ABSTRACT

ELSINGER, JASON ROBERT. Classification of Orbifold Modules under an Automorphism of
Order Two. (Under the direction of Bojko Bakalov.)

Two-dimensional conformal field theory is important in physics as it plays a crucial role in
string theory. A vertex algebra is essentially the same as a chiral algebra in conformal field theory.
Vertex algebras arose naturally in the representation theory of infinite dimensional Lie algebras
and were first axiomatized in 1986. Both string theory in physics and monstrous moonshine in
mathematics played crucial roles in the development of the theory.

In this thesis, we investigate the representation theory of the fixed point vertex subalgebra
Vg of the lattice vertex algebra Vg associated to an arbitrary positive definite even lattice @
under an automorphism of order two. It is a fundamental problem in the theory of orbifolds
to classify the irreducible modules and the main result uses explicitly a number of previous
results in classifying the irreducible orbifold modules. We also give explicit constructions of all
orbifold modules corresponding to the simply-laced simple Lie algebras with a Dynkin diagram

automorphism of order two.
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Chapter 1

Introduction

In 1968, Victor Kac and Robert Moody independently discovered a new class of Lie algebras
now called Kac-Moody algebras, which are infinite dimensional analogs of finite dimensional
simple Lie algebras. A special type of these algebras, called affine Lie algebras, has rich and
beautiful structures. It turns out their representation theory has many applications in both
mathematics and physics, particulary in proving the moonshine conjectures.

The monstrous moonshine began as an astonishing set of conjectures relating the largest
sporadic finite simple group, the Monster group, to the theory of modular functions in number
theory. However, the connections between the Monster group, number theory, and other fields is
still not fully understood. For more details, see the introduction to [LL].

From the study of the moonshine conjectures, a new kind of algebra of operators was emerging,
called vertex operator algebras, based on the operator product expansion in quantum field theory.
These operators were introduced in the early days of string theory in order to describe certain
kinds of physical interactions. Vertex algebras arose naturally in the representation theory of
affine Kac-Moody Lie algebras and were first axiomatized by Richard Borcherds in 1986.

Let @@ be an integral lattice, i.e., a free abelian group equipped with a Z-valued symmetric
bilinear form (:|-). Then one can construct an associated vertex algebra called a lattice vertex
algebra and denoted V [B; K1; LL]. Any automorphism o of ) can be naturally lifted to an
automorphism of Vg but the order may double [BK].

For a vertex algebra V and a finite group of automorphisms I' of V, the subalgebra VI of
I-invariant elements in V' is an orbifold vertex algebra. Geometrically, an orbifold can be viewed
as a generalization of a manifold by considering the orbits of an action of a finite group on the
manifold.

Now each simply-laced simple Lie algebra can be associated with an even integral lattice. The
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twisted modules for vertex algebras associated to an even integral lattice have been considered in
[FLM; L; KP; D1]. In particular, [D1; AD; DN] considers the specific cases when ¢ = 1 and
o = —1. For a root lattice of a simply-laced Lie algebra of finite type, the lattice vertex algebra
gives a representation of the associated affine Kac-Moody algebra at level one (see Theorem
3.3.10). It has also been shown in [BK] that for an even integral lattice @), the irreducible
o-twisted V-modules are in one-to-one correspondence with the space (Q*/Q)? of o-invariant
elements in Q*/Q.

It is an open question as to whether every orbifold module can be realized as a restriction of
a twisted module. We present a full classification of the Vi§-modules corresponding to an even
positive definite integral lattice () and an automorphism o of the lattice of order two. Other
examples of orbifolds and general properties of orbifold theories have been studied in [DVVV;
DLM2; KT].

In Chapters 2 and 3, we review necessary background material as well as the results used
throughout this thesis. Previous knowledge of Lie algebras is not assumed. Chapter 2 discusses
the definition and notion of a Lie algebra and its representations. Some particular examples are
singled out as they will be pertinent in Chapter 5. Chapter 3 discusses the definition and notion
of a vertex algebra and its twisted and untwisted representations. We also describe the explicit
construction of twisted modules over lattice vertex algebras.

Chapter 4 contains the main result. We first determine the structure of the orbifold of a
lattice vertex algebra with an automorphism of order two. It turns out that a suitable sublattice
is sufficent to describe the structure. We then construct the orbifold modules of twisted and
untwisted type. More specifically, we use results from [AD; DN; FHL; A1l] to obtain the
following result:

Let Q@ be an even positive definite integral lattice, Vy the corresponding lattice vertex
algebra and let o be an automorphism of @) of order two. Then each irreducible Vg -module is a
submodule of a twisted Vg-module.

In Chapter 5, instances of the main theorem are worked out explicitly for each root lattice
corresponding to the simply-laced simple Lie algebras with a Dynkin diagram automorphism of
order two. Note that a Dynkin diagram automorphism is an example of an outer automorphism,
i.e., not an element of the Weyl group. We also show how the orbifold modues of twisted type
are constructed using [BK]. At the end of each example, we present a correspondence between

the two constructions.



Chapter 2
Lie Algebras and Root Systems

In this chapter, we review classical and affine (Kac-Moody) Lie algebras, root systems, and
their connections with lattices. Unless otherwise stated, all algebras will be over the complex
numbers C. We also introduce certain examples used throughout this thesis as well as review
some representation theory. For more details concerning the theory of Lie algebras, see [H| for

finite dimensional Lie algebras, and [K1] for infinite dimensional Lie algebras.

2.1 Lie Algebras

In this section, we give the basic notions and definitions. To give a bit of history, the study of
Lie algebras arose from the studies of Sophus Lie in the late nineteenth century. He admired
Galois’s work on the symmetries of algebraic equations and wanted to do a similar study for the
solutions to differential equations. He did this by considering all the (infinite) solutions together
and viewed how one morphed into another as initial parameters changed. This led him to groups
of “continuous transformations”, where one operation could gradually transform into another.
He was later led to the concept of “finite, continuous groups” - now called Lie groups.

An indispensable tool for studying Lie groups is its associated Lie algebra, which can briefly
be described as the tangent space of a Lie group at its identity. Lie algebras contain a natural
product, called the bracket, which is neither commutative nor associative. It turns out that much
information about a Lie group can be determined from its Lie algebra. From this realization
came the abstract study of Lie algebras, where the definition can be given axiomatically and

independent of Lie groups.

Definition 2.1.1 A Lie algebra is a vector space g over C together with a map [-,-] : gxg — g
such that for « € C and x,y,z € g,
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i) lax +y, 2] = alz, 2] + [y, 2],
i) [x,z] =0,
i) [z, [y, 2] = [[z,y], 2] + [y, [z, 2]].

Note that the first two axioms imply the bracket is bilinear and the second axiom implies
the bracket is skew-symmetric (i.e. that [z,y] = —[y, x]). The third axiom is called the Jacobi

identity and is crucial to the structure of Lie algebras.

Example 2.1.2 For a vector space V' with an associative product, one can define a Lie algebra

structure via the commutator bracket [v,w] =v-w —w - v, where v,w € V.

Example 2.1.3 Let V' be a complex vector space. The set of all linear endomorphisms, End V,
1s an associative algebra under function composition. The Lie algebra obtained from End V'

endowed with the commutator bracket is denoted gl(V').

As with most algebraic structures, the notions of subalgebras and structure preserving maps

are defined in the natural way.

Definition 2.1.4 A (Lie) subalgebra of a Lie algebra g is a subspace iy C g such that [h,h] C b.
A Lie algebra homomorphism is a linear map ¢ : g — @’ such that ¢ ([x,y]) = [¢(z), d(y)] for

all x,y € g. An isomorphism is a bijective homomorphism.

Example 2.1.5 Consider the vector space gl,, = gl(n,C) of n x n matrices over C. This space
naturally becomes a Lie algebra under the commutator bracket. This Lie algebra has a subalgebra
of traceless matrices, denoted sl,, = sl(n,C) = {A € gl,|tr(A) = 0}. This subspace is a subalgebra
since for A, B € sl,,

tr([A, B]) = tr(AB) — tr(BA) = tr(AB) — tr(AB) = 0.

A basis for gl,, consists of the matrices Ej;, having a 1 in the (i, ) position and zero elsewhere.

The bracket in gl,, can then be given as
[Eij, Eri) = 6juEqy — daEy;,

where 0;;5 is the kronecker delta. Note that the bracket on the basis elements extends to the whole
algebra via bilinearity. The Lie algebra gl,, is called the general linear Lie algebra and sl is

called the special linear Lie algebra and also denoted as Ap_1.
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We also have the notion of “irreducible” Lie algebras, where attention most often is restricted.

Definition 2.1.6 An ideal of a Lie algebra g is a subalgebra i C g such that [g,i] C i. A simple

Lie algebra is a nonabelian Lie aglebra for which the only ideals are itself and the trivial ideal
{0}

Example 2.1.7 Let I, denote the identity matriz in gl,,. Then CI, is an ideal of gl,, so that

gl,, is not simple. It can be shown that s\, is a simple Lie algebra for every n.

The classification of finite dimensional simple Lie algebras over C is beautifully described in
terms of associated connected digraphs called Dynkin diagrams. The classification can be found
in many texts, notabaly [H]. Examples of the main result are computed for certain families in
this classification and are presented in chapter 5.

Again as with most algebraic structures, we also have notions of modules and representations.

Definition 2.1.8 Let g be a Lie algebra and V' be a vector space. Then V is a g-module if there
is a bilinear map (-,-) : gxV — V, denoted (g,v) = g-v, such that [z,y]-v =z-(y-v)—y-(z-v)
forallx,y eg andv e V.

Remark 2.1.9 Given a g-module V, each g € g yields a linear map: ¢(g)(v) = g - v, for all
veV. Itis easy to see ¢ : g — gl(V') is a homomorphism, called a representation of g on V.
Conversely, each representation ¢ : g — gl(V') corresponds to a g-module V with action defined

by g-v = ¢(g)(v).

Example 2.1.10 For a Lie algebra g and an element x € g, define a linear map ad, on g
given by ad;(y) = [x,y|. The map ad : g — End(g) given by ad(x) = ad, is called the adjoint
mapping and forms a Lie algebra homomorphism, due to the Jacobi identity. Hence g is a

module over itself and the mapping ad is also called the adjoint representation.

Definition 2.1.11 A g-module V is completely reducible if V' can be written as a direct sum

of irreducible g-modules.

2.2 Root Systems

Let V be a complex vector space and T be a linear operator on V. The operator T is called
nilpotent if TN = 0 for some positive integer N and called semisimple if its minimal polynomial
has distinct roots. Note that over the algebraically closed field C, the condition of T being

semisimple is equivalent to 7" being diagonalizable.
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This thesis will mainly be concerned with simple and semisimple Lie algebras, i.e., Lie

algebras that can be written as a direct sum of simple ideals.

Definition 2.2.1 For a Lie algebra g not consisting entirely of nilpotent elements, a toral

subalgebra of g is a subalgebra generated by semisimple elements.

Remark 2.2.2 Let Derg be the set of all derivations of the Lie algebra g, i.e., the set of linear
maps 0 that satisfy
S[z.y] = [0z, y] + [z, 0],

for all x,y € g. It is well known for a semisimple Lie algebra g, that ad g = Derg and that the
map ad is injective. This implies that each x € g can be uniquely expressed in the form x = s+mn,
where s,n € g with [s,n] =0 and ads is semisimple, ady, is nilpotent (see [H]). The elements s
and n are called the semisimple and nilpotent parts of x, respectively, and the decomposition
x = s+ n is the (abstract) Jordan-Chevalley decomposition. Hence a (semi)simple Lie algebra

must contain at least one semisimple element.

It is known that toral subalgebras are abelian. Let g be a semisimple Lie algebra and
fix a maximal toral subalgebra h C g, i.e., one that is not properly contained in any other.
Then since b is abelian, the set of maps adgh = {ad,|h € b} is a commuting family of
semisimple endomorphisms of g. It is a standard result of linear algebra that the set adgh is

then simultaneously diagonalizable. Thus g can be written as a direct sum of eigenspaces
0o = {z € g|[h,x] = a(h)x V h € b}, (2.1)

where « ranges over the dual space h*. It can be shown that g is precicely b (see [H]). Then we

obtain the following important decomposition of any semisimple Lie algebra.
Definition 2.2.3 Let g be a semisimple Lie algebra with maximal toral subalgebra . The root

g=bha ] s

acd

where & = {a € h*\{0}| go # 0} is the set of roots of g relative to .

space decomposition of g is

In the following proposition, we give more precise information about the structure of the

root space decomposition. The details of the proofs can be found in many standard texts.

Proposition 2.2.4 Let g be a semisimple Lie algebra with maximal toral subalgebra by. Then

the root space decomposition g = b & H ga has the following properties:
acd
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i) the set of roots ® spans the dual space bh*,
ii) for each o € ®, the subpaces go and [gu, §—a) are one dimensional,

iit) for each o € ® and nonzero x,, € gq, there exists Yo € g—o such that xo, Yo, ha = [Tas Yo

span a three dimensional simple subalgebra of g isomorphic to sla.
iv) for each root o € ®, the only scalar multiples of o which are also roots are ta,

v) if a,B,a0+ B €, then [ga, 98] = ga+5,
vi) g is generated (as a Lie algebra) by the root spaces gq .
Example 2.2.5 We write the root space decomposition for sls. Recall that sls is an 8 dimensional

vector space with the basis E;j for i # j and the diagonal elements h;y = Ey — Eit1,41. The

maps adp, and adp, on the basis elements are as follows:

[h1, E12] = 2Ep [h2, Er2) —E2
[h1, Er3] = Eq3 [h2, Er3] = Eq3
[h1, B3] =  —Eo3 [h2, B3] = 2Ea3
[h1,Ey] = —2Eo [h2, Ea1] = Eo
[h1,E31] = —E3 [h2, E31] = —E3
[h1, B3] = E3o [h2, E3s] = —2E3

Reading the eigenvalues of adp, and adp, gives the roots of sls. The following table presents

the values of each root on hy and hs.

a1 a2 Q3 QY Qs (875
hy 2 1 -1 -2 -1 1
hy -1 1 2 1 -1 =2

Notice that a1 = —ay, ag = —as, and az = —ag. Hence the set of roots are ® = {+a1, tag, tasz}

and the root space decomposition is
sl = CE12 @ CE13 ® CEy3 @ spanc{hi, ha} & CEy @ CE3 @ CEsa,

where the maximal toral subalgebra is h = spanc{h1, ha}.
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The set of roots also has a rich structure among themselves and can be studied in an
abstract setting, where the roots are viewed as vectors in a Fuclidean space. Recall a Euclidean
space is a vector space E with a positive definite, symmetric, bilinear form (-|-) (an example

being the dot product among vectors). For a, 8 € E, the reflection of 5 about « is given by

2(8])
Ua(/B) = pB-
(ala)
leaving pointwise fixed the hyperplane P, = {8 € E | (8|a) = 0}.

a. Geometrically, each reflection o, in F is an invertible linear transformation

Definition 2.2.6 A subset ® of the Euclidean space E is called a root system in E if:
i) @ is finite, E = span{®} and 0 ¢ P,
ii) for a € ®, the only multiples of o in ® are +a,

iit) for a € @, the reflection o leaves ® invariant,

2(Be)
(ala)

The form (-|-) on the set of roots can be given in terms of the Killing form on Lie algebras:

i) for a,f € @, the expression is an integer.

k(x,y) = tr(ad, ady). Therefore, for a semisimple Lie algebra g and maximal toral subalgebra b,
we have a correspondence between pairs (g, h) and pairs (P, E). A classification of root systems
then corresponds to a classification of semisimple Lie algebras. This axiomatic approach to
root systems actually has the advantage of providing results which apply simultaneously to Lie

algebras, Lie groups, and linear algebraic groups.

Remark 2.2.7 The root space decomposition of a semisimple Lie algebra is unique in the

following sense:
two semisimple Lie algebras having the same root system are isomorphic, and

all mazimal toral subalgebras of a semisimple Lie algebra are conjugate.

Thus a semisimple Lie algebra is uniquely determined (up to isomorphism) by its root system

relative to any mazximal toral subalgebra.

One nice property about root systems is the existence of a special type of basis, called a

base.

Definition 2.2.8 A subset A of ® is a base if:
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i) A is a basis of E,

ii) each root B can be written as f = Z koo, where the ko ’s are all nonnegative or all
aEA

nonpositive integers.
The definition of a base fails to garauntee that such a basis exists, but it can be shown that all

root systems indeed have a base (see [H]).

Example 2.2.9 In Example 2.2.5, the roots for sls were computed to be ® = {+ay, tag, as},

where ag = a1 + a3. Thus a base of sl is A = {ay,as}.

The classification of the simple finite dimensional Lie algebras is determined from the
classification of (irreducible) root systems and forms a beautiful theory. The details of the
classification are given in many texts, and here we only give the necessary data for this
thesis—that concerning the simply laced simple Lie algebras. These Lie algebras are labeled as
Ap(n>1), Dy(n >4) and (the exceptional types) Eg, E7, Es. We now give a brief description
of the construction of the families A, and D,,. The description of the exceptional type Eg will

be given in chapter 5.

Ay =slpp1(n > 1):

Define the elements ¢; € b* by ¢;(diag(a1,...,an+1)) = a;. Let I be the Z-span of the g;’s
and let E be the n dimensional subspace of R™*! orthogonal to the vector &1 + - - - + En+t1- Take
¢ ={aeclnkE|(a|la) =2} ={e; —¢;]i#j}. One can check that ® forms a root system in E.
A base for this root system is given by A = {a; = ¢; — g;41}: clearly the a;’s are independent

and g, —gj = a; + a1 + -+ a1 for i < j.

Dy (n>4):
Let E = R" and take ® = {a € I'| (a]a) =2} = {£(e; £ ¢;) |7 # j}. One can show that ®
forms a root system in E. A base for this root system is given by the n independent vectors

A= {51 —€92,62 —€3,...,Ep—1 — Ep,En—1t En}-

2.3 Lattices

The construction of the main object of interest in this thesis requires the use of lattices. We give

the necessary definitions and briefly describe important examples used later in the constructions.
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Definition 2.3.1 A (rational) lattice of rank n € N is a rank n free abelian group L equipped

with a Q-valued symmetric Z-bilinear form
(]): LxL—Q.
The lattices used in this thesis require several nice properties we now define.

Definition 2.3.2 Let L be a lattice and o, 8 € L.

i) L is nondegenerate if its form (-|-) is nondegenerate in the sense that (a|L) = 0 implies

a=0.
ii) L is even if (a|a) € 2Z for all .
iii) L is positive definite if (a]a) > 0 for all a € L\{0}.
iv) L is integral if (a|B) € Z for all o, 5.

Remark 2.3.3 A lattice may be equivalently defined as the Z-span of a basis of a finite dimen-
stonal rational vector space equipped with a symmetric bilinear form. A lattice isomorphism is

also called an isometry.

Let {a1,...,a,} be a Z-basis of a lattice L. Then an equivalent way of determining whether

L is nondegenerate amounts to the condition
det((oulay))itj=1 # 0. (2.2)

For a field E of characteristic zero, the lattice L can be embedded in the E-vector space

Lg = L ®7 E and the form on L can be extended to the symmetric E-bilinear form

Then L is positive definite if and only if the real vector space Ly is a Fuclidean space. It can
also be shown that an even lattice is automatically integral.
The dual of a lattice L is the set

L* ={a € Lg|(alL) C Z}. (2.3)

As long as the lattice L has full rank, the dual L* will also be a lattice. Equivalently, the dual L*
forms a lattice if and only if L is nondegenerate. Note that L is integral if and only if L C L*. A

10
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lattice L is also called self-dual if L* = L. For a nondegenerate lattice L with basis {a1,...,an},
the dual lattice L* has as a basis the dual basis {a], ..., o}, i.e., a basis for which (a|c;) = d;;.

Some important examples that are used later involve lattices corresponding to the root
system of the simply-laced simple Lie algebras. Let A be a base for the root system of a

simply-laced simple Lie algebra g. The lattice

Q=7ZA= {anoﬂnz ez, o; EA} (2.4)

generated by A is the root lattice of g. Its dual

P=Q" ={aehl(aQ) CZ} (2.5)

is the weight lattice.
Let Qx be the root lattice corresponding to the simple Lie algebra X. Then the following

are the root lattices corresponding to A, and D,,:
n+1
QAn:{Zmiei miEZ,Zmizo}, (2.6)
i=1 i
n
QDn: {Zml& miGZ,Zm¢E2Z}. (27)
i=1 i

The root lattice for Eg will be described in chapter 5. The root lattice g, corresponding to Eg

is self-dual and the only even self-dual lattice among the root lattices of simple Lie algebras,

even allowing for possible rescaling of the lattices (see [FLM]).

2.4 Affine Lie Algebras

There are two equivalent ways of defining the (untwisted) affine Kac-Moody Lie algebras. One
can give the notion of a generalized Cartan matriz, and define the affine algebras to be one of
three possible classes of such matrices. Alternatively, one can describe an affine algebra as the
central extention of the loop algebra of a simple Lie algebra of finite type (the ones given by the
classification above). We will use this latter definition as it is more explicit and suggestive of

further constructions.

Definition 2.4.1 Let g be a Lie algebra. The algebra g := g ® C[t,t71] = g[t,t™!] is called the
loop algebra of g.

11
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The loop algebra can be described as the set of Laurent polynomials with coefficients in g.
Elements in g[t, '] are sums of ones of the form a ® t" (a € g,n € Z) and this is abbreviated
as ap. The loop algebra indeed forms a Lie algebra under the bracket [ay, by] = [a, bntm.

It is well known that the loop algebra g of a Lie algebra g has a one-dimensional central
extension

g=oglt,t |8 CK, (2.8)
and this set also forms a Lie algebra with bracket defined by
[an, bm] = [a, blpntm + 165, —m(a|b) K, (2.9)
9, K] =0, (2.10)
where (-|-) is a symmetric invariant bilinear form on g.

Remark 2.4.2 [t is necessary for the form (-]-) to be symmetric, invariant and bilinear in order

for g to form a Lie algebra. The construction for § is called the affinization of g.
We thus obtain the following definition of affine algebra [K1].

Definition 2.4.3 Let g be a Lie algebra with symmetric invariant bilinear form (-|-). Then the

Lie algebra

with bracket defined by

[an, ] = [a, blngm + n5n’_m(alb)K,
9, K] =0,

is called the affine Kac-Moody Lie algebra associated with g and (-|-).

When § is a subalgebra of g, we shall consider h and 6 as subalgebras of g and § in the
obvious way. We will also use an analog of affinization by “twisting” by an involution of g. Recall
an involution is an automorphism o for which ¢ = 1.

Let o be an involution of g which is also an isometry with respect to the form (-|-), i.e.,
satisfying the condition

(oz]oy) = (x]y)- (2.11)
For i € Z/2Z, set
gi) = {z € glox = (-1)'z}. (2.12)

12
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Then we have the following decomposition:

g =90 @ 90) (2.13)
[9(0), 8(0)] € 8(0)>  [80): 81)] C 8(1),  [8(1), 8(1)] C B0y (2.14)
(90)l8(1)) = 0. (2.15)

Consider the algebra C[t'/2,t=1/2] of Laurent polynomials in the indeterminate t'/2 whose

square is t, and form the algebra
i=gocCltY?, /% @ CK. (2.16)

Formulas (2.9) and (2.10) make i into a Lie algebra. Let # be the involution of C[t'/2,¢t1/2]
given by G(tl/ 2 = —tY/2 and denote by o the automorphism of i determined by

o(K)=K,
o(z® f)=o(x) @0(f),

for x € g and f € C[t!/2,¢t71/2].
Definition 2.4.4 The subalgebra

glo] = {zreci|jox =2z}
(80) ®C[t,t ™) @ (g(l) ® tl/QC[t,t_l]) & CK

is the twisted affine algebra associated with g and (-|).

Two particular Lie algebras will be useful later on, those being the (infinite dimensional)
Heisenberg algebra and the Virasoro algebra. We breifly define each and give some pertinent
details.

Definition 2.4.5 A Lie algebra | is a Heisenberg Lie algebra if the center of | is equal to [1,1],

and is one dimensional.

We will be concerned with the Heisenberg algebra s with basis {a,, K |n € Z} and commu-
tation relations

[am, an) = MOy, —n K, [K,am] =0. (2.17)

13
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The algebra s is also referred to as the oscillator algebra and has a representation on the space

of polynomials in infinitely many variables B = Clz1, x2, .. .| given by:

0

= 9w a_p = Nnxy, (n>0)

ap =0, K=1.

an

It is easily shown that B is indeed a representation of s, called the Bosonic Fock space.

o0
The s-module B is also graded via dimz,, = n, i.e., B = EB B,, with dim B,, = p(n), where
n=0
p(n) is the partition function. The algebra s also has the following triangular decomposition:

5= Span{an}n<0 D span{ao, K} D Span{an}n>0~

As infinite matrices, the elements a,, with n < 0, are lower triangular and called creation
operators, and the elements a,, with n > 0, are upper triangular and called annthilation
operators. It can further be shown that the Bosonic Fock space B is an irreducible s-module and

that every such representation is isomorphic to B.

Definition 2.4.6 The Virasoro algebra is a Lie algebra with basis {L,,,C|n € Z} and commu-

tation relations

[Lins L] = (m — 1) Lypn + ————0m,—nC, (2.18)

and [Ly,C] =0 for alln.

The Virasoro algebra can be constructed in a few different ways. One way is to realize the

Virasoro operators from the Heisenberg operators:

1 o0
Lo = 5@% +) " apa, (2.19)

k=1

1
Ln =3 > an_gar, n#0, (2.20)
keZ

C=1. (2.21)
The Virasoro operators commute with the Heisenberg operators via [Ly, am] = —mam, 4. From

this relation, the commutator (2.18) can then be verified.

14
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Another way is to recognize the Virasoro operators as a central extension of the derivations

of the algebra Clt,t~!]. This Lie algebra is given by

d
D tt N=Cltt 11—
erC[ 9 ] C[? ]dt’

the set of polynomial vector fields on the circle, and has as a basis the set

d

It can be shown that these basis elements satisfy the commutation relation
[dm,dn] = (M —n)dpin.

Then the Virasoro algebra is a central extension of the Lie algebra Der C[t,t~!]. Suppose in the
central extension Der C[t,t~1] @ CC we have

[dm,dn] = (M —n)dptn + a(m,n)C,

3 _
where C' is the central element. Then it can be shown that a(m,n) = Sm,,n% and the

1
choice of the factor g comes from physics.

15



Chapter 3
Vertex Algebras

In this chapter we introduce the notion of a vertex operator algebra and present some pertinent
examples. The structure of a vertex algebra was first introduced by Richard Borcherds in 1986
[B] and have since been realized as having deep roots and applications in both mathematics
and physics. Roughly speaking, the elements of these algebras are types of “vertex operators”,
which were introduced when string theory was first coming about. These operators were meant
to describe certain kinds of physical interactions within the context of string theory.

After some time, it was further realized that the theory of vertex operator algebras could
be used to describe a remarkably beautiful mathematical entity called the Monster, the largest
sporadic finite simple group [FLM]. It is a symmetry group of a special structure, the Griess
algebra of dimension 196883. It has been proved that the Monster is actually the full automorphism
group of the Griess algebra.

Vertex algebras have also been recognized as being closely related to two-dimensional quantum
field theory [BPZ]. The application of vertex algebras in this thesis will be the representation
theory of infinite dimensional Lie algebras, which is also the area out of which these objects
were born. For more details on vertex operator algebras and their representations, as well as
information concerning their history, the reader is referred to [FHL; FLM; K2; LL].
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3.1 Definitions and Examples

Let V be a vector space and z be a formal variable. We denote by V[[z,27!]] the vector space

of formal Laurent series in z with coefficients in V:

V[, z_l]] = {Z vp 2"

nez

vy € V} . (3.1)

Remark 3.1.1 In vertex algebra theory, this vector space is often taken as EndV, the endo-

=1 where

morphisms of the vector space V, and the formal series is written as ), c; Vnz
v € End V' is parametrized by the element v € V and n € Z. Important such formal series will

be called “vertex operators”.

The space V[[z,271]] contains a number of subspaces which become useful in the theory:

k

Vizg,z7l] = { Z vp 2" ’ m,k>0,v, € V} , (formal Laurent polynomials)  (3.2)

V{[z]] = {E vp2" vy € V} , (formal power series) (3.3)
neN

V((z) = {Z v 2" | vy € Vv, =0 for n < 0} . (truncated Laurent series) (3.4)
neL

The notation v, = 0 for n < 0 means that there exists some integer N < 0 such that v, = 0 for

all n < N, i.e., that v, is zero for n sufficiently negative.

Remark 3.1.2 A formal sum or product of formal series of operators on a vector space is
understood to exist if and only if the coefficient of any monomial in the formal sum or product
acts as a finite sum of operators when applied to any fixed, but arbitrary, vector in the space.

Hence infinite sums of operators are allowed, but only under this restrictive condition.

In general, we cannot always multiply formal series. An example of a nonexistent product in

Cllz,271]] is

2

n>0 n<0
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Definition 3.1.3 A formal series of the form

m n
g Umon,. 2 WL

m,n,...€Z

where apm n,... are elements of a vector space V, is a formal distribution in the indeterminates

zZ,w,... with values in V.

Now consider the affine algebra g. For a € g, the formal distribution

a(z) = Z anz "1

neZ

is called the current associated to a € g. For a,b € g, the corresponding formal distributions
a(z) and b(w) can be used to write the commutation relations among all a,, and b,.
In order to write the commutation relation between two formal distributions, we define a

formal distribution in z and w with values in C:

é(z—w) = Z e Cflz, 27w, w™Y), (3.5)

neL

called the formal delta function. Then using this distribution, it can be shown that

[a(z),b(w)] = [a,b](w)d(z — w) + (a|b) KOy (z — w). (3.6)

The bracket [a,,, by] is then determined by computing the coefficient of z=™~ 1w =""1,

The delta function has additional properties that characterize an important axiom of vertex

algebras.

Proposition 3.1.4 The following are some properties of the delta function:
i) 0(z —w) =d(w — 2),
i) 0,0(z —w) = —0wd(z — w),

iii) (z —w)told(z —w) =0, j>0.

For the affine algebra g, we therefore obtain

(z — w)Q[a(z), b(w)] = 0.

18
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Whenever the bracket between two distributions is in the null space of the operator of multipli-
cation by (z — w)¥, for N sufficiently large, we say the distributions are mutually local. The
idea of locality is important for many calculations in vertex algebras and is also a central axiom
of the definition.

Definition 3.1.5 A vertex algebra is a vector space V' endowed with a vector |0) (called the

vacuum vector), an endomorphism T (called the infinitesimal translation operator), and a linear

map
Y(,2):V — (EndV)((2)) (3.7)
a +— Y(a,2)= Za(n)z_”_l, amy € EndV (3.8)
nez

such that agyv =0 forn>>0 and v € V and the following azioms hold for all a,b € V':
i) (translation covariance): [T,Y (a,z)] = 0Y (a, z),

ii) (vacuum): T'|0) =0, Y (|0),2) = Iy, Y(a, 2)|0)|.=0 = a,

i) (locality): (z — w)N[Y (a, 2),Y(b,2)] = 0 for N > 0.

Remark 3.1.6 A formal distribution

> a2 € (End V)[[z, 27 Y]]

nez

is called a field if agyv =0 forn>0 andv € V. The elements of a vertex algebra are called
states; the linear map Y is called the state-field correspondence and the coefficients a(y, are

called modes.

An important notion that causes many products among formal distributions to be well

defined is that of normal ordering.

Definition 3.1.7 For two fields a(z) and b(z), their normally ordered product is
ca(z)b(z) == a(z)+b(z) + b(2)a(z)_, (3.9)
where a(z)4 = Z a(n)zfnfl and a(z Za .

n<0 n>0
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We now give two important examples of vertex algebras, those corresponding to the Heisenberg

algebra and Virasoro algebra (cf. Section 2.4).

Example 3.1.8 Recall the Heisenberg algebra s with basis {an, K |n € Z} and bracket given by
(2.17). Consider the s-valued formal distribution

a(z) = Z anz "L

Then it is straightforward to check that the commutator is given in terms of the delta function
by the formula
[a(2),a(w)] = 0wd(z — w)K.

From this commutator, it is clear that a(z) is local with respect to itself. Here we have that

(ala) =1 and the (even) formal distribution a(z) is called a free boson.

Example 3.1.9 The Virasoro field can also be written in terms of the free boson. Define L(z)
to be the field

L(z) = = :a(2)? (3.10)

where a(z) is the free boson. It is an exercise to show that the commutator is given by
1
[L(z), L(w)] = 0L(w)d(z — w) + 2L(w)0wd(z — w) + 5083,5(2 —w). (3.11)

This commutator relation is equivalent to the bracket given in (2.18). It is also clear that the
field L(z) is local with respect to itself.

Most important examples of vertex algebras used in applications contain a vector whose

corresponding field is the Virasoro field L(z).

Definition 3.1.10 A vector v in a vertex algebra V is a conformal vector if its corresponding
field Y (v, z) is a Virasoro field, i.e, satisfies (3.11). Such a vertex algebra is called a conformal

vertex algebra.

In Lie algebra theory, most interesting algebras are either finite dimensional or, more
generally, Z-graded with finite-dimensional homogeneous subspaces. Correspondingly, we are
mostly interested in vertex algebras that have similar properties, those vertex algebras called

vertex operator algebras.

20



3.1. DEFINITIONS AND EXAMPLES CHAPTER 3. VERTEX ALGEBRAS

Definition 3.1.11 A vertex operator algebra is a Z-graded vector space

V=TI Vi

neL

such that

dim Vi) < oo, n€Z,
V(n) =0, n<k0,

that is equipped with a vertex algebra structure (V,T,Y,|0)) and a conformal vector v of weight

2 (v € V()) whose corresponding field satisfies the Virasoro algebra relations, where

and the central element C acts as a scalar (the central charge). In addition,
Lov =nv, (n€Z)
where wtv =n for v € V{,,), and finally,
L =T (3.12)
Notice that the Lg-eigenspace decomposition of V' coincides with its grading.

Definition 3.1.12 A vertex operator algebra of CFT type is a verter operator algebra for
which Vp = C|0) and V,, = {0} for n <0.

Remark 3.1.13 A vertex algebra can equivalently be defined in terms of (a partial vacuum
aziom and) the Borcherds identity: V a,b,c € V and k,m,n € Z,

> < > (@049 iy © = D=1 <]> (@(mtn—)bek+i)€ = (=1)"Dntk—j) A(m+4)C) -
=0

J=0
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Some important instances of this formula are useful for calculation:

[@(m)s b)) = Z <T;l> (a()b) (mtn—y) (commutator formula) (3.13)
Jj=0
(a(,l)b)(n) = Z a(j)b(n,j,l) + Z b(n,j,l)a(j) (—1st product identity) (3.14)
J<0 J=0

The last definition we present is the notion of product-preserving maps between vertex

algebras.
Definition 3.1.14 Let Vi and Va be vertex algebras and ¢ : Vi — Vo be a linear map such
that (v,w € V)

¢(10)) = 0), (3.15)
Y(¢(v), 2)p(w) = oY (v, 2)w). (3.16)

Then ¢ is called a vertex algebra homomorphism.

3.2 Lattice Vertex Algebras

Our main object of study is a certain class of vertex algebras called lattice vertex algebras. We
give the general construction of such algebras and present the associated fields. These were the
algebras introduced in Borcherds’ original paper [B].

Let @ be an even lattice equipped with symmetric nondegenerate bilinear form (-|-) :
Q X Q@ — 7Z. We denote by h = C ®z Q the corresponding complex vector space considered
as an abelian Lie algebra, with the bilinear form extended to it. The bosonic Fock space (cf.
Section 2.4) for the Heisenberg algebra h= hlt,t~!] @ CK can also be written as the irreducible
(highest weight) representation

M = Ind

pjeck C = St

with highest weight 1 on which K = 1.
Remark 3.2.1 In other works, this space is denoted M (1), but here we will write M for brevity.

Following [FK; B], we consider a 2-cocycle e: @ x Q — {£1} such that

e(a,a) = (=1)lePUeP+D2 02— (ala),  aeQ, (3.17)
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and the associative algebra C.[Q] with basis {e”},cq and multiplication
e“e? =e(a, B)e P (3.18)

Such a 2-cocycle ¢ is unique up to equivalence and can be chosen to be bimultiplicative. Then
we have

e, B)e(B, @) = (~1)DFFIBE o g e Q. (3.19)

Definition 3.2.2 The lattice vertex algebra [B; FLM; K2; FB; LL]| is the tensor product
Vo = M & C[Q), (3.20)

where the vacuum vector is |0) ® €°.
Remark 3.2.3 When V is a superalgebra, the parity of all vectors in M & e® is |a|> mod 2Z.

We let the Heisenberg algebra act on Vi by
aneﬁ = 5“,0(a|ﬁ)eﬁv n >0, a€l, ap= at" . (321)
The state-field correspondence on Vg is uniquely determined by the generating fields:

Y(a_1|0),2) = >, cz0n 271 a€h, (3.22)

Y(e®, z) = e*z exp (Zn<0 an%> exp (Zn>0 an%> , (3.23)
where z%0ef = 2(1F)eh,

Notice that M C Vg is a vertex subalgebra, which we call the Heisenberg vertex algebra.
The map h — M given by a — a_1|0) is injective. From now on, we will slightly abuse the
notation and identify a € h with a_1|0) € M; then a(,) = ay, for all n € Z.

When the lattice @) is even and positive definite, the lattice vertex algebra Vp has the
structure of a vertex operator algebra. Let {a’} and {b'} be dual bases of h (i.e. (a’|t/) = §;;).

Then the conformal vector is given by
1 o
V= §Za11b£110>. (3.24)
(2
The central charge is the rank of the lattice @, the fields h(z) (h € b) have conformal weight

1, and the fields Y (e®, z) have conformal weight (c|a). Note that the lattice being even and

positive definite is necessary for the proper grading of a vertex operator algebra.
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Example 3.2.4 When the lattice QQ can be written as an orthogonal direct sum, QQ = L1 @ Lo,

the corresponding lattice vertex algebra is given by the tensor product:

Vo=V, ®VL,. (3.25)

3.3 Twisted Modules

Given a lattice vertex algebra Vg and an automorphism o of Vg, we will construct a set of
o-twisted modules. We first define three notions of (untwisted) modules over vertex operator

algebras and also define the terms rational and regular (see [ABD]).

Definition 3.3.1 A weak module of a vertex operator algebra V is a vector space M endowed
with a linear map YM(-,2)-: V.o M — M((2)) (cf. (3.4), (3.8)) such that

i) (truncation): vg,w =0 for n >0, where v € V and w € M,
i) (vacuum): YM(|0),2) = Iy,
iii) the Borcherds identity (cf. Remark 3.1.18) holds for a,be€ V, c € M.
Remark 3.3.2 Of the three types of vertex operator algebra modules, only weak modules have

no grading assumptions. The structure of weak modules coincides with the structure of modules

over vertex algebras.

Definition 3.3.3 An admissible module of a verter operator algebra V is a weak module M

which carries a Z4-grading

M= P Mn) (3.26)

neEZy

such that if v € Vigy, then v(myM(n) C M(n+k —m —1).

Definition 3.3.4 An ordinary module of a vertex operator algebra V is a weak module M

which carries a C-grading

M =P M, (3.27)
AeC

such that
Z) dim M), < oo,

i) Mx_p, =0 for firzed X\ and n > 0,
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iii) Low = Aw = wt(w)w for w € M.

Note that an ordinary module has a grading that matches the Ly action of the Virasoro
representation. It turns out that the finite dimensionality of graded pieces in ordinary modules
is a strong condition, so that ordinary modules are also admissible. Hence we have the following

inclusions of modules:
{ordinary modules} C {admissible modules} C {weak modules}.

Definition 3.3.5 A vertex operator algebra is rational if every admissible module is a direct

sum of simple admissible modules.

In other words, a vertex operator algebra is rational if there is complete reducibility of
admissible modules. It is proved in [DLMZ2] that for rational vertex operator algebras with
a certain finiteness condition, there are only finitely many simple admissible modules up to
isomorphism and any simple admissible module is an ordinary module. The strongest form of

complete reducibility is when weak modules can be realized in terms of ordinary modules.

Definition 3.3.6 A vertex operator algebra is regular if every weak module is a direct sum of

simple ordinary modules.

Thus for regular vertex operator algebras, every simple weak module is an ordinary module.
Now let ¢ be an automorphism of V' of a finite order r. Then o is diagonalizable. The notion of
a twisted vertex algebra representation was introduced in [FFR; D2; L]. The main difference is

that the image of the above map Y™ is allowed to have nonintegral rational powers of z.

Definition 3.3.7 A o-twisted module of a vertex algebra V' is a vector space M endowed with

a linear map
ar—YM(a, z) = Z a%)z*’%l, (3.28)

nelz
where aé\g) € End M, such that the following axioms hold for all a,b,c € V:
i) (vacuum): YM(|0), 2) = Iy,
ii) (covariance): YM(ca,z) = YM(a,e?™z),

ii1) the Borcherds identity (3.1.13) is satisfied by the modes, provided that a is an eigenvector
of o.
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More precisely, the linear map Y™ satisfies

; 1
YM(a,2) = Z aé\:{) Ll if ca=e P, pc ;Z. (3.29)
nep+7
Remark 3.3.8 The notion of a twisted representation axiomatizes the properties of the so-called

“twisted vertex operators” [L], which were used in the construction of the “moonshine module”

vertex algebra in [FLM] in the study of the Monster group.

When restricted to the o-invariant subalgebra V? C V, a o-twisted representation for V'

becomes untwisted for V7. This subalgebra will be the main object of study.

Definition 3.3.9 The subalgebra Vo C V of o-invariant elements of V' is called the orbifold
(see for example [DVVV; KT; DLM2]).

The following theorem is due to Frenkel and Kac (see [FK; K1; K2]) and relates modules

of root lattice vertex algebras to modules over affine Kac-Moody algebras at level 1.

Theorem 3.3.10 (Frenkel-Kac Construction)
Let g be a simply-laced finite dimensional simple Lie algebra, and Q) be its root lattice. Then the
untwisted representations of the lattice vertex algebra Vg provide a construction of level the 1

representations of the affine Kac—Moody algebra § in the homogeneous realization.

The next result provides a rigorous interpretation of the operator product expansion in

conformal field theory in the case of twisted modules.

Proposition 3.3.11 ([BM]) Let V be a vertex algebra, o an automorphism of V, and M a
o-twisted V -module. Then

%85 ((z —w)NYM(a,2)YM (0, w)c)

=YM(an_1-rb,w)c (3.30)

Z=w

forall a,beV,ce M, k>0, and sufficiently large N.

3.3.1 Twisted Heisenberg Algebra

Let h be a finite dimensional vector space equipped with a symmetric nondegenerate bilinear form
(-|-), as in Section 2.4. Then we have the Heisenberg algebra 6 and its highest weight representation
(the Fock space M) which has the structure of a vertex algebra. Every automorphism o of

h preserving the bilinear form induces automorphisms of 6 and M, which will be denoted
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again as 0. As before, assume that ¢ has finite order r. The action of ¢ can be extended to
h[tt/7,t71/"] @ CK by letting

; 1
o(at™) = o(a)e*™™t™, o(K)=K, aeh, me-7L.
r

The o-twisted Heisenberg algebra b, is defined as the set of all o-invariant elements (see [KP; L]).
In other words, 60 is spanned over C by K and the elements a,, = at™ such that ca = e~ >"™q,.

This is a Lie algebra with bracket (cf. (2.17))
1
[@m, bp] = Moy, —n(alb) K, a,bebh, mne -7Z.
r

Let 6? (respectively 6;) be the subalgebra of b, spanned by all elements a,, with m > 0
(respectively m < 0). The elements of 6? are the annihilation operators, and the elements of 6;
are the creation operators.

The o-twisted Fock space is defined as

M(o) := Ind’

2 oex CES03), (3.31)

where 6; acts on C trivially and K acts as the identity operator. M (o) is an irreducible highest
weight representation of 60 and has the structure of a o-twisted representation of the vertex
algebra M (see [FLM; FFR; DL2|). This structure can be described as follows. We let Y (]0), 2)
be the identity operator and

Y(a,z) = Z anz "L, ach, ca=e *Pq, (3.32)

where p € 17 (cf. (3.29)), and we extend Y to all a € b by linearity.
The action of Y on other elements of M is then determined by applying several times the
product formula (3.30). More explicitly, M is spanned by elements of the form a}, - afnk\O),

where @’ € b, and we have:

Z1='=2zp=2

k k
Y(a}nl - aﬁlk|0>? Z)C — H 8£§V—1—mj) (H(Zj o Z)N }/(al7 Zl) . }/(ak7 zk)c)
j=1 j=1

for all ¢ € M (o) and sufficiently large N. In the above formula, we use the divided-power
notation ™ := 9" /n!.
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3.3.2 Twisted Representations of Lattice Vertex Algebras

Now let @ be a positive definite even lattice and ¢ be an automorphism of the lattice ) of finite

order r such that

(caloB) = (alB), a,B€Q. (3.33)
The uniqueness of the cocycle € and (3.33), (3.19) imply that
n(a+ B)e(oa, o) = n(a)n(B)e(a, B) (3.34)

for some function n: @ — {£1}, and

e(a, B)e(B, o) = (—1)8), (3.35)

Lemma 3.3.12 Let L be a sublattice of Q such that e(ca,of) = e(a, ) for a,f € L. Then
there exists a function n: Q — {£1} satisfying (3.34) and n(a) =1 for all o € L.

Proof First observe that, by (3.17) and (3.33), (3.34) for o = 3, we have n(2«) = 1 for all
a € Q. Since, by bimultiplicativity, €(2a, 8) = 1, we obtain that n(2a + ) = n(8) for all «, 3.
Therefore, 7 is defined on Q/2Q. If g, ..., ap is any Z-basis for @), we can set all n(«a;) = 1
and then 7 is uniquely extended to the whole @ by (3.34). We can pick a Z-basis for @ so that
diag, ..., dpoy is a Z-basis for L, where m < ¢ and d; € Z. Then the extension of 1 to ) will
satisfy n(a) =1 for all « € L.

In particular, n can be chosen such that
ne) =1, a€@nNho, (3.36)

where by denotes the subspace of § consisting of vectors fixed under o. The automorphism o of

Q can be lifted to an automorphism of the lattice vertex algebra Vg by setting
olap) =0(a)y,, o(e®)=n(a)e’, ach, aecq. (3.37)

We now recall the construction of irreducible o-twisted Vy-modules (see [KP; D2; BK1;
L)). Introduce the group G = C* x exphy x Q consisting of elements ce"U, (c € C*, h € by,
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a € Q) with multiplication

e = M (3.38)
Upe™ = Moy, (3.39)
Usls = (o B)B s Unis (3.40)
where
r—1 . X
Ba,ﬁ _ r—(a|ﬁ) H(l o 627r11<c/7“)(‘7 alB) ' (341)
k=1

Note that B_, 3 = B;}g = B,,—p and that the elements

n(a)U; LU, e2mi(batmo) aeq (3.42)

are central in G, where

2 2
by, = w (3.43)

and g is the projection of h onto hy. Let G, be the factor of G over the central subgroup
Ny = {n()U, LU,e*tatm0) | o € Q). (3.44)

Then the o-twisted Vip-modules are in correspondence with representations of G, (see [BK1],

Proposition 4.2). The center of G, is given by

Z(Go) ~ C*x(Q7/Q)°, (3.45)
U(l—a)A <A (3.46)

Let €2 be an irreducible representation of GG, on which all elements (3.42) act as the identity.
Such representations are parameterized by the set (Q*/Q)? of o-invariants in Q*/Q, i.e., by
elements A + @ such that A € @* and (1 — o)\ € Q (see [BK1], Proposition 4.4).

The action of the group algebra exp hy on €2 is semisimple:

0= P ., (3.47)
HEmO(Q*)
where
Q,={veQ|ev= MWy for h e ho}. (3.48)
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Then M (c) ® Q is an irreducible o-twisted Vg-module with an action defined as follows. We
define Y (a, z) for a € h as before (see (3.32)), and for a € @ we let

e 1

z
Vi(e* 2) =: n— |: ® Ugzbetme, 3.49
(e”, 2) exp( Z « —n) ® Unz (3.49)

nelz\{o}

The action of 2™ is given by 2z™% = z(Toly for v € Q,, and (moa|p) € %Z. The action of YV
on all of Vg can be obtained by applying the product formula (3.30). By Theorem 4.2 in [BK1],
every irreducible o-twisted V-module is obtained in this way, and every o-twisted Vg-module

is a direct sum of irreducible ones.

Example 3.3.13 We present the special case when o = —1. The results will be needed in
chapter 4.
Here by =0 so that G = C* x Q and the only relation is (3.40). Since r = 2, we have

Bap = 470 (3.50)
1
bo = —§|a|2, (3.51)

for any a, B € Q. Since e(oa,03) = e(a, B) we can set n = 1. Hence the central subgroup N,

consists of elements of the form

U-lu,,
and the commutator is given by
Cop = UsUsUy'Ug! (3.52)
= (-1, (3.53)

The irreducible representations of G are parameterized by the set of elements A + Q) such that
A€ Q* and (1 — o)\ =2) € Q. Thus the center of G, is given by

Z(Gg) = C* x {Un|A € Q",2) € Q}.

When the lattice ) can be written as an orthogonal direct sum, Q = Ly & Lo, such that
both factors L; and Ly are o-invariant, each twisted Vg-module can be realized in terms of

twisted modules over Vz,, and V7. The following lemma will be useful later.

Lemma 3.3.14 Let Q be an even lattice and o be an automorphism of Q). Suppose @) decomposes
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as the direct sum
Q=L D Lo,

such that o (L;) C L; (i = 1,2). In addition, set 0; = o|r,. Then any irreducible o-twisted
Vg-module M is the tensor product

M~ M ® MQ,
where M; is an irreducible o;-twisted V,,-module.

Proof Let M; be a o;-twisted Vp,-module for ¢ = 1,2. Then the tensor product M; ® M,
becomes a twisted module over Vi under the automorphism o = (o1, 02).
Conversely, for any such decomposition of (), we have the following decomposition of the
o-twisted Fock space:
M(o) = M(o1) ®@ M(02).

Let T, be a G,-module with central character x. Then by (3.53), two orthogonal elements
commute. Let h € hg and v € Q). Then h = hy + ho and v = a + § for some hi,a € L1 and
ho, B € Lo. Thus for an element th7 €@q,

th’Y = 6h1+h2 Ua+ﬁ
e eh? UsUpg
e Uaeh2 Us.
Hence T, can be decomposed as
Ty =Ty, ®Ty,,

where x; = x|z, so that
M(o) @ Ty = (M(01) @ Ty,) © (M (02) ® T,) -

3.3.3 The case 0 = —1

We now describe other work that has been done in the special case when o = —1. We also
describe the notation used in [D1; DN; AD].
Let L be an even lattice with positive definite integral Z-bilinear form (-|-) and let L be the

31



3.3. TWISTED MODULES CHAPTER 3. VERTEX ALGEBRAS

central extension of L by the cyclic group (—1) of order 2:
1— (1) — L—L—0.

The commutator map is given by ¢(a, 8) = (=1)@# for a, 5 € L. Let e : L —» L be a section
such that eg = 1 and let € : L x L — (—1) be the corresponding 2-cocycle that can be taken as
bimultiplicative. Then for «, 8,7 € L,

(0 B)e(Bra) = (~1)e (3.54)
ela, Ble(a+B,7) = e(B7)e(a, f+7) (3.55)
eaeg = ela,feqss. (3.56)

Recall Dong’s Theorem that the irreducible Vz-modules are classified by the set L*/L (see [D1]).
Explicitly, they are given by:

Vagr = M @ C[Lle*, XelL*. (3.57)

Let 6 be the automorphism of L used in [DN; AD] defined by #(eq) = e_q and 6(—1) = —1.
Set K = {a~'0(a) |a € L}. Also define V' = M(0) @ T (cf. (3.31)) for any L/K-module T such
that —1 acts as the scalar —1. Then VLT forms a o-twisted V-module. The map 6 acts on Vg by

1 k _ ki1 k
0 (h(—m) - h(—nwt) = (D Ry gt

for b € b, n; € % +Z>p and t € T'. The eigenspaces for ¢ are denoted VLT % More explicitly, the

central character is given by
Xu(ean) = (=1, (3.58)

for some p € (2L* N L)*. Any irreducible o-twisted Vz-module is isomorphic to VLT * and the
eigenspaces VLT = are irreducible VLJr -modules. Furthermore, any irreducible VLJr -module of

twisted type is isomorphic to one of VLT ok

Theorem 3.3.15 [DN; AD] Let L be a positive definite even lattice. Then any irreducible

admissible V;—module is isomorphic to one of the following:
Ve, Vi, (AeLf2ael), Vi (AeLf,2x¢L), Vo

for any irreducible fJ/K—module T\ with central character x.
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The correspondence with the notation presented in Section 3.3.2 is as follows. We have L= G,

where a = U, and 0 = o|r. Then
K={U'U_,|acQ}=N,.

Note that the elements in K are scalar multiples of elements of the form Us, (o € Q). The
irreducible modules over G, = ﬁ/ K are classified by the central characters x of the center
Z(Gy) (cf. (3.45)).
It has been shown that V7, and the orbifold V7 are both rational [ABD; Y] and also regular
[ABD; DLM]. Thus we need only be concerned with weak modules over lattice vertex algebras.
Another tool we will need are the intertwining operators. To define them, we add to the list

in (3.1) the space

V{z} = Z U(n)z_”_l

neQ

Uy €V (3.59)

of V-valued formal series involving rational powers of z, where V is a vector space.

Definition 3.3.16 Let V be a vertex operator algebra and let My, My and Ms be three V -

modules (not necessarily distinct, and possibly equal to V). An intertwining operator of type

M.
3 is a linear map Y : My @ My — Ms{z}, or equivalently,
My My

y:Ml — Hom(MQ,M3){2}

v o= Y(v,z2)= Z v(n)z_"_l, V(ny € Hom(Maz, M3)
neQ

such that for w € My and u € Mo,
i) wyu =0 forn >0,
ii) the L_q-derivative property holds (cf. (3.12) and Definition 3.1.5),

iii) Borcherds identity (3.1.13) holds for a € V,b € My and c € My with k € Q and m,n € Z:

> ( J-> (@) iy © = D (1) < j> (@(man—) )¢ = (=1)"b(nth—i) Ame+4)€) -
=0 =0

Note that each of the terms in Borcherds identity make sense. For instance, the terms of the
left hand side have the form (a(l)b) (s) € with [ € Z and s € Q. Since a € V and b € M7, we have
agb € My where [ € Z, since My is a V-module. Then (a(l)b) (5)€ € M3 where s can be rational.
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v
Example 3.3.17 The map Y (-, z) acting on v is an intertwining operator of type (V V)’

and Y (-, z) acting on any V-module W is an intertwining operator of type

VWW) . These

intertwining operators also satisfy the normalization condition Y'(]0),z) = 1.

M.
The intertwining operators of type (M1 ?\42> form a vector space denoted V]\]\jf My

Definition 3.3.18 The fusion rule associated with an algebra V' and its modules is the number
Ny g =dim VP 0 (< 00). (3.60)

Example 3.3.19 When V and the V-module W are nonzero, the corresponding fusion rules

N“//V and N“;VW are positive.

The fusion rules for V;" were calculated in [A1l; ADL] to be either zero or one. In order to
present their theorem, we first introduce some additional notation. Let ¢(+,-) be the commutator
map of L* defined by c(\ ) = (—1)(’\‘“)“/\'2'“‘2. For A\, i € L*, also set

o = (=) Ae(, ) = (1) (3.61)

Notice that 7y 2, = 1 for p € 2L* N L. Also when the lattice Z\ + L is integral, the 2-cocyle €
can be defined on it using only +1. Next for a central character x of L /K and X € L* such that
2X\ € L set

ey (N) = (=1)PPVe(X 20) x(e2n). (3.62)
For any A € L* and central character x of L /K, let x™) be the central character defined by
X(A)(Ua) - (_1)(Q|A)X(Ua) (3'63)

and set T\ () = Ty‘). The following theorem will be needed later in order to construct the

orbifold modules.

Theorem 3.3.20 ([ADL], Thm 5.1) Let L be a positive definite even lattice and let A\, €

L N %L with w0, = 1. Then the fusion rule of type < where Ms and M3 are

3
V/\E+L M2> ’
irreducible V;-modules and € € {£}, is equal to 1 if and only if the pair (Ma, M3) is one of the
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following:
(V:}FL,V)fiHJFL), where €3 = €1€, € € {+}, (3.64)
(N
(VLT’<’51,VLTX %), where €3 = c (Nere, € € {£}. (3.65)

Furthermore, the fusion rules are zero otherwise.
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Chapter 4

General Results

Throughout this chapter, we assume (@ is a positive definite even lattice and that o is an

automorphism of @) of order two. We provide an explicit description of the orbifold vertex

algebra V(§ and classify its irreducible representations.

4.1 The sublattice Q

Fix the following notation:

S %(I:I:U), s = ma(a),
h=CezQ=0HyDbh_, where by =myi(h),
Li=b:NnQ, L=L;®L_ CQ,
Ly =7.(Q), L=Ly®L_ 2Q.

Note that 2ay € Ly and |ag|? = 120> € Z. In particular, the order of all elements in

Ly /Ly is either 1 or 2. Tt is clear that the automorphism o acts trivially on the quotient )/L

since « —oa =2a_ € L_ C Limpliessa+ L=o0(a)+ L=0c(a+ L).
Lemma 4.1.1 For o € Q, the following are equivalent:

i) o%(e®) = e,

i) |ax|? € Z,

iii) (aloa) € 2Z.
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Proof Note that 4|a+|? = |a & oal? = 2|a|? £ 2(aloa), so that
2 1
las|® = 5(04]004) mod Z.

This shows the equivalence between (i) and (7i7).
Using (3.37), we find 02(e®) = n(a)n(ca)e®. On the other hand, by (3.19), (3.34) and (3.36),
we have

n(a)n(oa) = e(o, oa)e(oa, o) = (—1)@l7),

This shows the equivalence between (i) and (ii).

From now on, we let

Q={ae€qQ|(aoa) € 2Z}. (4.5)
Lemma 4.1.2 The subset Q is a sublattice of Q of index 1 or 2.

Proof It is clear that () forms a sublattice. For any «, 3 € Q, we have

(a=ploa—0op) = (aloa)+(Blof) - (alof) — (Bloa)
= (aloa)+ (Blof) mod 2Z,

since

(elof) = (oalo?B) = (Bloa).
Now if a, 3 € Q or o, B ¢ Q, then a — B € Q.
By definition, we have (VQ)"2 = Vg. Then
V§ = (Vo))" = V5. (4.6)

Therefore, we may assume that |o| = 2 on Vg and only work with the sublattice Q. For simplicity,

we use  instead of Q for the rest of this chapter.

4.2 Description of the orbifold

From [FHL; LL], we have that the tensor product Vi, ~ V7, ® Vi_ forms a subalgebra of Vj.
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In order to obtain a precise description of Vé’ , we break Vg as modules over V/ in two steps.

The first step is to break Vy as modules over V. This is done using the cosets

Q/L={w+Ln+L,...,%+L} (4.7)

where vg = 0. It follows that

Vo= P v,

v€Q/L

where each V,, is an irreducible Vz-module [D1]. Set v = v; + L and v+ = v;+ + L+. Then

writing each 7; in the form ~; = «; 4+ + 7;,—, we arrive at the following lemma.
Lemma 4.2.1 For ve€ L*/L, V, ~ V. @ V,_ as Vi-modules.
Thus, for each coset representative v of @)/L, we have that
Vo~ P Vi, @V, (4.8)
Y€Q/L

as Vi-modules. Since o acts on the module V,_, it breaks into f1-eigenspaces for o and each
eigenspace is an irreducible V; -module [AD].
The second step is to restrict each module V,_ to an eigenspace for 0. We then obtain the

following description of Vg

Proposition 4.2.2 The orbifold can be realized as the direct sum of V -modules:

VS~ P vy, @V, (4.9)
vEQ/L

where 7 is given by (3.37).

Proof Using (3.37) and Lemma 4.1.1, we have that e +7(y)e?” € V| for each v € Q. Now
el +n(y)e” = et @ (e’ +n(y)e "),

where €7t € Vo, p, and €= +n(y)e - € V',

4.3 Restricting the Orbifold VJ to V/

From the study of tensor products in [FHL; LL| and the structure of V{j given in (4.2.2),

irreducible ch -modules are sums of tensor products of irreducible modules over the factors V7,
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and V;" . By Dong’s Theorem [D1], the irreducible V;,-modules are given as Vyyr, , where
A € L. The irreducible V;" -modules are classified in [AD], and come in three types:

Vy, where pe L*/L_ and 2u# L_, (4.10)
Vf, where pe L*/L_ and 2u=L_, (4.11)
vieE, (4.12)

where T, is an irreducible G,-module with central character x. Futhermore, each of these

Vfi -modules can be obtained by restricting a twisted Vz,_-module.

Proposition 4.3.1 FEvery Vé’-module is a direct sum of irreducible Vi -modules. In particular,
Vg has this form.

Proof Consider V7 =V, ® V]i cVg. Then V7 forms a vertex subalgebra of VG- Ttis shown
in Theorem 3.16 of [DLM3] that the vertex algebra Vi is regular, since L is positive definite.
It is also shown in [ABD; DJL] that the vertex algebra VLt is regular. Since the tensor product
of regular vertex algebras is again regular (Proposition 3.3 in [DLMS3]), we have that V7 is also

regular.

Since irreducible modules of V7 are tensor products of irreducible modules over the factors
VL., and VL+_, the V7 -modules

1. VA ®V,, where 2u # 0,
2. VA ® V=, where 2 = 0,
3. Va® Vi,

are the irreducible ones. We refer to the orbifold modules obtained from untwisted Vz-modules
as orbifold modules of untwisted type and orbifold modules obtained from twisted Vz-modules as
orbifold modules of twisted type.

In order to determine the irreducible Vi§-modules, we first start with a V/-module. Any
V§-module is automatically a V7-module by restriction. It follows from [D1; DN; AD] that the
V7 -modules can all be obtained by restricting twisted Vz-modules. We will show there exists a
lifting of each twisted Vz-module to a twised Vg-module, and describe how the Vg -module is
obtained using the intertwining operators for V7. The twisted Vp-module will be determined

using the orbits of each field Y'(e7, z), for v € @, on the set of irreducible V/-modules.
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4.4 Irreducible Modules over Vé’

In this section we present the main result, that the irreducible ch -modules are submodules of

twisted Vig-modules. We also provide an explicit list of the irreducible V§-modules.

Lemma 4.4.1 Suppose A + p € Q*. Then for the Vi-module M(\, ) = Vayr, @ Viqr_, there
is a Vg-module given by

Mo\ p) = P MO+, p+7-). (4.13)
v€Q/L

Proof Consider the untwisted Vg-module V)4, ¢. Since untwisted modules over V;, have the
form Vyyr, ® V,qr_, we have that

Vire = D Vi
7EQ/L

= @ Vier ® Vo 4y
v€Q/L

= P MO+ypt+r)
YEQ/L

as a direct sum of irreducible V-modules.

From the proof of Lemma 4.4.1, each Vy-module is obtained from the set of V-modules

whose arguments are closed under addition modulo L.

Theorem 4.4.2 Let Q) be an even positive definite lattice for which (a|oa) is even for all a € @,
Vo the corresponding lattice vertex algebra, and let o be an automorphism of Q of order two.

Then each irreducible Vé’-module s isomorphic to one of the following:

P Viisr®Vy gy, where AN€Li/Ly, peL”/L. and 2u#0, (4.14)
Y€EQ/L
D Viorr@ V")), where AeLi/Ly, pel*/L_, 2u=0, and e € {£},(4.15)
YE€Q/L
@ Viia ® VLTi(‘7 )’67, where A€ L} /L., e, =en(y)ce(v-), e€{x}.  (4.16)
v€EQ/L

Proof Let W be an irreducible Vg -module. Then W is a V/-module by restriction. By Propo-
sition 4.3.1, we have that W is a direct sum of irreducible V-modules. Suppose A C W is an

40



4.4. IRREDUCIBLE MODULES OVER V3 CHAPTER 4. GENERAL RESULTS

irreducible V7-module and define A from A as follows:

A V@V, Vy @ VE VeVt
™) £n(7) T e
A Vatry @ Vi Vitry @ Vi Vityy ® V2

where € = ¢, (7)n(7). We work out separatly the untwisted and twisted types.

Let A be of untwisted type so that A is one of the modules V) ® V,,, for 2u # 0, or V) ® Vﬂi,
for 2u = 0. Let B C W be another irreducible V/-module that is possibly of twisted type. By
Proposition 4.2.2, we have that

VS~ P vy, @V, (4.17)
vEQ/L

where each summand is also an irreducible V/-module and is generated by the vector
vy =€ +nY)e’T =t @ (e +n(y)e 7).

By restricting the field Y (v,, z) to A and then projecting onto B, we obtain an intertwining

B
Vn(WL) A>' From the study of intertwining operators in [ADL],
v+
we have that the intertwining operator Y (v, z) can be written as the tensor product

operator of V/-modules of type <

Y(vy,2) =Y(e™, 2) @Y (e +n(y)e”, 2),

Vy
where Y (e7+, z) is an intertwining operator of type < ALy > and Y (e~ +n(y)e 7, 2)
V’Y++L+ V)\+L+

Viir vt
is an intertwining operator of type ( )M - or of type porl- . From
v Vs v
y_+L_ Vpt+L- y—+L_ Vpu+L_

the study of intertwining operators in [DL1], the fusion rules for Y (e?+,z) are zero unless
N = X+74. Since v- € L* N3L_ and |A]> € Z, we have that m,_ oy =1 (cf. (3.61)). Hence the
fusion rules for Y (€7~ + n(y)e~7~, z) are zero unless x' = p+ v, by Theorem 3.3.20. Therefore,
for v+ L € Q/L, we have that

vy A — AD)

so that B = A0, Therefore A C W implies that ®’V€Q /L A C W. Since W is irreducible, we

must have that
W= g A,
v€Q/L
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Now let A=V 1, ® VLT i"i and B C W be another irreducible V7 -module that is possibly
of untwisted type. As with the untwisted type, the field Y (v, z) gives rise to an intertwining

B
L) A) and can be written as the tensor product

operator of V/-modules of type <
y+L

Y (vy,2) =Y (e7,2) @Y ("™ +n(y)e 7, 2),

Vy
where Y (e7+, z) is an intertwining operator of type < AL > and Y (e'+n(y)e 7, z) is
VaewrLy VL,
Vg}/,:l:e
n() T+
y—+L_ VLi(
type, the fusion rules for Y (e7+, z) are zero unless A’ = A\ +~,. By Theorem 3.3.20, the action of

an intertwining operator of type < > , where € = ¢, (7)n(). As with the untwisted

Y (e’ z) on ng is determined by computing ¢, () (cf. (3.62)) and is zero unless x' = x-).
Since the lattice Zy_ + L_ is integral (cf. Lemma 4.1.1), the map € can be extended to this lattice
with values £1. Therefore e(y_,27_) = e(y—,v-)? = 1 and (3.62) becomes ¢, (v-) = x(Ua,_).
Hence the eigenspace of each summand in the V§-module may change depending on the signs

of each Ua,_. Therefore, as with the untwisted case, we have that B = A so that

Wo @ A0,

Y€Q/L

Corollary 4.4.3 Let Q be an even positive definite lattice for which (a|oa) is even for all
a € Q, Vo the corresponding lattice vertex algebra and let o be an automorphism of Q of order

two. Then each irreducible Vé’—module is a submodule of a twisted Vi-module.

Proof By Theorem 4.4.2, irreducible V(J-modules of untwisted type are given by (4.14) or
(4.15). Let v € Q. Then since the nonzero fusion rules for Y (e’+, z) and Y (€7~ +n(y)e 7, 2)
are equal to 1 and the intertwining operators in [ADL] are given by the usual formula (3.23)

up to a scalar multiple, an action of each e for v € @ can be determined. Using that
(YA +p) = (ovA+p) = 2= |A+ p) = (2v-|p) € Z,
we have that for some m € Z,
Y (€7 4+ n(7)e”, 2)eH = (A 4 (7)) ORI (B(y, 2) 4 2 B0, 2),

z7"

where E(a, z) = eXP(Zn<0 an*— ) exp(zn>0 an%> and contains only integral powers of z.
Hence we must have that (A + u|y) € Z for any representative v+ L in /L. Then by Lemma

42



4.4. IRREDUCIBLE MODULES OVER V3 CHAPTER 4. GENERAL RESULTS

4.4.1, the space Mg(A,p) given in (4.4.1) forms a Vi-module and contains the irreducible
V§-module W. Using the fusion rules and intertwining operators in [ADL], W is a submodule
when restricted to V(J.

By Theorem 4.4.2, irreducible VJ-modules of twisted type are given by (4.16). Let v € Q.
Then the nonzero fusion rules for Y (e, z) and Y (e~ 4+ n(v)e 7—, z) are equal to 1 and the
intertwining operators in [ADL] are given by the usual formula (3.23) up to a scalar multiple.
Since these scalars can be absorbed in U, we will have (3.23) without loss of generality. Therefore
an action of each €7 for v € @) can be determined. Writing e? = e’ ® (7~ +n(v)e™ ), it is

clear from the intertwining operators in [ADL] that

T 70 te

Y(e”,2): V) ® VLi"i — Vo, VX ,

where € = ¢, (v)n(7). Hence the twisted Vg-module is given by

77);‘:6

(

T

TOX) = @ VoV
vEQ/L

and contains the irreducible Vg -module W. Using the fusion rules and intertwining operators in
[ADL], W is a submodule when restricted to V5.
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Chapter 5
Examples

In this chapter, we work out examples of the lattice ) being a root lattice of type ADE,
corresponding to the simply-laced simple Lie algebras discussed in Chapter 2, as well as a
one-dimensional lattice. We use explicitly the classification from [D1; DN; AD] described in
chapter 4 and the construction in [BK] described in Section 3.3.2 to construct the twisted
V5 -modules. In each case, a correspondence between the two constructions is shown.

To use the classification from [D1; DN; AD], we first calculate @) and L. Then the twisted
Vi-modules are found. When necessary, the intertwiners from [ADL] are used to construct the
V§-modules. The V{j-modules from the construction in [BK] are calculated using (Q)*/Q and

its o-invariant elements.

5.1 One Dimensional Case

Consider the one-dimensional positive definite even lattice Q = Za, where (a]a) = 2k and
k > 0. Then the only nontrivial automorphism of @) preserving the form (-|-) is 0 = —1. This

automorphism can be extended to V by letting

olhm) = —hm,

na) —no

o(e = n(na)e "%,

where h € h = C®z Q = Ca and m,n € Z. Since (na|o(na)) = —2n%k € 27Z for all n € Z, we
have that @ = Q. Here Ly = {0} so that

L_=L=Q=Q.
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Hence the quotient @Q/L is trivial. Thus, by Proposition 4.2.2, we have that
V§ ~ Vi (5.1)

Using the classification in [DN], the irreducible Vé’—modules are parameterized by the set
L* /L_ = Q*/Q. The dual lattice of @ is given by Q* = Z% so that the orbifold modules are
parametrized by the set

iR = {Q’ +Q’ +Q7-~-7 Q,-.n(%z_kl)a+62}.

The automorphism o acts on Vg and Va ¢ since Q" N %Q = {0, 5} and identifies the other

i 2k —
a(%a>: o a mod Q.

Thus there are k — 1 4 2(2) = k + 3 distinct irreducible V§-modules of untwisted type

modules in pairs since

+ +
Vi, Va U Via+zaa ey Vk 104 Za (5.2)
and four distinct irreducible V(§-modules of twisted type
viE =12 (5.3)

Remark 5.1.1 The k + 7 modules given above are as in Theorem 5.13 in [DN].

We now construct the orbifold modules of twisted type using Section 3.3.2 (cf. Example

3.3.13). The 2-cocycle ¢ satisfies

Thus by bimultiplicativity,

Since e(a(a),0(B)) = e(—a, —B) = (e, B), we can set = 1 so that o(e®) = e7(®) = e~ We
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have in this case that hg = 0 so that G = C* x @ and hé‘ =bh = Ca. Thus

1
bo = 5 (oo = [af?) = =k,
bna = —m?k, meZ,
Bma,na = 4—(ma|na) = 16—mnk‘

For elements U,,, and U,, we have

UnaUna = e(ma, noz)B;Mll,naU(ern)a
_ (_ 1)mnk 16mnk U(ern)a
= (_16)mnkU(m+n)a'

In particular, G is abelian (Cpya,na = 1). Thus the irreducible representations of G will be one

dimensional. The elements of G, must satisfy
Uo’(a) — n(a)Uae%riba _ Uaef27rik — Ua

so that U_q = Uy (n) = Ua- Applying U, to both sides yields U2 =UU_o = (—16)7% and
therefore U, has two possible actions: U, = £(4i)~*. Other elements of G are determined using

induction on m:

S

Uma = a+(m—1)a
—16)" " VR U, Ul 1)a

me1)2
1)~ (m-Dk ((il)ml(—16)(2l)k> Ua
)" (-16)
mfl(_16)7%m2k+%k ((:l:l)(—l(s)iék)

= (£1)™(-16)" 2™k,

—~

= (£1 m2kt3kpy
1

= (D)

Let T, be the Gy-module corresponding to U, = (4i)™% and T_ be the G,-module corre-
sponding to U, = —(4i)7*. We therefore have the two o-twisted Vg-modules M (o) @ Ty. The
automorphism o acts on these twisted modules via o (a—p, - - @_p, @) = (—=1)*a_y, - a_p, ®t,

where t € T4 and n; € % + Z. Fach space then splits into two eigenspaces corresponding to the
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eigenvalues +1. Therefore there are four total irreducible V(§-modules of twisted type:
M (o)’ @ Ty, s € {£},

which coincide with the modules from (5.3).

5.2 The Root Lattice A,

Consider the Ay simple roots {a, as}. The nondegenerate symmetric Z-bilinear form (-|-) is
given by (a1]as) = —1 and (oy|a;) = 2 for i = 1, 2. The associated even lattice is Q = Zay + Zaws.
Consider the Dynkin diagram automorphism o : a3 +— as. Set a = a1 + as and S = a1 — 3.
Then « and 3 are eigenvectors for o with eigenvalues 1 and —1, respectively. Also, (aja) =
2,(8/8) = 6 and (a]8) = 0.

In order to determine (), we find conditions for which v = mja; + meas € @ satisfies
(v]oy) € 2Z. Since

(Vo) = —m?—mj+dmimy

= mq+me mod 27,

we have that Q = {mia1 +maas | m; = ms mod 2Z} = Za + Z3. Therefore

Ly = Zo, (5.4)
L. = 178, (5.5)
Q = L (5.6)

Note that L is written as an orthogonal decomposition and the quotient @Q/L is trivial. Thus by
Proposition 4.2.2, we have that
VS ~ Vaa ® V. (5.7)

We can now restrict our attention to the sublattice L. Using the classification in [DN], the
irreducible V7-modules are parameterized by the sets L% /Ly. Since L% /Ly = Z§/Za =
{Za, § + Za}, the set of irreducible Vi -modules is given by
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Since (ZB)* = Z%, we have that

B B 26 50

(ZB)*)2pB = {Z5,5+Z5, 1,5+ LB + L8 +Zﬂ}

The o-invariant elements in (Z5)*/ZS are Z and g + Zf. The other elements are identified by

o in pairs. Thus the set of distinct irreducible V]i -modules is parameterized by the set

B B

{Zﬂ,ﬁ%—Zﬁ, + 78, = +Zﬁ}.
The corresponding modules of untwisted type are
Vi, VE 1% 1%
Zp  VBizg  TG+LB ' 5+LB
and the corresponding modules of twisted type are

VT,-,:E

LT, =12

By (5.7) and [FHL], every irreducible V-module is isomorphic to a tensor product of irreducible
Vi, and VL'E -modules. Thus there are a total of 20 distinct irreducible orbifold modules, given
by the following list:

Vza ® Vi, Va 470 ® Vi,

Via ® Vgiz g Va4za® Vgiz 5
Vea ® Vs 750 Vi2a ® Ve g
Vea ® Ve 75 V3120 ® Vi, gp

Via ® VZYEJ’i, V%—i—Za & VZ%’i, 1=1,2.

We now construct the orbifold modules of twisted type using Section 3.3.2. The 2-cocycle
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on L satisfies

Thus we can set e(a, 8) = 1 = (5, «). It is clear that € is o-invariant on L so that we may take
7 to be trivial, that is, n(y) =1 for all v € L.
The dual lattice to L is given by

B

«
L*=7- 67", .
5 OL (5.8)

Note that this is an orthogonal decomposition. The o-invariant elements in L*/L are L, § + L,
g + L and § + g + L. The other elements are identified by ¢ in pairs. The distinct irreducible

untwisted and o-twisted Vz-modules are then parametrized by the set

Q I} a fp I5} I} 8 « b «
R SR SRR SRR SR SR I ST S O
{’2+’2+’2+2+’6+’3+’6+2+’3+2+

Thus there are 12 distinct orbifold modules of untwisted type given by

+ + + +
V V. \4 V
Lo T+l Tlhr et d4r

v%+L’ V§+L’ v§+%+L’ Vé+%+p

We have in this case that hy = Ca, G = C* x €0 x L and f)& = CpB. Since G is abelian,
the irreducible representations of GG are one dimensional. To determine the orbifold modules of

twisted type, the quantities that will be needed are the following:
Bs-g = 2%,

1
by = 5(0-6)=-3.

The elements in G, must satisfy Uy, = n(’y)UyeQ”i(vaﬂo). In particular, U_g = Ugefﬁ’Ti = Ug
so that
Uf =UpU_g=¢(8,—B)Bs Lz =—2""%
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Thus there are two possible actions of Usg,

1
Us=+—
P~ 64

i,

and U, acts freely on each Vz-module. Let U, act as multiplication by ¢ on the vector space

P = C[q,q']. To determine the action of e™0) | consider its commutation relation with U,:
eT(ia(O) Uae—ﬂ'ia(o) — ewi(a\a) Ua — UO“

ie., €M% ge ™40 = ¢, Thus €™ ¢" = ¢"e™*©)(1). Since 2™ = 1, we must have that

e™20) (1) = +1 so that €™ ¢™ = +¢™. Thus on the space P we have

e = 41, (5.9)
Us = q, (5.10)
1
= 4+ 11
Us Tk (5.11)

where the signs in (5.9) and (5.11) are independent. The automorphism o acts on each of these

modules. To see why, we calculate o(Ug - 1) in two different ways. Since

o(Us-1) = U_go(l) = Ugo(1),
oUg-1) = o(C-1)=Co(1),

we have that o(1) lies in the same module as 1. The action of ¢ is then given by
oUY-1)=U-1=q".
Thus the automorphism o acts as the identity on all modules. Denote these four modules as
Ps, where s = (s1,52),s € {*} (5.12)

and s; is the sign in (5.9), s is the sign in (5.11). The entire o-twisted Vp-module is then
M (0)® Ps. Since M (o) itself decomposes into £1-eigenspaces of o, there are a total of 8 orbifold
modules of twisted type:

M(o)* @ P, s=(s1,5),8 € {£}.
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In addition, we have the following correspondence:

M(0)* @ Py ~ Vi@ Vyd™,
M) ®P_y) ~ Vaiza®@Vis™,
M) @ Py =~ Vaa® Vg,
M(o)*®@P__) ~ Va,za®Vya™.

5.3 The Root Lattice A;

Consider the As simple roots {a1, ag, a3}. The nondegenerate symmetric Z-bilinear form (-|) is
given by (a1|ag) = —1, (a1]|az) =0, (az|las) = —1 and (a;|a;) = 2 for i = 1,2, 3. The associated
even lattice is ) = Zay + Zao + Zag. Consider the Dynkin diagram automorphism o : ap — ag
and as <— ag. Set @ = a1 + a3, and 8 = a3 — a3. Then « and [ are eigenvectors for o with
eigenvalues 1 and —1, respectively. Also, (a|a) =4 = (5|5) and («|B) = 0. Since (ai|ag) =0

and (az|as) = 2, we have that aq, as, ag € Q. Therefore

Q = Q (5.13)
Ly = Zo+ Zas, (5.14)
L. = 78, (5.15)
Q/L = {L,aq+ L}. (5.16)
Hence by Proposition 4.2.2, we have that
Vg ~ (VL+ ® vgﬁ) ) <V3+L+ ® V§+Z ﬁ> (5.17)

since (a1)4 = § and (o) = g

In order to compute the V7-modules, we first determine L% /L, using the Gram matrix for

L. Ordering the basis of Ly as {a, as}, the Gram matrix for Ly is given by
4 =2
G =
—2 2
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G—1_< )

Thus a basis for L} is given by {O";O‘Q 5+ 042} and therefore

with inverse

N DO~
—_ N

Li/L-i- = {L+7§+L+7a—;a2 +L+7O;2+L+}

Since (ZB)* = Zg we have that

(zp)*]z8 = {ZB, g + 78, g + 7, % +Zﬁ} .

Since o (g) = % mod Zf, the automorphism o identifies two of the corresponding modules so

that the set of distinct irreducible Vi%—modules is parameterized by the set

28,2 +28,2 + 28},
4 2
with corresponding modules of untwisted type

Vi, Vi 1%
7B 828’ Lyzp
and corresponding modules of twisted type

VTi ,E

L i=1,2.

From the proof of Corollary 4.4.3 and (5.16), the irreducible V;7-modules are obtained from
elements A € L and p € (ZB)* such that (A + plag) € Z. Since (%|a1) = —3, (%]eq) = 1 and
(%al) = 1, the irreducible V7-modules are one of the following:

+ +
Vi, ® Vi, VL+®V§+Z67 V%+L+®V§+Z,B’

+ +
Verr, ®Vzp Vair, ® V§+ZB’ V%“%Jrh ® V§+Zﬁ’

Vi, ®Vpy™, Vaip, @Vt i=12
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We show below that 7 can be taken as trivial. Thus by Theorem 4.4.2, each irreducible Vj-module

of untwisted type is isomorphic to one of the following:

+ =+
(Ve 0VE) @ (Ve 0VEL ) (Vern, ©Viszs) @ (Varog i, © Vi)

+ +
<VL+ ® Vs ﬂ) o) (V§+L+ ® Vm) :

The irreducible V§ -modules of twisted type are obtained using the fusion rules for VZB with
M, = V[}:Zﬁ. Note that each irreducible character x : 2L* N L_ — {£1} for which x(e_q) =
3

X(e) can be written as

x(ea) = (=1

for some p € (2L* N L_)*. Thus

X (eg) = (—1) 812 (—1)BW (5.18)
= (—=1)@mw (5.19)
= Xxulep) (5.20)

so that the module Vglm sends VZ:% to VZS%. Since ¢y (g) = x(eg), we have that
2

ci (g) = (-t (i1=1,2) (5.21)

corresponding to the twisted modules VZ%. So the eigenspaces for VZTé remain the same in
each summand of the orbifold module but will switch for VZTﬁ?. Hence by Theorem 4.4.2, each

irreducible Vi§-module of twisted type is isomorphic to one of the following:

(1 0 V)@ (o0, V%), (12 5) @ (Vs ).

We now construct the orbifold modules of twisted type using Section 3.3.2. The 2-cocycle

satisfies the following:

elag,0n) = (=125 = -1,
e(ar, ap)e(ag, 1) = (=1)7'=-1,
e(an,a3)e(az, a1) = (=1)° =1,
e(ag, az)e(as, ag) = (=1)"1=-1
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Set € to be the following on the basis:

e(aq, a2) =1, e(ag,a1) = —1,
e(or,a3) =1, e(ag,aq) =1,
e(ag,a3) = -1,  e(az,az) = 1.

Then using bimultiplicativity, we have (o, a) = (8, 8) = e(«, 8) = (5, a) = 1. With these
notions, we have that e(o7y1,072) = e(71,72) for all 1,72 € @Q so that we can take n to be
trivial, that is, n(y) =1 for all v € Q.

The dual lattice to As is spanned by the elements

1

1
1 Az = (a1 + 209 + 3a3).

1
A= 1(3(11 + 209 + 043), A9 1

(201 + 4z + 2a3),

The only o-invariant elements in Q*/Q are @ and A2 + @ and o identifies the other two
corresponding modules since o(A;) = A3. Thus there are 5 distinct orbifold modules of untwisted
type:
+ +
Vo, Varer Viio

For the orbifold modules of twisted type, the quantities that will be needed are the following:

B = 27,
Buyos = 4
Bayas =
Bug oy = 4,
by = H0-4)=-2
b = S4—4)=0,
b = 5(1-2) =,
Crp = (C1)09).

The elements in G, must satisfy Uy, = Uve%i(bfﬂo). In particular, U_g = Uge_4

T

i:Ugso

that Ug =UgU_p =¢(p, —B)B[;iﬁ = 278, Thus there are two possible actions of Ug:

Ug==+2"4=+—

1
16
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Using the g-invariance, we then have the following:

1,1 .
Uy = Uale2m(f§+§a(o)) = —U,, €™M0,
9
U, = 6(0&1, 0‘3)Ba1,a3Ua1 Ua3 — _4Ua1€ma(0>’
1 .
= -1 -1 _ -1 _7ia
U_ay = e(as, _043)3043’_053(]()63 = anl e,

1 .
Us = elar,—a3)Bay,—asUaiU—ay = 1—66”1“@).
Consider the vector space P = C[g,q~ !, p, p~!]. Since each nontrivial action is determined by
°]
U, and U,,, we can let U,, act as multiplication by ¢ and U,, act as multiplication by p(—1)%?a.
Note that these actions ensure that p and ¢ are commuting variables since the operators Uy,
and U,, anticommute. In order to determine the action of €™*© consider the commutation

relation with U,:
ewia(o) U’Ye—ﬂ'ia(o) — 67Ti(01|’y) Ufy-

For v = oy, we have e™?0) ge~™0) = ¢. Thus ™0 ¢" = ¢"e™*0) (1). Since ™0 = 1, we
must have e™%©) (1) = 41 so that e™*©) ¢" = 4¢". Similarly for 7 = as, we have ™ p" = +p™.

Thus on the space P we have the following:

qu = q,
s}
UCY2 = p(_l)qa7
Uss = —Uy ™) = +4q,
Ua = =—4U5 €m0 = Fd¢,
1 : 1

Us = = —e ™M) — 4

s 16° 16

The automorphism o acts on each of these modules. To determine the action of o, we

calculate o(p™q") = (U U, - 1) on the module P corresponding to the positive action of Ug:

o(UIUE 1) = URUZ -1
n,.m.n

= (=1)"p"q"

Thus P> decomposes into two eigenspaces of o with eigenvalues +1. The +1-eigenspace P2+ is
generated by the elements ¢"p", where m is even, and the —1-eigenspace P, is generated by the

elements ¢™p", where m is odd. Similarly, o(U5.Ug, -1) = p™q"™ on the module P; corresponding
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to the negative action of Ug. Therefore o acts as the identity on P;.
The entire o-twisted Vy-module is then M (o) ® P; for ¢ = 1,2. Since M (o) itself decomposes

into +1-eigenspaces of o, there are a total of 4 distinct orbifold modules of twisted type:
M(o)* ® Py,
(M(e)*© P) @ (M(e)ToPy).
In addition, we have the following correspondence:

M(o)* @ Py

12

(Ve, @ VE*) @ (Varr, ©VEF),
(M@0 )@ (Mo)T@Py) = (Vi, @ Vi3*) @ (Vair, ® ViET).

5.4 The Root Lattice D,, n > 4

Consider the D,, simple roots {a1,...,a,}, where n > 4. The nondegenerate symmetric Z-
bilinear form (-|-) is given by

2 -1 0
-1 2 —1
((ailay))i; = R 0
-1 2 -1 -1
-1 2 0
0 0o -1 0 2

The associated even lattice is Q = @' ; Zca;. Consider the Dynkin diagram automorphism
o:ap1$—apand o; +— ;fori=1,...,n—2.Set @« = a1+, and 8 = a1 — . Then
a and (3 are eigenvectors for o with eigenvalues 1 and —1, respectively. Also, (a|a) =4 = (5|5)

and (a|B) = 0. Since (ap—1]an) =0 and (q;|a;) =2 for i = 1,...,n — 2, we have that Q C Q.
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Therefore

Q = Q (5.22)
n—2
Ly = PZai+ Za, (5.23)
i=1
L_ = 7p, (5.24)
Q/L = {L,an—1+ L}. (5.25)
Hence by Proposition 4.2.2, we have that
Vg ~ (VL+ ® VZJ%) P <V;+L+ OV, 5) (5.26)
since (ap—1)+ = § and (a,-1)- = g
In order to compute the V7-modules, we first determine L% /L, using the Gram matrix for
L. Ordering the basis of L as {a, a1, ..., an—2}, the Gram matrix for Ly is given by
4 -2
2 -1
-1 2
G pu—
-1
-1 2 -1
-2 -1 2

The inverse is given by

Bl 11§ 2 3
11111
112 2 2 2

Gl= 512 3 3 3
2 1 2 3 4 4
212 345

Note that det G = 4 for all n.
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Lemma 5.4.1 The group L% /L. is given by

—1 1 1
L*+/L+:{L+an4 a+9+L+a§@+L+,nI

—3
1 L")
where 6 = 5 > sl 2i41-

Proof The element corresponding to the first column of G~! modulo L is "Tfloz +0+ L.

The nonzero element corresponding to all other columns is %a + L. Thus the group L% /L is

generated by these two elements. When n is even we have

1 1 3
Li/L+:{L+,4O{+9+L+,20[+L+,4O[+9+L+}, (528)
and L% /L4 is cyclic. When n is odd we have
. 1 1
L+/L+:{L+,9+L+,2O[+L+7204+0+L+}, (529)

and L7 /L is isomorphic to Zgy X Zg. The statement follows.

Since (ZB)* = Z% we have that

3
@sy/zs = {28.8+20.5 +28. % 125},
Since o (g) = % mod Zf, the automorphism o identifies two of the corresponding modules so

that the set of distinct irreducible Vi%—modules is parameterized by the set

28,2 +28,2 + 28},
4 2
with corresponding modules of untwisted type
+ +
and corresponding modules of twisted type

VT,-,:E

LT, =12

From the proof of Corollary 4.4.3 and (5.25), the irreducible V7-modules are obtained from
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_1
elements A € L% and p € (ZB)* such that (A + plai) € Z. Since (0ay—1) = { N
0, n even

and (glan_l) = 1, the irreducible V7-modules are one of the following:

+ +
Vi, ® VZﬁ’ Vi, ® Vg.,.zﬂ’ V%"‘IH— ® VngZB’

+
V%+L+ ® VZﬁ? V"T_la+c9+L+ ® V§+Zﬁﬂ V”T'Ha+9+L+ ® V§+Zﬁ7
T;, T;, .
Vi, ®Vpy™, Ve, @Vt i=12

We show below that n can be taken as trivial. Thus by Theorem 4.4.2, each irreducible Vg -module

of untwisted type is isomorphic to one of the following;:

+ + + +
<VL+ ®© VZﬂ) © (V3+L+ ®© V§+Zﬁ> ’ <VL+ ®© V§+Zﬁ> 82 (V%+L+ ® VZB) ’

(V"T*la+9+L+ ® V§+m> D (V”T“a+9+L+ ® V§+Z,3> :

The irreducible Vg-modules of twisted type are obtained using the fusion rules for VZJ% with
M, = V‘;:ZB' Recall each irreducible character x : 2L* N L_ — {£1} for which x(e_o) = x(€q)
3

can be written as
x(ea) = (—1)t)

for some p € (2L* N L_)*. Thus

8

X,(f/Z)(@ﬂ) - (_1)(5\2)(_1)(6\u) (5.30)

= (=1)6 (5.31)

= xulep) (5.32)

so that the module VEJrZ,B sends VZF‘% to VZTﬁ". Since ¢y (g) = x(eg), we have that
2
(PN i 19 33
a(5) =0 =12) (5.3)

corresponding to the twisted modules VZTé. So the eigenspaces for VZTﬁl remain the same in

each summand of the orbifold module but will switch for VZT;. Hence by Theorem 4.4.2, each

59



5.4. THE ROOT LATTICE Dy, N > 4 CHAPTER 5. EXAMPLES

irreducible Vi§-module of twisted type is isomorphic to one of the following:

(i 5%) @ (her, ) (v V) @ (Vi V).

We now construct the orbifold modules of twisted type using Section 3.3.2. The 2-cocycle

satisfies the following:

clag, o) = (12055 = 1,
e(aigr, a)e(ay, aip1) = (—1)_1 =-1, i=1,...,n—2,
e(an, an-—2)e(an_9,an) = (-1)7"=—
e(ay, aj)e(ay, ) = 1 otherwise.
Set € to be the following on the basis:

6(0&1',052'4_1):1, E(Oéi+1,04i):—1, izl,...,n—S,

8(Oln—2704n—1) =1 s 5(an—1aan—2) = _17

e(ap, ap—2) = —1, e(ap—2,a,) = 1.

Then using bimultiplicativity, we have e(a, ) = (5, 8) = e(a, ) = (B, a) = 1. With these
notions, we have that e(o7y1,07v2) = €(71,72) for all v1,72 € @ so that we can take n to be
trivial, that is, n(y) =1 for all v € Q.

The dual lattice to D,, is spanned by the elements Aq,..., A\,—1, Ay, where

1
N = 041—|—2a2+-~—|—(i—1)ai_1—|—i(ai—|— Qg 2)+2(an 1-|-Oén) t<n—1,
1 1 1
Mol =5 a1+2a2+---+(n—2)an—2+inan_1+§(n—2)an ;
1 1 1
An = 3 <a1 +202 4+ (n—2)ay—2 + §(n —2)op—1 + Qnan> .

Since \; + Q = % + @ for ¢ odd such that ¢ < n — 1, we have that

Q/Q = {Q5+QAa+QM+Q}.

The only c-invariant elements in Q*/Q are @Q and § + @Q and o identifies the other two

corresponding modules since o (A,—1) = A,. Thus there are 5 distinct orbifold modules of
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untwisted type:
+ +
VQ ) V%Jer V>\n71+Q'

For the orbifold modules of twisted type, the quantities that will be needed are the following:

Bsg_p = 25
Ban—lyan = 4’
1
Banfly_an = Z’
Bany_an = 47
1
1
ba == 5(4 - 4) == 0,
1
ban—l = 5(1_2):_77

The elements in G, must satisfy U, = UfyeQ”i(bV“YO). In particular, U_g = Uge*47ri = Upg so
that Ug =UgU_p =¢(p, —B)B/;l_ﬁ = 278 Thus there are two possible actions of Ug:

1
Ug=+2"4=+—.
7 16
Using the o-invariance, we then have the following:
U, = U, e2(3t300) = _y, ™o,
Uo = elan-1,00)Ba, 1,0,Ua, 1Ua, = _4Uo2¢n,1 emwo,
1 .
U = elam, —om) By, o, U, = 7Us, €™,
1 .
Usg = e(an-1, _O‘n)Ban—1,—anUan—1U—an = Eema(o)-
Consider the vector space P(n) = C[pi!, ..., pE!,]. Since each nontrivial action is determined

. o
by U,, for i <n —1, let U,, act as multiplication by pi(=1)"" %1 for i < m —1 and U,

Qn—1
act as multiplication by p,—1. Note that these actions ensure that pi,...,p,—1 are commuting

variables since the operators U,, and U,,,, anticommute. In order to determine the action of

i+1
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e™0) | consider the commutation relation with U,:
eﬂia@) U’ye—ﬂia(o) _ eﬂi(ah) U'y-

For v = a; with i < n — 1, we have €™ p,e" ™0 = p; Thus e™*@pl = ple™*© (1). Since
€™M0 = 1, we must have e™© (1) = 41 so that €™ p? = £pP. Thus on the space P(n) we

have the following:

Uan_l = Pn-1,
pi 179
Uozi = pi(_l) T ori , i1<n—1,
Uan = _Uan71 eﬂ-ia(o) = +Pn-1,
Us = = _4U§n_1eﬂ-ia(0> = :F4p%—17
1 1
U = = 7671"106(0) = :l:i.
? 16 16
The automorphism o acts on each of these modules. To determine the action of o, we
calculate o (g™ pt" -- ‘pﬁ":;) =oUm Uk-.. UE"=2 . 1) on the module P(n) corresponding to

the positive action of Ug:

o(UD_ UM ...Uk—2.1) = yruk...ukn—2.1

Oy —1 Qn ~ Q1
_ myrm k1 kn—2
- (_1) Uan71Ua1 e Uan72 -1
m, m, k1 kn—2

= (=1D)"¢"p" - p

Thus P»(n) decomposes into two eigenspaces of o with eigenvalues 4-1. The +1-eigenspace P (n)™

is generated by the elements qmp’f1 S pfl’l‘QQ, where m is even, and the —1-eigenspace Py(n)~ is

generated by the elements qmplf1 . -pﬁ":;, where m is odd. Similarly, o(UT._ UM - - Uﬁz:g 1) =

qm]olf1 e pfl"__; on the module P;(n) corresponding to the negative action of Ug. Therefore o
acts as the identity on P;(n).

The entire o-twisted Vig-module is then M (o) ® P;j(n) for ¢ = 1,2. Since M(o) itself
decomposes into +1-eigenspaces of o, there are a total of 4 distinct orbifold modules of twisted
type:

M(o)* @ Pi(n),

(M(0)* ® Py(n)*) D (M(0)T ® Py(n)).

62



5.5. THE ROOT LATTICE Anx, N ODD CHAPTER 5. EXAMPLES

In addition, we have the following correspondence:

M) e Pm) ~ (i, o Vi5*) @ (Varr, o Vi*),
(M(0)* @ Po(n) ") @ (M(0)T @ Po(n)7) = (Vi @ Vi3™ ) @ (Vasr, @ Vi),

5.5 The Root Lattice A,, n odd

Consider the A,, simple roots {ai,...,a,}, where n is odd. The nondegenerate symmetric

Z-bilinear form (-|-) is given by

2 -1 0
-1 2 -1

((@ilag))i; = 0

-1 2 -1

0 0 -1 2

The associated even lattice is Q = Y ; Za;. Throughout this section, set | = "T_l Consider
the Dynkin diagram automorphism o : a; ¢— an—;41. This is also an automorphism of () with

a fixed point ay41. For ¢ <1+ 1, set

al = oG+ Qp—it1, (534)

B'= i — om_iy1. (5.35)

Then o and 3 are eigenvectors for o with eigenvalues 1 and —1, respectively. Products between

these elements are as follows:

(a'|la’) =4 = (58,
(@™t = =2 = (B8, i=1,...,1-1,
(ai|04j) =0= (ﬁi’ﬂj), otherwise,
(a'|p7) = 0.
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Since (aan_ir1) =0 for i <1 and (ay1|ayi1) = 2, we have that @ C Q. Therefore

Q = Q, (5.36)
l

Ly = Y Za'+ Zoy, (5.37)
=1
l

L. = > zp. (5.38)
=1

The cosets Q/L are in correspondence with {0, 1}-valued I-tuples via
!
(al,...,al) — Zaiai + L (539)
i=1
so that |Q/L| = 2. Hence by Proposition 4.2.2, we have that
0~ ) +
Vi~ D (Vézbiaz+L+ ® V%ZbiﬁiJrL_) ) (5.40)
(b1,.--5b7)

where b; € {0,1} and there are 2! summands.

In order to compute the V7-modules, we first determine L% /L, using the Gram matrix for

L. Ordering the basis of L as {a;41,a',...,a'}, the Gram matrix for L, is given by
2 -2
4 -2
-2 4
G pu—
—2
-2 4 =2
—2 —2 4

The inverse is given by
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ntl 1 3 5
421222
111 1 11
2 2 2 2 2 2
1 21111

-1 31 3.3 3

G_221222
1 3
2 313 2 2
5 1 3 5
3 3 15 23

Lemma 5.5.1 The group L% /Ly is generated by the set

1 1 1
{L+,20[[+1+L+,2041+L+,...,2al+L+} (541)

and |L% /Ly| = det G = 21,

Proof It is clear that the elements in (5.41) are in L% /L, and form a linearly independent
set over Z. Since the operation is addition modulo L, each nonintegral fraction in G~! can
be replaced with % Then every column of G~! can be written as a linear combination of the
elements (5.41).

Each Vi -module can therefore be represented by a {0, 1}-valued (I + 1)-tuple given by

1
(a, by, .. .,bl) — 5 (aal+1 + blal 4+ 4 blal) + L. (5.42)

We determine L* /L_ using the Gram matrix for L_. Ordering the basis of L_ as {8', ..., 8'},

the Gram matrix for L_ is given by

Since M is twice the Gram matrix for A;, the dual basis for L_ is given by the dual basis of
A, divided by a factor of v/2. Let K be the root lattice for A; with basis {v1,...v} such that

o(v;) = —v;. Then L_ = /2K and L* = %K* We also have that |L* /L_| = det M = 2! (1 + 1).
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The dual lattice to A; is spanned by the elements Aq,..., A\;, where

1
N = m((l—i—}-l)yl+2(l—i+1)1/2-l—i(l—i—l—l)yi—f—i(l—i)l/ﬂ_l-i-'-‘—l—iyl),

and the fundamental group K*/K is cyclic generated by the element A\; + K. Let %ui be the

ith fundamental dominant weight of L_ so that

1
2= /2

and o(u;) = —pi. Then L* /L_ is related to K* and K by

i

1

L/L=—

K*/\V2K ~ K* /2K,

where the isomorphism is given by multiplication by v/2. Now the space K*/2K is generated by
the elements {\; + Y bjv; +2K|b; = 0,1}. Thus we have

1
LY /L. = —K*/V2K
/ 73 /
1 1 <
= { —a\i+ =) by +V2K|ac{0,...,1},b; € {0,1}
\@ \/ijzzgjj J
1 I
= 2au1+2jglbjﬁj+lz_ a e {0,...,[},()]' € {0,1}

The o-invariant elements of L* /L_ are those for which a = 0. Thus there are 2 - 2! = 2/+1
distinct irreducible V;" -modules corresponding to the I-tuples (b1, ..., b;), where b; € {0,1} and

a = 0. The remaining elements in L* /L_ are identified by ¢ in pairs. Hence there are

distinct irreducible V;" -modules corresponding to the I-tuples (by,...,b;), where b; € {0,1}
and a # 0. Hence the total number of distinct irreducible V;ﬁ—modules of untwisted type is
220y 2l = 2111 + 4).
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Lemma 5.5.2 The distinct VL+_ -modules that decompose into eigenspaces correspond to the set

!
(L /1) = %ijBJHLL_ b € {0,1)
j=1

The other distinct VL+_ -modules correspond to the set

l
1 1 ; U411
2Mi+2jzglbjﬂj+[/_ bjG{O,l},lSZST

Furthermore, when 1 is odd and k = l+717 a minimal spanning set corresponding to the distinct

V]-i -modules contains only elements of the form

1 1 -1

Z Z 37

She+ 3 Zlbjﬁ :
]:

Proof For y = %,ui + % S b7 € L*, we have

o(p) = —p
1 I,
= JH-it1it g Z b+~ mod L_

2 -
7j=1

where v; = %Z a;;j37 for some a;; € {0,1}. In particular, when [ is odd and k = ”71,

1 _ 1

otk =k
1 1 2 k -1 l

= 1(& +28°+ -+ kB +--+28 +B),

so that

1 1 1

N — — — — 1 3 P l
2,uk 2,uk+2(ﬂ + 67+ +B) mod L_.

Thus we can take v, = % (ﬁl + B34+ Bl) and just use representatives with b; = 0.

From the proof of Corollary 4.4.3 and (5.39), the irreducible V7-modules are obtained from
elements A € L% and p € L* such that (A4 p|a;) € Z for i =1,...,1.
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Lemma 5.5.3 We have for j <l+1,

1 1
(2/% Oéj> = 5%,
<26 aj) - <2a

Proof The statement follows from the following calculations:

1
aj) =0ij— 5 (Gij—1 + Gijj+1) -

(Blag) = (a'lay) = =0i-1 4 205 = i1,

(la) = T (—(= DA =i+ 1)+ 20 =i+ 1) — il =) = 1,
J<iiulay) = G-+ - () =0,
J> i Gulg) = g (U= G- DDA -G = (= G+ 1) +1) =0

Lemma 5.5.4 There are | + 4 Vé-modules of untwisted type, where | = "T_l

Proof The only elements in L% /L, that have integral products with each «; are

1

3 <a1 +a’ 4+ ozl> + Ly, if lis odd, and (5.43)
1
3 (Oél+1 +ol+ad 4+ Ocl_1> + Ly, if [is even. (5.44)

Due to (5.40), the orbifold module corresponding to any representative in this list is the same

as the orbifold module corresponding to the representative for either Vi, or Vi .
+ ou+1+L4

For [ odd, the following is a list of all elements in L* /L_ which have integral products with

each «;:
L—7 7+L—:%(51+/83++5l)+[/—7
BLo 4114 1)
shae + 3 (B1+ %+ 4 B + L, k=1...q=4 "% :
T 4l+3)
Bl _ 1 4/(1+1
Tuor + L (B + B+ + B oy + L, k=1,...,¢ =41

The following is a list of all z + L_ € L* /L_ which have half-integral products with each «;
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and satisfy (z + foyi1|a;) € Z:

%MZ—FL*?
1 1 (pl—1 -3 1—2k+1 Z_Tg’, 4|1 +1
oo+ 3 (B B B L k=1 =0T ,
T 40+3)
Su+v+ L,
=3, 4|1 +1)

uon +3 (B 4B B b D k=1 =0 ,
T L 40+3)

The only o-invariant elements in these lists are L_ and v+ L_ so that the two orbifold modules
with representatives Vp, @V and Vp, @V, will split into eigenspaces under o. For elements
in L* /L_ that are not o-invariant, there are lle elements that have integral products with each
a;, and l+71 elements in L* /L_ that have half-integral products with each «;. Thus there are a
total of 2(2) + l% + HTl = [ 4 4 orbifold modules of untwisted type.

For [ even, the following is a list of all elements in L* /L_ which have integral products with

each «;:

L_,
1, 1=2
T+ 1 (B B4+ Y + L, k=1,...,s={L 4 :
220 4)(1+2),1>2
1 1 2k+2 2k+4 l %7 4|l
shok1 + 5 (B2 + 2 o 4 Bl + L k=0,....t=q :
L2 4|1+ 2)

The only o-invariant element in this list is L_ so that the orbifold module with representative
Vi, ®@V_ will split into eigenspaces under o. The VL’L_ -modules paired with V% arpa+Ly correspond
to the elements in the above list added to the element % (ﬁl +83 4+ ﬁl_l), which has half-
integral products with all a;. For elements that are not o-invariant, there are % elements that
have integral products with each «;. Thus there are a total of 2 (2 + é) = [ 4+ 4 orbifold modules
of untwisted type.

Theorem 5.5.5 Let | = "Tfl Then the list of l + 4 Vé—modules of untwisted type is equivalent
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to the following list:

+
( @ : (Vézbia“rm ® VéZbZﬂUrL_) ’ ( @ : (V%az+1+§Zbiai+L+ ® V%Wrézbiﬁ“rh) ’
(- bi,by

@ (V% SbiaitLy @ VMer% szﬂ’#L—) ? @ (V%al+1+% Sbai+Ly @ V%Mﬁ% Zbiﬁi+L—) ’
(blv"'vbl) (blv"'vbl)
+

T (b@b) <V§Ql+1+ézbiai+L+ ® Vlglwgzbi,siﬂ) ’
15--+501

where b; € {0,1}.

Proof It is sufficient to show the following identities among the cosets of L* /L_:

1 1

sho 5 (B 4B+ 4 B L=k + Lo,
1 1 _ _ _ 2k +1
sticae+5 (BT B B p L = L

1 1 l
Skt + 5 (B2 + 8% ) L= <2 - k) i+ Lo

For the first identity, we consider separately the coefficients of 3* for i < 2k and ¢ > 2k. For
i < 2k we also consider separately i even and i odd. For i < 2k odd, the coefficient of ? is

il=2k+1)+1+1=0G+1)(1+1)— 2ik.
Since i + 1 is even, we may take the coefficient to be —2ik. For i < 2k even, the coefficient of /3*

is

i(l— 2k +1) =i(l+ 1) — 2ik.

Since i is even, we may take the coefficient to be —2ik. For i > 2k, the coefficient of ¢ is

2%(l—i—+1)=2k(I+1) — 2ik

70



5.5. THE ROOT LATTICE Anx, N ODD CHAPTER 5. EXAMPLES

which can be replaced with —2¢k. Thus we have

o~

1
2

1
o = (52k+2+ﬁ2k+4 ~--~|—5l> L. =
— l+12lﬁ + L_
= kwy+L_.

For the second identity, we consider separately the coefficients of 3° for i < | — 2k and
i1 >1—2k. For i > | — 2k we also consider separately ¢ even and 7 odd. For ¢ > | — 2k odd, the

coefficient of B* = B/=2F+27+1 can be written as
(1= 2K)(2k — 25) + 1+ 14§20 +2) = (2k + 1)(1 — 2k +2j + 1) = (2k + 1)i
and for i > [ — 2k even, the coefficient of 3* = ~2k*2/ can be written as
(1—2k)2k—2j+1)+j(20+2)= 2k + 1)l — 2k + 2j) = (2k + 1)1.

For i < | — 2k, the coefficient of 3% is (2k + 1)i. Thus we have

l

1 L/t | -3 l—2k+1) 2k+1 i
o1 L. - L.
Stz + 5 (BT BT g P
2k +1
= 5 Mt +L_.

For the third identity, we consider separately the coefficients of 8¢ for i < 2k + 1 and
1> 2k + 1. For ¢ > 2k + 1 we also consider separately ¢ even and ¢ odd. For ¢ > 2k + 1 even, the

coefficient of B* = B2¢+1+2) can be written as
2k +1)(1 =2k —2j — 1) +1+1 452 +2) = (I — 2k)(2k +2+2§) = (I — 2k)i
and for i > 2k + 1 odd, the coefficient of g* = g2++1+2/+1 can be written as

Ck+1)(1—2k—2j—2)+ (G +1)20+2)=(1—-2k)(2k+2+2j + 1) = (I — 2k)i.
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For i < 2k + 1, the coefficient of 3 is (I — 2k)i. Thus we have

!
L/ oo 2k+4 | l) [ -2k i

+ - + R +L_ = +L_
—H2k41 (5 B B 0+ E i3

l
= - —k L_.
(2 >Ml+

We also have H'l,u,l +L_=~+L_, where v = % (ﬂl + 834+ Bl). This completes the proof.

1
2

For convenience, the modules in Theorem 5.5.5 are referred to by using the summand corre-
sponding to the [-tuple (0,...,0).

Recall the irreducible twisted VLJF_ -modules are given by VLTf’i, where T\, is an irreducible
L_ /K-module with central character y. The irreducible 12 -modules of twisted type are obtained
using the fusion rules for VL+_ with M; = sz byl where i = 1,...,0l and b; € {0,1} (cf.
Definition 3.3.16). Note that each irreducible character X :2L* N L_ — {£1} for which

X(e—a) = Xx(eq) can be written as
X(ea) = (1)1

for some p € (2L* N L_)*. Since

l
> b > bibi(8187) + Z b2 (515
=1

l
1 .
PO
j=1

i<j 23
= —2) bib; +2Zb2 €27,
i<j
we have that
W Nesp) = alesig) (5.4
and hence every module Vlb L. sends VLTf to VLTf Since ¢y (5 > bi87) = x(esp,5:) and

linear characters are homomorphlsms, we have that

1 l ' l
Cx (2 Z biﬁ”) = H x(ep,5i), (5.46)
i=1 i=1

where b; € {0,1} and x(eg) = 1. Thus each irreducible V§-module of twisted type corresponding

to a choice for y is obtained in the following way. For each element v_ = 3 15" b; 3%, the eigenspaces
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are determined by computing the product in (5.46). There are a total of 2 - 2 = 2/*1 irreducible
2 -modules of twisted type.

Example 5.5.6 As an example of composing orbifold modules of twisted type, consider the
case | = 3 and the character x defined on the basis of L by x(eg) = —1,x(eg2) = —1 and
x(eps) = 1. Then the corresponding orbifold modules of twisted type are

Ty, x Ty, F Ty, F
(VL+ ® Vi ) D <Va; o, OV > D (Va; 1, BV )
Ty, £ Ty, + Ty, F
@ <Va3 i, ® VX > b <Va1;a2 i, ® VX ) ) (V@;as v, ® Vi )

T T T 7:|:
&b <Va1;a3 L, @V ) &b (Va1+a22+a3+L+ VX > .

2

We now construct the orbifold modules using Section 3.3.2. The 2-cocycle ¢ satisfies the

following:

(o) = (—1)22) = —1,
elag, air1)e(aipt, a5) = (=1)71 = —1,

e(ay, aj)e(ay, o) = (—1)021, otherwise.

Using bimultiplicativity, we also have e(af, /) = &(8%, 37) = (o, 37) = (8%, a’) = 1. Set
e(aj,air1) = e(an—it1,0m—;) = 1 and e(aiy1, ) = e(ap—i, n—i+1) = —1. Then with these
notions, we have that (071, 072) = (71, 72) for all 41,72 € Q. Thus we can take n to be trivial,
that is, n(vy) = 1 for all v € Q.

The dual lattice to A, is spanned by the fundamental dominant weights

1
A = i (n—it4+Dag+---+in—i+ Doy +i(n —i)ap1 + -+ + i),
for i =1,...,n. The only o-invariant elements in Q*/Q are @ and A4 + @ and o identifies [ of

the corresponding modules since o (\;) = A\p—i+1. Thus there are | + 4 distinct orbifold modules

of untwisted type given by

+ +
VQ ) V)\1+Q7 SRR V)\1+Q7 VAl+1+Q'
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For the orbifold modules of twisted type, the quantities that will be needed are the following:

B5i7_ﬁz‘
B

QO — 541

Bai7

—Qp—i41

B

Q4 4+1,~Qn—441

The elements in G, must satisfy Uy, = UveQ’Ti(%*VO). In particular, U_g: = U, 516*4

28

4,

1

4’

4,

1

1

1

1 1
S(1-2)=—-
a-2)=—,
(_1)(7\9)_

7y

i:U/Bi SO

that Uéi =UpU_g = (B, —ﬁi)Bgi%_Bi = 278 Thus there are two possible actions of Ugi:

1
Ug =274 =+—.
A 16
Using the o-invariance, we then have the following:
Uan7i+1 — Uai€2ﬂ'i(*%+%o¢i) _ —Uaieﬂ—iai’
Uai = 5(ai7an*i+1)Bai,Oln7¢+1 Uaann7i+1 = _4U§i67ﬁalv
1 o
-1 —1_miat
U—opiin = Elan—ivt, —on—it1)Ba, 1 —an v Uanir = ZUai e™*
1 .
UB" = 5(051" _an_i"!‘l)BOéiy_Oéan»lUaiU_Oénfﬂ»l = T6€W1a
Consider the vector space P(n) = C[ql,qfl, . .,qz+1,qf+11], where [ = ”T_l Since each

nontrivial action is determined by U,,, for i < [+1, let U,, act as multiplication by ¢;(—1)

fori < [+1 and U,

1+1

are commuting variables since the operators Uy,

the action of ™

eﬂ'ia(o) []’y ewia(o)

X 9
qi+1 da; 41

act as multiplication by g;+1. Note that these actions ensure that q1, ..., ¢4+1
and U,

a;+, anticommute. In order to determine

), consider the commutation relation with U,:
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g g s - g . oriad
For v = a;, we have e" “©¢;e " "© = g;. Thus " “©¢? = ¢"e" " (1). Since ¢ “© =1, we
mialk g '

©(1) = +1 so that emazo)qf = £¢}. Similarly eﬂiaz‘))q;ﬂrl = Fqi .
Thus on the space P(n) we have the following for i < I:

must have e

UOcH_l - QZ+1
X 9
UOti = Qi(_l)ql-H Oait1 s
Uan,i+1 = _Uaieﬂiazo) = +qi,
U, = = —4U§ie7ria20> = :F4qi2,
1 _riad 1
Usi = = — 0) = 4+ —.
8 16° 16

The automorphism ¢ acts on each of these modules. To determine the action of o, we
calculate o (p” Hi:l q;m) =0 (ngﬂ Hﬁ.zl vy - 1) on the module P,_(n) corresponding to the
character x (egi) = —1 for all i. Since

l l
o (Ugm [Tua 1) =p" [ ™,
=1 1=1

the automorphism o acts as the identity on P,_(n). For other characters x, o is determined by

Thus P, (n) decomposes into two eigenspaces of o with eigenvalues 1. The +1-eigenspace
P,(n)" is generated by products p™ le‘:l q;", where )~ m; is even for each j with x(eg;) = 1.
The —1-eigenspace P, (n)~ is generated by products p" Hi‘:l q;"", where > m; is odd for each j
with x(egi) = 1.

The entire o-twisted Vg-module is then M (o) ® Py (n). Since M (o) itself decomposes into

+1-eigenspaces of o, there are a total of 2 - 2! = 2!+1 orbifold modules of twisted type:

M(U)i ®Px7(n)7

(M(0)* ® Py(n)*) @ (M(0)T ® Py(n)7), X # X-

We now present a correspondence between the two constructions. It is clear that each

construction produces the same number of orbifold modules of untwisted and twisted type and
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also that the orbifold modules of twisted type both correspond to the same set of characters.

The following lemma will be used to identify the orbifold modules of untwisted type.

Lemma 5.5.7 The orbifold module V), +q can be identified with the orbifold module with

representative V%OQHJFL+ ® V%erLJ

Proof We first show that o (%,ul) = %,ul — %Z B

1

I = T Y (i—i+1)p
) i<l4+1 .
_ = i oY)
- 2,Z Ty Z i
i<l+1 ) i<l+1
= i  oi
3 2 P 2
1z<l+1 1 i<l+1
= 73 Z ﬁ’+§m-
i<l41
Now A1 can be written as follows:
R > (n—i+1)a
LT onTd - net i
1 , . . . n—1
L — _ 1 2 7 l 1—34 ( l—i+1 l—z+1>)
2(n+1>i<zl+:1<(n A ’ T
1 . . 1
= — (n+1)a'+ (n—2i+1)8") + —ay41
2(n+1) Z<l2+1( ) 2
1 - 1 V|
= 52 Ckl—i-m'z (l—‘rl—l),@l-i-iaprl
i<l41 i<l41
1 | 1
= 52 «@ +§M1+§al+1-
i<l+1

Due to (5.52), the orbifold module with representative corresponding to A; will have another

summand with representative corresponding to each o' replaced with . Thus, since

1 1 S 11
oo + 5 g;lﬁ + 5+ = SH + 5 Q1
(]

we have that V), ¢ is isomorphic to the orbifold module with representative V1 RV1

saip1+Ly sHi+L_*

Recall the space Q*/Q for A, is cyclic generated by A\; + Q. This can easily be seen by

writting each root as «; = v; — v; 41, where vy,...,v,41 is an orthonormal basis for an (n + 1)-
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dimensional vector space (cf. the end of Section 2.2). Then the fundamental dominant weights
are given as \; = v; + - -- + v;. Using induction and that \j11 = Aj + (vj41 — v1) + v1, we also
have
Ajr1+Q = N+ M +Q
= G+ +Q.

From these identities, other orbifold modules can be identified using Lemma 5.5.7 and that o :
¢- From the proof of Lemma 5.5.7 and that Q*/Q is cyclic, it is clear that the
module V), ;¢ can be identified with the orbifold module with representative V% o
where j = 1,...,1, and that VT

V)\iJrQ - V/\n7i+1+

141+Ly ®V%#1+L7 ’
can be identified with the orbifold module with representative

Ai+1+@Q
+ . . .
V1J51 Qs +Ly ® V] ISP This completes the correspondence of orbifold modules of untwisted
type.

To illustrate the correspondence of the orbifold modules of twisted type, consider the module
of twisted type presented in Example 5.5.6. Then we have the following correspondence between

eigenspaces:

Ty, x
4, ® ValgaQ 1L @ Va1+a22+a3 +L+> ® VL, )

2

M(o)* ® Py(n)t ~ (VLJr D Vs

D Va2

M(o)T ® Py(n)” =~ <Va1 a2y

TX9:F
al g, N (S5) V&1;a3 tLy ) Va2;a3+L+> & VL_ .

5.6 The Root Lattice A,, n even

Consider the A,, simple roots {a1,...,a,}, where n is even. The nondegenerate symmetric

Z-bilinear form (-|-) is given by

2 -1 0
-1 2 -1
((eilag))ig = 0
-1 2 -1
0 0 -1 2

The associated even lattice is Q@ = Y ;" | Za;. Throughout this section, set | = 5. Consider the

Dynkin diagram automorphism o : «; <— a,—;+1, which is also an automorphism of Q. For
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1 <l+1, set

ol = oG+ Op—it1, (5.47)

B' = — o1 (5.48)

Then o and B¢ are eigenvectors for o with eigenvalues 1 and —1, respectively. Products between

these elements are as follows:

(a'la’) =4 = (B8, i<,
(@]oh) =2, (88" =6,

(ai|aitly = —2 = (BI|pHY),  i=1,...,01-1,
(ai‘aj) =0= (Bl’ﬂ]), otherwise,
(a'l87) = 0

In order to determine @, we find conditions for which v = Y"1 | m;a; € Q satisfies (y|oy) € 2Z.

Since

n
(Yloy) = Zmimn—jﬂ(aﬂ%)
i=1
-1
= 2% (mima—i + ma—ipimic) (@ilaizn) + (mg+mig) (o)
i=1
= my+myy1 mod 2Z,

we have that

Qi
Il

mp = mj4+1 mod QZ}

n
E miQy
=1

-1 n
= Y Zai+Zo' +Z8' + ) Za.

=1 =142
Therefore

l .

Ly = > Zd, (5.49)
=1
l .

L. = > zp" (5.50)
=1
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The cosets Q/L are in correspondence with {0, 1}-valued (I — 1)-tuples via

-1
(a1,...,al_1) — Zaiai—i-L (551)
=1

so that |Q/L| = 2!=!. Hence by Proposition 4.2.2, we have that
o~ . +
VéT - @ <V§ Sobjat+Ly ® V% Zbi5i+L—> ’ (552)
(blv“wblfl)

where b; € {0,1} and there are 2/~! summands.

In order to compute the V7-modules, we first determine L% /L, using the Gram matrix for

L. Ordering the basis of L, as {a',...,a'}, the Gram matrix for L, is given by
4 =2
-2 4
G= —2
—2 4 -2
-2 2

The inverse is given by

111 11
2 2 2 2 2
111 1
19 3 3 3
2 2 2 2
13 2 2
1 3 5
3 15 23

Lemma 5.6.1 The group L% /Ly is generated by the set
1 1 1 l
L+,§O& +L+,. ..,504 +L+ (553)

and |L% /Ly| = det G = 2\

Proof It is clear that the elements in (5.53) are in L% /L and form a linearly independent set.

Since the operation is addition modulo L., each nonintegral fraction in G~! can be replaced
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with % Then the columns of G~! can be obtained as linear combinations of the elements in
(5.53).

Each Vi -module can therefore be represented by a {0, 1}-valued I-tuple given by
1 1 !
(b, br) — 5 (bla +-~+b,a) VL.

We determine L* /L_ using the Gram matrix for L_. Ordering the basis of L_ as {8', ..., 8'},

the Gram matrix for L_ is given by

4 -2
2 4
M= —2
2 4 -2
—2 6

We now describle the dual basis of L_. Since each entry of M is even, it is sufficient to find a
dual basis for M’ = M. The inverse of M’ is given by

20—1 20-3  2A-5 2A-7 1

20—3 2020—3) 2(20—5) 2(21—7) 2

1 2—5 2(20—5) 3(21—5) 3(2A—7) 3
A+1| 20—7 202A—7) 3(21—7) 42 —7) 4
1 2 3 4 .01

We also have that det M’ = 20 + 1 so that det M = 2!(2] + 1).

Proposition 5.6.2 A dual basis for L_ is given by the elements

1 1 ) .
= (2= 2i+ 1) i — 2+ 1B +i(20 — 20 — 1) 4 i
S 2@+ 1) ((l i+ + - F+i20-2i+ 1) +i(2l - 20 - 1) + +zﬁ),
wherei=1,...,1.
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Proof We show that (ﬁi ‘%Mj) = 0;; in cases:

(Ll 26 -1 —-20+1) +4i(2 - 204+ 1) — 221 —2i — 1)
”él‘(ﬂ 2”’) - 2(20 + 1) =1
|1 B 1 o B
(ﬂ 2#;) = 72(2”1)( 2(1 —1)+6l) =1,
|1 2l —2i+1
i<j:<ﬁz 2%) = Mjr—'l—)(—Q(i—l)+4i—2(i+1)):O,
(WY G2 =20 - D)+ D) 4212+ 1) — 2020 —2(i+ 1)+ 1))
Z>]'<5 2”7> - 220+ 1) =0
Since
i = Qli_l((21—22‘4—1)61—|—---—|—i(2l—2i+1)5i+i(2l—2i—1)5”1—1—---4—1'51)
= 2111 (—wl — e =228 226+ D) + DT iﬁl) mod L_

. l
i , ;
= a1 E (20 —2i+1)8" mod L_

1=

= 4u; mod L_,

the fundamental group L* /L_ is generated by the elements %/ﬁl + L_ and % B+ L_, where
i =1,...,1. Thus we have that

l
L*/L_ = %a,ui—i-%ijﬁj—i-L, a€{0,...,2l},b; € {0,1}
j=1
The o-invariant elements of L* /L_ are those for which a = 0. Thus there are 2 - 2/ = 2!+1
distinct irreducible Vji—modules of untwisted type corresponding to the I-tuples (by,...,b),
where b; € {0,1} and a = 0. The remaining elements in L* /L_ are identified by o in pairs.
Hence there are 2020 4 1)— 2
— = 2"
distinct irreducible Vfi -modules corresponding to the [-tuples (b1, ...,b;), where b; € {0,1}
and a # 0. Hence the total number of distinct irreducible V+_—modules of untwisted type is

220 42l =211 +2).
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Lemma 5.6.3 The distinct VLJF_ -modules that decompose into eigenspaces corresponds to the set

(L* /L) = { % > b+ Lo

bjE{O,l},jzl,...,l}.

The other distinct VLt -modules correspond to the set

1 1 . ,
{2ui+22bjﬁJ+L_ bje{O,l},kgzgl},

Bl 1 odd
where k =

é—i—l, l even'

Proof We show the following identity:

1 1 1
o <2Mz‘) = gHi—i+1 + 5+ i mod L_,

where v; = % Z;-:l ajj B9 for some a;j € {0,1}. The automorphism o acts on each p; by

o) = gy (=20 +2i - 1B+ (=20 +2i — 1)
(=20 42+ 1) 4 z‘(—l)ﬂl)
The coefficient of 37 for j = 1,...,i can be written as
G(=20+2i — 1) 4+ 5(21 + 1) = 2ij
and the coefficient of *7 for j = 1,...,l — i can be written as

i(—20 420 +2j — 1) +4(2l + 1) = 2i(i + 7).

Thus we have that

. — # -0l -2 i . i+1 .10l
o(ps) = 1 (M + -+ 208+ 200+ 1) + +2zl5) mod L_
_ 2 1 i . i+1 !
- 2[+1(ﬁ T i+ 1B+ +l6) mod L_
= 2y mod L_.
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Now
1 .
i =——((2i=1)B + - — i+ 1)(2i —1)gH!
proin = g (@ - DB+ (- i+ 1)@ - 1)8
FU—itD)©@i—3)B (=it 1)&) .
The coefficient of f=+1%J for j =1,...,i — 1 can be written as
=i+ 1)(2—1—2)+52l+1) = (2 —1)I —i+1+7).
Therefore
‘ i1y i (s i1 !
Pioitl = oy B4 +iB+ (+ )T+ B mod L_
= (2i—1)u mod L
and hence

o(ui) = 2ip; mod L_
= (20— 1)+ mod L_
= M—iy1+m mod L_.

Thus we have that

1 1 1
o </M> = M-t Tt mod L_.

The lemma now follows.

From the proof of Corollary 4.4.3 and (5.51), the irreducible V-modules are obtained from
elements A € L* and p € L* such that (A + pla;) € Zfori=1,...,1
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Lemma 5.6.4 We have fori <l+1 and j <,
1 1

(21% aj> = 5%,
1 . 1 . 1

<251 %’) = (20/ 0@‘) = 0ij = 5 (Gij—1+ dijs1),
1 1 3

<25l aj) = 501+ 50

1, 1 1
50[ aj = —5 5,0—1 + E(sjl

Proof The statement is clear from the following calculations:

(Blay) = (ay) = =bijo1 + 26i5 — 6ijt1,

(Blaj) = =051+ 385,

(dl|aj) = —0j1-1 + 91,

1

(,ul\ocl) = T_H(—(i—1)(2l—2i—|—1)—|—2i(2l—2i+1) —i(2l—2i—1)) =1,
) . 20— 21+ 1 ) ) )
J<i:(uilay) = ﬁ(—(J—l)‘FQJ—(J—FU)—O,
iz (leg) = 5 (=@ -2i4+1-2( -1 —1))

+220—-2i+1-2(j—4)— (21 —=2i+1-2(j+1—1))) =0.
Lemma 5.6.5 There are l + 4 Vé—modules of untwisted type, where | = 5.

Proof By Proposition 5.6.4, the only element in L% /L, that has integral products with each

«; is the trivial coset L. Therefore all orbifold modules can be represented using only V., . Set

l [l odd I—1, lodd
s = and t= . (5.54)
[—1, [even , [ even
Also set )
=5 (B + 8+ + 5. (5.55)

Then we have the following list of elements which have integral products with each «; for
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i=1,...,0—1
1 1 ( 92k+2 2k+4 t Z_Tl, [ odd
shartr + 5 (B2 4 B 4 4 BY) 4, k=0,...a=9 ", :
==, leven
El 1 odd
%M2k+%(ﬁl+ﬁ3+”'+62k_l)7 k?zl,...,’l": l2 )
o [ even

along with the cosets v+ L_ and L_. The only o-invariant elements in this list are v+ L_ and
L_ so that the two orbifold modules with representatives Vi, @ Vp_ and Vi, @V, will each
split into eigenspaces with eigenvalues 1. There are [ elements that have integral products
with each «; that are not o-invariant. Thus there are a total of [ + 2(2) = [ + 4 orbifold modules

of untwisted type.

Theorem 5.6.6 The list of I +4 V§-modules of untwisted type is equivalent to the following
list:

+
@ <V$ Sbiai+Ly ® V% szﬂi-&-L)
(b1,..,01-1)

D (Vishoor, Visimnres ) £= 1
(bl ..... bl—l)

+
(® G? ) <V§Zbiai“+ ®VV+§Zbi5i+L->
15--4501—1

where 7 is given in (5.55) and b; € {0,1}.

Proof It is sufficient to show the following identities among the cosets of L* /L_:

1 1
st 5 (B4 8+ 4 B 4 Lo = 2k + L

1

1
Hoks1 + 3 (52’““ + By ﬂt) +y+L_=2k+1)y+L_.

For the first identity, we consider separately the coefficients of 3% for i < 2k and i > 2k. For

i < 2k we also consider separately i even and i odd. For i < 2k odd, the coefficient of 8¢ can be
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written as

(20— 4k +1) = i(20 + 1) — dik = (i — 1)(2 + 1) — 4ik + (20 + 1).

Since i — 1 is even, we may take the coefficient to be —4ik + (2] + 1). For ¢ < 2k even, the

coefficient of 3% can be written as
i(20 — 4k + 1) = i(21 + 1) — 4ik.

Since i is even, we may take the coefficient to be —4ik. For i > 2k, the coefficient of 3 can be

written as
2k(20 — 2i+ 1) = 2k(20 4+ 1) — 4ik.

Hence we may take the coefficient to be —4ik. Thus we have

1 L, o3 2%k—1 —4k : i
— — L. = — * L_
l
%
— 2l+1;zﬂ + L_
= 2ku+ L_

For the second identity, we consider separately the coefficients of 3¢ for i < 2k + 1 and
1> 2k+ 1. For i < 2k + 1 we also consider separately ¢ even and i odd. For i < 2k + 1 odd, the

coefficient of 3% can be written as
i(20-2Qk+1)+ 1) =G —-1)20+1)—22k+1)i+ (20 4+ 1).

Since ¢ — 1 is even, we may take the coefficient to be —2(2k + 1)i + (21 + 1). For i < 2k + 1 even,

the coefficient of 5° can be written as
(20— 22k + 1) + 1) = i(20 + 1) — 2(2k + 1)i.

Since i is even, we may take the coefficient to be —2(2k + 1)i. For i > 2k 4 1, the coefficient of

(% can be written as

(2k +1)(20 — 2i + 1) = 2k(20 + 1) — 2(2k + 1)i + (20 + 1).
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Hence we may take the coefficient to be —2(2k + 1)i + (21 4+ 1). Thus we have

1 —2(2k + 1 . N1 .
pransHlo = S E it (B4 ) g Y L
1>2k+1
2k +1 1, 43 2%k—1 1 '
i - L
- Mzﬁ (e ee ) o] 3 e

= (2k+1D)m+ (ﬁg’“” B2k+4+...+6t)+v+L_.

This completes the proof.

For convenience, the modules in Theorem 5.6.6 are referred to by using the summand corre-
sponding to the (I — 1)-tuple (0,...,0).

The irreducible twisted Vj,_-modules are VLTf, where T) is an irreducible L_ /K-module
with central character y. The irreducible Vg -modules of twisted type are obtained using the
fusion rules for VLJZ with M7 = Vg’z by where i = 1,...,l and b; € {0,1} (cf. Definition
3.3.16). Recall each irreducible character x : 2L* N L_ — {£1} for which x(e_o) = x(eq) can

be written as
X(ea) = (—1)(n)

for some p € (2L* N L_)*. Since

!
Z b3
i—1

l
DI IED WICTIRED WAL
j=1

1<j

= —2) bib; +2Zb2+3b,,

1<j

we have that

(3 X b:iBY) Xulesppi),  bi=0
it =" esng) = > . (5.56)
—Xu(esp,), =1
Hence every module ngiﬁurL, sends VLTi‘ to V]:‘Fi‘, for ¢ < I, and V%EB%LL? sends VLTf to
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Vg:x. Since ¢, (% > bzﬂi) = x(es~p,5:) and linear characters are homomorphisms, we have that

l l
o (; ZW’) = (=" T alenp0) (5.57)
i=1

i=1

where b; € {0,1} and x(eg) = 1. Thus each irreducible V§-module of twisted type corresponding
to a choice for x is obtained in the following way. For each element v_ = 5 LS 6,87, the eigenspaces
are determined by computing the products in (5.57). There are a total of 22! = 21+1 irreducible
Vg -modules of twisted type.

Example 5.6.7 As an example of composing orbifold modules of twisted type, consider the case
I =2 and the character x defined on the basis of L_ by x(eg1) = —1, and x(eg2) = 1. Then the

corresponding orbifold modules of twisted type are
Ty, Ty, F T+ T T
(VL+®VX )@(V0¢21+L+®VLX >®<V°‘22+L+®VLX >@<Va1;a2+L+®VX >

We now construct the orbifold modules using Section 3.3.2. The 2-cocycle ¢ satisfies the

following:
e(alal) = (-1 = -1,
e,y = (-1 = -1,
e(dl, Bhe(B,al) = 1,
elai, i) = (- 1)( Y= 1,
e(ai, aip1)e(@irr, o) = (=1)71=—1,
e(ay, aj)e(aj, ) = 1 otherwise,
where i, < l. For ¢ <l —1, set
e(ai,aip1) = e(@n—iv1,0n—) =1,
e(aiv1,0u) = elan—i,on—iy1) = —1,

e, B = e(Ba)=1.

Then ¢ is o-invariant on @ so that we may take 71 to be trivial, that is, n(y) =1 for all v € Q.
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Proposition 5.6.8 The fundamental weights of Q are given by

1
+2i(20 — i — Vvigo + -+ 2i(1l + 2)y_1 + (20 + 1)t + i
+2i(l — Dagyo + -+ - + 2iay,)
fori=1,...,01—1,
1 !
A= §(al—|—...+lo¢ +(=Dagga+ ...+ ap),
1
A = — e+ (= Dy + 18— (1 -1 — =),
I+1 2(2l+1)(041+ + ( Jag_1 + 18" —( )a2 an)
1
N o= ——(21@21—-i+1 e+ 22l — i+ 1)1 — 1)y — 20+ 1)(20 — i + 1)t
sy 22 i Do 42020 =i (= Dag o+ (2 +1)(2 i+ D)o

—@2l =i+ 1) 202 —i4+ D)+ + -+ 22l —i + Doy
+2i(20 — D)oy 4 - - - + i),

fori=1+2,... n.

Proof We show that each ); is a fundamental weight of Q in cases. For i < [ we have

(i) = o -

o) = —2(1‘—1)(2l—i+1)22;l4j_(21l)—i+1)—2i(2l—z‘):17 P
(May) = G (26 =1+ =2 +1) =0, j<i

(May) = 2(2;11)(—2(2l—j+2)+4(2l—j+1)—2(2l—j)):O, i<j<i—1,
o) = 2i(l+3)+42igl2;r+21)i(2l+1)i:07 T

ey — 2(l+2)+§z(2?l++1§)2i(l1) o

) — 2(l+2;(;6j52i(l Dy

) = HCUTDFUDGD) oy,

Mlaw) = mzo
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For A\; and A\;4; we have

—(-1)+2—(1-1)

(Ailah) = 5 =1,
gy = “EDHEED
o = UTVHE=GE o,
o) = TUZORZD=G=D oy
and
el = I
(ualal) = = ;(l;zi(f)_ 2o
Motlay) = _(j_lz)(;ij;)(”l):o, j<l.
Aplay) = _(j_4)2?§{;f)>_(j_2):0, I+1<j<n,
(vaalon) = 5o =
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For 7 > [ + 1 we have

=D +40 -1 +2) —20 -2 +2) - @+ 1)1 - 1)

Mialenye) = 2020+ 1) =5
e — (-2(i-1)+4i)2((2251—+¢1)+1)—2¢(2z—¢)_1’ s
(Moy) = G2 =D +4=26+1) =0, j<I-1

o) = 2;(2_/:1)1(—2(1—2)+4<z—1)_(2z+1)+1):o, P A1,
(Adal) = W(—(l—l)+(2l+l)—(l+2)):O,

(i) = G- 42—+ 1) =0,

(Mlay) = %(—(1—1)+(2l+1)—(l+2)), l<j<i,
(\lay) = 2(21211)(—(2l—j+2)+2(2l—j+1)—(2l—j)), i<j<n,
(Maw) = i =0

This completes the proof.

The fundamental group Q*/Q is generated by A\; +@Q and \; +Q, where [A\; = \;+\;;1 mod Q,
(I+ 1A =X\ — Ny1 mod Q and (20 + 1)A\; = 0 mod Q. In addition, \; = iA; mod Q for
i =1,...,1 — 1. The only o-invariant elements of Q*/Q are Q and \; + Q and o identifies
[ — 1 of the corresponding modules since o(\;) = Ap—iy1 for i = 1,...,1 — 1. In addition,

0(Ai+1) = —Ai+1- Thus there are [ + 4 distinct orbifold modules of untwisted type given by

+ B _ _ +
VQ 5 V)\1+Q’ N ’V)\Lfl"l‘Q’ V/\l+)‘l+l+Q’ VAZ"’Q‘
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For the orbifold modules of twisted type, the quantities that will be needed are:

Bgi_p = 28, i<l,
Bﬂl7_6l = 2127
Bai,anﬂ'ﬂ = 4, i<l
Bojorr = 8,
Bo‘n*i+1770¢n7i+1 = 4,
1
by = 0-49=-2 i<l
1
bgr = 5(0 —6) = -3,
1
1 1

Co = (=)0,

The elements in G, must satisfy Uy, = Uye%i(bmwo). In particular, U_g: = U, Bi€_47ri = Ug: for
i<land U_g = Uﬁze*‘i”i = Ug. Thus Ugi =UglU_gi = e(p, —Bi)Bﬁ_fﬁﬁi =28 fori <l and

U;l = —2712 50 that there are two possible actions of each U it
Up = £27% for i<l,
Up = +27%

Using the o-invariance, we then have the following for 7 < I

ori( =141t miad
Uny ii = Uge (-3+3 <0>)=—Uaie ©),
2 miat
Uyi = g(aivan—i+1)Bai,an—i+1 UOéiUOén—i+1 = _4Uai€ ©,
1 —miat
Uﬁi = E(aia _an—i+1)Bai,—an—¢+1UaiU—Oén—H-l = 1z€ ©.
onsider the vector space P(n) = 1,q71 ,---,q1,q |, where | = 25=. Since each nontrivia
Consider the vector space P Clgi.qi -+ @, q '), where l = 51, S h nontrivial

2
action is determined by U,, and U, let U,, act as multiplication by ¢;(—1)?%+1 for i < [ and
U, act as multiplication by ¢;. Note that these actions ensure that ¢, ..., q are commuting

variables since the operators Uy,, Uq,,, for i < [ and U,,_,, U, anticommute. In order to
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determine the action of ™0 consider the commutation relation with U,:

eT(iOé(Q) U’ye—ﬂia(o) _ eﬂi(ah) U'y-

For v = a;, we have e" “©¢;e " "© = g;. Thus " “©¢? = ¢ " (1). Since ¢ “© =1, we
mialk

©(1) = +1 so that emazo)qzn = +¢}. Similarly €ﬂia2°>qzn+1 = Fq -

Thus on the space P(n) we have the following for i < [:

must have e

a

Uai = Qi(—l) 9%it1
Ual = q,
ﬂiaéo) _ :|:1,
Uan,prl = *Uaieﬂiazo) = F¢,
Uy = =—4UZe™0 =F4¢2,
1 —miad 1
U = = — 0 = 4+—,
g 16° 16
1

The automorphism o acts on these modules. To determine the action of o, we calculate
o (qz1 Hi;} q;nz) =0 (U;‘l Hij Uy - 1) on the module P,_(n) corresponding to the character
X—(epi) = —1 for all i <. Since

=1

-1 -1
(eoffez ) - affe
=1

the automorphism o acts as the identiy on P,_(n). For other characters x, ¢ is determined by

where i < [. Thus Py (n) decomposes into two eigenspaces of o with eigenvalues +1. The

+1-eigenspace Py (n)" is generated by products g]* Hi;i ¢;"", where Y m; is even for each j with

x(egi) = 1. The —1-eigenspace P, (n)~ is generated by products q;' Hi;i ¢;"", where Y m; is
odd for each j with x(eg;) = 1.

The entire o-twisted Vg-module is then M (o) ® Py (n). Since M (o) itself decomposes into
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+1-eigenspaces of o, there are a total of 2 - 2! = 21 orbifold modules of twisted type:

M(U)i ® Py_(n),

(M(0)* ® Py(n)*) @ (M ()T ® Py(n)7), X # Xx-

We now present a correspondence between the two constructions. It is clear that each
construction produces the same number of orbifold modules of untwisted and twisted type and
also that the orbifold modules of twisted type both correspond to the same set of characters.

The following lemma will be used to identify the orbifold modules of untwisted type.

Lemma 5.6.9 The orbifold module Vy .5 can be identified with the orbifold module with
representative Vi, @V, 41._.

Proof We write \; as follows:

1
N o= ——— (4l 221 — 1 c 2L+ 2)ay 21 + 1)at
1 2(2l+1)( aq + 2( Jag + -+ 214+ 2)ay—1 + (21 + 1)

+85+2(1 = Doyga + -+ + 20)
= #(25(041 +AY+ @ -1+ 57+ (+2) (@ ) + 2+ 1)

22+ 1)
‘I’Bl (l*].)( =1 ﬁl_1)+"'+(041—ﬁ1))
l
- Z ((2l—1)51+(2l—3)ﬁ2+...+351—1+ﬁz)

:l

— ;a-ﬁ-ﬁl +m2]5ﬂ
l

= ;Z;Oé—l-ﬁl +

Due to (5.52), the orbifold module corresponding to the element 3 Zizl(ai + BY) + p; will have
another summand with representative corresponding to ;. Hence V) |5 is isomorphic to the

orbifold module with representative Vi, @ V4 r_.

From these identities, other module representatives can be identified using Lemma 5.6.9
and that o : V3 .9 = V),  +o- From Lemma 5.6.9, we have that the module V} 4 can be
identified with the orbifold module with representative V;, ® V,,,11_. Therefore, using that
N =i\ mod Q fori=1,...,1—1, the module V)\j+Q can be identified with the module with
representative Vp, ® Vj,, +p_, where 7 = 1,...,] — 1. In addition, we have that V>\1+Az+1+@
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and V;IE g can be identified with the orbifold module with representative V7, ® Vi, 11 and
Vi, ® Vjﬁr 1 » respectively. This completes the correspondence of orbifold modules of untwisted

type.
As an example of the correspondence of orbifold modules of twisted type, consider the

module of twisted type presented in Example 4.3. Then we have the following correspondence

between eigenspaces:
M@)*o Pt = (Vi @V*) @ (Vazﬂ+ ® VE*’*) ,
2
- o Ty, F Ty, F
M(o)T ® Py(n)” =~ (1/,121+L+t§§>VLi< )@(Va1;a2+L+®V_X >

5.7 The Root Lattice Ej

Consider the Fg simple roots {aq, ..., as}. The nondegenerate symmetric Z-bilinear form (+|-)

is given by

o O O O

((@ilag))iyj =

The associated even lattice is ) = Z?Zl Zaj. Consider the Dynkin diagram automorphism
0o < ag, ag < a5 with fixed points ag and ay. Then o is also an automorphism of Q).
Set

ol = a1 + ag, (5.58)
Bl =y — ag, (5.59)
o = az + as, (5.60)
B = a3 — as. (5.61)
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Then o and 3 are eigenvectors for o with eigenvalues 1 and —1, respectively. Products between

these elements are as follows: o o
(a'la’) =4 = (B']B"),
(alla?) = =2 = (8'|5?).

Since (a1]ag) = 0 = (as|as) and (az|az) = 2 = (a4|ay), we have that Q C Q. Therefore

Q = Q, (5.62)
Ly = Zog+ Loy + Zat + Za?, (5.63)
L. = 7B8'+7p3° (5.64)
Q/L = {L,ai+L,a3+L,a;+as+L}. (5.65)
Hence by Proposition 4.2.2, we have that
Vg ~ (v, @vit) e (vc,;H+ &V +L>
+ +
EB <VC)§2+L+ ® V’822+L_) @ <Vﬂ1—5a2 +L+ ® Vﬁl_gﬂg +L_> 5 (566)
. 1 2
since (a1)4 = %, (1) = 2=, and (a3)y = &, (a3)_ = £

In order to compute the V7-modules, we first determine L7 /L, using the Gram matrix for

L. . Ordering the basis of L, as {a2, a4, al,a?}, the Gram matrix for L, is given by

2 -1 0 O
-1 2 0 -2
G =
0 0 4 -2
0 -2 -2 4
The inverse is given by
Gl =

N o= W N
= N O W
NI = N =
W NIw N DN

1 2

Note that det G = 4. Thus a Z-basis for L7 is given by {%-, %} so that

al a? al +a?
LY /Ly = {LJrv 5 T Ly, 5 T Ly,

L.\,
2++}
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We now determine L* /L_ using the Gram matrix for L_. Ordering the Z-basis of L_ as {38!, 8%},

the Gram matrix for L_ is given by

with inverse

121
M™1t=- :
5(13)

Therefore L* /L_ is generated by the elements %,ul = %(251 + (%) and %,ug = %(51 +243?) and
|L* /L_| = det M = 12. The 12 elements in L* /L_ can be described by the following list:

1 2
al% + bl% + L_, (5.67)

1 1 2
5#14‘(12%4-132%-}-[/_, (5.68)

1 1 2
5#24—&3%—!—[)3%—%[/7, (5.69)

where a;,b; € {0,1} and i = 1,2, 3.

Since the o-invariant elements of L* /L_ correspond to all elements in (5.67), there are 4
distinct irreducible VLt—modules that can be written as a sum of eigenspaces for o with eigenvalues
+1. The remaining elements in L* /L_ are identified by o in pairs since o ($u1) = $po+58'+352
and o (%/12) = %,ul + %ﬁl + %BQ Thus there are 2(4) + 4 = 12 distinct irreducible V;" -modules.
We then obtain the following lemma.

Lemma 5.7.1 The distinct VL+_ -modules of untwisted type that decompose into eigenspaces

corresponds to the set

(L7 /L) = {;blﬁl + %bQBQ +L_

b; 6{0,1}}.

The other distinct irreducible Vi -modules of untwisted type correspond to the set

1 1 1
- —b1 B+ ZbyB2 4+ L
{2/~01+21ﬁ +225+

b; 6{0,1}}.

From the proof of Corollary 4.4.3 and (5.65), the irreducible V(§-modules are obtained from
elements A € L% and p € L* such that (A + p|a;) € Z for i = 1, 3. However, due to (5.66), an
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orbifold module corresponding to a representative containing V% araltLaza

summand containing V7, . Thus we only need to find those y € L* for which (u|a;) € Z for

1
2/~01

1 1 . )
Odj> - 5’] o iéiyj—Q - 7673,]‘4-17 1=1,2, j=1,3,

211, Will have another

i =1,3. Since

1
ai) - 7511'7 1= 1737

2

1 i
(25

the only cosets in L* /L_ that have integral products with both «; and a3 are L_ and

%m + %52 + L_ = pg + L_. Therefore, the irreducible VJ-modules of untwisted type are

equivalent to the following list:
+ + + +
<VL+ ? VL‘) v (V‘”;JFM “ V";+L> v (Vof+L+ ® V"f+L> v <Val§“2 1, ® V—"lé‘*z’ +L> ’
(VL+ ® V/L2+L—) ® (V0‘21+L+ ® Vu2+B2I+L_>

) <V°‘22+L+ ® VM2+522+L> ) (Va1;a2+L+ ® Vu2+B1J2rﬁ2 +L) .

For convenience, these modules are referred to by using the summands V;,, ® VLi_ and Vg, ®
Va4 L_, respectively.

The irreducible twisted V;,_-modules are VLTi‘, where T is an irreducible L_ /K-module with
central character y. The irreducible Vg -modules of twisted type are obtained using the fusion
rules for V;" with M; = ng biBi+ L where i = 1,2 and b; € {0, 1} (cf. Definition 3.3.16). Recall
each irreducible character x : 2L* N L_ — {£1} for which x(e_a) = x(ea) can be written as

x(ea) = (=1

for some p € (2L* N L_)*. Since

(hﬁl + by B

1 1
561,61 + 21)262) = 2(b + b3 — biby) € 27,
we have that

(L > 6:8Y
Xt (esppi) = xulesppi)- (5.70)
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Hence every module ng,ﬂi-s-L, sends VLTi‘ to VLTf Since ¢, (% Y b)) = x(es~p,5:) and linear

characters are homomorphisms, we have that

1 1
Cx <25151 + 25252) = x(€p, 1) X (€p,52), (5.71)

where b; € {0,1} and x(eg) = 1. Thus each irreducible V§-module of twisted type corresponding
to a choice for y is obtained in the following way. For each element v_ = 3 LS 6,37, the eigenspaces
are determined by computing the products in (5.71). There are a total of 4 distinct irreducible
orbifold modules of twisted type given by the following:

If x(ep) =1 = x(ep2), we have

Ty 4 Ty 4 Ty 4 Ty 4
(vi, @ v )@(Va; L BV )@(Vaj L OV )@(Valgazﬂ ® VX >

If x(egr) =1 and x(eg2) = —1, we have

Ty, £ Ty, £ T, F T, F
(VL+®VX ) <V21+L ® V.~ ) <V22+L+®VLX > (V1+a o, OV >

If x(eg) = —1 and x(eg2) = 1, we have

Ty, Ty, F Ty, £t Ty, F
(VL+®VX ) (V1+L @V ) <V2+L RV X )@<VQ1J2“"2+L+®V5 )

If x(eg) = —1 = x(eg2), we have

(VL+ & VTX7 ) <V21 +L, ® VLTX’:F) <V22 ‘L X VEX’:F> fas) (Va1+a2 ‘L. R Vgxﬁt> .
2

We now construct the orbifold modules using Section 3.3.2. The 2-cocycle ¢ satisfies the
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following;:

= 1, otherwise.

e(ag,a3) =1, e(ag,ay) = —1,
e(ag,aq) =1, e(ay, ag) = —1,
e(ay,a5) = —1, e(as,aq) =1,
e(as, a6) = —1, e(ag, a5) =1,
e(ag,aq) =1, e(ay,as) = —1.

With these notions, we have that (o1, 072) = (71, 72) for all 71,792 € Q. Thus we can take 7
to be trivial, that is, n(y) = 1 for all v € Q.
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The dual lattice to Eg is spanned by the elements

1
A1 = §(4a1 + 3 + bag + 6y + das + 205)
1
= g(al + 203 + a5 + 2a) mod Q,
Ao = o1+ 209 + 203 + 3ay + 205 + ag
= 0 modQ,
1
A3 = 5(5041 + 6as + 10as + 12a4 + 8as + 40[(3)
1
= 5(2041 + ag + 2a5 + ag) mod Q,
A = 201 + 3as + 4ag + 6ay + das + 205
= 0 mod Q,
1
A5 = 5(4041 + 6o + 8az + 12a4 + 105 + 50&6)

1
= g(al + 203 + a5 + 2a5) mod Q = A1 mod Q,
1
X = 5(2041 + 3o + 4ag + 6y + Has + dag)

1
= §(2a1 + ag 4+ 2a5 + ag) mod @ = A3 mod Q.

The only o-invariant element in Q*/Q is the trivial coset @ and o identifies the other two
corresponding modules since o(A;) = A3. Thus there are 3 distinct orbifold modules of untwisted
type given by

Vo, Vate

For the orbifold modules of twisted type, the quantities that will be needed are the following:

By = 2,

Baros = 4= Bayas,

Bog—og = 4= Boy—as,
by = %(0—4)2—2,
bay = %(1_2):—%7
by = 5(1-2) =3,
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The elements in G, must satisfy Uy = Uvezﬂi(l”*"m). In particular, U_gi = Ugi e M =[U i SO
that Ugi =UgU_g = (B, —ﬁi)Bgil_Bi = 278, Thus there are two possible actions of Ugi:

1
Ug =427 =+
B 16

Using the g-invariance, we then have the following:

omi( —1+1lal rial
Uy = Une (-3+3 <0)>:_Ua16 ),
2mi( —1+1a2 mia?
Uns = Unye (—5+3 <0)>:_Ua36 ©,
2 mial
Up = e(a1,06)Bay,acUaiUag = —4U5 @),
2
Ugp = 5(a37a5)Ba3,a5Ua3Ua5:*4U02¢36ma(0>a
1 1
1 _ _
U—CYG = 5(@6, _a6>Ba6,—a6Ua61 - ZquleWIa(O)?
Uiy = —as)BL, Ut = fysiemieh
—as 6(0&5, 055) as,—as o5 g as € )
1
T
Upn = 5(@1,—a6)Ba1,,a6Ua1U,a6:Ee ),
1 7ria<20)
U/gz = 8(&3,—0&5)30437,&5(]&3(],&5 = Ee .

Consider the vector space P = Clq1, ¢; Lo, gy L gs, qs L, q[l]. Since each nontrivial action
is determined by Uq,, Uns, U, and U,,, we can let these operators act as multiplication in the

following way:

Uay = Ch(*l)%,
Uay = %(‘U%?
Uag = %(‘D%?
Uny, = aqu.

Note that these actions ensure that q1, ¢2, g3, g4 are commuting variables since (a1|ag), (as|ay)
and (ag|ay) are all equal to —1.

In order to determine the action of €™ consider the commutation relation with U,:
eﬂiafo) Uve—wiaéo) _ eﬂi(ai\'y)U’y_

s 1 1 s 1 s 1 . orial
For v = oy, we have e “©gre” " “© = g;. Thus " © ¢} = gte"“©(1). Since ™" “© = 1, we
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i

il 1
must have " “© (1) = &1 so that " *© g = 4¢}. Similarly we have

VG = Fb,
O = Fqf,
G = 4qf,
oG = 4t i=1,2, j=2,4.

Thus on the space P we have the following:

90
Uss = TFags(—1)%%,
0
Uocg - :FQ1(_1) 9a3 ’
Ui = TFag, i=1,2
1
i = *— =1, 2.
Us 60 T

The signs for Uy and U, are determined by the sign of Ugi and the signs for Uy, and U,z are
determined by the sign of Uge.

The automorphism o acts on each of these modules. To determine the action of o, we
calculate o(qtgs'pip5) = o(UL UTUR UL - 1) on the module P,_(n) corresponding to the
character x (eg) = —1 = x_(eg2). Since

o (UL UBULUE, 1) = dias'pinh.

the automorphism o acts as the identity on P, _(n). For other characters x, o is determined by

q2, x(ep2) = —1

—q2, X(eg) =1

Thus P, (n) decomposes into two eigenspaces of o with eigenvalues £1. The +1-eigenspace
Py (n)* is generated by products piphqlgh?, where [ is even if only x(eg1) = 1, m is even if only
x(eg2) = 1, and [ +m is even if x(eg) = 1 = x(eg2). The —1-eigenspace Py(n)~ is generated
by products pip5qigh’, where [ is odd if only x(eg1) = 1, m is odd if only x(eg2) =1, and [ +m
is odd if x(eg1) =1 = x(ep2).
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The entire o-twisted Vg-module is then M (o) ® Py (n). Since M (o) itself decomposes into
+1-eigenspaces of o, there are a total of 2 -4 = 8 orbifold modules of twisted type:

M(o)* @ Py_(n),

(M(0)* @ P (n)") @ (M(0)T @ Pe(n)”), x# X

We now present a correspondence between the two constructions. It is clear that each
construction produces the same number of orbifold modules of untwisted and twisted type and
also that the orbifold modules of twisted type both correspond to the same set of characters. The
orbifold modules Vét are identified with the orbifold modules corresponding to the representatives

Vi, ® VLi_. The following lemma identifies the other orbifold module of untwisted type.

Lemma 5.7.2 The orbifold module Vy, ;g can be identified with the orbifold module with

representative Vi, @ Vi1 .

Proof We first write A in terms of elements from L*.

1
AN = §(a1 + 203 + a5 + 2a6)

1
= 6(3041 — B4 3a% 4 %)

Ly 1oy 1.4 2

= = - - —_
54 +2a —1—6(5[3 +6%) mod L
1

1 1 1
1 2 1
_ = - - - .
5% —|—2a +2,u1+2ﬁ mod L
Due to (5.66), the orbifold module corresponding to A; will have another summand with

representative corresponding to % w1+ % B% = .

As an example of the correspondence of orbifold modules of twisted type, consider the case of
the character x(eg1) =1 and x(eg2) = —1. We then have the following correspondence between
eigenspaces:

M@*e Pt = (Vi oV *)e (Va;+L+ ® VTX’i) ,

_ Ty, Ty,
M(U)jF ®Px(n) ~ (VO‘2+L+ & VLf ¥) ® <Va142ra2+L+ RV f¥> .

2
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