
Abstract

KHUHIRUN, BORWORN. Classification of Nilpotent Lie Algebras with Small Breadth. (Under the direction of Ernest L. Stitzinger and Kailash C. Misra.)

A Lie algebra, L is said to be of breadth k if the maximal dimension of the images of left multiplication by elements of the algebra is k, introduced by Leedham-Green, Neumann and Wiegold. Inspired by the work of Parmeggani and Stellmacher on finite p-groups, we characterize nilpotent Lie algebras of breadth 1 and 2 . We show that a nilpotent Lie algebra L has breadth 1 if and only if the derived algebra of L has dimension 1 which is equivalent to L being a Heisenberg Lie algebra with possible abelian direct summands. The nilpotent Lie algebra L has breadth 2 if and only if either the derived algebra of L has dimension 2 or the derived algebra and central quotient both have dimension 3. These results parallel results in finite p-groups. Unlike its group theory counter part, we use our characterization to determine the isomorphism classes of nilpotent Lie algebras of breadth 1 and 2. In this classification we focus on Lie algebras with no abelian direct summand, algebras which we call pure. So our classification results are always for pure nilpotent Lie algebras. One can harmlessly add abelian direct summands to these algebras to get further examples. For breadth 2, we determine the isomorphism classes of all Lie algebras with three dimensional derived algebra and all Lie algebras with two dimensional derived algebra and one dimensional center. For the only remaining case, where the derived algebra and center both have dimension two, we classify the algebras up to dimension six.

© Copyright 2014 by Borworn Khuhirun
All Rights Reserved

Classification of Nilpotent Lie Algebras with Small Breadth

by Borworn Khuhirun

A dissertation submitted to the Graduate Faculty of North Carolina State University
in partial fulfillment of the requirements for the Degree of Doctor of Philosophy

Mathematics

Raleigh, North Carolina
2014

APPROVED BY:

Dr. Kailash Misra
Co-Chair of Advisory Committee

Dr. Tom Lada
Committee Member

Dr. Ernest Stitzinger
Co-Chair of Advisory Committee

Dr. Bojko Bakalov
Committee Member

BIOGRAPHY

Early in the morning of September 21, 1984, Borworn Khuhirun was born in Lopburi, Thailand. Two months later, he moved to Bangkok, Thailand, raised by his two aunts. He graduated from Horwang School before studying Mathematics at Chulalongkorn University for undergraduate and master degrees. Later in 2009, he got a scholarship for studying abroad and then chose to attend doctoral program at North Carolina State University .

ACKNOWLEDGEMENTS

Most importantly, I would like to express my special thanks of gratitude to my advisors, Dr. Kailash Misra and Dr. Ernie Stitzinger who gave me an opportunity to do this project. They always give me their useful opinions, precious support and very helpful advice. I do feel like they are a part of my family. Secondly, I must thank Dr. Bakalov, Dr. Lada and Dr. Joan for being my committees and giving my graduate experience. Also, I would like to thank Denise Seabrooks for alway helping me about paperworks and all graduate school requirements. Finally, I would like to give my appreciations to my precious family and friends who always support me during my struggles and celebrate in my achievement. Thanks again to all who helped me.

TABLE OF CONTENTS

Chapter 1 Introduction 1
Chapter 2 Preliminaries 3
Chapter 3 Nilpotent Lie Algebras of Breadth 1 4
3.1 Basic Definitions and Properties of Breadth 4
3.2 Classification of Nilpotent Lie Algebras of Breadth 1 10
Chapter 4 Nilpotent Lie Algebras of Breadth 2 15
4.1 Properties and Lemmas 15
4.2 Main Theorem 35
Chapter 5 Classification of Nilpotent Lie Algebras of Breadth 2 37
5.1 Structure of Nilpotent Lie Algebras of Breadth 2 37
5.2 Nilpotent Lie Algebras of Breadth 2 with $\operatorname{dim}[L, L]=3$ and $\operatorname{dim}(L / Z(L))=3$ 39
5.3 Nilpotent Lie Algebras of Breadth 2 with $\operatorname{dim}[L, L]=2$ and $\operatorname{dim} Z(L)=1$ 41
5.4 Nilpotent Lie Algebras of Breadth 2 with $\operatorname{dim}[L, L]=2$ and $\operatorname{dim} Z(L)=2$ 46
REFERENCES 65

Chapter 1

Introduction

Classifying algebraic objects is a central theme of mathematical research. A paramount example is the classification of finite dimensional complex simple Lie algebras due to Killing and Cartan. Less progress has been made for other classes of Lie algebras. In particular, the vast number of nilpotent Lie algebras has made the classification problem formidable for this class. As a result, authors have made progress by classifying nilpotent Lie algebras satisfying certain conditions. Research in finite group theory has followed a similar path. Simple groups have been classified, but the large number of p-groups has led researchers to investigate p-groups with added conditions. An example is the work of Parmeggiani and Stellmacher where the concept of breadth is used. In particular, they have given characterizations of finite p-groups of breadth 1 and 2 . However, so far there does not exist a classification of these finite p-groups.

The analogous concept of breadth for Lie algebra has been introduced by Leedham-Green, Neumann and Wiegold. They define the breadth of a Lie algebra to be the maximum of the dimensions of the images of ad_{x} where x runs over the algebra. We consider this concept for finite dimensional nilpotent Lie algebras and give a characterization for breadth 1 and 2 . In particular, we show that a finite dimensional nilpotent Lie algebra is of breadth 1 if and only if its derived algebra is one dimensional. We also show that a finite dimensional nilpotent Lie algebra L has breadth 2 if and only if either the derived algebra of L has dimension 2 or the derived algebra and the central quotient both have dimension 3. These results parallel results in finite p-groups.

Finally we use our characterizations to classify finite dimensional nilpotent Lie algebras of breadth 1 and 2. We define a nilpotent Lie algebra to be pure if it does not have abelian direct summands. Then we classify finite dimensional pure nilpotent Lie algebras of breadth one and two since abelian summands can be added harmlessly. In particular, we show that a finite dimensional pure nilpotent Lie algebra of breadth 1 is isomorphic to a Heisenberg Lie algebra. For a finite dimensional pure nilpotent Lie algebras L, the center is contained in the derived
algebra. By our characterization result, the dimension of the derived algebra of a finite dimensional pure nilpotent Lie algebra L of breadth 2 is either 2 or 3 . We determine the isomorphism classes of finite dimensional pure nilpotent Lie algebras of breadth two with three dimensional derived algebra. We also determine the isomorphism classes of finite dimensional pure nilpotent Lie algebras of breadth two with two dimensional derived algebra and one dimensional center. For the remaining case where the derived algebra and center coincide with dimension 2 , we determine their isomorphism classes up to dimension 6 . We hope these classification results will lead to corresponding classification results in finite p-groups.

Chapter 2

Preliminaries

We begin this chapter by introducing some basic definitions and notations we use throughout this paper. All of these following definitions and notations can be found in Humphreys and lecture notes in Lie algebra. We consider finite dimensional Lie algebra together with underlying field \mathbb{F} such that $\operatorname{char}(\mathbb{F}) \neq 2$ for the most of the first half. Meanwhile, we develop our focus to finite dimensional nilpotent Lie algebra over \mathbb{F} in the second half. Let L be a Lie algebra. Define a sequence of ideals of L called lower central series or decending central series by

$$
L^{0} \supseteq L^{1} \supseteq L^{2} \supseteq L^{3} \supseteq \ldots \supseteq L^{m} \supseteq \ldots
$$

where $L^{0}=L, L^{1}=[L, L], L^{2}=[L,[L, L]]=\left[L, L^{1}\right], L^{3}=\left[L, L^{2}\right], \ldots, L^{m}=\left[L, L^{m-1}\right], \ldots$. L is said to be nilpotent if $L^{m}=\{0\}$ for some $m \in \mathbb{Z}_{\geq 0}$.

During classification process, nilpotency of Lie algebra and its center play important roles, so we would like to provide some facts about them. Every nilpotent Lie algebra has nontrivial center. Furthermore, homomorphic image and quotient of nilpoent Lie algebra are nilpotent. Note that when we consider a Lie algebra L as a finite dimensional vector space, we could apply rank-nullity theorem in order to get

$$
\operatorname{dim} L=\operatorname{nullity} \varphi+\operatorname{rank} \varphi
$$

where $\varphi: L \rightarrow L$ is a Lie algebra homomorphism.

Chapter 3

Nilpotent Lie Algebras of Breadth 1

3.1 Basic Definitions and Properties of Breadth

We start this section with definitions and properties of breadth on Lie algebra developed from group theory.

Definition 3.1.1. Let L be a finite dimensional Lie algebra. For any $x \in L$, breadth of x, denoted by $b(x)$ is

$$
\begin{aligned}
b(x) & =\operatorname{dim}\left(L / \operatorname{ker} a d_{x}\right) \\
& =\operatorname{dim} L-\text { nullity } a d_{x} \\
& =\operatorname{rank} a d_{x} .
\end{aligned}
$$

More generally, for any ideal A of L, we define

$$
\begin{aligned}
b_{A}(x) & =\operatorname{dim}\left(A /\left.\operatorname{ker} a d_{x}\right|_{A}\right) \\
& =\operatorname{dim} A-\left.\operatorname{nullity} a d_{x}\right|_{A} \\
& =\left.\operatorname{rank} a d_{x}\right|_{A} .
\end{aligned}
$$

Definition 3.1.2. Let L be a finite dimensional Lie algebra. We define breadth of L, denoted by $b(L)$ to be

$$
b(L)=\max \{b(x) \mid x \in L\} .
$$

Moreover, for any ideal A of L, we have

$$
b_{A}(L)=\max \left\{b_{A}(x) \mid x \in L\right\} .
$$

Remark. Let L be a finite dimensional Lie algebra. Then $Z(L)=\{x \in L \mid b(x)=0\}$.
Remark. Let L be a finite dimensional Lie algebra and A an ideal of L. Then the following hold for any $x \in L$:

1. $b_{A}(x) \leq b(x)$.
2. $b_{A}(L) \leq b(L)$.

Definition 3.1.3. Let L be a finite dimensional Lie algebra and A an ideal of L. We define

$$
\begin{aligned}
B & =\{x \in L \mid b(x)=b(L)\}, \\
B_{A} & =\left\{x \in L \mid b_{A}(x)=b_{A}(L)\right\}, \\
T_{A} & =\left\{x \in L \mid b_{A}(x)=1\right\} .
\end{aligned}
$$

Next proposition shows that Lie algebra which has breadth equal to zero is equivalent to that Lie algebra is abelian.

Proposition 3.1.4. Let L be a finite dimensional Lie algebra. Then $b(L)=0$ if and only if L is abelian.

Proof. Let L be a finite dimensional Lie algebra. Then it is easy to see that

$$
\begin{aligned}
b(L)=\max \{b(x) \mid x \in L\}=0 & \Longleftrightarrow b(x)=\operatorname{rank} a d_{x}=0 \quad \forall x \in L \\
& \Longleftrightarrow a d_{x}=0 \quad \forall x \in L \\
& \Longleftrightarrow[L, L]=\{0\} \\
& \Longleftrightarrow L \text { is abelian. }
\end{aligned}
$$

Lemma 3.1.5. Let L be a finite dimensional Lie algebra and A an ideal of L. Then $b(L) \leq$ $\operatorname{dim}[L, L]$ and $b_{A}(L) \leq \operatorname{dim}[A, L]$.

Proof. For any $x \in L$, we have $a d_{x}: L \rightarrow[L, L]$. Then $\operatorname{im} a d_{x} \subseteq[L, L]$, so we obtain $b(x)=$ $\operatorname{rank} a d_{x} \leq \operatorname{dim}[L, L]$. Since $x \in L$ is arbitrary, $b(L) \leq \operatorname{dim}[L, L]$. Similarly, we also have $\left.a d_{x}\right|_{A}: L \rightarrow[A, L]$, so $\left.\operatorname{im} a d_{x}\right|_{A} \subseteq[A, L]$. Thus $b_{A}(x)=\left.\operatorname{rank} a d_{x}\right|_{A} \leq \operatorname{dim}[A, L]$. Because $x \in L$ is arbitrary, $b_{A}(L) \leq \operatorname{dim}[A, L]$.

Corollary 3.1.6. Let L be a finite dimensional Lie algebra. Suppose that there exists $x \in L$ such that $b(x)=\operatorname{dim}[L, L]$. Then $b(L)=\operatorname{dim}[L, L]$. In particular, let A be an ideal of L. Suppose that there exists $x \in L$ such that $b_{A}(x)=\operatorname{dim}[A, L]$. Then $b_{A}(L)=\operatorname{dim}[A, L]$.

Proof. Let L be a finite dimensional Lie algebra. Suppose that there exists $x \in L$ such that $b(x)=\operatorname{dim}[L, L]$. By Lemma 3.1.5, we know that $b(L) \leq \operatorname{dim}[L, L]$. Therefore we have

$$
\operatorname{dim}[L, L]=b(x) \leq b(L) \leq \operatorname{dim}[L, L],
$$

so $b(L)=\operatorname{dim}[L, L]$. On the other hand, if we let A be an ideal of L and assume that there exists $x \in L$ such that $b_{A}(x)=\operatorname{dim}[A, L]$. By Lemma 3.1.5, we have $b_{A}(L) \leq \operatorname{dim}[A, L]$. Hence

$$
\operatorname{dim}[A, L]=b_{A}(x) \leq b_{A}(L) \leq \operatorname{dim}[A, L],
$$

so $b_{A}(L)=\operatorname{dim}[A, L]$.
Even though we define breadth of Lie algebra to be maximum value of breadth of all elements and Lie algebra can be considered as a vector space spanned by a basis, we cannot determine breadth of Lie algebra form its basis.

Example 3.1.7. (Breadth of a Lie algebra cannot be determined from its basis)
Let $L=H_{1} \oplus H_{2}$ where H_{1} and H_{2} are Heisenberg Lie algebra. Then

$$
L=\operatorname{span}\left\{x_{1}, y_{1}, z_{1}\right\} \oplus \operatorname{span}\left\{x_{2}, y_{2}, z_{2}\right\}
$$

where $\left[x_{1}, y_{1}\right]=z_{1}$ and $\left[x_{2}, y_{2}\right]=z_{2}$. Note that L is a six dimensional nilpotent Lie algebra because $[L, L]=\operatorname{span}\left\{z_{1}, z_{2}\right\}=Z(L)$ and $[L,[L, L]]=[L, Z(L)]=\{0\}$. Observe that

$$
b\left(x_{i}\right)=b\left(y_{i}\right)=1 \quad \text { and } \quad b\left(z_{i}\right)=0 \quad \text { for all } \quad i=1,2,
$$

but $b\left(x_{1}+x_{2}\right)=2$ since $\left[x_{1}+x_{2}, y_{i}\right]=z_{i}$ for all $i=1,2$. By Corollary 3.1.6, we have $b(L)=2$ since $b\left(x_{1}+x_{2}\right)=2=\operatorname{dim}[L, L]$.

Example 3.1.8. Let $L=\operatorname{span}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ together with bracket relations defined by

$$
\left[x_{1}, x_{n}\right]=0 \quad \text { and } \quad\left[x_{1}, x_{i}\right]=x_{i+1}
$$

where $i=2,3, \ldots, n-1$. Then L is an n-dimensional nilpotent Lie algebra of breadth $n-2$.
First, we need to show that Jacobi identity holds. Let $x, y, z \in L$. Then there exist $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}, c_{1}, \ldots, c_{n} \in \mathbb{C}$ such that

$$
\begin{aligned}
& x=a_{1} x_{1}+\ldots+a_{n} x_{n}, \\
& y=b_{1} x_{1}+\ldots+b_{n} x_{n}, \\
& z=c_{1} x_{1}+\ldots+c_{n} x_{n} .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
{[x,[y, z]] } & =\left[a_{1} x_{1}+\ldots+a_{n} x_{n},\left[b_{1} x_{1}+\ldots+b_{n} x_{n}, c_{1} x_{1}+\ldots+c_{n} x_{n}\right]\right] \\
& =\left[a_{1} x_{1}+\ldots+a_{n} x_{n},\left(b_{1} c_{2}-b_{2} c_{1}\right) x_{3}+\left(b_{1} c_{3}-b_{3} c_{1}\right) x_{4}+\ldots+\left(b_{1} c_{n-1}-b_{n-1} c_{1}\right) x_{n}\right] \\
& =a_{1}\left(b_{1} c_{2}-b_{2} c_{1}\right) x_{4}+a_{1}\left(b_{1} c_{3}-b_{3} c_{1}\right) x_{5}+\ldots+a_{1}\left(b_{1} c_{n-2}-b_{n-2} c_{1}\right) x_{n}, \\
{[[x, y], z] } & =\left[\left[a_{1} x_{1}+\ldots+a_{n} x_{n}, b_{1} x_{1}+\ldots+b_{n} x_{n}\right], c_{1} x_{1}+\ldots+c_{n} x_{n}\right] \\
& =\left[\left(a_{1} b_{2}-a_{2} b_{1}\right) x_{3}+\left(a_{1} b_{3}-a_{3} b_{1}\right) x_{4}+\ldots+\left(a_{1} b_{n-1}-a_{n-1} b_{1}\right) x_{n}, c_{1} x_{1}+\ldots+c_{n} x_{n}\right] \\
& =-c_{1}\left(a_{1} b_{2}-a_{2} b_{1}\right) x_{4}-c_{1}\left(a_{1} b_{3}-a_{3} b_{1}\right) x_{5}-\ldots-c_{1}\left(a_{1} b_{n-2}-a_{n-2} b_{1}\right) x_{n}, \\
{[y,[x, z]] } & =\left[b_{1} x_{1}+\ldots+b_{n} x_{n},\left[a_{1} x_{1}+\ldots+a_{n} x_{n}, c_{1} x_{1}+\ldots+c_{n} x_{n}\right]\right] \\
& =\left[b_{1} x_{1}+\ldots+b_{n} x_{n},\left(a_{1} c_{2}-a_{2} c_{1}\right) x_{3}+\left(a_{1} c_{3}-a_{3} c_{1}\right) x_{4}+\ldots+\left(a_{1} c_{n-1}-a_{n-1} c_{1}\right) x_{n}\right] \\
& =b_{1}\left(a_{1} c_{2}-a_{2} c_{1}\right) x_{4}+b_{1}\left(a_{1} c_{3}-a_{3} c_{1}\right) x_{5}+\ldots+b_{1}\left(a_{1} c_{n-2}-a_{n-2} c_{1}\right) x_{n} .
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
{[[x, y], z]+[y,[x, z]]=} & \left(-c_{1}\left(a_{1} b_{2}-a_{2} b_{1}\right) x_{4}-c_{1}\left(a_{1} b_{3}-a_{3} b_{1}\right) x_{5}-\ldots-c_{1}\left(a_{1} b_{n-2}-a_{n-2} b_{1}\right) x_{n}\right) \\
& +\left(b_{1}\left(a_{1} c_{2}-a_{2} c_{1}\right) x_{4}+b_{1}\left(a_{1} c_{3}-a_{3} c_{1}\right) x_{5}+\ldots+b_{1}\left(a_{1} c_{n-2}-a_{n-2} c_{1}\right) x_{n}\right) \\
= & \left(-a_{1} b_{2} c_{1}+a_{2} b_{1} c_{1}+a_{1} b_{1} c_{2}-a_{2} b_{1} c_{1}\right) x_{4}+\left(-a_{1} b_{3} c_{1}+a_{3} b_{1} c_{1}+a_{1} b_{1} c_{3}\right. \\
& \left.-a_{3} b_{1} c_{1}\right) x_{5}+\ldots+\left(-a_{1} b_{n-2} c_{1}+a_{n-2} b_{1} c_{1}+a_{1} b_{1} c_{n-2}-a_{n-2} b_{1} c_{1}\right) x_{n} \\
= & \left(-a_{1} b_{2} c_{1}+a_{1} b_{1} c_{2}\right) x_{4}+\left(-a_{1} b_{3} c_{1}+a_{1} b_{1} c_{3}\right) x_{5}+\ldots+\left(-a_{1} b_{n-2} c_{1}\right. \\
& \left.+a_{1} b_{1} c_{n-2}\right) x_{n} \\
= & a_{1}\left(b_{1} c_{2}-b_{2} c_{1}\right) x_{4}+a_{1}\left(b_{1} c_{3}-b_{3} c_{1}\right) x_{5}+\ldots+a_{1}\left(b_{1} c_{n-2}-b_{n-2} c_{1}\right) x_{n} \\
= & {[x,[y, z]] . }
\end{aligned}
$$

As a result, the Jacobi identity holds, so L is an n-dimensional Lie algebra.
Observe that $[L, L]=\operatorname{span}\left\{x_{3}, x_{4}, \ldots, x_{n}\right\}$ which is $(n-2)$-dimensional and $L^{n}=\{0\}$, so L is nilpotent. Moreover, by Corollary 3.1.6, we have $b(L)=n-2$ since $b\left(x_{1}\right)=n-2=\operatorname{dim}[L, L]$. Hence L is an n-dimensional nilpotent Lie algebra of breadth $n-2$.

Theorem 3.1.9. Let L be a finite dimensional Lie algebra such that $b(L)=n \in \mathbb{Z}_{>0}$. Then $\operatorname{dim}(L / Z(L)) \geq n+1$.

Proof. Let L be a finite dimensional Lie algebra such that $b(L)=n \in \mathbb{Z}_{>0}$. Let $x \in B$. Then $b(x)=b(L)=n$, so there exist $y_{1}, y_{2}, \ldots, y_{n} \in L$ and $z_{1}, z_{2}, \ldots, z_{n} \in[L, L]$ such that $\left[x, y_{i}\right]=z_{i}$
for all $i=1,2, \ldots, n$ and $\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$ is linearly independent. Note that $\alpha \in Z(L)$ if and only if $b(\alpha)=0$. Therefore $y_{1}, y_{2}, \ldots, y_{n} \notin Z(L)$ because $b\left(y_{i}\right) \geq 1$ for all $i=1,2, \ldots, n$. Thus $y_{1}+Z(L), y_{2}+Z(L), \ldots, y_{n}+Z(L) \neq Z(L)$. Similarly, we also have $x \notin Z(L)$ because $b(x)=n>0$. Therefore $x+Z(L) \neq Z(L)$.

Next, we claim that $\left\{x+Z(L), y_{1}+Z(L), y_{2}+Z(L), \ldots, y_{n}+Z(L)\right\} \subseteq L / Z(L)$ is linearly independent, let $a_{0}, a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{F}$ be such that

$$
a_{0}(x+Z(L))+a_{1}\left(y_{1}+Z(L)\right)+a_{2}\left(y_{2}+Z(L)\right)+\ldots+a_{n}\left(y_{n}+Z(L)\right)=Z(L) .
$$

Then $a_{0} x+a_{1} y_{1}+a_{2} y_{2}+\ldots+a_{n} y_{n} \in Z(L)$, so we have

$$
\begin{aligned}
0 & =\left[x, a_{0} x+a_{1} y_{1}+a_{2} y_{2}+\ldots+a_{n} y_{n}\right] \\
& =a_{0}[x, x]+a_{1}\left[x, y_{1}\right]+a_{2}\left[x, y_{2}\right]+\ldots+a_{n}\left[x, y_{n}\right] \\
& =a_{1} z_{1}+a_{2} z_{2}+\ldots+a_{n} z_{n} .
\end{aligned}
$$

Since $\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$ is linearly independent, $a_{1}, a_{2}, \ldots, a_{n}=0$. By assumption, we also get $a_{0}(x+Z(L))=Z(L)$. Since $x+Z(L) \neq Z(L), a_{0}=0$. Consequently, $a_{0}, a_{1}, a_{2}, \ldots, a_{n}=0$, so $\left\{x+Z(L), y_{1}+Z(L), y_{2}+Z(L), \ldots, y_{n}+Z(L)\right\}$ is a linearly independent subset of $L / Z(L)$. Hence $\operatorname{dim}(L / Z(L)) \geq n+1$.

Lemma 3.1.10. Let L be a finite dimensional Lie algebra. Suppose that $\operatorname{dim}(L / Z(L))=n \in$ $\mathbb{Z}_{>0}$. Then $\operatorname{dim}[L, L] \leq\binom{ n}{2}$.

Proof. Let L be a finite dimensional Lie algebra. Then there exists $m \in \mathbb{Z}_{\geq 0}$ such that $Z(L)=$ $\operatorname{span}\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$. Then we extend this basis to $L=\operatorname{span}\left\{x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{n}\right\}$. Since $x_{1}, x_{2}, \ldots, x_{r} \in Z(L)$, we have

$$
\begin{aligned}
{[L, L]=\operatorname{span}\{ } & {\left[y_{1}, y_{2}\right],\left[y_{1}, y_{3}\right], \ldots,\left[y_{1}, y_{n}\right], } \\
& {\left[y_{2}, y_{3}\right], \ldots,\left[y_{2}, y_{n}\right], } \\
& \left.\ldots,\left[y_{n-1}, y_{n}\right]\right\}
\end{aligned}
$$

and then

$$
\begin{aligned}
\operatorname{dim}[L, L] & =\operatorname{dim} \operatorname{span}\left\{\left[y_{1}, y_{2}\right],\left[y_{1}, y_{3}\right], \ldots,\left[y_{n-1}, y_{n}\right]\right\} \\
& \leq n+(n-1)+(n-2)+\ldots+1 \\
& =\frac{n}{2}(n-1) \\
& =\binom{n}{2} .
\end{aligned}
$$

Hence $\operatorname{dim}[L, L] \leq\binom{ n}{2}$ as we wanted.
Finally, we are going to show that breadth of the direct sum of finite dimensional Lie algebras is equal to sum of their breadthes.

Lemma 3.1.11. Let L_{1} and L_{2} be finite dimensional Lie algebras. Then $b_{L_{1} \oplus L_{2}}\left(x_{1}+x_{2}\right)=$ $b_{L_{1}}\left(x_{1}\right)+b_{L_{2}}\left(x_{2}\right)$ for any $x_{1} \in L_{1}$ and $x_{2} \in L_{2}$.

Proof. Let L_{1} and L_{2} be finite dimensional Lie algebras and $L=L_{1} \oplus L_{2}$. Let $x_{1} \in L_{1}$ and $x_{2} \in L_{2}$. Since $L=L_{1} \oplus L_{2}$, we know that $\left[L_{1}, L_{2}\right]=L_{1} \cap L_{2}=\{0\}$, so L_{1} and L_{2} can be considered as ideals of L. Then we have

$$
\begin{aligned}
& \left.\operatorname{im} a d_{x_{1}+x_{2}}\right|_{L_{1}}=\left[x_{1}+x_{2}, L_{1}\right]=\left[x_{1}, L_{1}\right]+\left[x_{2}, L_{1}\right]=\left.\operatorname{im} a d_{x_{1}}\right|_{L_{1}}, \\
& \left.\operatorname{im} a d_{x_{1}+x_{2}}\right|_{L_{2}}=\left[x_{1}+x_{2}, L_{2}\right]=\left[x_{1}, L_{2}\right]+\left[x_{2}, L_{2}\right]=\left.\operatorname{imad} a d_{x_{2}}\right|_{L_{2}},
\end{aligned}
$$

so we get

$$
\begin{aligned}
\left.\operatorname{im} a d_{x_{1}+x_{2}}\right|_{L_{1} \oplus L_{2}} & =\left[x_{1}+x_{2}, L_{1} \oplus L_{2}\right] \\
& =\left[x_{1}+x_{2}, L_{1}\right] \oplus\left[x_{1}+x_{2}, L_{2}\right] \\
& =\left.\left.\operatorname{imad} d_{x_{1}+x_{2}}\right|_{L_{1}} \oplus \operatorname{im} a d_{x_{1}+x_{2}}\right|_{L_{2}} \\
& =\left.\left.\operatorname{imad} d_{x_{1}}\right|_{L_{1}} \oplus \operatorname{im} a d_{x_{2}}\right|_{L_{2}} .
\end{aligned}
$$

Therefore we obtain

$$
\begin{aligned}
b_{L_{1} \oplus L_{2}}\left(x_{1}+x_{2}\right) & =\left.\operatorname{rank} a d_{x_{1}+x_{2}}\right|_{L_{1} \oplus L_{2}} \\
& =\left.\operatorname{dimim} a d_{x_{1}+x_{2}}\right|_{L_{1} \oplus L_{2}} \\
& =\operatorname{dim}\left(\left.\left.\operatorname{im} a d_{x_{1}}\right|_{L_{1}} \oplus \operatorname{im} a d_{x_{2}}\right|_{L_{2}}\right) \\
& =\left.\operatorname{dimimad} d_{x_{1}}\right|_{L_{1}}+\left.\operatorname{dimim} a d_{x_{2}}\right|_{L_{2}} \\
& =\left.\operatorname{rank} a d_{x_{1}}\right|_{L_{1}}+\operatorname{rank} a d_{x_{1}} \mid L_{L_{2}} \\
& =b_{L_{1}}\left(x_{1}\right)+b_{L_{2}}\left(x_{2}\right) .
\end{aligned}
$$

Hence we get $b_{L}\left(x_{1}+x_{2}\right)=b_{L_{1}}\left(x_{1}\right)+b_{L_{2}}\left(x_{2}\right)$ for any $x_{1} \in L_{1}$ and $x_{2} \in L_{2}$ as we wanted.
Theorem 3.1.12. Let L_{1} and L_{2} be finite dimensional Lie algebras. Then $b\left(L_{1} \oplus L_{2}\right)=$ $b\left(L_{1}\right)+b\left(L_{2}\right)$.

Proof. Let L_{1} and L_{2} be finite dimensional Lie algebras. Then there exist $x_{1} \in L_{1}$ and $x_{2} \in L_{2}$ such that $b_{L_{1}}\left(x_{1}\right)=b\left(L_{1}\right)$ and $b_{L_{2}}\left(x_{2}\right)=b\left(L_{2}\right)$, respectively. By using Lemma 3.1.11, we have

$$
b\left(L_{1}\right)+b\left(L_{2}\right)=b_{L_{1}}\left(x_{1}\right)+b_{L_{2}}\left(x_{2}\right)=b_{L_{1} \oplus L_{2}}\left(x_{1}+x_{2}\right) \leq b\left(L_{1} \oplus L_{2}\right) .
$$

On the other hand, we let $y \in L_{1} \oplus L_{2}$. Then $y=y_{1}+y_{2}$ for some $y_{1} \in L_{1}$ and $y_{2} \in L_{2}$. Note that $b_{L_{1}}\left(y_{1}\right) \leq b\left(L_{1}\right)$ and $b_{L_{2}}\left(y_{2}\right) \leq b\left(L_{2}\right)$, so we get

$$
b_{L_{1} \oplus L_{2}}(y)=b_{L_{1} \oplus L_{2}}\left(y_{1}+y_{2}\right)=b_{L_{1}}\left(y_{1}\right)+b_{L_{2}}\left(y_{2}\right) \leq b\left(L_{1}\right)+b\left(L_{2}\right)
$$

by Lemma 3.1.11. Since $y \in L_{1} \oplus L_{2}$ is arbitrary, we have $b\left(L_{1} \oplus L_{2}\right) \leq b\left(L_{1}\right)+b\left(L_{2}\right)$. Hence $b\left(L_{1} \oplus L_{2}\right)=b\left(L_{1}\right)+b\left(L_{2}\right)$.

Corollary 3.1.13. Let $L_{1}, L_{2}, \ldots, L_{n}$ be finite dimensional Lie algebras for some $n \in \mathbb{Z}_{>0}$. Then $b\left(L_{1} \oplus L_{2} \oplus \ldots \oplus L_{n}\right)=b\left(L_{1}\right)+b\left(L_{2}\right)+\ldots+b\left(L_{n}\right)$.

3.2 Classification of Nilpotent Lie Algebras of Breadth 1

For Lie algebra of breadth 1, we get a result analogous to the result in group theory provided by [2].

Theorem 3.2.1. Let L be a finite dimensional Lie algebra. Then $b(L)=1$ if and only if $\operatorname{dim}[L, L]=1$.

Proof. Let L be a finite dimensional Lie algebra such that $\operatorname{dim}[L, L]=1$. Then by Lemma 3.1.5, we have $b(L) \leq 1$. Since L is not abelian, $b(L)=1$ by Proposition 3.1.4.

On the other hand, assume that $b(L)=1$ and $\operatorname{dim}[L, L] \neq 1$. By Proposition 3.1.4, since $b(L) \neq 0, \operatorname{dim}[L, L] \neq 0$. Thus $\operatorname{dim}[L, L] \geq 2$. Let $z_{1}, z_{2} \in[L, L]$ be such that $\left\{z_{1}, z_{2}\right\}$ is linearly indenpendent. Then there exist $x_{1}, x_{2}, y_{1}, y_{2} \in L$ such that $\left[x_{1}, y_{1}\right]=z_{1}$ and $\left[x_{2}, y_{2}\right]=z_{2}$. Note that

$$
\begin{array}{ll}
a d_{x_{1}}\left(y_{1}\right)=z_{1}, & a d_{y_{1}}\left(x_{1}\right)=-z_{1}, \\
a d_{x_{2}}\left(y_{2}\right)=z_{2}, & a d_{y_{2}}\left(x_{2}\right)=-z_{2},
\end{array}
$$

and $b(L)=1$, so $b\left(x_{1}\right)=b\left(x_{2}\right)=b\left(y_{1}\right)=b\left(y_{2}\right)=1$. Therefore we have

$$
\begin{aligned}
& a d_{x_{1}}, a d_{y_{1}}: L \rightarrow \operatorname{span}\left\{z_{1}\right\}, \\
& a d_{x_{2}}, a d_{y_{2}}: L \rightarrow \operatorname{span}\left\{z_{2}\right\} .
\end{aligned}
$$

Next, we consider $\left[x_{1}, x_{2}\right]=a d_{x_{1}}\left(x_{2}\right) \in \operatorname{span}\left\{z_{1}\right\}$. On the other hand, $\left[x_{1}, x_{2}\right]=-a d_{x_{2}}\left(x_{1}\right) \in$ $\operatorname{span}\left\{z_{2}\right\}$. Thus $\left[x_{1}, x_{2}\right] \in \operatorname{span}\left\{z_{1}\right\} \cap \operatorname{span}\left\{z_{2}\right\}=\{0\}$, so $\left[x_{1}, x_{2}\right]=0$. Similarly, we also get $\left[x_{1}, y_{2}\right]=\left[y_{1}, x_{2}\right]=\left[y_{1}, y_{2}\right]=0$. Consequently, we obtain

$$
\left[x_{1}+x_{2}, y_{1}\right]=\left[x_{1}, y_{1}\right]+\left[x_{2}, y_{1}\right]=z_{1},
$$

$$
\left[x_{1}+x_{2}, y_{2}\right]=\left[x_{1}, y_{2}\right]+\left[x_{2}, y_{2}\right]=z_{2}
$$

Since $\left\{z_{1}, z_{2}\right\}$ is linearly indenpendent, $b\left(x_{1}+x_{2}\right)=\operatorname{rank} a d_{x_{1}+x_{2}} \geq 2$, which contradicts $b(L)=1$. Hence $\operatorname{dim}[L, L]=1$ by contradiction.

Lemma 3.2.2. Let L be a finite dimensional Lie algebra of breadth 1. Then L is nilpotent if and only if $[L, L] \subseteq Z(L)$.

Proof. Let L be a finite dimensional Lie algebra of breadth 1. Then by Theorem 3.2.1, we know that $\operatorname{dim}[L, L]=1$. Suppose that L is nilpotent and $[L, L] \nsubseteq Z(L)$. Thus $[L, L] \cap Z(L)=\{0\}$ because $\operatorname{dim}[L, L]=1$. Let $x \in[L, L]-\{0\}$. Then $x \notin Z(L)$, so there exists $y \in L$ such that $[y, x] \neq 0$. Therefore $[y, x]=\alpha x$ for some $\alpha \neq 0$. Consequently, we have $a d_{y}^{N}(x)=\alpha^{N} x \neq 0$ for all $N \in \mathbb{Z}_{>0}$ which is a contradiction. Hence $[L, L] \subseteq Z(L)$.

Conversely, suppose that $[L, L] \subseteq Z(L)$. Then we have $L^{3}=[L,[L, L]] \subseteq[L, Z(L)]=\{0\}$, so $L^{3}=\{0\}$. Hence L is nilpotent.

In order to classify Lie algebra of breadth 1 , we use the concept of alternate bilinear form and its application that could be found in [5] as the following:

Definition 3.2.3. Let V be a finite dimensional vector space and $\varphi():, V \times V \rightarrow \mathbb{F}$ a bilinear form on V. Then φ is called alternate if $\varphi(v, v)=0$ for all $v \in V$.

Theorem 3.2.4 (cf. [6], Theorem 6.3). Let V be a finite dimensional vector space such that $\operatorname{dim} V=n \in \mathbb{Z}_{>0}$. Let $\varphi():, V \times V \rightarrow \mathbb{F}$ be an alternate bilinear form on V. Then there exists a basis

$$
S=\left\{v_{1}, v_{-1}, v_{2}, v_{-2}, \ldots, v_{r}, v_{-r}, z_{1}, \ldots, z_{n-2 r}\right\}
$$

for V such that the matrix of B relative to this basis has the form

$$
B_{\varphi}=\operatorname{diag}\left\{S_{1}, S_{2}, \ldots, S_{r}, 0, \ldots, 0\right\}
$$

where $r \in \mathbb{Z}_{>0}$ such that $r \leq \frac{n}{2}$ and $S_{1}=S_{2}=\ldots=S_{r}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.
Finally, we classify finite dimensional Lie algebras of breadth 1 as the following theorem. Note that if we consider finite dimensional nilpotent Lie algebras, then they are actually direct sums of Heisenberg Lie algebra and abelian Lie algebra.

Theorem 3.2.5. Let L be a finite dimensional Lie algebra of breadth 1 such that $\operatorname{dim} L=n \in$ $\mathbb{Z}_{>0}$. Let $0 \neq z \in[L, L]$. Then there exists a basis

$$
S=\left\{v_{1}, v_{-1}, v_{2}, v_{-2}, \ldots, v_{r}, v_{-r}, z_{1}, \ldots, z_{n-2 r}\right\}
$$

for L such that

$$
\left[v_{i}, v_{j}\right]=\left\{\begin{array}{cl}
z & \text { if } i=-j>0 \\
-z & \text { if } i=-j<0 \\
0 & \text { otherwise }
\end{array}\right.
$$

for every $i, j \in\{ \pm 1, \pm 2, \ldots, \pm r\}$ and $Z(L)=\operatorname{span}\left\{z_{1} \ldots, z_{n-2 r}\right\}$.
Proof. Let L be a finite dimensional Lie algebra of breadth 1 such that $\operatorname{dim} L=n \in \mathbb{Z}_{>0}$. Then $b(L)=1$. By Theorem 3.2.1, $\operatorname{dim}[L, L]=1$. Let $0 \neq z \in[L, L]$. Then we have $[L, L]=\operatorname{span}\{z\}$. For any $x, y \in L$, we have $[x, y]=\alpha z$ for some $\alpha \in \mathbb{F}$. Define a bilinear form $\varphi: L \times L \rightarrow \mathbb{F}$ to be $\varphi(x, y)=\alpha$. Note that φ is bilinear since bracket is bilinear. Moreover, this is an alternate form since $[x, x]=0$ for all $x \in L$. By Theorem 3.2.4, there exists a basis

$$
S=\left\{v_{1}, v_{-1}, v_{2}, v_{-2}, \ldots, v_{r}, v_{-r}, z_{1}, \ldots, z_{n-2 r}\right\}
$$

for L such that the matrix of φ relative to S has the form

$$
B_{\varphi}=\operatorname{diag}\left\{S_{1}, S_{2}, \ldots, S_{r}, 0, \ldots, 0\right\}
$$

where $r \in \mathbb{N}$ such that $r \leq \frac{n}{2}$ and $S_{1}=S_{2}=\ldots=S_{r}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.
As a result, for every $i, j \in\{1,2, \ldots r\}$,

$$
\varphi\left(v_{i}, v_{j}\right)=\left\{\begin{array}{cl}
1 & \text { if } i=-j>0 \\
-1 & \text { if } i=-j<0 \\
0 & \text { otherwise }
\end{array}\right.
$$

and $z_{1}, \ldots, z_{n-2 r} \in Z(L)$. Hence we have

$$
\left[v_{i}, v_{j}\right]=\left\{\begin{array}{cl}
z & \text { if } i=-j>0 \\
-z & \text { if } i=-j<0 \\
0 & \text { otherwise }
\end{array}\right.
$$

where $i, j \in\{1,2, \ldots r\}$ and $z_{1}, \ldots, z_{n-2 r} \in Z(L)$.
Next, we will claim that $Z(L)=\operatorname{span}\left\{z_{1} \ldots, z_{n-2 r}\right\}$. Since $z_{1}, \ldots, z_{n-2 r} \in Z(L)$, we get $\operatorname{span}\left\{z_{1} \ldots, z_{n-2 r}\right\} \subseteq Z(L)$. Conversely, without loss of generality, we let $a_{1}, a_{-1}, \ldots, a_{r}, a_{-r} \in$ \mathbb{F} such that

$$
a_{1} v_{1}+a_{-1} v_{-1}+a_{2} v_{2}+a_{-2} v_{-2}+\ldots+a_{r} v_{r}+a_{-r} v_{-r}=0 .
$$

Let $k \in\{1,2, \ldots, r\}$. Then we have

$$
\begin{aligned}
& 0=\left[v_{k}, a_{1} v_{1}+a_{-1} v_{-1}+\ldots+a_{r} v_{r}+a_{-r} v_{-r}\right]=a_{-k}\left[v_{k}, v_{-k}\right]=a_{-k} z, \\
& 0=\left[v_{-k}, a_{1} v_{1}+a_{-1} v_{-1}+\ldots+a_{r} v_{r}+a_{-r} v_{-r}\right]=a_{k}\left[v_{-k}, v_{k}\right]=a_{k}(-z)=-a_{k} z,
\end{aligned}
$$

so $a_{k}=a_{-k}=0$ for all $k=1,2, \ldots, r$. Therefore we obtain $Z(L) \subseteq \operatorname{span}\left\{z_{1} \ldots, z_{n-2 r}\right\}$. Consequently, $Z(L)=\operatorname{span}\left\{z_{1} \ldots, z_{n-2 r}\right\}$. In summary, there exists a basis

$$
S=\left\{v_{1}, v_{-1}, v_{2}, v_{-2}, \ldots, v_{r}, v_{-r}, z_{1}, \ldots, z_{n-2 r}\right\}
$$

for L such that

$$
\left[v_{i}, v_{j}\right]=\left\{\begin{array}{cl}
z & \text { if } i=-j>0 \\
-z & \text { if } i=-j<0 \\
0 & \text { otherwise }
\end{array}\right.
$$

for every $i, j \in\{1,2, \ldots r\}$ and $Z(L)=\operatorname{span}\left\{z_{1} \ldots, z_{n-2 r}\right\}$.
Theorem 3.2.6. Let L be a finite dimensional nilpotent Lie algebra of breadth 1 such that $\operatorname{dim} L=n \in \mathbb{Z}_{>0}$. Let $0 \neq z \in[L, L]$. Then there exists a basis

$$
S=\left\{v_{1}, v_{-1}, v_{2}, v_{-2}, \ldots, v_{r}, v_{-r}, z, w_{1}, \ldots, w_{n-2 r-1}\right\}
$$

for L such that

$$
\left[v_{i}, v_{j}\right]=\left\{\begin{array}{cl}
z & \text { if } i=-j>0 \\
-z & \text { if } i=-j<0 \\
0 & \text { otherwise }
\end{array}\right.
$$

for every $i, j \in\{ \pm 1, \pm 2, \ldots, \pm r\}$ and $Z(L)=\operatorname{span}\left\{z, w_{1} \ldots, w_{n-2 r-1}\right\}$.
Proof. Let L be a finite dimensional nilpotent Lie algebra of breadth 1 such that $\operatorname{dim} L=n \in$ $\mathbb{Z}_{>0}$. Let $0 \neq z \in[L, L]$. By Theorem 3.2.5, there exists a basis

$$
S=\left\{v_{1}, v_{-1}, v_{2}, v_{-2}, \ldots, v_{r}, v_{-r}, z_{1}, \ldots, z_{n-2 r}\right\}
$$

for L such that

$$
\left[v_{i}, v_{j}\right]=\left\{\begin{array}{cl}
z & \text { if } i=-j>0 \\
-z & \text { if } i=-j<0 \\
0 & \text { otherwise }
\end{array}\right.
$$

for every $i, j \in\{1,2, \ldots r\}$ and $Z(L)=\operatorname{span}\left\{z_{1} \ldots, z_{n-2 r}\right\}$. Since L is nilpotent, we have
$[L, L] \subseteq Z(L)$ by Lemma 3.2.2. Thus we have $z \in Z(L)$, so we can pick z as a basis element so that $Z(L)=\operatorname{span}\left\{z, w_{1} \ldots, w_{n-2 r-1}\right\}$ and $S=\left\{v_{1}, v_{-1}, v_{2}, v_{-2}, \ldots, v_{r}, v_{-r}, z, w_{1}, \ldots, w_{n-2 r-1}\right\}$. As a result, there exists a basis

$$
S=\left\{v_{1}, v_{-1}, v_{2}, v_{-2}, \ldots, v_{r}, v_{-r}, z, w_{1}, \ldots, w_{n-2 r-1}\right\}
$$

for L such that

$$
\left[v_{i}, v_{j}\right]=\left\{\begin{array}{cl}
z & \text { if } i=-j>0 \\
-z & \text { if } i=-j<0 \\
0 & \text { otherwise }
\end{array}\right.
$$

for every $i, j \in\{ \pm 1, \pm 2, \ldots, \pm r\}$ and $Z(L)=\operatorname{span}\left\{z, w_{1} \ldots, w_{n-2 r-1}\right\}$.

Chapter 4

Nilpotent Lie Algebras of Breadth 2

4.1 Properties and Lemmas

In this section, we prove several theorems that we need to use in our main theorem in the next section. We begin this part with a defintion which is derived from centralizer in group theory.

Definition 4.1.1. Let L be a finite dimensional Lie algebra, A an ideal of L and $S \subseteq L$. We define

$$
\begin{aligned}
C_{A}(S) & =\left\{\alpha \in A \mid a d_{\alpha}(x)=0 \text { for all } x \in S\right\} \\
& =\left\{\alpha \in A \mid a d_{x}(\alpha)=0 \text { for all } x \in S\right\} \\
& =\bigcap_{x \in S}\left\{\alpha \in A \mid a d_{x}(\alpha)=0\right\} \\
& =\left.\bigcap_{x \in S} \operatorname{ker} a d_{x}\right|_{A} .
\end{aligned}
$$

In particular, we have

$$
C_{L}(A)=\bigcap_{a \in A} \operatorname{ker} a d_{a}
$$

and if $S=\{x\}$ for some $x \in L$, then

$$
C_{A}(S)=C_{A}(\{x\})=\left.\operatorname{ker} a d_{x}\right|_{A} .
$$

Remark. Let L be a finite dimensional Lie algebra and A an ideal of L. Then the following holds:

1. If $S_{1} \subseteq S_{2} \subseteq L$, then $C_{A}\left(S_{2}\right) \subseteq C_{A}\left(S_{1}\right)$.
2. If $S=\operatorname{span}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subseteq L$ for some $n \in \mathbb{Z}_{>0}$, then

$$
C_{A}(S)=\left.\bigcap_{x \in S} \operatorname{ker} a d_{x}\right|_{A}=\left.\bigcap_{i=1}^{n} \operatorname{ker} a d_{x_{i}}\right|_{A} .
$$

3. For any $x \in L, x \in C_{L}(A)$ if and only if $b_{A}(x)=0$.

Lemma 4.1.2. Let L be a finite dimensional Lie algebra and A an ideal of L. Let $x, y \in L$ be such that $\left.\left.\operatorname{im} a d_{x}\right|_{A} \cap \operatorname{im} a d_{y}\right|_{A}=\{0\}$. Then $\left.\left.\operatorname{ker} a d_{x}\right|_{A} \subseteq \operatorname{ker} a d_{y}\right|_{A}$ or $b_{A}(x)<b_{A}(x+y)$.

Proof. Let L be a finite dimensional Lie algebra and A an ideal of L. Let $x, y \in L$ be such that $\left.\left.\operatorname{im} a d_{x}\right|_{A} \cap \operatorname{im} a d_{y}\right|_{A}=\{0\}$. Suppose that there exists $\alpha \in A$ such that $\left.\alpha \in \operatorname{ker} a d_{x}\right|_{A}-\left.\operatorname{ker} a d_{y}\right|_{A}$. Then we have $[x, \alpha]=0$ but $[y, \alpha] \neq 0$. We observe that

$$
[x+y, \alpha]=[x, \alpha]+[y, \alpha]=0+[y, \alpha]=[y, \alpha] \neq 0
$$

so $\left.\left.\operatorname{im} a d_{x+y}\right|_{A} \cap \operatorname{im} a d_{y}\right|_{A}$ is not trivial. Note that we have

$$
\operatorname{dim}\left(\left.\operatorname{im} a d_{x+y}\right|_{A}+\left.\operatorname{im} a d_{y}\right|_{A}\right)=\left.\operatorname{dimim} a d_{x+y}\right|_{A}+\left.\operatorname{dimim} a d_{y}\right|_{A}-\operatorname{dim}\left(\left.\left.\operatorname{im} a d_{x+y}\right|_{A} \cap \operatorname{im} a d_{y}\right|_{A}\right)
$$

As a result,

$$
\operatorname{dim}\left(\left.\operatorname{im} a d_{x+y}\right|_{A}+\left.\operatorname{im} a d_{y}\right|_{A}\right)<\left.\operatorname{dimim} a d_{x+y}\right|_{A}+\left.\operatorname{dimim} a d_{y}\right|_{A} .
$$

We define a map $\varphi:\left.\operatorname{im} a d_{x}\right|_{A} \times\left.\left.\operatorname{im} a d_{y}\right|_{A} \rightarrow \operatorname{im} a d_{x+y}\right|_{A}+\left.\operatorname{im} a d_{y}\right|_{A}$ by $\varphi\left(x_{1}, y_{1}\right)=x_{1}+y_{1}$ where $\left.x_{1} \in \operatorname{im} a d_{x}\right|_{A}$ and $\left.y_{1} \in \operatorname{im} a d_{y}\right|_{A}$. We will show that φ is an isomorphism. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in$ $\left.\operatorname{im} a d_{x}\right|_{A} \times\left.\operatorname{im} a d_{y}\right|_{A}$. Then we have $x_{1},\left.x_{2} \in \operatorname{imad}\right|_{A}$ and $y_{1},\left.y_{2} \in \operatorname{imad}\right|_{A}$, so there exist $a_{1}, a_{2}, b_{1}, b_{2} \in A$ such that $\left[x, a_{i}\right]=x_{i}$ and $\left[y, b_{i}\right]=y_{i}$ for all $i=1,2$. We will verify that $\left.\operatorname{im} \varphi \subseteq \operatorname{im} a d_{x+y}\right|_{A}+\left.\operatorname{im} a d_{y}\right|_{A}$. Observe that

$$
\varphi\left(x_{1}, y_{1}\right)=x_{1}+y_{1}=\left[x, a_{1}\right]+\left[y, b_{1}\right]=\left[x+y, a_{1}\right]+\left.\left[y, b_{1}-a_{1}\right] \in \operatorname{im} a d_{x+y}\right|_{A}+\left.\operatorname{imad} d_{y}\right|_{A} .
$$

Thus $\left.\operatorname{im} \varphi \subseteq \operatorname{im} a d_{x+y}\right|_{A}+\left.\operatorname{im} a d_{y}\right|_{A}$. Moreover, it is easy to see that φ is linear. In order to show that φ is injective, we suppose that $\varphi\left(x_{1}, y_{1}\right)=0$. Then we get $\left[x, a_{1}\right]+\left[y, b_{1}\right]=x_{1}+y_{1}=$ $\varphi\left(x_{1}, y_{1}\right)=0$, so $\left[x, a_{1}\right]=\left.\left.\left[y,-b_{1}\right] \in \operatorname{im} a d_{x}\right|_{A} \cap \operatorname{im} a d_{y}\right|_{A}=\{0\}$. Therefore $x_{1}=\left[x, a_{1}\right]=0$ and $y_{1}=\left[y, b_{1}\right]=0$ which implies $\left(x_{1}, y_{1}\right)=0$. Thus φ is injective. To claim that φ is surjective, let $\left.z \in \operatorname{im} a d_{x+y}\right|_{A}+\left.\operatorname{im} a d_{y}\right|_{A}$. Then $z=z_{1}+z_{2}$ where $\left.z_{1} \in \operatorname{imad} d_{x+y}\right|_{A}$ and $\left.z_{2} \in \operatorname{im} a d_{y}\right|_{A}$. There exists $c_{1}, c_{2} \in A$ such that $\left[x+y, c_{1}\right]=z_{1}$ and $\left[y, c_{2}\right]=z_{2}$. Note that we have

$$
\varphi\left(\left[x, c_{1}\right],\left[y, c_{1}+c_{2}\right]\right)=\left[x, c_{1}\right]+\left[y, c_{1}+c_{2}\right]=\left[x+y, c_{1}\right]+\left[y, c_{2}\right]=z_{1}+z_{2}=z
$$

Therefore φ is surjective. Hence $\varphi:\left.\operatorname{im} a d_{x}\right|_{A} \times\left.\left.\operatorname{im} a d_{y}\right|_{A} \rightarrow \operatorname{im} a d_{x+y}\right|_{A}+\left.\operatorname{im} a d_{y}\right|_{A}$ is an isomor-
phism which implies

$$
\operatorname{dim}\left(\left.\operatorname{im} a d_{x}\right|_{A} \times\left.\operatorname{im} a d_{y}\right|_{A}\right)=\operatorname{dim}\left(\left.\operatorname{im} a d_{x+y}\right|_{A}+\left.\operatorname{im} a d_{y}\right|_{A}\right)
$$

As a consequence, we have

$$
\begin{aligned}
b_{A}(x)+b_{A}(y) & =\left.\operatorname{rank} a d_{x}\right|_{A}+\left.\operatorname{rank} a d_{y}\right|_{A} \\
& =\left.\operatorname{dimim} a d_{x}\right|_{A}+\left.\operatorname{dimim} a d_{y}\right|_{A} \\
& =\operatorname{dim}\left(\left.\operatorname{im} a d_{x}\right|_{A} \times\left.\operatorname{im} a d_{y}\right|_{A}\right) \\
& =\operatorname{dim}\left(\left.\operatorname{im} a d_{x+y}\right|_{A}+\left.\operatorname{im} a d_{y}\right|_{A}\right) \\
& <\left.\operatorname{dimima} a d_{x+y}\right|_{A}+\left.\operatorname{dimim} a d_{y}\right|_{A} \\
& =\left.\operatorname{rank} a d_{x+y}\right|_{A}+\left.\operatorname{rank} a d_{y}\right|_{A} \\
& =b_{A}(x+y)+b_{A}(y)
\end{aligned}
$$

Hence $b_{A}(x)<b_{A}(x+y)$.
Theorem 4.1.3. Let L be a finite dimensional Lie algebra and A an ideal of L. Let $x, y \in T_{A}$, $T=\operatorname{span}\{x, y\}$ and

$$
\bar{T}=\left(T+C_{L}(A)\right) / C_{L}(A) \cong T /\left(T \cap C_{L}(A)\right)
$$

Then we have the following two cases:

1. If $\operatorname{dim} \bar{T}=1$, then $\left.\operatorname{im} a d_{x}\right|_{A}=\left.\operatorname{im} a d_{y}\right|_{A}$ and $\left.\operatorname{ker} a d_{x}\right|_{A}=\left.\operatorname{ker} a d_{y}\right|_{A}$.
2. If $\operatorname{dim} \bar{T}=2$, then $\left.\operatorname{im} a d_{x}\right|_{A} \neq\left.\operatorname{im} a d_{y}\right|_{A}$ or $\left.\operatorname{ker} a d_{x}\right|_{A} \neq\left.\operatorname{ker} a d_{y}\right|_{A}$.

However, if $x+y \in T_{A}$, then the consequence of the second case is "either or".
Proof. Note that $\bar{T}=\left(T+C_{L}(A)\right) / C_{L}(A) \cong T /\left(T \cap C_{L}(A)\right)$ comes from second isomorphism theorem $((S+I) / I \cong S /(S \cap I))$. For the first case, we assume that $\operatorname{dim} \bar{T}=1$. Then we have $\operatorname{dim}\left(T \cap C_{L}(A)\right)=\operatorname{dim} T-\operatorname{dim} \bar{T}=2-1=1$. Since $x, y \in T_{A}, b_{A}(x)=b_{A}(y)=1$. Therefore $x, y \notin C_{L}(A)$, so $x, y \notin T \cap C_{L}(A)$. By considering $T /\left(T \cap C_{L}(A)\right)$ as a 1-dimensional quotient space, there exists $\alpha \in \mathbb{F}-\{0\}$ such that $x+\left(T \cap C_{L}(A)\right)=-\alpha y+\left(T \cap C_{L}(A)\right)$, so $x+\alpha y \in\left(T \cap C_{L}(A)\right)$. Since $\operatorname{dim}\left(T \cap C_{L}(A)\right)=1$ and $x+\alpha y \neq 0$, we have $T \cap C_{L}(A)=$ $\operatorname{span}\{x+\alpha y\}$. First, we will claim that $\left.\operatorname{im} a d_{x}\right|_{A}=\left.\operatorname{im} a d_{y}\right|_{A}$. To show that $\left.\left.\operatorname{im} a d_{x}\right|_{A} \subseteq \operatorname{im} a d_{y}\right|_{A}$, let $\left.z \in \operatorname{im} a d_{x}\right|_{A}$. Then there exists $a \in A$ such that $[x, a]=z$. Because $x+\alpha y \in T \cap C_{L}(A)$, $[x+\alpha y, a]=0$. Therefore we get

$$
0=[x+\alpha y, a]=[x, a]+\alpha[y, a]=z-[y,-\alpha a]
$$

so $z=[y,-\alpha a]$, that is $\left.z \in \operatorname{im} a d_{y}\right|_{A}$. Conversely, let $\left.\left.z \in \operatorname{imad}\right|_{y}\right|_{A}$. Then there exists $a \in A$ such that $[y, a]=z$. Again, we get

$$
0=[x+\alpha y, a]=[x, a]+\alpha[y, a]=[x, a]+\alpha z,
$$

so $z=\frac{-1}{\alpha}[x, a]=\left[x, \frac{-a}{\alpha}\right]$. Thus $\left.z \in \operatorname{im} a d_{x}\right|_{A}$. Hence $\left.\operatorname{im} a d_{x}\right|_{A}=\left.\operatorname{im} a d_{y}\right|_{A}$. Next, we will show that $\left.\operatorname{ker} a d_{x}\right|_{A}=\left.\operatorname{ker} a d_{y}\right|_{A}$. Suppose ker $\left.a d_{x}\right|_{A} \neq\left.\operatorname{ker} a d_{y}\right|_{A}$. Without loss of generality, there exists $a \in A$ such that $[y, a]=0$ but $[x, a] \neq 0$. Then we have

$$
[x+\alpha y, a]=[x, a]+\alpha[y, a]=[x, a]+0=[x, a] \neq 0
$$

which contradicts $x+\alpha y \in T \cap C_{L}(A)$. Hence ker $\left.a d_{x}\right|_{A}=\left.\operatorname{ker} a d_{y}\right|_{A}$.
For the second case, suppose that $\operatorname{dim} \bar{T}=2$. Then we have $\operatorname{dim}\left(T \cap C_{L}(A)\right)=\operatorname{dim} T-$ $\operatorname{dim} \bar{T}=2-2=0$, so $T \cap C_{L}(A)=\{0\}$. Suppose that $\left.\operatorname{ker} a d_{x}\right|_{A}=\left.\operatorname{ker} a d_{y}\right|_{A}$. Then we have to show that $\left.\operatorname{im} a d_{x}\right|_{A} \neq\left.\operatorname{im} a d_{y}\right|_{A}$. Let $\alpha \in \mathbb{F}$. Then $x+\alpha y \in T-\{0\}$, so $x+\alpha y \notin C_{L}(A)$. Thus there exists $a \in A$ such that

$$
0 \neq[x+\alpha y, a]=[x, a]+\alpha[y, a] .
$$

Note that $\left.a \notin \operatorname{ker} a d_{x}\right|_{A}=\left.\operatorname{ker} a d_{y}\right|_{A}$ since $[x, a]+\alpha[y, a] \neq 0$. Therefore $[x, a] \neq 0$ and $[y, a] \neq 0$, but we have

$$
[x, a] \neq-\alpha[y, a] \quad \text { for all } \quad \alpha \in \mathbb{F} .
$$

Since $\left.\operatorname{rank} a d_{x}\right|_{A}=\left.\operatorname{rank} a d_{y}\right|_{A}=1,\left.\operatorname{im} a d_{x}\right|_{A} \neq\left.\operatorname{im} a d_{y}\right|_{A}$. Hence we proved the second case.
Finally, we will show that the consequence of the second case is "either or" if $x+y \in T_{A}$. Suppose additionally to the second case that $x+y \in T_{A}$. Then we have $b_{A}(x+y)=1$. Assume that $\left.\operatorname{im} a d_{x}\right|_{A} \neq\left.\operatorname{im} a d_{y}\right|_{A}$. Since $x, y \in T_{A}, b_{A}(x)=b_{A}(y)=1$, so im $\left.\left.a d_{x}\right|_{A} \cap \operatorname{im} a d_{y}\right|_{A}=\{0\}$. By Lemma 4.1.2, we get

$$
\left.\left.\operatorname{ker} a d_{x}\right|_{A} \subseteq \operatorname{ker} a d_{y}\right|_{A} \quad \text { or } \quad b_{A}(x)<b_{A}(x+y)
$$

Because $b_{A}(x)=1=b_{A}(x+y)$, we have $\left.\left.\operatorname{ker} a d_{x}\right|_{A} \subseteq \operatorname{ker} a d_{y}\right|_{A}$. Similarly, we also have $\left.\left.\operatorname{ker} a d_{y}\right|_{A} \subseteq \operatorname{ker} a d_{x}\right|_{A}$ since $b_{A}(y)=1=b_{A}(x+y)$. Therefore ker $\left.a d_{x}\right|_{A}=\left.\operatorname{ker} a d_{y}\right|_{A}$. On the other hand, we suppose that $\left.\operatorname{ker} a d_{x}\right|_{A} \neq\left.\operatorname{ker} a d_{y}\right|_{A}$. Without loss of generality, assume that $\left.\left.\operatorname{ker} a d_{x}\right|_{A} \nsubseteq \operatorname{ker} a d_{y}\right|_{A}$. Then im $\left.\left.a d_{x}\right|_{A} \cap \operatorname{im} a d_{y}\right|_{A} \neq\{0\}$ by contrapositive of Lemma 4.1.2. Since $b_{A}(x)=b_{A}(y)=1$, we get $\left.\operatorname{im} a d_{x}\right|_{A}=\left.\operatorname{im} a d_{y}\right|_{A}$ as desired.

Proposition 4.1.4. Let L be a finite dimensional Lie algebra and A an ideal of L. Let $x, y, z \in$ L be such that $y-z \notin C_{L}(A)$. Suppose that $b_{A}(x)>1$. Then at least one of the elements

$$
y, z, y+z, x+y, x+z, x+y+z
$$

is not in T_{A}.
Proof. Let L be a finite dimensional Lie algebra and A an ideal of L. Let $x, y, z \in L$ be such that $b_{A}(x)>1$ and $y-z \notin C_{L}(A)$. Suppose that $y, z, y+z, x+y, x+z, x+y+z \in T_{A}$. Additionally, we let

$$
\begin{aligned}
& T_{1}=\operatorname{span}\{y, y-z\}=\operatorname{span}\{y, z-y\}=\operatorname{span}\{y, z\}, \\
& T_{2}=\operatorname{span}\{y-z, x+z\}=\operatorname{span}\{x+y, x+z\}, \\
& T_{3}=\operatorname{span}\{y, x+z\} .
\end{aligned}
$$

For $i=1,2,3, T_{i}$ is not contained in $C_{L}(A)$, so $T_{i} \cap C_{L}(A)$ is zero or 1-dimensional which implies $\bar{T}_{i}=\left(T_{i}+C_{L}(A)\right) / C_{L}(A) \cong T_{i} /\left(T_{i} \cap C_{L}(A)\right)$ is 1 or 2-dimensional. Next, we consider

$$
\begin{aligned}
& \left.\operatorname{im} a d_{T_{1}}\right|_{A}:=\operatorname{span}\left\{\left.\operatorname{im} a d_{y}\right|_{A},\left.\operatorname{im} a d_{z}\right|_{A}\right\}, \\
& \left.\operatorname{im} a d_{T_{2}}\right|_{A}:=\operatorname{span}\left\{\left.\operatorname{im} a d_{x+y}\right|_{A},\left.\operatorname{im} a d_{x+z}\right|_{A}\right\}, \\
& \left.\operatorname{im} a d_{T_{3}}\right|_{A}:=\operatorname{span}\left\{\left.\operatorname{im} a d_{y}\right|_{A},\left.\operatorname{im} a d_{x+z}\right|_{A}\right\} .
\end{aligned}
$$

By Theorem 4.1.3, we know that for each $i=1,2,3$,

1. If $\operatorname{dim} T_{i}=1$, then we have $\left.\operatorname{im} a d_{T_{1}}\right|_{A}$ is 1 -dimensional.
2. If $\operatorname{dim} T_{i}=2$, then we have $\left.\operatorname{im} a d_{T_{1}}\right|_{A}$ is 2-dimensional.

Hence $\left.\operatorname{im} a d_{T_{1}}\right|_{A},\left.\operatorname{im} a d_{T_{2}}\right|_{A}$ and $\left.\operatorname{im} a d_{T_{3}}\right|_{A}$ are 1 or 2 -dimensional. By pigeonhole principle, there exist $\alpha, \beta \in\{1,2,3\}$ such that $\alpha \neq \beta$ and $\operatorname{dim}\left(\left.\operatorname{im} a d_{T_{\alpha}}\right|_{A}\right)=\operatorname{dim}\left(\left.\operatorname{imad} d_{T_{\beta}}\right|_{A}\right)$. Let $n:=\operatorname{dim}\left(\left.\operatorname{im} a d_{T_{\alpha}}\right|_{A}\right)=\operatorname{dim}\left(\left.\operatorname{im} a d_{T_{\beta}}\right|_{A}\right)$. Then we consider the following two cases:

For $n=1$, we consider

$$
\begin{aligned}
& T_{1}=\operatorname{span}\{y, y-z\}, \\
& T_{2}=\operatorname{span}\{y-z, x+z\}, \\
& T_{3}=\operatorname{span}\{x+z, y\} .
\end{aligned}
$$

Then we have $N:=\left.\operatorname{im} a d_{y}\right|_{A}=\left.\operatorname{im} a d_{y-z}\right|_{A}=\left.\operatorname{im} a d_{x+z}\right|_{A}$ is 1-dimensional. Next, we will claim
that imad $\left.\right|_{A} \subseteq N$. Let $a \in A$. Since $x=(x+z)+(y-z)-y$, we get

$$
[x, a]=[x+z, a]+[y-z, a]-[y, a] \in N .
$$

Thus im $\left.a d_{x}\right|_{A} \subseteq N$, so $b_{A}(x) \leq 1$ which contradicts the assumption $b_{A}(x)>1$.
For $n=2$, we consider

$$
\begin{aligned}
& T_{1}=\operatorname{span}\{y, z-y\}, \\
& T_{2}=\operatorname{span}\{x+z, y-z\}, \\
& T_{3}=\operatorname{span}\{y, x+z\}, \\
& T_{\alpha}=\operatorname{span}\left\{\alpha_{1}, \alpha_{2}\right\}, \\
& T_{\beta}=\operatorname{span}\left\{\beta_{1}, \beta_{2}\right\},
\end{aligned}
$$

so that

$$
\begin{aligned}
& \left.\operatorname{im} a d_{T_{\alpha}}\right|_{A}:=\operatorname{span}\left\{\left.\operatorname{im} a d_{\alpha_{1}}\right|_{A},\left.\operatorname{im} a d_{\alpha_{2}}\right|_{A}\right\}, \\
& \left.\operatorname{im} a d_{T_{\beta}}\right|_{A}:=\operatorname{span}\left\{\left.\operatorname{im} a d_{\beta_{1}}\right|_{A},\left.\operatorname{im} a d_{\beta_{2}}\right|_{A}\right\} .
\end{aligned}
$$

Since $n=2$, we obtain $\left.\operatorname{im} a d_{\alpha_{1}}\right|_{A} \neq\left.\operatorname{im} a d_{\alpha_{2}}\right|_{A}$ and $\left.\operatorname{im} a d_{\beta_{1}}\right|_{A} \neq\left.\operatorname{imad} d_{\beta_{2}}\right|_{A}$. Note that $\operatorname{dim} \bar{T}_{\alpha}=$ $\operatorname{dim} \bar{T}_{\beta}=2$ and for T_{1}, T_{2}, T_{3}, we have

$$
\begin{aligned}
b_{A}(y) & =1=b_{A}(z)=b_{A}(y+(z-y)), \\
b_{A}(x+z) & =1=b_{A}(x+y)=b_{A}((x+z)+(y-z)), \\
b_{A}(y) & =1=b_{A}(x+y+z)=b_{A}(y+(x+z)) .
\end{aligned}
$$

Thus $b_{A}\left(\alpha_{1}+\alpha_{2}\right)=b_{A}\left(\alpha_{1}\right)=1$ and $b_{A}\left(\beta_{1}+\beta_{2}\right)=b_{A}\left(\beta_{1}\right)=1$, so $\alpha_{1}+\alpha_{2}, \beta_{1}+\beta_{2} \in T_{A}$. By Theorem 4.1.3, (2) with "either or", we have

$$
\left.\operatorname{ker} a d_{\alpha_{1}}\right|_{A}=\left.\operatorname{ker} a d_{\alpha_{2}}\right|_{A} \quad \text { and }\left.\quad \operatorname{ker} a d_{\beta_{1}}\right|_{A}=\left.\operatorname{ker} a d_{\beta_{2}}\right|_{A} .
$$

It is easy to see that $\left.\operatorname{ker} a d_{y-z}\right|_{A}=\left.\operatorname{ker} a d_{z-y}\right|_{A}$, so we have $M:=\left.\operatorname{ker} a d_{y}\right|_{A}=\left.\operatorname{ker} a d_{y-z}\right|_{A}=$ $\left.\operatorname{ker} a d_{x+z}\right|_{A}$. Next we will prove that $\left.M \subseteq \operatorname{ker} a d_{x}\right|_{A}$. Let $m \in M$. Since $x=(x+z)+(y-z)-y$, we get

$$
[x, m]=[x+z, m]+[y-z, m]-[y, m]=0 .
$$

Thus $\left.M \subseteq \operatorname{ker} a d_{x}\right|_{A}$, that means nullity $\left.a d_{y}\right|_{A} \leq$ nullity $\left.a d_{x}\right|_{A}$. Hence we have

$$
\left.\operatorname{rank} a d_{x}\right|_{A}=\operatorname{dim} A-\text { nullity }\left.a d_{x}\right|_{A}
$$

$$
\begin{aligned}
& =\left(\text { nullity }\left.a d_{y}\right|_{A}+\left.\operatorname{rank} a d_{y}\right|_{A}\right)-\left.\operatorname{nullity} a d_{x}\right|_{A} \\
& =\left(\text { nullity }\left.a d_{y}\right|_{A}-\left.\operatorname{nullity} a d_{x}\right|_{A}\right)+\left.\operatorname{rank} a d_{y}\right|_{A} \\
& \leq\left.\operatorname{rank} a d_{y}\right|_{A} \\
& \leq 1,
\end{aligned}
$$

so $b_{A}(x) \leq 1$ which is a contradiction. In consequence, from the two cases above, at least one of the elements $y, z, y+z, x+y, x+z, x+y+z$ is not in T_{A}.

From now on, we begin to consider finite dimensional nilpotent Lie algebra in order to guarantee that it has an abelian ideal.

Definition 4.1.5. Let L be a finite dimensional nilpotent Lie algebra and A an abelian ideal of L. For any $x \in L$, we define

$$
\begin{aligned}
M_{x} & =A+\operatorname{ker} a d_{x}, \\
L_{x} & =\operatorname{span}\left\{M_{a+x} \mid a \in A\right\}, \\
D_{x} & =\bigcap_{a \in A} M_{a+x} .
\end{aligned}
$$

Proposition 4.1.6. Let L be a finite dimensional nilpotent Lie algebra and A an abelian ideal of L. Let $x \in L$ and $a \in A$. Then the following hold:

1. $A \subseteq D_{x} \subseteq M_{a+x}$.
2. $[A, x]=[A, a+x]=\left[M_{a+x}, a+x\right]=\left[D_{x}, a+x\right]$.
3. $\left[L_{x}, x\right] \subseteq[A, L]$.
4. $\left[a, M_{a+x} \cap M_{x}\right] \subseteq[A, x]$.
5. If $L=M_{x}+U=M_{a+x}+U$ for some $a \in A$ and subspace U of L, then

$$
[a, L] \subseteq[U, x]+[A, x]+[A, U] .
$$

6. $\left[A, D_{x}\right] \subseteq[A, x]$.
7. If $b_{A}(L)=b(L)$, then $\operatorname{dim}[A, L]=b_{A}(L)$ and $L=D_{z}$ for all $z \in B_{A}$.

Proof. Let L be a finite dimensional nilpotent Lie algebra and A an abelian ideal of L. Let $x \in L$ and $a \in A$.

1. Since $A \subseteq A+\operatorname{ker} a d_{a^{\prime}+x}=M_{a^{\prime}+x}$ for all $a^{\prime} \in A, A \subseteq D_{x}$. It is clear that $D_{x} \subseteq M_{a+x}$ because $0 \in A$. Hence $A \subseteq D_{x} \subseteq M_{a+x}$.
2. First, it is obvious that $[A, x]=[A, a+x]$ since A is abelian. Because $M_{a+x}=A+$ ker $a d_{a+x}$, we have

$$
\begin{aligned}
{\left[M_{a+x}, a+x\right] } & =\left[A+\operatorname{ker} a d_{a+x}, a+x\right] \\
& =[A, a]+[A, x]+\left[\operatorname{ker} a d_{a+x}, a+x\right] \\
& =0+[A, x]+0 \\
& =[A, x] .
\end{aligned}
$$

Thus $[A, x]=\left[M_{a+x}, a+x\right]$. Next, we will show that $[A, x]=\left[D_{x}, a+x\right]$. Since $D_{x} \subseteq M_{a+x}$, we get $\left[D_{x}, a+x\right] \subseteq\left[M_{a+x}, a+x\right]=[A, x]$. Conversely, we have $[A, x]=[A, a+x] \subseteq$ $\left[D_{x}, a+x\right]$ since $A \subseteq D_{x}$. Therefore $[A, x]=\left[D_{x}, a+x\right]$. Hence $[A, x]=[A, a+x]=$ $\left[M_{a+x}, a+x\right]=\left[D_{x}, a+x\right]$.
3. Let $a \in A$ be arbitrary. Let $y \in M_{a+x}$. Then $y=a_{y}+c_{y}$ where $a_{y} \in A$ and $c_{y} \in \operatorname{ker} a d_{a+x}$. Thus $\left[c_{y}, a+x\right]=0$, so $\left[c_{y}, x\right]=\left[a, c_{y}\right]$. Therefore

$$
[y, x]=\left[a_{y}+c_{y}, x\right]=\left[a_{y}, x\right]+\left[c_{y}, x\right]=\left[a_{y}, x\right]+\left[a, c_{y}\right] \in[A, L] .
$$

Since $y \in M_{a+x}$ and $a \in A$ is arbitrary, $\left[L_{x}, x\right] \subseteq[A, L]$.
4. Let $y \in M_{a+x} \cap M_{x}$. Since $y \in M_{a+x}, y=a_{y}+c_{y}$ where $a_{y} \in A$ and $c_{y} \in \operatorname{ker} a d_{a+x}$. Thus $\left[c_{y}, a+x\right]=0$, so $\left[c_{y}, x\right]=\left[a, c_{y}\right]$. On the other hand, $y=a_{y}^{\prime}+c_{y}^{\prime}$ where $a_{y}^{\prime} \in A$ and $c_{y}^{\prime} \in \operatorname{ker} a d_{x}$ because $y \in M_{x}$. Therefore $\left[c_{y}^{\prime}, x\right]=0$, so we have

$$
[y, x]=\left[a_{y}^{\prime}+c_{y}^{\prime}, x\right]=\left[a_{y}^{\prime}, x\right]+\left[c_{y}^{\prime}, x\right]=\left[a_{y}^{\prime}, x\right] .
$$

Consequently,

$$
\begin{aligned}
{[a, y] } & =\left[a, a_{y}+c_{y}\right] \\
& =\left[a, a_{y}\right]+\left[a, c_{y}\right] \\
& =0+\left[a, c_{y}\right] \\
& =\left[c_{y}, x\right] \\
& =\left[y-a_{y}, x\right] \\
& =[y, x]-\left[a_{y}, x\right] \\
& =\left[a_{y}^{\prime}, x\right]-\left[a_{y}, x\right]
\end{aligned}
$$

$$
\in[A, x] .
$$

Hence $\left[a, M_{a+x} \cap M_{x}\right] \subseteq[A, x]$.
5. Suppose that $L=M_{x}+U=M_{a+x}+U$ for some $a \in A$ and subspace U of L. Since $L=M_{a+x}+U$, we have

$$
\begin{aligned}
{[a, L] } & =\left[a, M_{a+x}+U\right] \\
& =\left[a, A+\operatorname{ker} a d_{a+x}+U\right] \\
& =[a, A]+\left[a, \operatorname{ker} a d_{a+x}\right]+[a, U] \\
& =0+\left[a, \operatorname{ker} a d_{a+x}\right]+[a, U] \\
& =\left[a, \operatorname{ker} a d_{a+x}\right]+[a, U] .
\end{aligned}
$$

On the other hand, since $L=M_{x}+U$ and $\left[a+x, \operatorname{ker} a d_{a+x}\right]=0$, we obtain

$$
\begin{aligned}
{\left[a, \operatorname{ker} a d_{a+x}\right] } & =\left[\operatorname{ker} a d_{a+x}, x\right] \\
& \subseteq[L, x] \\
& =\left[M_{x}+U, x\right] \\
& =\left[A+\operatorname{ker} a d_{x}+U, x\right] \\
& =[A, x]+\left[\operatorname{ker} a d_{x}, x\right]+[U, x] \\
& =[A, x]+0+[U, x] \\
& =[A, x]+[U, x],
\end{aligned}
$$

so $\left[a, \operatorname{ker} a d_{a+x}\right] \subseteq[A, x]+[U, x]$. As a result, we get

$$
\begin{aligned}
{[a, L] } & =\left[a, \operatorname{ker} a d_{a+x}\right]+[a, U] \\
& \subseteq[A, x]+[U, x]+[a, U] \\
& \subseteq[A, x]+[U, x]+[A, U] .
\end{aligned}
$$

Hence $[a, L] \subseteq[U, x]+[A, x]+[A, U]$.
6. Let $a^{\prime} \in A$. By using part (4) of this proposition, we have

$$
\left[a, D_{x}\right]=\left[a, \bigcap_{a \in A} M_{a+x}\right] \subseteq\left[a, M_{a+x} \cap M_{x}\right] \subseteq[A, x] .
$$

Hence $\left[a, D_{x}\right] \subseteq[A, x]$.
7. Suppose that $b_{A}(L)=b(L)$. We will prove that $L=D_{z}$ for all $z \in B_{A}$. Let $z \in B_{A}$ and $a^{\prime} \in A$. Then $b_{A}(z)=b_{A}(L)$. Since A is abelian, we have

$$
\left.\operatorname{rank} a d_{a^{\prime}+z}\right|_{A}=b_{A}\left(a^{\prime}+z\right)=\left.\operatorname{rank} a d_{a^{\prime}+z}\right|_{A}=\left.\operatorname{rank} a d_{z}\right|_{A}=b_{A}(z)=b_{A}(L)=b(L) .
$$

Then $\operatorname{rank} a d_{a^{\prime}+z}=\left.\operatorname{rank} a d_{a^{\prime}+z}\right|_{A}$. Thus $\operatorname{im} a d_{a^{\prime}+z}=\left.\operatorname{im} a d_{a^{\prime}+z}\right|_{A}$, which means, for any $\alpha \in L-A$ there exists $\beta \in A$ such that $a d_{a^{\prime}+z}(\alpha)=a d_{a^{\prime}+z}(\beta)$. Therefore $a d_{a^{\prime}+z}(\alpha-\beta)=$ 0 , so $\alpha-\beta \in \operatorname{ker} a d_{a^{\prime}+z}$. Hence we obtain

$$
\alpha=\beta+(\alpha-\beta) \in A+\operatorname{ker} a d_{a^{\prime}+z}=M_{a^{\prime}+z} .
$$

Since $\alpha \in L-A$ is arbitrary, $L-A \subseteq M_{a^{\prime}+z}$. Moreover, it is obvious that $A \subseteq A+$ $\operatorname{ker} a_{a^{\prime}+z}=M_{a^{\prime}+z}$. As a result, $L=(L-A)+A \subseteq M_{a^{\prime}+z}$, so $L=M_{a^{\prime}+z}$. Since $a^{\prime} \in A$ is arbitrary, we get $L=\bigcap_{a^{\prime} \in A} L=\bigcap_{a^{\prime} \in A} M_{a^{\prime}+z}=D_{z}$ as desired. To show that $\operatorname{dim}[A, L]=b(L)$, we fix $z \in B_{A}$. By using part (6) of this proposition and $L=D_{z}$, we obtain $[A, L]=\left[A, D_{z}\right] \subseteq[A, z]=\left.\operatorname{im} a d_{z}\right|_{A}$. In consequence, we have

$$
\operatorname{dim}[A, L]=\left.\operatorname{dimim} a d_{z}\right|_{A}=b_{A}(L)=b(L)
$$

Lemma 4.1.7. Let L be a finite dimensional nilpotent Lie algebra, A an abelian ideal of L and $x \in B \cap B_{A}$. Suppose that $b(L)=b_{A}(L)+1$ and $L \neq L_{x}$. Then $\operatorname{dim} L / M_{x}=1$ and $M_{x}=M_{a+x}$ for every $a \in A$.

Proof. Let L be a finite dimensional nilpotent Lie algebra, A an abelian ideal of L and $x \in$ $B \cap B_{A}$. Then we have $b(x)=b(L)$ and $b_{A}(x)=b_{A}(L)$. Suppose that $b(L)=b_{A}(L)+1$ and $L \neq L_{x}$. Thus $b(x)=b_{A}(x)+1$, so rank $a d_{x}=\left.\operatorname{rank} a d_{x}\right|_{A}+1$. Note that for any $x \in L$, we know that ker $\left.a d_{x}\right|_{A}=A \cap \operatorname{ker} a d_{x} \subseteq \operatorname{ker} a d_{x}$. Define

$$
D:=\operatorname{span}\left\{\alpha\left|\alpha \in \operatorname{ker} a d_{x}-\operatorname{ker} a d_{x}\right|_{A}\right\} .
$$

Next, we will show that $A \cap \operatorname{ker} a d_{x}=\left.\operatorname{ker} a d_{x}\right|_{A}=A \cap \operatorname{ker} a d_{a+x}$. It is clear that $A \cap \operatorname{ker} a d_{x}=$ $\left.\operatorname{ker} a d_{x}\right|_{A}$. To show that ker $\left.a d_{x}\right|_{A}=A \cap \operatorname{ker} a d_{a+x}$, let $a \in A$. Let $\left.y \in \operatorname{ker} a d_{x}\right|_{A}$. Then $[x, y]=0$ and $y \in A$, so $[a, y]=0$. Thus $[a+x, y]=[a, y]+[x, y]=0$. Therefore $y \in A \cap \operatorname{ker} a d_{a+x}$, so ker $\left.a d_{x}\right|_{A} \subseteq A \cap \operatorname{ker} a d_{a+x}$. Conversely, let $y \in A \cap \operatorname{ker} a d_{a+x}$. Then $[a+x, y]=0$ and $y \in A$, so $[a, y]=0$. Thus $[x, y]=[a, y]+[x, y]=[a+x, y]=0$. Hence $\left.y \in \operatorname{ker} a d_{x}\right|_{A}$, so $\left.\operatorname{ker} a d_{x}\right|_{A} \supseteq A \cap \operatorname{ker} a d_{a+x}$. Consequently, we have $A \cap \operatorname{ker} a d_{x}=\left.\operatorname{ker} a d_{x}\right|_{A}=A \cap \operatorname{ker} a d_{a+x}$.

Moreover, since ker $\left.a d_{x}\right|_{A} \subseteq \operatorname{ker} a d_{x}$, we get

$$
\operatorname{dim} D=\operatorname{nullity} a d_{x}-\left.\operatorname{nullity} a d_{x}\right|_{A} .
$$

On the other hand, because $A \cap \operatorname{ker} a d_{x}=\left.\operatorname{ker} a d_{x}\right|_{A}$, we have $M_{x}=A+\operatorname{ker} a d_{x}=A \oplus D$. Therefore $\operatorname{dim} M_{x}=\operatorname{dim} A+\operatorname{dim} D$. Additionally, we know that

$$
\begin{aligned}
& \operatorname{dim} L=\text { nullity } a d_{x}+\operatorname{rank} a d_{x}, \\
& \operatorname{dim} A=\left.\operatorname{nullity} a d_{x}\right|_{A}+\left.\operatorname{rank} a d_{x}\right|_{A} .
\end{aligned}
$$

Therefore we have

$$
\operatorname{dim} L-\operatorname{dim} A=\left(\text { nullity } a d_{x}-\left.\operatorname{nullity} a d_{x}\right|_{A}\right)+\left(\operatorname{rank} a d_{x}-\left.\operatorname{rank} a d_{x}\right|_{A}\right)=\operatorname{dim} D+1,
$$

so we get

$$
\operatorname{dim} L / M_{x}=\operatorname{dim} L-\operatorname{dim} M_{x}=\operatorname{dim} L-(\operatorname{dim} A+\operatorname{dim} D)=1 .
$$

In order to prove that $M_{x}=M_{a+x}$ for every $a \in A$, assume that there exists $a \in A$ such that M_{a+x} is not contained in M_{x}. Since $\operatorname{dim} L=\operatorname{dim} M_{x}+1$, we have $L_{x}=\operatorname{span}\left\{M_{a+x} \mid a \in A\right\}=$ L, which contradicts the assumption $L \neq L_{x}$. Hence $M_{a+x} \subseteq M_{x}$ for every $a \in A$. Conversely, suppose that there exists $a \in A$ such that $M_{a+x} \nsubseteq M_{x}$. Then $A+\operatorname{ker} a d_{a+x} \nsubseteq A+\operatorname{ker} a d_{x}$. Let V_{a+x} and V_{x} be complementary subspaces of A in M_{a+x} and M_{x}, respectively. Then $M_{a+x}=A \oplus V_{a+x}$ and $M_{x}=A \oplus V_{x}$. Because $M_{a+x} \nsubseteq M_{x}$, we know that $V_{a+x} \nsubseteq V_{x}$. Since $A \cap \operatorname{ker} a d_{x}=A \cap \operatorname{ker} a d_{a+x}$, we have

$$
\operatorname{ker} a d_{a+x}=\left(A \cap \operatorname{ker} a d_{a+x}\right) \oplus V_{a+x}=\left(A \cap \operatorname{ker} a d_{x}\right) \oplus V_{a+x} \nsubseteq\left(A \cap \operatorname{ker} a d_{x}\right) \oplus V_{x}=\operatorname{ker} a d_{x}
$$

Therefore nullity $a d_{a+x}<$ nullity $a d_{x}$, so we obtain

$$
b(x)=\operatorname{rank} a d_{x}=\operatorname{dim} L-\text { nullity } a d_{x}<\operatorname{dim} L-\operatorname{nullity} a d_{a+x}=\operatorname{rank} a d_{a+x}=b(a+x) .
$$

Thus $b(x)<b(a+x)$. Since $x \in B, b(x)=b(L)$, so we have $b(a+x)>b(L)$, which is a contradiction. Consequently, $M_{x}=M_{a+x}$ for every $a \in A$.

Theorem 4.1.8. Let L be a finite dimensional nilpotent Lie algebra and A an abelian ideal of L. Suppose that $b(L) \leq b_{A}(L)+1$. Then $\left.\operatorname{im} a d_{x}\right|_{A}$ is an ideal of L for every $x \in B_{A}$.

Proof. Let L be a finite dimensional nilpotent Lie algebra and A an abelian ideal of L. Suppose
that $b(L) \leq b_{A}(L)+1$. Let $x \in B_{A}$. Since $b_{A}(L) \leq b(L)$, we have $b_{A}(L) \leq b(L) \leq b_{A}(L)+1$, so

$$
b(L)=b_{A}(L) \quad \text { or } \quad b(L)=b_{A}(L)+1 .
$$

First, we will claim that $\left.\operatorname{im} a d_{a+x}\right|_{A}$ is an ideal of M_{a+x} for every $a \in A$. Let $a \in A$. Then it is obvious that $\left.\operatorname{im} a d_{a+x}\right|_{A} \subseteq A \subseteq A+\operatorname{ker} a d_{a+x}=M_{a+x}$. Let $a^{\prime} \in A$ and $y \in M_{a+x}$. Then $\left.\left[a+x, a^{\prime}\right] \in \operatorname{im} a d_{a+x}\right|_{A}$ and $y=a_{y}+c_{y}$ where $a_{y} \in A$ and $c_{y} \in \operatorname{ker} a d_{a+x}$. Thus $\left[c_{y}, a+x\right]=0$. Note that $\left[\left[a_{y}, a+x\right], a^{\prime}\right]=0$ because A is an abelian ideal. Therefore we get

$$
\begin{aligned}
{\left[y,\left[a+x, a^{\prime}\right]\right] } & =\left[[y, a+x], a^{\prime}\right]+\left[a+x,\left[y, a^{\prime}\right]\right] \\
& =\left[\left[a_{y}+c_{y}, a+x\right], a^{\prime}\right]+\left[a+x,\left[y, a^{\prime}\right]\right] \\
& =\left[\left[a_{y}, a+x\right], a^{\prime}\right]+\left[\left[c_{y}, a+x\right], a^{\prime}\right]+\left[a+x,\left[y, a^{\prime}\right]\right] \\
& =0+\left[0, a^{\prime}\right]+\left[a+x,\left[y, a^{\prime}\right]\right] \\
& \in[a+x, A] \\
& =\left.\operatorname{im} a d_{a+x}\right|_{A} .
\end{aligned}
$$

Hence im $\left.a d_{a+x}\right|_{A}$ is an ideal of M_{a+x} for every $a \in A$.
If $L=L_{x}=\operatorname{span}\left\{M_{a+x} \mid a \in A\right\}$, then $\left.\operatorname{im} a d_{x}\right|_{A}=\left.\operatorname{imad} d_{a+x}\right|_{A}$ is an ideal of L by previous claim. Suppose that $L \neq L_{x}$. If $b(L)=b_{A}(L)$, then by Proposition 4.1.6 (7), we have $L=D_{x}$. Thus $L=D_{x} \subseteq M_{x} \subseteq L_{x}$. It is clear that $L_{x} \subseteq L$, so $L=L_{x}$, which contradicts $L \neq L_{x}$. Therefore $b(L)=b_{A}(L)+1$. Next, we need to show that $x \in B$. Assume $x \notin B$. Then $b(x) \neq b(L)$, so we have

$$
b_{A}(x) \leq b(x) \leq b(L)-1=b_{A}(L)=b_{A}(x),
$$

which implies $b(x)=b_{A}(x)$, so $\operatorname{rank} a d_{x}=\left.\operatorname{rank} a d_{x}\right|_{A}$. Thus $\operatorname{im} a d_{x}=\left.\operatorname{im} a d_{x}\right|_{A}$, which means, for any $\alpha \in L-A$ there exists $\beta \in A$ such that $a d_{x}(\alpha)=a d_{x}(\beta)$. Therefore $a d_{x}(\alpha-\beta)=0$, so $\alpha-\beta \in \operatorname{ker} a d_{x}$. As a result,

$$
\alpha=\beta+(\alpha-\beta) \in A+\operatorname{ker} a d_{x}=M_{x} .
$$

Since $\alpha \in L-A$ is arbitrary, $L-A \subseteq M_{x}$. Moreover, it is easy to see that $A \subseteq A+\operatorname{ker} a d_{x}=M_{x}$. Consequently, $L=(L-A)+A \subseteq M_{x}$. Because $M_{x} \subseteq L_{x}, L \subseteq L_{x}$. Therefore $L=L_{x}$, which again contradicts $L \neq L_{x}$. Hence $x \in B$. In conclusion, we know that $x \in B \cap B_{A}$. By Lemma 4.1.7, $\operatorname{dim} L / M_{x}=1$ and $M_{x}=M_{a+x}$ for every $a \in A$, so $D_{x}=\bigcap_{a \in A} M_{a+x}=M_{x}$. Next, we will show that $[A, x]=\left[A, M_{x}\right]$. By Proposition 4.1.6 (6), $\left[A, D_{x}\right] \subseteq[A, x]$. Since $D_{x}=M_{x}$, we get $\left[A, M_{x}\right]=\left[A, D_{x}\right] \subseteq[A, x]$. On the other hand, we let $a \in A$. Then $[a, x] \in[A, x]$. Because
$x \in \operatorname{ker} a d_{x}$, we obtain

$$
[a, x] \in\left[A, \operatorname{ker} a d_{x}\right] \subseteq\left[A, A+\operatorname{ker} a d_{x}\right]=\left[A, M_{x}\right]
$$

Thus $[A, x] \subseteq\left[A, M_{x}\right]$. Hence $[A, x]=\left[A, M_{x}\right]$. Next, we will claim that $M_{x}=A+\operatorname{ker} a d_{x}$ is a Lie subalgebra of L. It is clear that M_{x} is a subspace of L. Let $m_{1}, m_{2} \in M_{x}$. Then there exist $a_{1}, a_{2} \in A$ and $c_{1}, c_{2} \in \operatorname{ker} a d_{x}$ such that $m_{i}=a_{i}+c_{i}$ for $i=1,2$. We observe that $a d_{x}\left(\left[c_{1}, c_{2}\right]\right)=\left[x,\left[c_{1}, c_{2}\right]\right]=\left[\left[x, c_{1}\right], c_{2}\right]+\left[c_{1},\left[x, c_{2}\right]\right]=0$, so $\left[c_{1}, c_{2}\right] \in \operatorname{ker} a d_{x}$. Therefore we have

$$
\left[m_{1}, m_{2}\right]=\left[a_{1}+c_{1}, a_{2}+c_{2}\right]=\left[a_{1}, a_{2}\right]+\left[a_{1}, c_{2}\right]+\left[c_{1}, a_{2}\right]+\left[c_{1}, c_{2}\right] \in A+\operatorname{ker} a d_{x}=M_{x}
$$

Since $m_{1}, m_{2} \in M_{x}$ are arbitrary, we get $\left[M_{x}, M_{x}\right] \subseteq M_{x}$, which means M_{x} is closed under bracket. Thus M_{x} is a Lie subalgebra of L. Since $\operatorname{dim} L / M_{x}=1$, there exists $y \in L-M_{x}$ such that $L=M_{x} \oplus \operatorname{span}\{y\}$, which means $\operatorname{span}\{y\}$ is the complementary subspace of M_{x} in L. To show that M_{x} is an ideal of L, we suppose that M_{x} is not an ideal of L. Then there exist $m \in M_{x}$ and $z \in L$ such that $[m, z] \notin M_{x}$. Since $L=M_{x} \oplus \operatorname{span}\{y\}$, there exist $m^{\prime} \in M_{x}$ and $\alpha \in \mathbb{F}$ such that $z=m^{\prime}+\alpha y$. We observe that

$$
\left[m, m^{\prime}\right]+\alpha[m, y]=\left[m, m^{\prime}+\alpha y\right]=[m, z] \notin M_{x}
$$

Since $\left[m, m^{\prime}\right] \in M_{x}$, we obtain $\alpha \neq 0$ and $[m, y] \notin M_{x}$, so $[m, y]=m^{\prime \prime}+\beta y$ where $m^{\prime \prime} \in M_{x}$ and $\beta \neq 0$. Consequently, we get $a d_{m}^{N}(y) \neq 0$ for any $N \in \mathbb{Z}_{>0}$ which contradicts nilpotency of L. Hence M_{x} is an ideal of L. Because we know that $\left.\operatorname{im} a d_{x}\right|_{A}=[A, x]=\left[A, M_{x}\right]$ and A, M_{x} are ideals of $L,\left.\operatorname{im} a d_{x}\right|_{A}$ is also an ideal of L. Since $x \in B_{A}$ is arbitrary, $\left.\operatorname{im} a d_{x}\right|_{A}$ is an ideal of L for every $x \in B_{A}$.

Lemma 4.1.9. Let L be a finite dimensional Lie algebra and A an ideal of L such that $b_{A}(L)>1$. Let $x \in B_{A}$ be given. Suppose that there exists $y \in L$ such that y and $x+y$ do not satisfy

$$
\begin{equation*}
b_{A}(z)>1 \quad \text { and } \quad 2 b_{A}(z) \geq b_{A}(L) \tag{4.1}
\end{equation*}
$$

Then $b_{A}(y)=b_{A}(x+y)=1$ and $b_{A}(L)=2$.
Proof. Let L be a finite dimensional Lie algebra and A an ideal of L such that $b_{A}(L)>1$. Let $x \in B_{A}$ be given. Then $b_{A}(x)=b_{A}(L)$. Suppose that there exists $y \in L$ such that y and $x+y$ do not satisfy

$$
\begin{equation*}
b_{A}(z)>1 \quad \text { and } \quad 2 b_{A}(z) \geq b_{A}(L) \tag{4.1}
\end{equation*}
$$

First, we claim that $b_{A}(L)=2$ by using contrapositive. Assume that $b_{A}(L) \neq 2$. Then we have $b_{A}(L) \geq 3$ since $b_{A}(L)>1$. In order to show that for all $y \in L, y$ or $x+y$ satisfies (4.1), we let $y \in L$ be such that y does not satisfy (4.1). Then we get $b_{A}(y) \leq 1$ or $2 b_{A}(y)<b_{A}(L)$. Note that if $b_{A}(y) \leq 1$, then we also get $2 b_{A}(y) \leq 2<3 \leq b_{A}(L)$. Thus we can assume that $2 b_{A}(y)<b_{A}(L)$. Then we apply the fact that

$$
\operatorname{rank}(A+B) \leq \operatorname{rank} A+\operatorname{rank} B
$$

where A and B are linear transformations, so we get

$$
\left.\operatorname{rank} a d_{x}\right|_{A} \leq \operatorname{rank}\left(\left.a d_{x}\right|_{A}+\left.a d_{y}\right|_{A}\right)+\operatorname{rank}\left(-\left.a d_{y}\right|_{A}\right)
$$

Because $\left.a d_{x}\right|_{A}+\left.a d_{y}\right|_{A}=\left.a d_{x+y}\right|_{A}$ and $\operatorname{rank}\left(-\left.a d_{y}\right|_{A}\right)=\left.\operatorname{rank} a d_{y}\right|_{A}$, we have

$$
\begin{equation*}
\left.\operatorname{rank} a d_{x}\right|_{A} \leq\left.\operatorname{rank} a d_{x+y}\right|_{A}+\left.\operatorname{rank} a d_{y}\right|_{A} . \tag{4.2}
\end{equation*}
$$

Thus rank $\left.a d_{x+y}\right|_{A} \geq\left.\operatorname{rank} a d_{x}\right|_{A}-\left.\operatorname{rank} a d_{y}\right|_{A}$, which also means $b_{A}(x+y) \geq b_{A}(x)-b_{A}(y)$. Since $2 b_{A}(y)<b_{A}(L)$ and $b_{A}(x)=b_{A}(L)$, we obtain

$$
b_{A}(x+y) \geq b_{A}(x)-b_{A}(y)>b_{A}(L)-\frac{b_{A}(L)}{2}>\frac{b_{A}(L)}{2} .
$$

Therefore $2 b_{A}(x+y)>b_{A}(L)$. We also get $b_{A}(x+y)>\frac{b_{A}(L)}{2} \geq \frac{3}{2}>1$. Hence $x+y$ satisfies (4.1). Consequently, $b_{A}(L)=2$ as we claimed.

Next, we will prove that $b_{A}(x)=b_{A}(x+y)=1$. Since y and $x+y$ do not satisfy (4.1) and $b_{A}(L)=2$, we have

$$
b_{A}(y) \leq 1 \quad \text { or } \quad 2 b_{A}(y)<b_{A}(L)=2
$$

and

$$
b_{A}(x+y) \leq 1 \quad \text { or } \quad 2 b_{A}(x+y)<b_{A}(L)=2,
$$

which can be reduced to $b_{A}(y) \leq 1$ and $b_{A}(x+y) \leq 1$. Suppose that $b_{A}(y)=0$. This means $\left.\operatorname{im} a d_{y}\right|_{A}=\{0\}$, so we have

$$
b_{A}(x+y)=\operatorname{rank} a d_{x+y}\left|A=\operatorname{rank} a d_{x}\right|_{A}=b_{A}(x)=b_{A}(L)=2
$$

which contradicts $b_{A}(x+y) \leq 1$. Hence $b_{A}(y)=1$. Next, we assume that $b_{A}(x+y)=0$. Then $\left.\operatorname{rank} a d_{x+y}\right|_{A}=0$. By applying this to (4.2), we get rank $\left.a d_{x}\right|_{A} \leq\left.\operatorname{rank} a d_{y}\right|_{A}$. Therefore

$$
b_{A}(y)=\left.\operatorname{rank} a d_{y}\right|_{A} \geq\left.\operatorname{rank} a d_{x}\right|_{A}=b_{A}(x)=b_{A}(L)=2,
$$

which contradicts $b_{A}(y)=1$. Hence $b_{A}(x+y)=1$. As a result, we obtain $b_{A}(y)=b_{A}(x+y)=1$ and $b_{A}(L)=2$ as desired.

Theorem 4.1.10. Let L be a finite dimensional nilpotent Lie algebra and A an abelian ideal of L such that $b_{A}(L)>1$. Suppose that $[L, z] \subseteq[A, L]$ for all $z \in L$ satisfying

$$
\begin{equation*}
b_{A}(z)>1 \quad \text { and } \quad 2 b_{A}(z) \geq b_{A}(L) \tag{4.1}
\end{equation*}
$$

Then $[L, L]=\left[C_{L}(A), L\right]$. In addition, if $A=C_{L}(A)$ and $b(L)=b_{A}(L)$, then $\operatorname{dim}[L, L]=$ $b_{A}(L)$.

Proof. Let L be a finite dimensional nilpotent Lie algebra and A an abelian ideal of L. Let $b_{A}(L)>1$ and suppose that $[L, z] \subseteq[A, L]$ for all $z \in L$ satisfying

$$
\begin{equation*}
b_{A}(z)>1 \quad \text { and } \quad 2 b_{A}(z) \geq b_{A}(L) \tag{4.1}
\end{equation*}
$$

Fix an $x \in B_{A}$. Then we have the following two cases to consider.
The first case is y or $x+y$ satisfy (4.1) for every $y \in L$. Then by assumption, $[L, y] \subseteq$ $[A, L]$ or $[L, x+y] \subseteq[A, L]$. Next, we will show that $[L, x+y] \subseteq[A, L]$ also implies $[L, y] \subseteq$ $[A, L]$. Suppose that $[L, x+y] \subseteq[A, L]$. Since $x \in B_{A}, b_{A}(x)=b_{A}(L)>1$. It is clear that $2 b_{A}(x)>b_{A}(x)=b_{A}(L)$, so x also satisfies (4.1). Thus $[L, x] \subseteq[A, L]$. To show $[L, y] \subseteq[A, L]$, we let $z \in L$. Then $[z, x+y] \in[L, x+y] \subseteq[A, L]$ and $[z, x] \in[L, x] \subseteq[A, L]$, so we get $[z, y]=[z, x+y]-[z, x] \in[A, L]$. Since $z \in L$ is arbitrary, $[L, y] \in[A, L]$. Hence we have $[L, y] \in[A, L]$ for any $y \in L$. Because A is abelian, $A \subseteq C_{L}(A)$, so $[A, L] \subseteq\left[C_{L}(A), L\right]$. Thus $[L, y] \subseteq[A, L] \subseteq\left[C_{L}(A), L\right]$ for every $y \in L$. Since $y \in L$ is arbitrary, $[L, L] \subseteq\left[C_{L}(A), L\right]$. Conversely, it is easy to see that $\left[C_{L}(A), L\right] \subseteq[L, L]$. Hence $[L, L]=\left[C_{L}(A), L\right]$.

For the second case, assume that there exists $y \in L$ such that y and $x+y$ do not satisfy (4.1). By Lemma 4.1.9, we have

$$
b_{A}(y)=b_{A}(x+y)=1 \quad \text { and } \quad b_{A}(L)=2 .
$$

We have to claim that $[L, z] \subseteq\left[C_{L}(A), L\right]$ for all $z \in L$ such that $b_{A}(z) \neq 1$. Let $z \in L$ be such that $b_{A}(z) \neq 1$. If $b_{A}(z)=0$, then $z \in C_{L}(A)$, so $[L, z] \subseteq\left[C_{L}(A), L\right]$. If $b_{A}(z)=2=b_{A}(L)$, then z satisfies (4.1), so $[L, z] \subseteq[A, L]$ by assumption. Since A is abelian, we have $A \subseteq C_{L}(A)$. Therefore $[L, z] \subseteq[A, L] \subseteq\left[C_{L}(A), L\right]$. Hence $[L, z] \subseteq\left[C_{L}(A), L\right]$ for all $z \in L$ such that $b_{A}(z) \neq 1$. In order to show that $[L, L] \subseteq\left[C_{L}(A), L\right]$, suppose that $[L, L] \nsubseteq\left[C_{L}(A), L\right]$. Then there exist $u, v \in L$ such that $[u, v] \notin\left[C_{L}(A), L\right]$. By previous claim, we have $b_{A}(u)=b_{A}(v)=1$. Note that

$$
[u+v, v]=[u-v, v]=[u, v] \notin\left[C_{L}(A), L\right],
$$

so we also have $b_{A}(u+v)=b_{A}(u-v)=1$. Since $x \in B_{A}, b_{A}(x)=b_{A}(L)=2$. Therefore $[x, v],[u, x] \in\left[C_{L}(A), L\right]$ by previous claim. Thus we have

$$
\begin{aligned}
{[x+u, v] } & =[x, v]+[u, v] \notin\left[C_{L}(A), L\right], \\
{[u, x+v] } & =[u, x]+[u, v] \notin\left[C_{L}(A), L\right], \\
{[x+u+v, v] } & =[x, v]+[u+v, v] \notin\left[C_{L}(A), L\right],
\end{aligned}
$$

so $b_{A}(x+u)=b_{A}(x+v)=b_{A}(x+u+v)=1$. Note that $u-v \notin C_{L}(A)$ because $b_{A}(u-v)=1$. In summary, we have

$$
b_{A}(u)=b_{A}(v)=b_{A}(u+v)=b_{A}(u-v)=b_{A}(x+u)=b_{A}(x+v)=b_{A}(x+u+v)=1 .
$$

Hence we have $u, v, u+v, x+u, x+v, x+u+v \in T_{A}$, which contradicts Proposition 4.1.4. Therefore $[L, L] \subseteq\left[C_{L}(A), L\right]$. Conversely, it is clear that $\left[C_{L}(A), L\right] \subseteq[L, L]$. Hence $[L, L]=$ $\left[C_{L}(A), L\right]$.

In addition, assume that we also have $A=C_{L}(A)$ and $b(L)=b_{A}(L)$. Then $[L, L]=$ $\left[C_{L}(A), L\right]=[A, L]$. Consequently, $\operatorname{dim}[L, L]=\operatorname{dim}[A, L]=b_{A}(L)$ by Proposition 4.1.6(7).

Notice that there are relations between set of elements of breadth 0 and 1 , as we show in the next lemma.

Lemma 4.1.11. Let L be a finite dimensional Lie algebra and A an ideal of L. Suppose that $b_{A}(L)=1$. Then the following hold:

1. $L=T_{A} \cup C_{L}(A)$.
2. $T_{A} \cap C_{L}(A)=\emptyset$.
3. $T_{A} \cup\{0\}$ is a subspace of L.

Proof. Let L be a finite dimensional Lie algebra and A an ideal of L. Suppose that $b_{A}(L)=1$.

1. Let $x \in L$. Then we have $b_{A}(x)=0$ or $b_{A}(x)=1$, that is $x \in C_{L}(A)$ or $x \in T_{A}$. Therefore $L \subseteq T_{A} \cup C_{L}(A)$. Conversely, we know that $T_{A} \subseteq L$ and $C_{L}(A) \subseteq L$, so $T_{A} \cup C_{L}(A) \subseteq L$. Hence $L=T_{A} \cup C_{L}(A)$.
2. It is clear that $T_{A} \cap C_{L}(A)=\emptyset$ by their definitions.
3. Note that $C_{L}(A)=\bigcap_{a \in A} \operatorname{ker} a d_{a}$. Since ker $a d_{a}$ is a subspace of L for all $a \in A, C_{L}(A)$ is also a subspace of L. Because L is finite dimensional, so is $C_{L}(A)$. Therefore we write $C_{L}(A)=\operatorname{span}\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ and extend this basis to $L=\operatorname{span}\left\{c_{1}, c_{2}, \ldots, c_{n}, t_{1}, t_{2}, \ldots, t_{m}\right\}$. Then we have $T_{A} \cup\{0\}=\operatorname{span}\left\{t_{1}, t_{2}, \ldots, t_{m}\right\}$ and $L=C_{L}(A) \oplus\left(T_{A} \cup\{0\}\right)$. Hence $T_{A} \cup\{0\}$ is a subspace of L.

In next lemma, we prove a few properties of maximal abelian ideal which we are going to use in our main theorem.

Lemma 4.1.12. Let L be a finite dimensional nilpotent Lie algebra and A a maximal abelian ideal of L. Then the following hold:

1. $\operatorname{ker} a d_{a}=A$ for all $a \in A-Z(L)$.
2. $C_{L}(A)=A$.
3. $Z(L) \subseteq A$.

Proof. Let L be a finite dimensional nilpotent Lie algebra and A a maximal abelian ideal of L.

1. Let $a \in A-Z(L)$. Then ker $a d_{a} \neq L$ because $a \notin Z(L)$. Since $a \in A$ and A is abelian, we have $A \subseteq \operatorname{ker} a d_{a}$. Next, we will show that ker $a d_{a}$ is an ideal of L. Let $x \in \operatorname{ker} a d_{a}$ and $y \in L$. Then $[a, x]=0$, so we have

$$
a d_{a}([x, y])=[a,[x, y]]=[[a, x], y]+[x,[a, y]]=[x,[a, y]] \in A \subseteq \operatorname{ker} a d_{a}
$$

Thus ker $a d_{a}$ is an ideal of L that contains A. Since A is maximal and ker $a d_{a} \neq L$, $\operatorname{ker} a d_{a}=A$. Hence $A=\operatorname{ker} a d_{a}$ for all $a \in A-Z(L)$.
2. Observe that if $a \in Z(L)$, then we have ker $a d_{a}=L$. Consequently, we obtain

$$
\begin{aligned}
C_{L}(A) & =\bigcap_{a \in A} \operatorname{ker} a d_{a} \\
& =\left(\bigcap_{a \in A-Z(L)} \operatorname{ker} a d_{a}\right) \cap\left(\bigcap_{a \in A \cap Z(L)} \operatorname{ker} a d_{a}\right) \\
& =\left(\bigcap_{a \in A-Z(L)} A\right) \cap\left(\bigcap_{a \in A \cap Z(L)} L\right) \\
& =A \cap L \\
& =A
\end{aligned}
$$

Hence $C_{L}(A)=A$ as we want.
3. Let $x \in Z(L)$. Then we get $a d_{x}=0$, so $b(x)=0$. Since $b_{A}(x) \leq b(x)$, we have $b_{A}(x)=0$. Thus $x \in C_{L}(A)$. By part two of this lemma, we know that $C_{L}(A)=A$, so $x \in C_{L}(A)=A$. Hence $Z(L) \subseteq A$.

Theorem 4.1.13. Let L be a finite dimensional nilpotent Lie algebra and A an abelian ideal of L. Suppose that $b_{A}(L)=1$. Then

1. $\operatorname{dim}(A /(A \cap Z(L)))=1$ and ker $\left.a d_{x}\right|_{A}=\left.\operatorname{ker} a d_{y}\right|_{A} \quad$ for all $x, y \in L-C_{L}(A)$.

In addition, if A is a maximal abelian ideal of L, then $\operatorname{dim}(L / Z(L))=b(L)+1$.
or
2. $\operatorname{dim}[A, L]=1$. In addition, if A is a maximal abelian ideal of L, then $b(L /[A, L])<b(L)$.

Proof. Let L be a finite dimensional nilpotent Lie algebra and A an abelian ideal of L. Suppose that $b_{A}(L)=1$. By Lemma 4.1.11, we know that $L=T_{A} \cup C_{L}(A), T_{A} \cap C_{L}(A)=\emptyset$ and $T_{A} \cup\{0\}$ is a subspace of L. As a result, we have $T_{A}=L-C_{L}(A)$. Define $T=\operatorname{span}\{x, y\}$ and

$$
\bar{T}=\left(T+C_{L}(A)\right) / C_{L}(A) \cong T /\left(T \cap C_{L}(A)\right)
$$

where $x, y \in T_{A}$, as defined in Theorem 4.1.3. Since $T_{A} \cap C_{L}(A)=\emptyset$ and $T \subseteq T_{A} \cup\{0\}$, we have

$$
\begin{aligned}
T \cap C_{L}(A) & \subseteq\left(T_{A} \cup\{0\}\right) \cap C_{L}(A) \\
& =\left(T_{A} \cap C_{L}(A)\right) \cup\left(\{0\} \cap C_{L}(A)\right) \\
& =\emptyset \cup\{0\} \\
& =\{0\}
\end{aligned}
$$

so $T \cap C_{L}(A)=\{0\}$. Hence $\bar{T} \cong T /\left(T \cap C_{L}(A)\right) \cong T$.
Suppose that $T_{A} \cup\{0\}$ is not 1-dimensional. Then we get $\operatorname{dim} T_{A} \cup\{0\} \geq 2$, so there exist $x, y \in T_{A}$ such that $T=\operatorname{span}\{x, y\}$ is 2 -dimensional. Thus $\operatorname{dim} \bar{T}=\operatorname{dim} T=2$ because $\bar{T} \cong T$. Since $\{x, y\}$ is linearly independent and $T_{A} \cup\{0\}$ is a subspace of L, we have $x+y \in T_{A}$. By Theorem 4.1.3 (2), we know that

$$
\text { either }\left.\quad \operatorname{im} a d_{x}\right|_{A} \neq\left.\operatorname{im} a d_{y}\right|_{A} \quad \text { or }\left.\quad \operatorname{ker} a d_{x}\right|_{A} \neq\left.\operatorname{ker} a d_{y}\right|_{A}
$$

so we consider the following two cases:

1. $\left.\operatorname{im} a d_{x}\right|_{A}=\left.\operatorname{im} a d_{y}\right|_{A}=: K$ and $\left.\operatorname{ker} a d_{x}\right|_{A} \neq\left.\operatorname{ker} a d_{y}\right|_{A}$. Let $z \in T_{A}$. Then

$$
\left.\operatorname{ker} a d_{z}\right|_{A} \neq\left.\operatorname{ker} a d_{x}\right|_{A} \quad \text { or }\left.\quad \operatorname{ker} a d_{z}\right|_{A} \neq\left.\operatorname{ker} a d_{y}\right|_{A}
$$

Without loss of generality, we suppose that ker $\left.a d_{z}\right|_{A} \neq\left.\operatorname{ker} a d_{x}\right|_{A}$. Next we will show that $x+z \in T_{A}$. Since $x, z \in T_{A}$ and $T_{A} \cup\{0\}$ is a subspace of L, we have $x+z \in T_{A} \cup\{0\}$. If $x+z=0$, then $x=-z$, so we get $\left.\operatorname{ker} a d_{x}\right|_{A}=\left.\operatorname{ker} a d_{-z}\right|_{A}=\left.\operatorname{ker} a d_{z}\right|_{A}$, which is a contradiction. Therefore $x+z \in T_{A}$. By Theorem 4.1.3 (2) with "either or", we have
$\left.\operatorname{im} a d_{z}\right|_{A}=\left.\operatorname{im} a d_{x}\right|_{A}$, so $[A, z]=\left.\operatorname{im} a d_{z}\right|_{A}=\left.\operatorname{im} a d_{x}\right|_{A}=K$. Since $z \in T_{A}$ is arbitrary, $\left[A, T_{A}\right]=K$. On the other hand, if $z \in C_{L}(A)$, then $[A, z]=\{0\}$. Because $z \in C_{L}(A)$ is arbitrary, $\left[A, C_{L}(A)\right]=0$. Consequently, we obtain

$$
[A, L]=\left[A, T_{A} \cup C_{L}(A)\right]=\operatorname{span}\left\{\left[A, T_{A}\right],\left[A, C_{L}(A)\right]\right\}=\operatorname{span}\{K, 0\}=K .
$$

Hence $\operatorname{dim}[A, L]=\operatorname{dim} K=b_{A}(x)=1$.
2. $\left.\operatorname{im} a d_{x}\right|_{A} \neq\left.\operatorname{im} a d_{y}\right|_{A}$ and $\left.\operatorname{ker} a d_{x}\right|_{A}=\left.\operatorname{ker} a d_{y}\right|_{A}=: K^{\prime}$. Let $z \in T_{A}$. Then

$$
\left.\operatorname{im} a d_{z}\right|_{A} \neq\left.\operatorname{im} a d_{x}\right|_{A} \quad \text { or }\left.\quad \operatorname{im} a d_{z}\right|_{A} \neq\left.\operatorname{im} a d_{y}\right|_{A} .
$$

Without loss of generality, we assume that $\left.\operatorname{im} a d_{z}\right|_{A} \neq\left.\operatorname{im} a d_{x}\right|_{A}$. Next we will show that $x+z \in T_{A}$. Since $x, z \in T_{A}$ and $T_{A} \cup\{0\}$ is a subspace of L, we have $x+z \in T_{A} \cup\{0\}$. If $x+z=0$, then $x=-z$, so we get $\left.\operatorname{im} a d_{x}\right|_{A}=\left.\operatorname{im} a d_{-z}\right|_{A}=\left.\operatorname{im} a d_{z}\right|_{A}$, which is a contradiction. Therefore $x+z \in T_{A}$. By Theorem 4.1.3 (2) with "either or", we have $\left.\operatorname{ker} a d_{z}\right|_{A}=\left.\operatorname{ker} a d_{x}\right|_{A}=K^{\prime}$. Since $z \in T_{A}$ is arbitrary, we get ker $\left.a d_{z}\right|_{A}=K^{\prime}$ for any $z \in T_{A}=L-C_{L}(A)$. Hence ker $\left.a d_{x}\right|_{A}=\left.\operatorname{ker} a d_{y}\right|_{A}$ for all $x, y \in L-C_{L}(A)$.

On the other hand, we assume that $T_{A} \cup\{0\}$ is 1-dimensional. Then $T_{A} \cup\{0\}=T \cong \bar{T}$, so T and \bar{T} are also 1-dimensional for every $x, y \in T_{A}$. By Theorem 4.1.3 (1), we have

$$
\left.\operatorname{im} a d_{x}\right|_{A}=\left.\operatorname{im} a d_{y}\right|_{A} \quad \text { and }\left.\quad \operatorname{ker} a d_{x}\right|_{A}=\left.\operatorname{ker} a d_{y}\right|_{A}
$$

for every $x, y \in T_{A}$. Note that if $z \in C_{L}(A)$, then $[A, z]=\{0\}$. Therefore $[A, L]=\left.\left.\operatorname{imad}\right|_{x}\right|_{A}$ for some $x \in T_{A}$, so $\operatorname{dim}[A, L]=b_{A}(x)=1$. Hence $\operatorname{dim}[A, L]=1$ and $\left.\operatorname{ker} a d_{x}\right|_{A}=\left.\operatorname{ker} a d_{y}\right|_{A}$ for every $x, y \in L-C_{L}(A)$.

Next, we will claim that ker $\left.a d_{x}\right|_{A}=\left.\operatorname{ker} a d_{y}\right|_{A}$ for all $x, y \in L-C_{L}(A) \operatorname{implies} \operatorname{dim}(A /(A \cap$ $Z(L)))=1$. Suppose that $\left.\operatorname{ker} a d_{x}\right|_{A}=\left.\operatorname{ker} a d_{y}\right|_{A}$ for all $x, y \in L-C_{L}(A)$. Note that for every $z \in C_{L}(A)$, we have ker $\left.a d_{z}\right|_{A}=A$. We also know that $Z(L)=\bigcap_{x \in L} \operatorname{ker} a d_{x}$, so

$$
\begin{aligned}
A \cap Z(L) & =A \cap\left(\bigcap_{x \in L} \operatorname{ker} a d_{x}\right) \\
& =\bigcap_{x \in L}\left(A \cap \operatorname{ker} a d_{x}\right) \\
& =\left.\bigcap_{x \in L} \operatorname{ker} a d_{x}\right|_{A} \\
& =\left.A \cap \operatorname{ker} a d_{\alpha}\right|_{A} \\
& =\left.\operatorname{ker} a d_{\alpha}\right|_{A}
\end{aligned}
$$

for some $\alpha \in L-C_{L}(A)=T_{A}$. Consequently, we obtain

$$
\begin{aligned}
\operatorname{dim}(A /(A \cap Z(L))) & =\operatorname{dim}\left(A /\left.\operatorname{ker} a d_{\alpha}\right|_{A}\right) \\
& =\operatorname{dim} A-\left.\operatorname{nullity} a d_{\alpha}\right|_{A} \\
& =\left.\operatorname{rank} a d_{\alpha}\right|_{A} \\
& =b_{A}(\alpha) \\
& =1 .
\end{aligned}
$$

Hence $\operatorname{dim}(A /(A \cap Z(L)))=1$.
Finally, we suppose that A is a maximal abelian ideal of L. For the first result, we have $\operatorname{dim}(A /(A \cap Z(L)))=1$. By Lemma 4.1.12 (1) \& (3), we get $A=\operatorname{ker} a d_{a}$ for every $a \in A-Z(L)$ and $Z(L) \subseteq A$, respectively. Then we have $A \cap Z(L)=Z(L)$. Fix $\alpha \in A-Z(L)$, so

$$
\begin{aligned}
\operatorname{dim}(L / Z(L)) & =\operatorname{dim} L-\operatorname{dim} Z(L) \\
& =(\operatorname{dim} L-\operatorname{dim} A)+(\operatorname{dim} A-\operatorname{dim} Z(L)) \\
& =\left(\operatorname{dim} L-\operatorname{dim} \operatorname{ker} a d_{\alpha}\right)+(\operatorname{dim} A-\operatorname{dim}(A \cap Z(L))) \\
& =\left(\operatorname{dim} L-\operatorname{nullity} a d_{\alpha}\right)+\operatorname{dim}(A /(A \cap Z(L))) \\
& =\operatorname{rank} a d_{\alpha}+1 \\
& =b(\alpha)+1 \\
& \leq b(L)+1 .
\end{aligned}
$$

On the other hand, we know that $\operatorname{dim}(L / Z(L)) \geq b(L)+1$ by Theorem 3.1.9. Consequently, $\operatorname{dim}(L / Z(L))=b(L)+1$.

For the second result, we have $\operatorname{dim}[A, L]=1$. Note that $[A, L]$ is an ideal of L because both A and L are ideals of L. Thus we can consider the quotient Lie algebra $L /[A, L]$. Let $x \in L$. Then $x+[A, L] \in L /[A, L]$ and $a d_{x+[A, L]}: L /[A, L] \rightarrow L /[A, L]$ is given by

$$
y+[A, L] \mapsto[x, y]+[A, L]
$$

where $y+[A, L] \in L /[A, L]$. By Lemma 4.1.11 (1) \& (2), we know that $L=T_{A} \cup C_{L}(A)$ and $T_{A} \cap C_{L}(A)=\emptyset$, respectively. Moreover, by Lemma 4.1.12 (2), we also know that $C_{L}(A)=A$. Therefore x must be contained in A or T_{A}. Then we consider the following two cases:

1. If $x \in A$, then $[x, y] \in[A, L]$ for any $y \in L$. Thus $\operatorname{im} a d_{x+[A, L]}=\{[A, L]\}$, so we have $b(x+[A, L])=0$. Note that $b(L) \geq b_{A}(L)=1$. Hence $b(x+[A, L])<b(L)$ for any $x \in A$.
2. Assume that $x \in T_{A}$. Then $b_{A}(x)=1$, which imples $[A, x]=\left.\operatorname{im} a d_{x}\right|_{A}$ is 1-dimensional.

Since $[A, x] \subseteq[A, L], \operatorname{im} a d_{x} \cap[A, L] \neq\{0\}$. Hence $b(x+[A, L])<b(x) \leq b(L)$ for any $x \in T_{A}$.
Hence $b(x+[A, L])<b(L)$ for any $x \in L$. Since $x \in L$ is arbitrary, $b(L /[A, L])<b(L)$.

4.2 Main Theorem

Our main theorem shows necessary and sufficient conditions for finite dimensional nilpotent Lie algebra of breadth 2. Observe that dimension of finite dimensional nilpotent Lie algebra of breadth 2 is not bounded above but it is relatively small when we consider its square.

Theorem 4.2.1. Let L be a finite dimensional nilpotent Lie algebra. Then $b(L)=2$ if and only if one of the following holds:

1. $\operatorname{dim}[L, L]=2$
or
2. $\operatorname{dim}[L, L]=3$ and $\operatorname{dim}(L / Z(L))=3$.

Proof. Let L be a finite dimensional nilpotent Lie algebra. Suppose $b(L)=2$. Since $b(L) \neq 0$, by Proposition 3.1.4, L is not abelian, so $Z(L) \nsubseteq L$. On the other hand, $Z(L) \neq\{0\}$ because L is nilpotent. Therefore $\{0\} \neq Z(L) \nsubseteq L$, which guarantee that L has a maximal abelian ideal. Then we consider the following two cases:

First, there exists a maximal abelian ideal A of L such that $b_{A}(L)=2$. Let $x \in L$ be such that $b_{A}(x)>1$. Since $b_{A}(L)=2$, we get $b_{A}(x)=2$. Then

$$
b_{A}(x)=2>1 \quad \text { and } \quad 2 b_{A}(x)=4 \geq 2=b_{A}(L) .
$$

Thus x satisfies (4.1). Since $b_{A}(x)=2=b(L),\left.\operatorname{rank} a d_{x}\right|_{A}=\operatorname{rank} a d_{x}=2$. Therefore we have

$$
[L, x]=\operatorname{im} a d_{x}=\left.\operatorname{im} a d_{x}\right|_{A}=[A, x] \subseteq[A, L] .
$$

As a result, A meets all requirements in Theorem 4.1.10. In addition, we have $b_{A}(L)=2=b(L)$ and $C_{L}(A)=A$ by Lemma 4.1.12 (2). Hence $\operatorname{dim}[L, L]=b_{A}(L)=2$ by Theorem 4.1.10.

The complementary case of the previous one is $b_{A}(L) \leq 1$ for every maximal abelian ideal A of L. We will show that for every maximal abelian ideal A of $L, b_{A}(L) \neq 0$. Suppose that there exists a maximal abelian ideal A of L such that $b_{A}(L)=0$. Then for every $x \in L$, $b_{A}(x)=0$. Thus rank $\left.a d_{x}\right|_{A}=0$, which implies $[A, x]=\left.\operatorname{im} a d_{x}\right|_{A}=\{0\}$. Since $x \in L$ is arbitrary, $[A, L]=\{0\}$, so $C_{L}(A)=L$ which contradicts $C_{L}(A)=A$ by Lemma 4.1.12 (2). As a result, this case turns into $b_{A}(L)=1$ for every maximal abelian ideal A of L. Next, we apply Theorem 4.1.13 to this case, so we have two following subcases to consider:

1. $\operatorname{dim}(A /(A \cap Z(L)))=1,\left.\operatorname{ker} a d_{x}\right|_{A}=\left.\operatorname{ker} a d_{y}\right|_{A}$ for all $x, y \in L-C_{L}(A)$ and $\operatorname{dim}(L / Z(L))=$ $b(L)+1=2+1=3$. In addition, we have $\operatorname{dim}[L, L] \leq\binom{ 3}{2}=3$ by Lemma 3.1.10. Since $b(L)=2 \neq 0,1$, we have $\operatorname{dim}[L, L] \neq 0,1$ by Proposition 3.1.4 and Theorem 3.2.1, respectively. Hence $\operatorname{dim}[L, L]=2,3$ and $\operatorname{dim}(L / Z(L))=3$.
2. $\operatorname{dim}[A, L]=1$ and $b(L /[A, L])<b(L)=2$. Then we get $b(L /[A, L])=0,1$. Next, we will claim that $b(L /[A, L]) \neq 0$. Assume that $b(L /[A, L])=0$. Then $[L /[A, L], L /[A, L]]=\{0\}$ by Proposition 3.1.4. Therefore

$$
\operatorname{dim}[L, L] /[A, L]=\operatorname{dim}[L /[A, L], L /[A, L]]=0
$$

so $\operatorname{dim}[L, L]=\operatorname{dim}[A, L]=1$. By Theorem 3.2.1, $b(L)=1$, which contradicts $b(L)=2$. Hence $b(L /[A, L]) \neq 0$, which implies $b(L /[A, L])=1$. As a result, we have

$$
\operatorname{dim}[L, L] /[A, L]=\operatorname{dim}[L /[A, L], L /[A, L]]=1
$$

by Theorem 3.2.1. Since $\operatorname{dim}[A, L]=1, \operatorname{dim}[L, L]=\operatorname{dim}[A, L]+1=2$ in this case.
Conversely, if $\operatorname{dim}[L, L]=2$, then $b(L) \leq \operatorname{dim}[L, L]=2$ by Lemma 3.1.5. Since $\operatorname{dim}[L, L] \neq 0$, L is not abelian, so $b(L) \neq 0$ by Proposition 3.1.4. Similarly, we have $b(L) \neq 1$ by Theorem 3.2.1. Hence $b(L)=2$ in this case.

On the other hand, if $\operatorname{dim}[L, L]=3$ and $\operatorname{dim}(L / Z(L))=3$, then $b(L) \leq \operatorname{dim}[L, L]=3$ by Lemma 3.1.5. Similar to the case $\operatorname{dim}[L, L]=2$, we get $b(L) \neq 0,1$ by Proposition 3.1.4 and Theorem 3.2.1, respectively. If $b(L)=3$, then by Theorem 3.1.9, $\operatorname{dim}(L / Z(L)) \geq b(L)+1=4$ which contradicts $\operatorname{dim}(L / Z(L))=3$. Hence $b(L)=2$.

Corollary 4.2.2. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 and $A a$ maximal abelian ideal of L. Suppose that $\operatorname{dim}[L, L]=3$. Then $\operatorname{dim}(A / Z(L))=1$.

Proof. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 and A a maximal abelian ideal of L. Suppose that $\operatorname{dim}[L, L]=3$. Then $b(L)=2$. By the proof of Theorem 4.2.1, this must be the result of the case $b_{A^{\prime}}(L)=1$ for every maximal abelian ideal A^{\prime} of L together with the first result of Theorem 4.1.13. Consequently, $\operatorname{dim}(A /(A \cap Z(L)))=1$ by Theorem 4.1.13 (1). Similar to Theorem 4.2.1, we have $\{0\} \neq Z(L) \nsubseteq L$, which is an abelian ideal of L. By Lemma 4.1.12 (3), we know that $Z(L) \subseteq A$, so $A \cap Z(L)=Z(L)$. Hence $\operatorname{dim}(A / Z(L))=\operatorname{dim}(A /(A \cap Z(L)))=1$.

Chapter 5

Classification of Nilpotent Lie Algebras of Breadth 2

5.1 Structure of Nilpotent Lie Algebras of Breadth 2

We begin this section by showing that any finite dimensional nilpotent Lie algebra of breadth 2 has dimension greater than 3 . Thus we know our starting dimension of the classification process.

Lemma 5.1.1. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that $\operatorname{dim} L \in \mathbb{Z}_{>0}$. Then

$$
1 \leq \operatorname{dim} Z(L) \leq \operatorname{dim} L-3 .
$$

Proof. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that $\operatorname{dim} L:=n \in$ $\mathbb{Z}_{>0}$. Then $b(L)=2$. By Theorem 3.1.9, we know that $\operatorname{dim}(L / Z(L)) \geq b(L)+1$, so we have $\operatorname{dim} L-\operatorname{dim} Z(L) \geq 3$. Thus $\operatorname{dim} Z(L) \leq \operatorname{dim} L-3$. On the other hand, L has nontrivial center since L is nilpotent. Therefore $\operatorname{dim} Z(L) \geq 1$. Hence $1 \leq \operatorname{dim} Z(L) \leq \operatorname{dim} L-3$.

Corollary 5.1.2. Let L be a finite dimensional nilpotent Lie algebra of breadth 2. Then $\operatorname{dim} L \geq 4$.

Definition 5.1.3. A Lie algebra L is called pure if it does not have an abelian ideal as a direct summand.

Lemma 5.1.4. Let L be a finite dimensional nilpotent Lie algebra. Then L is pure if and only if $Z(L) \subseteq[L, L]$.

Proof. Let L be a finite dimensional nilpotent Lie algebra. Suppose that $Z(L)$ is not contained in $[L, L]$. Then there exists $x \in Z(L)-[L, L]$. Note that $x \neq 0$ since $x \notin[L, L]$. Let
$I=\operatorname{span}\{x\}$. Then I is a nonzero ideal of L contained in $Z(L)$. Next, we extend I to a basis of L, say $L=\operatorname{span}\left\{x, y_{1}, y_{2}, \ldots, y_{n}\right\}$ for some $n \in \mathbb{Z}_{>0}$. Let $J=\operatorname{span}\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$. Then we see that $L=I \oplus J$, so we need to show that J is also an ideal of L. Since $x \in Z(L)-[L, L]$, $I \cap[L, L]=\{0\}$, so $[L, L] \subseteq J$. Thus J is an ideal of L. Hence $L=I \oplus J$ where I and J are ideals of L and $I \subseteq Z(L)$. Consequently, L is not pure.

Conversely, assume that L is not pure. Then $L=I \oplus J$ where I and J are ideals of L and $I \subseteq Z(L)$. Let $x \in I-\{0\} \subseteq Z(L)-\{0\}$. Next we will claim that $[L, L] \subseteq J$. Let $a, b \in L$. Then a and b can be written as $a=a_{I}+a_{J}$ and $b=b_{I}+b_{J}$ where $a_{I}, b_{I} \in I \subseteq Z(L)$ and $a_{J}, b_{J} \in J$. Therefore we have

$$
[a, b]=\left[a_{I}+a_{J}, b_{I}+b_{J}\right]=\left[a_{I}, b_{I}\right]+\left[a_{I}, b_{J}\right]+\left[a_{J}, b_{I}\right]+\left[a_{J}, b_{J}\right]=\left[a_{J}, b_{J}\right] \in J .
$$

Since a and b are arbitrary, $[L, L] \subseteq J$. Because $x \neq 0, x \notin J$ which also implies $x \notin[L, L]$. Hence $x \in Z(L)-[L, L]$, so $Z(L)$ is not contained in $[L, L]$.

Therefore we get a condition that is equivalent to purity of Lie algebras. In general, we consider only pure Lie algebras, so we will include the condition $Z(L) \subseteq[L, L]$ in our classification process. Note that in order to obtain a Lie algebra which is not pure, we begin with a pure Lie algebra with smaller dimension and add an abelian part to it.

Theorem 5.1.5. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that $Z(L) \subseteq[L, L]$. Then L is a direct sum of smaller Lie algebras if and only if L is a direct sum of two Heisenberg Lie algebras.

Proof. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that $Z(L) \subseteq[L, L]$. Suppose that L is a direct sum of smaller Lie algebras, says $L=L_{1} \oplus L_{2} \oplus \ldots \oplus L_{n}$ for some $n \in \mathbb{Z}_{>0}$. Since $Z(L) \subseteq[L, L]$, we know that L is pure, so each summand is not abelian. Thus $b\left(L_{i}\right) \neq 0$ for all $i=1,2, \ldots, n$. By Corollary 3.1.13, we have

$$
b\left(L_{1}\right)+b\left(L_{2}\right)+\ldots+b\left(L_{n}\right)=b\left(L_{1} \oplus L_{2} \oplus \ldots \oplus L_{n}\right)=b(L)=2,
$$

which leave us only one choice, $n=2$ and $b\left(L_{1}\right)=b\left(L_{2}\right)=1$. Hence L is a direct sum of two Heisenberg Lie algebras by Theorem 3.2.6. The converse implication is clear. Consequently, L is a direct sum of smaller Lie algebras if and only if L is a direct sum of two Heisenberg Lie algebras.

Corollary 5.1.6. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that $Z(L) \subseteq[L, L]$. Suppose that L is a direct sum of smaller Lie algebras. Then $\operatorname{dim} L$ is even.

Proof. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that $Z(L) \subseteq$ [$L, L]$. Suppose that L is a direct sum of smaller Lie algebras. Then L is a direct sum of two Heisenberg Lie algebras by Theorem 5.1.5, says $L=H_{1} \oplus H_{2}$. Since $Z(L) \subseteq[L, L], L$ is pure which implies H_{1} and H_{2} are also pure. Thus both $\operatorname{dim} H_{1}$ and $\operatorname{dim} H_{2}$ are odd. Hence $\operatorname{dim} L=\operatorname{dim}\left(H_{1} \oplus H_{2}\right)=\operatorname{dim} H_{1}+\operatorname{dim} H_{2}$ is even.

5.2 Nilpotent Lie Algebras of Breadth 2 with $\operatorname{dim}[L, L]=3$ and $\operatorname{dim}(L / Z(L))=3$

As we have already seen in Theorem 4.2.1, nilpotent Lie algebra of breadth 2 has two equivalent conditions. In this part, we consider the second condition and classify it as stated in the next theorem. From now on, we may not write all bracket relations of L. We assume that all of the bracket relations are equal to zero, unless we state otherwise.

Theorem 5.2.1. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that $Z(L) \subseteq[L, L]$. Suppose that $\operatorname{dim}[L, L]=3$ and $\operatorname{dim} L / Z(L)=3$. Then L is isomorphic to either

$$
\text { 1. } L=\operatorname{span}\left\{x, y, v, w_{1}, w_{2}\right\} \text { where }[x, y]=v,[x, v]=w_{1} \text { and }[y, v]=w_{2}
$$

or
2. $L=\operatorname{span}\left\{x, y, z, w_{1}, w_{2}, w_{3}\right\}$ where $[x, y]=w_{1},[x, z]=w_{2}$ and $[y, z]=w_{3}$.

Proof. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that $Z(L) \subseteq[L, L]$. Then $b(L)=2$. Suppose that $\operatorname{dim}[L, L]=3$ and $\operatorname{dim} L / Z(L)=3$. Because $Z(L) \subseteq[L, L]$ and $\operatorname{dim}[L, L]=3$, we have $\operatorname{dim} Z(L)=0,1,2$ or 3 . Since L is nilpotent, L has nontrivial center, so $\operatorname{dim} Z(L) \neq 0$. Therefore we have 3 cases to consider:

1. Case I : $\operatorname{dim} Z(L)=1$. Then $3=\operatorname{dim} L / Z(L)=\operatorname{dim} L-\operatorname{dim} Z(L)=\operatorname{dim} L-1$, so $\operatorname{dim} L=4$. Let $Z(L)=\operatorname{span}\{z\}$. Then extend it to $[L, L]=\operatorname{span}\{u, v, z\}$ and then $L=\operatorname{span}\{x, u, v, z\}$. Note that the bracket relations on L are defined by $[x, u],[x, v]$ and $[u, v]$. Since $[L, L]=\operatorname{span}\{u, v, z\}$, we say that

$$
\begin{aligned}
& {[x, u]=\alpha_{1} u+\alpha_{2} v+\alpha_{3} z,} \\
& {[x, v]=\beta_{1} u+\beta_{2} v+\beta_{3} z,} \\
& {[u, v]=\gamma_{1} u+\gamma_{2} v+\gamma_{3} z}
\end{aligned}
$$

for some $\alpha_{i}, \beta_{i}, \gamma_{i} \in \mathbb{F}$ and $i=1,2,3$. Because of the nilpotency of L, we have $\alpha_{1}=\beta_{2}=$ $\gamma_{1}=\gamma_{2}=0$. Thus we obtain

$$
\begin{aligned}
& {[x, u]=\alpha_{2} v+\alpha_{3} z,} \\
& {[x, v]=\beta_{1} u+\beta_{3} z,} \\
& {[u, v]=\gamma_{3} z .}
\end{aligned}
$$

Note that $\alpha_{2}, \beta_{1}, \gamma_{3} \neq 0$ because $\operatorname{dim}[L, L]=3$. Then we have $\left(a d_{x}\right)^{N}(u) \neq 0$ for any $N \in \mathbb{Z}_{>0}$ which contradicts the nilpotency of L.
2. Case II : $\operatorname{dim} Z(L)=2$. Then $3=\operatorname{dim} L / Z(L)=\operatorname{dim} L-\operatorname{dim} Z(L)=\operatorname{dim} L-2$, so $\operatorname{dim} L=5$. Let $Z(L)=\operatorname{span}\left\{z_{1}, z_{2}\right\}$. Then extend it to $[L, L]=\operatorname{span}\left\{u, z_{1}, z_{2}\right\}$ and then $L=\operatorname{span}\left\{x, y, u, z_{1}, z_{2}\right\}$. The bracket relations on L are defined by $[x, y],[x, u]$ and $[y, u]$. Since $[L, L]=\operatorname{span}\left\{u, z_{1}, z_{2}\right\}$, we say that

$$
\begin{aligned}
& {[x, y]=\alpha_{1} u+\alpha_{2} z_{1}+\alpha_{3} z_{2},} \\
& {[x, u]=\beta_{1} u+\beta_{2} z_{1}+\beta_{3} z_{2},} \\
& {[y, u]=\gamma_{1} u+\gamma_{2} z_{1}+\gamma_{3} z_{2}}
\end{aligned}
$$

for some $\alpha_{i}, \beta_{i}, \gamma_{i} \in \mathbb{F}$ and $i=1,2,3$. Since L is nilpotent, $\beta_{1}=\gamma_{1}=0$. Then we get

$$
\begin{aligned}
& {[x, y]=\alpha_{1} u+\alpha_{2} z_{1}+\alpha_{3} z_{2}=: v,} \\
& {[x, u]=\beta_{2} z_{1}+\beta_{3} z_{2}=: w_{1},} \\
& {[y, u]=\gamma_{2} z_{1}+\gamma_{3} z_{2}=: w_{2} .}
\end{aligned}
$$

Since $\operatorname{dim}[L, L]=3$, we get $Z(L)=\operatorname{span}\left\{w_{1}, w_{2}\right\}$ and $[L, L]=\operatorname{span}\left\{v, w_{1}, w_{2}\right\}$, so $\alpha_{1} \neq 0$. Let $w_{1}^{\prime}=\alpha_{1} w_{1}$ and $w_{2}^{\prime}=\alpha_{1} w_{2}$. Hence $Z(L)=\operatorname{span}\left\{w_{1}^{\prime}, w_{2}^{\prime}\right\},[L, L]=\operatorname{span}\left\{v, w_{1}^{\prime}, w_{2}^{\prime}\right\}$ and $L=\operatorname{span}\left\{x, y, v, w_{1}^{\prime}, w_{2}^{\prime}\right\}$ where

$$
\begin{aligned}
& {[x, y]=v,} \\
& {[x, v]=\left[x, \alpha_{1} u+\alpha_{2} z_{1}+\alpha_{3} z_{2}\right]=\alpha_{1} w_{1}=w_{1}^{\prime},} \\
& {[y, v]=\left[y, \alpha_{1} u+\alpha_{2} z_{1}+\alpha_{3} z_{2}\right]=\alpha_{1} w_{2}=w_{2}^{\prime} .}
\end{aligned}
$$

3. Case III : $\operatorname{dim} Z(L)=3$. Then $3=\operatorname{dim} L / Z(L)=\operatorname{dim} L-\operatorname{dim} Z(L)=\operatorname{dim} L-3$, so $\operatorname{dim} L=6$. Thus $Z(L)=[L, L]$, says $Z(L)=\operatorname{span}\left\{w_{1}, w_{2}, w_{3}\right\}$. Next, we extend this basis to $L=\operatorname{span}\left\{x, y, z, w_{1}, w_{2}, w_{3}\right\}$. Note that the bracket relations on L are defined by $[x, y],[x, z]$ and $[y, z]$. Since $\operatorname{dim}[L, L]=3,[L, L]=Z(L)=\operatorname{span}\{[x, y],[x, z],[y, z]\}$.

Let $[x, y]=w_{1}^{\prime},[x, z]=w_{2}^{\prime}$ and $[y, z]=w_{3}^{\prime}$. Hence $[L, L]=Z(L)=\operatorname{span}\left\{w_{1}^{\prime}, w_{2}^{\prime}, w_{3}^{\prime}\right\}$ and $L=\operatorname{span}\left\{x, y, z, w_{1}^{\prime}, w_{2}^{\prime}, w_{3}^{\prime}\right\}$ where $[x, y]=w_{1}^{\prime},[x, z]=w_{2}^{\prime}$ and $[y, z]=w_{3}^{\prime}$.

In conclusion, L is isomorphic to either

1. $L=\operatorname{span}\left\{x, y, v, w_{1}, w_{2}\right\}$ where $[x, y]=v,[x, v]=w_{1}$ and $[y, v]=w_{2}$
or
2. $L=\operatorname{span}\left\{x, y, z, w_{1}, w_{2}, w_{3}\right\}$ where $[x, y]=w_{1},[x, z]=w_{2}$ and $[y, z]=w_{3}$.

5.3 Nilpotent Lie Algebras of Breadth 2 with $\operatorname{dim}[L, L]=2$ and $\operatorname{dim} Z(L)=1$

As stated in the first condition of Theorem 4.2.1, we now consider finite dimensional nilpotent Lie algebra L such that $\operatorname{dim}[L, L]=2$. Since we also consider the condition $Z(L) \subseteq[L, L]$, $Z(L)$ could be 1 or 2 -dimensional. In this section, we classify one with $\operatorname{dim} Z(L)=1$ and leave the case $\operatorname{dim} Z(L)=2$ to the next section.

Proposition 5.3.1. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that $\operatorname{dim} L=: n \geq 4$. Suppose that $\operatorname{dim}[L, L]=2, \operatorname{dim} Z(L)=1$ and $Z(L) \subseteq[L, L]$. Then $L / Z(L)$ is isomorphic to $\operatorname{span}\left\{x+Z(L), y+Z(L), v+Z(L), w_{1}+Z(L), w_{2}+Z(L), \ldots, w_{n-4}+Z(L)\right\}$ such that $[x+Z(L), y+Z(L)]=v+Z(L)$ and $v+Z(L), w_{i}+Z(L) \in Z(L / Z(L))$ for all $i=1,2, \ldots, n-4$.

Proof. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that $\operatorname{dim} L=: n \geq 4$. Suppose that $\operatorname{dim}[L, L]=2, \operatorname{dim} Z(L)=1$ and $Z(L) \subseteq[L, L]$. Let $Z(L)=\operatorname{span}\{z\}$. Then we extend $Z(L)$ to $[L, L]=\operatorname{span}\{v, z\}$. Thus we have $z \neq 0$ and $v \in[L, L]-Z(L)$. Next, we consider $L / Z(L)$. Since $L / Z(L)$ is a homomorphic image of L which is nilpotent, $L / Z(L)$ is also nilpotent. In addition, $b(L / Z(L))=1$ because

$$
[L / Z(L), L / Z(L)]=[L, L] / Z(L)=\operatorname{span}\{v+Z(L)\}
$$

is 1-dimensional by Theorem 3.2.1. As a result, by Theorem 3.2.6, $L / Z(L)$ is isomorphic to

$$
\begin{gathered}
\operatorname{span}\left\{x_{1}+Z(L), y_{1}+Z(L), x_{2}+Z(L), y_{2}+Z(L), \ldots, x_{m}+Z(L), y_{m}+Z(L)\right. \\
\left.v+Z(L), w_{1}+Z(L), w_{2}+Z(L), \ldots, w_{n-2 m-2}+Z(L)\right\}
\end{gathered}
$$

such that $\left[x_{i}+Z(L), y_{i}+Z(L)\right]=v+Z(L)$ and $v+Z(L), w_{1}+Z(L), \ldots, w_{n-2 m-2}+Z(L) \in$ $Z(L / Z(L))$ for some $m \in\left\{1,2, \ldots,\left\lfloor\frac{n-2}{2}\right\rfloor\right\}$ and for all $i=1,2, \ldots, m$. Next, we will claim that $m=1$. Suppose that $m \geq 1$. Then we consider L from $L / Z(L)$, so L is isomorphic to

$$
\operatorname{span}\left\{x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{m}, y_{m}, v, w_{1}, w_{2}, \ldots, w_{n-2 m-2}, z\right\}
$$

such that $\left[x_{i}, y_{i}\right]=v+\alpha_{i} z$ and the rest of the bracket relations lie in $Z(L)=\operatorname{span}\{z\}$ for some $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{F}$ and for all $i=1,2, \ldots, m$. Since $m \geq 1$, we can choose $i \neq j \in\{1,2, \ldots, m\}$. Note that $\left[x_{i}, x_{j}\right],\left[x_{i}, y_{j}\right] \in Z(L)$, so

$$
\left[x_{i}, v\right]=\left[x_{i}, v+\alpha_{j} z\right]=\left[x_{i},\left[x_{j}, y_{j}\right]\right]=\left[\left[x_{i}, x_{j}\right], y_{j}\right]+\left[x_{j},\left[x_{i}, y_{j}\right]\right]=0 .
$$

Similarly, we also have

$$
\left[y_{i}, v\right]=\left[y_{i}, v+\alpha_{j} z\right]=\left[y_{i},\left[x_{j}, y_{j}\right]\right]=\left[\left[y_{i}, x_{j}\right], y_{j}\right]+\left[x_{j},\left[y_{i}, y_{j}\right]\right]=0
$$

because $\left[y_{i}, x_{j}\right],\left[y_{i}, y_{j}\right] \in Z(L)$. Moreover, for $k=1,2, \ldots, n-2 m-2$, we get

$$
\left[w_{k}, v\right]=\left[w_{k}, v+\alpha_{1} z\right]=\left[w_{k},\left[x_{1}, y_{1}\right]\right]=\left[\left[w_{k}, x_{1}\right], y_{1}\right]+\left[x_{1},\left[w_{k}, y_{1}\right]\right]=0
$$

since $\left[w_{k}, x_{1}\right],\left[w_{k}, y_{1}\right] \in Z(L)$. We also know that $[v, v]=[v, z]=0$. Thus $v \in Z(L)$ which is a contradiction. Hence $m=1$, so $L / Z(L)$ is isomorphic to $\operatorname{span}\{x+Z(L), y+Z(L), v+$ $\left.Z(L), w_{1}+Z(L), w_{2}+Z(L), \ldots, w_{n-4}+Z(L)\right\}$ such that $[x+Z(L), y+Z(L)]=v+Z(L)$ and $v+Z(L), w_{i}+Z(L) \in Z(L / Z(L))$ for all $i=1,2, \ldots, n-4$.

Lemma 5.3.2. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that $\operatorname{dim} L=: n \geq 4$. Suppose that $\operatorname{dim}[L, L]=2$ and $Z(L)=\operatorname{span}\{z\} \subseteq[L, L]$ is 1-dimensional. Then L is isomorphic to $\operatorname{span}\left\{x, y, z, v, w_{1}, w_{2}, \ldots, w_{n-4}\right\}$ such that $[x, y]=v,[x, v]=z$ and $[y, v]=\left[x, w_{i}\right]=\left[v, w_{i}\right]=0$ for all $i=1,2, \ldots, n-4$ and the rest of the bracket relations lie in $Z(L)$.

Proof. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that $\operatorname{dim} L=$: $n \geq 4$. Suppose that $\operatorname{dim}[L, L]=2$ and $Z(L)=\operatorname{span}\{z\} \subseteq[L, L]$ is 1 -dimensional. By Proposition 5.3.1, $L / Z(L)$ is isomorphic to $\operatorname{span}\left\{x+Z(L), y+Z(L), v+Z(L), w_{1}+Z(L), w_{2}+\right.$ $\left.Z(L), \ldots, w_{n-4}+Z(L)\right\}$ such that $[x+Z(L), y+Z(L)]=v+Z(L)$ and $v+Z(L), w_{i}+Z(L) \in$ $Z(L / Z(L))$ for all $i=1,2, \ldots, n-4$.

Next, we pull this back so $L \cong \operatorname{span}\left\{x, y, z, v, w_{1}, w_{2}, \ldots, w_{n-4}\right\}$ such that $[x, y]=v+\alpha z$ for some $\alpha \in \mathbb{F}$ and the rest of the bracket relations lie in $Z(L)$. Take $v^{\prime}=v+\alpha z=[x, y]$. Then $L \cong \operatorname{span}\left\{x, y, z, v^{\prime}, w_{1}, w_{2}, \ldots, w_{n-4}\right\}$ such that $[x, y]=v^{\prime}$ and the rest of the bracket relations
lie in $Z(L)$. Note that

$$
\left[w_{i}, v^{\prime}\right]=\left[w_{i},[x, y]\right]=\left[\left[w_{i}, x\right], y\right]+\left[x,\left[w_{i}, y\right]\right]=0
$$

for all $i=1,2, \ldots, n-4$ because $\left[w_{i}, x\right],\left[w_{i}, y\right] \in Z(L)$. Consequently, $\left[w_{i}, v^{\prime}\right]=0$ for all $i=1,2, \ldots, n-4$. Since $v^{\prime} \notin Z(L)$, we have $\left[x, v^{\prime}\right] \neq 0$ or $\left[y, v^{\prime}\right] \neq 0$. Without loss of generality, we assume that $\left[x, v^{\prime}\right] \neq 0$, says $\left[x, v^{\prime}\right]=\beta z=: z^{\prime}$ for some $\beta \in \mathbb{F}-\{0\}$. Then we take $Z(L)=\operatorname{span}\left\{z^{\prime}\right\}$. Let $\left[x, w_{i}\right]=\gamma_{i} z$ for some $\gamma_{i} \in \mathbb{F}$ and for all $i=1,2, \ldots, n-4$. Then we take $w_{i}^{\prime}=\beta w_{i}-\gamma_{i} v^{\prime}$. As a consequence, we have

$$
\begin{aligned}
{\left[x, w_{i}^{\prime}\right] } & =\left[x, \beta w_{i}-\gamma_{i} v^{\prime}\right]=\beta\left[x, w_{i}\right]-\gamma_{i}\left[x, v^{\prime}\right]=\beta \gamma_{i} z-\gamma_{i} \beta z=0, \\
{\left[v^{\prime}, w_{i}^{\prime}\right] } & =\left[v^{\prime}, \beta w_{i}-\gamma_{i} v^{\prime}\right]=\beta\left[v^{\prime}, w_{i}\right]-\gamma_{i}\left[v^{\prime}, v^{\prime}\right]=0 .
\end{aligned}
$$

Finally, observe that $\left[y, v^{\prime}\right]=\delta z^{\prime}$ for some $\delta \in \mathbb{F}$. By taking $y^{\prime}=y-\delta x$, we have

$$
\begin{aligned}
{\left[x, y^{\prime}\right] } & =[x, y-\delta x]=[x, y]-\delta[x, x]=v^{\prime} \\
{\left[y^{\prime}, v^{\prime}\right] } & =\left[y-\delta x, v^{\prime}\right]=\left[y, v^{\prime}\right]-\delta\left[x, v^{\prime}\right]=\delta z^{\prime}-\delta z^{\prime}=0 .
\end{aligned}
$$

Hence L is isomorphic to $\operatorname{span}\left\{x, y^{\prime}, z^{\prime}, v^{\prime}, w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{n-4}^{\prime}\right\}$ such that $[x, y]=v,[x, v]=z$ and $[y, v]=\left[x, w_{i}\right]=\left[v, w_{i}\right]=0$ for all $i=1,2, \ldots, n-4$ and the rest of the bracket relations lie in $Z(L)$.

Theorem 5.3.3. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that $\operatorname{dim} L=: n \geq 4$. Suppose that $\operatorname{dim}[L, L]=2$ and $Z(L)=\operatorname{span}\{z\} \subseteq[L, L]$ is 1-dimensional. Then the following holds:

1. If n is even, then L is isomorphic to $\operatorname{span}\left\{x, y, z, v, w_{1}, w_{2}, \ldots, w_{n-4}\right\}$ such that $[x, y]=v,[x, v]=z$ and $\left[w_{i}, w_{i+1}\right]=z$ for all $i=1,3,5, \ldots, n-5$.
2. If n is odd, then L is isomorphic to $\operatorname{span}\left\{x, y, z, v, w_{1}, w_{2}, \ldots, w_{n-4}\right\}$ such that

$$
[x, y]=v,[x, v]=z,\left[y, w_{1}\right]=z \text { and }\left[w_{i}, w_{i+1}\right]=z \text { for all } i=2,4,6, \ldots, n-5
$$

Proof. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that $\operatorname{dim} L=: n \geq 4$. Suppose that $\operatorname{dim}[L, L]=2$ and $Z(L)=\operatorname{span}\{z\} \subseteq[L, L]$ is 1-dimensional. It is clear that, by Lemma 5.3.2, L is isomorphic to $\operatorname{span}\{x, y, z, v\}$ such that $[x, y]=v,[x, v]=z$ and $[y, v]=0$ if $\operatorname{dim} L=4$. Moreover, if $\operatorname{dim} L=5$, then by Lemma 5.3.2, L is isomorphic to $\operatorname{span}\{x, y, z, v, w\}$ such that $[x, y]=v,[x, v]=z$ and $[y, v]=[x, w]=[v, w]=0$ and the rest of the bracket relations lie in $Z(L)$. Since $w \notin Z(L)$, we have $[y, w]=\alpha z$ for some $\alpha \neq 0$. By taking $w^{\prime}=\frac{w}{\alpha}$,
we have

$$
\left[y, w^{\prime}\right]=\left[y, \frac{w}{\alpha}\right]=\frac{1}{\alpha}[y, w]=\frac{1}{\alpha} \alpha z=z \quad \text { and } \quad\left[x, w^{\prime}\right]=\left[v, w^{\prime}\right]=0 .
$$

Hence L is isomorphic to $\operatorname{span}\left\{x, y, z, v, w^{\prime}\right\}$ such that $[x, y]=v,[x, v]=\left[y, w^{\prime}\right]=z$ and $[y, v]=\left[x, w^{\prime}\right]=\left[v, w^{\prime}\right]=0$.

Assume that $\operatorname{dim} L=n \geq 6$. By Lemma 5.3.2, L is isomorphic to $\operatorname{span}\left\{x, y, z, v, w_{1}, w_{2}, \ldots\right.$, $\left.w_{n-4}\right\}$ such that $[x, y]=v,[x, v]=z$ and $[y, v]=\left[x, w_{i}\right]=\left[v, w_{i}\right]=0$ for all $i=1,2, \ldots, n-4$ and the rest of the bracket relations lie in $Z(L)$. Let $W:=\operatorname{span}\left\{z, w_{1}, w_{2}, \ldots, w_{n-4}\right\}$. Then $\left.\operatorname{im} a d_{x}\right|_{W}=[x, W]=\{0\}$ and $\left.\operatorname{im} a d_{v}\right|_{W}=[v, W]=\{0\}$. Observe that $[W, W] \subseteq \operatorname{span}\{z\}$. Suppose that $[W, W]=\{0\}$. Then we get $\left[y, w_{i}\right] \neq 0$ for all $i=1,2, \ldots, n-4$. Thus $\left[y, w_{1}\right]=a_{1} z$ and $\left[y, w_{2}\right]=a_{2} z$ where $a_{1}, a_{2} \in \mathbb{F}-\{0\}$. Therefore we have

$$
\left[y, a_{2} w_{1}-a_{1} w_{2}\right]=a_{2}\left[y, w_{1}\right]-a_{1}\left[y, w_{2}\right]=a_{2} a_{1} z-a_{1} a_{2} z=0,
$$

so $a_{2} w_{1}-a_{1} w_{2} \in Z(L)$, which is a contradiction. Consequently, $[W, W]=\operatorname{span}\{z\}$ which is 1-dimensional, so W is a nilpotent Lie subalgebra of L such that $b(W)=1$ by Theorem 3.2.1. By Theorem 3.2.6, $W=\operatorname{span}\left\{z, w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{2 k}^{\prime}, \ldots, w_{n-4}^{\prime}\right\}$ such that $\left[w_{i}^{\prime}, w_{i+1}^{\prime}\right]=z$ for all $i=1,3, \ldots, 2 k-1$ and $Z(W)=\left\{z, w_{2 k+1}^{\prime}, \ldots, w_{n-4}^{\prime}\right\}$ where $2 k \leq n-4$. Observe that for $i=1,2, \ldots, 2 k$, we have $\left[y, w_{i}^{\prime}\right]=\alpha_{i} z$ where $\alpha_{i} \in \mathbb{F}$. Let

$$
y^{\prime}=y+\sum_{\substack{i=1 \\ i \text { is odd }}}^{2 k-1} \alpha_{i} w_{i+1}^{\prime}-\sum_{\substack{i=2 \\ i \text { is even }}}^{2 k} \alpha_{i} w_{i-1}^{\prime} .
$$

As a result, we have

$$
\left[y^{\prime}, w_{i}^{\prime}\right]= \begin{cases}{\left[y, w_{i}^{\prime}\right]+\left[\alpha_{i} w_{i+1}^{\prime}, w_{i}^{\prime}\right]=\alpha_{i} z-\alpha_{i} z=0} & \text { if } i \text { is odd, } \\ {\left[y, w_{i}^{\prime}\right]-\left[\alpha_{i} w_{i-1}^{\prime}, w_{i}^{\prime}\right]=\alpha_{i} z-\alpha_{i} z=0} & \text { if } i \text { is even. }\end{cases}
$$

Therefore $\left[y^{\prime}, w_{i}^{\prime}\right]=0$ for all $i=1,2, \ldots, 2 k$. Observe that

$$
\left[x, y^{\prime}\right]=[x, y]=v \quad \text { and } \quad\left[y^{\prime}, v\right]=[y, v]=0
$$

because $[x, W]=[v, W]=\{0\}$. Notice that $\left[y^{\prime}, W\right] \subseteq Z(L)$ since $[y, W],[W, W] \subseteq Z(L)$. By considering $L=\operatorname{span}\left\{x, y^{\prime}, z, v, w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{2 k}^{\prime}, \ldots, w_{n-4}^{\prime}\right\}$, we know that $\left[x, w_{j}^{\prime}\right]=\left[v, w_{j}^{\prime}\right]=$ $\left[w_{i}^{\prime}, w_{j}^{\prime}\right]=0$ for all $i=1,2, \ldots, n-4$ and $j=2 k+1, \ldots, n-4$. Since $w_{2 k+1}^{\prime}, \ldots, w_{n-4}^{\prime} \notin Z(L)$, we get $\left[y^{\prime}, w_{j}^{\prime}\right]=\beta_{j} z$ where $\beta_{j} \in \mathbb{F}-\{0\}$ for all $j=2 k+1, \ldots, n-4$. If $2 k+2 \leq n-4$, then
$\left[y^{\prime}, w_{2 k+1}^{\prime}\right]=\beta_{2 k+1} z$ and $\left[y^{\prime}, w_{2 k+2}^{\prime}\right]=\beta_{2 k+2} z$. Consequently, we obtain

$$
\begin{aligned}
{\left[y^{\prime}, \beta_{2 k+2} w_{2 k+1}^{\prime}-\beta_{2 k+1} w_{2 k+2}^{\prime}\right] } & =\beta_{2 k+2}\left[y^{\prime}, w_{2 k+1}^{\prime}\right]-\beta_{2 k+1}\left[y^{\prime}, w_{2 k+2}^{\prime}\right] \\
& =\beta_{2 k+2} \beta_{2 k+1} z-\beta_{2 k+1} \beta_{2 k+2} z \\
& =0,
\end{aligned}
$$

so $\beta_{2 k+2} w_{2 k+1}^{\prime}-\beta_{2 k+1} w_{2 k+2}^{\prime} \in Z(L)$ which is a contradiction. Hence we get $2 k+2>n-4$, which implies $2 k=n-4$ or $2 k+1=n-4$. Then we consider the following two cases:

1. Case $\mathrm{I}: 2 k=n-4$. Then n is even and L is isomorphic to $\operatorname{span}\left\{x, y^{\prime}, z, v, w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{n-4}^{\prime}\right\}$ such that $\left[x, y^{\prime}\right]=v,[x, v]=z$ and $\left[w_{i}^{\prime}, w_{i+1}^{\prime}\right]=z$ for all $i=1,3,5, \ldots, n-5$.
2. Case II : $2 k+1=n-4$. Then n is odd. Since $w_{n-4}^{\prime} \notin Z(L)$, we get $\left[y^{\prime}, w_{n-4}^{\prime}\right]=\beta_{n-4} z$ where $\beta_{n-4} \in \mathbb{F}-\{0\}$. Let $\bar{w}_{n-4}=\frac{w_{n-4}^{\prime}}{\beta_{n-4}}$. Then we have

$$
\left[y^{\prime}, \bar{w}_{n-4}\right]=\left[y^{\prime}, \frac{w_{n-4}^{\prime}}{\beta_{n-4}}\right]=\frac{1}{\beta_{n-4}}\left[y^{\prime}, w_{n-4}^{\prime}\right]=\frac{1}{\beta_{n-4}} \beta_{n-4} z=z .
$$

Hence L is isomorphic to $\operatorname{span}\left\{x, y^{\prime}, z, v, w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{n-5}^{\prime}, \bar{w}_{n-4}\right\}$ such that $\left[x, y^{\prime}\right]=v$, $[x, v]=z,\left[y^{\prime}, \bar{w}_{n-4}\right]=z$ and $\left[w_{i}^{\prime}, w_{i+1}^{\prime}\right]=z$ for all $i=1,3,5, \ldots, n-6$.

Since the result from the two cases above are complement to each other, we can modify our result as follows:

1. If n is even, then L is isomorphic to $\operatorname{span}\left\{x, y, z, v, w_{1}, w_{2}, \ldots, w_{n-4}\right\}$ such that $[x, y]=v,[x, v]=z$ and $\left[w_{i}, w_{i+1}\right]=z$ for all $i=1,3,5, \ldots, n-5$.
2. If n is odd, then L is isomorphic to $\operatorname{span}\left\{x, y, z, v, w_{1}, w_{2}, \ldots, w_{n-4}\right\}$ such that $[x, y]=v,[x, v]=z,\left[y, w_{1}\right]=z$ and $\left[w_{i}, w_{i+1}\right]=z$ for all $i=2,4,6, \ldots, n-5$.

5.4 Nilpotent Lie Algebras of Breadth 2 with $\operatorname{dim}[L, L]=2$ and $\operatorname{dim} Z(L)=2$

To begin this section, we introduce the concept of component of a Lie algebra which we use throughout our classification process. For any finite dimensional Lie algebra L, its center can be written as $Z(L)=\operatorname{span}\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$ for some $m \in \mathbb{Z}_{\geq 0}$. Then we extend this basis to $L=\operatorname{span}\left\{x_{1}, x_{2}, \ldots, x_{n}, z_{1}, z_{2}, \ldots, z_{m}\right\}$ where $n \in \mathbb{Z}_{\geq 0}$. Thus $\operatorname{dim} L=n+m$. We denote a subspace $L^{\prime}:=\operatorname{span}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subseteq L$.

Definition 5.4.1. Let L be a finite dimensional Lie algebra. A subspace $M=\operatorname{span}\left\{y_{1}, \ldots, y_{k}\right\}$ $\subseteq L^{\prime}$ is a component of L of dimension k if $M+C_{L}(M)=L$.

Proposition 5.4.2. Let L be a finite dimensional Lie algebra and M be a component of L. Then $b(x) \geq 1$ for all $x \in M-\{0\}$.

Proof. Let L be a finite dimensional Lie algebra and M be a component of L. Since $Z(L)=$ $\{x \in L \mid b(x)=0\}$, we know that $b(x) \geq 1$ for all $x \in L^{\prime}-\{0\}$. Hence $b(x) \geq 1$ for all $x \in M-\{0\}$ because $M-\{0\} \subseteq L^{\prime}-\{0\}$.

Lemma 5.4.3. Let L be a finite dimensional Lie algebra and M be a subspace of L^{\prime} such that $M+C_{L}(M)=L$. Then $M \cap C_{L}(M)=\{0\}$.

Proof. Let L be a finite dimensional Lie algebra and M be a subspace of L^{\prime} such that $M+$ $C_{L}(M)=L$. We write $M=\operatorname{span}\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ for some $k \in \mathbb{Z}_{\geq 0}$ and extend it to a basis $\left\{u_{1}, u_{2}, \ldots, u_{k}, v_{1}, v_{2}, \ldots, v_{n-k}, z_{1}, z_{2}, \ldots, z_{m}\right\}$ of L where $Z(L)=\operatorname{span}\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$. Let $x \in M \cap C_{L}(M)$. Then x can be written as $x=a_{1} u_{1}+a_{2} u_{2}+\ldots+a_{k} u_{k}$ where $a_{i} \in \mathbb{F}$ for all $i=1,2, \ldots, k$. Next we will claim that $x \in Z(L)$. Let $y \in L$. Since $L=M+C_{L}(M)$, y can be written as $y=y_{M}+c_{M}$ where $y_{M} \in M$ and $c_{M} \in C_{L}(M)$. Because $x \in M \cap C_{L}(M)$, we have $[x, y]=\left[x, y_{M}+c_{M}\right]=\left[x, y_{M}\right]+\left[x, c_{M}\right]=0$. Since $y \in L$ is arbitrary, we obtain $x \in Z(L)$. Therefore x can also be written as $x=b_{1} z_{1}+b_{2} z_{2}+\ldots+b_{m} z_{m}$ where $b_{j} \in \mathbb{F}$ for all $j=1,2, \ldots, m$. Consequently, we obtain

$$
\begin{aligned}
0 & =x-x \\
& =\left(a_{1} u_{1}+a_{2} u_{2}+\ldots+a_{k} u_{k}\right)-\left(b_{1} z_{1}+b_{2} z_{2}+\ldots+b_{m} z_{m}\right) \\
& =a_{1} u_{1}+a_{2} u_{2}+\ldots+a_{k} u_{k}-b_{1} z_{1}-b_{2} z_{2}-\ldots-b_{m} z_{m}
\end{aligned}
$$

Since $\left\{u_{1}, u_{2}, \ldots, u_{k}, z_{1}, z_{2}, \ldots, z_{m}\right\}$ is linearly independent, $a_{i}=b_{j}=0$ for all $i=1,2, \ldots, k$ and $j=1,2, \ldots, m$. Hence $x=a_{1} u_{1}+a_{2} u_{2}+\ldots+a_{k} u_{k}=0$, so $M \cap C_{L}(M)=\{0\}$.

By using previous lemma, we can develop our definition of component to be direct summand instead of normal summand.

Definition 5.4.4. Let L be a finite dimensional Lie algebra. A subspace $M=\operatorname{span}\left\{y_{1}, \ldots, y_{k}\right\}$ $\subseteq L^{\prime}$ is a component of L of dimension k if $M \oplus C_{L}(M)=L$.

Remark. Let L be a finite dimensional Lie algebra. Then L^{\prime} is the largest component of L.
Proposition 5.4.5. Let L be a finite dimensional Lie algebra and M be a component of L of dimension k. Then $k \geq 2$.

Proof. Let L be a finite dimensional Lie algebra and M be a component of L of dimension k. Let $x \in M-\{0\} \subseteq L^{\prime}-\{0\}$. Then $b(x) \geq 1$ by Proposition 5.4.2. Thus there exists $y \in L-\{0\}$ such that $[x, y] \neq 0$, so $y \notin C_{L}(M)$. Since $L=M \oplus C_{L}(M)$, we write $y=y_{M}+c_{M}$ where $y_{M} \in M$ and $c_{M} \in C_{L}(M)$. Note that $y_{M} \neq 0$ because $y \notin C_{L}(M)$. Moreover, we have

$$
\left[x, y_{M}\right]=\left[x, y-c_{M}\right]=[x, y]-\left[x, c_{M}\right]=[x, y] \neq 0 .
$$

As a result, we consider $y_{M} \in M$ and notice that $\left\{x, y_{M}\right\} \subseteq M$ is linearly independent because $\left[x, y_{M}\right] \neq 0$. Hence we have $k \geq 2$.

Next, we define the reducibility of component. Note that a component is called irreducible if it is not reducible.

Definition 5.4.6. Let L be a finite dimensional Lie algebra and M be a component of L. Then M is said to be reducible if there exist components M_{1} and M_{2} such that $M=M_{1} \oplus M_{2}$.

Remark. Let L be a finite dimensional Lie algebra and $M=M_{1} \oplus M_{2}$ be a reducible component of L. Then $M_{1} \subseteq C_{L}\left(M_{2}\right)$ and $M_{2} \subseteq C_{L}\left(M_{1}\right)$.

By Proposition 5.4.5, the smallest component is 2 -dimensional. Thus we easily get the following corollary.

Corollary 5.4.7. Let L be a finite dimensional Lie algebra and M be a component of L of dimension 2 or 3. Then M is irreducible.

Theorem 5.4.8. Let L be a finite dimensional Lie algebra and M be a component of L of dimension $k \geq 2$. Then for any $x \in M-\{0\}, 1 \leq b(x) \leq k-1$.

Proof. Let L be a finite dimensional Lie algebra and M be a component of L of dimension $k \geq 2$. By Proposition 5.4.2, $b(x) \geq 1$ for all $x \in M-\{0\}$. Suppose that there exists $x \in M-\{0\}$ such that $b(x) \geq k$. Since $M \oplus C_{L}(M)=L$, without loss of generality, there exist $y_{1}, y_{2}, \ldots, y_{k} \in M-\{0\}$ such that $\left[x, y_{i}\right]=z_{i}$ for all $i=1,2, \ldots, k$ where $\left\{z_{1}, z_{2}, \ldots, z_{k}\right\}$ is linearly independent. Next, we will show that $\left\{x, y_{1}, y_{2}, \ldots, y_{k}\right\} \subseteq M$ is linearly independent. Let $a, a_{1}, a_{2}, \ldots, a_{k} \in \mathbb{F}$ be such that $a x+a_{1} y_{1}+a_{2} y_{2}+\ldots+a_{k} y_{k}=0$. Then we have

$$
\begin{aligned}
0 & =\left[x, a x+a_{1} y_{1}+a_{2} y_{2}+\ldots+a_{k} y_{k}\right] \\
& =a[x, x]+a_{1}\left[x, y_{1}\right]+a_{2}\left[x, y_{2}\right]+\ldots+a_{k}\left[x, y_{k}\right] \\
& =a_{1} z_{1}+a_{2} z_{2}+\ldots+a_{k} z_{k} .
\end{aligned}
$$

Since $\left\{z_{1}, z_{2}, \ldots, z_{k}\right\}$ is linearly independent, $a_{1}=a_{2}=\ldots=a_{k}=0$, which also implies $a=0$. Hence $\left\{x, y_{1}, y_{2}, \ldots, y_{k}\right\} \subseteq M$ is linearly independent, which is a contradiction. Consequently, $1 \leq b(x) \leq k-1$ for any $x \in M-\{0\}$.

Corollary 5.4.9. Let L be a finite dimensional Lie algebra and M be a component of L of dimension 2. Then $b(x)=1$ for all $x \in M-\{0\}$.

By using previous corollary, we can identify the structure of component of dimension 2 as we prove in next theorem.

Theorem 5.4.10. Let L be a finite dimensional Lie algebra and M be a component of L of dimension 2. Then $M=\operatorname{span}\left\{x_{1}, x_{2}\right\}$ such that $\left[x_{1}, x_{2}\right] \neq 0$. In particular, $[M, L]=$ $\operatorname{span}\left\{\left[x_{1}, x_{2}\right]\right\}$.

Proof. Let L be a finite dimensional Lie algebra and M be a component of L of dimension 2 . Let $x_{1} \in M-\{0\}$. By Corollary 5.4.9, $b\left(x_{1}\right)=1$. Since $L=M \oplus C_{L}(M)$, without loss of generality, there exists $x_{2} \in M-\{0\}$ such that $\left[x_{1}, x_{2}\right] \neq 0$. We know that $x_{2} \notin \operatorname{span}\left\{x_{1}\right\}$, so $M=\operatorname{span}\left\{x_{1}, x_{2}\right\}$. To show that $[M, L]$ is 1 -dimensional, let $x \in M$ and $y \in L$. Since $L=M \oplus C_{L}(M), x$ and y can be written as $x=a_{1} x_{1}+a_{2} x_{2}$ and $y=b_{1} x_{1}+b_{2} x_{2}+c$ where $a_{i}, b_{i} \in \mathbb{F}$ for $i=1,2$ and $c \in C_{L}(M)$. Note that $\left[x_{1}, c\right]=\left[x_{2}, c\right]=0$ because $c \in C_{L}(M)$. Then we obtain

$$
\begin{aligned}
{[x, y] } & =\left[a_{1} x_{1}+a_{2} x_{2}, b_{1} x_{1}+b_{2} x_{2}+c\right] \\
& =a_{1} b_{1}\left[x_{1}, x_{1}\right]+a_{1} b_{2}\left[x_{1}, x_{2}\right]+a_{1}\left[x_{1}, c\right]+a_{2} b_{1}\left[x_{2}, x_{1}\right]+a_{2} b_{2}\left[x_{2}, x_{2}\right]+a_{2}\left[x_{2}, c\right] \\
& =a_{1} b_{2}\left[x_{1}, x_{2}\right]+a_{2} b_{1}\left[x_{2}, x_{1}\right] \\
& =\left(a_{1} b_{2}-a_{2} b_{1}\right)\left[x_{1}, x_{2}\right] \\
& \in \operatorname{span}\left\{\left[x_{1}, x_{2}\right]\right\} .
\end{aligned}
$$

Since $x \in M$ and $y \in L$ are arbitrary, we have $[M, L]=\operatorname{span}\left\{\left[x_{1}, x_{2}\right]\right\}$.
Next theorem clarify the picture of reducible component. We simply need to find a smaller part of component in order to tell that it is reducible.

Theorem 5.4.11. Let L be a finite dimensional Lie algebra and M be a component of L of dimension $k \geq 4$. Suppose that there is a proper subspace $M_{1} \subseteq M$ such that $M_{1}+C_{L}\left(M_{1}\right)=L$. Then M is reducible. In particular, $M=M_{1} \oplus M_{2}$ where $M_{2} \subseteq C_{L}\left(M_{1}\right)$ is a component spanned by basis of M extended from M_{1}.

Proof. Let L be a finite dimensional Lie algebra and M be a component of L of dimension $k \geq 4$. Suppose that there is a proper subspace $M_{1} \subseteq M$ such that $M_{1}+C_{L}\left(M_{1}\right)=L$. By Lemma 5.4.3, we have $M_{1} \cap C_{L}\left(M_{1}\right)=\{0\}$, so $M_{1} \oplus C_{L}\left(M_{1}\right)=L$. Thus M_{1} is a component of L. Assume that $M_{1}=\operatorname{span}\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$ for some $t<k$. Since $L=M_{1} \oplus C_{L}\left(M_{1}\right)$, we extend this basis to $M=\operatorname{span}\left\{x_{1}, x_{2}, \ldots, x_{t}, y_{1}, y_{2}, \ldots, y_{s}\right\}$ such that $y_{1}, y_{2}, \ldots, y_{s} \in C_{L}\left(M_{1}\right)$ where $s+t=k$. Let $M_{2}=\operatorname{span}\left\{y_{1}, y_{2}, \ldots, y_{s}\right\} \subseteq C_{L}\left(M_{1}\right)$. Then $M=M_{1} \oplus M_{2}$. Since $M_{2} \subseteq C_{L}\left(M_{1}\right)$, we have
$\left[M_{1}, M_{2}\right]=\{0\}$. Thus $M_{1} \subseteq C_{L}\left(M_{2}\right)$. On the other hand, we also have $C_{L}(M) \subseteq C_{L}\left(M_{2}\right)$ because $M_{2} \subseteq M$. Similarly, we get $C_{L}(M) \subseteq C_{L}\left(M_{1}\right)$, so $M_{1} \cap C_{L}(M) \subseteq M_{1} \cap C_{L}\left(M_{1}\right)=\{0\}$. Consequently, we have $M_{1} \oplus C_{L}(M) \subseteq C_{L}\left(M_{2}\right)$ and

$$
L=M \oplus C_{L}(M)=\left(M_{1} \oplus M_{2}\right) \oplus C_{L}(M)=M_{2} \oplus\left(M_{1} \oplus C_{L}(M)\right) \subseteq M_{2}+C_{L}\left(M_{2}\right) .
$$

Thus $M_{2}+C_{L}\left(M_{2}\right)=L$. Again, by Lemma 5.4.3, $M_{2} \cap C_{L}\left(M_{2}\right)=\{0\}$, so $M_{2} \oplus C_{L}\left(M_{2}\right)=L$. As a result, M_{2} is a component of L of dimension s. Hence $M=M_{1} \oplus M_{2}$ is reducible.

Corollary 5.4.12. Let L be a finite dimensional Lie algebra and M be an irreducible component of L of dimension $k \geq 4$. Then for any proper subspace $M^{\prime} \subseteq M, M^{\prime}+C_{L}\left(M^{\prime}\right)$ is a proper subspace of L.

Theorem 5.4.13. Let L be a finite dimensional Lie algebra and M be an irreducible component of L. Then for any proper subspace $M^{\prime} \subseteq M$, there exists $x \in M-M^{\prime}$ such that $x \notin C_{L}\left(M^{\prime}\right)$.

Proof. Let L be a finite dimensional Lie algebra and M be an irreducible component of L. Let M^{\prime} be a proper subspace of M. Suppose that for any $x \in M-M^{\prime}, x \in C_{L}\left(M^{\prime}\right)$. Then we have $M-M^{\prime} \subseteq C_{L}\left(M^{\prime}\right)$. Since $M^{\prime} \subseteq M, C_{L}(M) \subseteq C_{L}\left(M^{\prime}\right)$. Next, we will show that $M^{\prime}+C_{L}\left(M^{\prime}\right)=L$. Suppose that $M^{\prime}=\operatorname{span}\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$ for some $t \geq 1$. Then we extend this basis to $M=\left\{x_{1}, x_{2}, \ldots, x_{t}, y_{1}, y_{2}, \ldots, y_{s}\right\}$ for some $s \geq 1$. Let $y \in L$. Since $M+C_{L}(M)=$ L, y can be written as $y=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{t} x_{t}+b_{1} y_{1}+b_{2} y_{2}+\ldots+b_{s} y_{s}+c$ where $a_{1}, a_{2}, \ldots, a_{t}, b_{1}, b_{2}, \ldots, b_{s} \in \mathbb{F}$ and $c \in C_{L}(M)$. We observe that

$$
\begin{aligned}
y & =a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{t} x_{t}+b_{1} y_{1}+b_{2} y_{2}+\ldots+b_{s} y_{s}+c \\
& =\left(a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{t} x_{t}\right)+\left(b_{1} y_{1}+b_{2} y_{2}+\ldots+b_{s} y_{s}\right)+c \\
& \in M^{\prime}+\left(M-M^{\prime}\right)+C_{L}(M) \\
& \in M^{\prime}+C_{L}\left(M^{\prime}\right) .
\end{aligned}
$$

Therefore $M^{\prime}+C_{L}\left(M^{\prime}\right)=L$. By Theorem 5.4.11, M is reducible, which is a contradiction. Hence there exists $x \in M-M^{\prime}$ such that $x \notin C_{L}\left(M^{\prime}\right)$.

Theorem 5.4.14. Let L be a finite dimensional Lie algebra and M be an irreducible component of L of dimension $k \geq 3$. Then there exist $x \in M-\{0\}$ such that $b(x)>1$.

Proof. Let L be a finite dimensional Lie algebra and M be an irreducible component of L of dimension $k \geq 3$. Suppose that $b(x)=1$ for every $x \in M-\{0\}$. Let $x_{1} \in M-\{0\}$. Since $L=M \oplus C_{L}(M)$, without loss of generality, there exists $x_{2} \in M-\{0\}$ such that $\left[x_{1}, x_{2}\right] \neq 0$. Because $x_{2} \in M-\{0\}, b\left(x_{2}\right)=1$. Note that $x_{2} \notin \operatorname{span}\left\{x_{1}\right\}$, so $\left\{x_{1}, x_{2}\right\}$ is linearly independent. Let $M_{1}:=\operatorname{span}\left\{x_{1}, x_{2}\right\}$. Since $b\left(x_{1}\right)=b\left(x_{2}\right)=1$, by rank-nullity theorem, we know that
nullity $a d_{x_{i}}=\operatorname{dim} L-\operatorname{rank} a d_{x_{i}}=\operatorname{dim} L-1$ for $i=1,2$. Therefore $\operatorname{ker} a d_{x_{1}} \neq \operatorname{ker} a d_{x_{2}}$ but they are both $(\operatorname{dim} L-1)$-dimensional. Thus $C_{L}\left(M_{1}\right)=\operatorname{ker} a d_{x_{1}} \cap \operatorname{ker} a d_{x_{2}}$ is $(\operatorname{dim} L-2)$ dimensional. Next we will claim that $M_{1} \cap C_{L}\left(M_{1}\right)=\{0\}$. Let $x \in M_{1} \cap C_{L}\left(M_{1}\right)$. Then we write $x=a_{1} x_{1}+a_{2} x_{2}$ for some $a_{1}, a_{2} \in \mathbb{F}$. Since $x \in C_{L}\left(M_{1}\right),\left[x_{i}, x\right]=0$ for $i=1,2$. Consequently, we have

$$
\begin{aligned}
& 0=\left[x_{1}, x\right]=\left[x_{1}, a_{1} x_{1}+a_{2} x_{2}\right]=a_{1}\left[x_{1}, x_{1}\right]+a_{2}\left[x_{1}, x_{2}\right]=a_{2}\left[x_{1}, x_{2}\right], \\
& 0=\left[x_{2}, x\right]=\left[x_{2}, a_{1} x_{1}+a_{2} x_{2}\right]=a_{1}\left[x_{2}, x_{1}\right]+a_{2}\left[x_{2}, x_{2}\right]=-a_{1}\left[x_{1}, x_{2}\right],
\end{aligned}
$$

so $a_{1}=a_{2}=0$. Thus $M_{1} \cap C_{L}\left(M_{1}\right)=\{0\}$. By counting dimension, $M_{1} \oplus C_{L}\left(M_{1}\right)=L$. Hence $M_{1} \subseteq M$ is a component of L of dimension 2. If $k \geq 4$, then by Theorem 5.4.11, M is reducible, which is a contradiction. Next, we assume that $k=3$. Since $L=M_{1} \oplus C_{L}\left(M_{1}\right)$, we let $0 \neq y \in M \cap C_{L}\left(M_{1}\right)$. Then $M=\operatorname{span}\left\{x_{1}, x_{2}, y\right\}$. We will claim that $y \in Z(L)$. Let $x \in L$. Since $L=M+C_{L}(M), x$ can be written as $x=a_{1} x_{1}+a_{2} x_{2}+b y+c$ where $a_{1}, a_{2}, b \in \mathbb{F}$ and $c \in C_{L}(M)$. Then $[y, c]=0$ because $y \in M$. Moreover, $\left[y, x_{1}\right]=\left[y, x_{2}\right]=0$ since $y \in C_{L}\left(M_{1}\right)$. Therefore we have

$$
[y, x]=\left[y, a_{1} x_{1}+a_{2} x_{2}+b y+c\right]=a_{1}\left[y, x_{1}\right]+a_{2}\left[y, x_{2}\right]+b[y, y]+[y, c]=0 .
$$

Thus $y \in Z(L)$, which is a contradiction. Hence there exist $x \in M-\{0\}$ such that $b(x)>1$.
Next theorem gives us the structure of component of dimension 3. Furthermore, we also obtain the classification of nilpotent Lie algebras L of breadth 2 such that $Z(L)=[L, L]$ are 2-dimensional and $\operatorname{dim} L=5$ as the upcoming corollary.

Theorem 5.4.15. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that $Z(L)=[L, L]$ are 2-dimensional. Let M be a component of L of dimension 3. Then $M=$ $\operatorname{span}\left\{x_{1}, x_{2}, x_{3}\right\}$ such that $\left[x_{1}, x_{2}\right]=z_{1},\left[x_{1}, x_{3}\right]=z_{2}$ and $\left[x_{1}, x_{3}\right]=0$ where $Z(L)=\operatorname{span}\left\{z_{1}, z_{2}\right\}$.

Proof. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that $Z(L)=[L, L]$ are 2-dimensional. Let M be a component of L of dimension 3. By Theorem 5.4.14, there exists $x_{1} \in M-\{0\}$ such that $b\left(x_{1}\right)>1$. By Theorem 5.4.8, we have $1<b\left(x_{1}\right) \leq 3-1=2$, so $b\left(x_{1}\right)=2$. Since $M \oplus C_{L}(M)=L$, without loss of generality, there exist $x_{2}^{\prime}, x_{3}^{\prime} \in M-\{0\}$ such that $\left[x_{1}, x_{2}^{\prime}\right]=z_{1}$ and $\left[x_{1}, x_{3}^{\prime}\right]=z_{2}$ where $\left\{z_{1}, z_{2}\right\}$ is linearly independent. Since $Z(L)=[L, L]$ are 2-dimensional, we get $Z(L)=\operatorname{span}\left\{z_{1}, z_{2}\right\}$. Next, we observe $\left[x_{2}^{\prime}, x_{3}^{\prime}\right] \in[L, L]=Z(L)$. Then there exist $a_{1}, a_{2} \in \mathbb{F}$ such that $\left[x_{2}^{\prime}, x_{3}^{\prime}\right]=a_{1} z_{1}+a_{2} z_{2}$. Let $x_{2}=x_{2}^{\prime}-a_{2} x_{1}$ and $x_{3}=x_{3}^{\prime}+a_{1} x_{1}$. Then we have

$$
\left[x_{1}, x_{2}\right]=\left[x_{1}, x_{2}^{\prime}-a_{2} x_{1}\right]=\left[x_{1}, x_{2}^{\prime}\right]-a_{2}\left[x_{1}, x_{1}\right]=z_{1}
$$

$$
\begin{aligned}
{\left[x_{1}, x_{3}\right] } & =\left[x_{1}, x_{3}^{\prime}+a_{1} x_{1}\right]=\left[x_{1}, x_{3}^{\prime}\right]+a_{1}\left[x_{1}, x_{1}\right]=z_{2} \\
{\left[x_{2}, x_{3}\right] } & =\left[x_{2}^{\prime}-a_{2} x_{1}, x_{3}^{\prime}+a_{1} x_{1}\right] \\
& =\left[x_{2}^{\prime}, x_{3}^{\prime}\right]+a_{1}\left[x_{2}^{\prime}, x_{1}\right]-a_{2}\left[x_{1}, x_{3}^{\prime}\right]-a_{2} a_{3}\left[x_{1}, x_{1}\right] \\
& =\left(a_{1} z_{1}+a_{2} z_{2}\right)+a_{1}\left(-z_{1}\right)-a_{2} z_{2} \\
& =0
\end{aligned}
$$

Note that $\left\{x_{1}, x_{2}^{\prime}, x_{3}^{\prime}\right\}$ is linearly independent and so is $\left\{x_{1}, x_{2}, x_{3}\right\}$. Hence $M=\operatorname{span}\left\{x_{1}, x_{2}, x_{3}\right\}$ such that $\left[x_{1}, x_{2}\right]=z_{1},\left[x_{1}, x_{3}\right]=z_{2}$ and $\left[x_{1}, x_{3}\right]=0$ where $Z(L)=\operatorname{span}\left\{z_{1}, z_{2}\right\}$.

Corollary 5.4.16. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that $Z(L)=[L, L]$ are 2-dimensional and $\operatorname{dim} L=5$. Then $L=\operatorname{span}\left\{x_{1}, x_{2}, x_{3}, z_{1}, z_{2}\right\}$ such that $\left[x_{1}, x_{2}\right]=z_{1},\left[x_{1}, x_{3}\right]=z_{2}$ and $\left[x_{1}, x_{3}\right]=0$ where $Z(L)=\operatorname{span}\left\{z_{1}, z_{2}\right\}$.

Next, we provide a definition of standard n-dimensional subspace of a component and its properties.

Definition 5.4.17. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that $Z(L)=[L, L]$ are 2-dimensional and M be an irreducible component of L. For $n \geq 2$, define an n-dimensional subspace $M_{n}:=\operatorname{span}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subseteq M$ such that

$$
b\left(x_{1}\right)=1, \quad b\left(x_{2}\right)=b\left(x_{3}\right)=\ldots=b\left(x_{n-1}\right)=2, \quad b\left(x_{n}\right) \geq 1
$$

and

$$
\left[x_{i}, x_{i+1}\right]=\left\{\begin{array}{lll}
z_{1} & \text { if } i & \text { is odd } \\
z_{2} & \text { if } i & \text { is even }
\end{array}\right.
$$

where $i \in\{1,2, \ldots, n-1\}$ and $Z(L)=\operatorname{span}\left\{z_{1}, z_{2}\right\}$.

Proposition 5.4.18. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that $Z(L)=[L, L]$ are 2-dimensional and M be an irreducible component of L. Then $M_{n} \cap C_{L}\left(M_{n-1}\right)$ $=\{0\}$ for all $n \geq 3$.

Proof. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that $Z(L)=[L, L]$ are 2 -dimensional and M be an irreducible component of L. Let $n \geq 3$ and $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{F}$ be such that

$$
x=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n} \in M_{n} \cap C_{L}\left(M_{n-1}\right)=\operatorname{span}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \cap C_{L}\left(M_{n-1}\right)
$$

Since $x \in C_{L}\left(M_{n-1}\right)=\bigcap_{i=1}^{n-1}$ ker $a d_{x_{i}}$, we have $\left[x_{i}, x\right]=0$ for all $i=1,2, \ldots, n-1$. As a result, for any $i \in\{2,3, \ldots, n-1\}$, we have

$$
\begin{aligned}
& 0=\left[x_{i}, x\right] \\
& =\left[x_{i}, a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}\right] \\
& =a_{1}\left[x_{i}, x_{1}\right]+a_{2}\left[x_{i}, x_{2}\right]+\ldots+a_{n}\left[x_{i}, x_{n}\right] \\
& =a_{i-1}\left[x_{i}, x_{i-1}\right]+a_{i+1}\left[x_{i}, x_{i+1}\right] \\
& =\left\{\begin{array}{l}
-a_{i-1} z_{2}+a_{i+1} z_{1} \text { if } i \text { is odd } \\
-a_{i-1} z_{1}+a_{i+1} z_{2} \text { if } i \text { is even }
\end{array}\right.
\end{aligned}
$$

Since $Z(L)=\left\{z_{1}, z_{2}\right\}$ is linearly independent, $a_{i-1}=a_{i+1}=0$ for all $i=2,3, \ldots, n-1$. Thus $a_{i}=0$ for all $i=1,2, \ldots, n$. Hence $x=0$, so $M_{n} \cap C_{L}\left(M_{n-1}\right)=\{0\}$ for all $n \geq 3$.

Corollary 5.4.19. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that $Z(L)=[L, L]$ are 2-dimensional and M be an irreducible component of L. Then $M_{n} \cap C_{L}\left(M_{n}\right)$ $=\{0\}$ for all $n \geq 2$.

Proof. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that $Z(L)=[L, L]$ are 2-dimensional and M be an irreducible component of L. Let $n \geq 2$. For $n=2$, we let $a_{1}, a_{2} \in \mathbb{F}$ be such that

$$
x=a_{1} x_{1}+a_{2} x_{2} \in M_{2} \cap C_{L}\left(M_{2}\right)=\operatorname{span}\left\{x_{1}, x_{2}\right\} \cap C_{L}\left(M_{2}\right) .
$$

Since $x \in C_{L}\left(M_{2}\right)=\operatorname{ker} a d_{x_{1}} \cap \operatorname{ker} a d_{x_{2}}$, we have

$$
\begin{aligned}
& 0=\left[x_{1}, x\right]=\left[x_{1}, a_{1} x_{1}+a_{2} x_{2}\right]=a_{1}\left[x_{1}, x_{1}\right]+a_{2}\left[x_{1}, x_{2}\right]=a_{2} z_{1}, \\
& 0=\left[x_{2}, x\right]=\left[x_{2}, a_{1} x_{1}+a_{2} x_{2}\right]=a_{1}\left[x_{2}, x_{1}\right]+a_{2}\left[x_{2}, x_{2}\right]=a_{1}\left(-z_{1}\right) .
\end{aligned}
$$

Thus $a_{1}=a_{2}=0$, so $x=0$. Hence $M_{2} \cap C_{L}\left(M_{2}\right)=\{0\}$. Suppose that $n \geq 3$. By Proposition 5.4.18, $M_{n} \cap C_{L}\left(M_{n-1}\right)=\{0\}$, so we have

$$
\begin{aligned}
M_{n} \cap C_{L}\left(M_{n}\right) & =M_{n} \cap\left(\operatorname{ker} a d_{x_{n}} \cap C_{L}\left(M_{n-1}\right)\right) \\
& =\operatorname{ker} a d_{x_{n}} \cap\left(M_{n} \cap C_{L}\left(M_{n-1}\right)\right) \\
& =\operatorname{ker} a d_{x_{n}} \cap\{0\} \\
& =\{0\} .
\end{aligned}
$$

Therefore $M_{n} \cap C_{L}\left(M_{n}\right)=\{0\}$ for all $n \geq 3$. Hence $M_{n} \cap C_{L}\left(M_{n}\right)=\{0\}$ for all $n \geq 2$.

Theorem 5.4.20. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that $Z(L)=[L, L]$ are 2-dimensional. Let M be an irreducible component of L and M_{n} be a subspace of M for $n \geq 2$. Then

1. $L=\operatorname{ker} a d_{x_{1}} \oplus \operatorname{span}\left\{x_{2}\right\}$
2. $L=\operatorname{ker} a d_{x_{i}} \oplus \operatorname{span}\left\{x_{i-1}, x_{i+1}\right\}$ for all $i=2,3, \ldots, n-1$
3. $L= \begin{cases}\operatorname{ker} a d_{x_{n}} \oplus \operatorname{span}\left\{x_{n-1}\right\} & \text { if } b\left(x_{n}\right)=1 \\ \operatorname{ker} a d_{x_{n}} \oplus \operatorname{span}\left\{x_{n-1}, x\right\} & \text { if } b\left(x_{n}\right)=2\end{cases}$
where $Z(L)=\operatorname{span}\left\{\left[x_{n-1}, x_{n}\right],\left[x_{n}, x\right]\right\}$.
Proof. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that $Z(L)=[L, L]$ are 2-dimensional. Let M be an irreducible component of L and M_{n} be a subspace of M for $n \geq 2$.
4. First, we observe $x_{1} \in M_{n}$. Note that $b\left(x_{1}\right)=1$ and $\left[x_{1}, x_{2}\right]=z_{1} \neq 0$. By rank-nullity theorem, we get nullity $a d_{x_{1}}=\operatorname{dim} L-\operatorname{rank} a d_{x_{1}}=\operatorname{dim} L-1$. Since $x_{2} \notin \operatorname{ker} a d_{x_{1}}$, we have $L=\operatorname{ker} a d_{x_{1}} \oplus \operatorname{span}\left\{x_{2}\right\}$.
5. Let $i \in\{2,3, \ldots, n-1\}$. Then we have $b\left(x_{i}\right)=2$. Without loss of generality, we suppose that i is even so that $\left[x_{i-1}, x_{i}\right]=z_{1}$ and $\left[x_{i}, x_{i+1}\right]=z_{2}$. To show that $L=\operatorname{ker} a d_{x_{i}}+$ $\operatorname{span}\left\{x_{i-1}, x_{i+1}\right\}$, let $y \in L$. If $y \in \operatorname{ker} a d_{x_{i}}$, then $y=y+0 \in \operatorname{ker} a d_{x_{i}}+\operatorname{span}\left\{x_{i-1}, x_{i+1}\right\}$. Assume that $y \notin \operatorname{ker} a d_{x_{i}}$. Then $\left[x_{i}, y\right]=a_{1} z_{1}+a_{2} z_{2}$ for some $a_{1}, a_{2} \in \mathbb{F}$, so we get

$$
\begin{aligned}
{\left[x_{i}, y+a_{1} x_{i-1}-a_{2} x_{i+1}\right] } & =\left[x_{i}, y\right]+a_{1}\left[x_{i}, x_{i-1}\right]-a_{2}\left[x_{i}, x_{i+1}\right] \\
& =\left(a_{1} z_{1}+a_{2} z_{2}\right)+a_{1}\left(-z_{1}\right)-a_{2} z_{2} \\
& =0,
\end{aligned}
$$

so $c:=y+a_{1} x_{i-1}-a_{2} x_{i+1} \in \operatorname{ker} a d_{x_{i}}$. As a result, we have

$$
y=c-a_{1} x_{i-1}+a_{2} x_{i+1} \in \operatorname{ker} a d_{x_{i}}+\operatorname{span}\left\{x_{i-1}, x_{i+1}\right\} .
$$

Hence $L=\operatorname{ker} a d_{x_{i}}+\operatorname{span}\left\{x_{i-1}, x_{i+1}\right\}$. Since nullity $a d_{x_{i}}=\operatorname{dim} L-\operatorname{rank} a d_{x_{i}}=\operatorname{dim} L-2$, by counting dimension, we also know that $\operatorname{ker} a d_{x_{i}} \cap \operatorname{span}\left\{x_{i-1}, x_{i+1}\right\}=\{0\}$. Hence $L=\operatorname{ker} a d_{x_{i}} \oplus \operatorname{span}\left\{x_{i-1}, x_{i+1}\right\}$.
3. First, we observe $x_{n} \in M_{n}$. Without loss of generality, we assume that n is even so that $\left[x_{n-1}, x_{n}\right]=z_{1}$. Suppose that $b\left(x_{n}\right)=1$. By rank-nullity theorem, nullity $a d_{x_{n}}=$
$\operatorname{dim} L-\operatorname{rank} a d_{x_{n}}=\operatorname{dim} L-1$. Since $x_{n-1} \notin \operatorname{ker} a d_{x_{n}}$, we have $L=\operatorname{ker} a d_{x_{n}} \oplus \operatorname{span}\left\{x_{n-1}\right\}$. Next, we assume that $b\left(x_{n}\right)=2$. Then there exists $x \in L$ such that $\left[x_{n}, x\right]=a_{1} z_{1}+a_{2} z_{2}$ where $a_{1}, a_{2} \in \mathbb{F}$ and $a_{2} \neq 0$. Next, we will claim that $L=\operatorname{ker} a d_{x_{n}}+\operatorname{span}\left\{x_{n-1}, x\right\}$. Let $y \in L$. If $y \in \operatorname{ker} a d_{x_{n}}$, then we get $y=y+0 \in \operatorname{ker} a d_{x_{n}}+\operatorname{span}\left\{x_{n-1}, x\right\}$. Suppose that $y \notin \operatorname{ker} a d_{x_{n}}$. Then $\left[x_{n}, y\right]=b_{1} z_{1}+b_{2} z_{2}$ for some $b_{1}, b_{2} \in \mathbb{F}$. Therefore we have

$$
\begin{aligned}
{\left[x_{n}, y+\left(b_{1}-\frac{b_{2}}{a_{2}} a_{1}\right) x_{n-1}-\frac{b_{2}}{a_{2}} x\right] } & =\left[x_{n}, y\right]+\left(b_{1}-\frac{b_{2}}{a_{2}} a_{1}\right)\left[x_{n}, x_{n-1}\right]-\frac{b_{2}}{a_{2}}\left[x_{n}, x\right] \\
& =\left(b_{1} z_{1}+b_{2} z_{2}\right)+\left(b_{1}-\frac{b_{2}}{a_{2}} a_{1}\right)\left(-z_{1}\right)-\frac{b_{2}}{a_{2}}\left(a_{1} z_{1}+a_{2} z_{2}\right) \\
& =\left(b_{1}-b_{1}+\frac{b_{2}}{a_{2}} a_{1}-\frac{b_{2}}{a_{2}} a_{1}\right) z_{1}+\left(b_{2}-\frac{b_{2}}{a_{2}} a_{2}\right) z_{2} \\
& =0 .
\end{aligned}
$$

Thus $c:=y+\left(b_{1}-\frac{b_{2}}{a_{2}} a_{1}\right) x_{n-1}-\frac{b_{2}}{a_{2}} x \in \operatorname{ker} a d_{x_{n}}$, so we have

$$
y=c-\left(b_{1}-\frac{b_{2}}{a_{2}} a_{1}\right) x_{n-1}+\frac{b_{2}}{a_{2}} x \in \operatorname{ker} a d_{x_{n}}+\operatorname{span}\left\{x_{n-1}, x\right\} .
$$

Hence $L=\operatorname{ker} a d_{x_{n}}+\operatorname{span}\left\{x_{n-1}, x\right\}$. Since nullity $a d_{x_{n}}=\operatorname{dim} L-\operatorname{rank} a d_{x_{n}}=\operatorname{dim} L-2$, $\operatorname{ker} a d_{x_{n}} \cap \operatorname{span}\left\{x_{n-1}, x\right\}=\{0\}$ by counting dimension. Consequently, $L=\operatorname{ker} a d_{x_{n}} \oplus$ $\operatorname{span}\left\{x_{n-1}, x\right\}$. Additionally, since $\left[x_{n}, x\right]=a_{1} z_{1}+a_{2} z_{2} \notin \operatorname{span}\left\{z_{1}\right\}=\operatorname{span}\left\{\left[x_{n-1}, x_{n}\right]\right\}$, we get $Z(L)=\operatorname{span}\left\{\left[x_{n-1}, x_{n}\right],\left[x_{n}, x\right]\right\}$.

From now on, we are going to identify the structure of component of dimension 4 by constructing a standard subspace inside it as the following 2 theorems.

Theorem 5.4.21. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that $Z(L)=[L, L]$ are 2-dimensional. Let M be an irreducible component of L of dimension 4. Suppose that $M_{3} \subseteq M$. Then $b\left(x_{3}\right)=2$.

Proof. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that $Z(L)=[L, L]$ are 2-dimensional. Let M be an irreducible component of L of dimension 4. Suppose that $M_{3} \subseteq M$ and $b\left(x_{3}\right)=1$. Then we have $M_{3}=\operatorname{span}\left\{x_{1}, x_{2}, x_{3}\right\}$ such that $b\left(x_{1}\right)=1=b\left(x_{3}\right)$, $b\left(x_{2}\right)=2$ and $\left[x_{1}, x_{2}\right]=z_{1},\left[x_{2}, x_{3}\right]=z_{2},\left[x_{1}, x_{3}\right]=0$ where $Z(L)=\operatorname{span}\left\{z_{1}, z_{2}\right\}$. Therefore $\operatorname{im} a d_{x_{1}}=\operatorname{span}\left\{z_{1}\right\}, \operatorname{im} a d_{x_{2}}=Z(L)$ and imad $a d_{x_{3}}=\operatorname{span}\left\{z_{2}\right\}$.

Next, we will show that M_{3} is a component of L. Let $x \in L$. If $x \in C_{L}\left(M_{3}\right)$, then $x=0+x \in$ $M_{3}+C_{L}\left(M_{3}\right)$. Assume that $x \notin C_{L}\left(M_{3}\right)$. Then we have $\left[x_{1}, x\right]=a z_{1},\left[x_{2}, x\right]=b_{1} z_{1}+b_{2} z_{3}$ and
$\left[x_{3}, x\right]=c z_{2}$ where $a, b_{1}, b_{2}, c \in \mathbb{F}$. Let $y=x+b_{1} x_{1}-a x_{2}-b_{2} x_{3}$. Therefore we get

$$
\begin{aligned}
{\left[x_{1}, y\right] } & =\left[x_{1}, x+b_{1} x_{1}-a x_{2}-b_{2} x_{3}\right] \\
& =\left[x_{1}, x\right]+b_{1}\left[x_{1}, x_{1}\right]-a\left[x_{1}, x_{2}\right]-b_{2}\left[x_{1}, x_{3}\right] \\
& =a z_{1}-a z_{1} \\
& =0, \\
{\left[x_{2}, y\right] } & =\left[x_{2}, x+b_{1} x_{1}-a x_{2}-b_{2} x_{3}\right] \\
& =\left[x_{2}, x\right]+b_{1}\left[x_{2}, x_{1}\right]-a\left[x_{2}, x_{2}\right]-b_{2}\left[x_{2}, x_{3}\right] \\
& =\left(b_{1} z_{1}+b_{2} z_{2}\right)+b_{1}\left(-z_{1}\right)-b_{2} z_{2} \\
& =0, \\
{\left[x_{3}, y\right] } & =\left[x_{3}, x+b_{1} x_{1}-a x_{2}-b_{2} x_{3}\right] \\
& =\left[x_{3}, x\right]+b_{1}\left[x_{3}, x_{1}\right]-a\left[x_{3}, x_{2}\right]-b_{2}\left[x_{3}, x_{3}\right] \\
& =c z_{2}-a\left(-z_{2}\right) \\
& =(c+a) z_{2} \\
& =: c^{\prime} z_{2}
\end{aligned}
$$

where $c^{\prime}=c+a$. If $c^{\prime}=0$, then $y \in C_{L}\left(M_{3}\right)$, so we have $x=\left(-b_{1} x_{1}+a x_{2}+b_{2} x_{3}\right)+y \in$ $M_{3}+C_{L}\left(M_{3}\right)$. Suppose that $c^{\prime} \neq 0$. Since M is a component of L, we write $y \in L=M \oplus C_{L}(M)$ as $y=y_{M}+c_{M}$ where $y_{M} \in M$ and $c_{M} \in C_{L}(M)$. Next, we will claim that $y_{M} \notin M_{3}$. Suppose that $y_{M} \in M_{3}$. Then $y_{M}=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\alpha_{3} x_{3}$ where $\alpha_{i} \in \mathbb{F}$ for $i=1,2,3$. Therefore we have

$$
\begin{aligned}
x & =y-b_{1} x_{1}+a x_{2}+b_{2} x_{3} \\
& =\left(y_{M}+c_{M}\right)-b_{1} x_{1}+a x_{2}+b_{2} x_{3} \\
& =\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}+\alpha_{3} x_{3}+c_{M}\right)-b_{1} x_{1}+a x_{2}+b_{2} x_{3} \\
& =\left(\alpha_{1}-b_{1}\right) x_{1}+\left(\alpha_{2}+a\right) x_{2}+\left(\alpha_{3}+b_{2}\right) x_{3}+c_{M} .
\end{aligned}
$$

As a result, we obtain

$$
\begin{aligned}
a z_{1} & =\left[x_{1}, x\right] \\
& =\left[x_{1},\left(\alpha_{1}-b_{1}\right) x_{1}+\left(\alpha_{2}+a\right) x_{2}+\left(\alpha_{3}+b_{2}\right) x_{3}+c_{M}\right] \\
& =\left(\alpha_{1}-b_{1}\right)\left[x_{1}, x_{1}\right]+\left(\alpha_{2}+a\right)\left[x_{1}, x_{2}\right]+\left(\alpha_{3}+b_{2}\right)\left[x_{1}, x_{3}\right]+\left[x_{1}, c_{M}\right] \\
& =\left(\alpha_{2}+a\right) z_{1}, \\
c z_{2} & =\left[x_{3}, x\right] \\
& =\left[x_{3},\left(\alpha_{1}-b_{1}\right) x_{1}+\left(\alpha_{2}+a\right) x_{2}+\left(\alpha_{3}+b_{2}\right) x_{3}+c_{M}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\alpha_{1}-b_{1}\right)\left[x_{3}, x_{1}\right]+\left(\alpha_{2}+a\right)\left[x_{3}, x_{2}\right]+\left(\alpha_{3}+b_{2}\right)\left[x_{3}, x_{3}\right]+\left[x_{3}, c_{M}\right] \\
& =\left(\alpha_{2}+a\right)\left(-z_{2}\right) \\
& =-\left(\alpha_{2}+a\right) z_{2} .
\end{aligned}
$$

Hence $a=\alpha_{2}+a$ and $c=-\left(\alpha_{2}+a\right)$, so $\alpha_{2}=0$ and $c=-a$. Thus $c^{\prime}=c+a=0$ which is a contradiction. Consequently, $y_{M} \notin M_{3}$, so $y_{M} \in M-M_{3}$. Let $y_{M}^{\prime}=\frac{y_{M}}{c^{\prime}}$. Then $y_{M}^{\prime} \in M-M_{3}$, so $M=\operatorname{span}\left\{x_{1}, x_{2}, x_{3}, y_{M}^{\prime}\right\}$. Moreover, we observe that

$$
\begin{aligned}
& {\left[x_{1}, y_{M}\right]=\left[x_{1}, y_{M}+c_{M}\right]=\left[x_{1}, y\right]=0,} \\
& {\left[x_{2}, y_{M}\right]=\left[x_{2}, y_{M}+c_{M}\right]=\left[x_{2}, y\right]=0,} \\
& {\left[x_{3}, y_{M}\right]=\left[x_{3}, y_{M}+c_{M}\right]=\left[x_{3}, y\right]=c^{\prime} z_{2} .}
\end{aligned}
$$

Hence we have $\left[x_{1}, y_{M}^{\prime}\right]=0=\left[x_{2}, y_{M}^{\prime}\right]$ and $\left[x_{3}, y_{M}^{\prime}\right]=z_{2}$. Observe that

$$
\begin{aligned}
{\left[x_{1}, x_{2}+y_{M}^{\prime}\right] } & =\left[x_{1}, x_{2}\right]+\left[x_{1}, y_{M}^{\prime}\right]=z_{1}, \\
{\left[x_{2}, x_{2}+y_{M}^{\prime}\right] } & =\left[x_{2}, x_{2}\right]+\left[x_{2}, y_{M}^{\prime}\right]=0, \\
{\left[x_{3}, x_{2}+y_{M}^{\prime}\right] } & =\left[x_{3}, x_{2}\right]+\left[x_{3}, y_{M}^{\prime}\right]=-z_{2}+z_{2}=0, \\
{\left[y_{M}^{\prime}, x_{2}+y_{M}^{\prime}\right] } & =\left[y_{M}^{\prime}, x_{2}\right]+\left[y_{M}^{\prime}, y_{M}^{\prime}\right]=0 .
\end{aligned}
$$

Since $L=M \oplus C_{L}(M)=\operatorname{span}\left\{x_{1}, x_{2}, x_{3}, y_{M}^{\prime}\right\} \oplus C_{L}(M)$, we get $\operatorname{im} a d_{x_{2}+y_{M}^{\prime}}=\operatorname{span}\left\{z_{1}\right\}$, so $b\left(x_{2}+y_{M}^{\prime}\right)=1$. Additionally, we have

$$
\begin{aligned}
\operatorname{ker} a d_{x_{1}} & =\operatorname{span}\left\{x_{1}, x_{3}, y_{M}^{\prime}\right\} \oplus C_{L}(M), \\
\operatorname{ker} a d_{x_{2}+y_{M}^{\prime}}^{\prime} & =\operatorname{span}\left\{x_{2}, x_{3}, y_{M}^{\prime}\right\} \oplus C_{L}(M) .
\end{aligned}
$$

We consider $M=\operatorname{span}\left\{x_{1}, x_{2}+y_{M}^{\prime}, x_{3}, y_{M}^{\prime}\right\}$ and let $M^{\prime}=\operatorname{span}\left\{x_{1}, x_{2}+y_{M}^{\prime}\right\} \subseteq M$. Then

$$
C_{L}\left(M^{\prime}\right)=\operatorname{ker} a d_{x_{1}} \cap \operatorname{ker} a d_{x_{2}+y_{M}^{\prime}}=\operatorname{span}\left\{x_{3}, y_{M}^{\prime}\right\} \oplus C_{L}(M) .
$$

Consequently, we have

$$
\begin{aligned}
L & =M \oplus C_{L}(M) \\
& =\operatorname{span}\left\{x_{1}, x_{2}+y_{M}^{\prime}, x_{3}, y_{M}^{\prime}\right\} \oplus C_{L}(M) \\
& =\operatorname{span}\left\{x_{1}, x_{2}+y_{M}^{\prime}\right\} \oplus \operatorname{span}\left\{x_{3}, y_{M}^{\prime}\right\} \oplus C_{L}(M) \\
& =M^{\prime} \oplus C_{L}\left(M^{\prime}\right),
\end{aligned}
$$

so $M^{\prime} \subseteq M$ is a component of L which contradicts irreducibility of M. Hence $x \in M_{3}+C_{L}\left(M_{3}\right)$.

Since $x \in L$ is arbitrary, $L=M_{3}+C_{L}\left(M_{3}\right)$. By Corollary 5.4.19, we know that $M_{3} \cap C_{L}\left(M_{3}\right)=$ $\{0\}$, so $L=M_{3} \oplus C_{L}\left(M_{3}\right)$. Thus $M_{3} \subseteq M$ is a component of L which is also a contradiction. Hence $b\left(x_{3}\right)=2$.

Theorem 5.4.22. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that $Z(L)=[L, L]$ are 2-dimensional. Let M be an irreducible component of L of dimension 4. Suppose that M contains an element of breadth 1. Then $M=\operatorname{span}\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ such that $\left[x_{1}, x_{2}\right]=z_{1},\left[x_{1}, x_{3}\right]=z_{2}$ and $\left[x_{3}, x_{4}\right]=z_{1}$ where $Z(L)=\operatorname{span}\left\{z_{1}, z_{2}\right\}$.

Proof. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that $Z(L)=[L, L]$ are 2-dimensional. Let M be an irreducible component of L of dimension 4. Suppose that M contains an element of breadth 1 , says $x \in M$ such that $b(x)=1$. Let $u_{1}=x$ and $M_{1}=\operatorname{span}\left\{u_{1}\right\} \subseteq M$. By Theorem 5.4.13, there exists $u_{2} \in M-M_{1}$ such that $u_{2} \notin C_{L}\left(M_{1}\right)$. Thus $\left[u_{1}, u_{2}\right]=z_{1} \in Z(L)-\{0\}$.

Next, we let $M_{2}=\operatorname{span}\left\{u_{1}, u_{2}\right\} \subseteq M$. We will show that $b\left(u_{2}\right)=2$. Suppose that $b\left(u_{2}\right)=1$. By Theorem 5.4.20, we know that $L=\operatorname{span}\left\{u_{1}\right\} \oplus \operatorname{ker} a d_{u_{2}}=\operatorname{span}\left\{u_{2}\right\} \oplus \operatorname{ker} a d_{u_{1}}$. Since $u_{2} \in \operatorname{ker} a d_{u_{2}}, L=\operatorname{ker} a d_{u_{1}}+\operatorname{ker} a d_{u_{2}}$, so we have

$$
\begin{aligned}
\operatorname{dim} L & =\operatorname{dim}\left(\operatorname{ker} a d_{u_{1}}+\operatorname{ker} a d_{u_{2}}\right) \\
& =\operatorname{dim} \operatorname{ker} a d_{u_{1}}+\operatorname{dim} \operatorname{ker} a d_{u_{2}}-\operatorname{dim}\left(\operatorname{ker} a d_{u_{1}} \cap \operatorname{ker} a d_{u_{2}}\right) \\
& =\operatorname{nullity} a d_{u_{1}}+\operatorname{nullity} a d_{u_{2}}-\operatorname{dim} C_{L}\left(M_{2}\right) \\
& =\left(\operatorname{dim} L-\operatorname{rank} a d_{u_{1}}\right)+\left(\operatorname{dim} L-\operatorname{rank} a d_{u_{2}}\right)-\operatorname{dim} C_{L}\left(M_{2}\right) \\
& =\left(\operatorname{dim} L-b\left(u_{1}\right)\right)+\left(\operatorname{dim} L-b\left(u_{2}\right)\right)-\operatorname{dim} C_{L}\left(M_{2}\right) \\
& =(\operatorname{dim} L-1)+(\operatorname{dim} L-1)-\operatorname{dim} C_{L}\left(M_{2}\right) \\
& =2 \operatorname{dim} L-2-\operatorname{dim} C_{L}\left(M_{2}\right) .
\end{aligned}
$$

Thus $\operatorname{dim} C_{L}\left(M_{2}\right)=\operatorname{dim} L-2$. By Corollary 5.4.19, we get $M_{2} \cap C_{L}\left(M_{2}\right)=\{0\}$. Since $\operatorname{dim} M_{2}$ $=2$ we have $L=M_{2} \oplus C_{L}\left(M_{2}\right)$, so $M_{2} \subseteq M$ is a component of L which is a contradiction. Therefore $b\left(u_{2}\right)=2$.

Because $b\left(u_{2}\right)=2$, there exists $u_{3} \in M$ such that $\left[u_{2}, u_{3}\right]=z_{2}$ where $Z(L)=\operatorname{span}\left\{z_{1}, z_{2}\right\}$. Note that $u_{3} \notin M_{2}$ because $\left[u_{2}, M_{2}\right]=\operatorname{span}\left\{z_{1}\right\}$. Since $b\left(u_{1}\right)=b(x)=1$ and $\operatorname{im} a d_{u_{1}}=$ $\operatorname{span}\left\{z_{1}\right\}$, we suppose that $\left[u_{1}, u_{3}\right]=a z_{1}$ where $a \in \mathbb{F}$. Let $v_{1}=u_{1}, v_{2}=u_{2}$ and $v_{3}=u_{3}-a u_{2}$. Then we have

$$
\begin{aligned}
& {\left[v_{1}, v_{2}\right]=\left[u_{1}, u_{2}\right]=z_{1},} \\
& {\left[v_{2}, v_{3}\right]=\left[u_{2}, u_{3}-a u_{2}\right]=\left[u_{2}, u_{3}\right]-a\left[u_{2}, u_{2}\right]=z_{2},} \\
& {\left[v_{1}, v_{3}\right]=\left[u_{1}, u_{3}-a u_{2}\right]=\left[u_{1}, u_{3}\right]-a\left[u_{1}, u_{2}\right]=a z_{1}-a z_{1}=0 .}
\end{aligned}
$$

Let $M_{3}=\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}$. Then $b\left(v_{1}\right)=b(x)=1, b\left(v_{2}\right)=2$ and $b\left(v_{3}\right) \geq 1$. By Theorem 5.4.21, we have $b\left(v_{3}\right)=2$, so there exists $v_{4} \in M$ such that $\left[v_{3}, v_{4}\right]=c_{1} z_{1}+c_{2} z_{2}$ where $c_{1}, c_{2} \in \mathbb{F}$ and $c_{1} \neq 0$. Note that $v_{4} \notin M_{3}$ because $\left[v_{3}, M_{3}\right]=\operatorname{span}\left\{z_{2}\right\}$. Thus $M=\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Since $b\left(v_{1}\right)=1$ and $b\left(v_{2}\right)=2$, we assume that $\left[v_{1}, v_{4}\right]=a_{1} z_{1}$ and $\left[v_{2}, v_{4}\right]=b_{1} z_{1}+b_{2} z_{2}$ where $a_{1}, b_{1}, b_{2} \in \mathbb{F}$. Let $y=v_{4}+b_{1} v_{1}-a_{1} v_{2}-b_{2} v_{3}$. Then $M=\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, y\right\}$ such that

$$
\begin{aligned}
{\left[v_{1}, y\right] } & =\left[v_{1}, v_{4}+b_{1} v_{1}-a_{1} v_{2}-b_{2} v_{3}\right] \\
& =\left[v_{1}, v_{4}\right]+b_{1}\left[v_{1}, v_{1}\right]-a_{1}\left[v_{1}, v_{2}\right]-b_{2}\left[v_{1}, v_{3}\right] \\
& =a_{1} z_{1}-a_{1} z_{1} \\
& =0, \\
{\left[v_{2}, y\right] } & =\left[v_{2}, v_{4}+b_{1} v_{1}-a_{1} v_{2}-b_{2} v_{3}\right] \\
& =\left[v_{2}, v_{4}\right]+b_{1}\left[v_{2}, v_{1}\right]-a_{1}\left[v_{2}, v_{2}\right]-b_{2}\left[v_{2}, v_{3}\right] \\
& =\left(b_{1} z_{1}+b_{2} z_{2}\right)+b_{1}\left(-z_{1}\right)-b_{2} z_{2} \\
& =0, \\
{\left[v_{3}, y\right] } & =\left[v_{3}, v_{4}+b_{1} v_{1}-a_{1} v_{2}-b_{2} v_{3}\right] \\
& =\left[v_{3}, v_{4}\right]+b_{1}\left[v_{3}, v_{1}\right]-a_{1}\left[v_{3}, v_{2}\right]-b_{2}\left[v_{3}, v_{3}\right] \\
& =\left(c_{1} z_{1}+c_{2} z_{2}\right)-a_{1}\left(-z_{2}\right) \\
& =c_{1} z_{1}+\left(c_{2}+a_{1}\right) z_{2} .
\end{aligned}
$$

Let $x_{1}=v_{1}, x_{2}=v_{2}, x_{3}=v_{3}$ and $x_{4}=\frac{y}{c_{1}}$. Hence $M=\operatorname{span}\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ such that

$$
\begin{aligned}
& {\left[x_{1}, x_{2}\right]=\left[v_{1}, v_{2}\right]=z_{1},} \\
& {\left[x_{2}, x_{3}\right]=\left[v_{2}, v_{3}\right]=z_{2},} \\
& {\left[x_{3}, x_{4}\right]=\left[v_{3}, \frac{y}{c_{1}}\right]=\frac{1}{c_{1}}\left[v_{3}, y\right]=\frac{1}{c_{1}}\left(c_{1} z_{1}+\left(c_{2}+a_{1}\right) z_{2}\right)=z_{1}+\left(\frac{c_{2}+a_{1}}{c_{1}}\right) z_{2}=: z_{1}+\alpha z_{2},} \\
& {\left[x_{1}, x_{3}\right]=\left[v_{1}, v_{3}\right]=0,} \\
& {\left[x_{1}, x_{4}\right]=\left[v_{1}, \frac{y}{c_{1}}\right]=\frac{1}{c_{1}}\left[v_{1}, y\right]=0,} \\
& {\left[x_{2}, x_{4}\right]=\left[v_{2}, \frac{y}{c_{1}}\right]=\frac{1}{c_{1}}\left[v_{2}, y\right]=0 .}
\end{aligned}
$$

where $\alpha:=\frac{c_{2}+a_{1}}{c_{1}} \in \mathbb{F}$ and $Z(L)=\operatorname{span}\left\{z_{1}, z_{2}\right\}$. To show that $\alpha=0$, we suppose that $\alpha \neq 0$. Let $s_{1}=x_{1}, s_{2}=\alpha x_{2}+x_{4}, s_{3}=\alpha x_{3}-x_{1}$ and $s_{4}=x_{4}$. Then we have $M=\operatorname{span}\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$ such that

$$
\left[s_{1}, s_{2}\right]=\left[x_{1}, \alpha x_{2}+x_{4}\right]=\alpha\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{4}\right]=\alpha z_{1},
$$

$$
\begin{aligned}
{\left[s_{3}, s_{4}\right] } & =\left[\alpha x_{3}-x_{1}, x_{4}\right]=\alpha\left[x_{3}, x_{4}\right]-\left[x_{1}, x_{4}\right]=\alpha\left(z_{1}+\alpha z_{2}\right) \\
{\left[s_{1}, s_{3}\right] } & =\left[x_{1}, \alpha x_{3}-x_{1}\right]=\alpha\left[x_{1}, x_{3}\right]-\left[x_{1}, x_{1}\right]=0 \\
{\left[s_{1}, s_{4}\right] } & =\left[x_{1}, x_{4}\right]=0 \\
{\left[s_{2}, s_{3}\right] } & =\left[\alpha x_{2}+x_{4}, \alpha x_{3}-x_{1}\right] \\
& =\alpha^{2}\left[x_{2}, x_{3}\right]-\alpha\left[x_{2}, x_{1}\right]+\alpha\left[x_{4}, x_{3}\right]-\left[x_{4}, x_{1}\right] \\
& =\alpha^{2} z_{2}+\alpha z_{1}-\alpha\left(z_{1}+\alpha z_{2}\right) \\
& =0 \\
{\left[s_{2}, s_{4}\right] } & =\left[\alpha x_{2}+x_{4}, x_{4}\right]=\alpha\left[x_{2}, x_{4}\right]+\left[x_{4}, x_{4}\right]=0
\end{aligned}
$$

where $Z(L)=\operatorname{span}\left\{z_{1}, z_{2}\right\}=\operatorname{span}\left\{\alpha z_{1}, \alpha\left(z_{1}+\alpha z_{2}\right)\right\}$. Thus $M=M^{\prime} \oplus M^{\prime \prime}$ where $M^{\prime}=$ $\operatorname{span}\left\{s_{1}, s_{2}\right\}$ and $M^{\prime \prime}=\operatorname{span}\left\{s_{3}, s_{4}\right\}$ are components of L. Hence M is reducible which is a contradiction. Consequently, we obtain $\alpha=0$, so we get $M=\operatorname{span}\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ such that $\left[x_{1}, x_{2}\right]=z_{1},\left[x_{1}, x_{3}\right]=z_{2}$ and $\left[x_{3}, x_{4}\right]=z_{1}$ where $Z(L)=\operatorname{span}\left\{z_{1}, z_{2}\right\}$.

At this point, we can classify nilpotent Lie algebra L of breadth 2 such that $Z(L)=[L, L]$ and $\operatorname{dim} L=6$ under the assumption that L has an element of breadth 1 as we show in the following corollary.

Corollary 5.4.23. Let L be a 6-dimensional nilpotent Lie algebra of breadth 2 such that $Z(L)=[L, L]$ are 2-dimensional. Suppose that L contains an element of breadth 1. Then $L=\operatorname{span}\left\{x_{1}, x_{2}, x_{3}, x_{4}, z_{1}, z_{2}\right\}$ such that

1. $\left[x_{1}, x_{2}\right]=z_{1},\left[x_{2}, x_{3}\right]=z_{2}$ and $\left[x_{3}, x_{4}\right]=z_{1}$
or

$$
\text { 2. }\left[x_{1}, x_{2}\right]=z_{1} \text { and }\left[x_{3}, x_{4}\right]=z_{2}
$$

where $Z(L)=\operatorname{span}\left\{z_{1}, z_{2}\right\}$.
Proof. Let L be a 6-dimensional nilpotent Lie algebra of breadth 2 such that $Z(L)=[L, L]$ are 2-dimensional. Suppose that L contains an element of breadth 1 . Since $Z(L)$ is 2-dimensional, we have $\operatorname{dim} L^{\prime}=\operatorname{dim} L-\operatorname{dim} Z(L)=6-2=4$. Then we have L^{\prime} is a component of L of dimension 4. Suppose that L^{\prime} is irreducible. By Theorem 5.4.22, $L=\operatorname{span}\left\{x_{1}, x_{2}, x_{3}, x_{4}, z_{1}, z_{2}\right\}$ such that $\left[x_{1}, x_{2}\right]=z_{1},\left[x_{1}, x_{3}\right]=z_{2}$ and $\left[x_{3}, x_{4}\right]=z_{1}$ where $Z(L)=\operatorname{span}\left\{z_{1}, z_{2}\right\}$.

On the other hand, we assume that L^{\prime} is reducible. Then L^{\prime} must be composed of 2 irreducible components of dimension 2. Since $Z(L)=[L, L]$ are 2-dimensional, we obtain $L^{\prime}=\operatorname{span}\left\{x_{1}, x_{2}\right\} \oplus \operatorname{span}\left\{x_{3}, x_{4}\right\}$ such that $\left[x_{1}, x_{2}\right]=z_{1}$ and $\left[x_{3}, x_{4}\right]=z_{2}$ where $Z(L)=$
$[L, L]=\operatorname{span}\left\{z_{1}, z_{2}\right\}$. We also note that

$$
b\left(\alpha x_{1}+\beta x_{3}\right)=b\left(\alpha x_{1}+\beta x_{4}\right)=b\left(\alpha x_{2}+\beta x_{3}\right)=b\left(\alpha x_{2}+\beta x_{4}\right)=2
$$

for any $\alpha, \beta \in \mathbb{F}$. In this case, it is not isomorphic to previous case because of the component property. Hence $L=\operatorname{span}\left\{x_{1}, x_{2}, x_{3}, x_{4}, z_{1}, z_{2}\right\}$ such that $\left[x_{1}, x_{2}\right]=z_{1}$ and $\left[x_{3}, x_{4}\right]=z_{2}$ where $Z(L)=[L, L]=\operatorname{span}\left\{z_{1}, z_{2}\right\}$.

In the next part, we prove that 6 -dimensional nilpotent Lie algebra of breadth 2 such that $Z(L)=[L, L]$ are 2-dimensional contains an element of breadth 1 if the underlying field is algebraically closed. Thus we get a complete classification if we consider Lie algebras over algebraically closed field.

Lemma 5.4.24. Let L be a 6 -dimensional nilpotent Lie algebra of breadth 2 such that $Z(L)=$ $[L, L]$ are 2-dimensional. Suppose that for any $x \in L-Z(L), b(x)=2$. Then $L=\operatorname{span}\left\{x_{1}, x_{2}, x_{3}\right.$, $\left.x_{4}, z_{1}, z_{2}\right\}$ such that $\left[x_{1}, x_{2}\right]=\left[x_{3}, x_{4}\right]=z_{1},\left[x_{2}, x_{3}\right]=z_{2}$ and $\left[x_{1}, x_{4}\right]=\alpha z_{2}$ where $\alpha \neq 0$.

Proof. Let L be a 6-dimensional nilpotent Lie algebra of breadth 2 such that $Z(L)=[L, L]$ are 2-dimensional. Since $Z(L)$ is 2-dimensional, we have $\operatorname{dim} L^{\prime}=\operatorname{dim} L-\operatorname{dim} Z(L)=6-2=4$. Then we have L^{\prime} is a component of L of dimension 4. Suppose that for any $x \in L-Z(L)$, $b(x)=2$. Note that $L^{\prime} \subseteq L-Z(L)$, so $b(x)=2$ for any $x \in L^{\prime}$ Let $u_{2} \in L^{\prime}$. Then $b\left(u_{2}\right)=2$, so there exist $u_{1}, u_{3} \in L^{\prime}$ such that $\left[u_{1}, u_{2}\right]=w_{1},\left[u_{2}, u_{3}\right]=w_{2}$ and $\left[u_{1}, u_{3}\right]=a_{1} w_{1}+a_{2} w_{2}$ where $a_{1}, a_{2} \in \mathbb{F}$ and $Z(L)=\operatorname{span}\left\{w_{1}, w_{2}\right\}$. Let $v_{1}=u_{1}-a_{2} u_{2}, v_{2}=u_{2}, v_{3}=u_{3}-a_{1} u_{2}$ and $M=\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\} \subseteq L^{\prime}$. Then we have

$$
\begin{aligned}
{\left[v_{1}, v_{2}\right] } & =\left[u_{1}-a_{2} u_{2}, u_{2}\right]=\left[u_{1}, u_{2}\right]-a_{2}\left[u_{2}, u_{2}\right]=w_{1}, \\
{\left[v_{2}, v_{3}\right] } & =\left[u_{2}, u_{3}-a_{1} u_{2}\right]=\left[u_{2}, u_{3}\right]-a_{1}\left[u_{2}, u_{2}\right]=w_{2}, \\
{\left[v_{1}, v_{3}\right] } & =\left[u_{1}-a_{2} u_{2}, u_{3}-a_{1} u_{2}\right] \\
& =\left[u_{1}, u_{3}\right]-a_{1}\left[u_{1}, u_{2}\right]-a_{2}\left[u_{2}, u_{3}\right]+a_{2} a_{1}\left[u_{2}, u_{2}\right] \\
& =\left(a_{1} w_{1}+a_{2} w_{2}\right)-a_{1} w_{1}-a_{2} w_{2} \\
& =0 .
\end{aligned}
$$

Since L^{\prime} is 4-dimensional, there exists $v_{4} \in L^{\prime}$. Then we write

$$
\begin{aligned}
& {\left[v_{1}, v_{4}\right]=\alpha_{1} w_{1}+\alpha_{2} w_{2},} \\
& {\left[v_{2}, v_{4}\right]=\beta_{1} w_{1}+\beta_{2} w_{2},} \\
& {\left[v_{3}, v_{4}\right]=\gamma_{1} w_{1}+\gamma_{2} w_{2}}
\end{aligned}
$$

where $\alpha_{i}, \beta_{i}, \gamma_{i} \in \mathbb{F}$ for $i=1,2$. Since $b\left(v_{1}\right)=b\left(v_{3}\right)=2$, we have $\alpha_{2}, \gamma_{1} \neq 0$. Without loss of generality, we assume that $\gamma_{1}=1$. Then we have $L^{\prime}=\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ such that

$$
\begin{aligned}
& {\left[v_{1}, v_{4}\right]=\alpha_{1} w_{1}+\alpha_{2} w_{2},} \\
& {\left[v_{2}, v_{4}\right]=\beta_{1} w_{1}+\beta_{2} w_{2},} \\
& {\left[v_{3}, v_{4}\right]=w_{1}+\gamma_{2} w_{2}}
\end{aligned}
$$

Let $y_{1}=v_{1}, y_{2}=v_{2}, y_{3}=v_{3}$ and $y_{4}=v_{4}+\beta_{1} v_{1}+\gamma_{2} v_{2}-\beta_{2} v_{3}$. Then we have $L^{\prime}=$ $\operatorname{span}\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ such that

$$
\begin{aligned}
{\left[y_{1}, y_{2}\right] } & =\left[v_{1}, v_{2}\right]=w_{1}, \\
{\left[y_{1}, y_{3}\right] } & =\left[v_{1}, v_{3}\right]=0, \\
{\left[y_{2}, y_{3}\right] } & =\left[v_{2}, v_{3}\right]=w_{2}, \\
{\left[y_{1}, y_{4}\right] } & =\left[v_{1}, v_{4}+\beta_{1} v_{1}+\gamma_{2} v_{2}-\beta_{2} v_{3}\right] \\
& =\left[v_{1}, v_{4}\right]+\beta_{1}\left[v_{1}, v_{1}\right]+\gamma_{2}\left[v_{1}, v_{2}\right]-\beta_{2}\left[v_{1}, v_{3}\right] \\
& =\left(\alpha_{1} w_{1}+\alpha_{2} w_{2}\right)+\gamma_{2} w_{1} \\
& =\left(\alpha_{1}+\gamma_{2}\right) w_{1}+\alpha_{2} w_{2} \\
& =: \delta w_{1}+\alpha_{2} w_{2}, \\
{\left[y_{2}, y_{4}\right] } & =\left[v_{2}, v_{4}+\beta_{1} v_{1}+\gamma_{2} v_{2}-\beta_{2} v_{3}\right] \\
& =\left[v_{2}, v_{4}\right]+\beta_{1}\left[v_{2}, v_{1}\right]+\gamma_{2}\left[v_{2}, v_{2}\right]-\beta_{2}\left[v_{2}, v_{3}\right] \\
& =\left(\beta_{1} w_{1}+\beta_{2} w_{2}\right)+\beta_{1}\left(-w_{1}\right)-\beta_{2} w_{2} \\
& =0, \\
{\left[y_{3}, y_{4}\right] } & =\left[v_{3}, v_{4}+\beta_{1} v_{1}+\gamma_{2} v_{2}-\beta_{2} v_{3}\right] \\
& =\left[v_{3}, v_{4}\right]+\beta_{1}\left[v_{3}, v_{1}\right]+\gamma_{2}\left[v_{3}, v_{2}\right]-\beta_{2}\left[v_{3}, v_{3}\right] \\
& =\left(w_{1}+\gamma_{2} w_{2}\right)+\gamma_{2}\left(-w_{2}\right) \\
& =w_{1}
\end{aligned}
$$

where $\delta=\alpha_{1}+\gamma_{2}$. Next, we let $x_{1}=y_{1}-\frac{\delta}{2} y_{3}, x_{2}=y_{2}, x_{3}=y_{3}, x_{4}=y_{4}-\frac{\delta}{2} y_{2}, z_{1}=$ $w_{1}+\frac{\delta}{2} w_{2}, z_{2}=w_{2} \quad$ and $\quad \alpha=\alpha_{2}-\frac{\delta^{2}}{4}$. Then $L=\operatorname{span}\left\{x_{1}, x_{2}, x_{3}, x_{4}, z_{1}, z_{2}\right\}$ such that

$$
\begin{aligned}
& {\left[x_{1}, x_{2}\right]=\left[y_{1}-\frac{\delta}{2} y_{3}, y_{2}\right]=\left[y_{1}, y_{2}\right]-\frac{\delta}{2}\left[y_{3}, y_{2}\right]=w_{1}+\frac{\delta}{2} w_{2}=z_{1},} \\
& {\left[x_{1}, x_{3}\right]=\left[y_{1}-\frac{\delta}{2} y_{3}, y_{3}\right]=\left[y_{1}, y_{3}\right]-\frac{\delta}{2}\left[y_{3}, y_{3}\right]=0,} \\
& {\left[x_{2}, x_{3}\right]=\left[y_{2}, y_{3}\right]=w_{2}=z_{2},}
\end{aligned}
$$

$$
\begin{aligned}
{\left[x_{1}, x_{4}\right] } & =\left[y_{1}-\frac{\delta}{2} y_{3}, y_{4}-\frac{\delta}{2} y_{2}\right] \\
& =\left[y_{1}, y_{4}\right]-\frac{\delta}{2}\left[y_{1}, y_{2}\right]-\frac{\delta}{2}\left[y_{3}, y_{4}\right]+\frac{\delta^{2}}{4}\left[y_{3}, y_{2}\right] \\
& =\left(\delta w_{1}+\alpha_{2} w_{2}\right)-\frac{\delta}{2} w_{1}-\frac{\delta}{2} w_{1}+\frac{\delta^{2}}{4}\left(-w_{2}\right) \\
& =\left(\alpha_{2}-\frac{\delta^{2}}{4}\right) w_{2} \\
& =\alpha z_{2}, \\
{\left[x_{2}, x_{4}\right] } & =\left[y_{2}, y_{4}-\frac{\delta}{2} y_{2}\right]=\left[y_{2}, y_{4}\right]-\frac{\delta}{2}\left[y_{2}, y_{2}\right]=0, \\
{\left[x_{3}, x_{4}\right] } & =\left[y_{3}, y_{4}-\frac{\delta}{2} y_{2}\right]=\left[y_{3}, y_{4}\right]-\frac{\delta}{2}\left[y_{3}, y_{2}\right]=w_{1}-\frac{\delta}{2}\left(-w_{2}\right)=w_{1}+\frac{\delta}{2} w_{2}=z_{1} .
\end{aligned}
$$

Moreover, if $\alpha=0$, then we have $b\left(x_{1}\right)=b\left(x_{4}\right)=1$ which is a contradiction. Thus $\alpha \neq 0$. Hence $L=\operatorname{span}\left\{x_{1}, x_{2}, x_{3}, x_{4}, z_{1}, z_{2}\right\}$ such that $\left[x_{1}, x_{2}\right]=\left[x_{3}, x_{4}\right]=z_{1},\left[x_{2}, x_{3}\right]=z_{2}$ and $\left[x_{1}, x_{4}\right]=\alpha z_{2}$ where $\alpha \neq 0$.

Theorem 5.4.25. Let L be a 6 -dimensional nilpotent Lie algebra of breadth 2 over an algebraically closed field such that $Z(L)=[L, L]$ are 2-dimensional. Then L contains an element of breadth 1 .

Proof. Let L be a 6-dimensional nilpotent Lie algebra of breadth 2 over an algebraically closed field such that $Z(L)=[L, L]$ are 2-dimensional. Suppose that L does not contain an element of breadth 1 . Then $b(x)=2$ for any $x \in L-Z(L)$. By Lemma 5.4.24, $L=$ $\operatorname{span}\left\{x_{1}, x_{2}, x_{3}, x_{4}, z_{1}, z_{2}\right\}$ such that $\left[x_{1}, x_{2}\right]=\left[x_{3}, x_{4}\right]=z_{1},\left[x_{2}, x_{3}\right]=z_{2}$ and $\left[x_{1}, x_{4}\right]=\alpha z_{2}$ where $\alpha \neq 0$. Since we consider L over algebraically closed field, $\sqrt{-\alpha}$ exists. Consider $y=\sqrt{-\alpha} x_{2}+x_{4}$. Then we have
$\left[y, x_{1}\right]=\left[\sqrt{-\alpha} x_{2}+x_{4}, x_{1}\right]=\sqrt{-\alpha}\left[x_{2}, x_{1}\right]+\left[x_{4}, x_{1}\right]=\sqrt{-\alpha}\left(-z_{1}\right)-\alpha z_{2}=-\sqrt{-\alpha}\left(z_{1}-\sqrt{-\alpha} z_{2}\right)$, $\left[y, x_{2}\right]=\left[\sqrt{-\alpha} x_{2}+x_{4}, x_{2}\right]=\sqrt{-\alpha}\left[x_{2}, x_{2}\right]+\left[x_{4}, x_{2}\right]=0$, $\left[y, x_{3}\right]=\left[\sqrt{-\alpha} x_{2}+x_{4}, x_{3}\right]=\sqrt{-\alpha}\left[x_{2}, x_{3}\right]+\left[x_{4}, x_{3}\right]=\sqrt{-\alpha}\left(z_{2}\right)-z_{1}=-\left(z_{1}-\sqrt{-\alpha} z_{2}\right)$, $\left[y, x_{4}\right]=\left[\sqrt{-\alpha} x_{2}+x_{4}, x_{4}\right]=\sqrt{-\alpha}\left[x_{2}, x_{4}\right]+\left[x_{4}, x_{4}\right]=0$.

Therefore $\operatorname{im} a d_{y}=\operatorname{span}\left\{z_{1}-\sqrt{-\alpha} z_{2}\right\}$, so $b(y)=1$ which is a contradiction. Hence L contains an element of breadth 1 .

Corollary 5.4.26. Let L be a 6 -dimensional nilpotent Lie algebra of breadth 2 over an algebraically closed field such that $Z(L)=[L, L]$ are 2-dimensional. Then $L=\operatorname{span}\left\{x_{1}, x_{2}, x_{3}, x_{4}, z_{1}\right.$, $\left.z_{2}\right\}$ such that

$$
\text { 1. }\left[x_{1}, x_{2}\right]=z_{1},\left[x_{2}, x_{3}\right]=z_{2} \text { and }\left[x_{3}, x_{4}\right]=z_{1}
$$

or
2. $\left[x_{1}, x_{2}\right]=z_{1}$ and $\left[x_{3}, x_{4}\right]=z_{2}$
where $\alpha \neq 0$ and $Z(L)=\operatorname{span}\left\{z_{1}, z_{2}\right\}$.
Note that for any odd dimensional nilpotent Lie algebra L of breadth 2 such that $Z(L)=$ $[L, L]$ is 2-dimensional, we do not need algebraically closed field to find an element of breadth 1.

Proposition 5.4.27. Let L be an odd dimensional nilpotent Lie algebra of breadth 2 such that $Z(L)=[L, L]$ is 2-dimensional. Then there exists $x \in L$ such that $b(x)=1$ and imad $=$ $\operatorname{span}\{z\}$ for any $z \in Z(L)$.

Proof. Let L be an odd dimensional nilpotent Lie algebra of breadth 2 such that $Z(L)=[L, L]$ is 2-dimensional. Then $\operatorname{dim} L=n \in \mathbb{Z}_{>0}$ which is odd. Let $z \in L$ and $I=\operatorname{span}\{z\}$. Then I is an ideal of L since $z \in Z(L)$. Then we observe that $[L / I, L / I]=[L, L] / I$, so we have $\operatorname{dim}[L / I, L / I]=\operatorname{dim}[L, L]-\operatorname{dim} I=2-1=1$. By Theorem 3.2.1, we have $b(L / I)=1$. Note that $\operatorname{dim} L / I=\operatorname{dim} L-\operatorname{dim} I=n-1$, so by Theorem 3.2.6, there exists a basis

$$
S=\left\{v_{1}+I, v_{-1}+I, v_{2}+I, v_{-2}+I, \ldots, v_{r}+I, v_{-r}+I, z^{\prime}+I, w_{1}+I \ldots, w_{(n-1)-2 r-1}+I\right\}
$$

for L / I such that

$$
\left[v_{i}+I, v_{j}+I\right]=\left\{\begin{array}{cl}
z^{\prime}+I & \text { if } i=-j>0 \\
-z^{\prime}+I & \text { if } i=-j<0 \\
I & \text { otherwise }
\end{array}\right.
$$

for every $i, j \in\{ \pm 1, \pm 2, \ldots, \pm r\}$ and $z^{\prime}+I, w_{1}+I \ldots, w_{(n-1)-2 r-1}+I \in Z(L / I)$ where $r \in \mathbb{Z}_{>0}$. Observe that $(n-1)-2 r-1=n-2(r+1)>0$ because n is odd. Thus there exists $w_{1}+I \in Z(L / I)$, so $\operatorname{im} a d_{w_{1}+I}=\operatorname{span}\{I\}$. Therefore for any $y \in L$, we have $\left[w_{1}, y\right]+I=$ $\left[w_{1}+I, y+I\right]=I$, so $\left[w_{1}, y\right] \in I$. Since $y \in L$ is arbitrary, im $a d_{w_{1}} \subseteq I=\operatorname{span}\{z\}$. Next, we will claim that $w_{1} \notin Z(L)$. Suppost that $w_{1} \in Z(L)$. Then we obtain

$$
w_{1}+I \in Z(L) / I=[L, L] / I=[L / I, L / I]=\operatorname{span}\left\{z^{\prime}+I\right\}
$$

Thus $w_{1}+I=a z^{\prime}+I$ for some $a \in \mathbb{F}$, so $\left\{w_{1}+I, z^{\prime}+I\right\}$ is not linearly independent which is a contradiction. Hence $w_{1} \notin Z(L)$. Consequently, $b\left(w_{1}\right)=1$ and $\operatorname{im} a d_{w_{1}}=I=\operatorname{span}\{z\}$.

REFERENCES

[1] C. R. Leedham-Green, Peter M. Neumann and James Wiegold, The Breadth and the Class of a Finite p-Group, Journal of the London Mathematical Society 1 (1969) 409-420.
[2] Gemma Parmeggiani and Bernd Stellmacher, p-Groups of Small Breadth, Journal of Algebra 213 (1999) 52-68.
[3] H. G. Knoche, Uber den Frobeniusschen Klassenbegriff in nilpotenten Gruppen, Math. Z. 55 (1951) 71-83.
[4] Kailash Misra, Lecture Notes in Lie Algebra, 2010.
[5] James Humphreys, Introduction to Lie Algebras and Representation Theory, SpringerVerlag, New York, 1972.
[6] Nathan Jacobson, Basic Algebra I 2nd ed., W. H. Freeman and Company, New York, 1985.
[7] Michel Goze and Yusupdjan Khakimdjanov, Nilpotent Lie Algebras, Kluwer Academic Publishers, Dordrecht, 1996.

