera et al. [37].) Thus, there are two mechanisms by which the histograms tend
to migrate to the left: cell division and CFSE label decay.

In the context of CFSE-based flow cytometry data, the goal of the modeling process is to link
a mathematical description of cellular division and death processes at the population level to the
observed fluorescence intensity profiles as measured by a flow cytometer (Figure 1.4). Because
each peak in the flow cytometry data represents a cohort of cells having completed the same
number of divisions, we hypothesize that flow cytometry data collected from cells stimulated
to divide and then harvested at a series of time points will contain sufficient information to
analyze the dynamic response of those cells to said stimulus. This dynamic response can only
be accurately understood in the context of a mathematical model of the biological system that
has been paired with a statistical model linking the mathematical model to the data. We hold
that any such model must account for the decay of CFSE over time, the dilution of FI through
cell division, and the asynchronous nature of the cellular division and death processes.
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1.3 Earlier Cell Proliferation Models

Prior to the work of Luzyanina et al. in 2007 [34], most mathematical modeling of CFSE-based
flow cytometry data focused on fitting numbers of cells per generation. To validate such models,
researchers distill (or “deconvolute” [47]) summary histogram data such as that presented in
Figure 1.4 to obtain the approximate numbers of cells in the various generations at each point
in a time series. Deconvolution of label-based flow cytometry data is typically accomplished
through interval gating or curve fitting techniques.

In interval gating, the FI (or log FI) axis of a summary histogram plot is partitioned into
intervals which roughly correspond to peaks observed in the histogram [35, 38]. Recall that
each peak corresponds to a generation of cells, so using this approach, the total number of
cells observed in a particular interval at a particular point in time gives an estimate of the
total number of cells in the corresponding generation at that time. Of course, such an approach
presents problems when significant overlap occurs between peaks. This tends to happen when
there is significant variation in the label content of cells in a given generation so that the peaks
are relatively wide. In any case, overlap becomes more problematic with the later generations
because after more divisions have occurred the total observable FI begins to approach the
background FI (or “autofluorescence”, cf. Section 2.2) of the cells in question. That is, once
cells have divided a certain number of times, say 10, autofluorescence dominates their observable
FI. Thus, the FI distributions for cells that have divided 10 times versus 12 times are usually
indistinguishable.

Curve fitting forms the basis for a more sophisticated approach to deconvolution of label-
based flow cytometry data. In this technique, one attempts to find a series of Gaussian or
lognormal curves that yield a good approximation of the summary histogram data [26, 35, 39].
Computer algorithms designed for this purpose usually employ a least squares approach, and a
number of commercially available software packages with this functionality now exist. Figure 1.5
shows typical output for one such software package. In blue, we see a set of 8 scaled lognormal
probability density functions. Each of these curves corresponds to a cohort of cells in the same
generation, so labels are provided across the top of the figure indicating cells that have divided
“0” times, “1 time”, and so on. In red, we see the curve given by the sum of the 8 blue curves.
It is this curve that presumably gives the best fit to the non-smooth black curve, which itself
represents the summary histogram data. For the example depicted, the total number of cells in
each of 8 generations can be approximated by determining the area under the corresponding
blue lognormal curve.

A variety of models have been proposed for describing the numbers of cells per generation
at a given point in time, and most of these can be described by systems algebraic equations,
ordinary differential equations (ODEs), or combinations thereof [26, 22, 23, 38]. These models
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Figure 1.5: Deconvolution of summary histogram data. (Source: www.flojo.com, 27 June 2014.)

establish biologically meaningful parameters such as division and death rates and time to first
division, and show how they can be identified using label-based flow cytometry data sets. More
recently, Hawkins et al. introduced a novel approach to modeling numbers of cells per generation
in which the parameters to be estimated are actually distributions [28, 29]. This model, which
they call the “cyton” model, is constructed upon the hypothesis that the fate of any given cell
is determined based upon realizations of two random variables: a time to divide and a time to
die. We give more attention to the cyton model for cell numbers in Section 2.3.

Each of the models cited thus far has been used to provide measures of the proliferative
capacity of a population of cells, but we again emphasize that these models are generally
calibrated using deconvoluted data. Clearly, the assumption of particular distributional shapes
for the generational structure of FI histogram data (e.g., the assumption that the generational
peaks have lognormal distributions) affects how cell numbers per generation are estimated,
and can therefore introduce bias into the parameter estimates obtained in model calibrations.
Furthermore, because the original “raw” data are essentially discarded once the cell number
estimates are computed, any attempt to develop a statistical model linking a mathematical
model that only describes cell numbers to the data has been marred from the outset.

In recent years, a new type of structured cell population model has emerged which promises
to overcome some of the issues we’ve raised concerning cell number models and deconvoluted
data. To our knowledge, Luzyanina et al. [34] proposed the first partial differential equation
(PDE) model to employ fluorescence intensity (FI) as a structure variable. They showed that
such a model can successfully track the behavior of a proliferating lymphocyte population
labeled with CFSE, and that it can compete with compartmental ODE models in estimating cell
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numbers per generation. More recent work with FI- or label-structured PDE models [1, 9, 33]
has consistently demonstrated their effectiveness in fitting summary FI histogram data for
CFSE-based proliferation assays. The key idea behind such models is that, because the CFSE-
based FI tends to be less for cells that have divided more times, FI can be used as a surrogate
for division number. By directly treating measured FI data and the experimental processes
underlying flow cytometry and CFSE-based proliferation assays, structured PDE models offer
clear advantages over earlier cell number models.

The model originally put forth by Luzyanina et al. describes the number of cells per unit FI
at a given time in terms of a single hyperbolic PDE. Unfortunately, with this approach one must
still associate a particular interval of FI with a specific generation of cells in order to incorporate
generational dependence into division and death rate functions. Thus, the problem of overlap
between generational peaks persists. More recently, Thompson [47] proposed a compartmental
model consisting of one PDE for each generation under consideration. This model eliminates
the need to define each generation of cells through specification of an FI interval, and is the
starting point for the cell proliferation models we discuss in Chapter 2.
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Chapter 2

Modeling Cell Proliferation with

Partial Differential Equations

Here, we summarize a class of models originally proposed by Thompson [47] and further devel-
oped by Banks, Thompson, et al. [10, 5]. We then identify a specific mathematical model for
further consideration, describe a statistical model relating this mathematical model to CFSE-
based flow cytometry data, and outline a scheme by which model parameters can be estimated.

2.1 Basic Division- and Label-Structured Model for Cell Den-

sities

Let ni(t, x) be a structured density (in cells per unit FI), where i is a whole number representing
the number of divisions completed for a specific “generation” of cells, t denotes the time elapsed
(in hr) since some arbitrary starting time, and x denotes FI induced by CFSE. Also, let {αi(t)},
{βi(t)}, and v(t) denote exponential division rates, exponential death rates, and the CFSE
exponential decay rate, respectively (all in hr−1). Then the dynamics of a population of cells
are described by

∂

∂t
n0(t, x)− v(t)

∂

∂x

[
xn0(t, x)

]
= −

(
α0(t) + β0(t)

)
n0(t, x) (for i = 0),

∂

∂t
ni(t, x)− v(t)

∂

∂x

[
xni(t, x)

]
= −

(
αi(t) + βi(t)

)
ni(t, x) +Ri(t, x) for i ≥ 1,

(2.1)

where x ≥ 0 and the “recruitment” terms are given by

Ri(t, x) = 4αi−1(t)ni−1(t, 2x) (2.2)
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for i ≥ 1. The initial conditions are given by

ni(t0, x) =

Φ(x) for i = 0,

0 for i ≥ 1,
(2.3)

where t0 indicates the time of the first observation and Φ(x) is the structured density for cells
in the initial (undivided) population. We remark here that t0 typically coincides with the time
at which the cells were stimulated to divide, but for the experimental data we describe in
Chapter 3 and consider throughout this dissertation, the first observation actually occurred
approximately 24 hours after stimulation. We also mention that the form of the recruitment
terms (2.2) assumes an even partitioning of the CFSE in a mother cell between two daughter
cells during cytokinesis; i.e., we assume that each daughter cell receives exactly one half of the
CFSE that was present in the mother cell. It should be pointed out that long-standing results
indicate that the partitioning of cytoplasm to two daughter cells during mitosis is not even [44],
and a recent review [15] suggests that incorporating the assumption of asymmetric cell division
into mathematical models for cell proliferation will “improve assessment of T cell performance
parameters from CFSE-based proliferation assays.” In Chapter 5 we revisit the possibility of
asymmetric division, but here we follow the convention of earlier work [5, 27, 35, 39, 41, 47] in
making the simplifying assumption that CFSE is evenly distributed during cell division.

The derivation of a model very similar to that given in (2.1) and (2.2) was provided in
Chapter 3 of [47], but there the contribution of cellular autofluorescence was treated differently
than it will be treated here (see Section 2.2). For that reason, and for the sake of completeness,
we offer our own model derivation presently. In order to obtain a partial differential equation
describing ni(t, x), we consider changes to the total number of cells in generation i at time t
with CFSE FI in the arbitrary interval [x, x+ ∆x]. This total number of cells is given by∫ x+∆x

x
ni(t, ξ) dξ.

There are five possible contributions to the time rate of change of this quantity, and we consider
each of these in the list below.

(i) The rate at which cells enter the FI interval [x, x + ∆x] (from the right) due to CFSE
decay, which can be computed as v(t) · (x+ ∆x) · ni(t, x+ ∆x).

(ii) The rate at which cells leave the FI interval [x, x+∆x] (from the left) due to CFSE decay,
which can be computed as v(t) · x · ni(t, x).

(iii) The rate at which cells leave the FI interval [x, x+ ∆x] (and, in fact, leave generation i)
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due to cell division, which can be computed as

αi(t) ·
∫ x+∆x

x
ni(t, ξ) dξ.

(iv) The rate at which cells leave the FI interval [x, x + ∆x] due to cell death, which can be
computed as

βi(t) ·
∫ x+∆x

x
ni(t, ξ) dξ.

(v) The rate at which cells enter the FI interval [x, x+ ∆x] due to the division of cells in the
“previous” generation i− 1 with FI in the interval [2x, 2(x + ∆x)]. As mentioned above,
we assume that each daughter cell receives exactly one half of the CFSE present in the
mother cell during mitosis. Because two daughter cells are created from a single mother
cell, the rate in question can be computed as 2 times the exponential birth rate times the
number of cells in the relevant FI interval, or

2 · αi−1(t) ·
∫ 2(x+∆x)

2x
ni−1(t, ξ) dξ.

Applying the change of variables η = 1
2ξ, the expression becomes

4 · αi−1(t) ·
∫ x+∆x

x
ni−1(t, 2η) dη.

It is important to note that this particular contribution to change in cell numbers does
not apply in the case of cells in generation i = 0 because there is no previous generation
from which cells can enter in that case.

Taking into account all of these contributions, the time rate of change of the total number of
cells in generation i at time t with FI in the region [x, x+ ∆x] is

d

dt

∫ x+∆x

x
ni(t, ξ) dξ = (i)− (ii)− (iii)− (iv) + (v)

=
[
v(t)(x+ ∆x)ni(t, x+ ∆x)

]
−
[
v(t)xni(t, x)

]
−
[
αi(t) ·

∫ x+∆x

x
ni(t, ξ) dξ

]
−
[
βi(t) ·

∫ x+∆x

x
ni(t, ξ) dξ

]
+ 4αi−1(t)

∫ x+∆x

x
ni−1(t, 2η) dη.
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Dividing by ∆x on both sides of this equation and taking the limit as ∆x→ 0 yields

∂

∂t
ni(t, x) = v(t)

∂

∂x

[
xni(t, x)

]
−
(
αi(t) + βi(t)

)
ni(t, x) + 4αi−1(t)ni−1(t, 2x).

As mentioned above, the last term on the right hand side of this equation must be omitted
when i = 0. Thus, we obtain the model given in (2.1) and (2.2).

As proposed by Schittler et al. [41], the solutions to the partial differential equations (PDEs)
given in (2.1) can be factored as

ni(t, x) = Ni(t)n̄i(t, x), (2.4)

where Ni(t) indicates the number of cells having completed i divisions at time t and n̄i(t, x)
describes the distribution of CFSE FI within that generation of cells at time t; that is, n̄i(t, x)
is a probability density function (pdf) in the variable x, so that for any fixed t, n̄i(t, x) ≥ 0 for
all x and ∫ ∞

0
n̄i(t, x) dx = 1.

Because the assumptions and notations we employ here are slightly different from those used
by Schittler et al. [41], we offer the following formal proposition of this factorability of solutions
and provide a proof.

Proposition 2.1. Let {Ni(t)}∞i=0 be a set of functions satisfying the system of weakly coupled
ordinary differential equations (ODEs) given by

dN0(t)
dt

= −
(
α0(t) + β0(t)

)
N0(t) (for i = 0),

dNi(t)
dt

= −
(
αi(t) + βi(t)

)
Ni(t) + 2αi−1(t)Ni−1(t) for i ≥ 1,

(2.5)

and the initial conditions given by

Ni(t0) =

N0 =
∫∞

0 Φ(x) dx for i = 0,

0 for i ≥ 1.
(2.6)

Also, let {n̄i(t, x)}∞i=0 be a set of functions such that each n̄i satisfies the PDE

∂n̄i(t, x)
∂t

− v(t)
∂[xn̄i(t, x)]

∂x
= 0 (2.7)

and the initial condition

n̄i(t0, x) =
2iΦ(2ix)
N0

(2.8)
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for all x ≥ 0. Then the solution to (2.1) and (2.3) is given by (2.4) for i ∈ {0, 1, 2, . . .}.

Proof. We begin by considering the case i = 0. Taking the time derivative of (2.4) and then
substituting (2.5) and (2.7) leads to

∂

∂t
n0(t, x) =

d

dt

[
N0(t)

]
· n̄0(t, x) +N0(t) · ∂

∂t

[
n̄0(t, x)

]
=
[
−
(
α0(t) + β0(t)

)
N0(t)

]
· n̄0(t, x) +N0(t) ·

[
v(t)

∂

∂x

[
xn̄0(t, x)

]]
= −

(
α0(t) + β0(t)

)
N0(t)n̄0(t, x) + v(t)

∂

∂x

[
xN0(t)n̄0(t, x)

]
= −

(
α0(t) + β0(t)

)
n0(t, x) + v(t)

∂

∂x

[
xn0(t, x)

]
,

which is equivalent to (2.1) in the case i = 0. Furthermore, substituting (2.6) and (2.8) into
(2.4), the initial condition for the case i = 0 becomes

n0(t0, x) = N0(t0)n̄0(t0, x) =
[
N0

]
·
[

Φ(x)
N0

]
= Φ(x),

which is equivalent to (2.3) in the case i = 0.
Next, we consider the situation for i ≥ 1. For this case, it is first necessary to obtain the

solutions of (2.7) subject to the initial conditions (2.8). These solutions, which can be obtained
by the method of characteristics (see Section A.1 of the Appendix), are given by

n̄i(t, x) =
2i

N0
Φ
(

2ix · exp
[∫ t

t0

v(u) du
])
· exp

[∫ t

t0

v(u) du
]
.

From the expressions for these solutions it is easily verified (see Lemma A.1) that

n̄i(t, x) = 2n̄i−1(t, 2x) (2.9)

for i ≥ 1, a result which we shall use presently.
For an index i ≥ 1, taking the time derivative of (2.4) and then substituting (2.5) and (2.7)

leads to

∂

∂t
ni(t, x) =

d

dt

[
Ni(t)

]
· n̄i(t, x) +Ni(t) ·

∂

∂t

[
n̄i(t, x)

]
=
[
−
(
αi(t) + βi(t)

)
Ni(t) + 2αi−1(t)Ni−1(t)

]
· n̄i(t, x) +Ni(t) ·

[
v(t)

∂

∂x

[
xn̄i(t, x)

]]
= −

(
αi(t) + βi(t)

)
Ni(t)n̄i(t, x) + 2αi−1(t)Ni−1(t)n̄i(t, x) + v(t)

∂

∂x

[
xNi(t)n̄i(t, x)

]
.

Then, making the substitution suggested by (2.9) in the second term on the right hand side,
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we obtain

∂

∂t
ni(t, x) = −

(
αi(t) + βi(t)

)
Ni(t)n̄i(t, x) + 4αi−1(t)Ni−1(t)n̄i−1(t, 2x) + v(t)

∂

∂x

[
xNi(t)n̄i(t, x)

]
= −

(
αi(t) + βi(t)

)
ni(t, x) + 4αi−1(t)ni−1(t, 2x) + v(t)

∂

∂x

[
xni(t, x)

]
which is equivalent to (2.1) in the case i ≥ 1. Substituting (2.6) and (2.8) into (2.4), the initial
condition for an index i ≥ 1 becomes

ni(t0, x) = Ni(t0)n̄i(t0, x) =
[
0
]
·
[

2iΦ(2ix)
N0

]
= 0,

which is equivalent to (2.3) in the case i ≥ 1.
Thus, we have verified that the solution to (2.1) and (2.3) is given by (2.4) for i ∈ {0, 1, 2, . . .},

provided the conditions stipulated in the proposition are met.

It is worth noting that cells will only divide a finite number of times in the time frame of
a typical in vitro cell culturing experiment. Therefore, we typically compute solutions to (2.5)
and (2.7) only for i ∈ {0, 1, . . . , imax}, where imax is the largest number of divisions we expect
a cell from the initial population to undergo during the period of observation. For a five-day
experiment such as that presented in Section 3.1, it is rare for cells to undergo more than 12
divisions. In order to capture the behavior of all but a negligible number of cells, we therefore
use the conservative value of imax = 16 for our purposes in Chapter 3 and elsewhere in this
dissertation unless another value is explicitly noted.

2.2 Autofluorescence

Thus far, we have described a model that accounts only for FI induced by CFSE, but as noted
in [47], the experimentally measured FI of a cell is actually the sum of CFSE-induced FI and
the cell’s natural “autofluorescence”. Therefore, following the work of [27], we let ñi(t, x̃) be a
structured density (in cells per unit FI), where i again denotes a specific generation of cells, t
denotes time elapsed (in hr), and x̃ denotes measured FI. Here,

x̃ = x+ xa,

where x and xa represent the FI due to CFSE content and cellular autofluorescence, respectively.
If we assume solutions ni(t, x) to (2.1) and (2.3) have already been computed and that xa

is a realization of a random variable Xa with pdf fXa(xa; t), then the densities ñi(t, x̃) can be

15



computed using the convolution formula [18]

ñi(t, x̃) =
∫ ∞
−∞

ni(t, x)fXa(x̃− x; t) dx =
∫ x̃

0
ni(t, x)fXa(x̃− x; t) dx. (2.10)

as proposed by Hasenauer, Schittler, et al. [27, 41]. These authors demonstrate that, under
certain assumptions, this convolution can be computed quickly and efficiently [27]. More will
be said about the computation of (2.10) in Chapter 4.

2.3 Cyton Model for Cell Numbers

We now turn our attention to the cyton model [28, 29], which is an alternative to (2.5) that
arises from two simple assumptions. The first, which is self-evident, is that any given cell must
eventually either divide or die. The second, which is based upon experimental evidence, is that
the processes of cell division and death operate independently of one another [29]. Thus, we can
assume that the destiny of any particular cell is governed by two fixed numbers: a “time until
division” and a “time until death”. In particular, the actual fate of the cell (division or death) can
be determined by observing which of these two numbers is smaller. For an individual cell within
a population of cells sharing similar characteristics (e.g., cells of the same type having undergone
the same number of divisions), it is reasonable to assume that the “time until division” and
“time until death” are realizations of independent random variables. These random variables
are described by probability distributions, and so the cyton model requires parameters that can
be used to uniquely determine the probability distributions for times until division and death
of cells in a given population (e.g., CD4+ T cells having undergone 1 division). Hawkins et al.
chose the term “cyton” to denote the “combination of independent cellular machines governing
times to divide and die” and represented a cyton mathematically using a pair of probability
density functions [29] . For example, if φi and ψi are the pdfs for time until division and time
until death, respectively, of cells in generation i, then the cyton for generation i can be denoted
(φi, ψi). One additional consideration is that, in reality, not all cells in a given population will
divide if they avoid death (at least not within the time frame of a typical in vitro cell culturing
experiment) [29]. Therefore, the cyton model includes the notion of “progressor fraction”: for a
given generation of cells, only a certain proportion have the potential to “progress” to the next
generation via cell division.

Let Fi denote the progressor fraction for generation i; that is, Fi represents the proportion
of cells in generation i that would (eventually) divide in the absence of any possibility of cell
death. Then, define the random variable T divi to be the time required for a cell in generation
i (with the potential to progress) to complete its next division (measured in hours since the
completion of the ith division, or in the case of T div0 , hours since t0). Similarly, define the random
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variable T diei to be the time required for a cell in generation i to die. Finally, let φi(t) and ψi(t)
be pdfs for T divi and T diei , respectively. If we define Ni(t) as before, the cyton model is then
given by

N0(t) = N0 −
∫ t

t0

(
ndiv0 (s) + ndie0 (s)

)
ds (for i = 0),

Ni(t) =
∫ t

t0

(
2ndivi−1(s)− ndivi (s)− ndiei (s)

)
ds for i ≥ 1,

(2.11)

where ndivi (t) and ndiei (t) are rates (in cells/hr) at which cells in generation i divide and die,
respectively. These rates are defined as

ndivi (t) =


F0N0

(
1−

∫ t

t0

ψ0(s) ds
)
φ0(t) for i = 0,

2Fi
∫ t

t0

ndivi−1(s)
(

1−
∫ t−s

0
ψi(ξ) dξ

)
φi(t− s) ds for i ≥ 1.

(2.12)

and

ndiei (t) =


N0

(
1− F0

∫ t

t0

φ0(s)ds
)
ψ0(t) for i = 0,

2
∫ t

t0

ndivi−1(s)
(

1− Fi
∫ t−s

0
φi(ξ) dξ

)
ψi(t− s) ds for i ≥ 1.

(2.13)

There is considerable experimental evidence [11, 28, 29] that supports the cyton model,
and it has an advantage over models such as (2.5) in that it directly connects cell population
numbers to probablity distributions describing times at which cells in a given generation will
divide or die. Identifying these distributions for populations of lymphocytes exposed to specific
environmental stimuli allows for a detailed quantitative description of the adaptive immune
response.

2.4 Division- and Label-Structured Cyton Model for Cell Den-

sities

As in earlier work [5], we incorporate the cyton model for cell numbers into the division- and
label-structured model framework described previously by replacing the sink and source terms
in the right-hand sides of (2.1) with terms involving the cyton-based rates to obtain

∂n0(t, x)
∂t

− v(t)
∂[xn0(t, x)]

∂x
= −

(
ndiv0 (t) + ndie0 (t)

)
n̄0(t, x) (for i = 0),

∂ni(t, x)
∂t

− v(t)
∂[xni(t, x)]

∂x
=

(
2ndivi−1(t)− ndivi (t)− ndiei (t)

)
n̄i(t, x) for i ≥ 1.

(2.14)
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Solutions of this system are then given by ni(t, x) = Ni(t)n̄i(t, x), where the Ni(t)’s satisfy the
cyton model equations (2.11) and initial conditions (2.6) and each n̄i(t, x) satisfies (2.7) and
(2.8) as before. We state this claim as a proposition and provide a proof below.

Proposition 2.2. Let {Ni(t)}∞i=0 be a set of functions satisfying the cyton model (2.11), where
the initial condition N0 is given by the relation shown in (2.6). Also, let {n̄i(t, x)}∞i=0 be a set of
functions such that each n̄i satisfies the PDE (2.7) and the initial condition (2.8) for all x ≥ 0.
Then the solution to (2.14) with initial conditions (2.3) is given by (2.4) for i ∈ {0, 1, 2, . . .}.

Proof. We begin by considering the case in which i = 0. Taking the time derivative of (2.4),
substituting (2.11) and (2.7), and applying the fundamental theorem of calculus leads to

∂

∂t
n0(t, x) =

d

dt

[
N0(t)

]
· n̄0(t, x) +N0(t) · ∂

∂t

[
n̄0(t, x)

]
=

d

dt

[
N0 −

∫ t

t0

(
ndiv0 (s) + ndie0 (s)

)
ds

]
· n̄0(t, x) +N0(t) ·

[
v(t)

∂

∂x

[
xn̄0(t, x)

]]
=
[
0−

(
ndiv0 (t) + ndie0 (t)

)]
· n̄0(t, x) + v(t)

∂

∂x

[
xN0(t)n̄0(t, x)

]
= −

(
ndiv0 (t) + ndie0 (t)

)
n̄0(t, x) + v(t)

∂

∂x

[
xn0(t, x)

]
,

which is equivalent to (2.14) in the case i = 0. Furthermore, evaluating (2.4) at t = t0 and
substituting (2.11) and (2.8), the initial condition for the case i = 0 becomes

n0(t0, x) = N0(t0)n̄0(t0, x) =
[
N0

]
·
[

Φ(x)
N0

]
= Φ(x),

which is equivalent to (2.3) in the case i = 0.
Next, we consider the situation for i ≥ 1. As for the i = 0 case, we take the time derivative

of (2.4), substite (2.11) and (2.7), and apply the fundamental theorem of calculus. The result
in this case is

∂

∂t
ni(t, x) =

d

dt

[
Ni(t)

]
· n̄i(t, x) +Ni(t) ·

∂

∂t

[
n̄i(t, x)

]
=

d

dt

[∫ t

t0

(
2ndivi−1(s)− ndivi (s)− ndiei (s)

)
ds

]
· n̄i(t, x) +Ni(t) ·

[
v(t)

∂

∂x

[
xn̄i(t, x)

]]
=
(

2ndivi−1(t)− ndivi (t)− ndiei (t)
)
· n̄i(t, x) + v(t)

∂

∂x

[
xNi(t)n̄i(t, x)

]
=
(

2ndivi−1(t)− ndivi (t)− ndiei (t)
)
n̄i(t, x) + v(t)

∂

∂x

[
xni(t, x)

]
,

which is equivalent to (2.14) in the case i ≥ 1. Finally, evaluating (2.4) at t = t0 and substituting
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(2.11) and (2.8), the initial condition for the case i ≥ 1 becomes

ni(t0, x) = Ni(t0)n̄i(t0, x) =
[
0
]
·
[

2iΦ(2ix)
N0

]
= 0,

which is equivalent to (2.3) in the case i ≥ 1.
Thus, we have verified that the solution to (2.14) and (2.3) is given by (2.4) for i ∈

{0, 1, 2, . . .}, provided the conditions stipulated in the proposition are met.

Like (2.1), the model given by (2.14) may be properly described as a division- and label-
structured population model, as it makes use of structure variables for division number (or
generation) i and CFSE-induced FI x (which is assumed to be proportional to CFSE label
content). Also, as described by Hasenauer, Schittler, et al. [27, 41] and summarized in our
earlier work [5], the factorable form of the solutions {ni(t, x)} and the technique for converting
these to corresponding solutions {ñi(t, x̃)} via convolution integrals (cf. (2.10)) makes it possible
to obtain numerical solutions very quickly when the model parameters are given. This model has
been shown to yield a reasonably good fit to summary histogram data such as that presented
in Figure 1.4, provided that the model parameters are chosen “optimally” [5]. More will be said
about optimal parameter estimation in Section 2.6.

Finally, we remark that (2.14) actually describes an entire class of models. In order to specify
a particular model for further investigation, we must decide on forms for the distribution of the
autofluorescence Xa, the (exponential) label decay rate v(t), the cytons {(φi(t), ψi(t))}, and the
progressor fractions {Fi}.

2.5 Assumptions and Parameterization for a Specific Mathe-

matical Model

Here, we list the assumptions for the specific cyton-based mathematical model we consider and
describe the parameters that we use to designate this model. All of the parameters for our
specific mathematical model are provided in Table 2.1.

First, we assume that the random variable Xa is time-independent and has a lognormal
distribution with mean and variance denoted E [Xa] and Var [Xa], respectively. Although ex-
periments indicate that the distribution of autofluorescence does, in fact, vary with time, ig-
noring this time-dependence greatly reduces the number of parameters required to designate
the model and still allows for a reasonable fit to summary histogram data [5]. We therefore
have two parameters that completely describe the distribution of autofluorescence: E [Xa] and
SD [Xa] = (Var [Xa])1/2, which are listed as parameters 1 and 2, respectively, in Table 2.1.
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Next, we assume that the rate of decay in CFSE-induced FI is given by v(t) = c, where c > 0
is some constant. This follows the convention established in our earlier work [5], in which we
assume that an exponential decay model is sufficient to describe decay of CFSE in experiments
for which the first data collection time occurs after approximately 24 hours. We note that the
decay of intracellular CFSE has been observed to occur very rapidly during the first 24 hours
after initial labeling and much slower thereafter [8, 35, 47] and that this observation can be
fully supported with molecular-level modeling [2]. Thus, when data are collected in the first
24 hours, it is more accurate to describe the rate of loss of fluorescence intensity with a time-
varying rate, as in a Gompertz decay model. As has been previously asserted, however, the first
observation occurred approximately 24 hours after stimulation for the experimental data we
consider throughout this dissertation. Therefore, we require only one parameter to completely
describe the decay of CFSE: c, which is listed as parameter 3 in the Table 2.1.

We assume that each T divi has a lognormal distribution with mean and variance denoted
E
[
T divi

]
and Var

[
T divi

]
, respectively. We further assume that, for i ≥ 1, all T divi are independent

and identically distributed (i.i.d.). Such assumptions are consistent with earlier work using the
cyton model [5, 28, 29], as well as experimental evidence [26]. We therefore have four parameters
that completely describe {T divi }: E

[
T div0

]
, SD

[
T div0

]
= (Var

[
T div0

]
)1/2, E

[
T div

]
= E

[
T divi

]
for

i ≥ 1, and SD
[
T div

]
= SD

[
T divi

]
= (Var

[
T divi

]
)1/2 for i ≥ 1. These are listed as parameters 4

through 7, respectively.
We also assume that the random variables T diei for i ≥ 1 are i.i.d. with a lognormal dis-

tribution, in this case with mean and variance denoted E
[
T die

]
and Var

[
T die

]
, respectively.

Table 2.1: Parameters for specific mathematical model.
Number Parameter Description

1 E [Xa] mean autofluorescence

2 SD [Xa] std. dev. of autofluorescence

3 c exponential decay rate for CFSE

4 E
[
T div0

]
mean time to divide for cells in generation i = 0

5 SD
[
T div0

]
std. dev. of time to divide for cells in generation i = 0

6 E
[
T div

]
mean time to divide for cells in later generations (i ≥ 1)

7 SD
[
T div

]
std. dev. of time to divide for cells in later generations (i ≥ 1)

8 E
[
T die

]
mean time to die for cells in later generations (i ≥ 1)

9 SD
[
T die

]
std. dev. of time to die for cells in later generations (i ≥ 1)

10 F0 progressor fraction for cells in generation i = 0

11 Dµ mean of discrete normal distribution (used to compute Fi for i ≥ 1)

12 Dσ std. dev. of discrete normal distribution (used to compute Fi for i ≥ 1)
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Again such assumptions are consistent with earlier modeling work [5, 28, 29]. We further as-
sume that there is no death for undivided cells (i.e., those cells in generation i = 0). In reality,
there tends to be a large die-off of cells following stimulation with PHA [10], but we reiterate
that for the data analyzed in this dissertation the first measurements were made approximately
24 hours post-stimulation. As a result, the initial conditions for our mathematical model only
reflect those cells that have not died in the first 24 hours after stimulation. Therefore, as in our
earlier work [5], we assume that the cells in our “initial population” (consisting of those undi-
vided cells that are still alive 24 hours after stimulation) that do not go on to divide experience
essentially no death for the duration of the experiment. Hence, we have two parameters that
completely describe {T diei }: E

[
T die

]
= E

[
T diei

]
and SD

[
T die

]
= SD

[
T diei

]
= (Var

[
T diei

]
)1/2

for i ≥ 1, which are listed as parameters 7 and 8, respectively.
The only remaining parameters that are required to characterize our model are the pro-

gressor fractions {Fi}. We allow F0 to be one of our required model parameters and assume
that each progressor fraction Fi with i ≥ 1 is uniquely determined by the mean and standard
deviation of a “discrete normal distribution”, denoted Dµ and Dσ, respectively. This is consis-
tent with the “division destiny” approach for determining progressor fractions that has been
employed by Hawkins et al. [29] and Banks et al. [5], and we refer the interested reader to the
latter reference for a complete discussion of the method by which the progressor fractions are
computed. We therefore have three parameters that can be used to determine all the progressor
fractions: F0, Dµ, and Dσ, which are listed as parameters 10 through 12, respectively.

Thus, our specific model depends on exactly 12 parameters. We remark that parameters 1
through 3, while important for describing the data, are not considered to be “biologically
relevant” parameters in the sense that they do not have any bearing on the proliferative behavior
of a population of cells. Also, parameters 4, 6, 8, and 10 are perhaps the most important of the
biologically relevant parameters because their interpretation in the context of cell proliferation
is the most straightforward. Note that the specific cyton-based model described here is denoted
Model 6 (with exponential label decay) in our previous work [5]. Precise details of our methods
for computing numerical solutions for this model are provided in Appendix B.

2.6 Statistical Model and Parameter Estimation

In order to estimate the parameters in our specific mathematical model, we must first describe
a statistical model that relates observable data to the mathematical model. As was previously
explained, CFSE-based flow cytometry data are typically summarized in the form of histograms,
and furthermore, measured FI is commonly represented on a logarithmic scale (cf. Figure 1.4).
Therefore, we begin by describing how our model can be used to obtain information on cell
numbers in a form that can be compared directly with such summarized experimental data.
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If we define the structured densities ñi(t, x̃) (in terms of measured FI) as in Section 2.2,
then the structured density for the entire population of cells is

ñ(t, x̃) =
∞∑
i=0

ñi(t, x̃) ≈
imax∑
i=0

ñi(t, x̃).

(See Section 2.1 for a discussion of how we choose imax for our purposes.) Now, because CFSE
histogram data are most commonly reported using a base 10 logarithmic scale, we make the
change of variables z = log10(x̃) to obtain

n̂(t, z) = 10z log(10) ñ(t, 10z)

as the structured density in cells per base 10 log unit FI.
In the discussion that follows, we let ~q0 denote a hypothetical “true” parameter vector (so

that, in the case of our specific mathematical model, ~q0 ∈ R12) and let

I[n̂](tj , zk; ~q0) =
∫ zk+1

zk

n̂(tj , z; ~q0) dz (2.15)

denote the total number of cells with log (base 10) FI in the interval [zk, zk+1] at time tj . Also,
we let B denote the (fixed) total number of beads in each sample tube and bj denote the number
of beads counted for the sample measured at time tj .

Now, let N j
k be a random variable representing the number of cells with log FI in the interval

[zk, zk+1) measured at time tj . Then it has been argued [5] that

N j
k ∼ N

(
I[n̂](tj , zk; ~q0),

B

bj
I[n̂](tj , zk; ~q0)

)
; (2.16)

i.e., each N j
k is normally distributed with mean I[n̂](tj , zk; ~q0) and variance B

bj
I[n̂](tj , zk; ~q0).

Note that this does not lead to either (1) a constant variance model or (2) a constant coefficient
of variance model. Though these latter two types of statistical models are commonly assumed
to underly data-collection processes [12, 20, 43], modified residual plots indicate that (2.16) is
a better choice in this case [7, 47].

Define the generalized least squares (GLS) parameter estimator [3, 20]

~qGLS = argmin
~q∈Q

J(~q; {N j
k}),

where

J(~q; {N j
k}) =

∑
j,k

(I[n̂](tj , zk; ~q)−N j
k)2

wjk
, (2.17)
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Q denotes the set of allowable parameter vectors, and the weights (selected to match the variance
of the N j

k ’s) are given by

wjk =

B
bj
I[n̂](tj , zk; ~q0) for I[n̂](tj , zk; ~q0) > I∗,

B
bj
I∗ for I[n̂](tj , zk; ~q0) ≤ I∗.

(2.18)

The value of I∗ is positive to prevent division by zero, and in practice it is selected such that the
modified residual plots produce uniform random patterns. We once again follow the convention
established in our earlier work [5] and set I∗ = 200.

If we consider the measured data to be a set of realizations {njk} of the random variables
{N j

k}, we can obtain the GLS parameter estimate

q̂GLS = argmin
~q∈Q

J(~q; {njk}). (2.19)

Note that to compute the weights {wjk} we need ~q0, but to estimate ~q0 we need the weights.
In order to overcome this obstacle, we use a conventional generalized least squares iterative
estimation procedure [3, 12] as described in Algorithm 2.6.1. In this algorithm, note that ε is
a threshold tolerance that allows the user to specify a termination criterion, ~qtyp is a vector
with elements that reflect the relative sizes of the parameters to be estimated, and “./” denotes
element-wise division. We provide specific details of our implementation of this algorithm in
Appendix B.5.

To demonstrate the efficacy of the parameter estimation procedure, we provide sample
results in Figure 2.1. This figure shows the model output for Days 1 through 5 when using the
“optimal” parameter values obtained by applying Algorithm 2.6.1 to the data set depicted in
Figure 1.4. We see that the mathematical model described in Section 2.5 accurately describes
the overall behavior of T cells collected from healthy donors and stimulated to divide with
PHA; however, as discussed by Banks et al. [5], the model does seem to include systematic
errors. That is, in Figure 2.1 we see that the data is not always centered around the output
of the mathematical model. Possible explanations for misspecification of the model are hinted
at in Section 3.4, and are discussed further in Chapter 6. Since our statistical model does not
include terms for misspecification of the mathematical model, its use to compute parameter
confidence intervals might not be appropriate. We can, however, examine the reliability of the
data collection process and consider variability in the parameter estimates from this perspective.
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Algorithm 2.6.1 Parameter Estimation Procedure

1. Obtain initial estimate q̂(0) using (2.19) with wjk = 1 for all j, k.

2. Compute weights wjk using (2.18) with ~q0 replaced by q̂(0).

3. Initialize the iteration counter ` with the value 1.

4. Do each of the following:

� Compute q̂(`) using (2.19) with current weights wjk.

� Update the weights using (2.18) with ~q0 replaced by q̂(`).

� Store the value of
∣∣∣∣[q̂(`) − q̂(`−1)]./[~qtyp]

∣∣∣∣ in ∆.

� Increment ` by 1.

5. If ∆ > ε, return to Step 4. Otherwise, terminate the algorithm.
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Figure 2.1: The results obtained when fitting the specific model described in Section 2.5 to
data using Algorithm 2.6.1.
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Chapter 3

Variability in Data and Parameter

Estimates

In this chapter, we consider a large set of CFSE-based flow cytometry data that was obtained
for CD4+ and CD8+ T cells collected from two healthy donors. Since triplicate measurements
were recorded for each of five points in a five-day time series, we are able to analyze the
experimental variability that exists in the data itself. Furthermore, the triplicate measurements
make it possible to construct a considerable number of five-day data sets for each donor and
cell type. In theory, each such data set should be very similar, so one might expect that a set of
parameters for describing cell proliferation dynamics observed in one of the data sets should be
essentially equivalent to those describing observations made using another of the data sets. By
applying the parameter estimation scheme described in Section 2.6 to each five-day data set,
we are able to assess experimental variability in the estimates of the parameters characterizing
the specific cyton-based mathematical model described in Section 2.5. Also, by collecting data
from two different human donors and considering two specific cell types, we are able to make
some observations concerning biological variablility in the cell proliferation parameters. Note
that many of the results described in this chapter have been previously published by the author
of this dissertation and his collaborators [4, 6].

3.1 Data for Variability Study

As discussed above, the goal of the study described in this chapter is to assess the experimental
and biological variability in parameter estimates produced using CFSE-based flow cytometry
data and cyton-based mathematical models. To obtain such data, our experimental collabo-
rators at Universitat Pompeu Fabra (see the “Acknowledgements” section at the beginning
of this dissertation) collected blood samples from two human donors and isolated peripheral
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blood mononuclear cells (PBMCs) from these samples. The PBMCs, hereafter referred to as
just “cells”, were then passed through a strainer to remove clumps of cells and stained with
CFSE according to the standard protocol [35]. Forty-five minutes after CFSE staining, the
cells were stimulated to divide by exposing them to phytohaemagglutinin (PHA), a nonspecific
T cell mitogen. Then, approximately 1 million cells were placed into each of several “wells”,
which are typical containers for cell culture experiments. Each well contained approximately
1 mL of RPMI-1640/10% fetal calf serum (FCS), which is a typical nutrient medium for such
experiments. For each one of the donors, three wells were “seeded” in this way for each of five
measurement times in order to allow for measurements to be obtained in triplicate at each time
point; thus, 15 wells were seeded per donor. Since two donors were considered, a total of 30
wells were seeded at the beginning of the experiment.

Here we once again note that, as cells proliferate, CFSE in a dividing mother cell is dis-
tributed to two daughter cells. The CFSE bound to the proteins inside cells also naturally
degrades over time. Thus, there are two mechanisms by which the mass of CFSE per cell can
decline: cell division and CFSE decay. Such a decline in CFSE per cell can be quantified by
collecting cells from the wells at various points in time and passing them through a flow cy-
tometer. So, at each of five time points corresponding to approximately 1, 2, 3, 4, and 5 days
after PHA stimulation, we transferred the contents of one of the wells to a sample tube that
contained a known number of “beads”. (The number of beads in each sample tube is fixed and
is reported by the manufacturer of the tubes.) The actual times for data collection coincided
with 23.5, 46.0, 67.5, 94.5, and 117.5 hours after stimulation with PHA. In order to minimize
disruption of proliferating cell populations, the contents of any given well were harvested only
once; however, we remark that beginning on Day 3 (after the Day 3 measurement was made)
one third of the nutrient medium in each unused well was exchanged with fresh medium every
24 hours and that this exchange of medium could have affected the cell cultures in the wells
that were harvested after Day 3. The cells were then stained with fluorochrome-labeled anti-
bodies (anti-CD3, anti-CD4, and anti-CD8) as well as the viability dye known as ViViD, which
allows for the identification of dead cells that haven’t yet disintegrated. A sample consisting of
a fraction (about 10 to 50%) of the contents of the sample tube was then passed through a flow
cytometer. During this process, the flow cytometer measured the fluorescence intensity (FI) at
various wavelengths of each cell in the sample and counted the number of beads in the sample.
Because we processed only a fraction of the contents of each tube, the “actual” cell counts for
any given range of FI were obtained by scaling the observed counts upward by the ratio of
known number of beads in the tube to counted beads for the sample. As mentioned above, this
process was repeated using cells from three different wells (per donor) at each measurement
time.

Because the FI emitted at wavelengths in the range 515 to 545 nm varies directly with the
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mass of CFSE within a cell [35, 48], this FI is a useful surrogate for CFSE mass. Also, because
CFSE is allocated evenly (by assumption) to two daughter cells upon cell division, FI histograms
associated with a population of cells acquire more “peaks” as the cells divide asynchronously.
In Figures 3.1 through 3.8, we present summary histograms for the data collected in our study.
Each of these figures illustrates the preceding point.

As described in the preceding paragraph, the FI emitted in the “CFSE range” by a given cell
may be taken to be synonymous with the mass of CFSE contained in that cell. Therefore, CFSE
data can be used to validate a mathematical model describing cell population dynamics that
is based upon mass conservation principles. Such a model is described in detail in Chapter 2.
Furthermore, when cells have been labeled with other markers (as is the case for the experiments
in this study), information about FI at other wavelengths can be used to distinguish different
types of cells (e.g., CD4+ versus CD8+ T cells, or living versus dead cells) [35].

In order to ascertain variability in parameter estimates, we require a considerable number of
data sets. To this end, we use various combinations of the triplicate samples collected on Days 1
through 5 to form a large number of time series data sets. Since three samples were collected
on each of five days, there should be 35 = 243 possible ways to form a five-day “longitudinal”
data set for each donor. One such five-day data set is depicted in Figure 3.9. We remark that
data for one of the samples corresponding to Donor 1 and Day 4 was not available due to a data
collection error; therefore, there are in fact only 34 × 2 = 162 possible ways to form a five-day
data set for Donor 1. It should be explicitly noted that data sets formed in this way do not
represent truly longitudinal data because measurements corresponding to each time point were
made using distinct cell cultures (wells). In this type of in vitro experiment [5, 29, 35, 39], it
is tacitly assumed that the populations of cells in each well are identical (up until the moment
cells are harvested from a particular well) in that they include the same numbers of total cells
in the same proportions (according to cell type). This assumption allows one to interpret time
series data sets formed as described above as having come from longitudinal observations. In
practice, however, there can be considerable variation in the cell cultures in the various wells
due to experimental error in the initial seeding of the wells (among other reasons). This issue
will be discussed further in Section 3.2.
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Figure 3.1: Summary histogram data for CD4+ T cells measured for Donor 1 using ViViD dye
to exclude dead cells.
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Figure 3.2: Summary histogram data for CD8+ T cells measured for Donor 1 using ViViD dye
to exclude dead cells.
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Figure 3.3: Summary histogram data for CD4+ T cells measured for Donor 1 without using
ViViD dye to exclude dead cells.
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Figure 3.4: Summary histogram data for CD8+ T cells measured for Donor 1 without using
ViViD dye to exclude dead cells.
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Figure 3.5: Summary histogram data for CD4+ T cells measured for Donor 2 using ViViD dye
to exclude dead cells.
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Figure 3.6: Summary histogram data for CD8+ T cells measured for Donor 2 using ViViD dye
to exclude dead cells.
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Figure 3.7: Summary histogram data for CD4+ T cells measured for Donor 2 without using
ViViD dye to exclude dead cells.
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Figure 3.8: Summary histogram data for CD8+ T cells measured for Donor 2 without using
ViViD dye to exclude dead cells.
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Sample	  1	  

Sample	  2	  

Sample	  3	  

Day	  1	   Day	  2	   Day	  3	   Day	  4	   Day	  5	  

Figure 3.9: Schematic showing the wells to be used for triplicate measurements on each of five
days. The five wells distinguished by the (darker) color red can be used to form one of 243
possible five-day data sets.

3.2 Variability in the Data

It is clear from Figures 3.1 through 3.8 that, while the shapes of the histograms summarizing
observed data do not vary much between triplicate experiments for any particular day and com-
bination of donor, ViViD dye status, and cell type, the scale of the histograms can vary consider-
ably. That is, there can be a significant difference between triplicate experiments in the number
of cells represented in the respective histograms. One can also see in Figures 3.1 through 3.8
that there seems to be more variability in the cell counts at the later time points (those cor-
responding to Day 4 and especially those corresponding to Day 5). Tables 3.1 through 3.5 list
the cell counts for each sample and each combination of donor, ViViD dye status, and cell type
on Days 1 through 5, respectively, and can be compared with the histograms in Figures 3.1
through 3.8. For example, Table 3.1 shows all the cell counts in the various samples represented
in the upper-left (Day 1) plots for each of Figures 3.1 through 3.8. Tables 3.1 through 3.5 also
show an estimate of the coefficient of variation based on each row of sample cell counts. The
coefficient of variation is a measure of the relative variation in the cell counts, and can be
estimated as

ĉv =
s

x̄
,

where x̄ denotes the sample mean of the cell counts (in the relevant biological samples) and s

denotes the sample standard deviation. We refer to ĉv as an “estimate” because it is derived
from a finite “sample” of data (in our case, from three cell counts derived from three biological
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samples). The true coefficient of variation would be computed as

cv =
σ

µ
,

where µ and σ are the mean and standard deviation, respectively, of cell counts for the “pop-
ulation” of all possible biological samples for the specific time, donor, ViViD status, and cell
type in question.

In order to understand how variation in the cell counts arises, recall from Section 3.1 that
approximately 1 million cells were placed into each of several wells, and that each distinct
sample was drawn from a distinct well. Because of the experimental error inherent in seeding
the wells, we expect that each well actually started out with a different number of cells. We
should remark here that the numbers in Tables 3.1 through 3.5 do not represent total cell
counts, but rather they represent cell counts for specific types of cells (CD4+ or CD8+ T cells)
under specific conditions (donor and ViViD dye status). So, for example, if we attempt to seed
1 million cells from Donor 1 into a well and the true proportion of CD4+ T cells is 15% for this
donor, there should be about 150 thousand CD4+ T cells in the well at time t = 0; however,
there will be some variation in this number (150 thousand) because of the variation in the
total cell population number (1 million). We did not make any measurements at time t = 0,
so we cannot directly assess the variation present in the numbers of cells initially seeded into
the wells. Our best approximation of this initial variation comes from the cell counts observed
on Day 1, which are shown in Table 3.1. Also, because the true proportion of cells (out of
approximately 1 million) corresponding to a particular day, donor, ViViD dye status, and cell
type varies, we cannot directly compare all 24 cell count numbers in one of the tables, and
we cannot directly compare the 8 sample variances or sample standard deviations obtained for
the 8 rows in any given table. To be clear, we cannot use such direct comparisons because the
magnitudes of the cell count numbers tend to be different in each row of a given table. We can,
however, compare some measure of relative variation for each of the rows of a given table. The
coefficient of variation described previously is one such measure. So, the 8 numbers listed in the
last column of Table 3.1 give some indication of the variability we expect when attempting to
seed 1 million cells into a well, and, importantly, they can be compared with one another.

If we assume that the seeding of 1 million cells into a well is a process that is subject to
random error, then the amount of error is a random variable with some well-defined probability
distribution. For our purposes, the “amount of error in the initial seeding” is synonymous with
the “amount of relative variation in the cell counts at Day 1”, which we choose to measure
using the coefficients of variation described previously. One important question to consider,
then, is whether or not the amount of relative variation in cell counts (or more precisely, the
sampling distribution of this statistic) changes between measurement times (days). As was
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Table 3.1: Status of cell cultures at Day 1. The numbers in the columns corresponding to
Samples 1, 2, and 3 represent cell counts after scaling (using bead counts). Each number in the
C.V. column represents the coefficient of variation for the cell counts in the corresponding row.

Donor ViViD Used Cell Type Sample 1 Sample 2 Sample 3 C.V.
1 Y CD4 104124 117820 122408 8.29%
1 Y CD8 36778 38924 40190 4.47%
1 N CD4 128161 140770 146369 6.74%
1 N CD8 39899 42259 43478 4.34%
2 Y CD4 68651 68439 68680 0.19%
2 Y CD8 28699 28574 27387 2.57%
2 N CD4 91542 95914 90740 3.00%
2 N CD8 33983 34605 32692 2.89%

Table 3.2: Status of cell cultures at Day 2. The numbers in the columns corresponding to
Samples 1, 2, and 3 represent cell counts after scaling (using bead counts). Each number in the
C.V. column represents the coefficient of variation for the cell counts in the corresponding row.

Donor ViViD Used Cell Type Sample 1 Sample 2 Sample 3 C.V.
1 Y CD4 128535 139264 149408 7.51%
1 Y CD8 58115 61406 67116 7.32%
1 N CD4 156211 171078 181924 7.61%
1 N CD8 70147 75010 82658 8.31%
2 Y CD4 66884 63458 63162 3.21%
2 Y CD8 29242 28221 26734 4.49%
2 N CD4 82968 80701 80098 1.86%
2 N CD8 33223 33107 31048 3.77%

Table 3.3: Status of cell cultures at Day 3. The numbers in the columns corresponding to
Samples 1, 2, and 3 represent cell counts after scaling (using bead counts). Each number in the
C.V. column represents the coefficient of variation for the cell counts in the corresponding row.

Donor ViViD Used Cell Type Sample 1 Sample 2 Sample 3 C.V.
1 Y CD4 278399 277201 269793 1.69%
1 Y CD8 190473 183328 179769 2.95%
1 N CD4 331038 338423 328589 1.54%
1 N CD8 232513 228392 228203 1.06%
2 Y CD4 187718 206164 184355 6.09%
2 Y CD8 137646 150831 136055 5.73%
2 N CD4 212391 229784 208054 5.31%
2 N CD8 145740 158148 143890 5.19%
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Table 3.4: Status of cell cultures at Day 4. The numbers in the columns corresponding to
Samples 1, 2, and 3 represent cell counts after scaling (using bead counts). Each number in the
C.V. column represents the coefficient of variation for the cell counts in the corresponding row.

Donor ViViD Used Cell Type Sample 1 Sample 2 Sample 3 C.V.
1 Y CD4 746988 611600 N/A 14.09%
1 Y CD8 778452 616165 N/A 16.46%
1 N CD4 813670 672320 N/A 13.45%
1 N CD8 845757 672287 N/A 16.16%
2 Y CD4 465445 495995 450620 4.92%
2 Y CD8 562295 596485 550758 4.17%
2 N CD4 483623 512917 466908 4.77%
2 N CD8 572560 606627 560635 4.12%

Table 3.5: Status of cell cultures at Day 5. The numbers in the columns corresponding to
Samples 1, 2, and 3 represent cell counts after scaling (using bead counts). Each number in the
C.V. column represents the coefficient of variation for the cell counts in the corresponding row.

Donor ViViD Used Cell Type Sample 1 Sample 2 Sample 3 C.V.
1 Y CD4 675662 703755 731910 4.00%
1 Y CD8 960299 763048 823195 11.91%
1 N CD4 755566 752181 780992 2.06%
1 N CD8 998167 794116 853743 11.90%
2 Y CD4 418710 500372 659604 23.28%
2 Y CD8 578203 700480 940572 24.92%
2 N CD4 435902 519138 678801 22.67%
2 N CD8 590954 712185 954256 24.58%

previously asserted, Figures 3.1 through 3.8 provide convincing evidence that the amount of
relative variation in cell counts does change with respect to time. More specifically, these figures
lead us to suspect that there is a significant difference between the relative variation observed in
the earlier days of the experiment (1 through 3) and that observed in the later days (4 and 5).
The coefficient of variation estimates in the last columns of Tables 3.1 through 3.5 can be used
to demonstrate this claim conclusively through the use of formal statistical hypothesis testing.

The two-sided Wilcoxon rank-sum test allows one to determine if two independent samples
have been drawn from the same continuous distribution [31]. In our case, we assume that the
eight coefficient of variation numbers corresponding to Day i are eight realizations (constituting
a sample) of a continuous random variable with cumulative density function (cdf) Fi for i ∈
{1, 2, 3, 4, 5} and that each of the five samples is independent of all of the others. Thus, for any
particular pair of days (i, j), we would like to test the null hypothesis that the corresponding
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samples of coefficient of variation numbers were drawn from the same population of values (or,
equivalently, from two populations with identical cdfs); i.e.,

H0 : Fi(x) = Fj(x) for all x.

For the Wilcoxon test, the alternative hypothesis is that one of the two samples was drawn from
a population that tends to have larger values than the population from which the other sample
was drawn (or, equivalently, that one of the two corresponding distributions is stochastically
larger than the other); i.e.,

HA : Fi(x) ≤ Fj(x) for all x, with strict inequality for at least some x,

or Fi(x) ≥ Fj(x) for all x, with strict inequality for at least some x.

As with any statistical hypothesis test, the Wilcoxon test produces a “test statistic” that can
be converted into a “p-value”. The p-value indicates the probability of obtaining a test statistic
at least as extreme as the one which was actually observed assuming that the null hypothesis is
true. If we use a “significance level” of 0.05, then we are asserting that outcomes with probability
less than 0.05 are unlikely to occur. Therefore, we should reject the null hypothesis whenever
the p-value is less than 0.05.

Suppose, for example, that we want to test the claim that there is no difference between the
distribution of relative variations in cell counts observed at Day 1 and that observed at Day 2.
This null hypothesis can be formalized as

H0 : F1(x) = F2(x) for all x,

where F1 and F2 denote the cdfs for the coefficients of variation in cell counts at Days 1 and 2,
respectively. The alternative hypothesis is that one of the two distributions is stochastically
larger than the other; i.e.,

HA : F1(x) ≤ F2(x) for all x, with strict inequality for at least some x,

or F1(x) ≥ F2(x) for all x, with strict inequality for at least some x.

We can use the coefficient of variation estimates from Tables 3.1 and 3.2 to perform a Wilcoxon
test for these hypotheses. That is, we can compare the eight coefficient of variation numbers
from Table 3.1 with the eight coefficient of variation numbers from Table 3.2 using a Wilcoxon
test. Based on the p-value of 0.2345 that results from performing this test, we fail to reject the
null hypothesis (using a 0.05 significance level) and conclude that there is not a statistically
significant difference between the relative variations in cell counts observed at Days 1 and 2,
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respectively. Similarly, we can perform Wilcoxon tests to conclude that there is not a statistically
significant difference between the relative variations in cell counts observed at Days 1 and 3
(p = 0.8785) or the relative variations in cell counts observed at Days 2 and 3 (p = 0.1304).
On the other hand, Wilcoxon tests lead us to conclude that there is a statistically significant
difference between the relative variations in cell counts observed at Days 1 and 4 (p = 0.03792)
and between the relative variations in cell counts observed at Days 1 and 5 (p = 0.02813).
Similarly, there appears to be a statistically significant difference between the relative variations
in cell counts observed at Days 2 and 5 (p = 0.03792) and between the relative variations in cell
counts observed at Days 3 and 5 (p = 0.01476). (Wilcoxon tests do not indicate a significant
difference between relative variations in cell counts observed at Days 2 and 4 or Days 3 and 4,
but recall that at least some of the Day 4 coefficients of variation are based on fewer cell
counts because fewer biological samples were used for Donor 1 on Day 4; therefore, information
concerning variation in cell counts for Day 4 is considerably less reliable.)

We propose that this change in the relative variation of the cell counts with respect to time
cannot be explained by proliferation dynamics alone. In fact, if we assume that our mathematical
model describing cell proliferation is correct, the relative variation in cell counts for distinct
cultures proliferating with the same dynamics should not change in time. Relative variation can
be measured in terms of percent differences or coefficients of variation and we offer proofs of the
assertion in the preceding sentence with respect to both of these measures of relative variation
in Appendix A.3, but it is easy (and instructive) to understand the validity of the assertion
under the assumption of a simple exponential growth model. So, consider two cultures of cells,
“A” and “B”, that are proliferating at the same exponential growth rate α. If A0 and B0 denote
the initial numbers of cells present in cultures A and B, respectively, then

A(t) = A0e
αt

and
B(t) = B0e

αt

describe the numbers of cells in the respective cultures at time t. The initial percent difference
in the cell counts is

2(A0 −B0)
A0 +B0

,

while the percent difference at any later time t is

2(A0e
αt −B0e

αt)
A0eαt +B0eαt

=
2(A0 −B0)eαt

(A0 +B0)eαt
=

2(A0 −B0)
A0 +B0

.

Therefore, the percent difference in cell counts does not change with respect to time. Note that
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the amount of statistical variation (e.g., difference) in the cell counts does generally change in
time, but the relative variation (e.g., percent difference) must remain constant.

Since we have clearly demonstrated that the relative variation in the cell counts does, indeed,
change between Days 1, 2, and 3 and Day 5, then some source of variability must exist which is
not accounted for in our model. We propose that the exchange of nutrient medium starting at
Day 3 could be such a source of variability. Exchange of nutrient medium could feasibly remove,
disturb, or damage some of the cells in the affected wells, and it would certainly change the
amount of nutrient available to the cells in those wells. In fact, the very reason that the nutrient
medium is replenished starting at Day 3 is that by that time it has begun to change color,
indicating that the nutrient levels have declined. So, in addition to the changes in the amount
of nutrient available to the cell cultures that occur at discrete points in time corresponding
to nutrient medium exchange, we may infer that cells growing and dividing in the various cell
cultures significantly deplete nutrients in their respective wells throughout the experiment.

3.3 Variability in the Parameter Estimates

In order to assess variability in parameter estimates, we applied the parameter estimation
technique described in Section 2.6 to the various five-day time series data sets described in
Section 3.1. For each of the 12 parameters from our specific mathematical model and each of
the eight combinations of donor (“Donor1” or “Donor2”), ViViD dye status (“Vivid” indicating
that ViViD dye was used to exclude dead cells or “NoVivid” indicating otherwise), and cell
type (“CD4” or “CD8”), this led to either 162 or 243 (depending on donor, cf. Section 3.1)
parameter estimates. Each such set of parameter estimates can be represented by a box plot,
so for each model parameter we can construct eight box plots as illustrated in Figures 3.10
through 3.21. The box plots in each of these figures adhere to the following conventions: (i) the
median value is indicated by a red line; (ii) the first and third quartiles (Q1 and Q3) are indicated
by the lower and upper boundaries of the blue box, respectively; (iii) any value that falls above
Q3 + 1.5(Q3 −Q1) or below Q1 − 1.5(Q3 −Q1) is considered to be an outlier, and is indicated
by a “+”; and (iv) the black horizontal lines above and below the box (which are in most cases
connected to the box via dashed vertical lines) represent the maximum and minimum values,
respectively, excluding outliers.

Sets of box plots such as those described above can provide a wealth of information concern-
ing the variability in parameter estimates and identifiability of the corresponding parameters.
Individually, each box plot can be used to determine a median parameter estimate and to visu-
alize the variation (spread) in parameter estimates for a given donor and cell type when multiple
five-day data sets are considered. The amount of spread in each box plot can also be used to
conclude whether or not a particular parameter is likely to be identifiable for any particular
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Figure 3.10: Box plots illustrating variability in estimates for the parameter E [Xa].
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Figure 3.11: Box plots illustrating variability in estimates for the parameter SD [Xa].
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Figure 3.12: Box plots illustrating variability in estimates for the parameter c.
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Figure 3.13: Box plots illustrating variability in estimates for the parameter E
[
T div0

]
. In the

lower set of box plots, some of the most extreme outliers are not plotted so that the rest of the
information in the box plots can be shown with higher precision.
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Figure 3.14: Box plots illustrating variability in estimates for the parameter SD
[
T div0

]
.
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Figure 3.15: Box plots illustrating variability in estimates for the parameter E
[
T div

]
. In the

lower set of box plots, some of the most extreme outliers are not plotted so that the rest of the
information in the box plots can be shown with higher precision.
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Figure 3.16: Box plots illustrating variability in estimates for the parameter SD
[
T div

]
. In the

lower set of box plots, some of the most extreme outliers are not plotted so that the rest of the
information in the box plots can be shown with higher precision.
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Figure 3.17: Box plots illustrating variability in estimates for the parameter E
[
T die

]
.
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Figure 3.18: Box plots illustrating variability in estimates for the parameter SD
[
T die

]
.
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Figure 3.19: Box plots illustrating variability in estimates for the parameter F0.

48



2

3

4

5

6

7

8

9

10

D
o

n
o

r1
/V

iv
id

/C
D

4
  

  
 

D
o

n
o

r1
/V

iv
id

/C
D

8
  

  
 

D
o

n
o

r1
/N

o
V

iv
id

/C
D

4
  

 

D
o

n
o

r1
/N

o
V

iv
id

/C
D

8
  

 

D
o

n
o

r2
/V

iv
id

/C
D

4
  

  
 

D
o

n
o

r2
/V

iv
id

/C
D

8
  

  
 

D
o

n
o

r2
/N

o
V

iv
id

/C
D

4
  

 

D
o

n
o

r2
/N

o
V

iv
id

/C
D

8
  

 

Estimates for D
µ

0

1

2

3

4

5

6

D
o

n
o

r1
/V

iv
id

/C
D

4
  

  
 

D
o

n
o

r1
/V

iv
id

/C
D

8
  

  
 

D
o

n
o

r1
/N

o
V

iv
id

/C
D

4
  

 

D
o

n
o

r1
/N

o
V

iv
id

/C
D

8
  

 

D
o

n
o

r2
/V

iv
id

/C
D

4
  

  
 

D
o

n
o

r2
/V

iv
id

/C
D

8
  

  
 

D
o

n
o

r2
/N

o
V

iv
id

/C
D

4
  

 

D
o

n
o

r2
/N

o
V

iv
id

/C
D

8
  

 

Estimates for D
µ

Figure 3.20: Box plots illustrating variability in estimates for the parameter Dµ. In the lower
set of box plots, some of the most extreme outliers are not plotted so that the rest of the
information in the box plots can be shown with higher precision.
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Figure 3.21: Box plots illustrating variability in estimates for the parameter Dσ.
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donor and cell type. For example, Figure 3.17 reveals extremely large spreads in many of the
box plots corresponding to the parameter E

[
T die

]
, indicating that this model parameter may

not be identifiable. On the other hand, all of the box plots corresponding to the parameter
c have relatively small spreads, indicating that this model parameter can be estimated with
relatively high reliability.

Taken together, all the box plots corresponding to a given parameter allow for useful com-
parisons of the parameter estimates that are obtained for different combinations of donor, ViViD
dye status, and cell type. For example, if we consider the box plots in Figure 3.12 corresponding
to the parameter c, we can make a number of interesting conclusions. First, the use of ViViD
dye does not appear to lead to a statistically significant difference in the estimate obtained for
the parameter c (cf. box plots 1 and 3, 2 and 4, 5 and 7, and 6 and 8, numbering sequentially
from left to right). Next, the estimate for c is larger for CD8+ T cells than for CD4+ T cells
when considering data for Donor 1 (cf. box plots 1 and 2 or 3 and 4), but it is larger for CD4+
T cells than for CD8+ T cells when considering data for Donor 2 (cf. box plots 5 and 6 or 7
and 8). Finally, while there does not appear to be a statistically significant difference between
Donor 1 and Donor 2 in the estimate obtained for c when considering CD4+ T cells (cf. box
plots 1 and 5 or 3 and 7), the Donor 1 estimate is considerably larger than the Donor 2 estimate
when considering CD8+ T cells (cf. box plots 2 and 6 or 4 and 8).

3.3.1 Remarks on Basic Parameter Estimates

We next expound upon the conclusions that can be drawn by analyzing box plots corresponding
to parameter estimates for all 12 of our model parameters. One general conclusion that can be
made from these figures is that the use of ViViD dye does not seem to have a large effect on the
estimates obtained for most of the model parameters. Therefore, in the discussion that follows
we will focus on the box plots summarizing “NoVivid” data sets.

Box plots summarizing estimates for the parameter E [Xa], which represents the mean auto-
fluorescence, are shown in Figure 3.10. The 3rd and 4th box plots in that figure indicate that
there is a considerable difference in the mean autofluorescence of CD4+ T cells and CD8+
T cells obtained from Donor 1. (Note that the box plots do not “overlap”.) More specifically,
CD8+ T cells appear to have a larger mean autofluorescence than CD4+ T cells for Donor 1.
On the other hand, the 7th and 8th box plots indicate that CD4+ T cells have a larger mean
autofluorescence than CD8+ T cells when considering cells obtained from Donor 2. When we
compare CD4+ T cells obtained from the two distinct donors (compare 3rd and 7th box plots),
it appears that E [Xa] is larger for Donor 2 than for Donor 1. When comparing CD8+ T cells
from the two donors (compare 4th and 8th box plots), it appears that E [Xa] is larger for
Donor 1 than for Donor 2.
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In Figure 3.11, we provide box plots summarizing estimates for standard deviation of the
autofluorescence, SD [Xa]. As with the mean autofluorescence, it appears that the value of this
parameter is larger for CD8+ T cells than for CD4+ T cells in the case of Donor 1 and larger
for CD4+ T cells than for CD8+ T cells in the case of Donor 2. Also, when comparing CD4+ T
cells obtained from the two distinct donors, it appears that SD [Xa] is larger for Donor 2 than
for Donor 1, and when comparing CD8+ T cells from the two donors, it appears that SD [Xa]
is larger for Donor 1 than for Donor 2.

Box plots summarizing estimates for the parameter c, which describes exponential decay of
CFSE, are shown in Figure 3.12. It appears that the value of this parameter is larger for CD8+
T cells than for CD4+ T cells in the case of Donor 1 and larger for CD4+ T cells than for CD8+
T cells in the case of Donor 2. When we compare CD4+ T cells obtained from the two distinct
donors, there does not appear to be a significant difference in the parameter c; however, when
comparing CD8+ T cells from the two donors, it appears that c is larger for Donor 1 than for
Donor 2.

In Figure 3.13, we provide box plots summarizing estimates for the parameter E
[
T div0

]
,

which represents the mean time to divide for undivided cells. It appears that the value of this
parameter is larger for CD4+ T cells than for CD8+ T cells, regardless of which donor we
consider. Also, there does not appear to be a significant difference in E

[
T div0

]
when comparing

CD4+ or CD8+ T cells obtained from the two distinct donors. Figure 3.14 indicates that similar
statements hold true for SD

[
T div0

]
, which represents the standard deviation in the time to divide

for undivided cells.
Box plots summarizing estimates for the parameter E

[
T div

]
, which represents the mean

time to divide for cells that have divided at least once, are shown in Figure 3.15. There does
not appear to be a significant difference in the value of this parameter for CD4+ and CD8+ T
cells, whether we consider cells from Donor 1 or Donor 2. On the other hand, when we compare
CD4+ or CD8+ T cells from the two distinct donors, it appears that E

[
T div

]
is larger for

Donor 1 than for Donor 2.
In Figure 3.16, we provide box plots summarizing estimates for the parameter SD

[
T div

]
,

which represents the standard deviation in the time to divide for cells that have divided at least
once. For this parameter, there does not appear to be a significant difference in the estimated
value when comparing the two cell types from a single donor, or when comparing two donors
and a single cell type. Considering the widths of the relevant box plots, we see that there is
larger variation in the parameter estimates obtained for CD8+ T cells than those obtained for
CD4+ T cells. In fact, the variation in parameter estimates observed for Donor 1 CD8+ T cells
is so large as to suggest that this parameter is not identifiable.

Box plots summarizing estimates for the parameter E
[
T die

]
, which represents the mean

time to die for cells that have divided at least once, are shown in Figure 3.17. As was the
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case with the parameter SD
[
T div

]
, there does not appear to be a significant difference in the

estimated value of the parameter E
[
T die

]
when comparing the two cell types from a single

donor, or when comparing two donors and a single cell type. For this parameter, we see that
there is larger variation in the parameter estimates obtained for Donor 1 cells (of both types)
than those obtained for Donor 2 cells. In fact, the variation in parameter estimates observed
for Donor 1 cells is so large that it suggests that this parameter is not identifiable.

In Figure 3.18, we provide box plots summarizing estimates for the parameter SD
[
T die

]
,

which represents the standard deviation in the time to die for cells that have divided at least
once. Similar to the situation observed for E

[
T die

]
, for this parameter there does not appear

to be a significant difference in the estimated value when comparing the two cell types from
a single donor, or when comparing two donors and a single cell type. Also similar to the
situation observed for E

[
T die

]
, we see that there is larger variation in the estimates for SD

[
T die

]
obtained for Donor 1 cells (of both types) than those obtained for Donor 2 cells. The variation
in parameter estimates observed for Donor 1 cells is once again so large that it suggests that
the parameter SD

[
T die

]
is also not identifiable.

Box plots summarizing estimates for the parameter F0, which represents the progressor
fraction for undivided cells, are shown in Figure 3.19. It appears that the value of this parameter
is larger for CD8+ T cells than for CD4+ T cells in the case of Donor 1 and larger for CD4+ T
cells than for CD8+ T cells in the case of Donor 2. When we compare CD4+ T cells obtained
from the two distinct donors, there does not appear to be a significant difference in the parameter
F0; however, when comparing CD8+ T cells from the two donors, it appears that F0 is larger
for Donor 1 than for Donor 2.

In Figure 3.20, we provide box plots summarizing estimates for the parameter Dµ. There
does not appear to be a significant difference in the value of this parameter for CD4+ and
CD8+ T cells in the case of Donor 1, but the parameter value is larger for CD8+ T cells in the
case of Donor 2. When we compare CD4+ T cells obtained from the two distinct donors, there
does not appear to be a significant difference in the parameter Dµ; however, when comparing
CD8+ T cells from the two donors, it appears that Dµ is larger for Donor 2 than for Donor 1.

Box plots summarizing estimates for the parameter Dσ are shown in Figure 3.21. It appears
that the parameter value is larger for CD8+ T cells than CD4+ T cells in the case of Donor 1,
but there does not appear to be a significant difference in the parameter value for CD4+ and
CD8+ T cells in the case of Donor 2. When we compare CD4+ T cells obtained from the two
distinct donors, it appears that Dσ is larger for Donor 2 than for Donor 1. On the other hand,
when comparing CD8+ T cells from the two donors, there does not appear to be a significant
difference in the parameter Dσ.

We have already noted that many of our model parameters can be estimated with relatively
high reliability, while others do not appear to be identifiable, but thus far all of our arguments
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have been based upon visual inspection of the box plots in Figures 3.10 through 3.21. To
allow for more careful quantitative analysis of the identifiability of parameters, we provide
in Tables 3.6 through 3.17 some of the summary statistics used to generate the box plots in
those figures. For example, in Table 3.6 we provide a median and an interquartile range (IQR)
corresponding to each of the box plots in Figure 3.10. Since the median and IQR indicate
the “center” and “spread”, respectively, for a set of parameter estimates, the ratio of these two
quantities provides a useful measure of “relative spread”. We therefore also include a column for
the ratio of IQR to median in each of Tables 3.6 through 3.17. When the spread is greater than
50% of the central value for a particular set of parameter estimates (i.e., whenever the ratio
of IQR to median is greater than 0.50), we consider the variability in that set of parameter
estimates to be “relatively high” and conclude that the parameter may not be identifiable;
therefore, the ratios meeting this criteria are emphasized in boldface in the tables. Note that
the value 0.50 was chosen somewhat arbitrarily, but comparing Tables 3.6 through 3.17 with
Figures 3.10 through 3.21 makes it clear that such a value for the ratio of IQR to median does,
indeed, indicate a “large” relative spread in a set of parameter estimates.

Based on Tables 3.6 through 3.17, we conclude that the model parameters E [Xa], SD [Xa], c,
E
[
T div0

]
, SD

[
T div0

]
, E
[
T div

]
, F0, Dµ, and Dσ can all be estimated with fairly high reliability. On

the other hand, the parameters SD
[
T div

]
, E
[
T die

]
, and SD

[
T die

]
each have very high ratios of

IQR to median in some cases, indicating that they may not be identifiable. We conjecture that
this could be because the mathematical model is not sensitive to these particular parameters.
One might reason, for example, that the lack of model sensitivity to the parameters involving
“time until death” occurs because divided cells (those cells for which i ≥ 1) tend to divide much
more often than they die (when considering stimulated T cells from healthy donors) and such
behavior can be correctly incorporated into the model as long as the expected time until division,
E
[
T div

]
, is significantly smaller than the expected time until death, E

[
T die

]
. To be more specific

(and to reuse some terminology that was employed in Section 3.2), as long as the distribution of
the random variable T die tends to be stochastically larger (by a substantial margin) than that
of T div, the correct dynamical behavior of the system can probably be modeled adequately (at
least over the first few days) even if the parameters describing the distribution of T die are not
estimated very accurately. To illustrate this point, consider Figures 3.22 and 3.23, in which we
plot the (lognormal) distributions of the random variables T div and T die in two different cases.
In both cases we use the same set of parameter values for T div, but in each case a different
set of a parameter values is used for T die. The values of T die tend to be larger than those
of T div in both cases, so in both situations cells should tend to divide more frequently than
they die. (Recall that the fate of any particular cell is determined by whichever of these two
random variables produces a smaller realization.) We argue that, when all other parameters
are fixed using some common set of values, the model output does not vary significantly (at
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Table 3.6: Summary statistics for estimates of parameter E [Xa] (cf. Figure 3.10).
Donor ViViD Used Cell Type Median IQR IQR/Median

1 Y CD4 402.30 32.58 0.0810
1 Y CD8 680.44 79.29 0.1165
1 N CD4 388.45 25.33 0.0652
1 N CD8 678.97 81.78 0.1204
2 Y CD4 623.98 50.55 0.0810
2 Y CD8 542.52 21.49 0.0396
2 N CD4 630.26 82.19 0.1304
2 N CD8 536.94 24.43 0.0455

Table 3.7: Summary statistics for estimates of parameter SD [Xa] (cf. Figure 3.11).
Donor ViViD Used Cell Type Median IQR IQR/Median

1 Y CD4 227.87 17.03 0.0747
1 Y CD8 339.49 78.22 0.2304
1 N CD4 215.83 25.02 0.1159
1 N CD8 335.50 78.12 0.2328
2 Y CD4 293.16 22.61 0.0771
2 Y CD8 252.75 15.51 0.0614
2 N CD4 294.12 39.91 0.1357
2 N CD8 253.24 16.62 0.0656

Table 3.8: Summary statistics for estimates of parameter c (cf. Figure 3.12).
Donor ViViD Used Cell Type Median IQR IQR/Median

1 Y CD4 0.0069 0.0003 0.0461
1 Y CD8 0.0077 0.0004 0.0520
1 N CD4 0.0067 0.0003 0.0487
1 N CD8 0.0073 0.0004 0.0609
2 Y CD4 0.0068 0.0003 0.0448
2 Y CD8 0.0039 0.0006 0.1424
2 N CD4 0.0065 0.0002 0.0343
2 N CD8 0.0040 0.0004 0.0932
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Table 3.9: Summary statistics for estimates of parameter E
[
T div0

]
(cf. Figure 3.13).

Donor ViViD Used Cell Type Median IQR IQR/Median
1 Y CD4 63.02 2.28 0.0362
1 Y CD8 50.20 2.34 0.0466
1 N CD4 62.10 1.92 0.0308
1 N CD8 49.68 3.61 0.0726
2 Y CD4 60.26 1.36 0.0226
2 Y CD8 48.49 1.06 0.0218
2 N CD4 63.42 2.23 0.0351
2 N CD8 47.54 1.07 0.0226

Table 3.10: Summary statistics for estimates of parameter SD
[
T div0

]
(cf. Figure 3.14).

Donor ViViD Used Cell Type Median IQR IQR/Median
1 Y CD4 28.07 1.63 0.0580
1 Y CD8 19.21 1.92 0.0998
1 N CD4 27.20 1.79 0.0658
1 N CD8 18.08 4.30 0.2377
2 Y CD4 23.90 1.00 0.0418
2 Y CD8 18.56 0.89 0.0478
2 N CD4 26.62 1.91 0.0719
2 N CD8 17.49 0.81 0.0464

Table 3.11: Summary statistics for estimates of parameter E
[
T div

]
(cf. Figure 3.15).

Donor ViViD Used Cell Type Median IQR IQR/Median
1 Y CD4 10.96 0.74 0.0672
1 Y CD8 10.39 1.33 0.1276
1 N CD4 11.21 0.70 0.0623
1 N CD8 10.89 1.79 0.1640
2 Y CD4 8.96 0.81 0.0908
2 Y CD8 8.97 0.51 0.0569
2 N CD4 8.97 0.75 0.0833
2 N CD8 9.20 0.46 0.0505
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Table 3.12: Summary statistics for estimates of parameter SD
[
T div

]
(cf. Figure 3.16).

Donor ViViD Used Cell Type Median IQR IQR/Median
1 Y CD4 0.86 0.73 0.8428
1 Y CD8 1.47 4.09 2.7912
1 N CD4 0.89 0.12 0.1342
1 N CD8 4.25 5.67 1.3347
2 Y CD4 0.80 0.08 0.0988
2 Y CD8 0.94 0.44 0.4648
2 N CD4 0.82 0.04 0.0507
2 N CD8 1.00 0.61 0.6087

Table 3.13: Summary statistics for estimates of parameter E
[
T die

]
(cf. Figure 3.17).

Donor ViViD Used Cell Type Median IQR IQR/Median
1 Y CD4 38.49 43.14 1.1207
1 Y CD8 71.96 66.02 0.9175
1 N CD4 37.90 32.78 0.8650
1 N CD8 71.68 76.91 1.0729
2 Y CD4 40.84 5.82 0.1426
2 Y CD8 50.67 24.57 0.4848
2 N CD4 37.83 16.64 0.4397
2 N CD8 49.75 20.40 0.4100

Table 3.14: Summary statistics for estimates of parameter SD
[
T die

]
(cf. Figure 3.18).

Donor ViViD Used Cell Type Median IQR IQR/Median
1 Y CD4 1.85 64.21 34.7682
1 Y CD8 27.30 66.82 2.4481
1 N CD4 1.79 64.90 36.1615
1 N CD8 45.91 59.70 1.3004
2 Y CD4 20.56 5.54 0.2693
2 Y CD8 39.72 25.11 0.6322
2 N CD4 39.68 23.65 0.5960
2 N CD8 41.82 25.57 0.6113
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Table 3.15: Summary statistics for estimates of parameter F0 (cf. Figure 3.19).
Donor ViViD Used Cell Type Median IQR IQR/Median

1 Y CD4 0.7092 0.0388 0.0547
1 Y CD8 0.8588 0.0350 0.0408
1 N CD4 0.6812 0.0421 0.0619
1 N CD8 0.8840 0.0434 0.0491
2 Y CD4 0.6429 0.0248 0.0386
2 Y CD8 0.5293 0.0496 0.0937
2 N CD4 0.6574 0.0392 0.0597
2 N CD8 0.4613 0.0453 0.0982

Table 3.16: Summary statistics for estimates of parameter Dµ (cf. Figure 3.20).
Donor ViViD Used Cell Type Median IQR IQR/Median

1 Y CD4 3.75 0.68 0.1801
1 Y CD8 3.91 1.19 0.3034
1 N CD4 3.75 0.34 0.0913
1 N CD8 3.42 1.00 0.2913
2 Y CD4 3.82 0.36 0.0939
2 Y CD8 4.92 0.43 0.0874
2 N CD4 3.76 0.89 0.2373
2 N CD8 5.01 0.40 0.0803

Table 3.17: Summary statistics for estimates of parameter Dσ (cf. Figure 3.21).
Donor ViViD Used Cell Type Median IQR IQR/Median

1 Y CD4 1.10 0.24 0.2172
1 Y CD8 1.83 0.66 0.3583
1 N CD4 1.08 0.15 0.1398
1 N CD8 1.98 0.57 0.2877
2 Y CD4 1.76 0.41 0.2349
2 Y CD8 1.66 0.33 0.1968
2 N CD4 1.76 0.49 0.2813
2 N CD8 1.61 0.35 0.2169
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least over the first few days) when the two different sets of parameter values for T die indicated
in Figures 3.22 and 3.23 are used. To demonstrate this claim, we show sample model output
generated using these two different sets of parameter values for T die in Figure 3.24. The complete
sets of parameter values for “Model A” and “Model B” are provided in Table 3.18. Note that,
despite the large discrepancy in the values used for E

[
T die

]
and SD

[
T die

]
, the output for the

two models is indistinguishable until at least Day 3. This simple exercise indicates that the
accuracy of data collected in the later days of the experiment may be critical to the correct
identification of the parameters E

[
T die

]
and SD

[
T die

]
. In Section 3.3.2, we test this hypothesis

using model comparison tests.
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Figure 3.22: Plots illustrating the (a) pdfs and (b) cdfs of the lognormally distributed random
variables T div and T die when E

[
T div

]
= 11.21, SD

[
T div

]
= 0.89, E

[
T die

]
= 40, and SD

[
T die
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=

2.
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Figure 3.23: Plots illustrating the (a) pdfs and (b) cdfs of the lognormally distributed random
variables T div and T die when E

[
T div

]
= 11.21, SD
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= 0.89, E

[
T die

]
= 70, and SD

[
T die
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=

25.

59



0 1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

3500

4000

Log FI

C
e
ll 

C
o
u
n
t

Day 1

 

 

Model A

Model B

0 1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

3500

Log FI

C
e
ll 

C
o
u
n
t

Day 2

 

 

Model A

Model B

0 1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

3500

4000

Log FI

C
e
ll 

C
o
u
n
t

Day 3

 

 

Model A

Model B

0 1 2 3 4 5 6
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Log FI

C
e
ll 

C
o
u
n
t

Day 4

 

 

Model A

Model B

0 1 2 3 4 5 6
0

2000

4000

6000

8000

10000

12000

Log FI
C

e
ll 

C
o

u
n

t

Day 5

 

 

Model A

Model B

Figure 3.24: Summary histogram output for Model A, in which E
[
T die

]
= 40 and SD

[
T die

]
=

2, and Model B, in which E
[
T die

]
= 70 and SD

[
T die

]
= 25. The time points corresponding to

“Day 1” through “Day 5” are the same as those that were used for data collection as described
in Section 3.1.

Table 3.18: Parameter values used to obtain summary histogram output for Models A and B
in Figure 3.24. Values which differ in the two models are emphasized in boldface.

Parameter Model A Model B
E [Xa] 388.45 388.45

SD [Xa] 215.83 215.83
c 0.0067 0.0067

E
[
T div0

]
62.10 62.10

SD
[
T div0

]
27.20 27.20

E
[
T div

]
11.21 11.21

SD
[
T div

]
0.89 0.89

E
[
T die

]
40.00 70.00

SD
[
T die

]
2.00 25.00

F0 0.6812 0.6812
Dµ 3.75 3.75
Dσ 1.08 1.08

60



3.3.2 Qualifying Identifiability of T die Parameters Using Model Comparison

Tests

In this section, we first seek to demonstrate that the parameters E
[
T die

]
and SD

[
T die

]
are

influential in describing the behavior of a population of proliferating cells over five days of an
experiment such as the one described in Section 3.1. We then attempt to show that the same
parameters are not influential (under certain conditions) in describing behavior during the first
three days of such experiments. The example provided at the end of Section 3.3.1 attests to the
plausibility of these hypotheses by showing that model output for the first three days is not
significantly affected when the parameters in question are changed, while the output for Day 5
does appear to be sensitive to changes in these parameters.

In order to test the hypothesis that the parameters E
[
T die

]
and SD

[
T die

]
are non-influential,

we can use statistically based model comparison techniques. The approach we use is based on
analysis of variance (ANOVA) hypothesis testing as outlined by Banks and Tran in their text
on mathematical modeling [12]. We consider two distinct mathematical models, both of which
can be evaluated using the cost functional J given in (2.17). The first is the twelve-parameter
model described in Section 2.5 and the second is the “nested” model that results when the
parameters E

[
T die

]
and SD

[
T die

]
are fixed at 70 hours and 1 hour, respectively. Note that

these fixed parameter values tend to ensure that T die will be stochastically larger than T div

when calibrating the nested model using the data described in Section 3.1.
In order to formulate our statistical hypotheses, we let Q ⊂ R12 denote the set of all

admissible parameters for the twelve-parameter model and QH = {~q ∈ Q : H~q = ~c} ⊂ Q be
the set of admissible parameters for the nested model, where H ∈ R2×12 and ~c ∈ R2. Using the
parameter ordering suggested by Table 2.1 and setting

H =

[
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

]

and ~c = (70, 1)T results in the nested model described previously. We wish to test the null
hypothesis that the “true” parameter vector ~q0 is in the restricted set QH ; i.e.,

H0 : ~q0 ∈ QH .

Therefore, we follow the usual practice in inferential statistics of defining a test statistic. Let
{N j

k} be a set of random variables as in (2.16) with corresponding realizations {njk} constituting
observed data so that we can define the GLS estimators

~qGLS = argmin
~q∈Q

J(~q; {N j
k}) and ~qHGLS = argmin

~q∈QH
J(~q; {N j

k}) (3.1)
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and GLS estimates

q̂GLS = argmin
~q∈Q

J(~q; {njk}) and q̂HGLS = argmin
~q∈QH

J(~q; {njk}). (3.2)

We note here that J(q̂HGLS ; {njk}) ≥ J(q̂GLS ; {njk}) because the estimate q̂HGLS is obtained by
optimizing over a subset of Q, while q̂GLS is obtained by optimizing over all of Q. Using the
GLS estimators and estimates, we can define the test statistic

U({N j
k}) =

n
(
J(~qHGLS , {N

j
k})− J(~qGLS , {N j

k})
)

J(~qGLS , {N j
k})

(3.3)

with corresponding realization

Û({njk}) =
n
(
J(q̂HGLS , {n

j
k})− J(q̂GLS , {njk})

)
J(q̂GLS , {njk})

, (3.4)

where
n = [number of histogram bins]× [number of time points]

is the number of observations in a data set. We remark that, for the five-day time series data
sets considered in this study, we use 1024 bins and 5 − 1 = 4 time points (because the first
time point is used to construct an initial condition and is not considered to be a data point),
so n = 1024 × 4 = 5096. As discussed by Banks and Tran [12], the test statistic U converges
in distribution to a χ2 distribution with r = 2 degrees of freedom (where r is the number of
constraints defined by the system H~q = ~c) as n→∞.

As shown in Table 3.19, the costs associated with the optimal parameter vector q̂HGLS on
the restricted set QH tend to be significantly greater than those associated with with the
optimal parameter vector q̂GLS on the set Q when all data points up through Day 5 are
considered. The results shown in the table were obtained for data corresponding to Donor 1
CD4+ T cells when ViViD dye is not used to exclude dead cells (i.e., experimental condition
“Donor1/NoVivid/CD4”), but they are typical of the results obtained with five-day time series
data sets for any of the eight combinations of donor, ViViD dye status, and cell type. We also
remark that Table 3.19 only shows results for 27 of the 162 possible five-day data sets that can
be formed for experimental condition Donor1/NoVivid/CD4. The “Data ID” column in the
table provides a 5-digit base 3 number that indicates which triplicate sample (“0” for Sample 1,
“1” for Sample 2, or “2” for Sample 3) is used for each of the five days. Again, results for the
162 − 27 = 135 five-day data sets not shown in the table are similar to those that are shown.
Based on the very low (essentially zero) p-values resulting from the model comparison tests, we
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Table 3.19: Results of the model comparison test described in Section 3.3.2 when using all
data points up through Day 5.

Data ID J(q̂GLS , {njk}) J(q̂HGLS , {n
j
k}) Û({njk}) p-value

00000 19875.8 28477.6 1772.65 0
00001 19070.2 23057.3 856.383 0
00002 19405 24010.1 972.061 0
00010 22566 31208.3 1568.68 0
00011 16521.6 18404.3 466.774 0
00012 20302.2 28115.2 1576.28 0
00100 22971.1 29463.4 1157.63 0
00101 20273.5 24604.9 875.102 0
00102 20473.2 25452 996.076 0
00110 23429.4 32159.7 1526.26 0
00111 17469.9 19466.3 468.082 0
00112 21247.3 29062.9 1506.68 0
00200 22333.3 28423.7 1117.01 0
00201 20574.8 24777.8 836.73 0
00202 20435 24502.9 815.374 0
00210 23602.9 31881.7 1436.69 0
00211 17485.5 19339.4 434.279 0
00212 21403.2 28846.5 1424.44 0
01000 22542.9 29237.8 1216.45 0
01001 20365 24334.7 798.427 0
01002 20807.2 25238.5 872.326 0
01010 23732.8 32154.3 1453.45 0
01011 17762.9 19641.3 433.153 0
01012 17796.4 20048.2 518.28 0
01100 24356.4 30714.8 1069.29 0
01101 21054.5 24710.3 711.226 0
01102 21660.7 26724.7 957.593 0

reject the null hypothesis and infer that the T die parameters are important for describing the
behavior of a population of proliferating cells over five days.

The hypothesis test results are quite different when we only consider data from the first
three days of cell proliferation. As shown in Table 3.20, the costs associated with the optimal
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parameter vector q̂HGLS on the restricted set QH tend to be very close to those associated
with with the optimal parameter vector q̂GLS on the set Q when only data points for Days 1
through 3 are considered. We remark that in some cases J(q̂HGLS , {n

j
k}) < J(q̂GLS , {njk}) leading

to a negative value for the test statistic Û({njk}). While this should theoretically not occur, we
point out that all estimates are obtained through numerical optimization (cf. Section 2.6).
The differences in the two costs in these cases is usually quite small and is therefore probably
attributable to tolerances used in the numerical parameter estimation routines. Again, the
results shown in the table were obtained for experimental condition Donor1/NoVivid/CD4,
but they are typical of the results obtained with three-day time series data sets for any of
the eight combinations of donor, ViViD dye status, and cell type. In some extreme cases (not
shown in the table) J(q̂GLS , {njk}) is significantly smaller that J(q̂HGLS , {n

j
k}), but this could

be explained by other numerical issues; for example, the optimization algorithm involved in
parameter estimation might fail to find a global minimum if it first arrives at a local minimum
associated with the fixed parameter values. Despite these numerical issues, the result in the
majority of the model comparison tests is a very high p-value. Thus, we fail to reject the null
hypothesis and infer that that the T die parameters are not important for describing the behavior
of a population of proliferating cells during Days 1 through 3.

The outcome of the model comparison tests described here can be summarized as follows.
While the T die parameters do not appear to significantly impact the behavior of a population
of proliferating cells during Days 1 through 3, they do appear to be important in describing the
status of the population at later time points. Thus, if reliable (replicable) data could be obtained
for the later time points (Days 4 and 5), the T die parameters could probably be identified.
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Table 3.20: Results of the model comparison test described in Section 3.3.2 when using data
points for Days 1 through 3.

Data ID J(q̂GLS , {njk}) J(q̂HGLS , {n
j
k}) Û({njk}) p-value

000 7658.73 7657.05 -0.448661 1
001 8351.69 8348.66 -0.741913 1
002 8147.56 8147.74 0.0462316 0.977149
010 8693.52 8693.04 -0.112691 1
011 9383.89 9386.68 0.607774 0.737944
012 9331.61 9179.68 -33.3447 1
020 10679.8 10680.6 0.150055 0.927718
021 11408.3 11409.4 0.182332 0.912866
022 11206.4 11203.7 -0.484748 1
100 5572.97 5574.21 0.456138 0.796069
101 6036.02 6037.61 0.541507 0.762804
102 5887.39 5887.25 -0.0483848 1
110 6008.93 6009.26 0.115165 0.944044
111 6467.57 6467.93 0.112524 0.945292
112 6321.62 6321 -0.200943 1
120 7416.37 7417.08 0.197622 0.905914
121 7906.26 7906.04 -0.0570808 1
122 7763.63 7763.01 -0.165685 1
200 4912.94 4913.64 0.29154 0.864356
201 5288.85 5287.78 -0.415375 1
202 5152.64 5152.67 0.00871946 0.99565
210 5107.48 5107.84 0.144135 0.930468
211 5480.76 5481.77 0.377473 0.828004
212 5345.85 5345.61 -0.0897012 1
220 6062.62 6062.55 -0.0234248 1
221 6458.76 6458.47 -0.0919566 1
222 6327.65 6328.04 0.125123 0.939355
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3.3.3 Parameter Estimates Obtained Using Fixed Values for Some Parame-

ters

By examining scatter plots of various pairings of parameter estimates, we can determine whether
or not any correlations might exist between some of the parameters. For example, Figures 3.25
and 3.26 indicate a strong correlation between the parameters E

[
T div0

]
and SD

[
T div0

]
and

E
[
T die

]
and SD

[
T die

]
, respectively. We therefore use once again a variation of our parameter

estimation scheme in which one or more of the 12 model parameters can be fixed (cf. Sec-
tion 3.3.2), hoping that the fixing of certain parameters might reduce the variability seen in
some of the other parameter estimates.

Based on the relationships suggested by Figures 3.25 and 3.26, we applied our modified
parameter estimation algorithm in two scenarios: (i) using fixed values for E

[
T div0

]
, and (ii) using

fixed values for E
[
T die

]
. We chose to fix the values of the two selected parameters at the

(approximate) median estimates obtained from the basic parameter estimation scheme (with no
fixed parameters). Since these medians vary for the different combinations of donor, ViViD dye
status, and cell type, we used different fixed values for each of these combinations. The specific
fixed values used for E

[
T div0

]
and E

[
T die

]
are shown in Tables 3.21 and 3.22, respectively. Our

goal in fixing the value of one or more parameters is to reduce the variability in the parameter
estimates for other parameters, so we need to select some measure of variability for the analysis.
Throughout the discussions that follow, we will use the interquartile range (IQR) as a rough
measure of variability in the parameter estimates for a given combination of donor, ViViD dye
status, and cell type.

Table 3.21: Parameter values used when fixing the parameter E
[
T div0

]
.

Donor ViViD Used Cell Type E
[
T div0

]
1 Y CD4 64
1 Y CD8 51
1 N CD4 62.5
1 N CD8 49
2 Y CD4 60.5
2 Y CD8 48
2 N CD4 64
2 N CD8 47
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Figure 3.25: Scatterplots illustrating a correlation between E
[
T div0

]
and SD

[
T div0

]
.
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Table 3.22: Parameter values used when fixing the parameter E
[
T die

]
.

Donor ViViD Used Cell Type E
[
T die

]
1 Y CD4 40
1 Y CD8 62
1 N CD4 40
1 N CD8 62
2 Y CD4 40
2 Y CD8 52
2 N CD4 36
2 N CD8 50

The results of applying our modified parameter estimation technique in case (i) are shown
in Figures 3.27 through 3.37. Note that the total number of figures is 11 – there is one for
each model parameter except E

[
T div0

]
, which is fixed. Comparing Figures 3.14 and 3.30, we see

that using a fixed value for E
[
T div0

]
does considerably reduce the variability in the estimates

of SD
[
T div0

]
in the case of Donor 1 data; however, this is not generally true in the case of

Donor 2 data. In fact, when using data for Donor 2’s CD8+ T cells (without use of Vivid dye),
the variability in the estimates for SD

[
T div0

]
is substantially larger (IQR of 1.66 vs. 0.81) when

fixing the parameter E
[
T div0

]
. Returning to Figure 3.25, note that the scatter plots reveal strong

correlation between E
[
T div0

]
and SD

[
T div0

]
in the case of Donor 1, but weak correlation (or no

correlation) between these two parameters in the case of Donor 2. Therefore, the results when
fixing one of the parameters in question are actually consistent with what one might expect.

Overall, comparing Figures 3.27 through 3.37 with Figures 3.10 through 3.21 (or, more pre-
cisely, comparing the IQRs for the corresponding box plots in those figures) reveals that fixing
the value of E

[
T div0

]
is not a universally advantageous approach if our goal is to reduce vari-

ability in the parameter estimates. Interestingly, this approach is almost always advantageous
in the case of Donor 1 data, but for many of the parameter estimates this approach causes an
increase in variability when considering the Donor 2 data. For example, estimates for E [Xa],
SD [Xa], SD

[
T div0

]
, E
[
T die

]
, SD

[
T die

]
, and Dµ all experience significant increases in variabil-

ity for at least some of the combinations of ViViD dye status and cell type when considering
Donor 2 data.
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Figure 3.27: Box plots illustrating variability in estimates for the parameter E [Xa] when the
parameter E

[
T div0

]
is fixed.
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Figure 3.28: Box plots illustrating variability in estimates for the parameter SD [Xa] when the
parameter E

[
T div0

]
is fixed.
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Figure 3.29: Box plots illustrating variability in estimates for the parameter c when the pa-
rameter E

[
T div0

]
is fixed.
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Figure 3.30: Box plots illustrating variability in estimates for the parameter SD
[
T div0

]
when

the parameter E
[
T div0

]
is fixed.
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Figure 3.31: Box plots illustrating variability in estimates for the parameter E
[
T div

]
when the

parameter E
[
T div0

]
is fixed. In the lower set of box plots, some of the most extreme outliers

are not plotted so that the rest of the information in the box plots can be shown with higher
precision.
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Figure 3.32: Box plots illustrating variability in estimates for the parameter SD
[
T div

]
when

the parameter E
[
T div0

]
is fixed. In the lower set of box plots, some of the most extreme outliers

are not plotted so that the rest of the information in the box plots can be shown with higher
precision.
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Figure 3.33: Box plots illustrating variability in estimates for the parameter E
[
T die

]
when the

parameter E
[
T div0

]
is fixed.
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Figure 3.34: Box plots illustrating variability in estimates for the parameter SD
[
T die

]
when

the parameter E
[
T div0

]
is fixed.
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Figure 3.35: Box plots illustrating variability in estimates for the parameter F0 when the
parameter E

[
T div0

]
is fixed.
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Figure 3.36: Box plots illustrating variability in estimates for the parameter Dµ when the
parameter E

[
T div0

]
is fixed.
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Figure 3.37: Box plots illustrating variability in estimates for the parameter Dσ when the
parameter E

[
T div0

]
is fixed.
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In Figures 3.38 through 3.48, we show the results of applying our modified parameter es-
timation technique in case (ii). Again, note that there is one figure for each of the 11 model
parameters that is not fixed. Recall that our goal in fixing the value of the parameter E

[
T die

]
is

to reduce the variability in the parameter estimates for SD
[
T die

]
, which seems to be correlated

with E
[
T die

]
(based on Figure 3.26). Comparing Figures 3.18 and 3.45, we see that using a

fixed value for E
[
T die

]
does considerably reduce the variability in the estimates of SD

[
T die

]
in most cases; however, when using data for Donor 2’s CD4+ T cells (with use of Vivid dye),
the variability in the estimates for SD

[
T die

]
is substantially larger (IQR of 10.84 vs. 5.54)

when fixing the parameter E
[
T die

]
. It is not clear from Figure 3.26 why there should be such

a discrepancy in this particular case.
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Figure 3.38: Box plots illustrating variability in estimates for the parameter E [Xa] when the
parameter E

[
T die

]
is fixed.
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Figure 3.39: Box plots illustrating variability in estimates for the parameter SD [Xa] when the
parameter E

[
T die

]
is fixed.
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Figure 3.40: Box plots illustrating variability in estimates for the parameter c when the pa-
rameter E

[
T die

]
is fixed.
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Figure 3.41: Box plots illustrating variability in estimates for the parameter E
[
T div0

]
when the

parameter E
[
T die

]
is fixed.
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Figure 3.42: Box plots illustrating variability in estimates for the parameter SD
[
T div0

]
when

the parameter E
[
T die

]
is fixed. In the lower set of box plots, some of the most extreme outliers

are not plotted so that the rest of the information in the box plots can be shown with higher
precision.
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Figure 3.43: Box plots illustrating variability in estimates for the parameter E
[
T div

]
when the

parameter E
[
T die

]
is fixed. In the lower set of box plots, some of the most extreme outliers

are not plotted so that the rest of the information in the box plots can be shown with higher
precision.
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Figure 3.44: Box plots illustrating variability in estimates for the parameter SD
[
T div

]
when

the parameter E
[
T die

]
is fixed. In the lower set of box plots, some of the most extreme outliers

are not plotted so that the rest of the information in the box plots can be shown with higher
precision.
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Figure 3.45: Box plots illustrating variability in estimates for the parameter SD
[
T die

]
when

the parameter E
[
T die

]
is fixed. In the lower set of box plots, some of the most extreme outliers

are not plotted so that the rest of the information in the box plots can be shown with higher
precision.
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Figure 3.46: Box plots illustrating variability in estimates for the parameter F0 when the
parameter E

[
T die

]
is fixed.
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Figure 3.47: Box plots illustrating variability in estimates for the parameter Dµ when the
parameter E

[
T die

]
is fixed.
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Figure 3.48: Box plots illustrating variability in estimates for the parameter Dσ when the
parameter E

[
T die

]
is fixed.

If we compare Figures 3.38 through 3.48 with Figures 3.10 through 3.21, it is evident that
fixing the value of E

[
T die

]
causes increases in the variability of parameter estimates in many

cases. Unlike the situation with the previous fixed parameter (E
[
T div0

]
), these increases are

prevalent when considering Donor 1 data and Donor 2 data. We are therefore forced to conclude
that fixing the value of E

[
T die

]
also fails as a universally advantageous scheme for reducing

variability in the parameter estimates.
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3.3.4 Parameter Estimates Obtained Using Only Data for Days 1 through 3

As was demonstrated in Section 3.2, the amount of relative variation in the cell counts undergoes
significant changes between Day 3 and Day 5. We therefore also attempted to estimate param-
eters using only data from Days 1 through 3. The results of applying our parameter estimation
technique to such reduced data sets are provided in Figures 3.49 through 3.60. Since in this
case we have triplicate samples for each of three days, there are 33 = 27 possible ways to form a
three-day time series data set for each donor. Therefore, each box plot in the above-referenced
figures represents a summary of 27 parameter estimates.
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Figure 3.49: Box plots illustrating variability in estimates for the parameter E [Xa] when using
only data from Days 1 through 3.
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Figure 3.50: Box plots illustrating variability in estimates for the parameter SD [Xa] when
using only data from Days 1 through 3.
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Figure 3.51: Box plots illustrating variability in estimates for the parameter c when using only
data from Days 1 through 3.
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Figure 3.52: Box plots illustrating variability in estimates for the parameter E
[
T div0

]
when

using only data from Days 1 through 3. In the lower set of box plots, some of the most extreme
outliers are not plotted so that the rest of the information in the box plots can be shown with
higher precision.
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Figure 3.53: Box plots illustrating variability in estimates for the parameter SD
[
T div0

]
when

using only data from Days 1 through 3. In the lower set of box plots, some of the most extreme
outliers are not plotted so that the rest of the information in the box plots can be shown with
higher precision.
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Figure 3.54: Box plots illustrating variability in estimates for the parameter E
[
T div

]
when

using only data from Days 1 through 3.
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Figure 3.55: Box plots illustrating variability in estimates for the parameter SD
[
T div

]
when

using only data from Days 1 through 3.
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Figure 3.56: Box plots illustrating variability in estimates for the parameter E
[
T die

]
when

using only data from Days 1 through 3.
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Figure 3.57: Box plots illustrating variability in estimates for the parameter SD
[
T die

]
when

using only data from Days 1 through 3.
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Figure 3.58: Box plots illustrating variability in estimates for the parameter F0 when using
only data from Days 1 through 3.
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Figure 3.59: Box plots illustrating variability in estimates for the parameter Dµ when using
only data from Days 1 through 3.
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Figure 3.60: Box plots illustrating variability in estimates for the parameter Dσ when using
only data from Days 1 through 3. In the lower set of box plots, some of the most extreme
outliers are not plotted so that the rest of the information in the box plots can be shown with
higher precision.
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Comparing Figures 3.49 through 3.60 with Figures 3.10 through 3.21 reveals that there are
clear differences between the parameter estimates obtained using three-day data sets and those
obtained using complete data sets. For a complete discussion of the differences, see Section 5.2.5
of Banks et al. [4]. This outcome further supports the evidence given in Section 3.2 that the
periodic exchange of nutrient medium starting at Day 3 causes changes to the counts and/or
the proliferative behavior (as described by our cyton-based dynamical models) of the affected
cell cultures.

3.4 Conclusions from Variability Study

In this chapter, we have presented the findings of our investigation into the variability that
exists in CFSE-based flow cytometry data in the context of cyton-based mathematical models
for cell proliferation. By applying the parameter estimation scheme described in Chapter 2 to
a large body of data, we were able to assess both experimental and biological variability in the
resulting parameter estimates. In this section, we summarize our findings and utilize them to
make some important conclusions concerning both standard CFSE flow cytometry experimental
procedures and the mathematical models that are used to analyze data that result from these
procedures.

We begin by summarizing our results concerning identifiability of the various parameters in
our model. As was discussed in Section 3.3.1, it appears that the parameters E [Xa], SD [Xa], c,
E
[
T div0

]
, SD

[
T div0

]
, E
[
T div

]
, F0, Dµ, and Dσ can all be estimated with fairly high reliability,

while the parameters SD
[
T div

]
, E
[
T die

]
, and SD

[
T die

]
do not appear to be identifiable. As a

possible explanation of this, we proposed that the model may not be sensitive to the parameters
involving T die at the earlier time points (i.e., Days 1 through 3). We also provided an example
(cf. Figures 3.22 through 3.24) which indicated that the model may be more sensitive to these
parameters at the later time points (i.e., by Day 5) and used statistically based model compar-
ison tests to verify this hypothesis. Unfortunately, another key finding of this study is that the
accuracy of in vitro CFSE flow cytometry data appears to decrease significantly after Day 3.
We hypothesize that cell culturing protocols (and specifically the depletion and replenishment
of nutrient medium) lead to this increase of variability in measured triplicate data after Day 3.
Thus the parameters E

[
T die

]
and SD

[
T die

]
may not be identifiable using five-day time series

data sets collected using the current standard protocols.
A number of differences between the parameter estimates observed for distinct donors and

cell types are outlined in Section 3.3.1, but it is difficult to state the relationships described there
in a more concise way. We would like to revisit, however, one interesting general result that arose
in Section 3.3.1: the use of ViViD dye does not seem to have a significant effect on the estimates
obtained for most of the model parameters. Interestingly, the largest fractions of dead cells are
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typically identified (using ViViD) in the first three days of the experiment (cf. Tables 3.1
through 3.5); i.e., the largest relative errors in cell counts due to the counting of dead cells
(when not using ViViD to omit them) occurs in the earliest days of the experiment. This may be
because the large die-off of cells that occurs immediately following PHA stimulation (which was
mentioned in Section 2.5) leaves a considerable number of dead (but not yet disintegrated) cells
in its wake at the beginning of the experiment. Presumably these cells are able to disintegrate
completely by Day 4, at which point the fractions of dead cells identified using ViViD are much
smaller. Whatever the reason, it seems that errors in cell counts caused by the inclusion of dead
cells are likely to be largest when errors in the true cell counts, themselves, are smallest (cf.
Section 3.2). Also, errors in cell counts caused by the inclusion of these cells are likely to be
smallest when errors in the true cell counts, themselves, are largest. So, although the use of
ViViD dye may not appear to be beneficial in the estimation of parameters based on the results
of this study, use of ViViD may prove to be beneficial in later studies if new techniques make
it possible to obtain more precise true cell counts (especially at the later time points).

We implemented several variations to our basic parameter estimation scheme in an attempt
to reduce variability in parameter estimates. In Section 3.3.3, we discussed the results of fixing
the values of E

[
T div0

]
or E

[
T die

]
, and concluded that neither of these schemes proved to be

universally beneficial. In fact, in many cases these approaches tended to increase variability in
parameter estimates. While Figures 13 and 14 indicate that we can (in some instances) expect
a correlation between E

[
T div0

]
and SD

[
T div0

]
and between E

[
T die

]
and SD

[
T die

]
, they do not

necessarily imply that E
[
T div0

]
and/or E

[
T die

]
are not influential. In fact, there may be some

interplay between these parameters and other model parameters similar to the hypothetical
interplay between time-to-division and time-to-death parameters discussed at the end of Sec-
tion 3.3.1. Furthermore, even if the parameters in question are not influential, fixing them will
not necessarily result in improved estimates for other parameters. (The data itself may contain
little or no information on these specific parameters.) Thus, the discovery that fixing one or
both of the parameters in question was not advantageous should not be particularly surprising
or counterintuitive.

We also implemented a variation of our basic parameter estimation scheme in which only
data from Days 1 through 3 were utilized. As was outlined in Section 3.3.4, clear differences
exist between the parameter estimates obtained using three-day data sets and those obtained
using complete data sets. This outcome, along with the evidence presented in Section 3.2, seems
to indicate that the periodic exchange of nutrient medium starting at Day 3 does affect the
proliferation of cells in the cell culture wells that are processed after Day 3. Furthermore, the
very fact that the exchange of nutrient medium is necessary allows one to infer that cell cultures
deplete nutrients in their respective wells throughout the experiment. Thus, several observa-
tions made in this study indicate that the standard cell culturing protocol used for CFSE flow
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cytometry experiments does not provide a constant environment for cells growing in the wells.
The apparent changes in the cell culture environments unfortunately contradict the underlying
assumptions of our model. In particular, the cyton model that we’ve incorporated into our
mass- and energy-conserving mathematical model tacitly assumes a constant environment for
cultures of proliferating cells. (Note that the time-dependence of the cytons {(φi(t), ψi(t))} is
actually based on “time since the last division occurred”, or time in the frame of reference
of an individual cell. The cytons therefore have no dependence on “real time”, or time in the
frame of reference of the experimenter. In real time, the conditions in the nutrient medium are
apparently changing, and the basic cyton model is not capable of handling such a non-constant
environment.) Adjustments could be made to the model, of course, to allow for time-dependence
of the cytons, but any such adjustments would most likely lead to overparameterization; i.e.,
the increase in the number of parameters required by such adjustments would probably lead to
even more identifiability issues. Furthermore, environmental changes caused by the exchange of
the nutrient medium at discrete time points would probably be very difficult (experimentally)
to quantify. It is worth noting that, in cases where a smaller total number of cells is stimulated
(e.g., in response to antigen-specific challenges) the depletion of nutrient medium may not be
significant over the course of a five-day experiment; thus, the exchange of nutrient medium may
be unnecessary in such cases.

As a final point, we would like to re-emphasize that typical CFSE flow cytometry data are
not truly longitudinal (cf. Section 3.1). For this reason, it appears that our ability to validate
(and estimate parameters for) our division- and label-structured cell population model is limited
by the precision with which experimenters can seed a set of cell culture wells. (Recall that, upon
seeding, we assume all wells to be identical in that they include the same numbers of total cells
in the same proportions.) The results presented in this report suggest that the use of time
series data which are not truly longitudinal (which is the current standard protocol for in
vitro CFSE flow cytometry experiments) leads to high variability in estimates for many of the
relevant parameters in our model. This could be because the numbers of cells used to seed two
distinct wells, which are assumed to be identical and which will be harvested and analyzed
to produce data for two distinct points in the time series, can differ by 16 percent or more
(cf. Table 3.1). (We should mention here the possibility that experimenters may actually seed
the wells with much higher precision than seems to be the case, and that poor precision in
bead counts might be the true cause of the apparent discrepancies in total cell numbers. This
possibility was considered in our previous work [5], and a statistical model was formulated
there to account for errors in bead counts, but we believe such a model adjustment leads to
overparameterization.) This issue of poor precision in total cell counts, along with the issue of
non-constant environment, suggests that substantive changes to CFSE flow cytometry and in
vitro cell culturing protocol and/or significant modifications to our mathematical model need
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to be considered.
We reiterate that, for this study, we have only considered PHA-stimulated cells. Because it

is a non-specific T cell mitogen, PHA stimulates all T cells to begin dividing and therefore leads
to a somewhat artificial situation from an immunological perspective. Nevertheless, the meth-
ods and results presented here indicate that many of the important and biologically relevant
parameters for describing T cell proliferation can be reliably estimated using our approach. As
more realistic and interesting experiments are devised and carried out (e.g., Gag protein stim-
ulation of cells from HIV-positive donors), it is our hope that the challenges and concerns we
have discussed will inform the development and selection of models that account for variability
in experimental data.
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Chapter 4

Computation of Relevant

Convolution Integrals

For the cell proliferation models described in Chapter 2, we saw that the total fluorescence
intensity (FI) emitted by any given cell in the range of wavelengths corresponding to CFSE is
actually the sum of the cell’s CFSE-induced FI and its natural autofluorescence. Therefore, if
we are interested in the distribution of the total CFSE-wavelength FI for a population of cells,
we actually need to compute the distribution of a random variable X̃ that is the sum of two
independent random variables X and Xa that represent CFSE-induced FI and autofluorescence,
respectively. One approach to this problem is to use the standard convolution formula [18], to
obtain the probability density function (pdf) of X̃ = X +Xa from the (known) pdfs of X and
Xa. That is, one can determine the value the pdf of X̃ at x̃ as

fX̃(x̃) =
∫ ∞
−∞

fX(ξ)fXa(x̃− ξ) dξ =
∫ ∞
−∞

fXa(ξ)fX(x̃− ξ) dξ, (4.1)

where fX and fXa are the pdfs for CFSE-induced FI and autofluorescence, respectively, and fX̃
is the pdf for total (or observed) FI. Unfortunately, this approach can be very computationally
expensive, as it requires one to compute a new integral (over a potentially very large domain)
for each value x̃ at which one wishes to know the density. In this chapter we examine methods
for computing values for convolution integrals relevant to the cell proliferation models already
described, as well as the asymmetric division models that will be described in Chapter 5.

4.1 Direct Methods

First, we consider two methods for computing the value of the integral in (4.1) directly. In
particular, we examine one method based on the composite trapezoid rule quadrature and
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another based on Monte Carlo sampling. These are both “direct” methods in the sense that
they converge to the exact value of the integral as larger numbers of quadrature or sample
points are used.

Before we describe the direct methods in detail, we take a moment to make four important
points. The first is that fluorescence intensity (FI) always takes on a nonnegative value. Thus,
the support for both fX and fXa is some subset of the interval [0,∞) and the domain of
integration for the integral in (4.1) can be truncated as in

fX̃(x̃) =
∫ x̃

0
fX(ξ)fXa(x̃− ξ) dξ. (4.2)

Second, we generally need to compute a collection of N range values for fX̃ corresponding
to some set of domain values {x̃1, . . . , x̃N} in order to obtain an approximation for the entire
distribution of observed CFSE FI. Any computational scheme should, of course, take this need
into account rather than focusing on obtaining single range values for fX̃ one at a time. Third,
in order to perform the computations that follow, we need to determine a maximal domain
value x̃max = x̃N at which fX̃ has “significant” support. We define the “significant support
region” of a pdf to be those domain values at which the pdf takes on values significantly larger
than zero. The maximum observed CFSE FI for the data sets considered in this dissertation
is around 105.5 (cf. Figure 1.4), so we use the conservative value x̃max = 106 when working
with our data. Finally, given the large spread of the domain values at which fX̃ has support
and the fact that CFSE FI are typically organized according to a logarithmic scale, we choose
x̃1 = 100 = 1 through x̃N = x̃max = 106 to be N logarithmically equally spaced points on
the interval [1, 106]. The set of domain values {x̃1, . . . , x̃N} can easily be assigned using the
MATLAB function logspace. Note that the resulting domain values are therefore not equally
spaced when considering them on a linear scale.

4.1.1 Trapezoid Rule Method

In order to compute a set of range values for fX̃ using the composite trapezoid rule [40], we
first define a set of nodes {ξ̃0, ξ̃1, . . . , ξ̃Ntrap} that partition the interval [0, x̃max] into Ntrap

subintervals of equal width. This can be done by setting ξ̃k = k · h, where h = x̃max/Ntrap is
the width of each subinterval. (Note that Ntrap is not necessarily equal to N , and ξ̃k is not in
general equal to x̃k because the former comes from a set of nodes which are equally spaced in
the linear sense.) Then the composite trapezoid rule applied to (4.2) gives

fX̃(ξ̃j) ≈

0 for j = 0,

h · T
((
fX(ξ̃0)fXa(ξ̃j), fX(ξ̃1)fXa(ξ̃j−1), . . . , fX(ξ̃j)fXa(ξ̃0)

))
for j ≥ 1,

109



where

T
(
(y0, . . . , yj)

)
=

1
2

(
y0 + 2

j−1∑
k=1

yk + yj

)
. (4.3)

Note that the function T : RM → R is equivalent to the MATLAB function trapz, which
takes as input a vector of length M (representing function values at nodes on a unit-spaced grid)
and returns a scalar (representing the composite trapezoid rule integral approximation). There-
fore, one could compute the range values {f trap

X̃
(ξ̃j)} by looping through the indices 1 through

Ntrap and applying trapz. This approach, which is outlined in Algorithm 4.1.1, tends to be rel-
atively slow, however, so we use an alternate implementation based on the MATLAB function
conv. The conv function takes as input two vectors u and v and “convolves” them to produce a
new vector w. If u = (u0, . . . , uNtrap) and v = (v0, . . . , vNtrap), then w = (w0, . . . , w2Ntrap) where

wj =
min{j,Ntrap}∑

k=max{0,j−Ntrap}

ukvj−k.

Thus, we obtain

w0 = u0v0,

w1 = u0v1 + u1v0,

w2 = u0v2 + u1v1 + u2v2,

...

wNtrap = u0vNtrap + u1vNtrap−1 + · · ·+ uNtrapv0

...

w2Ntrap = uNtrapvNtrap .

Now, suppose we let u =
(
fX(ξ̃0), . . . , fX(ξ̃Ntrap)

)
and v =

(
fXa(ξ̃0), . . . , fXa(ξ̃Ntrap)

)
. Further-

more, assume u0 = fX(ξ̃0) = 0 and v0 = fXa(ξ̃0) = 0. Then, if we pass h · u and v to the conv

function, the output vector w will satisfy

w0 = hfX(ξ̃0)fXa(ξ̃0) = 0 = f trap
X̃

(ξ̃0),

w1 = h
(
fX(ξ̃0)fXa(ξ̃1) + fX(ξ̃1)fXa(ξ̃0)

)
= h(0 + 0) = 0 = f trap

X̃
(ξ̃1),

w2 = h
(
fX(ξ̃0)fXa(ξ̃2) + fX(ξ̃1)fXa(ξ̃1) + fX(ξ̃2)fXa(ξ̃0)

)
=

1
2
h
(

0 + 2fX(ξ̃1)fXa(ξ̃1) + 0
)

= f trap
X̃

(ξ̃2),

...
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wNtrap = h

fX(ξ̃0)fXa(ξ̃Ntrap) +
Ntrap−1∑
k=1

[
fX(ξ̃k)fXa(ξ̃Ntrap−k)

]
+ fX(ξ̃Ntrap)fXa(ξ̃0)


=

1
2
h
(

0 + 2
Ntrap−1∑
k=1

[
fX(ξ̃k)fXa(ξ̃Ntrap−k)

]
+ 0
)

= f trap
X̃

(ξ̃Ntrap),

where f trap
X̃

(ξ̃j) is the trapezoid rule computed value for fX̃(ξ̃j) as given in Algorithm 4.1.1. We
remark that the assumptions fX(ξ̃0) = 0 and fXa(ξ̃0) = 0 (where ξ̃0 = 0) are not unreasonable,
as Xa typically has a lognormal distribution and X can usually be approximated well by a sum
of lognormal random variables. Algorithm 4.1.2, which utilizes the conv function, produces
results identical to Algorithm 4.1.1 under these assumptions and requires substantially less
computational time.

Algorithm 4.1.1 Trapezoid Rule Convolution Computation Using trapz

1. Define Ntrap + 1 (linearly) equally spaced nodes {ξ̃0, . . . , ξ̃Ntrap} with spacing h.

2. Set f trap
X̃

(ξ̃0) to 0.

3. For each j in {1, . . . , Ntrap}, do the following:

� Construct the vector u =
(
fX(ξ̃0), . . . , fX(ξ̃j)

)
.

� Construct the vector v =
(
fXa(ξ̃j), . . . , fXa(ξ̃0)

)
, where the indices run in decreasing

order.

� Compute the vector y = u. ∗ v, where “.∗” indicates element-wise multiplication.

� Compute T (y) (cf. (4.3)) using trapz and then set f trap
X̃

(ξ̃j) to h · T (y).

4. Apply piecewise linear interpolation to the ordered pairs in {(ξ̃k, f trapX̃
(ξ̃k)) : k ∈

{0, . . . , Ntrap}} to obtain the values {fX̃(x̃k) : k ∈ {1, . . . , N}}. This can be effected
using the MATLAB function interp1.
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Algorithm 4.1.2 Trapezoid Rule Convolution Computation Using conv

1. Define Ntrap + 1 (linearly) equally spaced nodes {ξ̃0, . . . , ξ̃Ntrap} with spacing h.

2. Construct the vector h · u =
(
hfX(ξ̃0), . . . , hfX(ξ̃Ntrap)

)
.

3. Construct the vector v =
(
fXa(ξ̃0), . . . , fXa(ξ̃Ntrap)

)
.

4. Compute the vector w by convolving the the vectors h · u and v using conv.

5. For each j in {0, . . . , Ntrap}, set f trap
X̃

(ξ̃j) to wj . (Note that elements Ntrap + 1 through
2Ntrap of the vector w are never used.)

6. Apply piecewise linear interpolation to the ordered pairs in {(ξ̃k, f trapX̃
(ξ̃k)) : k ∈

{0, . . . , Ntrap}} to obtain the values {fX̃(x̃k) : k ∈ {1, . . . , N}}. This can be effected
using the MATLAB function interp1.

4.1.2 Monte Carlo Method

The idea behind the Monte Carlo approach to computing the pdf fX̃ is completely different.
Given that X̃ = X + Xa, we sample a collection of Nmc values {xk} from fX and another
collection of Nmc values {xka} from fXa . This allows us to construct a collection of Nmc values
{x̃kmc} by setting x̃kmc = xk+xka. The values in {x̃kmc} form a realization of a random sample from
the distribution fX̃ ; i.e., these values represent Nmc realizations of X̃. Therefore, if we define a
set of Nhist � Nmc bins (or subintervals) on the interval [0, x̃max], we can generate a relative
frequency histogram [21] and approximate fX̃ by the piecewise linear spline that connects the
midpoints of the tops of the histogram bars. Kernel density estimation (KDE) provides a more
sophisticated approach to the problem of approximating a probability density function using
a discrete sample [16], and results in a smooth density approximation rather than a piecewise
linear spline. We use KDE in the form of the MATLAB function ksdensity to generate an
approximation of fX̃ from the finite sample {x̃kmc} in our Monte Carlo implementation. This
implementation is outlined in Algorithm 4.1.3.
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Algorithm 4.1.3 Monte Carlo Convolution Computation

1. Construct the vector x ∈ RNmc by randomly sampling from the distribution fX .

2. Construct the vector xa ∈ RNmc by randomly sampling from the distribution fXa .

3. Compute the vector x̃mc as the sum of the vectors x and xa.

4. Obtain the vector fmc
X̃

, which represents the approximate values of fX̃ at each of the N
domain values in {x̃1, . . . , x̃N}, by applying ksdensity to the vector x̃mc.

4.1.3 Testing the Direct Methods

In order to test and compare the two direct approaches we’ve described, we propose two test
problems. In both of these, we suppose Xa ∼ logn(6, 0.552), which is a realistic assumption
based on estimated autofluorescence parameters obtained in Chapter 3. Then, in the first test
problem, we suppose X ∼ logn(10.5, 0.22), which is a realistic assumption for CFSE FI data
at Day 1. In the second test problem, we suppose X ∼ logn(6.8, 0.82), which is a realistic
assumption for CFSE FI data at Day 5. For both of the test problems, we estimate the values
of fX̃ at 1025 logarithmically evenly spaced nodes on the interval [1, 106].

The results of applying our two direct methods to the first test problem are shown in
Figure 4.1. As indicated in the figure, we set the number of trapezoid rule nodes to Ntrap =
2 × 104 (which corresponds to a step size h = 50) and the number of Monte Carlo sample
points to Nmc = 107. The trapezoid rule pdf approximation for X̃, which was obtained using
Algorithm 4.1.2, required 0.107 seconds to produce. The Monte Carlo pdf approximation, which
was obtained using Algorithm 4.1.3, required 11.9 seconds to produce. (Note that all timings
provided in Sections 4.1 and 4.2 are based upon runs using MATLAB Release 2013a on an early
2009 MacBook Pro with a 2.93 GHz Intel Core 2 Duo processor and 8 GB of 1067 MHz DDR3
memory.) The two pdf approximations are virtually indistinguishable in the figure, indicating
excellent agreement.

The results of applying our two direct methods to the second test problem are shown in
Figure 4.2. Again, we set Ntrap = 2×104 and Nmc = 107. The trapezoid rule pdf approximation
for X̃, which was obtained using Algorithm 4.1.2, required 0.108 seconds to produce. The Monte
Carlo pdf approximation, which was obtained using Algorithm 4.1.3, required 20.8 seconds to
produce. The two pdf approximations are virtually indistinguishable in the figure, once again
indicating excellent agreement.

In order to demonstrate the convergence of the trapezoid rule based method, we applied
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Figure 4.1: Plots of (a) fXa and fX and (b) fX̃ for the first test problem of Section 4.1.3.
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Figure 4.2: Plots of (a) fXa and fX and (b) fX̃ for the second test problem of Section 4.1.3.
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Algorithm 4.1.2 to the two test problems using increasing values for Ntrap. The results are shown
in Figure 4.3. We computed a “true” pdf for X̃ by applying Algorithm 4.1.2 with Ntrap = 105,
and used this pdf in order to compute errors for approximate pdfs shown in Figure 4.3. The
maximum absolute errors are tabulated in Tables 4.1 and 4.2. The decreasing magnitude of the
errors as Ntrap increases indicates convergence of the algorithm.

Similarly, in order to demonstrate the convergence of the Monte Carlo method, we applied
Algorithm 4.1.3 to the two test problems using increasing values for Nmc. The results are shown
in Figure 4.4. Using the same “true” pdf described in the previous paragraph, we computed
errors for approximate pdfs shown in Figure 4.4. The maximum absolute errors are tabulated in
Tables 4.3 and 4.4. The decreasing magnitude of the errors as Nmc increases indicates that the
Monte Carlo based algorithm also converges. Either algorithm can be used to obtain the desired
pdf approximation to arbitrary precision, but comparing Tables 4.1 and 4.2 with Tables 4.3
and 4.4, we see that the trapezoid rule convolution method requires considerably less time
than the Monte Carlo method. More specifically, to achieve a level of precision such that the
maximum absolute errors that are less than about 1% of the maximum value of fX̃ , the trapezoid
rule convolution method requires about 0.10 seconds while the Monte Carlo convolution method
requires on average about 150 seconds. Thus, the trapezoid rule method appears to be the more
efficient of the two direct methods.

Before moving on to discuss indirect approximation methods for the convolution formula,
we would like to make one more remark concerning our two test problems and the trapezoid
rule method. The first test problem is apparently “easier” to solve than the second in the
sense that fewer trapezoid rule quadrature points are required to attain a comparable level of
accuracy. This can be explained by the fact that in the first test problem the most significant
region of support for fX consists of values that are considerably larger than those lying in the
most significant region of support for fXa (cf. Figure 4.1(a)). Thus, when adding the random
variables X and Xa, the latter tends to contribute relatively little to the sum. Also, because
the scale for the significant support of the former tends to be so large, a large step size h (and a
correspondingly small Ntrap) is generally sufficient for approximating the pdf of X and thus of
X+Xa. The first test problem is a special case of the general situation encountered in the early
days of a CFSE-base flow cytometry experiment. During these early days, autofluorescence
makes a negligible contribution to total FI, but as the experiment progresses autofluorescence
becomes more important. Therefore, it is important to consider the (temporal) length of the
experiments when choosing Ntrap.
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Figure 4.3: Plots of trapezoid rule approximations of fX̃ showing convergence for (a) the first
test problem and (b) the second test problem of Section 4.1.3.

Table 4.1: Convergence of Trapezoid Rule Convolution Method (Algorithm 4.1.2) for the first
test problem of Section 4.1.3.

Ntrap h Time (s) Error
1250 800 0.0018998 3.6352× 10−5

2500 400 0.0022264 3.5371× 10−6

5000 200 0.0095202 1.3668× 10−6

10000 100 0.0285389 2.7076× 10−8

20000 50 0.0929019 9.7830× 10−10

Table 4.2: Convergence of Trapezoid Rule Convolution Method (Algorithm 4.1.2) for the sec-
ond test problem of Section 4.1.3.

Ntrap h Time (s) Error
1250 800 0.0018564 5.8581× 10−4

2500 400 0.0022326 1.1111× 10−4

5000 200 0.0104667 4.0703× 10−5

10000 100 0.0303276 7.5597× 10−6

20000 50 0.0960450 1.7567× 10−6
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Figure 4.4: Plots of Monte Carlo approximations of fX̃ showing convergence for (a) the first
test problem and (b) the second test problem of Section 4.1.3.

Table 4.3: Convergence of Monte Carlo Convolution Method (Algorithm 4.1.3) for the first
test problem of Section 4.1.3.

Nmc Time (s) Error
104 0.19577 2.70889× 10−6

105 0.19024 1.38063× 10−6

106 1.19868 4.00708× 10−7

107 11.2137 1.29064× 10−7

108 123.754 5.48362× 10−8

Table 4.4: Convergence of Monte Carlo Convolution Method (Algorithm 4.1.3) for the second
test problem of Section 4.1.3.

Nmc Time (s) Error
104 0.22124 3.73811× 10−5

105 0.28094 1.65752× 10−5

106 2.29956 7.64454× 10−6

107 19.8908 2.94373× 10−6

108 184.280 1.25757× 10−6
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4.2 Indirect Methods

In working with some families of distributions, the distribution of the sum of two random vari-
ables can be expressed exactly. For example, the sum of any two normally distributed random
variables will have a normal distribution [18]. Unfortunately, in our application we typically
need to find the distribution of the sum of two lognormally distributed random variables and
we cannot make a similar claim for such a sum. It has been argued, however, that the sum of two
lognormally distributed random variables has a distribution that is approximately lognormal
[25, 42]. If one can easily determine values for the two parameters µ and σ2 that define the ap-
proximating lognormal distribution, the approximate values of the pdf at a set of domain points
{x̃1, . . . , x̃N} can be computed much more quickly than is possible through direct methods.

Finding the pdf for a sum of two or more lognormally distributed random variables is an im-
portant problem in telecommunications and therefore a variety of approaches to approximating
such a pdf have been proposed by researchers in that field [13]. Two popular approximations
have been proposed by Fenton [25] and Schwartz and Yeh [42]. Hereafter, we refer to these
approximation techniques as “indirect” methods to distinguish them from the direct methods
discussed in Section 4.1. In the Fenton method (which is sometimes referred to as the Wilkinson
or Fenton-Wilkinson method) one approximates the pdf of the sum with a lognormal distribution
that has the same mean and variance as the true distribution of the sum. In the Schwartz-Yeh
method, on the other hand, one computes the mean and variance of Z = log(X +Xa) and uses
these as the parameters for the approximating lognormal distribution. Both methods allow for
the approximation of the pdf of a sum of two or more lognormally distributed random variables,
but in our application we only ever need to consider the sum of two random variables.

4.2.1 Fenton Method

As asserted above, the Fenton method [25] determines the mean and variance of the distribution
the sum of X and Xa (which are both assumed to be lognormal) and uses the lognormal
distribution with this mean and variance as an approximation of the distribution of X̃ = X+Xa.
In order to outline the method, we will utilize the following facts concerning sums of random
variables and properties of lognormal distributions [18]. First of all, the mean and variance of
the sum of two independent random variables X and Xa are given by

E [X +Xa] = E [X] + E [Xa] (4.4)

and
Var [X +Xa] = Var [X] + Var [Xa] , (4.5)
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respectively. Also, the mean and variance of a random variable Y that is lognormally distributed
with parameters µ and σ2 (i.e., Y ∼ logn(µ, σ2)) are

E [Y ] = eµ+(σ2/2) (4.6)

and
Var [Y ] = e2(µ+σ2) − e2µ+σ2

=
(
eσ

2 − 1
)
e2µ+σ2

, (4.7)

respectively. Alternatively, if Y is lognormally distributed and E [Y ] and Var [Y ] are known,
one can solve the system of equations given by (4.6) and (4.7) to obtain expressions for the
distribution parameters µ and σ. These are

µ = log
(
E [Y ]

)
− 1

2
log
(

1 +
Var [Y ]
(E [Y ])2

)
(4.8)

and
σ2 = log

(
1 +

Var [Y ]
(E [Y ])2

)
. (4.9)

Algorithm 4.2.1, which makes use of the above formulae, outlines the Fenton method.

Algorithm 4.2.1 Fenton Method Convolution Approximation

1. Given µX and σ2
X , which are the lognormal distribution parameters for X, compute E [X]

and Var [X] using (4.6) and (4.7).

2. Given µXa and σ2
Xa

, which are the lognormal distribution parameters for Xa, compute
E [Xa] and Var [Xa] using (4.6) and (4.7).

3. Compute E
[
X̃
]

and Var
[
X̃
]
, which are the mean and variance for X̃ = X + Xa, us-

ing (4.4) and (4.5) along with the computed values E [X], E [Xa], Var [X], and Var [Xa].

4. Compute µX̃ and σX̃ using (4.8) and (4.9) along with the computed values E
[
X̃
]

and

Var
[
X̃
]
.

5. Use the approximation

fX̃(x̃) ≈ logn(x̃;µX̃ , σ
2
X̃

) =
1

x̃σX̃
√

2π
· exp

[
−(log x̃− µX̃)2

2σ2
X̃

]

to obtain the values {fX̃(x̃k) : k ∈ {1, . . . , N}}.
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4.2.2 Schwartz-Yeh Method

Like the Fenton method, the Schwartz-Yeh method [42] is based on moment matching. Since X
and Xa have lognormal distributions (by assumption), they can be expressed as X = exp(Y1)
and Xa = exp(Y2), where Y1 and Y2 are Gaussian random variables. If we let

Z = log
(
eY1 + eY2

)
,

then
eZ = eY1 + eY2 = X +Xa = X̃.

Thus, if X̃ is to be approximated by a lognormal distribution, the mean and variance of Z
should be good candidates for the lognormal distribution parameters µ and σ2. Because the
computations involved in determining the mean and variance of Z are rather complicated,
we utilize Takaki’s MATLAB implementation [46] of the Schwartz-Yeh method rather than
implementing the method ourselves. Note that Takaki’s code uses a computationally efficient
approach to obtaining the Schwartz-Yeh approximation as suggested by Ho [30].

4.2.3 Testing the Indirect Methods

To test and compare the Fenton and Schwartz-Yeh methods, we first apply them to the two test
problems described in Section 4.1.3. We once again determine a “true” pdf for X̃ by applying
Algorithm 4.1.2 with Ntrap = 105 and use this for purposes of comparison and error computing.
The results, which are shown in Figure 4.5, indicate that both approximation methods perform
very well for the first test problem, but only reasonably well for the second. The timings and
maximum absolute errors are tabulated in Table 4.5. There we see that the Fenton method
performs better than the Schwartz-Yeh method, both in terms of computational time and
accuracy, when applied to the first test problem. For the second test problem, the Schwartz-
Yeh method produces a more accurate approximation, but again requires almost 100 times more
computational time.
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Figure 4.5: Plots of Fenton and Schwartz-Yeh approximations of fX̃ for (a) the first test prob-
lem and (b) the second test problem of Section 4.1.3.

Table 4.5: Timing and maximum absolute errors for Fenton and Schwartz-Yeh approximations
as applied to the first (1st) and second (2nd) test problems of Section 4.1.3.

Test Problem Method Time (s) Error

1st
Fenton 0.0004418 9.8608× 10−8

Schwartz-Yeh 0.0174341 1.2081× 10−6

2nd
Fenton 0.0004875 1.1775× 10−4

Schwartz-Yeh 0.0365148 5.6341× 10−5

121



4.3 Fenton Method vs. Trapezoid Method

As discussed in Section B.4 of the Appendix, we use the Fenton method to compute convolution
integrals when working with the symmetric division cell proliferation models described in Chap-
ter 2. While the Fenton method is not as accurate as the trapezoid rule convolution method, or
even the Schwartz-Yeh method in some situations, it requires considerably less computational
time than either of these. Because of the computational speed allowed by the Fenton method,
forward solutions of the mathematical model specified in Section 2.5 require only about 0.13
seconds and it was possible to solve the inverse (parameter estimation) problems described in
Chapter 3 in an average of 6.5 minutes per data set. (Timings provided in this section are based
upon runs using MATLAB Release 2012a on a Dell Optiplex 990 with eight (8) 3.4 GHz Intel
Core i7-2600 processors and 8 GB of 1333 MHz memory.) In contrast, forward solutions of the
same mathematical model require about 21.5 seconds when using the trapezoid rule convolution
method.

In this section, we consider how the decision to use the less accurate Fenton method over
the trapezoid rule convolution method might have affected the results discussed in Chapter 3.
Because of the computational time required, we choose to perform new parameter estimations
only for a select subset of the data sets that were considered in that chapter. Recall that in
Section 3.3 we considered 4 × 162 = 648 data sets for Donor 1 and 4 × 243 = 972 data sets
for Donor 2. In order to compare the parameter estimates obtained there with a new collection
of parameter estimates obtained using the trapezoid rule convolution method, we identify the
three lowest cost and three highest cost data sets for each donor and cell type, removing from
consideration all data sets for which ViViD dye was not used. Note that the “cost” of a data
set is determined by the value of the GLS cost functional given in (2.17). The 24 data sets
satisfying these criteria are listed in Table 4.6. Note also that we use the same abbreviations
to denote experimental combinations of donor, ViViD dye status, and cell type as were used in
Section 3.3, and the same form for the Data IDs as was used in Table 3.19 of that section.

Now, we apply our parameter estimation procedure to the selected data sets as was done in
Section 3.3, except that we utilize the trapezoid rule convolution method instead of the Fenton
method. To be more specific, we compute each convolution integral in the last line of (B.9)
(in Section B.4.1 of the Appendix) using Algorithm 4.1.2. To compare the results, we list the
percent change in the costs and the absolute percent change in the parameter estimates for
each of the selected data sets in Table 4.7. In this table, each percent change is calculated as

vtm − vfm
vfm

× 100%,

where vtm and vfm denote the values obtained when using the trapezoid rule based method
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Table 4.6: Data sets selected for comparing parameter estimates obtained using Fenton method
with those obtained using trapezoid rule convolution method.

Data Set Experiment Data ID Cost
1 Donor1/Vivid/CD4 10012 12415.5
2 Donor1/Vivid/CD4 10011 12642.6
3 Donor1/Vivid/CD4 11012 12710.0
4 Donor1/Vivid/CD4 21211 32661.5
5 Donor1/Vivid/CD4 11211 32698.6
6 Donor1/Vivid/CD4 11111 33047.9
7 Donor1/Vivid/CD8 21111 8446.42
8 Donor1/Vivid/CD8 20111 8451.07
9 Donor1/Vivid/CD8 10111 8774.17
10 Donor1/Vivid/CD8 01200 21334.6
11 Donor1/Vivid/CD8 02000 21607.9
12 Donor1/Vivid/CD8 02200 22621.2
12 Donor2/Vivid/CD4 00222 10210.0
14 Donor2/Vivid/CD4 10222 10214.6
15 Donor2/Vivid/CD4 00212 10526.7
16 Donor2/Vivid/CD4 00100 16099.4
17 Donor2/Vivid/CD4 11110 16290.7
18 Donor2/Vivid/CD4 01100 16435.0
19 Donor2/Vivid/CD8 02001 10256.4
20 Donor2/Vivid/CD8 00002 10419.4
21 Donor2/Vivid/CD8 02020 10471.5
22 Donor2/Vivid/CD8 20211 15565.6
23 Donor2/Vivid/CD8 21211 16008.1
24 Donor2/Vivid/CD8 21111 16099.3

and Fenton method, respectively, and each absolute percent change is calculated as the absolute
value of this quantity.

In Table 4.7, we clearly see that the results obtained when using the trapezoid rule convo-
lution method (TM) differ from those obtained with the Fenton method (FM). For 17 of the
24 data sets considered, the GLS cost is lower when using TM than FM. On average, the cost
associated with TM is 11.68% less than that associated with FM, and median relative change
in cost when moving from FM to TM is a 6.53% decrease. Thus, the costs tend to indicate that
better model fits can be attained with TM than FM. The differences observed in the param-
eter estimates, themselves, cause us greater concern. Only 5 of the 12 parameters experience
a median absolute percent change less than 5% when moving from FM to TM, and 6 of the
12 parameters show an absolute percent change of greater than 10%. On a positive note, the
5 parameters showing the smallest median absolute percent change include 4 of the parame-
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ters that are most important in describing cell proliferation: E
[
T div0

]
, SD

[
T div0

]
, E
[
T div

]
, and

F0. Three other important parameters, SD
[
T div

]
, E
[
T die

]
, and SD

[
T die

]
, all experienced very

large median absolute percent change when moving from FM to TM, but these parameters are
unlikely to be identifiable when using our data for reasons described in detail Chapter 3.

The results presented in Table 4.7 suggest that it might be worthwhile to revisit the variabil-
ity study discussed in Chapter 3 using TM rather than FM for all convolution computations.
Note, however, that inverse problems using TM on the 24 data sets considered here required an
average of 1241.1 minutes (20.7 hours) per data set. Therefore, running the inverse problems
for all 1620 data sets considered in Chapter 3 would require about 1400 days of computer time.
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Table 4.7: Absolute percent change in parameter estimates and percent change in costs for selected data sets when replacing Fenton
method with trapezoid rule convolution method.

Data Set
Absolute % Change in: % Change

E [Xa] SD [Xa] c E
ˆ
T div0

˜
SD

ˆ
T div0

˜
E

ˆ
T div

˜
SD

ˆ
T div

˜
E

ˆ
T die

˜
SD

ˆ
T die

˜
F0 Dµ Dσ in Cost

1 38.40 24.06 5.48 0.90 1.59 3.22 297.04 86.40 3878.15 0.79 50.14 79.83 27.37

2 13.77 23.95 0.86 2.05 4.41 0.06 0.92 85.67 5359.90 5.02 3.63 2.49 9.70

3 38.66 24.04 5.51 1.05 1.83 3.25 294.38 88.74 3845.91 0.74 50.08 80.30 26.74

4 24.58 33.13 1.07 12.07 1328.19 61.40 97.93 30.14 21.12 56.00 3.68 20.24 -56.20

5 21.61 27.10 1.09 10.49 1300.12 60.68 97.94 37.90 35.06 50.53 3.83 18.96 -56.09

6 52.00 15.87 7.42 9.26 1229.55 60.42 92.36 36.64 48.60 36.31 50.49 135.41 -46.79

7 10.32 13.52 4.23 2.38 11.43 9.14 495.60 39.15 96.93 0.37 38.04 65.76 3.34

8 8.59 11.81 3.63 2.83 13.87 11.12 546.35 41.44 100.23 0.20 39.26 64.71 2.36

9 8.07 11.94 2.14 2.77 13.59 10.98 565.05 40.35 92.77 0.51 36.34 60.22 3.10

10 9.41 27.75 0.55 5.73 13.86 1.27 55.71 84.36 92.04 9.47 3.00 11.39 -29.40

11 9.96 31.47 0.45 5.19 22.01 2.99 86.00 78.93 457.92 10.74 18.08 21.82 -33.34

12 3.55 30.93 1.89 2.86 11.04 3.47 66.86 81.90 96.61 9.70 18.75 29.63 -34.43

13 11.05 27.45 0.73 0.40 1.07 0.40 4.98 4.36 23.73 0.39 1.32 10.41 -2.78

14 9.07 24.22 0.50 0.38 0.81 0.19 5.92 4.43 18.39 0.52 2.50 6.17 -2.38

15 7.58 24.96 0.25 0.31 0.48 0.01 1.10 6.46 5.08 0.65 4.81 0.35 -3.21

16 3.03 26.79 0.22 0.46 0.31 0.80 37.13 33.57 60.02 3.04 93.49 19.23 -14.56

17 0.33 23.10 1.14 0.82 1.45 1.64 39.54 31.20 64.23 1.99 82.70 22.90 -16.74

18 2.19 25.62 0.33 0.41 0.22 0.86 37.20 33.36 60.03 2.96 93.32 19.80 -14.17

19 7.36 10.05 2.29 3.01 2.08 9.89 6.07 36.98 96.64 2.17 13.48 23.45 3.95

20 9.43 17.17 0.98 0.03 2.31 2.72 0.54 20.60 27.28 0.79 4.59 2.84 -0.85

21 8.92 24.29 2.53 1.85 4.61 0.03 4.22 29.13 95.93 1.10 11.00 9.85 -3.91

22 31.58 63.91 6.18 2.00 6.51 2.55 7.24 49.46 96.96 4.21 16.91 12.11 -9.15

23 27.62 48.74 8.92 0.34 2.45 3.79 36.32 52.45 95.91 15.23 1.29 4.81 -16.53

24 17.66 33.72 10.48 0.27 0.22 2.35 37.73 51.03 96.68 13.93 6.24 2.94 -16.42

Median 9.69 24.62 1.51 1.92 3.43 2.86 38.63 38.52 94.34 2.56 15.20 19.52 -6.53
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Chapter 5

Accounting for Asymmetric Division

We now relax the assumption of symmetric cell division and examine the more general case
considered by Bocharov et al. [15] and Luzyanina et al. [32] in which each mother cell is assumed
to distribute her cytoplasm in possibly uneven (but constant) proportions to two daughter cells
during mitosis. That is, we assume there exists an m ∈ (0, 1

2 ] such that division of a mother
cell results in two daughter cells that receive proportions m and 1 − m, respectively, of the
cytoplasm (and CFSE) that was contained in the mother cell. We begin by considering how
this assumption of asymmetry in cell division, which has been described as “almost an axiom of
cell biology” [44], affects the mathematical models presented in Chapter 2. We then study how
incorporation of the asymmetric division parameter m into the specific mathematical model
presented in Section 2.5 affects estimates of the model parameters.

5.1 Mathematical Model with Asymmetric Division

In order to obtain a PDE describing ni(t, x) in the case of possibly asymmetric cell divisions, we
follow the same approach employed in Section 2.1; i.e., we consider the time rate of change of the
total number of cells in generation i at time t with CFSE FI in the arbitrary interval [x, x+∆x].
Contributions (i) through (iv) to this rate of change, which are described in Section 2.1, are
unaffected by asymmetry of cell divisions, but contribution (v) must be revisited. In this more
general case, cells will enter the FI interval [x, x+ ∆x] corresponding to generation i due to the
division of cells in the previous generation i − 1 with FI in two distinct intervals. (Note that
we must take ∆x to be sufficiently small in order to ensure that the two FI intervals are, in
fact, distinct.) To see this, note that any dividing cell in generation i−1 with FI in the interval
[ 1
mx,

1
m(x+ ∆x)] will produce two cells, one of which will enter our control interval [x, x+ ∆x]

in generation i. This is because one of the daughter cells resulting from this division must have
FI in the interval [m · 1

mx,m ·
1
m(x+∆x)] = [x, x+∆x]. Similarly, any dividing cell in generation
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i−1 with FI in the interval [ 1
1−mx,

1
1−m(x+ ∆x)] will produce two cells, one of which will enter

our control interval [x, x+ ∆x] in generation i.
Contribution (v), which describes the rate at which cells enter the control interval [x, x+∆x]

due to the division of cells in the previous generation, therefore consists of two terms. Each of
these terms can be computed as the exponential birth rate times the number of cells in the
relevant FI interval, so we have

αi−1(t) ·
∫ 1

m
(x+∆x)

1
m
x

ni−1(t, ξ) dξ + αi−1(t) ·
∫ 1

1−m (x+∆x)

1
1−mx

ni−1(t, ξ) dξ.

Applying the change of variables η = mξ in the first term and η = (1−m)ξ in the second term,
the expression becomes

1
m
· αi−1(t) ·

∫ x+∆x

x
ni−1(t,

1
m
η) dη +

1
1−m

· αi−1(t) ·
∫ x+∆x

x
ni−1(t,

1
1−m

η) dη.

As was the case for symmetric cell division, it is important to note that contribution (v) does
not apply in the case of cells in generation i = 0 because there is no previous generation from
which cells can enter in that case.

Taking into account all the contributions, the time rate of change of the total number of
cells in generation i at time t with FI in the region [x, x+ ∆x] is

d

dt

∫ x+∆x

x
ni(t, ξ) dξ = (i)− (ii)− (iii)− (iv) + (v)

=
[
v(t)(x+ ∆x)ni(t, x+ ∆x)

]
−
[
v(t)xni(t, x)

]
−
[
αi(t) ·

∫ x+∆x

x
ni(t, ξ) dξ

]
−
[
βi(t) ·

∫ x+∆x

x
ni(t, ξ) dξ

]
+

1
m
αi−1(t)

∫ x+∆x

x
ni−1(t,

1
m
η) dη

+
1

1−m
αi−1(t)

∫ x+∆x

x
ni−1(t,

1
1−m

η) dη.

Dividing by ∆x on both sides of this equation and taking the limit as ∆x→ 0 yields

∂

∂t
ni(t, x) = v(t)

∂

∂x

[
xni(t, x)

]
−
(
αi(t) + βi(t)

)
ni(t, x) +

αi−1(t)
m

ni−1(t, 1
mx)

+
αi−1(t)
1−m

ni−1(t, 1
1−mx).

As mentioned above, the last two terms on the right hand side of this equation, which account
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for recruitment of cells from the previous generation, must be omitted when i = 0. Thus, we
obtain the model given in (2.1) with the recruitment terms Ri(t, x) replaced by

Rasymi (t, x) =
αi−1(t)
m

ni−1(t, 1
mx) +

αi−1(t)
1−m

ni−1(t, 1
1−mx) (5.1)

for i ≥ 1. Note that when m = 1
2 , Rasymi (t, x) = Ri(t, x) as defined in (2.2).

In keeping with the formulation discussed in Section 2.1, we propose that the solutions to
the PDEs given in (2.1) with the modified recruitment terms given in (5.1) can still be factored
as ni(t, x) = Ni(t)n̄i(t, x) (Equation 2.4), where Ni(t) once again indicates the number of cells
having completed i divisions at time t and n̄i(t, x) describes the distribution of CFSE FI within
that generation of cells at time t. The Ni’s satisfy (2.5) and (2.6) as before, but each n̄i now
satisfies (2.7) and the new initial condition

n̄i(t0, x) =


Φ(x)
N0

for i = 0,

1
2m
· n̄i−1(t0, 1

mx) +
1

2(1−m)
· n̄i−1(t0, 1

1−mx) for i ≥ 1,
(5.2)

for all x ≥ 0. Note that (5.2) reduces to (2.8) as expected when m = 1
2 . Note also that the

recursive formula in (5.2) can be arrived at intuitively by recognizing that the two expressions
of the form

1
λ
n̄i−1(t0, 1

λx)

(for λ = m and λ = 1 − m) are normalized pdfs representing densities of daughter cells in
generation i (inheriting CFSE proportions λ = m and λ = 1 − m from their predecessors)
produced by dividing mother cells from generation i − 1. The factor of 1

2 in each of the terms
in the recursive formula ensures that half of the daughter cells contain the proportions m and
1−m, respectively, of the CFSE originally contained in the mother cells. We offer the following
proposition concerning the factorability of solutions in the case of asymmetric cell divisions and
provide a proof below.

Proposition 5.1. Let {Ni(t)}∞i=0 be a set of functions satisfying the system of weakly coupled
ODEs given by (2.5) and the initial conditions given by (2.6). Also, let {n̄i(t, x)}∞i=0 be a set of
functions such that each n̄i satisfies the PDE (2.7) and the initial condition (5.2) for all x ≥ 0.
Then the solution to (2.1) with modified recruitment terms (5.1) and initial conditions (2.3) is
given by (2.4) for i ∈ {0, 1, 2, . . .}.

Proof. The arguments for the case in which i = 0 are identical to those in the proof of Propo-
sition 2.1, and therefore we do not repeat them here. For the cases in which i ≥ 1, it is first
necessary to obtain the solutions of (2.7) subject to the initial conditions (5.2). These solutions

128



can be obtained by the method of characteristics as shown in Section A.2 of the Appendix.
From the expressions for these solutions it can be verified (see Lemma A.2) that

2n̄i(t, x) =
1
m
n̄i−1(t, 1

mx) +
1

1−m
n̄i−1(t, 1

1−mx) (5.3)

for i ≥ 1. We shall use this result in the following arguments.
For an index i ≥ 1, taking the time derivative of (2.4) and then substituting (2.5) and (2.7)

leads to

∂

∂t
ni(t, x) = −

(
αi(t) + βi(t)

)
Ni(t)n̄i(t, x) + 2αi−1(t)Ni−1(t)n̄i(t, x) + v(t)

∂

∂x

[
xNi(t)n̄i(t, x)

]
,

as was demonstrated in the proof for Proposition 2.1. Substituting (5.3) into the second term
on the right hand side, we obtain

∂

∂t
ni(t, x) = −

(
αi(t) + βi(t)

)
Ni(t)n̄i(t, x)

+ αi−1(t)Ni−1(t)
[

1
m
n̄i−1(t, 1

mx) +
1

1−m
n̄i−1(t, 1

1−mx)
]

+ v(t)
∂

∂x

[
xNi(t)n̄i(t, x)

]
= −

(
αi(t) + βi(t)

)
ni(t, x) +

αi−1(t)
m

ni−1(t, 1
mx)

+
αi−1(t)
1−m

ni−1(t, 1
1−mx) + v(t)

∂

∂x

[
xni(t, x)

]
which is equivalent to (2.1) with modified recruitment terms (5.1) in the case i ≥ 1. Substituting
(2.6) and (5.2) into (2.4), the initial condition for an index i ≥ 1 becomes

ni(t0, x) = Ni(t0)n̄i(t0, x) =
[
0
]
·
[

1
2m
· n̄i−1(t0, 1

mx) +
1

2(1−m)
· n̄i−1(t0, 1

1−mx)
]

= 0,

which is equivalent to (2.3) in the case i ≥ 1.
Thus, we have verified that the solution to (2.1) with modified recruitment terms (5.1) and

initial conditions (2.3) is given by (2.4) for i ∈ {0, 1, 2, . . .}, provided the conditions stipulated
in the proposition are met.
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5.2 Asymmetric Division- and Label-Structured Cyton Model

for Cell Densities

Now, as in Chapter 2, we incorporate the cyton model for cell numbers from Section 2.3 into
our division- and label-structured model. In this case, we work with the asymmetric division-
and label-structured model described in Section 5.1, the general form of which is given by (2.1)
with modified recruitment terms (5.1). If we replace the sink and source terms in the right-hand
sides of (2.1) with terms involving the cyton-based rates, we again obtain

∂n0(t, x)
∂t

− v(t)
∂[xn0(t, x)]

∂x
= −

(
ndiv0 (t) + ndie0 (t)

)
n̄0(t, x) (for i = 0),

∂ni(t, x)
∂t

− v(t)
∂[xni(t, x)]

∂x
=

(
2ndivi−1(t)− ndivi (t)− ndiei (t)

)
n̄i(t, x) for i ≥ 1.

(which is identical to Equation 2.14) as our division- and label-structured cyton model for cell
densities in the case of possibly asymmetric cell division. We must be careful, however, to point
out that each CFSE FI density n̄i here satisfies a different initial condition than was posited
in (2.8). Recall that the appropriate initial conditions in the case of asymmetric cell division
are given by (5.2). As in the case of symmetric cell division, the solutions to the above system
of partial differential equations are factorable. We offer this claim as the following proposition
and provide a proof below.

Proposition 5.2. Let {Ni(t)}∞i=0 be a set of functions satisfying the cyton model (2.11), where
the initial condition N0 is given by the relation shown in (2.6). Also, let {n̄i(t, x)}∞i=0 be a set of
functions such that each n̄i satisfies the PDE (2.7) and the initial condition (5.2) for all x ≥ 0.
Then the solution to (2.14) with initial conditions (2.3) is given by (2.4) for i ∈ {0, 1, 2, . . .}.

Proof. The arguments required here are identical to those given in the proof of Proposition 2.2,
with the exception of arguments pertaining to initial conditions. Therefore, we address only is-
sues relevant to initial conditions and refer the reader to the aforementioned proof for remaining
details.

We begin by considering the case in which i = 0. Evaluating (2.4) at t = t0 and substituting
(2.11) and (5.2), the initial condition for the case i = 0 becomes

n0(t0, x) = N0(t0)n̄0(t0, x) =
[
N0

]
·
[

Φ(x)
N0

]
= Φ(x),

which is equivalent to (2.3) in the case i = 0.
Next, we consider the situation for i ≥ 1. Evaluating (2.4) at t = t0 and substituting (2.11)
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and (5.2), the initial condition for the case i ≥ 1 becomes

ni(t0, x) = Ni(t0)n̄i(t0, x) =
[
0
]
·
[

1
2m
· n̄i−1(t0, 1

mx) +
1

2(1−m)
· n̄i−1(t0, 1

1−mx)
]

= 0,

which is equivalent to (2.3) in the case i ≥ 1.
Thus, we have verified that the solution to (2.14) and (2.3) is given by (2.4) for i ∈

{0, 1, 2, . . .}, provided the conditions stipulated in the proposition are met.

We remind the reader that (2.14) actually describes an entire class of models, as was pointed
out in Chapter 2. To specify a particular model for further investigation, we must decide on
forms for the distribution of the autofluorescence Xa, the (exponential) label decay rate v(t),
the cytons {(φi(t), ψi(t))}, and the progressor fractions {Fi}.

5.3 Assumptions and Parameterization for a Specific Mathe-

matical Model with Asymmetric Division

The specific asymmetric division cyton-based mathematical model we choose to examine satis-
fies exactly the same assumptions that were outlined for the twelve-parameter model described
in Section 2.5. Thus, we have the 12 parameters of that model and the additional parameter
m ∈ (0, 1

2 ], which indicates the degree of asymmetry associated with cell divisions as previously
described. Table 5.1 shows the 13 parameters for our specific mathematical model. Precise
details of our methods for computing numerical solutions for this model are provided in Ap-
pendix B. The interested reader should give special attention to Sections B.1.2 and B.4.2, which
address numerical methods relevant to asymmetric division.

5.4 Importance of Accounting for Asymmetric Division

In this chapter, we are ultimately interested in determining whether or not refining our cell
proliferation model to allow for asymmetric division is worthwhile. To make this determination,
we perform parameter estimations using the same methodologies described in Section 2.6. Of
course, in rereading that section, the structured densities ñ(t, x̃) and n̂(t, z) should be based
on the thirteen-parameter asymmetric division model described in Section 5.3. Therefore, the
vectors ~q0, q̂GLS , ~qtyp, etc., referred to in Section 2.6 should be taken to be elements of R13

instead of R12. With this one modification, the generalized least squares parameter estimation
scheme described in that section can be used here.

Parameter estimations for the asymmetric division model prove to be very computationally
intensive, requiring an average of 851.3 minutes per inverse problem even when only considering
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Table 5.1: Parameters for specific mathematical model with asymmetric division.
Number Parameter Description

1 E [Xa] mean autofluorescence

2 SD [Xa] std. dev. of autofluorescence

3 c exponential decay rate for CFSE

4 m asymmetric division constant

5 E
[
T div0

]
mean time to divide for cells in generation i = 0

6 SD
[
T div0

]
std. dev. of time to divide for cells in generation i = 0

7 E
[
T div

]
mean time to divide for cells in later generations (i ≥ 1)

8 SD
[
T div

]
std. dev. of time to divide for cells in later generations (i ≥ 1)

9 E
[
T die

]
mean time to die for cells in later generations (i ≥ 1)

10 SD
[
T die

]
std. dev. of time to die for cells in later generations (i ≥ 1)

11 F0 progressor fraction for cells in generation i = 0

12 Dµ mean of discrete normal distribution (used to compute Fi for i ≥ 1)

13 Dσ std. dev. of discrete normal distribution (used to compute Fi for i ≥ 1)

cells that have divided imax = 8 or fewer times. (Timings provided here are based upon runs
using MATLAB Release 2012a on a Dell Optiplex 990 with eight (8) 3.4 GHz Intel Core i7-2600
processors and 8 GB of 1333 MHz memory.) We discuss the choice of imax = 8 at length in
Section 5.5. Because of the computational time required, we only apply our parameter esti-
mation scheme to the the 24 data sets listed in Table 4.6. This leads to the results shown in
Table 5.2. Since we are primarily interested in the asymmetric division parameter m, the table
only shows estimates for that parameter. We see that in 8 of 24 cases (33.3% of the data sets),
the parameter estimation scheme returns a value of precisely 0.5 for the parameter m. Recall
that a value of m = 0.5 in the asymmetric division model yields model output equivalent to
that of a symmetric division model. Moreover, in another 6 cases the value of m returned does
not differ from 0.5 by more than 4 percent. That is, in 8 + 6 = 14 cases (58.3% of the data
sets), the parameter estimation scheme returns a value of m in the interval [0.48, 0.5]. This
immediately suggests that asymmetry does not play an important role in the majority of the
data sets considered.

To assess the degree to which the parameter m is influential in describing the 16 data sets for
which m is not precisely 0.5, we perform model comparison tests similar to those described in
Section 3.3.2. Here we once again consider two distinct mathematical models, both of which can
be evaluated using the cost functional J given in (2.17). The first is the thirteen-parameter model
described in Section 5.3 and the second is the nested model that results when the parameter m
is fixed at the value 0.5 (which corresponds to perfectly symmetric cell divisions).
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Table 5.2: Parameter estimates for m for 24 selected data sets. Data sets for which m 6= 0.5
are emphasized in boldface.

Data Set Experiment Data ID m

1 Donor1/Vivid/CD4 10012 0.5000
2 Donor1/Vivid/CD4 10011 0.5000
3 Donor1/Vivid/CD4 11012 0.5000
4 Donor1/Vivid/CD4 21211 0.5000
5 Donor1/Vivid/CD4 11211 0.4916
6 Donor1/Vivid/CD4 11111 0.5000
7 Donor1/Vivid/CD8 21111 0.5000
8 Donor1/Vivid/CD8 20111 0.5000
9 Donor1/Vivid/CD8 10111 0.5000

10 Donor1/Vivid/CD8 01200 0.4271
11 Donor1/Vivid/CD8 02000 0.4219
12 Donor1/Vivid/CD8 02200 0.4198
13 Donor2/Vivid/CD4 00222 0.4839
14 Donor2/Vivid/CD4 10222 0.4821
15 Donor2/Vivid/CD4 00212 0.4732
16 Donor2/Vivid/CD4 00100 0.4842
17 Donor2/Vivid/CD4 11110 0.4857
18 Donor2/Vivid/CD4 01100 0.4857
19 Donor2/Vivid/CD8 02001 0.4421
20 Donor2/Vivid/CD8 00002 0.4529
21 Donor2/Vivid/CD8 02020 0.4525
22 Donor2/Vivid/CD8 20211 0.4381
23 Donor2/Vivid/CD8 21211 0.4398
24 Donor2/Vivid/CD8 21111 0.4379

To formulate our statistical hypotheses, we let Q ⊂ R13 denote the set of all admissible
parameters for the thirteen-parameter model and QH = {~q ∈ Q : H~q = ~c} ⊂ Q be the set of
admissible parameters for the nested model, where H ∈ R1×13 and ~c ∈ R. Using the parameter
ordering suggested by Table 5.1 and setting

H =
[

0 0 0 1 0 0 0 0 0 0 0 0
]

and ~c = 0.5 results in the nested model just described. We wish to test the null hypothesis that
the “true” parameter vector ~q0 is in the restricted set QH ; i.e.,

H0 : ~q0 ∈ QH .

To proceed with the hypothesis test, we must define a test statistic. Following the approach

133



used in Section 3.3.2, let {N j
k} be a set of random variables as in (2.16) with corresponding

realizations {njk} constituting observed data so that we can define the GLS estimators ~qGLS and
~qHGLS as in (3.1) and GLS estimates q̂GLS and q̂HGLS as in (3.2). As in Section 3.3.2, we note here
that the inequality J(q̂HGLS ; {njk}) ≥ J(q̂GLS ; {njk}) should always hold because the estimate
q̂HGLS is obtained by optimizing over a subset of Q, while q̂GLS is obtained by optimizing over
all of Q. Using the GLS estimators and estimates, we can define the test statistic U({N j

k})
with realization Û({njk}) as in (3.3) and (3.4), respectively. According to Banks and Tran [12],
the test statistic U converges in distribution to a χ2 distribution with r = 1 degree of freedom
(where r is the number of constraints defined by the system H~q = ~c) as n → ∞. We use this
statistic to test our null hypothesis.

As shown in Table 5.3, the costs associated with the optimal parameter vector q̂HGLS on the
restricted set QH tend to be significantly greater than those associated with with the optimal
parameter vector q̂GLS on the set Q. Note that the results shown in the table were obtained only
for those data sets from Table 5.2 for which m was not equal to 0.5. We remark that for 3 of the
selected data sets J(q̂HGLS ; {njk}) < J(q̂GLS ; {njk}), which leads to a negative value for Û({njk}).
This should not occur, and can probably be explained by imperfections in the optimization
algorithms used for parameter estimation as discussed in Section 3.3.2. Based on the very low
p-values resulting from the model comparison tests in the majority of cases, we should reject the
null hypothesis and infer that the asymmetric division parameter m is important for describing
the behavior of a population of proliferating T cells.

Thus, we have arrived at two seemingly contradictory results concerning the importance of
incorporating asymmetric division into our model. In one third of the data sets we examined,
our parameter estimation algorithm returned a value of m = 0.5, which indicates perfectly
symmetric division. For the remaining data sets, however, our parameter estimation algorithm
returned a value of m less than 0.5. Furthermore, if we fix m at 0.5 for these data sets, the GLS
cost tends to be significantly greater. So, for two thirds of the data sets examined, allowing for
asymmetric division does appear to lead to better agreement between the model and the data.

We hypothesize that the apparent importance of incorporating asymmetry that is implied
by the model comparison experiments might be due to a type of experimental confounding.
Recall that the statistical model we use to relate experimental data to our mathematical model
is not a constant coefficient of variance model (cf. (2.16)). In fact, data points (histogram bins)
with higher cell counts tend to contribute more to the cost functional given by (2.17), even
despite the moderating effect of the weights. Also, the cell counts in the various bins tend to be
larger in the later days of the experiment after the cells have had the opportunity to multiply
their numbers through cell division. Therefore, our parameter estimation scheme tends to favor
parameter sets that give good model fits (i.e., low residuals) for observations at later days
(e.g., Days 4 and 5) over those that give good model fits for observations at earlier days (e.g.,

134



Table 5.3: Results of the model comparison test described in Section 5.4.

Data Set J(q̂GLS , {njk}) J(q̂HGLS , {n
j
k}) Û({njk}) p-value

5 33235.4 13380.5 -2446.96 1
10 20460.4 20373 -17.4833 1
11 15997 20635.2 1187.6 0
12 17384.2 21583.3 989.366 0
13 9785.79 9893.49 45.0805 1.9× 10−11

14 9776.4 9932.86 65.5522 5.6× 10−16

15 11690.5 11423.5 -93.5471 1
16 13648.9 13749 30.0378 4.2× 10−8

17 13241 16056.1 870.828 0
18 14017.7 14104.8 25.4563 4.5× 10−7

19 9733.53 10234.3 210.737 0
20 10548.6 10566.6 6.97462 8.3× 10−3

21 9621.94 10349.5 309.72 0
22 10341.9 13651.4 1310.76 0
23 13075.5 13858.1 245.151 0
24 11323.2 14597.8 1184.55 0

Days 2 and 3). As supporting evidence for this hypothesis, consider Figures 5.1 and 5.2. These
figures show data from Data Set 12 of Table 5.2 along with the asymmetric model fits obtained
(1) when m is free to take on any admissible value and (2) when m is fixed at 0.5. (Note that
the latter model fit is equivalent to a symmetric division model fit.) In Figure 5.1, we clearly see
that the symmetric division (“m fixed”) model does a better job of capturing all the peaks in
the data for the earlier days than does the asymmetric division (“m free”) model. In examining
Figure 5.2, it might even be argued that the symmetric division model captures the peaks in the
data for the later days just as well as the asymmetric division model, but clearly the residuals
produced by the asymmetric division model are smaller. Thus, despite the better overall “peak
capturing” performance of the symmetric division model, the asymmetric division model is
selected by the model comparison tests because it produces smaller residuals for the later days
of observations. It is conceivable that the introduction of the additional parameter m allows
one to obtain better fits using the asymmetric model simply because this additional degree
of freedom allows one to obtain reasonably low residuals for the early days of observations
while simultaneously obtaining very low residuals for the later days of observations. Perhaps
applying an analysis of residuals (as described by Banks and Tran [12] and Banks et al. [3])
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to the asymmetric division model would lead to a different and better statistical model upon
which future parameter estimations could be based.

It should also be pointed out that, in some cases, neither the asymmetric nor the symmetric
division model seem to do an adequate job of fitting CFSE FI data of the type described
in Chapter 3. Figure 5.3, which shows data from Data Set 22 of Table 5.2 along with the
asymmetric (“m free”) and symmetric (“m fixed”) model fits, illustrates this point. Notice that
the fits obtained with both models are particularly poor at Days 2 and 3. While such poor fits
could occur because of imperfections in the parameter estimation algorithm (e.g., optimization
routines identifying local rather than global minima) or simply because some of our data sets
contain unidentified experimental errors, it is also feasible that our models have yet to account
for some important parameters governing T cell proliferation.
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Figure 5.1: Plots of data from Data Set 12 of Table 5.2 and optimized model fits at (a) Day 2
and (b) Day 3.
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Figure 5.2: Plots of data from Data Set 12 of Table 5.2 and optimized model fits at (a) Day 4
and (b) Day 5.
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Figure 5.3: Plots of data from Data Set 22 of Table 5.2 and optimized model fits for Days 1
through 5.

5.5 On Choosing imax = 8 for the Asymmetric Division Model

Here we revisit a point to which we alluded briefly at the beginning of Section 5.4. For the
asymmetric division model, we only perform computations for cells that have divided 8 or fewer
times. That is, we only compute the solutions ñi(t, x̃) for i ∈ {0, . . . , imax}, where imax = 8.
We reduce the value for imax from 16 (which was used for the symmetric division model of
Chapter 2) because of the compounding expense of the recursive function calls that are required
when computing numerical solutions for the asymmetric division model. (We provide details of
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the relevant computational methods in Section B.1.2 of the Appendix.) This reduction, however,
requires some justification.

Considering most of the data sets analyzed in Chapter 3 using our original symmetric
division model, we find that it is very rare for the number of cells in generations i = 9 through
i = 16 to make up more than 1% of the total number of cells in generations i = 0 through
i = 16, even at Day 5 when the possibility of finding cells in these later generations is greatest.
This is true except when considering data sets for Donor 2’s CD8+ T cells, in which case the
percentage of cells in generations 9 through 16 made up on average 9.5% of the total cell count
at Day 5 when using ViViD dye and 7.6% when not using ViViD dye.

To further justify our choice of imax = 8, we conduct a test to determine how much parameter
estimates change when when switching from imax = 16 to imax = 8. Note that we already have
parameter estimates for 24 data sets based upon the asymmetric division model with imax = 16
and m fixed at 0.5 – these are the results for the trapezoid convolution method (TM) applied to
the symmetric division model that were discussed in Section 4.3. We also already have parameter
estimates for the same 24 data sets based upon the asymmetric division model with imax = 8
and m fixed at 0.5 – see Section 5.4. Thus, we can examine relative changes in the parameter
estimates as imax is adjusted from 16 to 8. In Table 5.4, we provide the results of our test. For
this table, each percent change is calculated as

v8 − v16

v16
× 100%,

where v8 and v16 denote the values obtained when using imax = 8 and imax = 16, respectively,
and each absolute percent change is calculated as the absolute value of this quantity. We see
that, with a few exceptions, the percent change in the cost is usually fairly small. Also, the
median absolute percent change in each of the parameter estimates is less than 2%, except in
the case of SD

[
T die

]
and Dσ. Note that rows of the table containing larger absolute percent

changes in the parameter estimates (and the cost) correspond to data sets for which fixing m
at 0.5 gave poor fits. Unfortunately, reattempting the parameter estimates using imax = 16
with m as a “free” parameter is not currently feasible due to the computational time required.
Nevertheless, the results of this test tend to suggest that only small changes in most of the
parameter estimates occur when switching from imax = 16 to imax = 8.
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Table 5.4: Absolute percent change in parameter estimates and percent change in costs for selected data sets when switching from
imax = 16 to imax = 8.

Data Set
Absolute % Change in: % Change

E [Xa] SD [Xa] c E
ˆ
T div0

˜
SD

ˆ
T div0

˜
E

ˆ
T div

˜
SD

ˆ
T div

˜
E

ˆ
T die

˜
SD

ˆ
T die

˜
F0 Dµ Dσ in Cost

1 0.09 0.50 0.04 0.01 0.01 0.20 1.92 0.47 1.08 0.01 0.21 0.48 -0.27

2 0.01 0.02 0.00 0.00 0.01 0.00 0.00 0.05 0.07 0.01 0.00 0.00 -0.02

3 0.10 0.53 0.05 0.02 0.01 0.20 1.96 0.44 1.01 0.01 0.24 0.49 -0.24

4 0.00 0.02 0.02 0.01 0.02 0.00 0.00 0.08 0.11 0.02 0.00 0.00 -0.10

5 0.39 4.86 0.16 2.15 4.04 0.08 1.08 47.67 98.30 5.33 0.46 0.78 -6.81

6 0.46 0.73 0.01 0.04 0.07 0.03 0.89 0.16 0.32 0.05 0.69 0.62 -0.11

7 1.52 0.00 0.59 0.24 0.66 1.17 3.33 1.26 0.93 0.06 0.89 5.15 -1.17

8 1.53 0.00 0.59 0.17 0.30 0.98 2.02 1.26 0.96 0.05 0.84 5.45 -1.25

9 1.39 0.00 0.30 0.18 0.36 1.01 2.18 1.45 1.17 0.02 0.62 5.59 -1.49

10 0.47 0.00 2.14 6.22 14.07 1.39 128.06 536.08 1251.61 9.37 4.41 39.57 35.25

11 2.14 0.20 1.40 5.90 21.80 2.69 638.99 687.55 1846.16 11.80 18.22 63.76 43.26

12 8.81 0.00 4.04 3.97 14.47 1.82 391.22 586.97 14688.75 10.41 18.92 82.89 45.51

13 1.37 2.87 0.04 0.09 0.24 0.04 0.01 1.37 10.20 0.21 0.08 10.78 -0.33

14 1.47 2.63 0.04 0.10 0.28 0.06 0.80 1.38 10.75 0.20 0.19 9.42 -0.39

15 1.56 3.71 0.76 0.27 0.26 1.61 75.73 85.38 368.76 0.07 54.72 39.47 12.12

16 0.63 0.79 0.03 0.03 0.02 0.00 0.07 0.27 2.33 0.21 0.89 2.68 -0.04

17 3.64 5.98 1.15 1.06 1.83 2.11 66.90 44.52 181.93 1.70 47.14 34.16 18.38

18 1.23 1.77 0.01 0.07 0.09 0.00 0.02 0.10 1.95 0.12 0.72 2.85 -0.00

19 9.80 14.09 0.21 0.01 3.31 2.60 0.20 0.93 0.84 0.99 0.27 16.05 -4.01

20 1.61 12.38 1.65 1.79 0.93 5.58 0.41 37.14 95.62 3.42 4.77 19.92 2.28

21 4.38 17.76 0.07 1.72 1.38 2.95 2.68 3.17 144.66 1.75 5.69 0.49 2.86

22 17.39 6.84 7.25 1.02 25.44 21.86 22.78 36.49 475.73 17.23 1.25 34.13 -3.46

23 14.40 2.33 4.23 3.27 20.19 23.29 10.62 34.16 321.64 6.80 19.89 43.51 3.72

24 17.30 8.12 3.65 2.13 24.12 24.15 6.75 57.22 27.03 15.45 18.32 29.05 8.48

median 1.50 1.28 0.25 0.21 0.51 1.09 1.99 1.41 10.47 0.21 0.87 7.51 -0.07
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Chapter 6

Conclusions and Future Directions

In this final chapter, we summarize the results we’ve presented and discuss possible future
investigations that might lead to improvements in the cell proliferation models and parame-
ter estimation procedures we’ve described. Our most important discoveries were reported in
Chapters 3, 4, and 5, so we discuss these results and some of their implications in turn in Sec-
tion 6.1. This leads into a discussion of the opportunities for expanding on this body of work
in Section 6.2.

6.1 Summary of Results

In Chapter 3, we offered evidence that 9 of the 12 parameters used to specify the symmetric
division model of Section 2.5 can be estimated with relatively high reliability using data sets
of the type described in Section 3.1. We then showed that our inability to reliably identify the
remaining 3 parameters could be explained by the high degree of variability in observations
made in the later days of the experiments. The increased variability seen in triplicate data sets
after Day 3 was linked to the removal of some of the growth medium (and possibly some cells)
and the subsequent addition of fresh growth medium that occurs starting at Day 3 according
to the experimental protocol.

It is worth noting that we derived the mathematical models of Chapter 2 (and Chapter 5)
according the principle of conservation of mass. Because cells are possibly removed from the
culturing wells during the growth medium replenishment procedure that occurs starting at
Day 3, the assumptions of our conservation laws may be violated. Furthermore, as pointed out
in Section 3.4, the depletion and replenishment of nutrients available to the cells amounts to a
non-constant environment. The cyton model we’ve incorporated into our structured PDE model
tacitly assumes a constant environment for the cultures of proliferating cells, and we now clearly
see that this is an unrealistic assumption. Thus, violations of conservation laws (for mass and
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energy) could easily be responsible for the model misspecification pointed out in Section 2.6.
In Chapter 4, we described several numerical methods for computing the convolution inte-

grals relevant to the cell proliferation models of Chapters 2 and 5. In particular, we examined
how use of the Fenton method over the more precise (and more costly) trapezoid method may
have affected the results discussed in Chapter 3. It was demonstrated that, while use of the
Fenton method may have led to dramatically different estimates for many of the model param-
eters, estimates for 4 of the most important cell proliferation parameters were probably affected
very little.

Chapter 5 contains a derivation of a new cell proliferation model that incorporates aspects
of the cyton model of Hawkins et al. [28, 29], the separable PDE models of Schittler et al. [41],
and the asymmetric division parameter m proposed by Bocharov et al. [15]. The model com-
parisons performed there did not provide conclusive evidence that including a provision for
asymmetric division in our models consistently leads to improved fits for the data sets de-
scribed in Section 3.1. In some cases, including the parameter m allowed for model fits with
significantly lower costs (as evaluated using (2.17)), but in the majority of cases the estimated
value of m was not substantially different from 0.5 (which corresponds to perfectly symmetric
cell divisions). Upon visual inspection of some of the model fits obtained in Section 5.4, it was
noticed that the selection of the asymmetric model over the symmetric model might be due to
the form of the statistical model underlying the cost functional (2.17). It was then suggested
that a reassessment of this statistical model might lead to different results.

6.2 Future Directions

In the previous section, we alluded to several opportunities for expanding on the work presented
here. In particular, one might attempt derive new conservation law models similar to (2.1) or
(2.14) that account for the conservation law violations identified in Section 6.1. This could
possibly be accomplished by working with experimentalists to approximate the quantities of
cells that are removed during growth medium replenishment. Alternatively, new experimental
methods might be devised for culturing cells in such a way that the nutrients available in the
growth medium are maintained at more constant levels. If new protocols for maintaining a more
constant environment cannot be developed, then the cyton model incorporated into (2.14) may
need to be modified or abandoned. In their current form, the cytons {(φi(t), ψi(t))} depend only
on the time t since the last division occurred; i.e., they only depend on time in the frame of
reference of an individual cell. In order to account for a non-constant environment, the cytons
would need to also depend on time in the frame of reference of the experimenter. Adding this
new dependence would likely complicate the cyton model presented in Section 2.3 to such an
extent that the original benefits imparted (i.e., increased simplicity in the interpretation of the
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model parameters and a reduced number of model parameters) would be eliminated. Thus,
reverting to model (2.1) with its “real time” time-dependent division and death rates {αi(t)}
and {βi(t)} would probably be the best course in the event that new constant-environment
experimental procedures cannot be suggested.

Considerable effort has already been devoted to the problem of parameterizing a model such
as (2.1) that contains time-dependent rate functions {αi(t)} and {βi(t)} for describing division
and death. By conducting model comparison tests using the Akaike Information Criterion [17],
Thompson found that representing each αi(t) by a piecewise linear function and defining each
βi(t) by a constant function led to the most parsimonious model when selecting from a panel
of candidate model parameterizations [47]. Using Thompson’s scheme, one must estimate the
value of each αi(t) at three carefully selected time points; therefore, when considering only
generations i = 0 through i = 6, 7 × 3 = 21 parameters are required to represent the division
rates and 7 more are required for the death rates. Although Thompson was able to obtain good
fits to summary histogram FI data with this model formulation, it is unlikely that that all the
parameters involved can be reliably estimated.

For the data sets described in Chapter 3, recall that observations were made at 5 discrete
time points on roughly 24-hour intervals over a 5-day period. In order to reliably estimate all
the parameters involved when discretely parameterizing {αi(t)} and {βi(t)} as described above,
it seems likely that observations would need to be made with greater frequency. In discussing
this possibility with our experimental collaborators, we learned that increasing the number of
observations may not be practical for a variety of reasons. One of the most limiting factors
is the volume of blood that can be safely drawn from a donor. A relatively large quantity of
blood must be drawn in order to provide a sufficient number of PBMCs to conduct even the
5-day time series experiments of Chapter 3, and this study was conducted using blood from
healthy donors. In studies conducted for diseased donors, the quantity of blood that can be
safely removed may be even less.

It is worth noting that the triplicate data collected for the variability study of Chapter 3
could be used in an entirely different way. In particular, one could attempt to obtain parameter
estimates using all 15 data points for a given experimental condition. That is, instead of choosing
one of the 243 possible 5-day time series data sets, one could use all 3 measurements from all
5 days together to find a parameter vector that gives the best overall fit in the least-squares
sense. As a similar alternative, one could apply k-fold cross validation [24]. In this approach,
one would systematically exclude (one at a time) each of the 12 data points from the later days
(i.e., Days 2 through 5) of the experiment and would use the 11 remaining data points plus the
3 data points from Day 1 (for the initial condition) to obtain a parameter estimate. Then one
could analyze the ability of the model to “predict” the information contained in the excluded
data point.
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As another possibility for moving forward with this work, we alluded to statistical model
revisions in the previous section. A number of approaches to accommodating model discrep-
ancy, from the relatively simple (e.g., polynomial model discrepancy terms) to the relatively
complicated (e.g., Gaussian process representations) are addressed by Smith [45] and could be
applied here. Given the results of Section 3.2, it is now clear that our experimental process leads
to a greater potential for measurement error in the later days (especially after Day 3) and it
appears that this error is introduced through the growth medium replenishment process. Note
that the statistical model given in Section 2.6 can be expressed as

N j
k(~q0) = I[n̂](tj , zk; ~q0) + εjk

√
B

bj
I[n̂](tj , zk; ~q0),

where each εjk is standard normal random variable (i.e., εjk ∼ N (0, 1)). This statistical model
could be easily modified by selecting the variance of each εjk in such a way that the total relative
variation in N j

k would be larger in the later days of the experiment (i.e., for j ∈ {3, 4, 5}). One
could use the relative variation measures we describe in Section 3.2 as a guide for choosing
these variances.

In all the models we have considered thus far, note that we have assumed that cells of a
specific type (e.g., CD4+ and CD8+ T cells) operate independently of one another. In fact, it is
well known that the proliferation of CD8+ T cells depends in many cases on interactions with
CD4+ T cells [14, 19]. Furthermore, other intermediary cells (antigen-presenting cells such as
dendritic cells) often facilitate the communication between CD4+ and CD8+ T cells [14]. We
suggest that investigations of a two-population (or possibly a three-population) model might
lead to improvements of model fits. In such a model, the behavior of CD4+ and CD8+ T cells
would be considered simultaneously, and the birth rate terms for CD8+ T cells would include
a dependence on both CD8+ and CD4+ numbers.

Ultimately, we would like to be able to apply our models and methods to more interesting
and practical scenarios, such as investigations of Gag-stimulated cell cultures from HIV-positive
donors. For the data we considered in Chapters 3 and 5, recall that cells were stimulated to
divide using the mitogen PHA. Because PHA is a nonspecific T cell mitogen, the response
rate of T cells stimulated to divide with PHA is much higher than that of T cells stimulated
with a group-specific antigen. In fact, in examining some preliminary data provided by our
collaborators at Universitat Pompeu Fabra, we found that the response rate of T cells collected
from HIV-positive donors and stimulated with the Gag protein can be 1% or less. Compare this
with the 50 to 90% response rate observed for PHA-stimulated T cells.

Thus, a variety of opportunities and challenges remain to be considered in the area of cell
proliferation modeling. The models and experimental procedures described here have allowed
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us to glimpse a number of quantifiable features of populations of proliferating cells, and as
more information becomes available from the biological research community we believe that the
interpretive framework we’ve described will provide a firm foundation for further investigations.
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Appendix A

Supporting Mathematical

Arguments and Proofs

A.1 Solution of (2.7) and (2.8) by the Method of Characteristics

To simplify notation in the work that follows, we let ρ(t, x) ≡ n̄i(t, x). Then, (2.7) can be
written as

∂

∂t
ρ(t, x)− v(t)

∂

∂x

[
xρ(t, x)

]
= 0.

Expanding the derivative with respect to x yields

∂

∂t
ρ(t, x)− v(t)

[
x
∂

∂x
ρ(t, x) + ρ(t, x)

]
= 0,

which can be expressed as
ρt − v(t)xρx − v(t)ρ = 0 (A.1)

using the subscript notation for partial derivatives. We remark that, for our purposes, the
domain for this PDE is {(t, x) : t ≥ t0, x ≥ 0}, as is made clear in Section 2.1.

The goal of applying the method of characteristics to the first-order linear PDE (A.1) is to
change from the coordinates (t, x) to a new coordinate system (s, x0) so that the PDE becomes
an ODE along the characteristic curves

{(
x(s), t(s)

)
: 0 < s <∞

}
in the x-t plane. The variable

x0 represents the initial value of x for each of the various characteristic curves, and it coincides
with the point at which a given characteristic curve intersects the line t = t0 in the x-t plane.
If we let dt

ds and dx
ds equal the coefficients of ρt and ρx, respectively, in (A.1), we have the two

initial value problems
dt

ds
= 1, t(0) = t0, (A.2)
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and
dx

ds
= −v(t)x, x(0) = x0. (A.3)

The solution to (A.2) is
t(s) = t0 + s,

and the solution to (A.3) can be obtained as follows.

dx

ds
= −v(t)x

=⇒ dx

x
= −v(t) ds

=⇒ dx

x
= −v(t) dt

=⇒
∫ x∗

x0

dx

x
= −

∫ t∗

t0

v(t) dt

=⇒ log x
∣∣∣x∗
x0

= −
∫ t∗

t0

v(t) dt

=⇒ log x∗ = log x0 −
∫ t∗

t0

v(t) dt

=⇒ x∗ = x0 · exp

[
−
∫ t∗

t0

v(t) dt

]

=⇒ x(s) = x0 · exp

[
−
∫ t(s)

t0

v(u) du

]
.

This last equation implies the relation

x0(s) = x(s) · exp

[∫ t(s)

t0

v(u) du

]
. (A.4)

Now, using (A.1), (A.2), and (A.3), we can write

ρt
dt

ds
+ ρx

dx

ds
= v(t)ρ,

which implies
dρ

ds
= v(t)ρ, (A.5)

where ρ = ρ(s) = ρ(t(s), x(s)) and t = t(s). Also, the initial condition (2.8) implies

ρ0 = ρ(0) =
2iΦ(2ix0)

N0
. (A.6)
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Then (A.5) and (A.6) give us yet another initial value problem, which can be solved as follows.

dρ

ds
= v(t)ρ

=⇒ dρ

ρ
= v(t) ds

=⇒ dρ

ρ
= v(t) dt

=⇒
∫ ρ∗

ρ0

dρ

ρ
=

∫ t∗

t0

v(t) dt

=⇒ log ρ
∣∣∣ρ∗
ρ0

=
∫ t∗

t0

v(t) dt

=⇒ log ρ∗ = log ρ0 +
∫ t∗

t0

v(t) dt

=⇒ ρ∗ = ρ0 · exp

[∫ t∗

t0

v(t) dt

]

=⇒ ρ(s) = ρ0 · exp

[∫ t(s)

t0

v(u) du

]

=⇒ ρ(s) =
2iΦ(2ix0(s))

N0
· exp

[∫ t(s)

t0

v(u) du

]
.

Substituting (A.4) into the last equation above, we obtain

ρ(t, x) = ρ(t(s), x(s)) = ρ(s) =
2i

N0
Φ
(

2ix · exp
[∫ t

t0

v(u) du
])
· exp

[∫ t

t0

v(u) du
]
.

Recalling that ρ(t, x) ≡ n̄i(t, x), we see that

n̄i(t, x) =
2i

N0
Φ
(

2ix · exp
[∫ t

t0

v(u) du
])
· exp

[∫ t

t0

v(u) du
]

(A.7)

is the solution of (2.7) and (2.8) for each i ∈ {0, 1, 2, . . .}.

Lemma A.1. For the solutions (A.7) of (2.7) and (2.8), the relation

n̄i(t, x) = 2n̄i−1(t, 2x)

holds for all i ∈ {1, 2, . . .}.
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Proof. Using (A.7), it is easy to see that

2n̄i−1(t, 2x) = 2 · 2i−1

N0
Φ
(

2i−1 · 2x · exp
[∫ t

t0

v(u) du
])
· exp

[∫ t

t0

v(u) du
]

=
2i

N0
Φ
(

2ix · exp
[∫ t

t0

v(u) du
])
· exp

[∫ t

t0

v(u) du
]

= n̄i(t, x)

for all i ∈ {1, 2, . . .}.

A.2 Solution of (2.7) and (5.2) by the Method of Characteristics

Note that here we solve the same first-order linear PDE which we solved in Appendix A.1,
but we now consider a different initial condition. As before, we let ρ(t, x) ≡ n̄i(t, x) to simplify
notation, and in fact we proceed with identical arguments up through the point at which we
obtained (A.5) in Appendix A.1.

For the case i = 0, note that (5.2) and (2.8) are equivalent expressions, so the solution for
n̄0(t, x) = ρ(t, x) will be the same as that obtained in Appendix A.1. For i ≥ 1, however, the
solutions will be different. We consider that case presently.

For i ≥ 1, the initial condition (5.2) implies

ρ0 = ρ(0) =
1
2
·
[

1
m
n̄i−1(t0, 1

mx0) +
1

(1−m)
n̄i−1(t0, 1

1−mx0)
]
. (A.8)
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Then (A.5) and (A.8) give us an initial value problem that can be solved as follows.

dρ

ds
= v(t)ρ

=⇒ dρ

ρ
= v(t) ds

=⇒ dρ

ρ
= v(t) dt

=⇒
∫ ρ∗

ρ0

dρ

ρ
=

∫ t∗

t0

v(t) dt

=⇒ log ρ
∣∣∣ρ∗
ρ0

=
∫ t∗

t0

v(t) dt

=⇒ log ρ∗ = log ρ0 +
∫ t∗

t0

v(t) dt

=⇒ ρ∗ = ρ0 · exp

[∫ t∗

t0

v(t) dt

]

=⇒ ρ(s) = ρ0 · exp

[∫ t(s)

t0

v(u) du

]

=⇒ ρ(s) =
1
2

[
1
m
n̄i−1(t0, 1

mx0) +
1

1−m
n̄i−1(t0, 1

1−mx0)
]
· exp

[∫ t(s)

t0

v(u) du

]
.

Substituting (A.4) into the last equation above, we obtain

ρ(t, x) = ρ(t(s), x(s)) = ρ(s)

=
1
2

[
1
m
n̄i−1

(
t0,

1
m
x · exp

[∫ t

t0

v(u) du
])

+
1

1−m
n̄i−1

(
t0,

1
1−m

x · exp
[∫ t

t0

v(u) du
])]

· exp
[∫ t

t0

v(u) du
]
.

Recalling that ρ(t, x) ≡ n̄i(t, x), we see that the solutions n̄i(t, x) of (2.7) and (5.2) obey the
recursive relation

n̄i(t, x) =
1
2

[
1
m
n̄i−1

(
t0,

1
m
x · exp

[∫ t

t0

v(u) du
])

+
1

1−m
n̄i−1

(
t0,

1
1−m

x · exp
[∫ t

t0

v(u) du
])]

· exp
[∫ t

t0

v(u) du
]

(A.9)

for i ≥ 1.
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Lemma A.2. For the solutions (A.9) of (2.7) and (5.2), the relation

2n̄i(t, x) =
1
m
n̄i−1(t, 1

mx) +
1

1−m
n̄i−1(t, 1

1−mx)

holds for all i ∈ {1, 2, . . .}.

Proof. We will prove this claim using mathematical induction. First, we show that the claim
holds for i = 1. Note that (A.7), which holds for i = 0, implies

n̄0(t, x) =
1
N0

Φ
(
x · exp

[∫ t

t0

v(u) du
])
· exp

[∫ t

t0

v(u) du
]
, (A.10)

so

n̄0(t0, ξ) =
1
N0

Φ
(
ξ · exp

[∫ t0

t0

v(u) du
])
· exp

[∫ t0

t0

v(u) du
]

=
1
N0

Φ (ξ · exp [0]) · exp [0]

=
1
N0

Φ(ξ)

and thus

n̄0

(
t0,

1
m
x · exp

[∫ t

t0

v(u) du
])

=
1
N0

Φ
(

1
m
x · exp

[∫ t

t0

v(u) du
])

.

Similarly,

n̄0

(
t0,

1
1−m

x · exp
[∫ t

t0

v(u) du
])

=
1
N0

Φ
(

1
1−m

x · exp
[∫ t

t0

v(u) du
])

.

Also, (A.9) implies

n̄1(t, x) =
1
2

[
1
m
n̄0

(
t0,

1
m
x · exp

[∫ t

t0

v(u) du
])

+
1

1−m
n̄0

(
t0,

1
1−m

x · exp
[∫ t

t0

v(u) du
])]

· exp
[∫ t

t0

v(u) du
]

=
1
2

[
1
m

1
N0

Φ
(

1
m
x · exp

[∫ t

t0

v(u) du
])
· exp

[∫ t

t0

v(u) du
]

+
1

1−m
1
N0

Φ
(

1
1−m

x · exp
[∫ t

t0

v(u) du
])
· exp

[∫ t

t0

v(u) du
]]

=
1
2

[
1
m
n̄0(t, 1

mx) +
1

1−m
n̄0(t, 1

1−mx)

]
.
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Thus, the claim holds for i = 1.
For the inductive step, we assume that the claim holds for i = k; i.e.,

2n̄k(t, x) =
1
m
n̄k−1(t, 1

mx) +
1

1−m
n̄k−1(t, 1

1−mx). (A.11)

Substituting t0 for t and ξ for x, this becomes

2n̄k(t0, ξ) =
1
m
n̄k−1(t0, 1

mξ) +
1

1−m
n̄k−1(t0, 1

1−mξ). (A.12)

If we let ϕ(t) = exp [
∫ t
t0
v(u) du], then we can use (A.9) to write

n̄k(t, x) =
1
2

[
1
m
n̄k−1

(
t0,

1
mx · ϕ(t)

)
+

1
1−m

n̄k−1

(
t0,

1
1−mx · ϕ(t)

)]
· ϕ(t), (A.13)

which is equivalent to

2n̄k(t, x) =
[

1
m
n̄k−1

(
t0,

1
mx · ϕ(t)

)
+

1
1−m

n̄k−1

(
t0,

1
1−mx · ϕ(t)

)]
· ϕ(t). (A.14)

Now, (A.11) and (A.14) imply[
1
m
n̄k−1

(
t0,

1
mx · ϕ(t)

)
+

1
1−m

n̄k−1

(
t0,

1
1−mx · ϕ(t)

)]
· ϕ(t) =

1
m
n̄k−1(t, 1

mx) +
1

1−m
n̄k−1(t, 1

1−mx). (A.15)

Next, we can use (A.9) to write

n̄k+1(t, x) =
1
2

[
1
m
n̄k

(
t0,

1
mx · ϕ(t)

)
+

1
1−m

n̄k

(
t0,

1
1−mx · ϕ(t)

)]
· ϕ(t),

which is equivalent to

2n̄k+1(t, x) =
[

1
m
n̄k

(
t0,

1
mx · ϕ(t)

)
+

1
1−m

n̄k

(
t0,

1
1−mx · ϕ(t)

)]
· ϕ(t). (A.16)

But (A.12) with ξ = 1
mx · ϕ(t) implies

n̄k

(
t0,

1
mx · ϕ(t)

)
=

1
2

[
1
m
n̄k−1

(
t0,

1
m

1
mx · ϕ(t)

)
+

1
1−m

n̄k−1

(
t0,

1
1−m

1
mx · ϕ(t)

)]
(A.17)
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and (A.12) with ξ = 1
1−mx · ϕ(t) implies

n̄k

(
t0,

1
1−mx · ϕ(t)

)
=

1
2

[
1
m
n̄k−1

(
t0,

1
m

1
1−mx · ϕ(t)

)
+

1
1−m

n̄k−1

(
t0,

1
1−m

1
1−mx · ϕ(t)

)]
, (A.18)

Substituting (A.17) and (A.18) into (A.16), we obtain

2n̄k+1(t, x) =

{
1
m
· 1

2

[
1
m n̄k−1

(
t0,

1
m

1
mx · ϕ(t)

)
+ 1

1−m n̄k−1

(
t0,

1
1−m

1
mx · ϕ(t)

)]
+

1
1−m

· 1
2

[
1
m n̄k−1

(
t0,

1
m

1
1−mx · ϕ(t)

)
+ 1

1−m n̄k−1

(
t0,

1
1−m

1
1−mx · ϕ(t)

)]}
· ϕ(t)

=
1
m
· 1

2

[
1
m n̄k−1

(
t0,

1
m

1
mx · ϕ(t)

)
+ 1

1−m n̄k−1

(
t0,

1
1−m

1
mx · ϕ(t)

)]
· ϕ(t)

+
1

1−m
· 1

2

[
1
m n̄k−1

(
t0,

1
m

1
1−mx · ϕ(t)

)
+ 1

1−m n̄k−1

(
t0,

1
1−m

1
1−mx · ϕ(t)

)]
· ϕ(t)

(A.19)

If we use the identity from (A.15) with x replaced by 1
mx, we can make a substitution in the

first term of (A.19) that removes dependence on t0. Similarly, using (A.15) with x replaced by
1

1−mx, we can make a substitution in the second term of (A.19) that removes dependence on
t0. The resulting expression is

2n̄k+1(t, x) =
1
m
· 1

2

[
1
m n̄k−1

(
t, 1
m

1
mx
)

+ 1
1−m n̄k−1

(
t, 1

1−m
1
mx
)]

+
1

1−m
· 1

2

[
1
m n̄k−1

(
t, 1
m

1
1−mx

)
+ 1

1−m n̄k−1

(
t, 1

1−m
1

1−mx
)]
. (A.20)

In order to make two final substitutions, note that replacing x with 1
mx in (A.11) yields

2n̄k(t, 1
mx) = 1

m n̄k−1(t, 1
m

1
mx) + 1

1−m n̄k−1(t, 1
1−m

1
mx), (A.21)

while replacing x with 1
1−mx in (A.11) yields

2n̄k(t, 1
1−mx) = 1

m n̄k−1(t, 1
m

1
1−mx) + 1

1−m n̄k−1(t, 1
1−m

1
1−mx). (A.22)
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Substituting (A.21) and (A.22) into (A.20), we arrive at

2n̄k+1(t, x) =
1
m
· 1

2

[
2n̄k(t, 1

mx)
]

+
1

1−m
· 1

2

[
2n̄k(t, 1

1−mx)
]

=
1
m
n̄k(t, 1

mx) +
1

1−m
n̄k(t, 1

1−mx).

Thus, we have demonstrated that if the claim holds for i = k, it must also hold for i = k + 1.
By the Principle of Mathematical Induction, the claim therefore holds for all i ∈ {1, 2, . . .}.

A.3 Relative Variation in Cell Counts Is Constant With Re-

spect to Time

In the sections that follow, we consider populations (cultures) of cells which proliferate accord-
ing the mathematical model described by (2.11) through (2.13) and (2.6). Working under the
assumption that this model correctly describes cell numbers (counts), we show that two differ-
ent measures of relative variation, percent difference and coefficient of variation, must remain
constant in time.

A.3.1 Percent Difference Is Constant

Let N(t) denote the total number of cells in a population at time t. Then

N(t) =
∞∑
i=0

Ni(t),

where each Ni(t) indicates the number of cells having completed i divisions at time t. We would
like to show that two distinct cultures of cells (such as those cultures in two distinct wells) that
are proliferating according to the same dynamics (or the same model parameters) will maintain
the same “percent difference” in their cell numbers for all times t. So, for example, if

NA(t) =
∞∑
i=0

NA
i (t)

and

NB(t) =
∞∑
i=0

NB
i (t)

represent the total number of cells at time t in populations A and B, respectively, we want to
demonstrate that

2(NA(t1)−NB(t1))
NA(t1) +NB(t1)

=
2(NA(t2)−NB(t2))
NA(t2) +NB(t2)
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for arbitrary times t1, t2 ∈ [t0,∞).
If we let NA

0 (t0) ≡ NA
0 , then we can use (2.11) to write

NA(t) =
∞∑
i=0

NA
i (t)

= NA
0 (t) +NA

1 (t) +NA
2 (t) + · · ·

=
[
NA

0 −
∫ t

t0

(ndiv0 (s) + ndie0 (s)) ds
]

+
[∫ t

t0

(2ndiv0 (s)− ndiv1 (s)− ndiv1 (s)) ds
]

+
[∫ t

t0

(2ndiv1 (s)− ndiv2 (s)− ndiv2 (s)) ds
]

+ · · ·

= NA
0 +

∫ t

t0

([
ndiv,A0 (s)− ndie,A0 (s)

]
+
[
ndiv,A1 (s)− ndie,A1 (s)

]
+
[
ndiv,A2 (s)− ndie,A2 (s)

]
+ · · ·

)
ds.

Now, observe that the expressions for ndiv0 (t) and ndie0 (t) given in (2.12) and (2.13) both contain
a constant factor of N0 so that we can write

ndiv,A0 (s) = NA
0 g

div
0 (s)

and
ndie,A0 (s) = NA

0 g
die
0 (s).

Similarly, through the recursive relationships indicated in (2.12) and (2.13), each ndivi (t) and
each ndiei (t) contains a constant factor of N0. Thus we can write

ndiv,Ai (s) = NA
0 g

div
i (s)

and
ndie,Ai (s) = NA

0 g
die
i (s)
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for each i ≥ 1. Therefore, we have that

NA(t) = NA
0 +

∫ t

t0

([
NA

0 g
div
0 (s)−NA

0 g
die
0 (s)

]
+
[
NA

0 g
div
1 (s)−NA

0 g
die
1 (s)

]
+
[
NA

0 g
div
2 (s)−NA

0 g
die
2 (s)

]
+ · · ·

)
ds

= NA
0

(
1 +

∫ t

t0

∞∑
i=0

[
gdivi (s)− gdiei (s)

]
ds

)
= NA

0 g(t),

where

g(t) = 1 +
∫ t

t0

∞∑
i=0

[
gdivi (s)− gdiei (s)

]
ds.

Similarly, it can be argued that
NB(t) = NB

0 g(t).

Thus,

2(NA(t)−NB(t))
NA(t) +NB(t)

=
2(NA

0 g(t)−NB
0 g(t))

NA
0 g(t) +NB

0 g(t)
=

2(NA
0 −NB

0 )g(t)
(NA

0 +NB
0 )g(t)

=
2(NA

0 −NB
0 )

(NA
0 +NB

0 )
,

for all t such that g(t) is nonzero. (Note that g(t) = 0 implies that the number of cells in both
cultures at time t is zero, in which case there is no difference in the numbers of cells in the
two cultures.) So, assuming our model (2.14) for cell proliferation dynamics is correct, percent
difference in the number of cells in two distinct cultures remains constant in time.

A.3.2 Coefficient of Variation Is Constant

It is also true that the “coefficient of variation” for numbers of cells in a sample of distinct
cultures that is drawn from the set of all cultures proliferating according to the same dynamics
should remain the same at all points in time. Recall that the coefficient of variation can be
estimated as

ĉv =
s

x̄
,

where x̄ and s are the mean and standard deviation for a sample of the “population” in question
– in this case, the population would be all cultures of cells proliferating according to the same
dynamics. If we have three cultures, call them A, B, and C, the sample mean population number
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at time t is

x̄(t) =
NA(t) +NB(t) +NC(t)

3
=
NA

0 +NB
0 +NC

0

3
g(t) = N̄0g(t)

and the sample standard deviation in the population number is

s(t) =

√
1
2

(
(NA(t)− x̄(t))2 + (NB(t)− x̄(t))2 + (NC(t)− x̄(t))2

)

=

√
1
2

(
(NA

0 g(t)− N̄0g(t))2 + (NB
0 g(t)− N̄0g(t))2 + (NC

0 g(t)− N̄0g(t))2

)

= g(t)

√
1
2

(
(NA

0 − N̄0)2 + (NB
0 − N̄0)2 + (NC

0 − N̄0)2

)
.

Thus,

ĉv(t) =
s(t)
x̄(t)

=

√
1
2

(
(NA

0 − N̄0)2 + (NB
0 − N̄0)2 + (NC

0 − N̄0)2

)
N̄0

= ĉv(t0)

for all t such that g(t) is nonzero. So, assuming our model (2.14) for cell proliferation dynamics is
correct, coefficient of variation in the number of cells in three distinct cultures remains constant
in time. Here we have used a sample size of three since our experiments were performed in
triplicate, but the proof is similar for any sample size.
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Appendix B

Numerical Methods and

Implementation Details

As discussed in [5], our numerical methods for solving the label-structured cyton model for
cell densities (2.14) are an extension (accounting for the incorporation of the cyton model) of
the methods originally proposed by Hasenauer et al. in [27]. Because the solutions {ni(t, x)}
of (2.14) are factorable (cf. Proposition 2.2 and Proposition 5.2), one can compute the cell
numbers {Ni(t)} and the distributions of CFSE FI {n̄i(t, x)} independently. Then, the solutions
of (2.14) can be computed as ni(t, x) = Ni(t)n̄i(t, x) for all i, and the autofluorescence-adjusted
structured densities {ñi(t, x̃)} can be computed using the convolution integral (2.10).

In this appendix, we discuss the numerical methods used for computing the CFSE FI distri-
butions {n̄i(t, x)}, the cell numbers {Ni(t)}, the initial condition Φ(x), and the total structured
density ñ(t, x̃). We also provide details of our inverse (parameter estimation) problem imple-
mentation.

B.1 Computation of CFSE FI Distributions {n̄i(t, x)}

We consider two cases in turn. In the first, all cell divisions are assumed to be symmetric in the
sense that each mother cell produces two daughter cells that both receive one half of the CFSE
that was present in the mother cell. In the second, we assume divisions can be asymmetric,
with the two daughter cells receiving proportions m and 1−m, respectively, of the CFSE that
was present in the mother cell. In the latter case, m ∈ (0, 1

2 ] is assumed to be a constant for
the population of cells in question.
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B.1.1 Symmetric Cell Division

For the case in which all cell divisions are assumed to be symmetric, we demonstrate in Ap-
pendix A.1 that

n̄i(t, x) =
2i

N0
Φ
(

2ix · exp
[∫ t

t0

v(u) du
])
· exp

[∫ t

t0

v(u) du
]

is the solution of (2.7) and (2.8) for each i ∈ {0, 1, 2, . . .}. Letting ϕ(t) = exp [
∫ t
t0
v(u) du] to

simplify notation, we can write this as

n̄i(t, x) =
2iϕ(t)
N0

Φ
(

2ix · ϕ(t)
)

(B.1)

for each i ∈ {0, 1, 2, . . .}.
Now, following the work of Hasenauer et al. [27], we make the further assumption that the

initial CFSE FI distribution is lognormal with parameters µ0 and σ2
0; i.e.,

n̄0(t0, x) = logn(x;µ0, σ
2
0) =

1
xσ0

√
2π
· exp

[
−(log x− µ0)2

2σ2
0

]
.

(We will extend our argument to a considerably less restrictive assumption in a moment.) Then
from (2.8) we have the relation

Φ(x)
N0

= n̄0(t0, x) =
1

xσ0

√
2π
· exp

[
−(log x− µ0)2

2σ2
0

]
(B.2)

for x > 0. If we replace x by 2ix · ϕ(t) in (B.2) and substitute the resulting expression into
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(B.1), we obtain

n̄i(t, x) =
2iϕ(t)(

2ix · ϕ(t)
)
σ0

√
2π
· exp

−
(

log
(

2ix · ϕ(t)
)
− µ0

)2

2σ2
0


=

1
xσ0

√
2π
· exp

−
(

log x+ i log 2 + logϕ(t)− µ0

)2

2σ2
0


=

1
xσ0

√
2π
· exp

−
(

log x−
(
− i log 2− logϕ(t) + µ0

))2

2σ2
0


=

1
xσ0

√
2π
· exp

−
(

log x−
(
− i log 2−

∫ t
t0
v(u) du+ µ0

))2

2σ2
0


=

1
xσ0

√
2π
· exp

−
(

log x− µi(t)
)2

2σ2
0


= logn(x;µi(t), σ2

0), (B.3)

where

µi(t) = −i log 2−
∫ t

t0

v(u) du+ µ0.

In other words, if the initial CFSE FI distribution (at time t0) is lognormal with parameters
µ0 and σ2

0, then the CFSE FI distribution for any generation i ≥ 0 will be lognormal at time
t > t0 with parameters µi(t) and σ2

0.
Still following the work of Hasenauer et al. [27], we next consider a less restrictive assumption

on the form of the initial CFSE FI distribution. Suppose that the initial structured density can
be written using a linear (convex) combination of lognormal pdfs as

Φ(x) = N0

kmax∑
k=1

aklogn(x;µk, (σk)2),

where ak ≥ 0 for k ∈ {1, . . . , kmax} and
∑kmax

k=1 ak = 1. This assumption is not overly restric-
tive, and in practice we find that the initial structured densities observed in CFSE-based flow
cytometry experiments can be well-approximated by such a series with kmax = 3. (More will
be said about our methods for determining {ak}, {µk}, and {σk} in Section B.3.) Then by the
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principle of superposition and (B.3),

n̄i(t, x) =
kmax∑
k=1

aklogn(x;µki (t), (σ
k)2), (B.4)

where

µki (t) = −i log 2−
∫ t

t0

v(u) du+ µk (B.5)

for all i and k ∈ {1, . . . , kmax}. For the specific models we employ in this dissertation, v(u) = c,
where c > 0 is some constant (cf. Section 2.5); therefore, the integrals in (B.5) can be trivially
evaluated as c(t− t0), and we can compute {n̄i(t, x)} for any values of i ∈ {0, 1, . . .}, t > t0, and
x > 0 that we choose. As discussed in Section 2.1, we typically only consider those cells that
have divided up to imax = 16 times, so computations are only performed for i ∈ {0, . . . , 16}.

B.1.2 Asymmetric Cell Division

In the case of asymmetric cell division, we unfortunately cannot express n̄i(t, x) as a linear
combination of lognormal pdfs for arbitrary t. Instead, we will use recursion to define n̄i(t, x).
We first consider the situation when t = t0, and then consider the more general case t > t0.
Note that, just as in the symmetric cell division case, we assume that the initial CFSE FI
distribution can be approximated by a linear combination of lognormal pdfs; i.e.,

n̄0(t0, x) =
kmax∑
k=1

aklogn(x;µk, (σk)2). (B.6)

for some {ak}, {µk}, and {σk}. (Again, refer to Section B.3 for a discussion of how these initial
condition parameters may be determined.)

For t = t0, Lemma A.2 implies

n̄i(t0, x) =
1
2

[
1
m
n̄i−1(t0, 1

mx) +
1

1−m
n̄i−1(t0, 1

1−mx)
]
. (B.7)

Therefore, we can determine the value of n̄i(t0, x) for any generation i at any FI x through a
recursion on i using (B.6) and (B.7).

For the case t > t0, we use (A.10) and the function ϕ defined in the proof of Lemma A.2
along with the fact (cf. (5.2)) that

Φ(ξ)
N0

= n̄0(t0, ξ)

to write
n̄0(t, x) = n̄0

(
t0, x · ϕ(t)

)
· ϕ(t).
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Also we can rewrite (A.13) with the index k replaced by i to obtain

n̄i(t, x) =
1
2

[
1
m
n̄i−1

(
t0,

1
mx · ϕ(t)

)
+

1
1−m

n̄i−1

(
t0,

1
1−mx · ϕ(t)

)]
· ϕ(t).

The two foregoing equations allow us to compute the value of n̄i(t, x) for any generation i, any
time t > t0, and any FI x using evaluations of n̄i(t0, γ(t, x)), where γ(t, x) is a known value
given by either 1

mx · ϕ(t) or 1
1−mx · ϕ(t). Thus, for any t > t0, we can translate the density

n̄i(t, x) such that only evaluations of n̄i in which t = t0 are needed. These evaluations can be
performed using recursion as demonstrated in the previous paragraph. Note that because of
the compounding expense of recursive function calls, we choose to only consider cells that have
divided up to imax = 8 times. That is, we only perform computations for i ∈ {0, . . . , 8}. We
find that in a typical five-day CFSE flow cytometry experiment, the number of cells that divide
more than 8 times is negligible. Therefore, this simplification does not adversely impact the
ability of our model to capture the aggregate behavior of a population of proliferating cells.
Further arguments in support of this choice for imax are provided in Section 5.5.

B.2 Computation of Cell Numbers {Ni(t)}

We next describe our methods for computing solutions {Ni(t)} to the cyton model (2.11) subject
to the initial conditions (2.6). We assume that φi and ψi, which represent pdfs for time until
division and time until death, respectively, of cells in generation i, are known functions of time
for all i ∈ {0, 1, . . .}. In order to evaluate expressions involved in the cyton model, we need
to compute and store values of φ0(t), ψ0(t),

∫ t
t0
φ0(s) ds, and

∫ t
t0
ψ0(s) ds for various values of

t. We also need to compute and store values of φi(t), ψi(t),
∫ t

0 φi(s) ds, and
∫ t

0 ψi(s) ds, where
i ≥ 1, for various values of t. We describe our methods for completing each of these tasks in
the following sections.

B.2.1 Numerical Evaluation of Expressions Involving φ0 and ψ0

To begin, we consider the cyton functions φ0 and ψ0 associated with generation i = 0. Recall
that we interpret φ0 and ψ0 as the pdfs for time until division and time until death, respectively,
for undivided cells in the initial seed population (cf. Section 2.3), but recall also that we only
consider in our models those cells from the initial population that have neither died nor divided
as of time t0 ≈ 24 hours (cf. Section 2.5). That is, since we have no information about the
behavior of cells in the time interval [0, t0], we assume that nothing happens to the cells under
consideration during this time. For this reason, we must take care to ensure that φ0(t) and
ψ0(t) are only nonzero for values of t > t0. More will be said about this in a moment.
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Now, if we consider an experiment in which the first observation occurs at time t0 and the
final observation occurs at time tf , we can use a time step size h (selected such that it divides
tf − t0) to partition the the interval [t0, tf ] using the nodal points

{tj} =
{
t0 + jh : j ∈ {0, 1, . . . , Nt}

}
,

where Nt = tf−t0
h . We can then compute the values {φ0(tj)} and {ψ0(tj)} and store them in

two vectors of length Nt + 1.
Next, we compute the values {

∫ tj
t0
φ0(s) ds} and {

∫ tj
t0
ψ0(s) ds} and store them in two addi-

tional vectors of length Nt + 1. The integrations involved can be efficiently carried out using
two-point Gauss-Legendre quadrature [40] on each subinterval of length h. We use h = 0.25 for
all of our computational purposes, as we have found that this value of h yields sufficiently high
precision on the values of all numerically evaluated integrals.

Finally, we must say a word about the truncation and scaling of the functions φ0 and
ψ0, as well as the scaling of the four stored vectors {φ0(tj)}, {ψ0(tj)}, {

∫ tj
t0
φ0(s) ds}, and

{
∫ tj
t0
ψ0(s) ds}, which we have described in the preceding paragraphs. Since we make the as-

sumption that φ0 and ψ0 are lognormal pdfs (cf. Section 2.5), which only have support on the
interval (0,∞), we can define the modified pdfs φ̃0 and ψ̃0 by

φ̃0(t) =


φ0(t)

1−
R t0
0 φ0(s) ds

for t ∈ (t0,∞),

0 otherwise,

and

ψ̃0(t) =


ψ0(t)

1−
R t0
0 ψ0(s) ds

for t ∈ (t0,∞),

0 otherwise.

Clearly, these truncated and scaled functions are also pdfs and, furthermore, they have support
only on the interval (t0,∞) as desired. In order to compute the integrals in the denominators of
the above expressions, we select a step size h (which divides t0) and partition the time interval
[0, t0] using the t0

h + 1 nodes {0, h, . . . , t0}. For our purposes, we once again take h = 0.25. As
described previously, the integrations can then be efficiently carried out using two-point Gauss-
Legendre quadrature on each subinterval of length h. The values in the stored vectors {φ0(tj)}
and {

∫ tj
t0
φ0(s) ds} can now be divided by 1−

∫ t0
0 φ0(s) ds to produce the vectors {φ̃0(tj)} and

{
∫ tj
t0
φ̃0(s) ds}. In the event that 1 −

∫ t0
0 φ0(s) ds is numerically zero, we set all the values in

both vectors to zero. Similarly, the values in the stored vectors {ψ0(tj)} and {
∫ tj
t0
ψ0(s) ds} can

be scaled appropriately to produce the vectors {ψ̃0(tj)} and {
∫ tj
t0
ψ̃0(s) ds}. Hereafter, we will

simply refer to the modified functions (and the corresponding vectors) using the symbols φ0
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and ψ0 without tildes, but it should be understood that the functions have been truncated and
scaled as described above.

As a result of the computational work described in this section, we now have four vectors
of length Nt + 1:

{φ0(tj)} =
[
φ0(t0), φ0(t0 + h), . . . , φ0(tf )

]
,

{ψ0(tj)} =
[
ψ0(t0), ψ0(t0 + h), . . . , ψ0(tf )

]
,{∫ tj

t0
φ0(s) ds

}
≈
[ ∫ t0

t0
φ0(s) ds,

∫ t0+h
t0

φ0(s) ds, . . . ,
∫ tf
t0
φ0(s) ds

]
,

and {∫ tj
t0
ψ0(s) ds

}
≈
[ ∫ t0

t0
ψ0(s) ds,

∫ t0+h
t0

ψ0(s) ds, . . . ,
∫ tf
t0
ψ0(s) ds

]
,

where “≈” indicates that the integrals in question have been approximated using cumulative
sums of integrals on subintervals of length h that were computed using Gauss-Legendre quadra-
ture.

B.2.2 Numerical Evaluation of Expressions Involving φi and ψi for i ≥ 1

Next, we consider expressions involving φi and ψi for generations i ≥ 1. Recall from Section 2.5
that we assume φi(t) = φk(t) and ψi(t) = ψk(t) for all i, k ∈ {1, 2, . . .}. Therefore, for compu-
tational purposes we really only need to consider φ1 and ψ1.

Expressions in the cyton model require us to evaluate φi(t) = φ1(t) and ψi(t) = ψ1(t) (where
i ≥ 1) at values of t ∈ [0, tf−t0], so we create a partition {t̃j} = {tj−t0} = {0, h, 2h, . . . , tf−t0}
for this time interval using the same step size h defined previously. Noting that this partition
consists of Nt + 1 nodal points, we can compute the values {φ1(t̃j)} and {ψ1(t̃j)} and store
them in two vectors of length Nt + 1.

Next, we need to compute the values {
∫ t̃j

0 φ1(s) ds} and {
∫ t̃j

0 ψ1(s) ds} and store them in
two additional vectors of length Nt + 1. As discussed in the previous section, the necessary
values can be computed to high precision by using the values stored in {φ1(t̃j)} and {ψ1(t̃j} to
compute two-point Gauss-Legendre quadratures on each subinterval of length h.

As a result of the computational work described in this section, we now have an additional
four vectors of length Nt + 1:

{φ1(t̃j)} =
[
φ1(0), φ1(h), . . . , φ1(tf − t0)

]
,

{ψ1(t̃j)} =
[
ψ1(0), ψ1(h), . . . , ψ1(tf − t0)

]
,{∫ t̃j

0 φ1(s) ds
}
≈
[ ∫ 0

0 φ1(s) ds,
∫ h

0 φ1(s) ds, . . . ,
∫ tf−t0

0 φ1(s) ds
]
,
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and {∫ t̃j
0 ψ1(s) ds

}
≈
[ ∫ 0

0 ψ1(s) ds,
∫ h

0 ψ1(s) ds, . . . ,
∫ tf−t0

0 ψ1(s) ds
]
.

Once again, “≈” indicates that the integrals in question have been approximated using cumu-
lative sums of integrals on subintervals of length h that were computed using Gauss-Legendre
quadrature.

B.2.3 Numerical Evaluation of {ndivi (tj)} and {ndiei (tj)}

We now explain how to numerically evaluate the cyton division and death rates {ndivi (tj)}
and {ndiei (tj)}. For the case in which i = 0, we use the (scaled) vectors {

∫ tj
t0
ψ0(s) ds} and

{φ0(tj)} to compute the values {ndiv0 (tj)} according to (2.12) and then store them in a vector
of length Nt + 1. Note that the work required to compute the vector {ndiv0 (tj)} is dominated by
a single element-wise multiplication of the two vectors {1−

∫ tj
t0
ψ0(s) ds} and {φ0(tj)}. One of

these vectors has already been computed and stored, and the other can be easily obtained by
changing the signs of the elements in a previously stored vector and adding 1 to each of them.
Similarly, we can use the vectors {

∫ tj
t0
φ0(s) ds} and {ψ0(tj)} to compute the values {ndie0 (tj)}

according to (2.13) and store them in a vector of length Nt + 1. The work of computing the
values for the vector {ndie0 (tj)} is also dominated by a single element-wise multiplication of two
vectors.

For the case in which i ≥ 1, we need values for expressions of the form φi(tj − tk) and
ψi(tj − tk), where j ≥ k ≥ 0. Note, however, that because the nodes {tj} = {t̃j + t0} are evenly
spaced and because the cytons for i ≥ 1 are equivalent, we have the relations

φi(tj − tk) = φi(t̃j − t̃k) = φi(t̃j−k) = φ1(t̃j−k)

and
ψi(tj − tk) = ψi(t̃j − t̃k) = ψi(t̃j−k) = ψ1(t̃j−k)

for all i ≥ 1 and all j ≥ k ≥ 0. Similarly,∫ tj−tk

0
φi(ξ) dξ =

∫ t̃j−t̃k

0
φi(ξ) dξ =

∫ t̃j−k

0
φi(ξ) dξ =

∫ t̃j−k

0
φ1(ξ) dξ

and ∫ tj−tk

0
ψi(ξ) dξ =

∫ t̃j−t̃k

0
ψi(ξ) dξ =

∫ t̃j−k

0
ψi(ξ) dξ =

∫ t̃j−k

0
ψ1(ξ) dξ

for all i ≥ 1 and all j ≥ k ≥ 0. That is, all the values for the expressions of the form φi(tj − tk),
ψi(tj − tk),

∫ tj−tk
0 φi(ξ) dξ, and

∫ tj−tk
0 ψi(ξ) dξ, which will be needed to compute {ndivi (tj)} and

{ndiei (tj)}, have already been computed and stored!
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Now, suppose we have already computed {ndivi−1(tj)}Ntj=0 and that we wish to compute
{ndivi (tj)}Ntj=0. From (2.12), we have that

ndivi (tj) = 2Fi
∫ tj

t0

ndivi−1(s)
(

1−
∫ tj−s

0
ψi(ξ) dξ

)
φi(tj − s) ds

for any fixed value of j. Note that the integrand of the outer integral in this expression can be
written

fdivi (tj , s) = ndivi−1(s)
(

1−
∫ tj−s

0
ψi(ξ) dξ

)
φi(tj − s).

Therefore, we can approximate the outer integral using a composite trapezoid quadrature if we
can obtain the values

fdivi (tj , tk) = ndivi−1(tk)
(

1−
∫ tj−tk

0
ψi(ξ) dξ

)
φi(tj − tk)

for k ∈ {0, 1, . . . , j}. But these values can be computed easily using an element-wise multipli-
cation of three vectors of length j + 1 since{

ndivi (tk)
}j
k=0

,{∫ tj−tk
0 ψi(ξ) dξ

}j
k=0

=
{∫ t̃j−k

0 ψ1(ξ) dξ
}j
k=0

, and{
φi(tj − tk)

}j
k=0

=
{
φ1(t̃j−k)

}j
k=0

have already been computed.
A similar approach can be used to obtain {ndiei (tj)} as follows. Again suppose that we have

already computed {ndivi−1(tj)}Ntj=0, but this time consider that we wish to compute {ndiei (tj)}Ntj=0.
From (2.13), we have that

ndiei (tj) = 2
∫ tj

t0

ndivi−1(s)
(

1− Fi
∫ tj−s

0
φi(ξ) dξ

)
ψi(tj − s) ds

for any fixed value of j. Note that the integrand of the outer integral in this expression can be
written

fdivi (tj , s) = ndivi−1(s)
(

1− Fi
∫ tj−s

0
φi(ξ) dξ

)
ψi(tj − s).

Therefore, we can approximate the outer integral using a composite trapezoid quadrature if we
can obtain the values

fdivi (tj , tk) = ndivi−1(tk)
(

1− Fi
∫ tj−tk

0
φi(ξ) dξ

)
ψi(tj − tk)
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for k ∈ {0, 1, . . . , j}. But these values can be computed easily using an element-wise multipli-
cation of three vectors of length j + 1 since{

ndivi (tk)
}j
k=0

,{∫ tj−tk
0 φi(ξ) dξ

}j
k=0

=
{∫ t̃j−k

0 φ1(ξ) dξ
}j
k=0

, and{
ψi(tj − tk)

}j
k=0

=
{
ψ1(t̃j−k)

}j
k=0

have already been computed.
As a result of the computational work described in this section, we now have an additional

2(imax + 1) vectors of length Nt + 1:

{ndiv0 (tj)} =
[
ndiv0 (t0), ndiv0 (t0 + h), . . . , ndiv0 (tf )

]
,

{ndiv1 (tj)} =
[
ndiv1 (t0), ndiv1 (t0 + h), . . . , ndiv1 (tf )

]
,

...

{ndivimax+1(tj)} =
[
ndivimax+1(t0), ndivimax+1(t0 + h), . . . , ndivimax+1(tf )

]
,

{ndie0 (tj)} =
[
ndie0 (t0), ndie0 (t0 + h), . . . , ndie0 (tf )

]
,

{ndie1 (tj)} =
[
ndie1 (t0), ndie1 (t0 + h), . . . , ndie1 (tf )

]
,

...

{ndieimax+1(tj)} =
[
ndieimax+1(t0), ndieimax+1(t0 + h), . . . , ndieimax+1(tf )

]
.

B.2.4 Numerical Evaluation of {Ni(tj)}

Assuming we have the initial condition N0 = N0(t0), we can now compute Ni(tj) for i ∈
{0, 1, . . . , imax} and j ∈ {0, 1, . . . , Nt} using (2.11). (We discuss how to obtain the initial con-
dition in Section B.3.) Our approach is to use the values stored in the vectors listed at the
end of the previous section to approximate the integrals in (2.11) using composite trapezoid
quadrature. Thus, we have shown how to obtain numerical solutions {Ni(t)}imax

i=0 on the grid
{tj} = {t0, t0 + h, . . . , tf}.

B.3 Approximation of Initial Conditions

For a set of time series data such as that described in Section 1.2, we use summary histogram
data from the first time point (i.e., the “Day 1” data) to construct an approximation of the
initial CFSE FI distribution. The idea is to select parameters N0, kmax, {ak}, {µk}, and {σk}
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such that the convex combination of lognormal pdfs given by

Φ(x) = N0

kmax∑
k=1

aklogn(x;µk, (σk)2),

closely matches the actual summary histogram data for CFSE FI on Day 1. Note that the
terminology “convex combination” implies that

ak ≥ 0 for k ∈ {1, . . . , kmax} and
kmax∑
k=1

ak = 1. (B.8)

We assume that we start with Day 1 summary histogram data in the form of two vectors xdata

and ydata. The vector xdata has length Ndata + 1 and its elements are the boundaries for the
histogram bins (in units of FI). The vector ydata has length Ndata and each of its elements gives
the number of cells observed in the corresponding bin. To begin, we set

N ′0,init =
Ndata∑
i=1

ydata
i ,

which is the true total number of cells represented in the data. We also compute the mean and
variance of the FI data as

xmean =
1

N ′0,init

Ndata∑
i=1

xdata
i ydata

i

and

xvar =
1

N ′0,init

Ndata∑
i=1

(
xdata
i − µ

)2
ydata
i .

Since the lognormal distribution with this mean and variance would have parameters

µ′init = log (xmean)− 1
2

log
(

1 +
xvar

(xmean)2

)
and

(σ′init)
2 = log

(
1 +

xvar

(xmean)2

)
,

we use these values as an initial iterate in our search for an optimal lognormal fit.
If we assume the initial structured density Φ(x) can be modeled by a single lognormal

distribution with parameters µ and σ2 that is scaled by a factor of N0, the number of cells in
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the bin with left bound xdata
i can be approximated as

N0

∫ xdata
i+1

xdata
i

logn(x;µ, σ2) dx.

Therefore we first seek a parameter vector θ′ = (N ′0, µ
′, σ′) that will minimize

J1(θ) =
Ndata∑
i=1

(
ydata
i −N0

∫ xdata
i+1

xdata
i

logn(x;µ, σ2) dx

)2

,

where θ = (N0, µ, σ). Using an initial iterate θ′init = (N ′0,init, µ
′
init, σ

′
init), we obtain such an

optimal parameter vector θ′ using the MATLAB routine lsqnonlin.
Next, we seek a better approximation for Φ(x) by considering a convex combination of three

lognormal distributions. That is, we set kmax = 3 and attempt to find an optimal parameter
vector ϑ = (N0, {ak}, {µk}, {σk}). This is accomplished through an iterative scheme in which
we alternate between estimating optimal values for (N0, {ak}) while fixing ({µk}, {σk}) and
estimating optimal values for (N0, {µk}, {σk}) while fixing {ak}. The optimization scheme is
described in Algorithm B.3.1, and relevant cost function is given by

J2(ϑ) =
Ndata∑
i=1

(
ydata
i −N0

kmax∑
k=1

ak

∫ xdata
i+1

xdata
i

logn(x;µk, (σk)2) dx

)2

.

We implement the minimizations in Steps 6 and 7 of this algorithm using the MATLAB routine
fmincon, which allows for optimization subject to the constraints given in (B.8).

B.4 Computation of Structured Density ñ(t, x̃)

We define

n(t, x) =
imax∑
i=0

ni(t, x)

to be the total (including all generations) structured density (in cells per unit FI), where
{ni(t, x)} are the generation-indexed structured densities that satisfy (2.14). We discuss the
different methods used in the cases of symmetric division and asymmetric division in the fol-
lowing two sections.
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Algorithm B.3.1 Initial Condition Approximation Procedure

1. Compute the mean and standard deviation of the lognormal distribution with parameters
µ′ and (σ′)2 as

M = eµ
′+(σ′)2/2

and
S =M ·

√
e(σ′)2 − 1.

(Compare these formulae with (4.6) and (4.7).)

2. Create vectors ~M = (M,M, 1.5M) and ~S = (S, 0.5S, 3S) containing the means and
standard deviations for three lognormal distributions.

3. Convert each mean and standard deviation pair into a pair of lognormal distribution
parameters by setting

µkinit = log(Mk)−
1
2

log
(

1 +
S2
k

M2
k

)
and

σkinit =

√
log
(

1 +
S2
k

M2
k

)
for k ∈ {1, 2, 3}, whereMk and Sk are the kth entries of ~M and ~S, respectively. (Compare
these formulae with (4.8) and (4.9).)

4. Set ϑ(0) = (ϑ(0)
1 , ϑ

(0)
2 , ϑ

(0)
3 , ϑ

(0)
4 ) = (N ′0, {0.5, 0.35, 0.15}, {µkinit}, {σkinit}) as the initial iter-

ate.

5. Initialize the iteration counter ` with the value 1.

6. Fix {µk} and {σk} at the values ϑ(`−1)
3 and ϑ

(`−1)
4 , respectively, and then find values of

(N0, {ak}) that minimize the value of the cost functional J2 using (ϑ(`−1)
1 , ϑ

(`−1)
2 ) as an

initial iterate. Store the optimal value of N0 in ϑ(`)
1 and the optimal value of {ak} in ϑ(`)

2 .

7. Fix {ak} at the value ϑ(`)
2 and then find values of (N0, {µk}, {σk}) that minimize the value

of the cost functional J2 using (ϑ(`)
1 , ϑ

(`−1)
3 , ϑ

(`−1)
4 ) as an initial iterate. Store the optimal

value of N0 in ϑ
(`)
1 (replacing the value from Step 6), the optimal value of {µk} in ϑ

(`)
3 ,

and the optimal value of {σk} in ϑ
(`)
4 .

8. Increment ` by 1.

9. If ` < 20, return to Step 6. Otherwise, terminate the algorithm.
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B.4.1 Symmetric Cell Division

In the case of symmetric cell division, we can use (2.4) and (B.4) to write

n(t, x) =
imax∑
i=0

Ni(t)n̄i(t, x)

=
imax∑
i=0

Ni(t)
kmax∑
k=1

aklogn(x;µki (t), (σ
k)2).

This quantity gives the number of cells per unit FI at time t with a CFSE-induced FI of
x. Following the discussion in Section 2.2, we can use a convolution integral to obtain the
structured density (in cells per unit FI) with an observed FI of x̃ (which incorporates FI due
to autofluorescence). That is, using (2.10) we can write

ñ(t, x̃) =
∫ x̃

0
n(t, x)fXa(x̃− x; t) dx

=
∫ x̃

0

[
imax∑
i=0

Ni(t)
kmax∑
k=1

aklogn(x;µki (t), (σ
k)2)

]
fXa(x̃− x; t) dx

=
imax∑
i=0

Ni(t)
kmax∑
k=1

ak

∫ x̃

0
logn(x;µki (t), (σ

k)2)fXa(x̃− x; t) dx. (B.9)

By assumption (cf. Section 2.5), fXa(ξ; t) is a lognormal pdf in the argument ξ. Thus, each
of the integrals in the last line of (B.9) is the convolution formula [18] giving the pdf of a
random variable that is the sum of two lognormally distributed random variables. As proposed
by Fenton [25], such a pdf can be approximated by a lognormal distribution with the same
mean and variance as the actual distribution of the sum. (Note that this is discussed at length
in Chapter 4.) Therefore, following the work of Hasenauer et al. [27], we use Fenton convolution
approximations to arrive at

ñ(t, x̃) ≈
imax∑
i=0

Ni(t)
kmax∑
k=1

aklogn(x; µ̂ki (t), (σ̂
k
i (t))2),

where

µ̂ki (t) = log(Eki (t))− 1
2

log

(
1 +

(
SDk

i (t)
Eki (t)

)2
)

and

σ̂ki (t) =

√√√√log

(
1 +

(
SDk

i (t)
Eki (t)

)2
)
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are the parameters defining each of the i · k lognormal distributions with means and standard
deviations given by

Eki (t) = exp
(
µki (t) +

(σk)2

2

)
+ E [Xa]

and

SDk
i (t) =

√√√√( exp
(

(σk)2 − 1
)
· exp

(
2µki (t) + (σk)2

))
+
(

SD [Xa]
)2
,

respectively.

B.4.2 Asymmetric Cell Division

As discussed in Section B.1.2, it is not, in general, possible to express n̄i(t, x) as a linear combi-
nation of lognormal pdfs for arbitrary t when considering asymmetric cell division. Therefore,
the convolution integrals involved in (2.10) cannot be distilled into convolutions of lognormal
pdfs as in the symmetric division case. Instead, we use (2.4) to write

n(t, x) =
imax∑
i=0

Ni(t)n̄i(t, x),

where each of the pdfs n̄i(t, x) can be evaluated recursively as described in Section B.1.2. Then,
using (2.10) we can write

ñ(t, x̃) =
∫ x̃

0
n(t, x)fXa(x̃− x; t) dx

=
∫ x̃

0

[
imax∑
i=0

Ni(t)n̄i(t, x)

]
fXa(x̃− x; t) dx

=
imax∑
i=0

Ni(t)
∫ x̃

0
n̄i(t, x)fXa(x̃− x; t) dx. (B.10)

Now, each of the integrals in the last line of (B.10) is the convolution formula giving the pdf
of a random variable that is the sum of two independent random variables (only one of which
is lognormally distributed). Since we are not working with pairs of lognormal pdfs, we cannot
use the Fenton approximations employed in the symmetric division case. We therefore use the
trapezoid rule convolution method outlined in Algorithm 4.1.2 to evaluate∫ x̃

0
n̄i(t, x)fXa(x̃− x; t) dx

for each i ∈ {0, . . . , imax}.
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B.5 Details of Inverse Problem Implementation

For our purposes, we used the MATLAB routine fmincon (with the active-set optimization
algorithm specified) to solve the minimization problems in steps 1 and 4 of Algorithm 2.6.1.
Also, we set

~qtyp = (100, 100, 0.001, 1, 1, 1, 1, 1, 1, 0.1, 1, 1)

and chose ε = 0.05 for our implementation.
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