
ABSTRACT

KHUHIRUN, BORWORN. Classification of Nilpotent Lie Algebras with Small Breadth. (Un-

der the direction of Ernest L. Stitzinger and Kailash C. Misra.)

A Lie algebra, L is said to be of breadth k if the maximal dimension of the images of

left multiplication by elements of the algebra is k, introduced by Leedham-Green, Neumann

and Wiegold. Inspired by the work of Parmeggani and Stellmacher on finite p-groups, we char-

acterize nilpotent Lie algebras of breadth 1 and 2. We show that a nilpotent Lie algebra L

has breadth 1 if and only if the derived algebra of L has dimension 1 which is equivalent to

L being a Heisenberg Lie algebra with possible abelian direct summands. The nilpotent Lie

algebra L has breadth 2 if and only if either the derived algebra of L has dimension 2 or the

derived algebra and central quotient both have dimension 3. These results parallel results in

finite p-groups. Unlike its group theory counter part, we use our characterization to determine

the isomorphism classes of nilpotent Lie algebras of breadth 1 and 2. In this classification we

focus on Lie algebras with no abelian direct summand, algebras which we call pure. So our

classification results are always for pure nilpotent Lie algebras. One can harmlessly add abelian

direct summands to these algebras to get further examples. For breadth 2, we determine the

isomorphism classes of all Lie algebras with three dimensional derived algebra and all Lie alge-

bras with two dimensional derived algebra and one dimensional center. For the only remaining

case, where the derived algebra and center both have dimension two, we classify the algebras

up to dimension six.
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Chapter 1

Introduction

Classifying algebraic objects is a central theme of mathematical research. A paramount example

is the classification of finite dimensional complex simple Lie algebras due to Killing and Cartan.

Less progress has been made for other classes of Lie algebras. In particular, the vast number

of nilpotent Lie algebras has made the classification problem formidable for this class. As

a result, authors have made progress by classifying nilpotent Lie algebras satisfying certain

conditions. Research in finite group theory has followed a similar path. Simple groups have

been classified, but the large number of p-groups has led researchers to investigate p-groups

with added conditions. An example is the work of Parmeggiani and Stellmacher where the

concept of breadth is used. In particular, they have given characterizations of finite p-groups

of breadth 1 and 2. However, so far there does not exist a classification of these finite p-groups.

The analogous concept of breadth for Lie algebra has been introduced by Leedham-Green,

Neumann and Wiegold. They define the breadth of a Lie algebra to be the maximum of the

dimensions of the images of adx where x runs over the algebra. We consider this concept for

finite dimensional nilpotent Lie algebras and give a characterization for breadth 1 and 2. In

particular, we show that a finite dimensional nilpotent Lie algebra is of breadth 1 if and only

if its derived algebra is one dimensional. We also show that a finite dimensional nilpotent Lie

algebra L has breadth 2 if and only if either the derived algebra of L has dimension 2 or the

derived algebra and the central quotient both have dimension 3. These results parallel results

in finite p-groups.

Finally we use our characterizations to classify finite dimensional nilpotent Lie algebras of

breadth 1 and 2. We define a nilpotent Lie algebra to be pure if it does not have abelian direct

summands. Then we classify finite dimensional pure nilpotent Lie algebras of breadth one and

two since abelian summands can be added harmlessly. In particular, we show that a finite

dimensional pure nilpotent Lie algebra of breadth 1 is isomorphic to a Heisenberg Lie algebra.

For a finite dimensional pure nilpotent Lie algebras L, the center is contained in the derived
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algebra. By our characterization result, the dimension of the derived algebra of a finite dimen-

sional pure nilpotent Lie algebra L of breadth 2 is either 2 or 3. We determine the isomorphism

classes of finite dimensional pure nilpotent Lie algebras of breadth two with three dimensional

derived algebra. We also determine the isomorphism classes of finite dimensional pure nilpotent

Lie algebras of breadth two with two dimensional derived algebra and one dimensional center.

For the remaining case where the derived algebra and center coincide with dimension 2, we

determine their isomorphism classes up to dimension 6. We hope these classification results

will lead to corresponding classification results in finite p-groups.

2



Chapter 2

Preliminaries

We begin this chapter by introducing some basic definitions and notations we use throughout

this paper. All of these following definitions and notations can be found in Humphreys and

lecture notes in Lie algebra. We consider finite dimensional Lie algebra together with underlying

field F such that char(F) 6= 2 for the most of the first half. Meanwhile, we develop our focus

to finite dimensional nilpotent Lie algebra over F in the second half. Let L be a Lie algebra.

Define a sequence of ideals of L called lower central series or decending central series by

L0 ⊇ L1 ⊇ L2 ⊇ L3 ⊇ . . . ⊇ Lm ⊇ . . .

where L0 = L,L1 = [L,L], L2 = [L, [L,L]] = [L,L1], L3 = [L,L2], . . . , Lm = [L,Lm−1], . . ..

L is said to be nilpotent if Lm = {0} for some m ∈ Z≥0.
During classification process, nilpotency of Lie algebra and its center play important roles,

so we would like to provide some facts about them. Every nilpotent Lie algebra has nontrivial

center. Furthermore, homomorphic image and quotient of nilpoent Lie algebra are nilpotent.

Note that when we consider a Lie algebra L as a finite dimensional vector space, we could apply

rank-nullity theorem in order to get

dimL = nullityϕ+ rankϕ

where ϕ : L→ L is a Lie algebra homomorphism.
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Chapter 3

Nilpotent Lie Algebras of Breadth 1

3.1 Basic Definitions and Properties of Breadth

We start this section with definitions and properties of breadth on Lie algebra developed from

group theory.

Definition 3.1.1. Let L be a finite dimensional Lie algebra. For any x ∈ L, breadth of x,

denoted by b(x) is

b(x) = dim(L/ ker adx)

= dimL− nullity adx

= rank adx.

More generally, for any ideal A of L, we define

bA(x) = dim(A/ ker adx|A)

= dimA− nullity adx|A
= rank adx|A.

Definition 3.1.2. Let L be a finite dimensional Lie algebra. We define breadth of L, denoted

by b(L) to be

b(L) = max{b(x) | x ∈ L}.

Moreover, for any ideal A of L, we have

bA(L) = max{bA(x) | x ∈ L}.
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Remark. Let L be a finite dimensional Lie algebra. Then Z(L) = {x ∈ L | b(x) = 0}.

Remark. Let L be a finite dimensional Lie algebra and A an ideal of L. Then the following

hold for any x ∈ L:

1. bA(x) ≤ b(x).

2. bA(L) ≤ b(L).

Definition 3.1.3. Let L be a finite dimensional Lie algebra and A an ideal of L. We define

B = {x ∈ L | b(x) = b(L)},

BA = {x ∈ L | bA(x) = bA(L)},

TA = {x ∈ L | bA(x) = 1}.

Next proposition shows that Lie algebra which has breadth equal to zero is equivalent to

that Lie algebra is abelian.

Proposition 3.1.4. Let L be a finite dimensional Lie algebra. Then b(L) = 0 if and only if L

is abelian.

Proof. Let L be a finite dimensional Lie algebra. Then it is easy to see that

b(L) = max{b(x) | x ∈ L} = 0⇐⇒ b(x) = rank adx = 0 ∀x ∈ L

⇐⇒ adx = 0 ∀x ∈ L

⇐⇒ [L,L] = {0}

⇐⇒ L is abelian.

Lemma 3.1.5. Let L be a finite dimensional Lie algebra and A an ideal of L. Then b(L) ≤
dim[L,L] and bA(L) ≤ dim[A,L].

Proof. For any x ∈ L, we have adx : L → [L,L]. Then im adx ⊆ [L,L], so we obtain b(x) =

rank adx ≤ dim[L,L]. Since x ∈ L is arbitrary, b(L) ≤ dim[L,L]. Similarly, we also have

adx|A : L→ [A,L], so im adx|A ⊆ [A,L]. Thus bA(x) = rank adx|A ≤ dim[A,L]. Because x ∈ L
is arbitrary, bA(L) ≤ dim[A,L].

Corollary 3.1.6. Let L be a finite dimensional Lie algebra. Suppose that there exists x ∈ L
such that b(x) = dim[L,L]. Then b(L) = dim[L,L]. In particular, let A be an ideal of L.

Suppose that there exists x ∈ L such that bA(x) = dim[A,L]. Then bA(L) = dim[A,L].
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Proof. Let L be a finite dimensional Lie algebra. Suppose that there exists x ∈ L such that

b(x) = dim[L,L]. By Lemma 3.1.5, we know that b(L) ≤ dim[L,L]. Therefore we have

dim[L,L] = b(x) ≤ b(L) ≤ dim[L,L],

so b(L) = dim[L,L]. On the other hand, if we let A be an ideal of L and assume that there

exists x ∈ L such that bA(x) = dim[A,L]. By Lemma 3.1.5, we have bA(L) ≤ dim[A,L]. Hence

dim[A,L] = bA(x) ≤ bA(L) ≤ dim[A,L],

so bA(L) = dim[A,L].

Even though we define breadth of Lie algebra to be maximum value of breadth of all elements

and Lie algebra can be considered as a vector space spanned by a basis, we cannot determine

breadth of Lie algebra form its basis.

Example 3.1.7. (Breadth of a Lie algebra cannot be determined from its basis)

Let L = H1 ⊕H2 where H1 and H2 are Heisenberg Lie algebra. Then

L = span{x1, y1, z1} ⊕ span{x2, y2, z2}

where [x1, y1] = z1 and [x2, y2] = z2. Note that L is a six dimensional nilpotent Lie algebra

because [L,L] = span{z1, z2} = Z(L) and [L, [L,L]] = [L,Z(L)] = {0}. Observe that

b(xi) = b(yi) = 1 and b(zi) = 0 for all i = 1, 2,

but b(x1 + x2) = 2 since [x1 + x2, yi] = zi for all i = 1, 2. By Corollary 3.1.6, we have b(L) = 2

since b(x1 + x2) = 2 = dim[L,L].

Example 3.1.8. Let L = span{x1, x2, . . . , xn} together with bracket relations defined by

[x1, xn] = 0 and [x1, xi] = xi+1

where i = 2, 3, . . . , n− 1. Then L is an n-dimensional nilpotent Lie algebra of breadth n− 2.

First, we need to show that Jacobi identity holds. Let x, y, z ∈ L. Then there exist

a1, . . . , an, b1, . . . , bn, c1, . . . , cn ∈ C such that

x = a1x1 + . . .+ anxn,

y = b1x1 + . . .+ bnxn,

z = c1x1 + . . .+ cnxn.
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Then we have

[x, [y, z]] = [a1x1 + . . .+ anxn, [b1x1 + . . .+ bnxn, c1x1 + . . .+ cnxn]]

= [a1x1 + . . .+ anxn, (b1c2 − b2c1)x3 + (b1c3 − b3c1)x4 + . . .+ (b1cn−1 − bn−1c1)xn]

= a1(b1c2 − b2c1)x4 + a1(b1c3 − b3c1)x5 + . . .+ a1(b1cn−2 − bn−2c1)xn,

[[x, y], z] = [[a1x1 + . . .+ anxn, b1x1 + . . .+ bnxn], c1x1 + . . .+ cnxn]

= [(a1b2 − a2b1)x3 + (a1b3 − a3b1)x4 + . . .+ (a1bn−1 − an−1b1)xn, c1x1 + . . .+ cnxn]

= −c1(a1b2 − a2b1)x4 − c1(a1b3 − a3b1)x5 − . . .− c1(a1bn−2 − an−2b1)xn,

[y, [x, z]] = [b1x1 + . . .+ bnxn, [a1x1 + . . .+ anxn, c1x1 + . . .+ cnxn]]

= [b1x1 + . . .+ bnxn, (a1c2 − a2c1)x3 + (a1c3 − a3c1)x4 + . . .+ (a1cn−1 − an−1c1)xn]

= b1(a1c2 − a2c1)x4 + b1(a1c3 − a3c1)x5 + . . .+ b1(a1cn−2 − an−2c1)xn.

Therefore we have

[[x, y], z] + [y, [x, z]] =(−c1(a1b2 − a2b1)x4 − c1(a1b3 − a3b1)x5 − . . .− c1(a1bn−2 − an−2b1)xn)

+ (b1(a1c2 − a2c1)x4 + b1(a1c3 − a3c1)x5 + . . .+ b1(a1cn−2 − an−2c1)xn)

=(−a1b2c1 + a2b1c1 + a1b1c2 − a2b1c1)x4 + (−a1b3c1 + a3b1c1 + a1b1c3

− a3b1c1)x5 + . . .+ (−a1bn−2c1 + an−2b1c1 + a1b1cn−2 − an−2b1c1)xn
=(−a1b2c1 + a1b1c2)x4 + (−a1b3c1 + a1b1c3)x5 + . . .+ (−a1bn−2c1

+ a1b1cn−2)xn

=a1(b1c2 − b2c1)x4 + a1(b1c3 − b3c1)x5 + . . .+ a1(b1cn−2 − bn−2c1)xn
=[x, [y, z]].

As a result, the Jacobi identity holds, so L is an n-dimensional Lie algebra.

Observe that [L,L] = span{x3, x4, . . . , xn} which is (n− 2)-dimensional and Ln = {0}, so L

is nilpotent. Moreover, by Corollary 3.1.6, we have b(L) = n−2 since b(x1) = n−2 = dim[L,L].

Hence L is an n-dimensional nilpotent Lie algebra of breadth n− 2.

Theorem 3.1.9. Let L be a finite dimensional Lie algebra such that b(L) = n ∈ Z>0. Then

dim(L/Z(L)) ≥ n+ 1.

Proof. Let L be a finite dimensional Lie algebra such that b(L) = n ∈ Z>0. Let x ∈ B. Then

b(x) = b(L) = n, so there exist y1, y2, . . . , yn ∈ L and z1, z2, . . . , zn ∈ [L,L] such that [x, yi] = zi
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for all i = 1, 2, . . . , n and {z1, z2, . . . , zn} is linearly independent. Note that α ∈ Z(L) if and

only if b(α) = 0. Therefore y1, y2, . . . , yn /∈ Z(L) because b(yi) ≥ 1 for all i = 1, 2, . . . , n.

Thus y1 + Z(L), y2 + Z(L), . . . , yn + Z(L) 6= Z(L). Similarly, we also have x /∈ Z(L) because

b(x) = n > 0. Therefore x+ Z(L) 6= Z(L).

Next, we claim that {x+ Z(L), y1 + Z(L), y2 + Z(L), . . . , yn + Z(L)} ⊆ L/Z(L) is linearly

independent, let a0, a1, a2, . . . , an ∈ F be such that

a0(x+ Z(L)) + a1(y1 + Z(L)) + a2(y2 + Z(L)) + . . .+ an(yn + Z(L)) = Z(L).

Then a0x+ a1y1 + a2y2 + . . .+ anyn ∈ Z(L), so we have

0 = [x, a0x+ a1y1 + a2y2 + . . .+ anyn]

= a0[x, x] + a1[x, y1] + a2[x, y2] + . . .+ an[x, yn]

= a1z1 + a2z2 + . . .+ anzn.

Since {z1, z2, . . . , zn} is linearly independent, a1, a2, . . . , an = 0. By assumption, we also get

a0(x + Z(L)) = Z(L). Since x + Z(L) 6= Z(L), a0 = 0. Consequently, a0, a1, a2, . . . , an = 0,

so {x+Z(L), y1 +Z(L), y2 +Z(L), . . . , yn +Z(L)} is a linearly independent subset of L/Z(L).

Hence dim(L/Z(L)) ≥ n+ 1.

Lemma 3.1.10. Let L be a finite dimensional Lie algebra. Suppose that dim(L/Z(L)) = n ∈
Z>0. Then dim[L,L] ≤

(
n
2

)
.

Proof. Let L be a finite dimensional Lie algebra. Then there exists m ∈ Z≥0 such that Z(L) =

span{x1, x2, . . . , xm}. Then we extend this basis to L = span{x1, x2, . . . , xm, y1, y2, . . . , yn}.
Since x1, x2, . . . , xr ∈ Z(L), we have

[L,L] = span{[y1, y2], [y1, y3], . . . , [y1, yn],

[y2, y3], . . . , [y2, yn],

. . . , [yn−1, yn]}

and then

dim[L,L] = dim span{[y1, y2], [y1, y3], . . . , [yn−1, yn]}

≤ n+ (n− 1) + (n− 2) + . . .+ 1

=
n

2
(n− 1)

=

(
n

2

)
.

8



Hence dim[L,L] ≤
(
n
2

)
as we wanted.

Finally, we are going to show that breadth of the direct sum of finite dimensional Lie algebras

is equal to sum of their breadthes.

Lemma 3.1.11. Let L1 and L2 be finite dimensional Lie algebras. Then bL1⊕L2(x1 + x2) =

bL1(x1) + bL2(x2) for any x1 ∈ L1 and x2 ∈ L2.

Proof. Let L1 and L2 be finite dimensional Lie algebras and L = L1 ⊕ L2. Let x1 ∈ L1 and

x2 ∈ L2. Since L = L1 ⊕ L2, we know that [L1, L2] = L1 ∩ L2 = {0}, so L1 and L2 can be

considered as ideals of L. Then we have

im adx1+x2 |L1 = [x1 + x2, L1] = [x1, L1] + [x2, L1] = im adx1 |L1 ,

im adx1+x2 |L2 = [x1 + x2, L2] = [x1, L2] + [x2, L2] = im adx2 |L2 ,

so we get

im adx1+x2 |L1⊕L2 = [x1 + x2, L1 ⊕ L2]

= [x1 + x2, L1]⊕ [x1 + x2, L2]

= im adx1+x2 |L1 ⊕ im adx1+x2 |L2

= im adx1 |L1 ⊕ im adx2 |L2 .

Therefore we obtain

bL1⊕L2(x1 + x2) = rank adx1+x2 |L1⊕L2

= dim im adx1+x2 |L1⊕L2

= dim(im adx1 |L1 ⊕ im adx2 |L2)

= dim im adx1 |L1 + dim im adx2 |L2

= rank adx1 |L1 + rank adx1 |L2

= bL1(x1) + bL2(x2).

Hence we get bL(x1 + x2) = bL1(x1) + bL2(x2) for any x1 ∈ L1 and x2 ∈ L2 as we wanted.

Theorem 3.1.12. Let L1 and L2 be finite dimensional Lie algebras. Then b(L1 ⊕ L2) =

b(L1) + b(L2).

Proof. Let L1 and L2 be finite dimensional Lie algebras. Then there exist x1 ∈ L1 and x2 ∈ L2

such that bL1(x1) = b(L1) and bL2(x2) = b(L2), respectively. By using Lemma 3.1.11, we have

b(L1) + b(L2) = bL1(x1) + bL2(x2) = bL1⊕L2(x1 + x2) ≤ b(L1 ⊕ L2).
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On the other hand, we let y ∈ L1 ⊕ L2. Then y = y1 + y2 for some y1 ∈ L1 and y2 ∈ L2.

Note that bL1(y1) ≤ b(L1) and bL2(y2) ≤ b(L2), so we get

bL1⊕L2(y) = bL1⊕L2(y1 + y2) = bL1(y1) + bL2(y2) ≤ b(L1) + b(L2)

by Lemma 3.1.11. Since y ∈ L1 ⊕ L2 is arbitrary, we have b(L1 ⊕ L2) ≤ b(L1) + b(L2). Hence

b(L1 ⊕ L2) = b(L1) + b(L2).

Corollary 3.1.13. Let L1, L2, . . . , Ln be finite dimensional Lie algebras for some n ∈ Z>0.

Then b(L1 ⊕ L2 ⊕ . . .⊕ Ln) = b(L1) + b(L2) + . . .+ b(Ln).

3.2 Classification of Nilpotent Lie Algebras of Breadth 1

For Lie algebra of breadth 1, we get a result analogous to the result in group theory provided

by [2].

Theorem 3.2.1. Let L be a finite dimensional Lie algebra. Then b(L) = 1 if and only if

dim[L,L] = 1.

Proof. Let L be a finite dimensional Lie algebra such that dim[L,L] = 1. Then by Lemma

3.1.5, we have b(L) ≤ 1. Since L is not abelian, b(L) = 1 by Proposition 3.1.4.

On the other hand, assume that b(L) = 1 and dim[L,L] 6= 1. By Proposition 3.1.4, since

b(L) 6= 0, dim[L,L] 6= 0. Thus dim[L,L] ≥ 2. Let z1, z2 ∈ [L,L] be such that {z1, z2} is linearly

indenpendent. Then there exist x1, x2, y1, y2 ∈ L such that [x1, y1] = z1 and [x2, y2] = z2. Note

that

adx1(y1) = z1, ady1(x1) = −z1,

adx2(y2) = z2, ady2(x2) = −z2,

and b(L) = 1, so b(x1) = b(x2) = b(y1) = b(y2) = 1. Therefore we have

adx1 , ady1 : L→ span{z1},

adx2 , ady2 : L→ span{z2}.

Next, we consider [x1, x2] = adx1(x2) ∈ span{z1}. On the other hand, [x1, x2] = −adx2(x1) ∈
span{z2}. Thus [x1, x2] ∈ span{z1} ∩ span{z2} = {0}, so [x1, x2] = 0. Similarly, we also get

[x1, y2] = [y1, x2] = [y1, y2] = 0. Consequently, we obtain

[x1 + x2, y1] = [x1, y1] + [x2, y1] = z1,
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[x1 + x2, y2] = [x1, y2] + [x2, y2] = z2.

Since {z1, z2} is linearly indenpendent, b(x1+x2) = rank adx1+x2 ≥ 2, which contradicts b(L) = 1.

Hence dim[L,L] = 1 by contradiction.

Lemma 3.2.2. Let L be a finite dimensional Lie algebra of breadth 1. Then L is nilpotent if

and only if [L,L] ⊆ Z(L).

Proof. Let L be a finite dimensional Lie algebra of breadth 1. Then by Theorem 3.2.1, we know

that dim[L,L] = 1. Suppose that L is nilpotent and [L,L] 6⊆ Z(L). Thus [L,L] ∩ Z(L) = {0}
because dim[L,L] = 1. Let x ∈ [L,L] − {0}. Then x /∈ Z(L), so there exists y ∈ L such that

[y, x] 6= 0. Therefore [y, x] = αx for some α 6= 0. Consequently, we have adNy (x) = αNx 6= 0 for

all N ∈ Z>0 which is a contradiction. Hence [L,L] ⊆ Z(L).

Conversely, suppose that [L,L] ⊆ Z(L). Then we have L3 = [L, [L,L]] ⊆ [L,Z(L)] = {0},
so L3 = {0}. Hence L is nilpotent.

In order to classify Lie algebra of breadth 1, we use the concept of alternate bilinear form

and its application that could be found in [5] as the following:

Definition 3.2.3. Let V be a finite dimensional vector space and ϕ( , ) : V ×V → F a bilinear

form on V . Then ϕ is called alternate if ϕ(v, v) = 0 for all v ∈ V .

Theorem 3.2.4 (cf. [6], Theorem 6.3). Let V be a finite dimensional vector space such that

dimV = n ∈ Z>0. Let ϕ( , ) : V × V → F be an alternate bilinear form on V . Then there

exists a basis

S = {v1, v−1, v2, v−2, . . . , vr, v−r, z1, . . . , zn−2r}

for V such that the matrix of B relative to this basis has the form

Bϕ = diag{S1, S2, . . . , Sr, 0, . . . , 0}

where r ∈ Z>0 such that r ≤ n
2 and S1 = S2 = . . . = Sr =

(
0 1

−1 0

)
.

Finally, we classify finite dimensional Lie algebras of breadth 1 as the following theorem.

Note that if we consider finite dimensional nilpotent Lie algebras, then they are actually direct

sums of Heisenberg Lie algebra and abelian Lie algebra.

Theorem 3.2.5. Let L be a finite dimensional Lie algebra of breadth 1 such that dimL = n ∈
Z>0. Let 0 6= z ∈ [L,L]. Then there exists a basis

S = {v1, v−1, v2, v−2, . . . , vr, v−r, z1, . . . , zn−2r}
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for L such that

[vi, vj ] =


z if i = −j > 0,

− z if i = −j < 0,

0 otherwise,

for every i, j ∈ {±1,±2, . . . ,±r} and Z(L) = span{z1 . . . , zn−2r}.

Proof. Let L be a finite dimensional Lie algebra of breadth 1 such that dimL = n ∈ Z>0. Then

b(L) = 1. By Theorem 3.2.1, dim[L,L] = 1. Let 0 6= z ∈ [L,L]. Then we have [L,L] = span{z}.
For any x, y ∈ L, we have [x, y] = αz for some α ∈ F. Define a bilinear form ϕ : L× L→ F to

be ϕ(x, y) = α. Note that ϕ is bilinear since bracket is bilinear. Moreover, this is an alternate

form since [x, x] = 0 for all x ∈ L. By Theorem 3.2.4, there exists a basis

S = {v1, v−1, v2, v−2, . . . , vr, v−r, z1, . . . , zn−2r}

for L such that the matrix of ϕ relative to S has the form

Bϕ = diag{S1, S2, . . . , Sr, 0, . . . , 0}

where r ∈ N such that r ≤ n
2 and S1 = S2 = . . . = Sr =

(
0 1

−1 0

)
.

As a result, for every i, j ∈ {1, 2, . . . r},

ϕ(vi, vj) =


1 if i = −j > 0,

− 1 if i = −j < 0,

0 otherwise,

and z1, . . . , zn−2r ∈ Z(L). Hence we have

[vi, vj ] =


z if i = −j > 0,

− z if i = −j < 0,

0 otherwise,

where i, j ∈ {1, 2, . . . r} and z1, . . . , zn−2r ∈ Z(L).

Next, we will claim that Z(L) = span{z1 . . . , zn−2r}. Since z1, . . . , zn−2r ∈ Z(L), we get

span{z1 . . . , zn−2r} ⊆ Z(L). Conversely, without loss of generality, we let a1, a−1, . . . , ar, a−r ∈
F such that

a1v1 + a−1v−1 + a2v2 + a−2v−2 + . . .+ arvr + a−rv−r = 0.
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Let k ∈ {1, 2, . . . , r}. Then we have

0 = [vk, a1v1 + a−1v−1 + . . .+ arvr + a−rv−r] = a−k[vk, v−k] = a−kz,

0 = [v−k, a1v1 + a−1v−1 + . . .+ arvr + a−rv−r] = ak[v−k, vk] = ak(−z) = −akz,

so ak = a−k = 0 for all k = 1, 2, . . . , r. Therefore we obtain Z(L) ⊆ span{z1 . . . , zn−2r}.
Consequently, Z(L) = span{z1 . . . , zn−2r}. In summary, there exists a basis

S = {v1, v−1, v2, v−2, . . . , vr, v−r, z1, . . . , zn−2r}

for L such that

[vi, vj ] =


z if i = −j > 0,

− z if i = −j < 0,

0 otherwise,

for every i, j ∈ {1, 2, . . . r} and Z(L) = span{z1 . . . , zn−2r}.

Theorem 3.2.6. Let L be a finite dimensional nilpotent Lie algebra of breadth 1 such that

dimL = n ∈ Z>0. Let 0 6= z ∈ [L,L]. Then there exists a basis

S = {v1, v−1, v2, v−2, . . . , vr, v−r, z, w1, . . . , wn−2r−1}

for L such that

[vi, vj ] =


z if i = −j > 0,

− z if i = −j < 0,

0 otherwise,

for every i, j ∈ {±1,±2, . . . ,±r} and Z(L) = span{z, w1 . . . , wn−2r−1}.

Proof. Let L be a finite dimensional nilpotent Lie algebra of breadth 1 such that dimL = n ∈
Z>0. Let 0 6= z ∈ [L,L]. By Theorem 3.2.5, there exists a basis

S = {v1, v−1, v2, v−2, . . . , vr, v−r, z1, . . . , zn−2r}

for L such that

[vi, vj ] =


z if i = −j > 0,

− z if i = −j < 0,

0 otherwise,

for every i, j ∈ {1, 2, . . . r} and Z(L) = span{z1 . . . , zn−2r}. Since L is nilpotent, we have
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[L,L] ⊆ Z(L) by Lemma 3.2.2. Thus we have z ∈ Z(L), so we can pick z as a basis element so

that Z(L) = span{z, w1 . . . , wn−2r−1} and S = {v1, v−1, v2, v−2, . . . , vr, v−r, z, w1, . . . , wn−2r−1}.
As a result, there exists a basis

S = {v1, v−1, v2, v−2, . . . , vr, v−r, z, w1, . . . , wn−2r−1}

for L such that

[vi, vj ] =


z if i = −j > 0,

− z if i = −j < 0,

0 otherwise,

for every i, j ∈ {±1,±2, . . . ,±r} and Z(L) = span{z, w1 . . . , wn−2r−1}.
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Chapter 4

Nilpotent Lie Algebras of Breadth 2

4.1 Properties and Lemmas

In this section, we prove several theorems that we need to use in our main theorem in the next

section. We begin this part with a defintion which is derived from centralizer in group theory.

Definition 4.1.1. Let L be a finite dimensional Lie algebra, A an ideal of L and S ⊆ L. We

define

CA(S) = {α ∈ A | adα(x) = 0 for all x ∈ S}

= {α ∈ A | adx(α) = 0 for all x ∈ S}

=
⋂
x∈S
{α ∈ A | adx(α) = 0}

=
⋂
x∈S

ker adx|A.

In particular, we have

CL(A) =
⋂
a∈A

ker ada

and if S = {x} for some x ∈ L, then

CA(S) = CA({x}) = ker adx|A.

Remark. Let L be a finite dimensional Lie algebra and A an ideal of L. Then the following

holds:

1. If S1 ⊆ S2 ⊆ L, then CA(S2) ⊆ CA(S1).
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2. If S = span{x1, x2, . . . , xn} ⊆ L for some n ∈ Z>0, then

CA(S) =
⋂
x∈S

ker adx|A =
n⋂
i=1

ker adxi |A.

3. For any x ∈ L, x ∈ CL(A) if and only if bA(x) = 0.

Lemma 4.1.2. Let L be a finite dimensional Lie algebra and A an ideal of L. Let x, y ∈ L be

such that im adx|A ∩ im ady|A = {0}. Then ker adx|A ⊆ ker ady|A or bA(x) < bA(x+ y).

Proof. Let L be a finite dimensional Lie algebra and A an ideal of L. Let x, y ∈ L be such that

im adx|A∩ im ady|A = {0}. Suppose that there exists α ∈ A such that α ∈ ker adx|A−ker ady|A.

Then we have [x, α] = 0 but [y, α] 6= 0. We observe that

[x+ y, α] = [x, α] + [y, α] = 0 + [y, α] = [y, α] 6= 0,

so im adx+y|A ∩ im ady|A is not trivial. Note that we have

dim(im adx+y|A + im ady|A) = dim im adx+y|A + dim im ady|A − dim(im adx+y|A ∩ im ady|A)

As a result,

dim(im adx+y|A + im ady|A) < dim im adx+y|A + dim im ady|A.

We define a map ϕ : im adx|A× im ady|A → im adx+y|A + im ady|A by ϕ(x1, y1) = x1 + y1 where

x1 ∈ im adx|A and y1 ∈ im ady|A. We will show that ϕ is an isomorphism. Let (x1, y1), (x2, y2) ∈
im adx|A × im ady|A. Then we have x1, x2 ∈ im adx|A and y1, y2 ∈ im ady|A, so there exist

a1, a2, b1, b2 ∈ A such that [x, ai] = xi and [y, bi] = yi for all i = 1, 2. We will verify that

imϕ ⊆ im adx+y|A + im ady|A. Observe that

ϕ(x1, y1) = x1 + y1 = [x, a1] + [y, b1] = [x+ y, a1] + [y, b1 − a1] ∈ im adx+y|A + im ady|A.

Thus imϕ ⊆ im adx+y|A + im ady|A. Moreover, it is easy to see that ϕ is linear. In order to

show that ϕ is injective, we suppose that ϕ(x1, y1) = 0. Then we get [x, a1]+ [y, b1] = x1 +y1 =

ϕ(x1, y1) = 0, so [x, a1] = [y,−b1] ∈ im adx|A ∩ im ady|A = {0}. Therefore x1 = [x, a1] = 0 and

y1 = [y, b1] = 0 which implies (x1, y1) = 0. Thus ϕ is injective. To claim that ϕ is surjective, let

z ∈ im adx+y|A + im ady|A. Then z = z1 + z2 where z1 ∈ im adx+y|A and z2 ∈ im ady|A. There

exists c1, c2 ∈ A such that [x+ y, c1] = z1 and [y, c2] = z2. Note that we have

ϕ([x, c1], [y, c1 + c2]) = [x, c1] + [y, c1 + c2] = [x+ y, c1] + [y, c2] = z1 + z2 = z.

Therefore ϕ is surjective. Hence ϕ : im adx|A× im ady|A → im adx+y|A + im ady|A is an isomor-
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phism which implies

dim(im adx|A × im ady|A) = dim(im adx+y|A + im ady|A).

As a consequence, we have

bA(x) + bA(y) = rank adx|A + rank ady|A
= dim im adx|A + dim im ady|A
= dim(im adx|A × im ady|A)

= dim(im adx+y|A + im ady|A)

< dim im adx+y|A + dim im ady|A
= rank adx+y|A + rank ady|A
= bA(x+ y) + bA(y).

Hence bA(x) < bA(x+ y).

Theorem 4.1.3. Let L be a finite dimensional Lie algebra and A an ideal of L. Let x, y ∈ TA,

T = span{x, y} and

T̄ = (T + CL(A))/CL(A) ∼= T/(T ∩ CL(A)).

Then we have the following two cases:

1. If dim T̄ = 1, then im adx|A = im ady|A and ker adx|A = ker ady|A.

2. If dim T̄ = 2, then im adx|A 6= im ady|A or ker adx|A 6= ker ady|A.

However, if x+ y ∈ TA, then the consequence of the second case is “either or”.

Proof. Note that T̄ = (T + CL(A))/CL(A) ∼= T/(T ∩ CL(A)) comes from second isomorphism

theorem ((S + I)/I ∼= S/(S ∩ I)). For the first case, we assume that dim T̄ = 1. Then we

have dim(T ∩ CL(A)) = dimT − dim T̄ = 2 − 1 = 1. Since x, y ∈ TA, bA(x) = bA(y) = 1.

Therefore x, y /∈ CL(A), so x, y /∈ T ∩CL(A). By considering T/(T ∩CL(A)) as a 1-dimensional

quotient space, there exists α ∈ F − {0} such that x + (T ∩ CL(A)) = −αy + (T ∩ CL(A)), so

x + αy ∈ (T ∩ CL(A)). Since dim(T ∩ CL(A)) = 1 and x + αy 6= 0, we have T ∩ CL(A) =

span{x+αy}. First, we will claim that im adx|A = im ady|A. To show that im adx|A ⊆ im ady|A,

let z ∈ im adx|A. Then there exists a ∈ A such that [x, a] = z. Because x + αy ∈ T ∩ CL(A),

[x+ αy, a] = 0. Therefore we get

0 = [x+ αy, a] = [x, a] + α[y, a] = z − [y,−αa],
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so z = [y,−αa], that is z ∈ im ady|A. Conversely, let z ∈ im ady|A. Then there exists a ∈ A
such that [y, a] = z. Again, we get

0 = [x+ αy, a] = [x, a] + α[y, a] = [x, a] + αz,

so z = −1
α [x, a] = [x, −aα ]. Thus z ∈ im adx|A. Hence im adx|A = im ady|A. Next, we will show

that ker adx|A = ker ady|A. Suppose ker adx|A 6= ker ady|A. Without loss of generality, there

exists a ∈ A such that [y, a] = 0 but [x, a] 6= 0. Then we have

[x+ αy, a] = [x, a] + α[y, a] = [x, a] + 0 = [x, a] 6= 0

which contradicts x+ αy ∈ T ∩ CL(A). Hence ker adx|A = ker ady|A.

For the second case, suppose that dim T̄ = 2. Then we have dim(T ∩ CL(A)) = dimT −
dim T̄ = 2− 2 = 0, so T ∩ CL(A) = {0}. Suppose that ker adx|A = ker ady|A. Then we have to

show that im adx|A 6= im ady|A. Let α ∈ F. Then x+ αy ∈ T − {0}, so x+ αy /∈ CL(A). Thus

there exists a ∈ A such that

0 6= [x+ αy, a] = [x, a] + α[y, a].

Note that a /∈ ker adx|A = ker ady|A since [x, a]+α[y, a] 6= 0. Therefore [x, a] 6= 0 and [y, a] 6= 0,

but we have

[x, a] 6= −α[y, a] for all α ∈ F.

Since rank adx|A = rank ady|A = 1, im adx|A 6= im ady|A. Hence we proved the second case.

Finally, we will show that the consequence of the second case is “either or” if x + y ∈ TA.

Suppose additionally to the second case that x+ y ∈ TA. Then we have bA(x+ y) = 1. Assume

that im adx|A 6= im ady|A. Since x, y ∈ TA, bA(x) = bA(y) = 1, so im adx|A ∩ im ady|A = {0}.
By Lemma 4.1.2, we get

ker adx|A ⊆ ker ady|A or bA(x) < bA(x+ y).

Because bA(x) = 1 = bA(x + y), we have ker adx|A ⊆ ker ady|A. Similarly, we also have

ker ady|A ⊆ ker adx|A since bA(y) = 1 = bA(x + y). Therefore ker adx|A = ker ady|A. On the

other hand, we suppose that ker adx|A 6= ker ady|A. Without loss of generality, assume that

ker adx|A * ker ady|A. Then im adx|A∩ im ady|A 6= {0} by contrapositive of Lemma 4.1.2. Since

bA(x) = bA(y) = 1, we get im adx|A = im ady|A as desired.
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Proposition 4.1.4. Let L be a finite dimensional Lie algebra and A an ideal of L. Let x, y, z ∈
L be such that y − z /∈ CL(A). Suppose that bA(x) > 1. Then at least one of the elements

y, z, y + z, x+ y, x+ z, x+ y + z

is not in TA.

Proof. Let L be a finite dimensional Lie algebra and A an ideal of L. Let x, y, z ∈ L be such

that bA(x) > 1 and y − z /∈ CL(A). Suppose that y, z, y + z, x + y, x + z, x + y + z ∈ TA.

Additionally, we let

T1 = span{y, y − z} = span{y, z − y} = span{y, z},

T2 = span{y − z, x+ z} = span{x+ y, x+ z},

T3 = span{y, x+ z}.

For i = 1, 2, 3, Ti is not contained in CL(A) , so Ti ∩ CL(A) is zero or 1-dimensional which

implies T̄i = (Ti + CL(A))/CL(A) ∼= Ti/(Ti ∩ CL(A)) is 1 or 2-dimensional. Next, we consider

im adT1 |A := span{im ady|A, im adz|A},

im adT2 |A := span{im adx+y|A, im adx+z|A},

im adT3 |A := span{im ady|A, im adx+z|A}.

By Theorem 4.1.3, we know that for each i = 1, 2, 3,

1. If dimTi = 1, then we have im adT1 |A is 1-dimensional.

2. If dimTi = 2, then we have im adT1 |A is 2-dimensional.

Hence im adT1 |A, im adT2 |A and im adT3 |A are 1 or 2-dimensional. By pigeonhole principle,

there exist α, β ∈ {1, 2, 3} such that α 6= β and dim(im adTα |A) = dim(im adTβ |A). Let

n := dim(im adTα |A) = dim(im adTβ |A). Then we consider the following two cases:

For n = 1, we consider

T1 = span{y, y − z},

T2 = span{y − z, x+ z},

T3 = span{x+ z, y}.

Then we have N := im ady|A = im ady−z|A = im adx+z|A is 1-dimensional. Next, we will claim
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that im adx|A ⊆ N . Let a ∈ A. Since x = (x+ z) + (y − z)− y, we get

[x, a] = [x+ z, a] + [y − z, a]− [y, a] ∈ N.

Thus im adx|A ⊆ N , so bA(x) ≤ 1 which contradicts the assumption bA(x) > 1.

For n = 2, we consider

T1 = span{y, z − y},

T2 = span{x+ z, y − z},

T3 = span{y, x+ z},

Tα = span{α1, α2},

Tβ = span{β1, β2},

so that

im adTα |A := span{im adα1 |A, im adα2 |A},

im adTβ |A := span{im adβ1 |A, im adβ2 |A}.

Since n = 2, we obtain im adα1 |A 6= im adα2 |A and im adβ1 |A 6= im adβ2 |A. Note that dim T̄α =

dim T̄β = 2 and for T1, T2, T3, we have

bA(y) = 1 = bA(z) = bA(y + (z − y)),

bA(x+ z) = 1 = bA(x+ y) = bA((x+ z) + (y − z)),

bA(y) = 1 = bA(x+ y + z) = bA(y + (x+ z)).

Thus bA(α1 + α2) = bA(α1) = 1 and bA(β1 + β2) = bA(β1) = 1, so α1 + α2, β1 + β2 ∈ TA. By

Theorem 4.1.3, (2) with “either or”, we have

ker adα1 |A = ker adα2 |A and ker adβ1 |A = ker adβ2 |A.

It is easy to see that ker ady−z|A = ker adz−y|A, so we have M := ker ady|A = ker ady−z|A =

ker adx+z|A. Next we will prove that M ⊆ ker adx|A. Let m ∈M . Since x = (x+z)+(y−z)−y,

we get

[x,m] = [x+ z,m] + [y − z,m]− [y,m] = 0.

Thus M ⊆ ker adx|A, that means nullity ady|A ≤ nullity adx|A. Hence we have

rank adx|A = dimA− nullity adx|A
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= (nullity ady|A + rank ady|A)− nullity adx|A
= (nullity ady|A − nullity adx|A) + rank ady|A
≤ rank ady|A
≤ 1,

so bA(x) ≤ 1 which is a contradiction. In consequence, from the two cases above, at least one

of the elements y, z, y + z, x+ y, x+ z, x+ y + z is not in TA.

From now on, we begin to consider finite dimensional nilpotent Lie algebra in order to

guarantee that it has an abelian ideal.

Definition 4.1.5. Let L be a finite dimensional nilpotent Lie algebra and A an abelian ideal

of L. For any x ∈ L, we define

Mx = A+ ker adx,

Lx = span{Ma+x | a ∈ A},

Dx =
⋂
a∈A

Ma+x.

Proposition 4.1.6. Let L be a finite dimensional nilpotent Lie algebra and A an abelian ideal

of L. Let x ∈ L and a ∈ A. Then the following hold:

1. A ⊆ Dx ⊆Ma+x.

2. [A, x] = [A, a+ x] = [Ma+x, a+ x] = [Dx, a+ x].

3. [Lx, x] ⊆ [A,L].

4. [a,Ma+x ∩Mx] ⊆ [A, x].

5. If L = Mx + U = Ma+x + U for some a ∈ A and subspace U of L, then

[a, L] ⊆ [U, x] + [A, x] + [A,U ].

6. [A,Dx] ⊆ [A, x].

7. If bA(L) = b(L), then dim[A,L] = bA(L) and L = Dz for all z ∈ BA.

Proof. Let L be a finite dimensional nilpotent Lie algebra and A an abelian ideal of L. Let

x ∈ L and a ∈ A.
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1. Since A ⊆ A + ker ada′+x = Ma′+x for all a′ ∈ A, A ⊆ Dx. It is clear that Dx ⊆ Ma+x

because 0 ∈ A. Hence A ⊆ Dx ⊆Ma+x.

2. First, it is obvious that [A, x] = [A, a + x] since A is abelian. Because Ma+x = A +

ker ada+x, we have

[Ma+x, a+ x] = [A+ ker ada+x, a+ x]

= [A, a] + [A, x] + [ker ada+x, a+ x]

= 0 + [A, x] + 0

= [A, x].

Thus [A, x] = [Ma+x, a+x]. Next, we will show that [A, x] = [Dx, a+x]. SinceDx ⊆Ma+x,

we get [Dx, a + x] ⊆ [Ma+x, a + x] = [A, x]. Conversely, we have [A, x] = [A, a + x] ⊆
[Dx, a + x] since A ⊆ Dx. Therefore [A, x] = [Dx, a + x]. Hence [A, x] = [A, a + x] =

[Ma+x, a+ x] = [Dx, a+ x].

3. Let a ∈ A be arbitrary. Let y ∈Ma+x. Then y = ay+cy where ay ∈ A and cy ∈ ker ada+x.

Thus [cy, a+ x] = 0, so [cy, x] = [a, cy]. Therefore

[y, x] = [ay + cy, x] = [ay, x] + [cy, x] = [ay, x] + [a, cy] ∈ [A,L].

Since y ∈Ma+x and a ∈ A is arbitrary, [Lx, x] ⊆ [A,L].

4. Let y ∈ Ma+x ∩Mx. Since y ∈ Ma+x, y = ay + cy where ay ∈ A and cy ∈ ker ada+x.

Thus [cy, a+x] = 0, so [cy, x] = [a, cy]. On the other hand, y = a′y + c′y where a′y ∈ A and

c′y ∈ ker adx because y ∈Mx. Therefore [c′y, x] = 0, so we have

[y, x] = [a′y + c′y, x] = [a′y, x] + [c′y, x] = [a′y, x].

Consequently,

[a, y] = [a, ay + cy]

= [a, ay] + [a, cy]

= 0 + [a, cy]

= [cy, x]

= [y − ay, x]

= [y, x]− [ay, x]

= [a′y, x]− [ay, x]
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∈ [A, x].

Hence [a,Ma+x ∩Mx] ⊆ [A, x].

5. Suppose that L = Mx + U = Ma+x + U for some a ∈ A and subspace U of L. Since

L = Ma+x + U , we have

[a, L] = [a,Ma+x + U ]

= [a,A+ ker ada+x + U ]

= [a,A] + [a, ker ada+x] + [a, U ]

= 0 + [a, ker ada+x] + [a, U ]

= [a, ker ada+x] + [a, U ].

On the other hand, since L = Mx + U and [a+ x, ker ada+x] = 0, we obtain

[a, ker ada+x] = [ker ada+x, x]

⊆ [L, x]

= [Mx + U, x]

= [A+ ker adx + U, x]

= [A, x] + [ker adx, x] + [U, x]

= [A, x] + 0 + [U, x]

= [A, x] + [U, x],

so [a, ker ada+x] ⊆ [A, x] + [U, x]. As a result, we get

[a, L] = [a, ker ada+x] + [a, U ]

⊆ [A, x] + [U, x] + [a, U ]

⊆ [A, x] + [U, x] + [A,U ].

Hence [a, L] ⊆ [U, x] + [A, x] + [A,U ].

6. Let a′ ∈ A. By using part (4) of this proposition, we have

[a,Dx] = [a,
⋂
a∈A

Ma+x] ⊆ [a,Ma+x ∩Mx] ⊆ [A, x].

Hence [a,Dx] ⊆ [A, x].
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7. Suppose that bA(L) = b(L). We will prove that L = Dz for all z ∈ BA. Let z ∈ BA and

a′ ∈ A. Then bA(z) = bA(L). Since A is abelian, we have

rank ada′+z|A = bA(a′ + z) = rank ada′+z|A = rank adz|A = bA(z) = bA(L) = b(L).

Then rank ada′+z = rank ada′+z|A. Thus im ada′+z = im ada′+z|A, which means, for any

α ∈ L−A there exists β ∈ A such that ada′+z(α) = ada′+z(β). Therefore ada′+z(α−β) =

0, so α− β ∈ ker ada′+z. Hence we obtain

α = β + (α− β) ∈ A+ ker ada′+z = Ma′+z.

Since α ∈ L − A is arbitrary, L − A ⊆ Ma′+z. Moreover, it is obvious that A ⊆ A +

ker ada′+z = Ma′+z. As a result, L = (L − A) + A ⊆ Ma′+z, so L = Ma′+z. Since

a′ ∈ A is arbitrary, we get L =
⋂
a′∈A L =

⋂
a′∈AMa′+z = Dz as desired. To show that

dim[A,L] = b(L), we fix z ∈ BA. By using part (6) of this proposition and L = Dz, we

obtain [A,L] = [A,Dz] ⊆ [A, z] = im adz|A. In consequence, we have

dim[A,L] = dim im adz|A = bA(L) = b(L).

Lemma 4.1.7. Let L be a finite dimensional nilpotent Lie algebra, A an abelian ideal of L and

x ∈ B∩BA. Suppose that b(L) = bA(L)+ 1 and L 6= Lx. Then dimL/Mx = 1 and Mx = Ma+x

for every a ∈ A.

Proof. Let L be a finite dimensional nilpotent Lie algebra, A an abelian ideal of L and x ∈
B ∩ BA. Then we have b(x) = b(L) and bA(x) = bA(L). Suppose that b(L) = bA(L) + 1 and

L 6= Lx. Thus b(x) = bA(x) + 1, so rank adx = rank adx|A + 1. Note that for any x ∈ L, we

know that ker adx|A = A ∩ ker adx ⊆ ker adx. Define

D := span{α | α ∈ ker adx − ker adx|A}.

Next, we will show that A ∩ ker adx = ker adx|A = A ∩ ker ada+x. It is clear that A ∩ ker adx =

ker adx|A. To show that ker adx|A = A∩ker ada+x, let a ∈ A. Let y ∈ ker adx|A. Then [x, y] = 0

and y ∈ A, so [a, y] = 0. Thus [a + x, y] = [a, y] + [x, y] = 0. Therefore y ∈ A ∩ ker ada+x,

so ker adx|A ⊆ A ∩ ker ada+x. Conversely, let y ∈ A ∩ ker ada+x. Then [a + x, y] = 0 and

y ∈ A, so [a, y] = 0. Thus [x, y] = [a, y] + [x, y] = [a + x, y] = 0. Hence y ∈ ker adx|A, so

ker adx|A ⊇ A ∩ ker ada+x. Consequently, we have A ∩ ker adx = ker adx|A = A ∩ ker ada+x.
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Moreover, since ker adx|A ⊆ ker adx, we get

dimD = nullity adx − nullity adx|A.

On the other hand, because A ∩ ker adx = ker adx|A, we have Mx = A + ker adx = A ⊕ D.

Therefore dimMx = dimA+ dimD. Additionally, we know that

dimL = nullity adx + rank adx,

dimA = nullity adx|A + rank adx|A.

Therefore we have

dimL− dimA = (nullity adx − nullity adx|A) + (rank adx − rank adx|A) = dimD + 1,

so we get

dimL/Mx = dimL− dimMx = dimL− (dimA+ dimD) = 1.

In order to prove that Mx = Ma+x for every a ∈ A, assume that there exists a ∈ A such that

Ma+x is not contained in Mx. Since dimL = dimMx + 1, we have Lx = span{Ma+x | a ∈ A} =

L, which contradicts the assumption L 6= Lx. Hence Ma+x ⊆Mx for every a ∈ A. Conversely,

suppose that there exists a ∈ A such that Ma+x 6⊆ Mx. Then A + ker ada+x 6⊆ A + ker adx.

Let Va+x and Vx be complementary subspaces of A in Ma+x and Mx, respectively. Then

Ma+x = A ⊕ Va+x and Mx = A ⊕ Vx. Because Ma+x 6⊆ Mx, we know that Va+x 6⊆ Vx. Since

A ∩ ker adx = A ∩ ker ada+x, we have

ker ada+x = (A ∩ ker ada+x)⊕ Va+x = (A ∩ ker adx)⊕ Va+x 6⊆ (A ∩ ker adx)⊕ Vx = ker adx.

Therefore nullity ada+x < nullity adx, so we obtain

b(x) = rank adx = dimL− nullity adx < dimL− nullity ada+x = rank ada+x = b(a+ x).

Thus b(x) < b(a + x). Since x ∈ B, b(x) = b(L), so we have b(a + x) > b(L), which is a

contradiction. Consequently, Mx = Ma+x for every a ∈ A.

Theorem 4.1.8. Let L be a finite dimensional nilpotent Lie algebra and A an abelian ideal of

L. Suppose that b(L) ≤ bA(L) + 1. Then im adx|A is an ideal of L for every x ∈ BA.

Proof. Let L be a finite dimensional nilpotent Lie algebra and A an abelian ideal of L. Suppose
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that b(L) ≤ bA(L) + 1. Let x ∈ BA. Since bA(L) ≤ b(L), we have bA(L) ≤ b(L) ≤ bA(L) + 1, so

b(L) = bA(L) or b(L) = bA(L) + 1.

First, we will claim that im ada+x|A is an ideal of Ma+x for every a ∈ A. Let a ∈ A. Then it

is obvious that im ada+x|A ⊆ A ⊆ A + ker ada+x = Ma+x. Let a′ ∈ A and y ∈ Ma+x. Then

[a+ x, a′] ∈ im ada+x|A and y = ay + cy where ay ∈ A and cy ∈ ker ada+x. Thus [cy, a+ x] = 0.

Note that [[ay, a+ x], a′] = 0 because A is an abelian ideal. Therefore we get

[y, [a+ x, a′]] = [[y, a+ x], a′] + [a+ x, [y, a′]]

= [[ay + cy, a+ x], a′] + [a+ x, [y, a′]]

= [[ay, a+ x], a′] + [[cy, a+ x], a′] + [a+ x, [y, a′]]

= 0 + [0, a′] + [a+ x, [y, a′]]

∈ [a+ x,A]

= im ada+x|A.

Hence im ada+x|A is an ideal of Ma+x for every a ∈ A.

If L = Lx = span{Ma+x|a ∈ A}, then im adx|A = im ada+x|A is an ideal of L by previous

claim. Suppose that L 6= Lx. If b(L) = bA(L), then by Proposition 4.1.6 (7), we have L = Dx.

Thus L = Dx ⊆ Mx ⊆ Lx. It is clear that Lx ⊆ L, so L = Lx, which contradicts L 6= Lx.

Therefore b(L) = bA(L) + 1. Next, we need to show that x ∈ B. Assume x /∈ B. Then

b(x) 6= b(L), so we have

bA(x) ≤ b(x) ≤ b(L)− 1 = bA(L) = bA(x),

which implies b(x) = bA(x), so rank adx = rank adx|A. Thus im adx = im adx|A, which means,

for any α ∈ L−A there exists β ∈ A such that adx(α) = adx(β). Therefore adx(α− β) = 0, so

α− β ∈ ker adx. As a result,

α = β + (α− β) ∈ A+ ker adx = Mx.

Since α ∈ L−A is arbitrary, L−A ⊆Mx. Moreover, it is easy to see that A ⊆ A+ker adx = Mx.

Consequently, L = (L − A) + A ⊆ Mx. Because Mx ⊆ Lx, L ⊆ Lx. Therefore L = Lx, which

again contradicts L 6= Lx. Hence x ∈ B. In conclusion, we know that x ∈ B ∩BA. By Lemma

4.1.7, dimL/Mx = 1 and Mx = Ma+x for every a ∈ A, so Dx =
⋂
a∈AMa+x = Mx. Next, we

will show that [A, x] = [A,Mx]. By Proposition 4.1.6 (6), [A,Dx] ⊆ [A, x]. Since Dx = Mx, we

get [A,Mx] = [A,Dx] ⊆ [A, x]. On the other hand, we let a ∈ A. Then [a, x] ∈ [A, x]. Because
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x ∈ ker adx, we obtain

[a, x] ∈ [A, ker adx] ⊆ [A,A+ ker adx] = [A,Mx].

Thus [A, x] ⊆ [A,Mx]. Hence [A, x] = [A,Mx]. Next, we will claim that Mx = A + ker adx

is a Lie subalgebra of L. It is clear that Mx is a subspace of L. Let m1,m2 ∈ Mx. Then

there exist a1, a2 ∈ A and c1, c2 ∈ ker adx such that mi = ai + ci for i = 1, 2. We observe that

adx([c1, c2]) = [x, [c1, c2]] = [[x, c1], c2] + [c1, [x, c2]] = 0, so [c1, c2] ∈ ker adx. Therefore we have

[m1,m2] = [a1 + c1, a2 + c2] = [a1, a2] + [a1, c2] + [c1, a2] + [c1, c2] ∈ A+ ker adx = Mx.

Since m1,m2 ∈ Mx are arbitrary, we get [Mx,Mx] ⊆ Mx, which means Mx is closed under

bracket. Thus Mx is a Lie subalgebra of L. Since dimL/Mx = 1, there exists y ∈ L −Mx

such that L = Mx ⊕ span{y}, which means span{y} is the complementary subspace of Mx in

L. To show that Mx is an ideal of L, we suppose that Mx is not an ideal of L. Then there exist

m ∈ Mx and z ∈ L such that [m, z] /∈ Mx. Since L = Mx ⊕ span{y}, there exist m′ ∈ Mx and

α ∈ F such that z = m′ + αy. We observe that

[m,m′] + α[m, y] = [m,m′ + αy] = [m, z] /∈Mx.

Since [m,m′] ∈ Mx, we obtain α 6= 0 and [m, y] /∈ Mx, so [m, y] = m′′ + βy where m′′ ∈ Mx

and β 6= 0. Consequently, we get adNm(y) 6= 0 for any N ∈ Z>0 which contradicts nilpotency of

L. Hence Mx is an ideal of L. Because we know that im adx|A = [A, x] = [A,Mx] and A,Mx

are ideals of L, im adx|A is also an ideal of L. Since x ∈ BA is arbitrary, im adx|A is an ideal of

L for every x ∈ BA.

Lemma 4.1.9. Let L be a finite dimensional Lie algebra and A an ideal of L such that

bA(L) > 1. Let x ∈ BA be given. Suppose that there exists y ∈ L such that y and x + y do

not satisfy

bA(z) > 1 and 2bA(z) ≥ bA(L). (4.1)

Then bA(y) = bA(x+ y) = 1 and bA(L) = 2.

Proof. Let L be a finite dimensional Lie algebra and A an ideal of L such that bA(L) > 1. Let

x ∈ BA be given. Then bA(x) = bA(L). Suppose that there exists y ∈ L such that y and x+ y

do not satisfy

bA(z) > 1 and 2bA(z) ≥ bA(L). (4.1)
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First, we claim that bA(L) = 2 by using contrapositive. Assume that bA(L) 6= 2. Then we have

bA(L) ≥ 3 since bA(L) > 1. In order to show that for all y ∈ L, y or x + y satisfies (4.1), we

let y ∈ L be such that y does not satisfy (4.1). Then we get bA(y) ≤ 1 or 2bA(y) < bA(L).

Note that if bA(y) ≤ 1, then we also get 2bA(y) ≤ 2 < 3 ≤ bA(L). Thus we can assume that

2bA(y) < bA(L). Then we apply the fact that

rank(A+B) ≤ rankA+ rankB

where A and B are linear transformations, so we get

rank adx|A ≤ rank(adx|A + ady|A) + rank(−ady|A).

Because adx|A + ady|A = adx+y|A and rank(−ady|A) = rank ady|A, we have

rank adx|A ≤ rank adx+y|A + rank ady|A. (4.2)

Thus rank adx+y|A ≥ rank adx|A − rank ady|A, which also means bA(x + y) ≥ bA(x) − bA(y).

Since 2bA(y) < bA(L) and bA(x) = bA(L), we obtain

bA(x+ y) ≥ bA(x)− bA(y) > bA(L)− bA(L)

2
>
bA(L)

2
.

Therefore 2bA(x + y) > bA(L). We also get bA(x + y) > bA(L)
2 ≥ 3

2 > 1. Hence x + y satisfies

(4.1). Consequently, bA(L) = 2 as we claimed.

Next, we will prove that bA(x) = bA(x+ y) = 1. Since y and x+ y do not satisfy (4.1) and

bA(L) = 2, we have

bA(y) ≤ 1 or 2bA(y) < bA(L) = 2

and

bA(x+ y) ≤ 1 or 2bA(x+ y) < bA(L) = 2,

which can be reduced to bA(y) ≤ 1 and bA(x + y) ≤ 1. Suppose that bA(y) = 0. This means

im ady|A = {0}, so we have

bA(x+ y) = rank adx+y|A = rank adx|A = bA(x) = bA(L) = 2

which contradicts bA(x+ y) ≤ 1. Hence bA(y) = 1. Next, we assume that bA(x+ y) = 0. Then

rank adx+y|A = 0. By applying this to (4.2), we get rank adx|A ≤ rank ady|A. Therefore

bA(y) = rank ady|A ≥ rank adx|A = bA(x) = bA(L) = 2,
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which contradicts bA(y) = 1. Hence bA(x+y) = 1. As a result, we obtain bA(y) = bA(x+y) = 1

and bA(L) = 2 as desired.

Theorem 4.1.10. Let L be a finite dimensional nilpotent Lie algebra and A an abelian ideal

of L such that bA(L) > 1. Suppose that [L, z] ⊆ [A,L] for all z ∈ L satisfying

bA(z) > 1 and 2bA(z) ≥ bA(L). (4.1)

Then [L,L] = [CL(A), L]. In addition, if A = CL(A) and b(L) = bA(L), then dim[L,L] =

bA(L).

Proof. Let L be a finite dimensional nilpotent Lie algebra and A an abelian ideal of L. Let

bA(L) > 1 and suppose that [L, z] ⊆ [A,L] for all z ∈ L satisfying

bA(z) > 1 and 2bA(z) ≥ bA(L). (4.1)

Fix an x ∈ BA. Then we have the following two cases to consider.

The first case is y or x + y satisfy (4.1) for every y ∈ L. Then by assumption, [L, y] ⊆
[A,L] or [L, x + y] ⊆ [A,L]. Next, we will show that [L, x + y] ⊆ [A,L] also implies [L, y] ⊆
[A,L]. Suppose that [L, x + y] ⊆ [A,L]. Since x ∈ BA, bA(x) = bA(L) > 1. It is clear that

2bA(x) > bA(x) = bA(L), so x also satisfies (4.1). Thus [L, x] ⊆ [A,L]. To show [L, y] ⊆ [A,L],

we let z ∈ L. Then [z, x + y] ∈ [L, x + y] ⊆ [A,L] and [z, x] ∈ [L, x] ⊆ [A,L], so we get

[z, y] = [z, x + y] − [z, x] ∈ [A,L]. Since z ∈ L is arbitrary, [L, y] ∈ [A,L]. Hence we have

[L, y] ∈ [A,L] for any y ∈ L. Because A is abelian, A ⊆ CL(A), so [A,L] ⊆ [CL(A), L]. Thus

[L, y] ⊆ [A,L] ⊆ [CL(A), L] for every y ∈ L. Since y ∈ L is arbitrary, [L,L] ⊆ [CL(A), L].

Conversely, it is easy to see that [CL(A), L] ⊆ [L,L]. Hence [L,L] = [CL(A), L].

For the second case, assume that there exists y ∈ L such that y and x + y do not satisfy

(4.1). By Lemma 4.1.9, we have

bA(y) = bA(x+ y) = 1 and bA(L) = 2.

We have to claim that [L, z] ⊆ [CL(A), L] for all z ∈ L such that bA(z) 6= 1. Let z ∈ L be such

that bA(z) 6= 1. If bA(z) = 0, then z ∈ CL(A), so [L, z] ⊆ [CL(A), L]. If bA(z) = 2 = bA(L),

then z satisfies (4.1), so [L, z] ⊆ [A,L] by assumption. Since A is abelian, we have A ⊆ CL(A).

Therefore [L, z] ⊆ [A,L] ⊆ [CL(A), L]. Hence [L, z] ⊆ [CL(A), L] for all z ∈ L such that

bA(z) 6= 1. In order to show that [L,L] ⊆ [CL(A), L], suppose that [L,L] 6⊆ [CL(A), L]. Then

there exist u, v ∈ L such that [u, v] /∈ [CL(A), L]. By previous claim, we have bA(u) = bA(v) = 1.

Note that

[u+ v, v] = [u− v, v] = [u, v] /∈ [CL(A), L],
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so we also have bA(u + v) = bA(u − v) = 1. Since x ∈ BA, bA(x) = bA(L) = 2. Therefore

[x, v], [u, x] ∈ [CL(A), L] by previous claim. Thus we have

[x+ u, v] = [x, v] + [u, v] /∈ [CL(A), L],

[u, x+ v] = [u, x] + [u, v] /∈ [CL(A), L],

[x+ u+ v, v] = [x, v] + [u+ v, v] /∈ [CL(A), L],

so bA(x+ u) = bA(x+ v) = bA(x+ u+ v) = 1. Note that u− v /∈ CL(A) because bA(u− v) = 1.

In summary, we have

bA(u) = bA(v) = bA(u+ v) = bA(u− v) = bA(x+ u) = bA(x+ v) = bA(x+ u+ v) = 1.

Hence we have u, v, u + v, x + u, x + v, x + u + v ∈ TA, which contradicts Proposition 4.1.4.

Therefore [L,L] ⊆ [CL(A), L]. Conversely, it is clear that [CL(A), L] ⊆ [L,L]. Hence [L,L] =

[CL(A), L].

In addition, assume that we also have A = CL(A) and b(L) = bA(L). Then [L,L] =

[CL(A), L] = [A,L]. Consequently, dim[L,L] = dim[A,L] = bA(L) by Proposition 4.1.6(7).

Notice that there are relations between set of elements of breadth 0 and 1, as we show in

the next lemma.

Lemma 4.1.11. Let L be a finite dimensional Lie algebra and A an ideal of L. Suppose that

bA(L) = 1. Then the following hold:

1. L = TA ∪ CL(A).

2. TA ∩ CL(A) = ∅.

3. TA ∪ {0} is a subspace of L.

Proof. Let L be a finite dimensional Lie algebra and A an ideal of L. Suppose that bA(L) = 1.

1. Let x ∈ L. Then we have bA(x) = 0 or bA(x) = 1, that is x ∈ CL(A) or x ∈ TA. Therefore

L ⊆ TA ∪CL(A). Conversely, we know that TA ⊆ L and CL(A) ⊆ L, so TA ∪CL(A) ⊆ L.

Hence L = TA ∪ CL(A).

2. It is clear that TA ∩ CL(A) = ∅ by their definitions.

3. Note that CL(A) =
⋂
a∈A ker ada. Since ker ada is a subspace of L for all a ∈ A, CL(A)

is also a subspace of L. Because L is finite dimensional, so is CL(A). Therefore we write

CL(A) = span{c1, c2, . . . , cn} and extend this basis to L = span{c1, c2, . . . , cn, t1, t2, . . . , tm}.
Then we have TA∪{0} = span{t1, t2, . . . , tm} and L = CL(A)⊕(TA∪{0}). Hence TA∪{0}
is a subspace of L.
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In next lemma, we prove a few properties of maximal abelian ideal which we are going to

use in our main theorem.

Lemma 4.1.12. Let L be a finite dimensional nilpotent Lie algebra and A a maximal abelian

ideal of L. Then the following hold:

1. ker ada = A for all a ∈ A− Z(L).

2. CL(A) = A.

3. Z(L) ⊆ A.

Proof. Let L be a finite dimensional nilpotent Lie algebra and A a maximal abelian ideal of L.

1. Let a ∈ A−Z(L). Then ker ada 6= L because a /∈ Z(L). Since a ∈ A and A is abelian, we

have A ⊆ ker ada. Next, we will show that ker ada is an ideal of L. Let x ∈ ker ada and

y ∈ L. Then [a, x] = 0, so we have

ada([x, y]) = [a, [x, y]] = [[a, x], y] + [x, [a, y]] = [x, [a, y]] ∈ A ⊆ ker ada.

Thus ker ada is an ideal of L that contains A. Since A is maximal and ker ada 6= L,

ker ada = A. Hence A = ker ada for all a ∈ A− Z(L).

2. Observe that if a ∈ Z(L), then we have ker ada = L. Consequently, we obtain

CL(A) =
⋂
a∈A

ker ada

= (
⋂

a∈A−Z(L)

ker ada) ∩ (
⋂

a∈A∩Z(L)

ker ada)

= (
⋂

a∈A−Z(L)

A) ∩ (
⋂

a∈A∩Z(L)

L)

= A ∩ L

= A.

Hence CL(A) = A as we want.

3. Let x ∈ Z(L). Then we get adx = 0, so b(x) = 0. Since bA(x) ≤ b(x), we have bA(x) = 0.

Thus x ∈ CL(A). By part two of this lemma, we know that CL(A) = A, so x ∈ CL(A) = A.

Hence Z(L) ⊆ A.
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Theorem 4.1.13. Let L be a finite dimensional nilpotent Lie algebra and A an abelian ideal

of L. Suppose that bA(L) = 1. Then

1. dim(A/(A ∩ Z(L))) = 1 and ker adx|A = ker ady|A for all x, y ∈ L− CL(A).

In addition, if A is a maximal abelian ideal of L, then dim(L/Z(L)) = b(L) + 1.

or

2. dim[A,L] = 1. In addition, if A is a maximal abelian ideal of L, then b(L/[A,L]) < b(L).

Proof. Let L be a finite dimensional nilpotent Lie algebra and A an abelian ideal of L. Suppose

that bA(L) = 1. By Lemma 4.1.11, we know that L = TA∪CL(A), TA∩CL(A) = ∅ and TA∪{0}
is a subspace of L. As a result, we have TA = L− CL(A). Define T = span{x, y} and

T̄ = (T + CL(A))/CL(A) ∼= T/(T ∩ CL(A))

where x, y ∈ TA, as defined in Theorem 4.1.3. Since TA∩CL(A) = ∅ and T ⊆ TA∪{0}, we have

T ∩ CL(A) ⊆ (TA ∪ {0}) ∩ CL(A)

= (TA ∩ CL(A)) ∪ ({0} ∩ CL(A))

= ∅ ∪ {0}

= {0},

so T ∩ CL(A) = {0}. Hence T̄ ∼= T/(T ∩ CL(A)) ∼= T .

Suppose that TA ∪ {0} is not 1-dimensional. Then we get dimTA ∪ {0} ≥ 2, so there exist

x, y ∈ TA such that T = span{x, y} is 2-dimensional. Thus dim T̄ = dimT = 2 because T̄ ∼= T .

Since {x, y} is linearly independent and TA ∪ {0} is a subspace of L, we have x + y ∈ TA. By

Theorem 4.1.3 (2), we know that

either im adx|A 6= im ady|A or ker adx|A 6= ker ady|A,

so we consider the following two cases:

1. im adx|A = im ady|A =: K and ker adx|A 6= ker ady|A. Let z ∈ TA. Then

ker adz|A 6= ker adx|A or ker adz|A 6= ker ady|A.

Without loss of generality, we suppose that ker adz|A 6= ker adx|A. Next we will show that

x+ z ∈ TA. Since x, z ∈ TA and TA ∪ {0} is a subspace of L, we have x+ z ∈ TA ∪ {0}.
If x + z = 0, then x = −z, so we get ker adx|A = ker ad−z|A = ker adz|A, which is a

contradiction. Therefore x + z ∈ TA. By Theorem 4.1.3 (2) with “either or”, we have
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im adz|A = im adx|A, so [A, z] = im adz|A = im adx|A = K. Since z ∈ TA is arbitrary,

[A, TA] = K. On the other hand, if z ∈ CL(A), then [A, z] = {0}. Because z ∈ CL(A) is

arbitrary, [A,CL(A)] = 0. Consequently, we obtain

[A,L] = [A, TA ∪ CL(A)] = span{[A, TA], [A,CL(A)]} = span{K, 0} = K.

Hence dim[A,L] = dimK = bA(x) = 1.

2. im adx|A 6= im ady|A and ker adx|A = ker ady|A =: K ′. Let z ∈ TA. Then

im adz|A 6= im adx|A or im adz|A 6= im ady|A.

Without loss of generality, we assume that im adz|A 6= im adx|A. Next we will show that

x+ z ∈ TA. Since x, z ∈ TA and TA ∪ {0} is a subspace of L, we have x+ z ∈ TA ∪ {0}.
If x + z = 0, then x = −z, so we get im adx|A = im ad−z|A = im adz|A, which is a

contradiction. Therefore x + z ∈ TA. By Theorem 4.1.3 (2) with “either or”, we have

ker adz|A = ker adx|A = K ′. Since z ∈ TA is arbitrary, we get ker adz|A = K ′ for any

z ∈ TA = L− CL(A). Hence ker adx|A = ker ady|A for all x, y ∈ L− CL(A).

On the other hand, we assume that TA ∪ {0} is 1-dimensional. Then TA ∪ {0} = T ∼= T̄ , so T

and T̄ are also 1-dimensional for every x, y ∈ TA. By Theorem 4.1.3 (1), we have

im adx|A = im ady|A and ker adx|A = ker ady|A

for every x, y ∈ TA. Note that if z ∈ CL(A), then [A, z] = {0}. Therefore [A,L] = im adx|A
for some x ∈ TA, so dim[A,L] = bA(x) = 1. Hence dim[A,L] = 1 and ker adx|A = ker ady|A for

every x, y ∈ L− CL(A).

Next, we will claim that ker adx|A = ker ady|A for all x, y ∈ L−CL(A) implies dim(A/(A∩
Z(L))) = 1. Suppose that ker adx|A = ker ady|A for all x, y ∈ L − CL(A). Note that for every

z ∈ CL(A), we have ker adz|A = A. We also know that Z(L) =
⋂
x∈L ker adx, so

A ∩ Z(L) = A ∩ (
⋂
x∈L

ker adx)

=
⋂
x∈L

(A ∩ ker adx)

=
⋂
x∈L

ker adx|A

= A ∩ ker adα|A
= ker adα|A
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for some α ∈ L− CL(A) = TA. Consequently, we obtain

dim(A/(A ∩ Z(L))) = dim(A/ ker adα|A)

= dimA− nullity adα|A
= rank adα|A
= bA(α)

= 1.

Hence dim(A/(A ∩ Z(L))) = 1.

Finally, we suppose that A is a maximal abelian ideal of L. For the first result, we have

dim(A/(A∩Z(L))) = 1. By Lemma 4.1.12 (1) & (3), we get A = ker ada for every a ∈ A−Z(L)

and Z(L) ⊆ A, respectively. Then we have A ∩ Z(L) = Z(L). Fix α ∈ A− Z(L), so

dim(L/Z(L)) = dimL− dimZ(L)

= (dimL− dimA) + (dimA− dimZ(L))

= (dimL− dim ker adα) + (dimA− dim(A ∩ Z(L)))

= (dimL− nullity adα) + dim(A/(A ∩ Z(L)))

= rank adα + 1

= b(α) + 1

≤ b(L) + 1.

On the other hand, we know that dim(L/Z(L)) ≥ b(L) + 1 by Theorem 3.1.9. Consequently,

dim(L/Z(L)) = b(L) + 1.

For the second result, we have dim[A,L] = 1. Note that [A,L] is an ideal of L because both

A and L are ideals of L. Thus we can consider the quotient Lie algebra L/[A,L]. Let x ∈ L.

Then x+ [A,L] ∈ L/[A,L] and adx+[A,L] : L/[A,L]→ L/[A,L] is given by

y + [A,L] 7→ [x, y] + [A,L]

where y + [A,L] ∈ L/[A,L]. By Lemma 4.1.11 (1) & (2), we know that L = TA ∪ CL(A) and

TA ∩ CL(A) = ∅, respectively. Moreover, by Lemma 4.1.12 (2), we also know that CL(A) = A.

Therefore x must be contained in A or TA. Then we consider the following two cases:

1. If x ∈ A, then [x, y] ∈ [A,L] for any y ∈ L. Thus im adx+[A,L] = {[A,L]}, so we have

b(x+ [A,L]) = 0. Note that b(L) ≥ bA(L) = 1. Hence b(x+ [A,L]) < b(L) for any x ∈ A.

2. Assume that x ∈ TA. Then bA(x) = 1, which imples [A, x] = im adx|A is 1-dimensional.
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Since [A, x] ⊆ [A,L], im adx ∩ [A,L] 6= {0}. Hence b(x + [A,L]) < b(x) ≤ b(L) for any

x ∈ TA.

Hence b(x+ [A,L]) < b(L) for any x ∈ L. Since x ∈ L is arbitrary, b(L/[A,L]) < b(L).

4.2 Main Theorem

Our main theorem shows necessary and sufficient conditions for finite dimensional nilpotent

Lie algebra of breadth 2. Observe that dimension of finite dimensional nilpotent Lie algebra of

breadth 2 is not bounded above but it is relatively small when we consider its square.

Theorem 4.2.1. Let L be a finite dimensional nilpotent Lie algebra. Then b(L) = 2 if and

only if one of the following holds:

1. dim[L,L] = 2

or

2. dim[L,L] = 3 and dim(L/Z(L)) = 3.

Proof. Let L be a finite dimensional nilpotent Lie algebra. Suppose b(L) = 2. Since b(L) 6= 0,

by Proposition 3.1.4, L is not abelian, so Z(L) 6⊆ L. On the other hand, Z(L) 6= {0} because L

is nilpotent. Therefore {0} 6= Z(L) 6⊆ L, which guarantee that L has a maximal abelian ideal.

Then we consider the following two cases:

First, there exists a maximal abelian ideal A of L such that bA(L) = 2. Let x ∈ L be such

that bA(x) > 1. Since bA(L) = 2, we get bA(x) = 2. Then

bA(x) = 2 > 1 and 2bA(x) = 4 ≥ 2 = bA(L).

Thus x satisfies (4.1). Since bA(x) = 2 = b(L), rank adx|A = rank adx = 2. Therefore we have

[L, x] = im adx = im adx|A = [A, x] ⊆ [A,L].

As a result, A meets all requirements in Theorem 4.1.10. In addition, we have bA(L) = 2 = b(L)

and CL(A) = A by Lemma 4.1.12 (2). Hence dim[L,L] = bA(L) = 2 by Theorem 4.1.10.

The complementary case of the previous one is bA(L) ≤ 1 for every maximal abelian ideal

A of L. We will show that for every maximal abelian ideal A of L, bA(L) 6= 0. Suppose that

there exists a maximal abelian ideal A of L such that bA(L) = 0. Then for every x ∈ L,

bA(x) = 0. Thus rank adx|A = 0, which implies [A, x] = im adx|A = {0}. Since x ∈ L is

arbitrary, [A,L] = {0}, so CL(A) = L which contradicts CL(A) = A by Lemma 4.1.12 (2). As

a result, this case turns into bA(L) = 1 for every maximal abelian ideal A of L. Next, we apply

Theorem 4.1.13 to this case, so we have two following subcases to consider:
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1. dim(A/(A∩Z(L))) = 1, ker adx|A = ker ady|A for all x, y ∈ L−CL(A) and dim(L/Z(L)) =

b(L) + 1 = 2 + 1 = 3. In addition, we have dim[L,L] ≤
(
3
2

)
= 3 by Lemma 3.1.10. Since

b(L) = 2 6= 0, 1, we have dim[L,L] 6= 0, 1 by Proposition 3.1.4 and Theorem 3.2.1, respec-

tively. Hence dim[L,L] = 2, 3 and dim(L/Z(L)) = 3.

2. dim[A,L] = 1 and b(L/[A,L]) < b(L) = 2. Then we get b(L/[A,L]) = 0, 1. Next, we will

claim that b(L/[A,L]) 6= 0. Assume that b(L/[A,L]) = 0. Then [L/[A,L], L/[A,L]] = {0}
by Proposition 3.1.4. Therefore

dim[L,L]/[A,L] = dim[L/[A,L], L/[A,L]] = 0,

so dim[L,L] = dim[A,L] = 1. By Theorem 3.2.1, b(L) = 1, which contradicts b(L) = 2.

Hence b(L/[A,L]) 6= 0, which implies b(L/[A,L]) = 1. As a result, we have

dim[L,L]/[A,L] = dim[L/[A,L], L/[A,L]] = 1

by Theorem 3.2.1. Since dim[A,L] = 1, dim[L,L] = dim[A,L] + 1 = 2 in this case.

Conversely, if dim[L,L] = 2, then b(L) ≤ dim[L,L] = 2 by Lemma 3.1.5. Since dim[L,L] 6= 0,

L is not abelian, so b(L) 6= 0 by Proposition 3.1.4. Similarly, we have b(L) 6= 1 by Theorem

3.2.1. Hence b(L) = 2 in this case.

On the other hand, if dim[L,L] = 3 and dim(L/Z(L)) = 3, then b(L) ≤ dim[L,L] = 3 by

Lemma 3.1.5. Similar to the case dim[L,L] = 2, we get b(L) 6= 0, 1 by Proposition 3.1.4 and

Theorem 3.2.1, respectively. If b(L) = 3, then by Theorem 3.1.9, dim(L/Z(L)) ≥ b(L) + 1 = 4

which contradicts dim(L/Z(L)) = 3. Hence b(L) = 2.

Corollary 4.2.2. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 and A a

maximal abelian ideal of L. Suppose that dim[L,L] = 3. Then dim(A/Z(L)) = 1.

Proof. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 and A a maximal

abelian ideal of L. Suppose that dim[L,L] = 3. Then b(L) = 2. By the proof of Theorem

4.2.1, this must be the result of the case bA′(L) = 1 for every maximal abelian ideal A′ of L

together with the first result of Theorem 4.1.13. Consequently, dim(A/(A ∩ Z(L))) = 1 by

Theorem 4.1.13 (1). Similar to Theorem 4.2.1, we have {0} 6= Z(L) 6⊆ L, which is an abelian

ideal of L. By Lemma 4.1.12 (3), we know that Z(L) ⊆ A, so A ∩ Z(L) = Z(L). Hence

dim(A/Z(L)) = dim(A/(A ∩ Z(L))) = 1.
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Chapter 5

Classification of Nilpotent Lie

Algebras of Breadth 2

5.1 Structure of Nilpotent Lie Algebras of Breadth 2

We begin this section by showing that any finite dimensional nilpotent Lie algebra of breadth

2 has dimension greater than 3. Thus we know our starting dimension of the classification

process.

Lemma 5.1.1. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that

dimL ∈ Z>0. Then

1 ≤ dimZ(L) ≤ dimL− 3.

Proof. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that dimL := n ∈
Z>0. Then b(L) = 2. By Theorem 3.1.9, we know that dim(L/Z(L)) ≥ b(L) + 1, so we have

dimL−dimZ(L) ≥ 3. Thus dimZ(L) ≤ dimL−3. On the other hand, L has nontrivial center

since L is nilpotent. Therefore dimZ(L) ≥ 1. Hence 1 ≤ dimZ(L) ≤ dimL− 3.

Corollary 5.1.2. Let L be a finite dimensional nilpotent Lie algebra of breadth 2. Then

dimL ≥ 4.

Definition 5.1.3. A Lie algebra L is called pure if it does not have an abelian ideal as a direct

summand.

Lemma 5.1.4. Let L be a finite dimensional nilpotent Lie algebra. Then L is pure if and only

if Z(L) ⊆ [L,L].

Proof. Let L be a finite dimensional nilpotent Lie algebra. Suppose that Z(L) is not contained

in [L,L]. Then there exists x ∈ Z(L) − [L,L]. Note that x 6= 0 since x /∈ [L,L]. Let
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I = span{x}. Then I is a nonzero ideal of L contained in Z(L). Next, we extend I to a basis

of L, say L = span{x, y1, y2, . . . , yn} for some n ∈ Z>0. Let J = span{y1, y2, . . . , yn}. Then we

see that L = I ⊕ J , so we need to show that J is also an ideal of L. Since x ∈ Z(L) − [L,L],

I ∩ [L,L] = {0}, so [L,L] ⊆ J . Thus J is an ideal of L. Hence L = I ⊕ J where I and J are

ideals of L and I ⊆ Z(L). Consequently, L is not pure.

Conversely, assume that L is not pure. Then L = I ⊕ J where I and J are ideals of L and

I ⊆ Z(L). Let x ∈ I − {0} ⊆ Z(L) − {0}. Next we will claim that [L,L] ⊆ J . Let a, b ∈ L.

Then a and b can be written as a = aI + aJ and b = bI + bJ where aI , bI ∈ I ⊆ Z(L) and

aJ , bJ ∈ J . Therefore we have

[a, b] = [aI + aJ , bI + bJ ] = [aI , bI ] + [aI , bJ ] + [aJ , bI ] + [aJ , bJ ] = [aJ , bJ ] ∈ J.

Since a and b are arbitrary, [L,L] ⊆ J . Because x 6= 0, x /∈ J which also implies x /∈ [L,L].

Hence x ∈ Z(L)− [L,L], so Z(L) is not contained in [L,L].

Therefore we get a condition that is equivalent to purity of Lie algebras. In general, we con-

sider only pure Lie algebras, so we will include the condition Z(L) ⊆ [L,L] in our classification

process. Note that in order to obtain a Lie algebra which is not pure, we begin with a pure Lie

algebra with smaller dimension and add an abelian part to it.

Theorem 5.1.5. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that

Z(L) ⊆ [L,L]. Then L is a direct sum of smaller Lie algebras if and only if L is a direct sum

of two Heisenberg Lie algebras.

Proof. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that Z(L) ⊆ [L,L].

Suppose that L is a direct sum of smaller Lie algebras, says L = L1 ⊕ L2 ⊕ . . . ⊕ Ln for some

n ∈ Z>0. Since Z(L) ⊆ [L,L], we know that L is pure, so each summand is not abelian. Thus

b(Li) 6= 0 for all i = 1, 2, . . . , n. By Corollary 3.1.13, we have

b(L1) + b(L2) + . . .+ b(Ln) = b(L1 ⊕ L2 ⊕ . . .⊕ Ln) = b(L) = 2,

which leave us only one choice, n = 2 and b(L1) = b(L2) = 1. Hence L is a direct sum of two

Heisenberg Lie algebras by Theorem 3.2.6. The converse implication is clear. Consequently, L

is a direct sum of smaller Lie algebras if and only if L is a direct sum of two Heisenberg Lie

algebras.

Corollary 5.1.6. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that

Z(L) ⊆ [L,L]. Suppose that L is a direct sum of smaller Lie algebras. Then dimL is even.
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Proof. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that Z(L) ⊆
[L,L]. Suppose that L is a direct sum of smaller Lie algebras. Then L is a direct sum of

two Heisenberg Lie algebras by Theorem 5.1.5, says L = H1 ⊕ H2. Since Z(L) ⊆ [L,L], L is

pure which implies H1 and H2 are also pure. Thus both dimH1 and dimH2 are odd. Hence

dimL = dim(H1 ⊕H2) = dimH1 + dimH2 is even.

5.2 Nilpotent Lie Algebras of Breadth 2 with dim[L,L] = 3 and

dim(L/Z(L)) = 3

As we have already seen in Theorem 4.2.1, nilpotent Lie algebra of breadth 2 has two equivalent

conditions. In this part, we consider the second condition and classify it as stated in the next

theorem. From now on, we may not write all bracket relations of L. We assume that all of the

bracket relations are equal to zero, unless we state otherwise.

Theorem 5.2.1. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that

Z(L) ⊆ [L,L]. Suppose that dim[L,L] = 3 and dimL/Z(L) = 3. Then L is isomorphic to

either

1. L = span{x, y, v, w1, w2} where [x, y] = v, [x, v] = w1 and [y, v] = w2

or

2. L = span{x, y, z, w1, w2, w3} where [x, y] = w1, [x, z] = w2 and [y, z] = w3.

Proof. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that Z(L) ⊆ [L,L].

Then b(L) = 2. Suppose that dim[L,L] = 3 and dimL/Z(L) = 3. Because Z(L) ⊆ [L,L] and

dim[L,L] = 3, we have dimZ(L) = 0, 1, 2 or 3. Since L is nilpotent, L has nontrivial center, so

dimZ(L) 6= 0. Therefore we have 3 cases to consider:

1. Case I : dimZ(L) = 1. Then 3 = dimL/Z(L) = dimL − dimZ(L) = dimL − 1, so

dimL = 4. Let Z(L) = span{z}. Then extend it to [L,L] = span{u, v, z} and then

L = span{x, u, v, z}. Note that the bracket relations on L are defined by [x, u], [x, v] and

[u, v]. Since [L,L] = span{u, v, z}, we say that

[x, u] = α1u+ α2v + α3z,

[x, v] = β1u+ β2v + β3z,

[u, v] = γ1u+ γ2v + γ3z
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for some αi, βi, γi ∈ F and i = 1, 2, 3. Because of the nilpotency of L, we have α1 = β2 =

γ1 = γ2 = 0. Thus we obtain

[x, u] = α2v + α3z,

[x, v] = β1u+ β3z,

[u, v] = γ3z.

Note that α2, β1, γ3 6= 0 because dim[L,L] = 3. Then we have (adx)N (u) 6= 0 for any

N ∈ Z>0 which contradicts the nilpotency of L.

2. Case II : dimZ(L) = 2. Then 3 = dimL/Z(L) = dimL − dimZ(L) = dimL − 2, so

dimL = 5. Let Z(L) = span{z1, z2}. Then extend it to [L,L] = span{u, z1, z2} and then

L = span{x, y, u, z1, z2}. The bracket relations on L are defined by [x, y], [x, u] and [y, u].

Since [L,L] = span{u, z1, z2}, we say that

[x, y] = α1u+ α2z1 + α3z2,

[x, u] = β1u+ β2z1 + β3z2,

[y, u] = γ1u+ γ2z1 + γ3z2

for some αi, βi, γi ∈ F and i = 1, 2, 3. Since L is nilpotent, β1 = γ1 = 0. Then we get

[x, y] = α1u+ α2z1 + α3z2 =: v,

[x, u] = β2z1 + β3z2 =: w1,

[y, u] = γ2z1 + γ3z2 =: w2.

Since dim[L,L] = 3, we get Z(L) = span{w1, w2} and [L,L] = span{v, w1, w2}, so α1 6= 0.

Let w′1 = α1w1 and w′2 = α1w2. Hence Z(L) = span{w′1, w′2}, [L,L] = span{v, w′1, w′2}
and L = span{x, y, v, w′1, w′2} where

[x, y] = v,

[x, v] = [x, α1u+ α2z1 + α3z2] = α1w1 = w′1,

[y, v] = [y, α1u+ α2z1 + α3z2] = α1w2 = w′2.

3. Case III : dimZ(L) = 3. Then 3 = dimL/Z(L) = dimL − dimZ(L) = dimL − 3, so

dimL = 6. Thus Z(L) = [L,L], says Z(L) = span{w1, w2, w3}. Next, we extend this

basis to L = span{x, y, z, w1, w2, w3}. Note that the bracket relations on L are defined

by [x, y], [x, z] and [y, z]. Since dim[L,L] = 3, [L,L] = Z(L) = span{[x, y], [x, z], [y, z]}.
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Let [x, y] = w′1, [x, z] = w′2 and [y, z] = w′3. Hence [L,L] = Z(L) = span{w′1, w′2, w′3} and

L = span{x, y, z, w′1, w′2, w′3} where [x, y] = w′1, [x, z] = w′2 and [y, z] = w′3.

In conclusion, L is isomorphic to either

1. L = span{x, y, v, w1, w2} where [x, y] = v, [x, v] = w1 and [y, v] = w2

or

2. L = span{x, y, z, w1, w2, w3} where [x, y] = w1, [x, z] = w2 and [y, z] = w3.

5.3 Nilpotent Lie Algebras of Breadth 2 with dim[L,L] = 2 and

dimZ(L) = 1

As stated in the first condition of Theorem 4.2.1, we now consider finite dimensional nilpotent

Lie algebra L such that dim[L,L] = 2. Since we also consider the condition Z(L) ⊆ [L,L],

Z(L) could be 1 or 2-dimensional. In this section, we classify one with dimZ(L) = 1 and leave

the case dimZ(L) = 2 to the next section.

Proposition 5.3.1. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that

dimL =: n ≥ 4. Suppose that dim[L,L] = 2, dimZ(L) = 1 and Z(L) ⊆ [L,L]. Then L/Z(L)

is isomorphic to span{x+ Z(L), y + Z(L), v + Z(L), w1 + Z(L), w2 + Z(L), . . . , wn−4 + Z(L)}
such that [x + Z(L), y + Z(L)] = v + Z(L) and v + Z(L), wi + Z(L) ∈ Z(L/Z(L)) for all

i = 1, 2, . . . , n− 4.

Proof. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that dimL =: n ≥ 4.

Suppose that dim[L,L] = 2, dimZ(L) = 1 and Z(L) ⊆ [L,L]. Let Z(L) = span{z}. Then

we extend Z(L) to [L,L] = span{v, z}. Thus we have z 6= 0 and v ∈ [L,L] − Z(L). Next, we

consider L/Z(L). Since L/Z(L) is a homomorphic image of L which is nilpotent, L/Z(L) is

also nilpotent. In addition, b(L/Z(L)) = 1 because

[L/Z(L), L/Z(L)] = [L,L]/Z(L) = span{v + Z(L)}

is 1-dimensional by Theorem 3.2.1. As a result, by Theorem 3.2.6, L/Z(L) is isomorphic to

span{x1 + Z(L), y1 + Z(L), x2 + Z(L), y2 + Z(L), . . . , xm + Z(L), ym + Z(L),

v + Z(L), w1 + Z(L), w2 + Z(L), . . . , wn−2m−2 + Z(L)}
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such that [xi + Z(L), yi + Z(L)] = v + Z(L) and v + Z(L), w1 + Z(L), . . . , wn−2m−2 + Z(L) ∈
Z(L/Z(L)) for some m ∈ {1, 2, . . . ,

⌊
n−2
2

⌋
} and for all i = 1, 2, . . . ,m. Next, we will claim that

m = 1. Suppose that m ≥ 1. Then we consider L from L/Z(L), so L is isomorphic to

span{x1, y1, x2, y2, . . . , xm, ym, v, w1, w2, . . . , wn−2m−2, z}

such that [xi, yi] = v+αiz and the rest of the bracket relations lie in Z(L) = span{z} for some

α1, . . . , αm ∈ F and for all i = 1, 2, . . . ,m. Since m ≥ 1, we can choose i 6= j ∈ {1, 2, . . . ,m}.
Note that [xi, xj ], [xi, yj ] ∈ Z(L), so

[xi, v] = [xi, v + αjz] = [xi, [xj , yj ]] = [[xi, xj ], yj ] + [xj , [xi, yj ]] = 0.

Similarly, we also have

[yi, v] = [yi, v + αjz] = [yi, [xj , yj ]] = [[yi, xj ], yj ] + [xj , [yi, yj ]] = 0

because [yi, xj ], [yi, yj ] ∈ Z(L). Moreover, for k = 1, 2, . . . , n− 2m− 2, we get

[wk, v] = [wk, v + α1z] = [wk, [x1, y1]] = [[wk, x1], y1] + [x1, [wk, y1]] = 0

since [wk, x1], [wk, y1] ∈ Z(L). We also know that [v, v] = [v, z] = 0. Thus v ∈ Z(L) which

is a contradiction. Hence m = 1, so L/Z(L) is isomorphic to span{x + Z(L), y + Z(L), v +

Z(L), w1 +Z(L), w2 +Z(L), . . . , wn−4 +Z(L)} such that [x+Z(L), y+Z(L)] = v +Z(L) and

v + Z(L), wi + Z(L) ∈ Z(L/Z(L)) for all i = 1, 2, . . . , n− 4.

Lemma 5.3.2. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that

dimL =: n ≥ 4. Suppose that dim[L,L] = 2 and Z(L) = span{z} ⊆ [L,L] is 1-dimensional.

Then L is isomorphic to span{x, y, z, v, w1, w2, . . . , wn−4} such that [x, y] = v, [x, v] = z and

[y, v] = [x,wi] = [v, wi] = 0 for all i = 1, 2, . . . , n− 4 and the rest of the bracket relations lie in

Z(L).

Proof. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that dimL =:

n ≥ 4. Suppose that dim[L,L] = 2 and Z(L) = span{z} ⊆ [L,L] is 1-dimensional. By

Proposition 5.3.1, L/Z(L) is isomorphic to span{x+Z(L), y+Z(L), v+Z(L), w1 +Z(L), w2 +

Z(L), . . . , wn−4 +Z(L)} such that [x+Z(L), y+Z(L)] = v+Z(L) and v+Z(L), wi +Z(L) ∈
Z(L/Z(L)) for all i = 1, 2, . . . , n− 4.

Next, we pull this back so L ∼= span{x, y, z, v, w1, w2, . . . , wn−4} such that [x, y] = v+αz for

some α ∈ F and the rest of the bracket relations lie in Z(L). Take v′ = v + αz = [x, y]. Then

L ∼= span{x, y, z, v′, w1, w2, . . . , wn−4} such that [x, y] = v′ and the rest of the bracket relations
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lie in Z(L). Note that

[wi, v
′] = [wi, [x, y]] = [[wi, x], y] + [x, [wi, y]] = 0

for all i = 1, 2, . . . , n − 4 because [wi, x], [wi, y] ∈ Z(L). Consequently, [wi, v
′] = 0 for all

i = 1, 2, . . . , n−4. Since v′ /∈ Z(L), we have [x, v′] 6= 0 or [y, v′] 6= 0. Without loss of generality,

we assume that [x, v′] 6= 0, says [x, v′] = βz =: z′ for some β ∈ F − {0}. Then we take

Z(L) = span{z′}. Let [x,wi] = γiz for some γi ∈ F and for all i = 1, 2, . . . , n− 4. Then we take

w′i = βwi − γiv′. As a consequence, we have

[x,w′i] = [x, βwi − γiv′] = β[x,wi]− γi[x, v′] = βγiz − γiβz = 0,

[v′, w′i] = [v′, βwi − γiv′] = β[v′, wi]− γi[v′, v′] = 0.

Finally, observe that [y, v′] = δz′ for some δ ∈ F. By taking y′ = y − δx, we have

[x, y′] = [x, y − δx] = [x, y]− δ[x, x] = v′,

[y′, v′] = [y − δx, v′] = [y, v′]− δ[x, v′] = δz′ − δz′ = 0.

Hence L is isomorphic to span{x, y′, z′, v′, w′1, w′2, . . . , w′n−4} such that [x, y] = v, [x, v] = z and

[y, v] = [x,wi] = [v, wi] = 0 for all i = 1, 2, . . . , n− 4 and the rest of the bracket relations lie in

Z(L).

Theorem 5.3.3. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that

dimL =: n ≥ 4. Suppose that dim[L,L] = 2 and Z(L) = span{z} ⊆ [L,L] is 1-dimensional.

Then the following holds:

1. If n is even, then L is isomorphic to span{x, y, z, v, w1, w2, . . . , wn−4} such that

[x, y] = v, [x, v] = z and [wi, wi+1] = z for all i = 1, 3, 5, . . . , n− 5.

2. If n is odd, then L is isomorphic to span{x, y, z, v, w1, w2, . . . , wn−4} such that

[x, y] = v, [x, v] = z, [y, w1] = z and [wi, wi+1] = z for all i = 2, 4, 6, . . . , n− 5.

Proof. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that dimL =: n ≥ 4.

Suppose that dim[L,L] = 2 and Z(L) = span{z} ⊆ [L,L] is 1-dimensional. It is clear that, by

Lemma 5.3.2, L is isomorphic to span{x, y, z, v} such that [x, y] = v, [x, v] = z and [y, v] = 0 if

dimL = 4. Moreover, if dimL = 5, then by Lemma 5.3.2, L is isomorphic to span{x, y, z, v, w}
such that [x, y] = v, [x, v] = z and [y, v] = [x,w] = [v, w] = 0 and the rest of the bracket

relations lie in Z(L). Since w /∈ Z(L), we have [y, w] = αz for some α 6= 0. By taking w′ = w
α ,
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we have

[y, w′] = [y,
w

α
] =

1

α
[y, w] =

1

α
αz = z and [x,w′] = [v, w′] = 0.

Hence L is isomorphic to span{x, y, z, v, w′} such that [x, y] = v, [x, v] = [y, w′] = z and

[y, v] = [x,w′] = [v, w′] = 0.

Assume that dimL = n ≥ 6. By Lemma 5.3.2, L is isomorphic to span{x, y, z, v, w1, w2, . . . ,

wn−4} such that [x, y] = v, [x, v] = z and [y, v] = [x,wi] = [v, wi] = 0 for all i = 1, 2, . . . , n− 4

and the rest of the bracket relations lie in Z(L). Let W := span{z, w1, w2, . . . , wn−4}. Then

im adx|W = [x,W ] = {0} and im adv|W = [v,W ] = {0}. Observe that [W,W ] ⊆ span{z}.
Suppose that [W,W ] = {0}. Then we get [y, wi] 6= 0 for all i = 1, 2, . . . , n−4. Thus [y, w1] = a1z

and [y, w2] = a2z where a1, a2 ∈ F− {0}. Therefore we have

[y, a2w1 − a1w2] = a2[y, w1]− a1[y, w2] = a2a1z − a1a2z = 0,

so a2w1 − a1w2 ∈ Z(L), which is a contradiction. Consequently, [W,W ] = span{z} which

is 1-dimensional, so W is a nilpotent Lie subalgebra of L such that b(W ) = 1 by Theorem

3.2.1. By Theorem 3.2.6, W = span{z, w′1, w′2, . . . , w′2k, . . . , w′n−4} such that [w′i, w
′
i+1] = z for

all i = 1, 3, . . . , 2k − 1 and Z(W ) = {z, w′2k+1, . . . , w
′
n−4} where 2k ≤ n − 4. Observe that for

i = 1, 2, . . . , 2k, we have [y, w′i] = αiz where αi ∈ F. Let

y′ = y +
2k−1∑
i=1

i is odd

αiw
′
i+1 −

2k∑
i=2

i is even

αiw
′
i−1.

As a result, we have

[y′, w′i] =

[y, w′i] + [αiw
′
i+1, w

′
i] = αiz − αiz = 0 if i is odd,

[y, w′i]− [αiw
′
i−1, w

′
i] = αiz − αiz = 0 if i is even.

Therefore [y′, w′i] = 0 for all i = 1, 2, . . . , 2k. Observe that

[x, y′] = [x, y] = v and [y′, v] = [y, v] = 0

because [x,W ] = [v,W ] = {0}. Notice that [y′,W ] ⊆ Z(L) since [y,W ], [W,W ] ⊆ Z(L). By

considering L = span{x, y′, z, v, w′1, w′2, . . . , w′2k, . . . , w′n−4}, we know that [x,w′j ] = [v, w′j ] =

[w′i, w
′
j ] = 0 for all i = 1, 2, . . . , n− 4 and j = 2k + 1, . . . , n− 4. Since w′2k+1, . . . , w

′
n−4 /∈ Z(L),

we get [y′, w′j ] = βjz where βj ∈ F − {0} for all j = 2k + 1, . . . , n − 4. If 2k + 2 ≤ n − 4, then
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[y′, w′2k+1] = β2k+1z and [y′, w′2k+2] = β2k+2z. Consequently, we obtain

[y′, β2k+2w
′
2k+1 − β2k+1w

′
2k+2] = β2k+2[y

′, w′2k+1]− β2k+1[y
′, w′2k+2]

= β2k+2β2k+1z − β2k+1β2k+2z

= 0,

so β2k+2w
′
2k+1 − β2k+1w

′
2k+2 ∈ Z(L) which is a contradiction. Hence we get 2k + 2 > n − 4,

which implies 2k = n− 4 or 2k + 1 = n− 4. Then we consider the following two cases:

1. Case I : 2k = n−4. Then n is even and L is isomorphic to span{x, y′, z, v, w′1, w′2, . . . , w′n−4}
such that [x, y′] = v, [x, v] = z and [w′i, w

′
i+1] = z for all i = 1, 3, 5, . . . , n− 5.

2. Case II : 2k + 1 = n − 4. Then n is odd. Since w′n−4 /∈ Z(L), we get [y′, w′n−4] = βn−4z

where βn−4 ∈ F− {0}. Let w̄n−4 =
w′n−4

βn−4
. Then we have

[y′, w̄n−4] = [y′,
w′n−4
βn−4

] =
1

βn−4
[y′, w′n−4] =

1

βn−4
βn−4z = z.

Hence L is isomorphic to span{x, y′, z, v, w′1, w′2, . . . , w′n−5, w̄n−4} such that [x, y′] = v,

[x, v] = z, [y′, w̄n−4] = z and [w′i, w
′
i+1] = z for all i = 1, 3, 5, . . . , n− 6.

Since the result from the two cases above are complement to each other, we can modify our

result as follows:

1. If n is even, then L is isomorphic to span{x, y, z, v, w1, w2, . . . , wn−4} such that

[x, y] = v, [x, v] = z and [wi, wi+1] = z for all i = 1, 3, 5, . . . , n− 5.

2. If n is odd, then L is isomorphic to span{x, y, z, v, w1, w2, . . . , wn−4} such that

[x, y] = v, [x, v] = z, [y, w1] = z and [wi, wi+1] = z for all i = 2, 4, 6, . . . , n− 5.

5.4 Nilpotent Lie Algebras of Breadth 2 with dim[L,L] = 2 and

dimZ(L) = 2

To begin this section, we introduce the concept of component of a Lie algebra which we use

throughout our classification process. For any finite dimensional Lie algebra L, its center can

be written as Z(L) = span{z1, z2, . . . , zm} for some m ∈ Z≥0. Then we extend this basis to

L = span{x1, x2, . . . , xn, z1, z2, . . . , zm} where n ∈ Z≥0. Thus dimL = n + m. We denote a

subspace L′ := span{x1, x2, . . . , xn} ⊆ L.
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Definition 5.4.1. Let L be a finite dimensional Lie algebra. A subspace M = span{y1, . . . , yk}
⊆ L′ is a component of L of dimension k if M + CL(M) = L.

Proposition 5.4.2. Let L be a finite dimensional Lie algebra and M be a component of L.

Then b(x) ≥ 1 for all x ∈M − {0}.

Proof. Let L be a finite dimensional Lie algebra and M be a component of L. Since Z(L) =

{x ∈ L | b(x) = 0}, we know that b(x) ≥ 1 for all x ∈ L′ − {0}. Hence b(x) ≥ 1 for all

x ∈M − {0} because M − {0} ⊆ L′ − {0}.

Lemma 5.4.3. Let L be a finite dimensional Lie algebra and M be a subspace of L′ such that

M + CL(M) = L. Then M ∩ CL(M) = {0}.

Proof. Let L be a finite dimensional Lie algebra and M be a subspace of L′ such that M +

CL(M) = L. We write M = span{u1, u2, . . . , uk} for some k ∈ Z≥0 and extend it to a basis

{u1, u2, . . . , uk, v1, v2, . . . , vn−k, z1, z2, . . . , zm} of L where Z(L) = span{z1, z2, . . . , zm}. Let

x ∈ M ∩ CL(M). Then x can be written as x = a1u1 + a2u2 + . . . + akuk where ai ∈ F for

all i = 1, 2, . . . , k. Next we will claim that x ∈ Z(L). Let y ∈ L. Since L = M + CL(M), y

can be written as y = yM + cM where yM ∈ M and cM ∈ CL(M). Because x ∈ M ∩ CL(M),

we have [x, y] = [x, yM + cM ] = [x, yM ] + [x, cM ] = 0. Since y ∈ L is arbitrary, we obtain

x ∈ Z(L). Therefore x can also be written as x = b1z1 + b2z2 + . . .+ bmzm where bj ∈ F for all

j = 1, 2, . . . ,m. Consequently, we obtain

0 = x− x

= (a1u1 + a2u2 + . . .+ akuk)− (b1z1 + b2z2 + . . .+ bmzm)

= a1u1 + a2u2 + . . .+ akuk − b1z1 − b2z2 − . . .− bmzm.

Since {u1, u2, . . . , uk, z1, z2, . . . , zm} is linearly independent, ai = bj = 0 for all i = 1, 2, . . . , k

and j = 1, 2, . . . ,m. Hence x = a1u1 + a2u2 + . . .+ akuk = 0, so M ∩ CL(M) = {0}.

By using previous lemma, we can develop our definition of component to be direct summand

instead of normal summand.

Definition 5.4.4. Let L be a finite dimensional Lie algebra. A subspace M = span{y1, . . . , yk}
⊆ L′ is a component of L of dimension k if M ⊕ CL(M) = L.

Remark. Let L be a finite dimensional Lie algebra. Then L′ is the largest component of L.

Proposition 5.4.5. Let L be a finite dimensional Lie algebra and M be a component of L of

dimension k. Then k ≥ 2.
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Proof. Let L be a finite dimensional Lie algebra and M be a component of L of dimension k.

Let x ∈M −{0} ⊆ L′−{0}. Then b(x) ≥ 1 by Proposition 5.4.2. Thus there exists y ∈ L−{0}
such that [x, y] 6= 0, so y /∈ CL(M). Since L = M ⊕ CL(M), we write y = yM + cM where

yM ∈M and cM ∈ CL(M). Note that yM 6= 0 because y /∈ CL(M). Moreover, we have

[x, yM ] = [x, y − cM ] = [x, y]− [x, cM ] = [x, y] 6= 0.

As a result, we consider yM ∈M and notice that {x, yM} ⊆M is linearly independent because

[x, yM ] 6= 0. Hence we have k ≥ 2.

Next, we define the reducibility of component. Note that a component is called irreducible

if it is not reducible.

Definition 5.4.6. Let L be a finite dimensional Lie algebra and M be a component of L. Then

M is said to be reducible if there exist components M1 and M2 such that M = M1 ⊕M2.

Remark. Let L be a finite dimensional Lie algebra and M = M1⊕M2 be a reducible component

of L. Then M1 ⊆ CL(M2) and M2 ⊆ CL(M1).

By Proposition 5.4.5, the smallest component is 2-dimensional. Thus we easily get the

following corollary.

Corollary 5.4.7. Let L be a finite dimensional Lie algebra and M be a component of L of

dimension 2 or 3. Then M is irreducible.

Theorem 5.4.8. Let L be a finite dimensional Lie algebra and M be a component of L of

dimension k ≥ 2. Then for any x ∈M − {0}, 1 ≤ b(x) ≤ k − 1.

Proof. Let L be a finite dimensional Lie algebra and M be a component of L of dimension

k ≥ 2. By Proposition 5.4.2, b(x) ≥ 1 for all x ∈ M − {0}. Suppose that there exists

x ∈M −{0} such that b(x) ≥ k. Since M ⊕CL(M) = L, without loss of generality, there exist

y1, y2, . . . , yk ∈ M − {0} such that [x, yi] = zi for all i = 1, 2, . . . , k where {z1, z2, . . . , zk} is

linearly independent. Next, we will show that {x, y1, y2, . . . , yk} ⊆ M is linearly independent.

Let a, a1, a2, . . . , ak ∈ F be such that ax+ a1y1 + a2y2 + . . .+ akyk = 0. Then we have

0 = [x, ax+ a1y1 + a2y2 + . . .+ akyk]

= a[x, x] + a1[x, y1] + a2[x, y2] + . . .+ ak[x, yk]

= a1z1 + a2z2 + . . .+ akzk.

Since {z1, z2, . . . , zk} is linearly independent, a1 = a2 = . . . = ak = 0, which also implies a = 0.

Hence {x, y1, y2, . . . , yk} ⊆ M is linearly independent, which is a contradiction. Consequently,

1 ≤ b(x) ≤ k − 1 for any x ∈M − {0}.

47



Corollary 5.4.9. Let L be a finite dimensional Lie algebra and M be a component of L of

dimension 2. Then b(x) = 1 for all x ∈M − {0}.

By using previous corollary, we can identify the structure of component of dimension 2 as

we prove in next theorem.

Theorem 5.4.10. Let L be a finite dimensional Lie algebra and M be a component of L

of dimension 2. Then M = span{x1, x2} such that [x1, x2] 6= 0. In particular, [M,L] =

span{[x1, x2]}.

Proof. Let L be a finite dimensional Lie algebra and M be a component of L of dimension 2.

Let x1 ∈ M − {0}. By Corollary 5.4.9, b(x1) = 1. Since L = M ⊕ CL(M), without loss of

generality, there exists x2 ∈ M − {0} such that [x1, x2] 6= 0. We know that x2 /∈ span{x1},
so M = span{x1, x2}. To show that [M,L] is 1-dimensional, let x ∈ M and y ∈ L. Since

L = M ⊕ CL(M), x and y can be written as x = a1x1 + a2x2 and y = b1x1 + b2x2 + c where

ai, bi ∈ F for i = 1, 2 and c ∈ CL(M). Note that [x1, c] = [x2, c] = 0 because c ∈ CL(M). Then

we obtain

[x, y] = [a1x1 + a2x2, b1x1 + b2x2 + c]

= a1b1[x1, x1] + a1b2[x1, x2] + a1[x1, c] + a2b1[x2, x1] + a2b2[x2, x2] + a2[x2, c]

= a1b2[x1, x2] + a2b1[x2, x1]

= (a1b2 − a2b1)[x1, x2]

∈ span{[x1, x2]}.

Since x ∈M and y ∈ L are arbitrary, we have [M,L] = span{[x1, x2]}.

Next theorem clarify the picture of reducible component. We simply need to find a smaller

part of component in order to tell that it is reducible.

Theorem 5.4.11. Let L be a finite dimensional Lie algebra and M be a component of L of

dimension k ≥ 4. Suppose that there is a proper subspace M1 ⊆M such that M1+CL(M1) = L.

Then M is reducible. In particular, M = M1⊕M2 where M2 ⊆ CL(M1) is a component spanned

by basis of M extended from M1.

Proof. Let L be a finite dimensional Lie algebra and M be a component of L of dimension k ≥ 4.

Suppose that there is a proper subspace M1 ⊆M such that M1+CL(M1) = L. By Lemma 5.4.3,

we have M1 ∩ CL(M1) = {0}, so M1 ⊕ CL(M1) = L. Thus M1 is a component of L. Assume

that M1 = span{x1, x2, . . . , xt} for some t < k. Since L = M1 ⊕ CL(M1), we extend this basis

to M = span{x1, x2, . . . , xt, y1, y2, . . . , ys} such that y1, y2, . . . , ys ∈ CL(M1) where s + t = k.

Let M2 = span{y1, y2, . . . , ys} ⊆ CL(M1). Then M = M1 ⊕M2. Since M2 ⊆ CL(M1), we have
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[M1,M2] = {0}. Thus M1 ⊆ CL(M2). On the other hand, we also have CL(M) ⊆ CL(M2)

because M2 ⊆M . Similarly, we get CL(M) ⊆ CL(M1), so M1 ∩CL(M) ⊆M1 ∩CL(M1) = {0}.
Consequently, we have M1 ⊕ CL(M) ⊆ CL(M2) and

L = M ⊕ CL(M) = (M1 ⊕M2)⊕ CL(M) = M2 ⊕ (M1 ⊕ CL(M)) ⊆M2 + CL(M2).

Thus M2 + CL(M2) = L. Again, by Lemma 5.4.3, M2 ∩ CL(M2) = {0}, so M2 ⊕ CL(M2) = L.

As a result, M2 is a component of L of dimension s. Hence M = M1 ⊕M2 is reducible.

Corollary 5.4.12. Let L be a finite dimensional Lie algebra and M be an irreducible component

of L of dimension k ≥ 4. Then for any proper subspace M ′ ⊆ M , M ′ + CL(M ′) is a proper

subspace of L.

Theorem 5.4.13. Let L be a finite dimensional Lie algebra and M be an irreducible component

of L. Then for any proper subspace M ′ ⊆M , there exists x ∈M −M ′ such that x /∈ CL(M ′).

Proof. Let L be a finite dimensional Lie algebra and M be an irreducible component of L.

Let M ′ be a proper subspace of M . Suppose that for any x ∈ M −M ′, x ∈ CL(M ′). Then

we have M −M ′ ⊆ CL(M ′). Since M ′ ⊆ M , CL(M) ⊆ CL(M ′). Next, we will show that

M ′ + CL(M ′) = L. Suppose that M ′ = span{x1, x2, . . . , xt} for some t ≥ 1. Then we extend

this basis to M = {x1, x2, . . . , xt, y1, y2, . . . , ys} for some s ≥ 1. Let y ∈ L. Since M+CL(M) =

L, y can be written as y = a1x1 + a2x2 + . . . + atxt + b1y1 + b2y2 + . . . + bsys + c where

a1, a2, . . . , at, b1, b2, . . . , bs ∈ F and c ∈ CL(M). We observe that

y = a1x1 + a2x2 + . . .+ atxt + b1y1 + b2y2 + . . .+ bsys + c

= (a1x1 + a2x2 + . . .+ atxt) + (b1y1 + b2y2 + . . .+ bsys) + c

∈M ′ + (M −M ′) + CL(M)

∈M ′ + CL(M ′).

Therefore M ′ + CL(M ′) = L. By Theorem 5.4.11, M is reducible, which is a contradiction.

Hence there exists x ∈M −M ′ such that x /∈ CL(M ′).

Theorem 5.4.14. Let L be a finite dimensional Lie algebra and M be an irreducible component

of L of dimension k ≥ 3. Then there exist x ∈M − {0} such that b(x) > 1.

Proof. Let L be a finite dimensional Lie algebra and M be an irreducible component of L of

dimension k ≥ 3. Suppose that b(x) = 1 for every x ∈ M − {0}. Let x1 ∈ M − {0}. Since

L = M ⊕ CL(M), without loss of generality, there exists x2 ∈ M − {0} such that [x1, x2] 6= 0.

Because x2 ∈M−{0}, b(x2) = 1. Note that x2 /∈ span{x1}, so {x1, x2} is linearly independent.

Let M1 := span{x1, x2}. Since b(x1) = b(x2) = 1, by rank-nullity theorem, we know that
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nullity adxi = dimL − rank adxi = dimL − 1 for i = 1, 2. Therefore ker adx1 6= ker adx2 but

they are both (dimL − 1)-dimensional. Thus CL(M1) = ker adx1 ∩ ker adx2 is (dimL − 2)-

dimensional. Next we will claim that M1 ∩ CL(M1) = {0}. Let x ∈ M1 ∩ CL(M1). Then

we write x = a1x1 + a2x2 for some a1, a2 ∈ F. Since x ∈ CL(M1), [xi, x] = 0 for i = 1, 2.

Consequently, we have

0 = [x1, x] = [x1, a1x1 + a2x2] = a1[x1, x1] + a2[x1, x2] = a2[x1, x2],

0 = [x2, x] = [x2, a1x1 + a2x2] = a1[x2, x1] + a2[x2, x2] = −a1[x1, x2],

so a1 = a2 = 0. Thus M1 ∩ CL(M1) = {0}. By counting dimension, M1 ⊕ CL(M1) = L.

Hence M1 ⊆ M is a component of L of dimension 2. If k ≥ 4, then by Theorem 5.4.11, M is

reducible, which is a contradiction. Next, we assume that k = 3. Since L = M1 ⊕ CL(M1), we

let 0 6= y ∈M ∩ CL(M1). Then M = span{x1, x2, y}. We will claim that y ∈ Z(L). Let x ∈ L.

Since L = M + CL(M), x can be written as x = a1x1 + a2x2 + by + c where a1, a2, b ∈ F and

c ∈ CL(M). Then [y, c] = 0 because y ∈ M . Moreover, [y, x1] = [y, x2] = 0 since y ∈ CL(M1).

Therefore we have

[y, x] = [y, a1x1 + a2x2 + by + c] = a1[y, x1] + a2[y, x2] + b[y, y] + [y, c] = 0.

Thus y ∈ Z(L), which is a contradiction. Hence there exist x ∈M−{0} such that b(x) > 1.

Next theorem gives us the structure of component of dimension 3. Furthermore, we also

obtain the classification of nilpotent Lie algebras L of breadth 2 such that Z(L) = [L,L] are

2-dimensional and dimL = 5 as the upcoming corollary.

Theorem 5.4.15. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that

Z(L) = [L,L] are 2-dimensional. Let M be a component of L of dimension 3. Then M =

span{x1, x2, x3} such that [x1, x2] = z1, [x1, x3] = z2 and [x1, x3] = 0 where Z(L) = span{z1, z2}.

Proof. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that Z(L) = [L,L]

are 2-dimensional. Let M be a component of L of dimension 3. By Theorem 5.4.14, there exists

x1 ∈ M − {0} such that b(x1) > 1. By Theorem 5.4.8, we have 1 < b(x1) ≤ 3 − 1 = 2, so

b(x1) = 2. Since M ⊕CL(M) = L, without loss of generality, there exist x′2, x
′
3 ∈M −{0} such

that [x1, x
′
2] = z1 and [x1, x

′
3] = z2 where {z1, z2} is linearly independent. Since Z(L) = [L,L]

are 2-dimensional, we get Z(L) = span{z1, z2}. Next, we observe [x′2, x
′
3] ∈ [L,L] = Z(L). Then

there exist a1, a2 ∈ F such that [x′2, x
′
3] = a1z1 + a2z2. Let x2 = x′2 − a2x1 and x3 = x′3 + a1x1.

Then we have

[x1, x2] = [x1, x
′
2 − a2x1] = [x1, x

′
2]− a2[x1, x1] = z1,
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[x1, x3] = [x1, x
′
3 + a1x1] = [x1, x

′
3] + a1[x1, x1] = z2,

[x2, x3] = [x′2 − a2x1, x′3 + a1x1]

= [x′2, x
′
3] + a1[x

′
2, x1]− a2[x1, x′3]− a2a3[x1, x1]

= (a1z1 + a2z2) + a1(−z1)− a2z2
= 0.

Note that {x1, x′2, x′3} is linearly independent and so is {x1, x2, x3}. Hence M = span{x1, x2, x3}
such that [x1, x2] = z1, [x1, x3] = z2 and [x1, x3] = 0 where Z(L) = span{z1, z2}.

Corollary 5.4.16. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that

Z(L) = [L,L] are 2-dimensional and dimL = 5. Then L = span{x1, x2, x3, z1, z2} such that

[x1, x2] = z1, [x1, x3] = z2 and [x1, x3] = 0 where Z(L) = span{z1, z2}.

Next, we provide a definition of standard n-dimensional subspace of a component and its

properties.

Definition 5.4.17. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that

Z(L) = [L,L] are 2-dimensional and M be an irreducible component of L. For n ≥ 2, define

an n-dimensional subspace Mn := span{x1, x2, . . . , xn} ⊆M such that

b(x1) = 1, b(x2) = b(x3) = . . . = b(xn−1) = 2, b(xn) ≥ 1

and

[xi, xi+1] =

 z1 if i is odd

z2 if i is even

where i ∈ {1, 2, . . . , n− 1} and Z(L) = span{z1, z2}.

Proposition 5.4.18. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that

Z(L) = [L,L] are 2-dimensional and M be an irreducible component of L. Then Mn∩CL(Mn−1)

= {0} for all n ≥ 3.

Proof. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that Z(L) = [L,L]

are 2-dimensional and M be an irreducible component of L. Let n ≥ 3 and a1, a2, . . . , an ∈ F
be such that

x = a1x1 + a2x2 + . . .+ anxn ∈Mn ∩ CL(Mn−1) = span{x1, x2, . . . , xn} ∩ CL(Mn−1).
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Since x ∈ CL(Mn−1) =
⋂n−1
i=1 ker adxi , we have [xi, x] = 0 for all i = 1, 2, . . . , n− 1. As a result,

for any i ∈ {2, 3, . . . , n− 1}, we have

0 = [xi, x]

= [xi, a1x1 + a2x2 + . . .+ anxn]

= a1[xi, x1] + a2[xi, x2] + . . .+ an[xi, xn]

= ai−1[xi, xi−1] + ai+1[xi, xi+1]

=

 − ai−1z2 + ai+1z1 if i is odd

− ai−1z1 + ai+1z2 if i is even

Since Z(L) = {z1, z2} is linearly independent, ai−1 = ai+1 = 0 for all i = 2, 3, . . . , n− 1. Thus

ai = 0 for all i = 1, 2, . . . , n. Hence x = 0, so Mn ∩ CL(Mn−1) = {0} for all n ≥ 3.

Corollary 5.4.19. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that

Z(L) = [L,L] are 2-dimensional and M be an irreducible component of L. Then Mn ∩CL(Mn)

= {0} for all n ≥ 2.

Proof. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that Z(L) = [L,L]

are 2-dimensional and M be an irreducible component of L. Let n ≥ 2. For n = 2, we let

a1, a2 ∈ F be such that

x = a1x1 + a2x2 ∈M2 ∩ CL(M2) = span{x1, x2} ∩ CL(M2).

Since x ∈ CL(M2) = ker adx1 ∩ ker adx2 , we have

0 = [x1, x] = [x1, a1x1 + a2x2] = a1[x1, x1] + a2[x1, x2] = a2z1,

0 = [x2, x] = [x2, a1x1 + a2x2] = a1[x2, x1] + a2[x2, x2] = a1(−z1).

Thus a1 = a2 = 0, so x = 0. Hence M2 ∩ CL(M2) = {0}. Suppose that n ≥ 3. By Proposition

5.4.18, Mn ∩ CL(Mn−1) = {0}, so we have

Mn ∩ CL(Mn) = Mn ∩ (ker adxn ∩ CL(Mn−1))

= ker adxn ∩ (Mn ∩ CL(Mn−1))

= ker adxn ∩ {0}

= {0}.

Therefore Mn ∩ CL(Mn) = {0} for all n ≥ 3. Hence Mn ∩ CL(Mn) = {0} for all n ≥ 2.
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Theorem 5.4.20. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that

Z(L) = [L,L] are 2-dimensional. Let M be an irreducible component of L and Mn be a subspace

of M for n ≥ 2. Then

1. L = ker adx1 ⊕ span{x2}

2. L = ker adxi ⊕ span{xi−1, xi+1} for all i = 2, 3, . . . , n− 1

3. L =

ker adxn ⊕ span{xn−1} if b(xn) = 1

ker adxn ⊕ span{xn−1, x} if b(xn) = 2

where Z(L) = span{[xn−1, xn], [xn, x]}.

Proof. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that Z(L) = [L,L]

are 2-dimensional. Let M be an irreducible component of L and Mn be a subspace of M for

n ≥ 2.

1. First, we observe x1 ∈ Mn. Note that b(x1) = 1 and [x1, x2] = z1 6= 0. By rank-nullity

theorem, we get nullity adx1 = dimL − rank adx1 = dimL − 1. Since x2 /∈ ker adx1 , we

have L = ker adx1 ⊕ span{x2}.

2. Let i ∈ {2, 3, . . . , n− 1}. Then we have b(xi) = 2. Without loss of generality, we suppose

that i is even so that [xi−1, xi] = z1 and [xi, xi+1] = z2. To show that L = ker adxi +

span{xi−1, xi+1}, let y ∈ L. If y ∈ ker adxi , then y = y + 0 ∈ ker adxi + span{xi−1, xi+1}.
Assume that y /∈ ker adxi . Then [xi, y] = a1z1 + a2z2 for some a1, a2 ∈ F, so we get

[xi, y + a1xi−1 − a2xi+1] = [xi, y] + a1[xi, xi−1]− a2[xi, xi+1]

= (a1z1 + a2z2) + a1(−z1)− a2z2
= 0,

so c := y + a1xi−1 − a2xi+1 ∈ ker adxi . As a result, we have

y = c− a1xi−1 + a2xi+1 ∈ ker adxi + span{xi−1, xi+1}.

Hence L = ker adxi+span{xi−1, xi+1}. Since nullity adxi = dimL−rank adxi = dimL−2,

by counting dimension, we also know that ker adxi ∩ span{xi−1, xi+1} = {0}. Hence

L = ker adxi ⊕ span{xi−1, xi+1}.

3. First, we observe xn ∈ Mn. Without loss of generality, we assume that n is even so

that [xn−1, xn] = z1. Suppose that b(xn) = 1. By rank-nullity theorem, nullity adxn =
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dimL−rank adxn = dimL−1. Since xn−1 /∈ ker adxn , we have L = ker adxn⊕span{xn−1}.
Next, we assume that b(xn) = 2. Then there exists x ∈ L such that [xn, x] = a1z1 + a2z2

where a1, a2 ∈ F and a2 6= 0. Next, we will claim that L = ker adxn + span{xn−1, x}. Let

y ∈ L. If y ∈ ker adxn , then we get y = y + 0 ∈ ker adxn + span{xn−1, x}. Suppose that

y /∈ ker adxn . Then [xn, y] = b1z1 + b2z2 for some b1, b2 ∈ F. Therefore we have

[xn, y + (b1 −
b2
a2
a1)xn−1 −

b2
a2
x] = [xn, y] + (b1 −

b2
a2
a1)[xn, xn−1]−

b2
a2

[xn, x]

= (b1z1 + b2z2) + (b1 −
b2
a2
a1)(−z1)−

b2
a2

(a1z1 + a2z2)

= (b1 − b1 +
b2
a2
a1 −

b2
a2
a1)z1 + (b2 −

b2
a2
a2)z2

= 0.

Thus c := y + (b1 − b2
a2
a1)xn−1 − b2

a2
x ∈ ker adxn , so we have

y = c− (b1 −
b2
a2
a1)xn−1 +

b2
a2
x ∈ ker adxn + span{xn−1, x}.

Hence L = ker adxn + span{xn−1, x}. Since nullity adxn = dimL− rank adxn = dimL− 2,

ker adxn ∩ span{xn−1, x} = {0} by counting dimension. Consequently, L = ker adxn ⊕
span{xn−1, x}. Additionally, since [xn, x] = a1z1 + a2z2 /∈ span{z1} = span{[xn−1, xn]},
we get Z(L) = span{[xn−1, xn], [xn, x]}.

From now on, we are going to identify the structure of component of dimension 4 by con-

structing a standard subspace inside it as the following 2 theorems.

Theorem 5.4.21. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that

Z(L) = [L,L] are 2-dimensional. Let M be an irreducible component of L of dimension 4.

Suppose that M3 ⊆M . Then b(x3) = 2.

Proof. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that Z(L) = [L,L]

are 2-dimensional. Let M be an irreducible component of L of dimension 4. Suppose that

M3 ⊆ M and b(x3) = 1. Then we have M3 = span{x1, x2, x3} such that b(x1) = 1 = b(x3),

b(x2) = 2 and [x1, x2] = z1, [x2, x3] = z2, [x1, x3] = 0 where Z(L) = span{z1, z2}. Therefore

im adx1 = span{z1}, im adx2 = Z(L) and im adx3 = span{z2}.
Next, we will show that M3 is a component of L. Let x ∈ L. If x ∈ CL(M3), then x = 0+x ∈

M3 +CL(M3). Assume that x /∈ CL(M3). Then we have [x1, x] = az1, [x2, x] = b1z1 + b2z3 and
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[x3, x] = cz2 where a, b1, b2, c ∈ F. Let y = x+ b1x1 − ax2 − b2x3. Therefore we get

[x1, y] = [x1, x+ b1x1 − ax2 − b2x3]

= [x1, x] + b1[x1, x1]− a[x1, x2]− b2[x1, x3]

= az1 − az1
= 0,

[x2, y] = [x2, x+ b1x1 − ax2 − b2x3]

= [x2, x] + b1[x2, x1]− a[x2, x2]− b2[x2, x3]

= (b1z1 + b2z2) + b1(−z1)− b2z2
= 0,

[x3, y] = [x3, x+ b1x1 − ax2 − b2x3]

= [x3, x] + b1[x3, x1]− a[x3, x2]− b2[x3, x3]

= cz2 − a(−z2)

= (c+ a)z2

=: c′z2

where c′ = c + a. If c′ = 0, then y ∈ CL(M3), so we have x = (−b1x1 + ax2 + b2x3) + y ∈
M3+CL(M3). Suppose that c′ 6= 0. Since M is a component of L, we write y ∈ L = M⊕CL(M)

as y = yM + cM where yM ∈M and cM ∈ CL(M). Next, we will claim that yM /∈M3. Suppose

that yM ∈M3. Then yM = α1x1 + α2x2 + α3x3 where αi ∈ F for i = 1, 2, 3. Therefore we have

x = y − b1x1 + ax2 + b2x3

= (yM + cM )− b1x1 + ax2 + b2x3

= (α1x1 + α2x2 + α3x3 + cM )− b1x1 + ax2 + b2x3

= (α1 − b1)x1 + (α2 + a)x2 + (α3 + b2)x3 + cM .

As a result, we obtain

az1 = [x1, x]

= [x1, (α1 − b1)x1 + (α2 + a)x2 + (α3 + b2)x3 + cM ]

= (α1 − b1)[x1, x1] + (α2 + a)[x1, x2] + (α3 + b2)[x1, x3] + [x1, cM ]

= (α2 + a)z1,

cz2 = [x3, x]

= [x3, (α1 − b1)x1 + (α2 + a)x2 + (α3 + b2)x3 + cM ]
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= (α1 − b1)[x3, x1] + (α2 + a)[x3, x2] + (α3 + b2)[x3, x3] + [x3, cM ]

= (α2 + a)(−z2)

= −(α2 + a)z2.

Hence a = α2 + a and c = −(α2 + a), so α2 = 0 and c = −a. Thus c′ = c + a = 0 which is a

contradiction. Consequently, yM /∈M3, so yM ∈M −M3. Let y′M = yM
c′ . Then y′M ∈M −M3,

so M = span{x1, x2, x3, y′M}. Moreover, we observe that

[x1, yM ] = [x1, yM + cM ] = [x1, y] = 0,

[x2, yM ] = [x2, yM + cM ] = [x2, y] = 0,

[x3, yM ] = [x3, yM + cM ] = [x3, y] = c′z2.

Hence we have [x1, y
′
M ] = 0 = [x2, y

′
M ] and [x3, y

′
M ] = z2. Observe that

[x1, x2 + y′M ] = [x1, x2] + [x1, y
′
M ] = z1,

[x2, x2 + y′M ] = [x2, x2] + [x2, y
′
M ] = 0,

[x3, x2 + y′M ] = [x3, x2] + [x3, y
′
M ] = −z2 + z2 = 0,

[y′M , x2 + y′M ] = [y′M , x2] + [y′M , y
′
M ] = 0.

Since L = M ⊕ CL(M) = span{x1, x2, x3, y′M} ⊕ CL(M), we get im adx2+y′M = span{z1}, so

b(x2 + y′M ) = 1. Additionally, we have

ker adx1 = span{x1, x3, y′M} ⊕ CL(M),

ker adx2+y′M = span{x2, x3, y′M} ⊕ CL(M).

We consider M = span{x1, x2 + y′M , x3, y
′
M} and let M ′ = span{x1, x2 + y′M} ⊆M . Then

CL(M ′) = ker adx1 ∩ ker adx2+y′M = span{x3, y′M} ⊕ CL(M).

Consequently, we have

L = M ⊕ CL(M)

= span{x1, x2 + y′M , x3, y
′
M} ⊕ CL(M)

= span{x1, x2 + y′M} ⊕ span{x3, y′M} ⊕ CL(M)

= M ′ ⊕ CL(M ′),

so M ′ ⊆M is a component of L which contradicts irreducibility of M . Hence x ∈M3+CL(M3).
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Since x ∈ L is arbitrary, L = M3 +CL(M3). By Corollary 5.4.19, we know that M3∩CL(M3) =

{0}, so L = M3 ⊕ CL(M3). Thus M3 ⊆ M is a component of L which is also a contradiction.

Hence b(x3) = 2.

Theorem 5.4.22. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that

Z(L) = [L,L] are 2-dimensional. Let M be an irreducible component of L of dimension 4.

Suppose that M contains an element of breadth 1. Then M = span{x1, x2, x3, x4} such that

[x1, x2] = z1, [x1, x3] = z2 and [x3, x4] = z1 where Z(L) = span{z1, z2}.

Proof. Let L be a finite dimensional nilpotent Lie algebra of breadth 2 such that Z(L) = [L,L]

are 2-dimensional. Let M be an irreducible component of L of dimension 4. Suppose that

M contains an element of breadth 1, says x ∈ M such that b(x) = 1. Let u1 = x and

M1 = span{u1} ⊆ M . By Theorem 5.4.13, there exists u2 ∈ M −M1 such that u2 /∈ CL(M1).

Thus [u1, u2] = z1 ∈ Z(L)− {0}.
Next, we let M2 = span{u1, u2} ⊆ M . We will show that b(u2) = 2. Suppose that

b(u2) = 1. By Theorem 5.4.20, we know that L = span{u1} ⊕ ker adu2 = span{u2} ⊕ ker adu1 .

Since u2 ∈ ker adu2 , L = ker adu1 + ker adu2 , so we have

dimL = dim(ker adu1 + ker adu2)

= dim ker adu1 + dim ker adu2 − dim(ker adu1 ∩ ker adu2)

= nullity adu1 + nullity adu2 − dimCL(M2)

= (dimL− rank adu1) + (dimL− rank adu2)− dimCL(M2)

= (dimL− b(u1)) + (dimL− b(u2))− dimCL(M2)

= (dimL− 1) + (dimL− 1)− dimCL(M2)

= 2 dimL− 2− dimCL(M2).

Thus dimCL(M2) = dimL−2. By Corollary 5.4.19, we get M2∩CL(M2) = {0}. Since dimM2

= 2 we have L = M2 ⊕ CL(M2), so M2 ⊆ M is a component of L which is a contradiction.

Therefore b(u2) = 2.

Because b(u2) = 2, there exists u3 ∈ M such that [u2, u3] = z2 where Z(L) = span{z1, z2}.
Note that u3 /∈ M2 because [u2,M2] = span{z1}. Since b(u1) = b(x) = 1 and im adu1 =

span{z1}, we suppose that [u1, u3] = az1 where a ∈ F. Let v1 = u1, v2 = u2 and v3 = u3 − au2.
Then we have

[v1, v2] = [u1, u2] = z1,

[v2, v3] = [u2, u3 − au2] = [u2, u3]− a[u2, u2] = z2,

[v1, v3] = [u1, u3 − au2] = [u1, u3]− a[u1, u2] = az1 − az1 = 0.
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Let M3 = span{v1, v2, v3}. Then b(v1) = b(x) = 1, b(v2) = 2 and b(v3) ≥ 1. By Theorem

5.4.21, we have b(v3) = 2, so there exists v4 ∈M such that [v3, v4] = c1z1+c2z2 where c1, c2 ∈ F
and c1 6= 0. Note that v4 /∈ M3 because [v3,M3] = span{z2}. Thus M = span{v1, v2, v3, v4}.
Since b(v1) = 1 and b(v2) = 2, we assume that [v1, v4] = a1z1 and [v2, v4] = b1z1 + b2z2 where

a1, b1, b2 ∈ F. Let y = v4 + b1v1 − a1v2 − b2v3. Then M = span{v1, v2, v3, y} such that

[v1, y] = [v1, v4 + b1v1 − a1v2 − b2v3]

= [v1, v4] + b1[v1, v1]− a1[v1, v2]− b2[v1, v3]

= a1z1 − a1z1
= 0,

[v2, y] = [v2, v4 + b1v1 − a1v2 − b2v3]

= [v2, v4] + b1[v2, v1]− a1[v2, v2]− b2[v2, v3]

= (b1z1 + b2z2) + b1(−z1)− b2z2
= 0,

[v3, y] = [v3, v4 + b1v1 − a1v2 − b2v3]

= [v3, v4] + b1[v3, v1]− a1[v3, v2]− b2[v3, v3]

= (c1z1 + c2z2)− a1(−z2)

= c1z1 + (c2 + a1)z2.

Let x1 = v1, x2 = v2, x3 = v3 and x4 = y
c1

. Hence M = span{x1, x2, x3, x4} such that

[x1, x2] = [v1, v2] = z1,

[x2, x3] = [v2, v3] = z2,

[x3, x4] = [v3,
y

c1
] =

1

c1
[v3, y] =

1

c1
(c1z1 + (c2 + a1)z2) = z1 + (

c2 + a1
c1

)z2 =: z1 + αz2,

[x1, x3] = [v1, v3] = 0,

[x1, x4] = [v1,
y

c1
] =

1

c1
[v1, y] = 0,

[x2, x4] = [v2,
y

c1
] =

1

c1
[v2, y] = 0.

where α := c2+a1
c1
∈ F and Z(L) = span{z1, z2}. To show that α = 0, we suppose that α 6= 0.

Let s1 = x1, s2 = αx2 + x4, s3 = αx3 − x1 and s4 = x4. Then we have M = span{s1, s2, s3, s4}
such that

[s1, s2] = [x1, αx2 + x4] = α[x1, x2] + [x1, x4] = αz1,
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[s3, s4] = [αx3 − x1, x4] = α[x3, x4]− [x1, x4] = α(z1 + αz2),

[s1, s3] = [x1, αx3 − x1] = α[x1, x3]− [x1, x1] = 0,

[s1, s4] = [x1, x4] = 0,

[s2, s3] = [αx2 + x4, αx3 − x1]

= α2[x2, x3]− α[x2, x1] + α[x4, x3]− [x4, x1]

= α2z2 + αz1 − α(z1 + αz2)

= 0,

[s2, s4] = [αx2 + x4, x4] = α[x2, x4] + [x4, x4] = 0

where Z(L) = span{z1, z2} = span{αz1, α(z1 + αz2)}. Thus M = M ′ ⊕ M ′′ where M ′ =

span{s1, s2} and M ′′ = span{s3, s4} are components of L. Hence M is reducible which is a

contradiction. Consequently, we obtain α = 0, so we get M = span{x1, x2, x3, x4} such that

[x1, x2] = z1, [x1, x3] = z2 and [x3, x4] = z1 where Z(L) = span{z1, z2}.

At this point, we can classify nilpotent Lie algebra L of breadth 2 such that Z(L) = [L,L]

and dimL = 6 under the assumption that L has an element of breadth 1 as we show in the

following corollary.

Corollary 5.4.23. Let L be a 6-dimensional nilpotent Lie algebra of breadth 2 such that

Z(L) = [L,L] are 2-dimensional. Suppose that L contains an element of breadth 1. Then

L = span{x1, x2, x3, x4, z1, z2} such that

1. [x1, x2] = z1, [x2, x3] = z2 and [x3, x4] = z1

or

2. [x1, x2] = z1 and [x3, x4] = z2

where Z(L) = span{z1, z2}.

Proof. Let L be a 6-dimensional nilpotent Lie algebra of breadth 2 such that Z(L) = [L,L] are

2-dimensional. Suppose that L contains an element of breadth 1. Since Z(L) is 2-dimensional,

we have dimL′ = dimL − dimZ(L) = 6 − 2 = 4. Then we have L′ is a component of L of

dimension 4. Suppose that L′ is irreducible. By Theorem 5.4.22, L = span{x1, x2, x3, x4, z1, z2}
such that [x1, x2] = z1, [x1, x3] = z2 and [x3, x4] = z1 where Z(L) = span{z1, z2}.

On the other hand, we assume that L′ is reducible. Then L′ must be composed of 2

irreducible components of dimension 2. Since Z(L) = [L,L] are 2-dimensional, we obtain

L′ = span{x1, x2} ⊕ span{x3, x4} such that [x1, x2] = z1 and [x3, x4] = z2 where Z(L) =
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[L,L] = span{z1, z2}. We also note that

b(αx1 + βx3) = b(αx1 + βx4) = b(αx2 + βx3) = b(αx2 + βx4) = 2

for any α, β ∈ F. In this case, it is not isomorphic to previous case because of the component

property. Hence L = span{x1, x2, x3, x4, z1, z2} such that [x1, x2] = z1 and [x3, x4] = z2 where

Z(L) = [L,L] = span{z1, z2}.

In the next part, we prove that 6-dimensional nilpotent Lie algebra of breadth 2 such that

Z(L) = [L,L] are 2-dimensional contains an element of breadth 1 if the underlying field is

algebraically closed. Thus we get a complete classification if we consider Lie algebras over

algebraically closed field.

Lemma 5.4.24. Let L be a 6-dimensional nilpotent Lie algebra of breadth 2 such that Z(L) =

[L,L] are 2-dimensional. Suppose that for any x ∈ L−Z(L), b(x) = 2. Then L = span{x1, x2, x3,
x4, z1, z2} such that [x1, x2] = [x3, x4] = z1, [x2, x3] = z2 and [x1, x4] = αz2 where α 6= 0.

Proof. Let L be a 6-dimensional nilpotent Lie algebra of breadth 2 such that Z(L) = [L,L] are

2-dimensional. Since Z(L) is 2-dimensional, we have dimL′ = dimL − dimZ(L) = 6 − 2 = 4.

Then we have L′ is a component of L of dimension 4. Suppose that for any x ∈ L − Z(L),

b(x) = 2. Note that L′ ⊆ L − Z(L), so b(x) = 2 for any x ∈ L′ Let u2 ∈ L′. Then b(u2) = 2,

so there exist u1, u3 ∈ L′ such that [u1, u2] = w1, [u2, u3] = w2 and [u1, u3] = a1w1 + a2w2

where a1, a2 ∈ F and Z(L) = span{w1, w2}. Let v1 = u1 − a2u2, v2 = u2, v3 = u3 − a1u2 and

M = span{v1, v2, v3} ⊆ L′. Then we have

[v1, v2] = [u1 − a2u2, u2] = [u1, u2]− a2[u2, u2] = w1,

[v2, v3] = [u2, u3 − a1u2] = [u2, u3]− a1[u2, u2] = w2,

[v1, v3] = [u1 − a2u2, u3 − a1u2]

= [u1, u3]− a1[u1, u2]− a2[u2, u3] + a2a1[u2, u2]

= (a1w1 + a2w2)− a1w1 − a2w2

= 0.

Since L′ is 4-dimensional, there exists v4 ∈ L′. Then we write

[v1, v4] = α1w1 + α2w2,

[v2, v4] = β1w1 + β2w2,

[v3, v4] = γ1w1 + γ2w2
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where αi, βi, γi ∈ F for i = 1, 2. Since b(v1) = b(v3) = 2, we have α2, γ1 6= 0. Without loss of

generality, we assume that γ1 = 1. Then we have L′ = span{v1, v2, v3, v4} such that

[v1, v4] = α1w1 + α2w2,

[v2, v4] = β1w1 + β2w2,

[v3, v4] = w1 + γ2w2

Let y1 = v1, y2 = v2, y3 = v3 and y4 = v4 + β1v1 + γ2v2 − β2v3. Then we have L′ =

span{y1, y2, y3, y4} such that

[y1, y2] = [v1, v2] = w1,

[y1, y3] = [v1, v3] = 0,

[y2, y3] = [v2, v3] = w2,

[y1, y4] = [v1, v4 + β1v1 + γ2v2 − β2v3]

= [v1, v4] + β1[v1, v1] + γ2[v1, v2]− β2[v1, v3]

= (α1w1 + α2w2) + γ2w1

= (α1 + γ2)w1 + α2w2

=: δw1 + α2w2,

[y2, y4] = [v2, v4 + β1v1 + γ2v2 − β2v3]

= [v2, v4] + β1[v2, v1] + γ2[v2, v2]− β2[v2, v3]

= (β1w1 + β2w2) + β1(−w1)− β2w2

= 0,

[y3, y4] = [v3, v4 + β1v1 + γ2v2 − β2v3]

= [v3, v4] + β1[v3, v1] + γ2[v3, v2]− β2[v3, v3]

= (w1 + γ2w2) + γ2(−w2)

= w1

where δ = α1 + γ2. Next, we let x1 = y1 − δ
2y3, x2 = y2, x3 = y3, x4 = y4 − δ

2y2, z1 =

w1 + δ
2w2, z2 = w2 and α = α2 − δ2

4 . Then L = span{x1, x2, x3, x4, z1, z2} such that

[x1, x2] = [y1 −
δ

2
y3, y2] = [y1, y2]−

δ

2
[y3, y2] = w1 +

δ

2
w2 = z1,

[x1, x3] = [y1 −
δ

2
y3, y3] = [y1, y3]−

δ

2
[y3, y3] = 0,

[x2, x3] = [y2, y3] = w2 = z2,
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[x1, x4] = [y1 −
δ

2
y3, y4 −

δ

2
y2]

= [y1, y4]−
δ

2
[y1, y2]−

δ

2
[y3, y4] +

δ2

4
[y3, y2]

= (δw1 + α2w2)−
δ

2
w1 −

δ

2
w1 +

δ2

4
(−w2)

= (α2 −
δ2

4
)w2

= αz2,

[x2, x4] = [y2, y4 −
δ

2
y2] = [y2, y4]−

δ

2
[y2, y2] = 0,

[x3, x4] = [y3, y4 −
δ

2
y2] = [y3, y4]−

δ

2
[y3, y2] = w1 −

δ

2
(−w2) = w1 +

δ

2
w2 = z1.

Moreover, if α = 0, then we have b(x1) = b(x4) = 1 which is a contradiction. Thus α 6= 0. Hence

L = span{x1, x2, x3, x4, z1, z2} such that [x1, x2] = [x3, x4] = z1, [x2, x3] = z2 and [x1, x4] = αz2

where α 6= 0.

Theorem 5.4.25. Let L be a 6-dimensional nilpotent Lie algebra of breadth 2 over an alge-

braically closed field such that Z(L) = [L,L] are 2-dimensional. Then L contains an element

of breadth 1.

Proof. Let L be a 6-dimensional nilpotent Lie algebra of breadth 2 over an algebraically

closed field such that Z(L) = [L,L] are 2-dimensional. Suppose that L does not contain

an element of breadth 1. Then b(x) = 2 for any x ∈ L − Z(L). By Lemma 5.4.24, L =

span{x1, x2, x3, x4, z1, z2} such that [x1, x2] = [x3, x4] = z1, [x2, x3] = z2 and [x1, x4] = αz2

where α 6= 0. Since we consider L over algebraically closed field,
√
−α exists. Consider

y =
√
−αx2 + x4. Then we have

[y, x1] = [
√
−αx2 + x4, x1] =

√
−α[x2, x1] + [x4, x1] =

√
−α(−z1)− αz2 = −

√
−α(z1 −

√
−αz2),

[y, x2] = [
√
−αx2 + x4, x2] =

√
−α[x2, x2] + [x4, x2] = 0,

[y, x3] = [
√
−αx2 + x4, x3] =

√
−α[x2, x3] + [x4, x3] =

√
−α(z2)− z1 = −(z1 −

√
−αz2),

[y, x4] = [
√
−αx2 + x4, x4] =

√
−α[x2, x4] + [x4, x4] = 0.

Therefore im ady = span{z1 −
√
−αz2}, so b(y) = 1 which is a contradiction. Hence L contains

an element of breadth 1.

Corollary 5.4.26. Let L be a 6-dimensional nilpotent Lie algebra of breadth 2 over an alge-

braically closed field such that Z(L) = [L,L] are 2-dimensional. Then L = span{x1, x2, x3, x4, z1,
z2} such that
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1. [x1, x2] = z1, [x2, x3] = z2 and [x3, x4] = z1

or

2. [x1, x2] = z1 and [x3, x4] = z2

where α 6= 0 and Z(L) = span{z1, z2}.

Note that for any odd dimensional nilpotent Lie algebra L of breadth 2 such that Z(L) =

[L,L] is 2-dimensional, we do not need algebraically closed field to find an element of breadth 1.

Proposition 5.4.27. Let L be an odd dimensional nilpotent Lie algebra of breadth 2 such that

Z(L) = [L,L] is 2-dimensional. Then there exists x ∈ L such that b(x) = 1 and im adx =

span{z} for any z ∈ Z(L).

Proof. Let L be an odd dimensional nilpotent Lie algebra of breadth 2 such that Z(L) = [L,L]

is 2-dimensional. Then dimL = n ∈ Z>0 which is odd. Let z ∈ L and I = span{z}. Then

I is an ideal of L since z ∈ Z(L). Then we observe that [L/I, L/I] = [L,L]/I, so we have

dim[L/I, L/I] = dim[L,L]− dim I = 2− 1 = 1. By Theorem 3.2.1, we have b(L/I) = 1. Note

that dimL/I = dimL− dim I = n− 1, so by Theorem 3.2.6, there exists a basis

S = {v1 + I, v−1 + I, v2 + I, v−2 + I, . . . , vr + I, v−r + I, z′ + I, w1 + I . . . , w(n−1)−2r−1 + I}

for L/I such that

[vi + I, vj + I] =


z′ + I if i = −j > 0,

− z′ + I if i = −j < 0,

I otherwise

for every i, j ∈ {±1,±2, . . . ,±r} and z′+I, w1+I . . . , w(n−1)−2r−1+I ∈ Z(L/I) where r ∈ Z>0.

Observe that (n − 1) − 2r − 1 = n − 2(r + 1) > 0 because n is odd. Thus there exists

w1 + I ∈ Z(L/I), so im adw1+I = span{I}. Therefore for any y ∈ L, we have [w1, y] + I =

[w1 + I, y + I] = I, so [w1, y] ∈ I. Since y ∈ L is arbitrary, im adw1 ⊆ I = span{z}. Next, we

will claim that w1 /∈ Z(L). Suppost that w1 ∈ Z(L). Then we obtain

w1 + I ∈ Z(L)/I = [L,L]/I = [L/I, L/I] = span{z′ + I}.

Thus w1 + I = az′ + I for some a ∈ F, so {w1 + I, z′ + I} is not linearly independent which is

a contradiction. Hence w1 /∈ Z(L). Consequently, b(w1) = 1 and im adw1 = I = span{z}.
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