
ABSTRACT

JEERUPHAN, THANAWIT. Random Walk with Jump Dependent Cookies on Z. (Under the
direction of Min Kang.)

Consider a random walk on Z in a cookie environment. At each site, the process will eat

a cookie placed at each site which will act like a stimulator for the process to have a bias

toward either left or right jump. Normally, the process is symmetric simple random walk with

the equal probability 1/2 to make left or right jump. With the presence of the cookies, the

process will jump to the right with probability p and left with probability 1 − p, where p is

not necessarily 1/2. Pinsky came up with the process such that the jump transition does not

depend on the external parameter such as number of cookies but instead the first time the

process going leftwards. We generalizes the model to be that the second left jump will change

the environment. We have the result when the second left jump changes the environment in

deterministic environment. We also know about the range or how likely the walker will grow

at the maximum or minimum in Pinsky’s environment. And in the special case, we have a

stationary distribution of the growth of the range.
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Chapter 1

Various Models of Random Walks

Random walk is a mathematical formalization of a path that consists of succession of random

steps. Random walks have been used in many fields such as Physics, Economics, etc. Random

walk can be considered on graph, line, plane or higher dimension. Time-wise, random walk can

be discrete-time or continuous-time. Most of the time, random walks are assumed to be Markov

chain or Markov process. We will introduce several models which are related to this work.

Random walk has a rich structure and been widely studied. Some models have very well

known results for low dimension but sometimes the method they used is breakdown when they

try to extend to a higher dimension. Some models give you an interesting properties which have

not been seen in a simple setting. The model that inspired our work is the Pinsky’s one and we

also try to look into some other models to apply the idea to Pinsky’s model.

1.1 Stochastic Process

In real world’s problem, we usually encounter some uncertainties in the development of the

processes or experiments such as stock markets or the signal fluctuation of blood pressure and

temperature. Suppose that we have known the initial condition, the result may be different each

time we have the experiment unlike the ordinary differential equations. So we have to use the

stochastic process to study these kind of experiments or problems. Let us review some basic

1



definitions.

Stochastic process or random process is a collection of random variables which represent the

evolution of some random values over time. In discrete-time, a stochastic process is a sequence

of random variables together with a time series associated with these random variables.

Definition 1.1 (Stochastic Process). Let (Ω,F , P ) be a probability space and (S,S) be a

measurable space, a stochastic process X : Ω× T → S is a collection

{Xt | t ∈ T} ,

where T is a totally ordered set (or time). The space S is then called the state space .

If T , which is usually represent time, is equal to N, we call discrete-time stochastic process

and when T = [0,∞) we call continuous-time stochastic process.

Let us introduce a filtration. A filtration provides you information about what you have at

that specific time. A filtration is an increasing sequence of σ−algebras on a measurable space.

We know that sigma-algebra is a collection of subsets such that being known how to measure

them. Next, we will give the formal definition of filtration.

Definition 1.2 (Filtration). Given a probability space (Ω,F , P ), a filtration is a weakly

increasing collection of sigma algebras on Ω, {Ft, t ∈ T}, indexed by some totally ordered set

T , and bounded above by F . For s, t ∈ T with s < t,

Fs ⊆ Ft ⊆ F .

A stochastic process X on the same time set T is said to be adapted to the filtration if, for

every t ∈ T,Xt is Ft-measurable.

In other words, adapted process is a process that cannot see into the future or Xn is known

at time n for every realization and for every n. The natural filtration is a filtration generated

by that process and records the past history of the process at each time. Therefore; a stochastic
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process is always adapted to its natural filtration. A natural filtration is a simplest filtration

available for studying the process in a sense that all the information concerning the process,

and only that information, is available in the natural filtration.

Definition 1.3 (Natural Filtration). Given a stochastic process X = {Xt}t∈T , the natural

filtration for this process is the filtration where Ft is generated by all values of Xs up to time

s = t, i.e.

Ft = σ
({
X−1s (A)|s ≤ t, A ∈ S

})
.

Next, we will present the definition of Markov property. A Markov property is referred to a

memoryless property of a stochastic process. A stochastic process has the Markov property if

given the present, the future does not depend on the past. In reality, history always affects or

shapes the current and future of our life. However, a Markov property gives us a good start of

how to study the random process by eliminating the need of looking into the past.

Definition 1.4 (Markov Property). Let (Ω,F , P ) be a probability space with filtration

{Ft, t ∈ T} , for some totally ordered index set T , and let (S,S) be a measurable space. An

S-valued stochastic process X = {Xt}t∈T adapted to the filtration is said to have the Markov

property with respect to the {Ft} if, for each A ∈ S and each s, t ∈ T with s < t,

P (Xt ∈ A|Fs) = P (Xt ∈ A|Xs) .

A Markov process is a stochastic process which satisfies the Markov property with respect

to its natural filtration.

We will give a definition of a hitting time or first hit time which is important for studying

stochastic process. A hitting time is the first time at which a given process hits a given subset

of the state space.

Definition 1.5 (Hitting Time). Given (Ω,F , P ) be a probability space and a measurable state

space S, let X : Ω× T → S be the stochastic process, and let A be a measurable subset of the
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state space S. Then the first hit time τA : Ω→ T is a random variable defined by

τA(ω) = inf {t ∈ T |Xt(ω) ∈ A} .

And the kth hitting time by

τ
(k)
A (ω) = inf

{
t > τ

(k−1)
A |Xt(ω) ∈ A

}
,

where τ
(1)
A = τA

If the set A is a singleton, we often write τa in stead of τ{a}. Now we are ready to present

the idea of transience and recurrence which is the main aspect of this dissertation. A recurrent

state of a process is a state such that the process will visit that state infinitely many time. A

transient state is a state such that the process will visit finitely many time.

Definition 1.6 (Transience/Recurrence). Let X : Ω× T → S be the stochastic process. State

i ∈ S is said to be transient if

P (Xn = i i.o.|X0 = i) = 0.

And called recurrent if not transient or

P (Xn = i i.o.|X0 = i) = 1.

The process is said to be transient (recurrent) if every site in state space is transient (recurrent).

Because of the tail event, the probability has to be either 0 or 1 by Kolmogorov’s zero-

one law. There is another definition of transient/recurrent as follows. Roughly speaking, the

transient state means that starting from state i, there is a non-zero probability that it will never

return to state i in finite time.
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Definition 1.7 (Transience/Recurrence). Let X : Ω× T → S be the stochastic process. State

i ∈ S is said to be transient if

P (τi <∞|X0 = i) < 1.

And called recurrent if not transient or

P (τi <∞|X0 = i) = 1.

The process is said to be transient (recurrent) if every site in state space is transient (recurrent).

Normally, these two definitions are equivalent whenever the process has Markov property.

Definition 1.6 agrees with our common sense. And it is easy to see that definition 1.6 implies

definition 1.7.

1.2 Lattice Random Walk

Random walks play an important roles in various fields such as economics by using as a “random

walk hypothesis” to model the shares prices. Random Walks have been used as a simplified

models of physical Brownian motion and diffusion such as a random movement of molecules in

fluid. A popular and elementary example of random walk is a lattice random walk. At each step,

the walker jumps to another location on the lattice according to some probability distribution.

But the interesting class of random walk which is related to our work is the nearest neighbor

random walk. When the walker want to move, the only possible sites he can visit are the sites

closest to the current position. And each probability of jumping to those sites can be different.

The nearest neighbor random walk can be rigorously defined using the following definition.

Definition 1.8. Given a discrete-time stochastic process {Xn}∞n=0 with Markov property on

state space Zd, let {ei}di=1 be the unit vector in i−direction, a nearest neighbor random walk

or simple random walk on Zd is a process equipped with transition probability satisfying
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1. Either Xn+1 −Xn = ei or Xn+1 −Xn = −ei for some i.

2.
∑d

i=1 (P (Xn+1 = Xn + ei) + P (Xn+1 = Xn − ei)) = 1.

The first line tell you that each increment will be in the basis directions only. Whenever the

probability of jumping in each direction are equal, we will call a symmetric simple random

walk.

Definition 1.9. A simple symmetric random walk on Zd is the simple random walk with

the transition probability

P (Xn+1 = Xn ± ei) =
1

2d
.

We will only focus ourselves on one-dimensional case. In one-dimensional walk, we will have

2 distinct directions, backward-forward or left-right. So the transition probability will describe

that 2 possibilities. And we will often let p be the probability of jumping to the right. There are

various aspects to study about random walk. We will only focus on the transient and recurrent

property. The following theorem will give the criterion whether the process is recurrent or

transient.

Theorem 1.10. Let {Xn}∞n=0 be a simple random walk with transition probability P (Xn+1 =

x+ 1 | Xn = x) = p and P (Xn+1 = x− 1 | Xn = x) = 1− p = q.

(i) If p 6= q then Xn is transient ; moreover, if q < p then limn→∞Xn = +∞, while if q > p

then limn→∞Xn = −∞. a.s.

(ii) If p = q then Xn is recurrent ; moreover,

lim
n→∞

Xn = +∞, lim
n→∞

Xn = −∞. a.s.

Sketch of proof of theorem 1.10 By the strong law of large number, we know that

lim
n→∞

Xn

n
= EZ1 = p− q P-a.s.
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Thus it is easy to see that the process will move with the asymptotic average velocity close

to p − q. When p is not equal to q, the random walk, with probability 1, will eventually drift

to infinity. limn→∞Xn = +∞ if p > q and limn→∞Xn = +∞ if p < q. This means that the

process is transient. Whenever p = q , the process is recurrent. One can look for more results

in [10, Chapter 7, p.123].

1.3 Random Walk in Random Environment, RWRE

From purely mathematical point of view, the most natural question arises to ourselves after

knowing the simple random walk: Is it possible, at each jump, to have different probability distri-

bution? In other areas, random walk provide a basic model to describe the transport processes.

And some of the case, the medium where the system evolves may have some defects, impurities

which we can call them as irregularity. So one may think about treating those irregularity as a

random environment.

In this section we will give the definition and transience/recurrence result in Random walk

in random environment(RWRE). RWRE is a process in which related to randomness in not

only the transition mechanism or the way the walker jumps but also the environment which

will affect the randomness of the walk. For example, we can think of the movement of the water

molecules in ice water. In normal water the molecules will move like a Brownian motion. When

the ice is presented, we have to take into account the change of the temperature and when the

molecules of water hit the ice. One can look at lecture note by Zeituni [15] for more properties

and results of RWRE. Basically, the definition of a RWRE involves two components: first, the

environment, which is fixed throughout the time while the process evolved. Second, the random

walk whose transition probabilities depend on the given but fixed environment.

In order to define the random walk, we have to introduce the environment first and then we

can talk about the random walk in that specific environment. Let (Ω,F ,P) be the probability

space of the environment. Let ω ∈ Ω, a random walk in the environment ω is the Markov chain

{Xn}∞n=0 on Zd, using the probability space (Ω′,F ′, Pωx ), with the transition probability similar
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to the one in definition 1.8 but with Pωx is stead of regular P . Pωx means the probability measure

under the environment ω conditioned on the staring point x.

Pωx (·) can be referred as the quenched law of the random walk {Xn}∞n=0 . We define the

semi-direct product Px = P×Pωx on Ω×Ω′ by Px[·] := E [Pωx [·]] , which will be called annealed

measure. So we can understand that the quenched law is one realization of the environment

which is fixed. The annealed law is the average over all possible environments. It is easy to see

that this random walk is not Markovian. We will introduce the simplest model in RWRE and

compare it to the simple random walk. Now we consider the simplest RWRE.

Example 1.1 (Simple RWRE in 1-d). Let {Xn}∞n=0 be a RWRE in one dimensional Z with

the transition probability

Pωx (Xn+1 = Xn + 1|Xn = y) = pωy

Pωx (Xn+1 = Xn − 1|Xn = y) = qωy = 1− pωy .

where py is i.i.d. random variable on (Ω,F ,P)

We can see that when you want to make a jump, there are 2 parameters which you have to

consider, the current position and in which specific environment you are. In this simple RWRE,

we had a theorem about the transient and recurrent dated back in 1975 by Solomon [14].

Theorem 1.11 (Transient/Recurrent in RWRE). Let {Xn}∞n=0 with the transition probability

as in example 1.1. Set ρy :=
qy
py
, y ∈ Z and η := E ln ρ0.

(i) If η 6= 0 then Xn is transient (P0 − a.s.); moreover, if η < 0 then limn→∞Xn = +∞,

while if η > 0 then limn→∞Xn = −∞(P0 − a.s.).

(ii) If η = 0 then Xn is recurrent (P0 − a.s.); moreover,

lim
n→∞

Xn = +∞, lim
n→∞

Xn = −∞,P0 − a.s.
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We can think about the η as a ratio of the probability of jumping to the right vs jumping

to the left. If η < 0, then balance is shifted to the right making the process transient and

eventually go to infinity. Similarly, when η > 0, the process is also transient but will eventually

go to the left instead. Whenever η = 0, the process is in a balanced situation meaning that the

process will be recurrent. We can also relate this parameter back to the simple random walk in

deterministic environment. In deterministic environment, η = ln ρ0 = ln(q − p) which we also

have similar result depend on the equality of p and q. Next we will discuss the speed of RWRE.

Theorem 1.12 (Asymptotic Velocity in RWRE). The limit v := limt→∞
Xt
t exists (P0 − a.s.)

and is given by

v =



1−Eρ0
1+Eρ0 if Eρ0 < 1,

−1−Eρ−1
0

1+Eρ−1
0

if Eρ−10 < 1,

0 otherwise .

With this theorem we can see that if Eρ0 < 1 or the force for leftward jump is less than

the force for rightward jump in average, the process will have non trivial velocity similar to the

case of simple random walk.

1.4 Cookie Random Walk or Multi-Excited Random Walk

This model was introduced by Zerner [16] in order to generalize the idea of excited random

walk. The excited random walk means the walker will be excited or having bias only for the

first time of visiting each site. After that first visit, the walker will jump with equal probability.

We consider the cookie random walk as follows, placing a number of cookies at each site.

Whenever the process arrives at that specific site, the walker eats one cookie and jumps with

the probability encoded by that cookie. If there is no cookie at that site, the walker jumps

with the symmetric probability or equal probabilities. We will give the definition of special

environment in which the random walk will be.

Definition 1.13 (Cookie Environment). Let (Ω,F ,P) be a probability space where F is a
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canonical σ−algebra. A cookie environment is an element

ω = (ω(z))z∈Z = (ω(z, i)i≥1)z∈Z ∈ Ω :=
(

[1/2, 1]N
)Z
,

where N is the set of strictly positive integers. We will refer to ω(z, i) as to the strength of the

i-th cookie at site z.

For example, suppose that ω(0) = ( 7
10 ,

7
10 ,

1
2 ,

1
2 ,

1
2 , . . . ). This can be viewed as follows. There

are 2 cookies at site 0 with 7
10 being the probability of jumping to the right and 3

10 for leftward

jumping probability. Now we formally define the random walk in cookies environment.

Definition 1.14 (Cookie Random Walk). Given a starting point x ∈ Z and a cookie environ-

ment ω ∈ Ω, consider stochastic process {Xn}∞n=0 where the state space is Z, together with a

probability space (Ω′,F ′, Px,ω), which satisfies Px,ω−a.s.

Px,ω [X0 = x] = 1,

Px,ω [Xn+1 = Xn + 1|Fn] = ω (Xn, Vn(Xn)) ,

Px,ω [Xn+1 = Xn − 1|Fn] = 1− ω (Xn, Vn(Xn)) .

Where Vn(x) =
∑n

k=0 χx(Xk) is a number of visits to site x up to time n and

Fn = σ (X0, X1, . . . , Xn) is a filtration of its past.

We can see that {Xn}∞n=0 itself is in general not a Markov chain since the transition prob-

abilities depend on the history of the process. Next we will present the theorem about the

transient and recurrent in cookie environment from [16, Theorem 12].

Theorem 1.15 (Transience/Recurrence). Assume that (ω(x))x≥0 is stationary and ergodic

under P. If

P[ω(0) = (1, 1/2, 1/2, 1/2, . . . )] < 1
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then

(Xn)n≥0 is recurrent if and only if E[
∑
i≥1

(2ω(0, i)− 1)] ≤ 1.

This theorem tells us that when we exclude the trivial environment, the first jump of each

site will always be the right jump, the transient and recurrent can be determined by the total

drifted stored at site 0. In deterministic version when every site has the same number of cookies

and each cookie encodes the same probability, we have the following result.

Corollary 1.16. Let {Xn}∞n=0 be random walk in deterministic cookies environment with k

cookies at each site and probability p to jump to the right, the process is recurrent if

p ∈
[

1

2
,
1

2
+

1

2k

]
. (1.2)

This corollary easily follows from theorem 1.15. Consider the theorem 1.15,

E[
∑
i≥1

(2ω(0, i)− 1)] ≤ 1

replace ω(0, i) by p, we obtain,

k∑
i

(2p− 1) ≤ 1

p ≤ 1

2
+

1

2k
.

Notice that normally simple asymmetric random walk is always transient. This cookie random

walk is in between the symmetric and asymmetric random walk. The more we place the cookies

at each site, the smaller value of p, probability to jumping to the right, have to be. Next,

Basdevant and Singh [2, Theorem 1.1] give the criteria whether the process will have non

trivial speed.

Theorem 1.17 (Speed of Deterministic Cookie Random Walk). Let {Xn}∞n=0 be random walk

in deterministic cookie environment with k cookies at each site and probability p to jump to the

11



right, the process is recurrent if

lim
n→∞

Xn

n
= 0 if p ∈

[
1

2
,
1

2
+

1

k

]

Unlike the simple random walk and RWRE, there is possibility of having trivial speed in

the transient process. Or we can say that 3 cookies with suitable strength is minimum number

of cookie for the process to have non-trivial speed.

1.5 Other Random Walks

There are several random walks which is not directly related to our model but some of the idea

from that model will be used. All of the following models are non-markovian or the history will

directly or indirectly determine the way the process evolves.

Self-Avoiding Random Walk

Self-avoiding random walk is a lattice random walk where the visiting site is always distinct.

Revisit the old site is prohibited. So most of the time we will consider this model with the

dimension greater than one since the process in one dimension is always transient either to the

left or to the right based on the first move. One can look for more details in [13].

Edge/Vertex Reinforce Random Walk, ERRW/VRRW

Edge Reinforced Random Walk(ERRW) is the process which the transition probabilities of the

walk will be determined by how frequent of using that edge in the past. Similarly for the Vertex

Reinforce Random Walk(VRRW) where the transition mechanism will based on the past visit

to the sites or vertices.

Example 1.3 (Edge/Vertex Reinforce Random Walk, ERRW/VRRW). Let (Ω,F , P ) be a

probability space and G = (V,E,∼) be a non-oriented connected locally finite graph without

loops. Let (ae)e∈E be a sequence of initial weights associated to each edge e ∈ E.
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Let {Xn}∞n=0 be a random process which takes values on V , and set Fn be a filtration of its

past, Fn = σ (X0, X1, . . . , Xn). Let {Xn}∞n=0 with starting point x0 ∈ V and weights (ae)e∈E ,

if X0 = x0, and for all n ∈ N

P (Xn+1 = j|Fn) = χ{j∼Xn} ×
F (Xn, j)∑

k∼Xn
F (Xn, k)

.

where F (Xn, j) takes values in [0,1]. This random walk will be called Edge Reinforced Ran-

dom Walk, ERRW if the function F (Xn, j) depends on the edge and Vertex Reinforced

Random Walk, VRRW if the function F (Xn, j) depends on the vertex only.

One example of F (Xn, j) is F (Xn, j) = a{Xn,j} +
∑n

k=1 χ{{Xk−1,Xk}={Xn,j}}. This means

that the more you using edge {Xn, j}, the more you will be using that edge connecting Xn and

j again in the future. Similarly, the VRRW can be defined in similar fashion using the different

F (Xn, j) such as F (Xn, j) = a{Xn,j} +
∑n

k=1 χ{{Xk=j}}, which will only depend on the vertex.

For more details see [11].

Random Walk Perturbed at Extrema

Another non-Markovian random walk is called Random Walk Perturbed at Extrema , firstly

introduced by Davis [6]. This model shares a lot of similarity with the ordinary random walk.

But when you are at the maximum or at the minimum you can jump with different probability

and not necessary the same for the max and min. Suppose we have a simple random walk in

1-D, at each time n, there will be a range of random walk or the set of the previous points the

walker has visited up to time n. Then we define the transition probability based on what kind

of point it is, being the internal point or the extrema point i.e. maximum and minimum.

Example 1.4 (Random Walk Perturbed at Extrema). Let {Xn}∞n=0 be a simple random walk
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in Z with the transition probability

P (Xn+1 = x+ 1|Xn = x) = 1− P (Xn+1 = x− 1|Xn = x)

=


pM if x = max0≤k≤nXk

pm if x = min0≤k≤nXk

1
2 otherwise.

This is called random walk perturbed at extrema . When the size of the range is 0, i.e. x is

both maximum and minimum, choose 1
2 .

This process can be viewed a special case of cookie environment random walk. The idea was

introduced by [3]. On the positive axis at site x, place a geometric number of cookies Mx at that

site. {Mx}x∈Z+ are i.i.d. random variables which have a distribution P (Mx = i) = pM (1−pM )i−1

where i ∈ N\{0}. When the walker visit the site with more than one cookie left, eats one cookie

and always jumps to the left. If the visit is the time that the walker will finished the last cookie,

the walker has to make a right jump. If there is no cookie at that site, the walker will jump

with equal probability.

On the negative axis we also place a geometric number of cookie mx similar to the positive

axis but with the different distribution. {mx}x∈Z− are i.i.d. random variables with P (mx = i) =

pi−1m (1− pm), i ∈ N \ {0}. And swap the left and right jump when there is some cookies left at

the site.

1.6 Pinsky’s Random Walk

Let us introduce another kind of environment called “have your cookie and eat it” environment

introduced by Pinsky [9]. As we can see from the cookie environment, the number of cookie is

an external parameter in the sense that it relates only to how frequent the walker visits that

specific site. This environment, we will later refer it as “Pinsky’s model”.
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Pinsky’s model can be viewed as follows, place an infinite number of cookies at each site.

The walker must have a cookie before each jump. And the walker jumps according to that

probability encoded in that cookie. Whenever the walker makes a first left jump at that site,

the cookies, at the site the walker jumped from, will have symmetric probability afterward.

When the walker visit the specific site again, the walker still has to eat that cookie but the

cookie will contribute nothing to the probability to jump. Or we can viewed the rest of the

cookies as a placebo.

We can think about using the same environment in the cookie random walk but this time

the number or cookie is not known and can not be viewed separately from the process. And the

most important thing is that this process is again not Markovian. Pinsky has a theorem about

the transient/recurrent with this “have your own cookie and eat it” environment.

Theorem 1.18. Let {Xn}∞n=0 be a random walk in a deterministic “have your own cookie and

eat it” environment {ω(x)}x∈Z

(i) Let ω(x) = p for all x in Z. Then


P1(τ0 =∞) = 0, if p ≤ 2

3 ;

3p−2
p ≤ P1(τ0 =∞) ≤ 3p−2

p(2p−1) , if p ∈ (23 , 1).

In particular the process is recurrent if p ≤ 2
3 and transient if p > 2

3 .

(ii) Let ω be periodic with period N > 1. Then the process is recurrent if 1
N

∑N
x=1

ω(x)
1−ω(x) ≤ 2

and transient if 1
N

∑N
x=1

ω(x)
1−ω(x) > 2.

Again, this is not clear at first whether the random walk is recurrent or transient, but there

is a connection to the result in corollary 1.16. When the process is recurrent, the walker will

visit to that site infinity many time. So the cookie will running out with the probability 1.

The cookie will change when the first left jump happens like the environment waits for the

first success. Then the expected number of jump from that site when the cookie is present is
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∑∞
m=1mp

m−1(1−p) = 1
1−p . Thus, it is similar to the corollary 1.16 with 1

1−p number of cookie.

Notice that this is not an integer for most values of p. Substitute back in (1.2), we get that

p ≤ 2
3 which agrees with Pinksy’s result. We will finished this chapter with the theorem about

the random environment assuming stationary and ergodic.

Theorem 1.19. Let {Xn}∞n=0 be a random walk in a stationary and ergodic “have your own

cookie and eat it” environment {ω(x)}x∈Z, then the process is Pωx -recurrent if E ω(0)
1−ω(0) ≤ 2 and

Pωx -transient if E ω(0)
1−ω(0) > 2 for P-almost every environment ω

16



Chapter 2

Main Results

In survey paper by Kosygina and Zerner [8], Pinsky’s result has been noted. Eventhough the

Pinksy’s environment, “have your cookie and eat it”, does not meet the requirements of the

theorem [8, Theorem 3.10, p. 13], the conclusion of the theorem is still valid. So it is interesting

to see and pursue if we can generalize or have a better assumption for unified theorem.

In this dissertation we will create the new kind of environment inspired by the Pinsky’s

environment, “have your own cookie and eat it” environment, called “kth Left Jump Breaks

Cookies(kLJBC).” The random walk with “kth Left Jump Breaks Cookies(kLJBC)” can be

thought as follows. We place an infinite number of cookies at each site on Z, when the walker

visits the certain site, the walker has one cookie and jump accordingly to the probability defined

by the cookie. If the walker makes a right jump, the environment is still the same. Also the first

k − 1 times the walker makes a left jump, nothing has change at these steps. When the walker

makes a kth jump, the environment at the site the walker jumps from will change to symmetric

environment, i.e. with equal probability of jumping left and right. This kind of environment

extends the Pinksy’s work and adds more level of self-interaction to the environment.
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2.1 Preliminary

The first proposition will confirm our intuition when we have 2 different environments, one

being dominated by the others. The random walk in dominating environment will be likely to

go to the right than the dominated one. In other word, we have monotonicity with respect to

starting points and environments.

Proposition 2.1. Let ω1 and ω2 be environments with ω1(x) ≤ ω2(x), for all x ∈ Z. Denote

probabilities for the random walk in the “kLJBC” environment ωi by Pωi
. , i = 1, 2. Then

Pω1
y (τz ≤ τx ∧N) ≤ Pω2

y (τz ≤ τx ∧N), for x < y < z and N > 0 (2.1)

In particular then,

Pω1
y (τz ≤ τx) ≤ Pω2

y (τz ≤ τx),

Pω1
y (τx =∞) ≤ Pω2

y (τx =∞) and

Pω1
y (τz =∞) ≥ Pω2

y (τz =∞).

Proof. We will prove this by using the coupling only on the “space” meaning that the time

parameter can be different. On a probability space(Ω,F ,P), define a sequence of i.i.d. random

variables {Uk}∞k=1 uniformly distributed on [0, 1]. Create {X1
n} and {X2

n}, stochastic processes

on (Ω,F ,P) such that the distribution of processes match the distributions of Pω1
y and Pω2

y ,

respectively. Now we coupling the two processes {X1
n}∞n=1 and {X2

n}∞n=1.

First of all we set X1
0 = y = X2

0 to start from the same point. Then we define the mechanism

whether each process will jump right or left depends on Uk. If U1 ≤ ωi(y) the i-process will

jump to the right i.e. Xi
1 = y + 1 for i = 1, 2. When U1 > ωi(y), the i-process will take a left

jump,Xi
1 = y + 1. If U1 ≤ ω1(y) or U1 > ω2(y), the processes will move together. If this case

happens, use U2 to couple again.

Then there will be the time that the first process will take left jump while the second
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process will jump to the right, mark the first time they separate as n1 ≥ 1. At this time, we

have X1
n1 = X2

n1
− 2. Now we stop the second process and use Un1+1, the next unused random

variable, to move {X1
n}. Since this kind of process has more tendency to jump to the right and

even the simple symmetric random walk is recurrent and irreducible, the first process will come

back to same site as X2
n1

, where the second process stopped and waiting, in finite time with

probability 1. We mark the first time when the first process catch up with the second process as

m1 > n1. Then continue coupling both processes again using Um1+1, the next available random

variable.

There will be the second time the process will part again, mark the second time the processes

differ as n2. We have X1
m1+n2

= X2
n1+n2

−2. Freeze the second process again and move only the

first process using Um1+n2+1. And again at time m2 > n2 both processes will be at the same

level X2
n2

= X1
m2
. Continue this and we will have the sequence {(ni,mi)}∞i=1. Let Nj =

∑j
k=1 nj

and Mj =
∑j

k=1mj

Let τ iw denote the hitting time of w for the process {Xi
n}. From the construction above, one

has, for each j ≥ 1

{τ1z ≤ τ1x ∧N} ∩ {τ1z ≤Mj} ⊂ {τ2z ≤ τ2x ∧N} ∩ {τ2z ≤ Nj}.

When they part, the process 1 can move around but not exceed the position of the second

process. The only case they are different is when the first process moves to the left and the

second process moves to the right. Then the statement is clear. Let j → ∞, we have {τ1z ≤

τ1x ∧ N} ⊂ {τ2z ≤ τ2x ∧ N}. Hence, P(τ1z ≤ τ1x ∧ N) ≤ P(τ2z ≤ τ2x ∧ N). Since τz ≥ z − y,

limz→∞ τz ≥ limz→∞ z − y =∞. We have

P(∞ ≤ τ1x ∧N) ≤ P(∞ ≤ τ2x ∧N)

or

P(τ1x =∞) ≤ P(τ2x =∞).
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Similarly, since τx ≥ y − x, limx→−∞ τx ≥ limx→−∞ y − x =∞. We get

P(τ1z ≤ ∞∧N) ≤ P(τ2z ≤ ∞∧N)

or

P(τ1z ≤ N) ≤ P(τ2z ≤ N)

and

P(τ1z ≥ N) ≥ P(τ2z ≥ N).

If we let N →∞ in above equation, we have

P(τ1z =∞) ≥ P(τ2z =∞).

Next we will categorize transience and recurrence based on φ ≡ P1(τ0 = ∞), whether the

process which started at 1 will reach 0 in finite time. Since this random walk is not Markovian,

we must use the suitable definition which will reflect the intuitive meaning of transient and

recurrent. Definition 1.6 is more suitable since the first visit back to the starting point will not

guarantee the successive coming back. So we will use the definition of transient and recurrent

as the following

Definition 2.2. Let {Xn}∞n=0 be a random walk in “kLJBC” environment the process is called

(i) Transient if Py(Xn = x i.o.) = 0,

(ii) Recurrent if Py(Xn = x i.o.) = 1.

Lemma 2.3. Let {Xn}∞n=0 be a random walk in a deterministic “kLJBC” environment

{ω(x)}x∈Z, where ω(x) ∈ [12 , 1) for all x ∈ Z. Assume that the environment ω is deterministic

and periodic: for some N ≥ 1, ω(x+N) = ω(x), for all x ∈ Z.
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(i) If P1(τ0 =∞) = 0, then the process is recurrent.

(ii) If P1(τ0 =∞) > 0, then the process is transient and limn→∞Xn =∞ a.s..

Proof. (i) In the first case, P1(τ0 =∞) = 0 means the process started from site 1 will visit site 0

in finite time with probability 1. In order to reach 0, the process has to make a left jump at some

sites, obviously at 1. So the environment will change into ω′ such that ω′(x) ≤ ω(x), ∀x ∈ Z

if the process makes kth left jump at some sites in order to reach 0. It is possible that the left

jump may not be the kth yet. In that case the environment at that site will still be the same.

Anyway, we denote the new environment by ω′. Let ωs(x) = 1
2 ,∀x ∈ Z be the environment for

the simple symmetric random walk.

By the proposition 2.1, ωs(x) ≤ ω′(x) implies Pω
s

0 (τ1 = ∞) ≥ Pω
′

0 (τ1 = ∞). But since the

simple symmetric random walk is recurrent, 0 = Pω
s

0 (τ1 = ∞) ≥ Pω
′

0 (τ1 = ∞). Therefore the

process will hit 1 again in finite time with the probability 1. At the time process reaches 1,

the current environment, ω2 will satisfy ω2(x) ≤ ω′(x), ∀x ∈ Z. By the proposition 2.1 again,

site 0 will be visited again in finite time with the probability 1. And this process will continue

indefinitely; hence, we get P1(Xn = 0 i.o.) = 1.

Let x ∈ Z. There is positive probability that the process at 0 will jump to the site x directly

in |x| steps regardless of the environment. P1(Xn = 0 i.o.) = 1. will lead to P1(Xn = x i.o.) = 1.

Now let y > 1. There is positive probability that the walker started from site 1 will jump

directly to y in y−1 steps. The environment in this case is still intact. Thus P1(Xn = x i.o.) = 1

will lead to Py(Xn = x i.o.) = 1. Now we will consider the case when y ≤ 0. By comparing to

simple symmetric random walk, the walker starts from y will definitely hit 1 with probability

1. Call the current environment ω′ ≤ ω. Now we have 2 cases, x > 1 or x < 0. For x < 0, by

Using the proposition 2.1, P1(Xn = x i.o.) = 1 implies Pω
′

1 (Xn = x i.o.) = 1. Hence, we will

have Py(Xn = x i.o.) = 1. For x > 0, we use the original assumption and proposition 2.1 to get

Pω
′

1 (τ0 =∞) = 0 and therefore Pω
′

1 (Xn = x i.o.) = 1. Hence we will have Py(Xn = x i.o.) = 1.

(ii) Let P1(τ0 =∞) > 0. First we will show that Py(τx =∞) > 0, for all x < y. Assume that

there is x0 < y0 such that Py0(τx0 = ∞) = 0 and we will have a contradiction. By argument
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in proof of part (i.) (The process started at y0 will reach x0 with probability 1 in finite time,

then the process will hit y0 with probability 1 by comparing to simple symmetric random walk.

After that the process will jump to x0 again by the assumption with different environment and

come back to y0 again....), Py0(τx0 =∞) = 0 will lead to Py0(Xn = x i.o.) = 1 for all x ∈ Z. In

particular, Py0(Xn = 0 i.o.) = 1. If y0 = 1, we arrive at a contradiction.

Now consider the case y0 < 1. There is a positive probability that the process starts from y0

will hit site 1 in 1− y0 steps and the environment will still be the same. Therefore, Py0(Xn =

0 i.o.) = 1 will lead to P1(Xn = 0 i.o.) = 1 which is a contradiction. Now consider the case

y0 > 1. From P1(τ0 =∞) > 0, there is a positive probability that the process started at 1 will

hit site y0 before site 0. After the walker hits site y0, the walker continues without hitting 0 at

any time. But when the process hit y0, on that event, let the ω′ be the current environment

which will satisfy ω′ ≤ ω. Since Py0(Xn = 0 i.o.) = 1 implies Pω
′

y0 (Xn = 0 i.o.) = 1 using the

proposition 2.1, the process will indeed visit 0 with the probability 1, which is a contradiction.

From the fact that Py(τx = ∞) > 0, for all x < y, and from the periodicity of the

environment, there is a strictly positive probability called φ1 ≡ infx∈Z Px(τx−1 = ∞) =

infx∈{0,1,...,N−1} Px(τx−1 = ∞) > 0. We will prove transience using this fact. Fix x and y.

Since the environment of simple symmetric random walk, called ωs, will be less than or equal

to current environment, by proposition 2.1, Pωy (τz < ∞) ≥ Pω
s

y (τz < ∞) = 1, for all z > y.

So the process will have a new maximum infinitely often. The current environment at any new

maximum is still intact or equal to ω. The environment to the right of that maximum is also ω.

Hence, with probability at least φ1 the process will never ever go below that maximum again.

Therefore; we have transience i.e. Py(Xn = x i.o.) = 0 and limn→∞Xn =∞ almost surely.

2.2 2-left-jump-break-cookie Random Walk

Next theorem will be the special case where k is equal to 2 or the second left jump break cookie

environment.
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Theorem 2.4. Let{Xn}∞n=o be a random walk in a deterministic “2LJBC” environment

{ω(x)}x∈Z , where ω(x) ∈ [12 , 1) for all x ∈ Z.

1. Let ω(x) = p for all x in Z. Then


P1(τ0 =∞) = 0, if p ≤ 3

5 ;

−3+4p+
√
−3+8p−4p2
2p ≤ P1(τ0 =∞) ≤ 3−5p

2−5p+3p2−2p3 , if p ∈ (35 , 1).

In particular, the process is recurrent if p ≤ 3
5 and transient if p > 3

5 .

2. Let ω be periodic with period N > 1. Then the process is recurrent if 1
N

∑N
x=1

ω(x)
1−ω(x) ≤

3
2

and transient if 1
N

∑N
x=1

ω(x)
1−ω(x) >

3
2 .

Remark 1. Comparing the result to the Pinksky’s result, this result is perfectly understandable

since the more you delay changing environment, the smaller p should be in order to have the

recurrent process.

Remark 2. As we have described in Pinsky’s model, the number of cookies is like a geometric

number of cookie represent waiting time for the first success. This 2LJBC is like a negative

binomial represent waiting time for the second success or second left jump. Similar situa-

tion happens, when the process is recurrent the process will visit certain site infinitely many

times. The expected number of jump from that site when the effective cookies is present is∑∞
m=2

(
m−1
m−2

)
pm−2(1− p)2 = 2

1−p . Thus, it is again similar to the corollary 1.16 with 2
1−p num-

ber of cookie. Substitute back in (1.2), we get that p ≤ 3
5 for recurrent process.

Proof. For x ∈ Z, define ν1x = inf{n ≥ 1 : Xn−1 = x,Xn = x − 1}, the first time the process

jumps to the left from site x. Similarly, let νkx = inf{n > νk−1x : Xn−1 = x,Xn = x− 1}, the kth

time the process jumps to the left from site x. Let Dx
0 = 0 and for n ≥ 1 let

Dx
n =

n∑
m=0

χ{Xm=x,m<ν2x}.

23



Dx
n is the number of visits at site x before the 2nd left jump occurs and before time n. Define,

the total drift,

Dn =
∑
x∈Z

(2ω(x)− 1)Dx
n.

Notice that 2ω(x) − 1 comes from the expectation of increment, multiplied by the number of

visits at that site. So Dn is an increasing sequence because ω(x) ∈ [12 , 1). Let Mn = Xn −Dn.

It is clear that Dn is predictable process. From Doob decomposition theorem, {Mn}∞n=0 is a

martingale with respect to its natural filtration. By Doob’s optional stopping theorem applying

to {Mn}∞n=0, we have

E1[M0] = E1[Mτ0∧τn ]

E1[X0 −D0] = E1[Xτ0∧τn −Dτ0∧τn ]

E1[X0]− E1[D0] = E1[Xτ0∧τn ]− E1[Dτ0∧τn ]

1− 0 = (0)P1(τ0 ≤ τn) + nP1(τ0 > τn)− E1[Dτ0∧τn .]

After rearranging the term, we get,

nP1(τ0 > τn) = 1 + E1[Dτ0∧τn ]

nP1(τ0 > τn) = 1 +
n−1∑
x=1

(2ω(x)− 1)E1[D
x
τ0∧τn ]. (2.2)

Notice that

lim
n→∞

P1(τ0 > τn) = P1(τ0 =∞),

which is the term we are looking for. Let φx = Px+1(τx =∞). Since {τ0 > τn} ⊇ {τ0 > τn+1},

P1(τ0 > τn) is a sequence of number which is decreasing and bounded below. Therefore the
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limit exists and

τ0 > τn ≥ n− 1

lim
n→∞

τ0 > lim
n→∞

τn ≥ lim
n→∞

n− 1

τ0 ≥ ∞.

We will assume that the process is transient i.e. φ > 0. Then we will create the random

variable that stochastically dominates Dx
τ0 under P1. First of all, let δ

(l)
x = Pω

(l)

x−1(τ0 < τx) be the

probability of not returning to x before reaching 0, conditioned on the process returning to x

from x−1 at least l−1 times. Notice that the environment may not be the same at each time we

consider this term. We can suppress the l whenever l = 1. We also define φ
(l)
x = Pω

(l)

x+1(τx =∞),

the probability of not visiting site x starting from site x + 1 and conditioned on the process

returning to x from x+ 1 for l − 1 times.

Let Rl = ω(x)(1 − φ(l)x ) be a probability of jumping to the right for the lth time and come

back to the starting point x with probability one. Let Rel = ω(x)φ
(l)
x be a probability of jumping

to the right for the lth time and will not come back to the starting point x, so that will end the

counting.

Let Ll = (1− ω(x))(1− δ(l)x ) be a probability of jumping to the left for the lth time and come

back to the staring point x with probability one. Let Lel = (1 − ω(x))δ
(l)
x be a probability of

jumping to the left for the lth time and hit 0 before returning back to x, so the counting will

be ended.

Let Lek = (1 − ω(x)) be a probability of jumping to the left for the kth time which will be

the last left jump before the environment change to symmetric random walk, so the counting

will be ended also in this situation.
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All notation above can be summarized here:

δ(l)x = Pω
(l)

x−1(τ0 < τx)

Rl = ω(x)(1− φ(l)x ) (lth Right jump)

Rel = ω(x)φ(l)x (lth Right jump end counting)

Ll = (1− ω(x))(1− δ(l)x ) (lth Left jump)

Lel = (1− ω(x))δ(l)x (lth Left jump end counting)

Lek = (1− ω(x)) (kth Left jump end counting). (2.3)

Notice that there is a relationship as follows

Le2 +Rem−1 = 1−Rm−1

Lel +Rem = (1− Ll)−Rm.
(2.4)

When k = 1 the environment is similar to geometric distribution i.e. waiting for the first

success. In this case, the success means left jump. When k > 1 it will be similar to negative

binomial i.e. waiting for the kth success or kth left jump in this situation. Now we will restrict

our case to k = 2.

For x ≥ 1, we will have Dx
τ0 = 0 when τ0 < τx or the number of visit to site 0 is 0. This

means the process started at 1 must reach site 0 before site x. Dx
τ0 > 0 when τ0 > τx, or visits

site x before site 0 provided that the process started from site 1.

When Dx
τ0 = 1 it means that at time τx which the process is at site x for the first time, the

process will jump to the left, i.e. to x− 1 and eventually hit 0 with the probability (1−ω(x))δx

or jump to the right and never come back to x again with the probability ω(x)φ(x). By using

the notation above, the probability is equal to Le1 +Re1.

In case Dx
τ0 = 2, there are 2 cases whether the process has already made a left jump at the

first time. So we have either 2 left jumps, right jump then left jump, left jump then right jump

or 2 right jumps. We get L1L
e
2 +R1L

e
1 + L1R

e
1 +R1R

e
2 = L1(L

e
2 +Re1) +R1(L

e
1 +Re2).
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If Dx
τ0 = 3, we have R1L1L

e
2 +L1R1L

e
2 +R1R2L

e
1 +R1L1R

e
2 +L1R1R

e
2 +R1R2R

e
3 = 2R1L1(L

e
2 +

Re2) +R1R2(L
e
1 +Re3). Notice that the order of L and R doesn’t play any important role.

If Dx
τ0 = 4, we have 3R1R2L1(L

e
2 +Re3) +R1R2R3(L

e
1 +Re4). So we have

P (Dx
τ0 = m) =


Le1 +Re1 if m = 1

L1(L
e
2 +Re1) +R1(L

e
1 +Re2) if m = 2

(m− 1)(
∏k−2
i=1 Ri)L1(L

e
2 +Rek−1) + (

∏k−1
i=1 Ri)(L

e
1 +Rek) if m > 2.

First of all, we will try to consider the sequences
{
φ
(l)
x

}
and

{
δ
(l)
x

}
. Both of the sequences

will be monotonic. The former one will be non-increasing and non-decreasing for the latter

sequence. Therefore; {Ri} and {Li} are non-decreasing and non-increasing, respectively. Now

we will try to find the random variable which will be stochastically dominated by Dx
τ0 . For this

domination, we can come up with anything that serve our purpose. Secondly, we take a look at

P (2 ≤ Dx
τ0 ≤M), Consider P (2 ≤ Dx

τ0 ≤ 3), we get

P (2 ≤ Dx
τ0 ≤ 3)

= L(Le2 +Re1) +R1(L
e +Re2) + 2LR1(L

e +Re2) +R1R2(L
e +Re3)

by (2.4), we get,

= L(1−R1) +R1((1− L)−R2) + 2LR1(1−R2) +R1R2((1− L)−R3)

= L+R1 − 3LR1R2 −R1R2R3. (2.5)

Consider again that P (2 ≤ Dx
τ0 ≤ 4), by adding more term to (2.5), we get

P (2 ≤ Dx
τ0 ≤ 4)

= L+R1 − 3LR1R2 −R1R2R3 + 3LR1R2(L
e
2 +Re3) +R1R2R3(L

e +Re4)
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using (2.5), we obtain,

= L+R1 − 3LR1R2 −R1R2R3 + 3LR1R2(1−R3) +R1R2R3((1− L)−R4)

= L+R1 − 4LR1R2R3 −R1R2R3R4.

Therefore; we can prove by math induction that

P (2 ≤ Dx
τ0 ≤M) = L+R1 −ML

M−1∏
i=1

Ri −
M∏
i=1

Ri (2.6)

= R

(
L

R
+ 1− ML

R

M−1∏
i=1

Ri −
1

R

M∏
i=1

Ri

)
.

After carefully consider P1(1 < Dx
τ0 < M), we can have the smaller term by modifying Ri. This

can be done because of transient assumption, φx > 0. Even φ
(i)
x maybe 0, we will have a bigger

quantity. Therefore; we set φx = 0, or change Ri := ω(x)(1−φ(i)x ) to ω(x) in the parenthesis to

have the desired domination. So we choose 2 independent random variables Ix and Vx satisfying

P (Ix = 1) = 1− P (Ix = 0) = P1(τx < τ0), (2.7)

P (Vx = l) =


Le +Re if l = 1

R(L(Le2)
1

ω(x) + (Le)) if k = 2

R
(
(k − 1)(ω(x))k−3L(Le2) + (ω(x))k−2(Le)

)
if k > 2

Notice that when φx = 0, Re will vanish. Furthermore, P1(D
x
τ0 < m) ≥ P (IxVx < m) by

knowing that the the first term of both distributions are the same and the way we defined

distribution of the Ix. Then Dx
τ0 is indeed being stochastically dominated by IxVx. Therefore;

E1D
x
τ0 ≤ EIxVx = P1(τx < τ0)EVx. Since

EVx =
2− φx(2− ω(x) + (ω(x))2)

1− ω(x)
+ δx

(
φx −

1− φx
1− ω(x)

− φxω(x)

)
,
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by stochastic domination, we get

E1D
x
τ0 ≤

(
2− φx(2− ω(x) + (ω(x))2)

1− ω(x)
+ δx

(
φx −

1− φx
1− ω(x)

− φxω(x)

))
P1(τx < τ0). (2.8)

Substituting (2.8) into (2.2) and using monotonicity of Dn gives

P1(τ0 > τn) ≤ 1

n
+

1

n

n−1∑
x=1

(2ω(x)− 1)

(
2− φx(2− ω(x) + (ω(x))2)

1− ω(x)

)
P1(τx < τ0)+

+
1

n

n−1∑
x=1

(2ω(x)− 1)

(
δx

(
φx −

1− φx
1− ω(x)

− φxω(x)

))
P1(τx < τ0) (2.9)

Consider part (i) of the theorem which we have ω(x) = p for all x and φx ≡ φ independent of

x. By letting n→∞, we have

lim
n→∞

P1(τ0 > τn) ≤ lim
n→∞

1

n
+ lim
n→∞

1

n

n−1∑
x=1

(2p− 1)

(
2− φ(2− p+ p2)

1− p

)
P1(τx < τ0)+

+ lim
n→∞

1

n

n−1∑
x=1

(2p− 1)

(
δx

(
φ− 1− φ

1− p
− φp

))
P1(τx < τ0)

P1(τ0 =∞) ≤ (2p− 1)

(
2− φ(2− p+ p2)

1− p

)
P1(τ0 =∞),

provided that φ− 1−φ
1−p − φp ≤ 0 or φ ≤ 1

2−2p+p2 . Thus

(2p− 1)

(
2− φ(2− p+ p2)

1− p

)
≥ 1,

or

φ = P1(τ0 =∞) ≤ 3− 5p

2− 5p+ 3p2 − 2p3
.

As we can see from figure 2.1, this result is valid since 1
2−2p+p2 ≥

3−5p
2−5p+3p2−2p3 . Because of

transient assumption φ > 0, it follows that p > 3
5 is a necessary condition for transience. And

this gives the upper bound on P1(τ0 =∞) in part (i) of the theorem.

Now consider part (ii) of the theorem. In this case, both ω(x) and φx are periodic with
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Figure 2.1: Plot showing the result and the constraint

period N > 1. By transience assumption and Lemma 2.3, φx > 0 for all x. Therefore; letting

n→∞ in (2.9), we get

1

N

N∑
x=1

(2ω(x)− 1)

(
2− φx

(
2− ω(x) + (ω(x))2

)
1− ω(x)

)
≥ 1. (2.10)

Since (2.10) was derived under the assumption that φx > 0, for all x, we get 1
N

∑N
x=1

2(2ω(x)−1)
1−ω(x) >

1, which is a necessary condition for transience. This is equivalent to

1

N

N∑
x=1

2ω(x)− 1

1− ω(x)
>

1

2

1

N

N∑
x=1

(
ω(x)

1− ω(x)
+
ω(x)− 1

1− ω(x)

)
>

1

2

1

N

N∑
x=1

ω(x)

1− ω(x)
>

3

2
.

Now we consider the necessary condition for the recurrence in part (i) and (ii), and to the

lower bound on P1(τ0 =∞). We make no assumption of transience or recurrence for now. Under

P1, consider Dx
τ0∧τn which appeared on the right hand side of (2.2). If τ0 < τn, then Dx

τ0∧τn = 0.

Let εx,n be the probability of not returning to x before reaching n and after the first jump to

the right from x to x+ 1.
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Similarly, let ε
(l)
x,n be the probability, conditioned on the process returning to x from x + 1

at least l− 1 times and not return to x before hitting n, that after lth jumps rightward from x

to x+ 1. Each time the process jumps from x to x+ 1, denote the current environment ω′′, will

satisfy ω′′ ≤ ω′ where ω′ was the environment in effect the previous time the process jumped

from x to x+ 1. Thus by the proposition 2.1, it follows that

Pω
′′

x+1(τn < τx) ≤ Pω′x+1(τn < τx),

or ε
(l)
x,n ≤ εx,n for l > 1. Notice that the difference between φ

(l)
x and ε

(l)
x,n is just that the latter

have a wall at n. Thus everything should follows as in the case of Dx
τ0 . So we also introduce the

similar notation for this part

δ(l)x = Pω
(l)

x−1(τ0 < τx)

Rl = ω(x)(1− ε(l)x,n) (lth Right jump)

Rel = ω(x)ε(l)x,n (lth Right jump end counting)

Ll = (1− ω(x))(1− δ(l)x ) (lth Left jump)

Lel = (1− ω(x))δ(l)x (lth Left jump end counting)

Lek = (1− ω(x)) (kth Left jump end counting).

Again, we have the same relationships

Le2 +Rem−1 = 1−Rm−1

Lel +Rem = (1− Ll)−Rm.
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We also have the distribution of Dx
τ0∧τn as follows,


P (Dx

τ0∧τn = 0) = P1(τ0 < τx);

P (Dx
τ0∧τn = 1) = Le +Re1;

P (Dx
τ0∧τn = m) = (m− 1)L

(
Le2 +Rem−1

)∏m−2
i=1 Ri + (Le +Rem)

∏m−1
i=1 Ri,m ≥ 2.

Now we have to find a random variable that will be dominated by Dx
τ0∧τn . From (2.6), we need

the bigger quantity. Therefore; we replace Ri by R1 in (2.6). We will get bigger quantity since

ε
(i)
x,n ≤ εx,n and R1 ≤ Ri. Now we create a random variable Zx which is independent to Ix as in

(2.7) such that

P (Zx = m) =


Le +Re if k = 1

(m− 1)L (R1)
m−2 (1−R1) + (R1)

m−1 ((1− L)−R1) if k ≥ 2.

which will serve our purpose. Then we have

EZx =
2− δx(1− ω(x))− (2− εx,n)ω(x)

(1− (1− εx,n)ω(x))2
.

Since Dx
τ0∧τn stochastically dominates IxZx, we obtain

E1Dτn∧τ0 ≥ EIxZx =
2− δx(1− ω(x))− (2− εx,n)ω(x)

(1− (1− εx,n)ω(x))2
P1(τx < τ0).

From {τx < τ0} ⊇ {τn < τ0} , for all x = 1, 2, . . . , n − 1, we get P1(τx < τ0) ≥ P1(τn < τ0).

Using this fact we will have

E1Dτn∧τ0 ≥ EIxZx =
2− δx(1− ω(x))− (2− εx,n)ω(x)

(1− (1− εx,n)ω(x))2
P1(τx < τ0)

≥ 2− δx(1− ω(x))− (2− εx,n)ω(x)

(1− (1− εx,n)ω(x))2
P1(τn < τ0).

(2.11)
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From (2.2) and (2.11) it follows that for any n,

1

n

n−1∑
x=1

(2ω(x)− 1)
2− δx(1− ω(x))− (2− εx,n)ω(x)

(1− (1− εx,n)ω(x))2
< 1. (2.12)

Now consider part (i) of the theorem. In this case ω(x) = p for all x, then εx,n will depend

only on n − x and lim(n−x)→∞ εx,n = φ = P1(τ0 = ∞). If the process is recurrent, then we

can conclude that φ = 0. Since δx, probability of visiting site 0 starting from site x− 1 before

visiting site x, depends only on x but not n, we know that when x is very large δx → 0. All the

terms related to the value of δx when x is small will be annihilated by 1
n .

By letting n → ∞ in (2.12), we have 2(2p−1)
1−p ≤ 1 which is a necessary condition for recur-

rence. This is equivalence to p ≤ 3
5 . In transient case, φ > 0 will present. Therefore; we have

(2p−1)(2−(2−φ)p)
(1−(1−φ)p)2 ≤ 1 or

φ = P1(τ0 =∞) ≥ −3 + 4p+
√
−3 + 8p− 4p2

2p
.

which gives the lower bound on P1(τ0 =∞) in part (i).

Now assume recurrence and periodic in part (ii), limn→∞ εx,n = 0. Let n → ∞ in (2.12).

Hence the necessary condition for recurrence is 1
N

∑N
x=1

2ω(x)−1
1−ω(x) ≤

1
2 or 1

N

∑N
x=1

ω(x)
1−ω(x) ≤

3
2

Figure 2.2: Plot showing possible value of φ = P1(τ0 = ∞) in second left jump break cookie
environment.
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Figure 2.3: Plot comparing the possible value of φ = P1(τ0 = ∞) between second left jump
break cookie environment and “have your own cookie and eat it environment”.
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2.3 k-left-jump-break-cookie Random Walk

In this section we will prove the theorem about the general kth-left jump break cookie random

walk.

Theorem 2.5. Let{Xn}∞n=0 be a random walk in a deterministic “kLJBC” environment

{ω(x)}x∈Z , where ω(x) ∈ [12 , 1) for all x ∈ Z.

1. Let ω(x) = p for all x in Z. Then


P1(τ0 =∞) = 0, if p ≤ k+1

2k+1 ;

φ = P1(τ0 =∞) ≤ (k+1)−(2k+1)p
k−(2k+1)p+3p2−2p3 , if p ∈ ( k+1

2k+1 , 1).

In particular the process is recurrent if p ≤ k+1
2k+1

2. Let ω be periodic with period N > 1. Then the process is recurrent if 1
N

∑N
x=1

ω(x)
1−ω(x) ≤

1 + 1
k .

Remark 3. The idea of the proof of this theorem is similar to the one that we have used in

proving second left jump case. And we get only one side of the argument working.

Proof. For general kth, we will use the same notation as in (2.3). We can think as the follow.

When Dx
τ0 = l, this means that there is l positions to be filled by L or R in those spots and

there are only k number of L’s to fill where R is unlimited. We focus on the rightmost spot

first. Then we separate into 2 groups after trimming the end or the last step.

Case 1. Using all available L. Start from the rightmost spot, we can fill either Lek or Re

without the problem. Then fill out the rest, k− 1 spots out of l− 1 spots will be filled by L. So

we have
(
l−1
k−1
)
Rl−kLk−1 (Lek +Re). But since there is the change of environment between each

jump so we have to distinguish the jump. We obtain

(
l − 1

k − 1

)l−k∏
j=1

Rj

(k−1∏
s=1

Ls

)(
Lek +Rel−k+1

)
.
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Case 2. Using only some L. Start from the rightmost spot again since we have to denoted

it by superscript e, we can fill either Le or Re. Then we can choose how many L we will be

used after filling out the rightmost spot, ranging from 0 to k − 2. For each i number of L we

used, we have
(
l−1
i

)
Rl−i−1Li (Le +Re) . Similar to the previous case, for all possible values of

choosing L, we have

k−2∑
i=0

(
l − 1

i

)l−i−1∏
j=1

Rj

( i∏
s=1

Ls

)(
Lei+1 +Rel−i

)
.

Therefore; we have the distribution of Dx
τ0 as follows,

P (Dx
τ0 = l) =

k−2∑
i=0

(
l − 1

i

)l−i−1∏
j=1

Rj

( i∏
s=1

Ls

)(
Lei+1 +Rel−i

)
+ (2.13)

+

(
l − 1

k − 1

)l−k∏
j=1

Rj

(k−1∏
s=1

Ls

)(
Lek +Rel−k+1

)
(2.14)

Similar to the case when k = 2, we assume transient and consider Dx
τ0 instead of Dx

τ0∧τn .

Since the possibility of stop counting Dx
τ0 is either hit 0 or getting lost to infinity. We will define

the distribution of dominating random variable as follow.

When Dx
τ0 = 1, there are 2 possibility either make a left jump and hit 0 or getting lost to

infinity.

When Dx
τ0 ≥ 2, we assume that there is no more getting lost to infinity. The only way to

stop counting is either hit 0 or make the last possible left jump allowed. This is clear that this

is indeed domination we looking for since we get rid of some possibility of not coming back in

Dx
τ0 . Therefore, we have the distribution as follow.

Let Ix and Vx be independent random variables satisfying

P (Ix = 1) = 1− P (Ix = 0) = P1(τx < τ0), (2.15)
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P (Vx = l) =


Le +Re if l = 1

R
(∑k−1

i=1

(
l−1
i−1
)
(ω(x))l−i−1Li−1k−1

(
Lek−1

)
+
(
l−1
k−1
)
(ω(x))l−k−1Lk−1k−1 (Lek)

)
if l > 1

By computing the expectation of Vx, we obtain

EVx =
k − φx(k − ω(x) + ω(x)2)

1− ω(x)

+ δ(k−1)x

 k(k−1)
2 − φx

(
k(k−1)

2 + 1− 2ω(x) + ω(x)2
)

1− p

+ Cx,

(2.16)

where Cx = O

((
δ
(k−1)
x

)2)
and will vanish when x is very large. Substitute back into (2.2) and

using monotonicity of Dn, we get

E1D
x
τ0 ≤

k − φx(k − ω(x) + ω(x)2)

1− ω(x)
P1(τx < τ0)+

+

δ(k−1)x

 k(k−1)
2 − φx

(
k(k−1)

2 + 1− 2ω(x) + ω(x)2
)

1− ω(x)

+ Cx)

P1(τx < τ0).

(2.17)

Substituting (2.17) into (2.2) and using monotonicity of Dn gives

P1(τ0 > τn) ≤ 1

n
+

1

n

n−1∑
x=1

(2ω(x)− 1)

(
k − φx(k − ω(x) + ω(x)2)

1− ω(x)
+

+ δ(k−1)x

 k(k−1)
2 − φx

(
k(k−1)

2 + 1− 2ω(x) + ω(x)2
)

1− ω(x)

+ Cx

P1(τx < τ0).

(2.18)

Consider part (i) of the theorem which we have ω(x) = p for all x and φ ≡ φx independent of
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x. By letting n→∞, we have

lim
n→∞

P1(τ0 >τn) ≤ lim
n→∞

1

n
+ lim
n→∞

1

n

n−1∑
x=1

(2p− 1)

(
k − φ(k − p+ p2)

1− p

)
P1(τx < τ0)+

+ lim
n→∞

1

n

n−1∑
x=1

(2p− 1)δ(k−1)x

 k(k−1)
2 − φ

(
k(k−1)

2 + 1− 2p+ p2
)

1− p

P1(τx < τ0)+

+ lim
n→∞

1

n

n−1∑
x=1

(2p− 1)CxP1(τx < τ0)

computing the limit, we obtain,

P1(τ0 =∞) ≤ (2p− 1)

(
k − kφ+ pφ− φp2

1− p

)
P1(τ0 =∞),

provided that
k(k−1)

2
−φ

(
k(k−1)

2
+1−2p+p2

)
1−p ≤ 0. Thus

(2p− 1)

(
k − φ(k − p+ p2)

1− p

)
≥ 1,

or

φ = P1(τ0 =∞) ≤ (k + 1)− (2k + 1)p

k − (2k + 1)p+ 3p2 − 2p3
. (2.19)

with the constraint φ ≤
k(k−1)

2
k(k−1)

2
+1−2p+p2

. But this constraint is always greater than the result we

have when k ≥ 2 and 1
2 ≤ p ≤ 1. So we have the desired result. Because of transient assumption

φ > 0, it follows that p > k+1
2k+1 is a necessary condition for transience. And this gives the desired

upper bound on P1(τ0 =∞) in part (i) of the theorem.

Now consider part (ii) of the theorem. In this case ω(x) and φx are periodic with period N > 1.

By transience assumption and Lemma 2.3, φx > 0 for all x. Therefore; letting n→∞ in (2.18),

we get

1

N

N∑
x=1

(2ω(x)− 1)

(
k − φx(k − ω(x) + (ω(x))2)

1− ω(x)

)
≥ 1. (2.20)

Since (2.20) was derived under the assumption that φx > 0, for all x, we get 1
N

∑N
x=1

k(2ω(x)−1)
1−ω(x) >
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1 which is a necessary condition for transience. And this is equivalent to

1

N

N∑
x=1

ω(x)

1− ω(x)
> 1 +

1

k
. (2.21)
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Chapter 3

Range

In this chapter we will try to take a look about the speed of the range or how fast the maxi-

mum/minimum point moves. Let us introduce the notation we need, let

M(k) = max
i=1,2,...,k

Xi,

m(k) = min
i=1,2,...,k

Xi,

be the maximum and minimum of the site visited in previous k steps, respectively. Let R(k) =

M(k) − m(k) be the size of the range of the random walk for the previous k steps. Let tn =

min {k : R(k) = n} be the stopping time when this range reaches n. Also, ∆n,n+1 = tn+1 − tn,

the time required for size of the range n to increase by 1.

Let DM(n) = E(∆n,n+1|Xtn =M(tn)) and Dm(n) = E(∆n,n+1|Xtn = m(tn)), the average of

the time needed to increase the size of range one step given that the previous one have occurs

at the maximum(resp. minimum). Next, let pM(n) = P(Xtn+1 = M(tn+1)|Xtn = M(tn)) and

pm(n) = P(Xtn+1 = m(tn+1)|Xtn = m(tn)) be the probabilities that once the range increased at

the maximum (resp. minimum) the next increase will take place again at the maximum(resp.

minimum). Without lost of generality we can assume that the range is now {0, 1, . . . , n}.

In Pinsky’s random walk, if you are at the minimum, you have made at least one left jump
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at each site from the maximum all the way through the minimum. So at the minimum, we can

precisely calculate the probability as follows.

pm = (1− p) + p

(
n− 1

n
pm +

1

n
(1− pM)

)
,

pM =
1

2
+

1

2

(
n− 1

n
pM +

1

n
(1− pm)

)
.

Solving for pm and pM, we get

pm = pm(n) =
1− p+ n(1− p)

1 + n(1− p)
.

pM = pM(n) =
p+ n(1− p)
1 + n(1− p)

.

The pM in this case appear just to help us calculate pm. For large n, both probability is closed

to 1, i.e.

pm(n) = 1− p

1− p
× 1

n
+O(n−2) and pM(n) = 1− 1

n
+O(n−2). (3.1)

Now consider the case of being at the maximum. If you are at the maximum, the environment

will be mixed between 1
2 and p. And if you have made any left jump (not increasing the range)

whenever you come back to the maximum site again, the probability will not be the same. So

we will try to find the bound instead.

One trivial upper bound is to assume that the change will not happen at all i.e. we will

have a asymmetric random walk. We will see that the probability of growing at the maximum,

will be 1−O(x) where x decays exponentially.

Suppose that the bias will not go away even you have made a left jump at that site. This

will be served as our upper bound. Let β(x) be the probability of reaching the rightmost point

in the interval before hitting the leftmost point. When the size of range equals n and 0 ≤ x ≤ n,
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we have the exit probability from the starting point x to the right is

β(x) =

(
1−p
p

)x
− 1(

1−p
p

)n
− 1

.

Recalled that pm is the probability of growing at the minimum, provided that last time the

range also grows at the minimum. Similarly for pM, we add the superscript in order to tell that

this is just the upper bound of the quantity we are interested in. Thus, we obtain,

pum(n) = (1− p) + p ((1− β(1)) pum + β(1)(1− puM))

puM(n) = p+ (1− p) ((1− β(n− 1)) (1− pum) + β(n− 1)puM) .

Solve two equations above we have

pum(n) =
−b(n)p2 + 2b(n)p− b(n)− p+ 1

a(n)p2 − b(n)p2 + 2b(n)p− b(n)− p+ 1

puM(n) =
p(a(n)p− p+ 1)

a(n)p2 − b(n)p2 + 2b(n)p− b(n)− p+ 1
,

where b(n) = β(n − 1) and a(n) = β(1). Again, we will only focus on the growth at the

maximum. Since limn→∞ b(n) = 1, we get

lim
n→∞

puM(n) =
p(a(n)p− p+ 1)

a(n)p2 − p2 + p
= 1.

Let x(n) := (1−pp )n. Then we get

a(n) = β(1) =

p
1−p − 1

x(n)− 1

b(n) = β(n− 1) =

p
1−px(n)− 1

x(n)− 1
.

(3.2)
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From,

puM(n) =
p(a(n)p− p+ 1)

a(n)p2 − b(n)p2 + 2b(n)p− b(n)− p+ 1

Using (3.2), change a, b into x

= − p(p− x+ px)

−p2 + x− 2px+ p2x

=
p2 − p(1− p)x
p2 − (1− p)2x

= 1−
(

3

p
− 2− 1

p2

)
x+O(x2)

= 1−
(

3

p
− 2− 1

p2

)
(
1− p
p

)n +O((
1− p
p

)2n).

Thus we have the upper bound which decays exponentially which will not match the growth

at the minimum which decays polynomially. Thus this kind of upper bound is too rough. So we

try to utilize the fact that the environment will change to symmetric one after you have made

the first left jump.

Recall that νx = inf{n ≥ 1 : Xn−1 = x,Xn = x− 1}, the first left jump at site x. We define

s(j)x =


p, if νx > τj ,

1
2 , if νx < τj .

(3.3)

Let γx,y = inf {n > τy|Xn = x} or the hitting time of x after visited site y. Also let P {s
(n)
x } (·) =

P (· | {s(n)x }M−1x=1 ), or the probability distribution knowing all the information of any left jump

made at site 0 through site n.

For the walker started at the maximum, it can jump directly to the right to make a range

grows by 1 or makes k step(s) back to the left and then comes back at the maximum and makes

a right jump.

To jump back k step(s), it is the same as you jump back one step at a time but not necessary
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consecutive. So the probability can be written as

P
{s(n)

x }
M (τM−k < τM+1) =

P
{s(n)

x }
M (τM−1 < τM+1)

k−1∏
i=1

P
{s(n)

x }
M (τM−i−1 < τM+1 | τM−i < τM+1) . (3.4)

It is clear that the first step jumping left at the maximum is

P
{s(n)

x }
M (τM−1 < τM+1) = 1− p = 1− snM. (3.5)

Now we try to calculate P
{s(n)

x }
M (τM−i−1 < τM+1 | τM−i < τM+1). We know that the environ-

ment on the right hand side of M− i is 1
2 and snM−i at the site M− i.

Let pi = P
{s(n)

x }
M (τM−i−1 > τM+1 | τM−i < τM+1) , the probability starting from site M, vis-

iting M− i then reaching site M + 1 before visiting site M− i − 1. Since the environment

on the right hand side of M− i is 1
2 , we can use the martingale to calculate this quantity.

When the walker makes a right jump, we can think about the walker is in the interval of length

i+ 1 starting from M− i+ 1 to M+ 1 and all the environments in between are 1/2 or being

symmetric. So the exit probability to the left, back to the starting point is i
i+1 .

Since all the environment in the interval have been changed, we can treat the environment

as we restarting the calculation again. So we multiply this with the starting probability, p1. On

the other hand, the exit probability to the right is 1
i+1 when the walker exits at this side it

means that we are done. So we have,

pi = snM−i

(
i

i+ 1
pi +

1

i+ 1

)
(i+ 1)pi − isnM−ipi = snM−i

pi =
snM−i

i+ 1− isnM−i
.
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Therefore; we have

P
{s(n)

x }
M (τM−i−1 < τM+1 | τM−i < τM+1) = 1− P {s

(n)
x }

M (τM−i−1 > τM+1 | τM−i < τM+1)

= 1−
snM−i

i+ 1− isnM−i
.

(3.6)

Substitute (3.5) and (3.6) into (3.4) we get

P
{s(n)

x }
M (τM−k < τM+1) = (1− snM)

k−1∏
i=1

(
1−

snM−i
i+ 1− isnM−i

)

=

k−1∏
i=0

(
1−

snM−i
i+ 1− isnM−i

)
.

Then we have

P
{s(n)

x }
M (γM+1,M−k < τM−k−1)

= P
{s(n)

x }
M (τM−k < τM+1)P

{s(n)
x }

M−k (τM+1 < τM−k−1 | τM−k < τM+1)

= (1− snM)

(
snM−k

k + 1− ksnM−k

)
k−1∏
i=1

(
1−

snM−i
i+ 1− isnM−i

)
.

If we collect all possible k steps, we get

n∑
k=0

P
{s(n)

x }
M (γM+1,M−k < τM−k−1) =

n∑
k=0

(1− p)

(
snM−k

k + 1− ksnM−k

)
k−1∏
i=1

(
1−

snM−i
i+ 1− isnM−i

)

= 1−
n∏
k=0

(
1−

snM−k
k + 1− ksnM−k

)
.

This is the probability to grow at the maximum given that you are at the maximum. From the

definition of sjx in (3.3), we cannot draw any conclusion that it will be 1
2 or p but we can find
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upper bound and lower bound by substitute snxM−k with p and 1
2 , respectively. So we calculate

n∏
k=0

(
1−

snM−k
k + 1− ksnM−k

)
=

n∏
k=0

(
1− p

k + 1− kp

)

=
(1− p)Γ (n+ 2) Γ

(
1

1−p

)
Γ
(
n+ 1 + 1

1−p

)
Since 1

2 ≤ p ≤ 1, 1
1−p ≥ 2. Let 1

1−p = 2 + x, where x ≥ 0. From the limit for asymptotic

approximations of gamma function,

lim
n→∞

Γ(n+ α)

Γ(n)nα
= 1, α ∈ R,

we can see that

(1− p)Γ (n+ 2) Γ
(

1
1−p

)
Γ
(
n+ 1 + 1

1−p

) =
(1− p)Γ (n+ 2) Γ (2 + x)

Γ (n+ 3 + x)
∼ C 1

n1+x
= C

1

n
p

1−p

.

So the growth at the maximum in Pinsky’s model will depend on p, strength of the cookie, i.e.

1 − O( 1

n
p

1−p
) . But the growth at the minimum is always 1 − O( 1

n). So we look at the special

case or the lower bound of the probability of growing at the maximum where p is 1
2 , this is just

a simple symmetric random walk which will exhibit a stationary distribution of growing at the

maximum and minimum as in [2, Proposition 1]

Theorem 3.1. Let Zn be an induced chain on {0, 1}. Let Zn = 0 if Xtn = m(tn) or if you are

at the minimum with the probability pm(n) = 1− p
1−p ×

1
n +O(n−2). Let Zn = 1 if Xtn =M(tn)

or if you are at the maximum with the probability plM(n) = 1 − 1
n + O(n−2). Thus, there is a

limiting distribution

lim
n→∞

P(Zn = 0) = 1− p =: πM

.

After we have the stationary distribution, by [2, Theorem 1], we get that when the size
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of the range is very large, the average of the time required to grow one unit is two times the

probability of jumping to the right times the size of the range at that time. And also the average

of time to grow to the the current size is equal to the probability times the square of current

size.

Theorem 3.2. (a) For large n

E∆n,n+1 = 2pn+ o(n).

(b) Asymptotically,

Etn = pn2 + o(n2).

So we know that the growth will not be less than this quantity above in Pinsky’s model or

when the first left jump change the environment. In summary, we have

pm(n) = 1− p

1− p
× 1

n
+O(n−2)

and

1− 1

n
+O(n−2) ≤ pM(n) ≤ 1−O(

1

n
p

1−p

) ≤ 1−
(

3

p
− 2− 1

p2

)
(
1− p
p

)n +O((
1− p
p

)2n).
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Chapter 4

Summary and Future Research

4.1 Summary

The research done in this dissertation extended the Pinky’s model [9] to include the second left

jump break cookie, only in deterministic case. We had to deal with some quantity which will not

arise in the Pinsky’s model. We also saw some similarities in cookie random walk and Pinsky’s

model. The crucial thing we had to look was the average of the total drift. In stationary and

ergodic cookie random walk, it was the average of the drift stored at site zero. In Pinsky’s and

our model we look at the total drift throughout the entire range. We also has some results on

the general kth case. Even though, we had only one side of the theorem similar to the case of

second left jump. For Pinsky’s model when the process was recurrence, it was like having a

geometric number of cookies waiting for the first left jump to change the behavior at that site.

In our model it was a negative binomial number of cookies waiting for the kth left jump.

Moreover, We had investigated the behavior of the growth of the length [2]. They had a

stationary distribution telling when the growth would take place at the same extrema site. And

the average speed of the growth followed. In our case, we tried to look for the same thing. But

we wanted to use the simplest model for better understanding. So, we used the Pinsky’s model

as our base model for this part.
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At the minimum, we had the precise probability due the the nature of underlying distribution

which is symmetric. We knew the probability of the growth at the maximum site was based

on the history. We can find the lower and upper bound to bound this quantity. For the lower

bound, the trivial lower bound was the walker had made alt least one left jump throughout the

interval except the minimum one. In this special case, we can reduce the model to random walk

perturbed at the extrema and can use the result from [2]. For upper bound, we also use the

trivial one which resulted in the probability decreasing exponentially. After utilizing the nature

of the environment, we had a better upper bound which decreasing in the order of polynomial

to the power of the ratio between the probability of jumping to the right and jumping to the

left. This makes sense when the probability of jumping to the right is increasing. This will imply

that the growth will more likely to take place at the maximum. But this upper bound cannot

be matched with the lower bound to had a stationary distribution.

4.2 Application and Simulation

Cookie random walk is one form of the biased random walk wildly used to model biological

systems such as a biased random walk model for the trajectories of swimming micro-organisms[7]

and biased random walk models for chemotaxis and related diffusion approximations[1]. For

example, in ecology to model animal movement, phathophysiology such as movements of cancer

cell in blood stream for invasion or movement of a white blood cell to eliminate the treat to the

organ. All of these models can be modeled using biased random walk. One advantage of random

walk model is that it can distinguish the underlying mechanism from the observed data. So we

have much better understanding of various movement mechanism in nature around us.

We also found that there are several models which are non-markovian. We will explain a few

examples. Elephant walk [12], for example, which is a discrete-time random walk with memory

of full history can be described as follows. For the first step, there is probability q to make 1

right jump and 1− q for making left jump. For the time t+ 1, choose the previous time t′ from

{1, 2, 3, . . . , t} uniformly and move exactly like that t′ step with probability p. If at time t′ the
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walker move to the right, at time t+ 1 the walker will also move to the right with probability p.

Similarly, left-jump at time t′ will lead to the left-jump at time t+1 also. With probability 1−p

the walker will move in the opposite direction from time t′. If p = 1
2 , then there is no memory

in the model. The walker move independent from its past. If p < 1
2 , we will call a reformer

or one who try to move differently from their past. If p > 1
2 , it will be more like a traditional

type, prefer to move similar to their past. Schütz and Trimper found the critical value of p

which is the memory parameter. This value will separate the walker in to 2 cases, a weakly

localized regime and escape regime which is similar to transience and recurrence in our context.

Moreover, in escape regime, they found another critical value which will make the process

superdiffusive.They also know that the probability distribution is governed by non-Markovian

Fokker-Planck equation.

As we have already discussed some models in the group of Reinforced random walk (RRW).

We may consider our model is also one kind of RRW. In this type of process, the walker will

modify the chemical environment of themselves or the chemical of other individuals within

the system. Therefore this type of models has been widely used to describe cell locomotion. It

allows the modelers to modify the transition probabilities using the information about the site

it visited or the path the walker took. In one dimensional RRW there is a “master” equation

as follows [5, equation (3.17)]

∂

∂t
p(x, t) = T+(x− δ, t)p(x− δ, t) + T−(x+ δ, t)p(x+ δ, t)− (T+(x, t) + T−(x, t))p(x, t).

Where T+(x, t) is called the transition rate from x to x + δ and T−(x, t) is from x to x − δ.

There is a discrete time version of the above equation as follows,

p(x, t+ τ) = p(x, t)(1− l − r) + p(x− δ, t)r + p(x+ δ, t)l.

Where τ is time step, l and r are probability of making a left jump and right jump with distant

δ, respectively. Let w(x, t) be a concentration of a control substance. Using the continuum limit,
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we derived,

∂p

∂t
=

∂

∂x

(
d(w)

∂p

∂x
− χ(w)p

∂w

∂x

)
.

Also notice that is is a one-dimensional version of the Fokker-Planck equation. Several possible

models can be derived from this equation such as ‘local model’, ‘barrier model’, ‘normalized

barrier model’ and ‘variable mean waiting time(VMWT)’. From modeler point of view this is

convenient since the functional form of d(w)(which describes the effects of a control substance

on random motility) and χ(w)(which describes directional effect) can tell a relationship be-

tween microscopic rules about the transition rates which govern individual cell behavior and

macroscopic scale of behavior at a population level.

There are two main types of mechanisms for movement in response to stimulus, kinesis

and taxis. Kinesis refers to a situation that the organism samples only at a single point and

adjust its speed accordingly. Taxis refers to a situation that the organism is able to detect

the preferential direction and bias its turn without necessarily altering total speed or turning

rate. Most of the time the random walk use the transition rates which we have to assume

that we have full control over migrating organism. But we can see that in barrier model, the

organism need at least 2 sensors to calculate the transition rate without moving. We call this

‘tropotaxis’. But in the case of having only one sensors, the same taxis can be produced by

moving itself around in various directions to sample the local various stimulus. This kind of

taxis call ‘klinotaxis’. Biased random walk (BRW) can be used for the simplest model of taxis

where there is no correlation between successive step direction. More realistic taxis model can

be derived in the form of Biased and Correlated random walk. The taxis will be determined by

weighting among the global directional bias(goal attractiveness, which controls the advection),

the local directional bias(persistence, which controls motility) together with the level of random

noise in the system.

We also have a simulation using Monte Carlo method in APL2. There is a programming

code in Appendix 2. Basically, we let the walker moves and when the walker visits the site 0,

we count as a successful event and end that experiment. Then we start the experiment again
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Table 4.1: Table represent the probability of successful coming back to site 0 within 10,000
steps started from site 1

.65 .7 .75 .8 .85 .9 .95

k = 1 - .6860 .4878 .3365 .2163 .1212 .0538

k = 2 .6524 .4890 .3565 .2627 .1782 .1142 .0524

and again independent of previous results. In other words, we have a sequence of iid random

variable for which each trial is Bernoulli random variable with the success p0. By the law of

large number, the average will converge to p0 = P1 (τ0 ≤ N). And if we let N → ∞ we will

have P1 (τ0 ≤ ∞) = 1− P1 (τ0 ≤ ∞) = 1− φ. We simulate for 10,000 times. We use the model

kth left jump break cookie random walk when k = 1 and 2. Next will be the plot between the

simulation of unsuccessful event or subtract our data from 1.

Figure 4.1: Plot comparing the theoretical and simulation results

We can see from the graph that both results are fitted perfectly within their respective

bounds.

4.3 Future research

We saw that both first left jump and kth left jump cookies model acted like a geometric and

negative binomial, respectively. We can arise to change the underlining distribution such as
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uniform distribution, the effect of cookie will fade away gradually, which we think it will be

similar to one form of Vertex-Reinforced Random Walk. The transition probability will depend

on how frequent the number of visit is. The important part but not yet been answer is the

speed of the walk in kth left jump model or at least second left jump. We can see also that

even in the Pinsky’s model, the speed criterion is not yet completed. Or we can try to unify

the assumption in which all the cookies-related model will work. Because right now the Pinsky’

model have been treated separately but having the similar result. The most promising maybe

the second part of the general kth left jump theorem which we suspect it will true but not yet

completed. We think that the other part of the proof in general kth left jump model can be

done with similar idea we used in proving second left jump.

In Pinsky’s random walk [9], stationary and ergodic results followed from the deterministic

case with some treatment of the environment. So it is possible to try to extend our results to

include the stationary and ergodic environment case also.

About the range problem, lots of questions have been unanswered. We know precisely about

the speed of Pinsky’s model in transient case when the probability of jumping to the right is

higher than 10
11 . Pinsky himself also believes that it should be true for all transient case. We

can think about the speed of the maximum point or the growth of the length. It should show

some connections to the speed in transient case. We can think about this in other cookie models

too since there is a possibility of being transient but having zero speed. Or may be the scaling

factor is not precise in those models.

We can also try to consider Pinksy’s model when there is only limited amount of memory

similar to [2] which consider the limited memory of random walk perturbed at extrema. Since our

memory is limited, it is natural to ask the questions like that. Using the idea and knowledge for

generalizing Pinsky’s model, we think about a learning process in which the past will influence

the decision at the current time like in ERRW or VRRW. Or using this idea that the first or

second or kth of something will change the environment or the decision making at that current

time.
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Appendix A

Doob’s Optional Stopping Theorem

Definition A.1 (Martingale). Let M = {Mn}∞n=0 with Mn ∈ L1 (Ω,F , P ) for n=0,1,. . . . Let

{Fn}∞n=0 be a filtration on (Ω,F , P ).

(i) The process M is called martingale if M is {Fn}∞n=0-adapted and

E(Mn+1 | Fn) = Mn a.s. for n = 0, 1, . . . .

(ii) The process M is called sub-martingale or super-martingale , if M is {Fn}∞n=0-adapted

and

E(Mn+1 | Fn) ≥Mn a.s. or E(Mn+1 | Fn) ≤Mn a.s.,

for n = 0, 1, . . . , respectively.

Definition A.2 (Martingale). A discrete-time stochastic process {Xn}∞n=0 is martingale if

(a) E (|Xn|) <∞ for all n, and

(b) E (Xn+1 | X0, X1, . . . , Xn) = Xn.

Definition A.3 (Stopping Time). Let (Ω,F , P ) be a probability space equipped with a filtra-

56



tion {Fn}∞n=0. A random variable (time) τ : Ω→ N ∪ {∞} is called stopping time if

{ω ∈ Ω | τ(ω) = n} ∈ Fn for n = 0, 1, 2, . . . .

Theorem A.4 (Doob Decomposition Theorem). Any submartingale {Xn}∞n=0 , can be written

in a unique way as Xn = Mn+An, where Mn is a martingale and An is a predictable increasing

sequence with A0 = 0.

Theorem A.5 (Doob’s Optional Stopping Theorem). Let X ={Xn}∞n=0 be a martingale with

respect to {Fn}∞n=0 and τ1, τ2 : Ω→ N be stopping times such that

τ1(ω) ≤ τ2(ω) ≤ T <∞

for all ω ∈ Ω and for some T > 0. Then

E(Xτ2 | Fτ1) = Xτ1 a.s.
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Appendix B

APL2 simulation Code

The first code will be the code that generate uniform distribution on [0, 1].

The next code will give the result of the position of the walker after a certain steps.

58



59



The following code will check whether the walker come back to 0 from 1 within 10000 steps

in Pinsky’s model.

60



The following code will check whether the walker come back to 0 from 1 within 10000 steps

in the second left jump break cookies model.

61


