
ABSTRACT

ELSINGER, JASON ROBERT. Classification of Orbifold Modules under an Automorphism of
Order Two. (Under the direction of Bojko Bakalov.)

Two-dimensional conformal field theory is important in physics as it plays a crucial role in

string theory. A vertex algebra is essentially the same as a chiral algebra in conformal field theory.

Vertex algebras arose naturally in the representation theory of infinite dimensional Lie algebras

and were first axiomatized in 1986. Both string theory in physics and monstrous moonshine in

mathematics played crucial roles in the development of the theory.

In this thesis, we investigate the representation theory of the fixed point vertex subalgebra

V σ
Q of the lattice vertex algebra VQ associated to an arbitrary positive definite even lattice Q

under an automorphism of order two. It is a fundamental problem in the theory of orbifolds

to classify the irreducible modules and the main result uses explicitly a number of previous

results in classifying the irreducible orbifold modules. We also give explicit constructions of all

orbifold modules corresponding to the simply-laced simple Lie algebras with a Dynkin diagram

automorphism of order two.
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Chapter 1

Introduction

In 1968, Victor Kac and Robert Moody independently discovered a new class of Lie algebras

now called Kac-Moody algebras, which are infinite dimensional analogs of finite dimensional

simple Lie algebras. A special type of these algebras, called affine Lie algebras, has rich and

beautiful structures. It turns out their representation theory has many applications in both

mathematics and physics, particulary in proving the moonshine conjectures.

The monstrous moonshine began as an astonishing set of conjectures relating the largest

sporadic finite simple group, the Monster group, to the theory of modular functions in number

theory. However, the connections between the Monster group, number theory, and other fields is

still not fully understood. For more details, see the introduction to [LL].

From the study of the moonshine conjectures, a new kind of algebra of operators was emerging,

called vertex operator algebras, based on the operator product expansion in quantum field theory.

These operators were introduced in the early days of string theory in order to describe certain

kinds of physical interactions. Vertex algebras arose naturally in the representation theory of

affine Kac-Moody Lie algebras and were first axiomatized by Richard Borcherds in 1986.

Let Q be an integral lattice, i.e., a free abelian group equipped with a Z-valued symmetric

bilinear form (·|·). Then one can construct an associated vertex algebra called a lattice vertex

algebra and denoted VQ [B; K1; LL]. Any automorphism σ of Q can be naturally lifted to an

automorphism of VQ but the order may double [BK].

For a vertex algebra V and a finite group of automorphisms Γ of V , the subalgebra V Γ of

Γ-invariant elements in V is an orbifold vertex algebra. Geometrically, an orbifold can be viewed

as a generalization of a manifold by considering the orbits of an action of a finite group on the

manifold.

Now each simply-laced simple Lie algebra can be associated with an even integral lattice. The
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CHAPTER 1. INTRODUCTION

twisted modules for vertex algebras associated to an even integral lattice have been considered in

[FLM; L; KP; D1]. In particular, [D1; AD; DN] considers the specific cases when σ = 1 and

σ = −1. For a root lattice of a simply-laced Lie algebra of finite type, the lattice vertex algebra

gives a representation of the associated affine Kac-Moody algebra at level one (see Theorem

3.3.10). It has also been shown in [BK] that for an even integral lattice Q, the irreducible

σ-twisted VQ-modules are in one-to-one correspondence with the space (Q∗/Q)σ of σ-invariant

elements in Q∗/Q.

It is an open question as to whether every orbifold module can be realized as a restriction of

a twisted module. We present a full classification of the V σ
Q -modules corresponding to an even

positive definite integral lattice Q and an automorphism σ of the lattice of order two. Other

examples of orbifolds and general properties of orbifold theories have been studied in [DVVV;

DLM2; KT].

In Chapters 2 and 3, we review necessary background material as well as the results used

throughout this thesis. Previous knowledge of Lie algebras is not assumed. Chapter 2 discusses

the definition and notion of a Lie algebra and its representations. Some particular examples are

singled out as they will be pertinent in Chapter 5. Chapter 3 discusses the definition and notion

of a vertex algebra and its twisted and untwisted representations. We also describe the explicit

construction of twisted modules over lattice vertex algebras.

Chapter 4 contains the main result. We first determine the structure of the orbifold of a

lattice vertex algebra with an automorphism of order two. It turns out that a suitable sublattice

is sufficent to describe the structure. We then construct the orbifold modules of twisted and

untwisted type. More specifically, we use results from [AD; DN; FHL; A1] to obtain the

following result:

Let Q be an even positive definite integral lattice, VQ the corresponding lattice vertex

algebra and let σ be an automorphism of Q of order two. Then each irreducible V σ
Q -module is a

submodule of a twisted VQ-module.

In Chapter 5, instances of the main theorem are worked out explicitly for each root lattice

corresponding to the simply-laced simple Lie algebras with a Dynkin diagram automorphism of

order two. Note that a Dynkin diagram automorphism is an example of an outer automorphism,

i.e., not an element of the Weyl group. We also show how the orbifold modues of twisted type

are constructed using [BK]. At the end of each example, we present a correspondence between

the two constructions.
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Chapter 2

Lie Algebras and Root Systems

In this chapter, we review classical and affine (Kac-Moody) Lie algebras, root systems, and

their connections with lattices. Unless otherwise stated, all algebras will be over the complex

numbers C. We also introduce certain examples used throughout this thesis as well as review

some representation theory. For more details concerning the theory of Lie algebras, see [H] for

finite dimensional Lie algebras, and [K1] for infinite dimensional Lie algebras.

2.1 Lie Algebras

In this section, we give the basic notions and definitions. To give a bit of history, the study of

Lie algebras arose from the studies of Sophus Lie in the late nineteenth century. He admired

Galois’s work on the symmetries of algebraic equations and wanted to do a similar study for the

solutions to differential equations. He did this by considering all the (infinite) solutions together

and viewed how one morphed into another as initial parameters changed. This led him to groups

of “continuous transformations”, where one operation could gradually transform into another.

He was later led to the concept of “finite, continuous groups” - now called Lie groups.

An indispensable tool for studying Lie groups is its associated Lie algebra, which can briefly

be described as the tangent space of a Lie group at its identity. Lie algebras contain a natural

product, called the bracket, which is neither commutative nor associative. It turns out that much

information about a Lie group can be determined from its Lie algebra. From this realization

came the abstract study of Lie algebras, where the definition can be given axiomatically and

independent of Lie groups.

Definition 2.1.1 A Lie algebra is a vector space g over C together with a map [·, ·] : g×g −→ g

such that for α ∈ C and x, y, z ∈ g,

3



2.1. LIE ALGEBRAS CHAPTER 2. LIE ALGEBRAS AND ROOT SYSTEMS

i ) [αx+ y, z] = α[x, z] + [y, z],

ii ) [x, x] = 0,

iii ) [x, [y, z]] = [[x, y], z] + [y, [x, z]].

Note that the first two axioms imply the bracket is bilinear and the second axiom implies

the bracket is skew-symmetric (i.e. that [x, y] = −[y, x]). The third axiom is called the Jacobi

identity and is crucial to the structure of Lie algebras.

Example 2.1.2 For a vector space V with an associative product, one can define a Lie algebra

structure via the commutator bracket [v, w] = v · w − w · v, where v, w ∈ V .

Example 2.1.3 Let V be a complex vector space. The set of all linear endomorphisms, EndV ,

is an associative algebra under function composition. The Lie algebra obtained from EndV

endowed with the commutator bracket is denoted gl(V ).

As with most algebraic structures, the notions of subalgebras and structure preserving maps

are defined in the natural way.

Definition 2.1.4 A (Lie) subalgebra of a Lie algebra g is a subspace h ⊂ g such that [h, h] ⊂ h.

A Lie algebra homomorphism is a linear map φ : g −→ g′ such that φ ([x, y]) = [φ(x), φ(y)] for

all x, y ∈ g. An isomorphism is a bijective homomorphism.

Example 2.1.5 Consider the vector space gln = gl(n,C) of n× n matrices over C. This space

naturally becomes a Lie algebra under the commutator bracket. This Lie algebra has a subalgebra

of traceless matrices, denoted sln = sl(n,C) = {A ∈ gln|tr(A) = 0}. This subspace is a subalgebra

since for A,B ∈ sln,

tr([A,B]) = tr(AB)− tr(BA) = tr(AB)− tr(AB) = 0.

A basis for gln consists of the matrices Eij, having a 1 in the (i, j) position and zero elsewhere.

The bracket in gln can then be given as

[Eij , Ekl] = δjkEil − δilEkj ,

where δij is the kronecker delta. Note that the bracket on the basis elements extends to the whole

algebra via bilinearity. The Lie algebra gln is called the general linear Lie algebra and sln is

called the special linear Lie algebra and also denoted as An−1.
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We also have the notion of “irreducible” Lie algebras, where attention most often is restricted.

Definition 2.1.6 An ideal of a Lie algebra g is a subalgebra i ⊂ g such that [g, i] ⊂ i. A simple

Lie algebra is a nonabelian Lie aglebra for which the only ideals are itself and the trivial ideal

{0}.

Example 2.1.7 Let In denote the identity matrix in gln. Then CIn is an ideal of gln so that

gln is not simple. It can be shown that sln is a simple Lie algebra for every n.

The classification of finite dimensional simple Lie algebras over C is beautifully described in

terms of associated connected digraphs called Dynkin diagrams. The classification can be found

in many texts, notabaly [H]. Examples of the main result are computed for certain families in

this classification and are presented in chapter 5.

Again as with most algebraic structures, we also have notions of modules and representations.

Definition 2.1.8 Let g be a Lie algebra and V be a vector space. Then V is a g-module if there

is a bilinear map (·, ·) : g×V −→ V , denoted (g, v) = g ·v, such that [x, y] ·v = x ·(y ·v)−y ·(x ·v)

for all x, y ∈ g and v ∈ V .

Remark 2.1.9 Given a g-module V, each g ∈ g yields a linear map: φ(g)(v) = g · v, for all

v ∈ V . It is easy to see φ : g −→ gl(V ) is a homomorphism, called a representation of g on V .

Conversely, each representation φ : g −→ gl(V ) corresponds to a g-module V with action defined

by g · v = φ(g)(v).

Example 2.1.10 For a Lie algebra g and an element x ∈ g, define a linear map adx on g

given by adx(y) = [x, y]. The map ad : g −→ End(g) given by ad(x) = adx is called the adjoint

mapping and forms a Lie algebra homomorphism, due to the Jacobi identity. Hence g is a

module over itself and the mapping ad is also called the adjoint representation.

Definition 2.1.11 A g-module V is completely reducible if V can be written as a direct sum

of irreducible g-modules.

2.2 Root Systems

Let V be a complex vector space and T be a linear operator on V . The operator T is called

nilpotent if TN = 0 for some positive integer N and called semisimple if its minimal polynomial

has distinct roots. Note that over the algebraically closed field C, the condition of T being

semisimple is equivalent to T being diagonalizable.
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2.2. ROOT SYSTEMS CHAPTER 2. LIE ALGEBRAS AND ROOT SYSTEMS

This thesis will mainly be concerned with simple and semisimple Lie algebras, i.e., Lie

algebras that can be written as a direct sum of simple ideals.

Definition 2.2.1 For a Lie algebra g not consisting entirely of nilpotent elements, a toral

subalgebra of g is a subalgebra generated by semisimple elements.

Remark 2.2.2 Let Der g be the set of all derivations of the Lie algebra g, i.e., the set of linear

maps δ that satisfy

δ[x.y] = [δx, y] + [x, δy],

for all x, y ∈ g. It is well known for a semisimple Lie algebra g, that ad g = Der g and that the

map ad is injective. This implies that each x ∈ g can be uniquely expressed in the form x = s+n,

where s, n ∈ g with [s, n] = 0 and ads is semisimple, adn is nilpotent (see [H]). The elements s

and n are called the semisimple and nilpotent parts of x, respectively, and the decomposition

x = s+ n is the (abstract) Jordan-Chevalley decomposition. Hence a (semi)simple Lie algebra

must contain at least one semisimple element.

It is known that toral subalgebras are abelian. Let g be a semisimple Lie algebra and

fix a maximal toral subalgebra h ⊂ g, i.e., one that is not properly contained in any other.

Then since h is abelian, the set of maps adg h = {adh |h ∈ h} is a commuting family of

semisimple endomorphisms of g. It is a standard result of linear algebra that the set adgh is

then simultaneously diagonalizable. Thus g can be written as a direct sum of eigenspaces

gα = {x ∈ g| [h, x] = α(h)x ∀ h ∈ h}, (2.1)

where α ranges over the dual space h∗. It can be shown that g0 is precicely h (see [H]). Then we

obtain the following important decomposition of any semisimple Lie algebra.

Definition 2.2.3 Let g be a semisimple Lie algebra with maximal toral subalgebra h. The root

space decomposition of g is

g = h⊕
∐
α∈Φ

gα,

where Φ = {α ∈ h∗\{0}| gα 6= 0} is the set of roots of g relative to h.

In the following proposition, we give more precise information about the structure of the

root space decomposition. The details of the proofs can be found in many standard texts.

Proposition 2.2.4 Let g be a semisimple Lie algebra with maximal toral subalgebra h. Then

the root space decomposition g = h⊕
∐
α∈Φ

gα has the following properties:

6
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i ) the set of roots Φ spans the dual space h∗,

ii ) for each α ∈ Φ, the subpaces gα and [gα, g−α] are one dimensional,

iii ) for each α ∈ Φ and nonzero xα ∈ gα, there exists yα ∈ g−α such that xα, yα, hα = [xα, yα]

span a three dimensional simple subalgebra of g isomorphic to sl2.

iv ) for each root α ∈ Φ, the only scalar multiples of α which are also roots are ±α,

v ) if α, β, α+ β ∈ Φ, then [gα, gβ] = gα+β,

vi ) g is generated (as a Lie algebra) by the root spaces gα.

Example 2.2.5 We write the root space decomposition for sl3. Recall that sl3 is an 8 dimensional

vector space with the basis Eij for i 6= j and the diagonal elements hi = Eii − Ei+1,i+1. The

maps adh1 and adh2 on the basis elements are as follows:

[h1, E12] = 2E12 [h2, E12] = −E12

[h1, E13] = E13 [h2, E13] = E13

[h1, E23] = −E23 [h2, E23] = 2E23

[h1, E21] = −2E21 [h2, E21] = E21

[h1, E31] = −E31 [h2, E31] = −E31

[h1, E32] = E32 [h2, E32] = −2E32

Reading the eigenvalues of adh1 and adh2 gives the roots of sl3. The following table presents

the values of each root on h1 and h2.

α1 α2 α3 α4 α5 α6

h1 2 1 −1 −2 −1 1

h2 −1 1 2 1 −1 −2

Notice that α1 = −α4, α2 = −α5, and α3 = −α6. Hence the set of roots are Φ = {±α1,±α2,±α3}
and the root space decomposition is

sl3 = CE12 ⊕ CE13 ⊕ CE23 ⊕ spanC{h1, h2} ⊕ CE21 ⊕ CE31 ⊕ CE32,

where the maximal toral subalgebra is h = spanC{h1, h2}.

7
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The set of roots also has a rich structure among themselves and can be studied in an

abstract setting, where the roots are viewed as vectors in a Euclidean space. Recall a Euclidean

space is a vector space E with a positive definite, symmetric, bilinear form (·|·) (an example

being the dot product among vectors). For α, β ∈ E, the reflection of β about α is given by

σα(β) = β− 2(β|α)

(α|α)
α. Geometrically, each reflection σα in E is an invertible linear transformation

leaving pointwise fixed the hyperplane Pα = {β ∈ E | (β|α) = 0}.

Definition 2.2.6 A subset Φ of the Euclidean space E is called a root system in E if:

i ) Φ is finite, E = span{Φ} and 0 /∈ Φ,

ii ) for α ∈ Φ, the only multiples of α in Φ are ±α,

iii ) for α ∈ Φ, the reflection σα leaves Φ invariant,

iv ) for α, β ∈ Φ, the expression
2(β|α)

(α|α)
is an integer.

The form (·|·) on the set of roots can be given in terms of the Killing form on Lie algebras:

κ(x, y) = tr(adx ady). Therefore, for a semisimple Lie algebra g and maximal toral subalgebra h,

we have a correspondence between pairs (g, h) and pairs (Φ, E). A classification of root systems

then corresponds to a classification of semisimple Lie algebras. This axiomatic approach to

root systems actually has the advantage of providing results which apply simultaneously to Lie

algebras, Lie groups, and linear algebraic groups.

Remark 2.2.7 The root space decomposition of a semisimple Lie algebra is unique in the

following sense:

two semisimple Lie algebras having the same root system are isomorphic, and

all maximal toral subalgebras of a semisimple Lie algebra are conjugate.

Thus a semisimple Lie algebra is uniquely determined (up to isomorphism) by its root system

relative to any maximal toral subalgebra.

One nice property about root systems is the existence of a special type of basis, called a

base.

Definition 2.2.8 A subset ∆ of Φ is a base if:

8
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i ) ∆ is a basis of E,

ii ) each root β can be written as β =
∑
α∈∆

kαα, where the kα’s are all nonnegative or all

nonpositive integers.

The definition of a base fails to garauntee that such a basis exists, but it can be shown that all

root systems indeed have a base (see [H]).

Example 2.2.9 In Example 2.2.5, the roots for sl3 were computed to be Φ = {±α1,±α2,±α3},
where α2 = α1 + α3. Thus a base of sl3 is ∆ = {α1, α3}.

The classification of the simple finite dimensional Lie algebras is determined from the

classification of (irreducible) root systems and forms a beautiful theory. The details of the

classification are given in many texts, and here we only give the necessary data for this

thesis–that concerning the simply laced simple Lie algebras. These Lie algebras are labeled as

An(n ≥ 1), Dn(n ≥ 4) and (the exceptional types) E6, E7, E8. We now give a brief description

of the construction of the families An and Dn. The description of the exceptional type E6 will

be given in chapter 5.

An = sln+1(n ≥ 1):

Define the elements εi ∈ h∗ by εi(diag(a1, . . . , an+1)) = ai. Let I be the Z-span of the εi’s

and let E be the n dimensional subspace of Rn+1 orthogonal to the vector ε1 + · · ·+ εn+1. Take

Φ = {α ∈ I ∩ E | (α|α) = 2} = {εi − εj | i 6= j}. One can check that Φ forms a root system in E.

A base for this root system is given by ∆ = {αi = εi − εi+1}: clearly the αi’s are independent

and εi − εj = αi + αi+1 + · · ·+ αj−1 for i < j.

Dn(n ≥ 4):

Let E = Rn and take Φ = {α ∈ I | (α|α) = 2} = {±(εi ± εj) | i 6= j}. One can show that Φ

forms a root system in E. A base for this root system is given by the n independent vectors

∆ = {ε1 − ε2, ε2 − ε3, . . . , εn−1 − εn, εn−1 + εn}.

2.3 Lattices

The construction of the main object of interest in this thesis requires the use of lattices. We give

the necessary definitions and briefly describe important examples used later in the constructions.

9



2.3. LATTICES CHAPTER 2. LIE ALGEBRAS AND ROOT SYSTEMS

Definition 2.3.1 A (rational) lattice of rank n ∈ N is a rank n free abelian group L equipped

with a Q-valued symmetric Z-bilinear form

(·|·) : L× L −→ Q.

The lattices used in this thesis require several nice properties we now define.

Definition 2.3.2 Let L be a lattice and α, β ∈ L.

i ) L is nondegenerate if its form (·|·) is nondegenerate in the sense that (α|L) = 0 implies

α = 0.

ii ) L is even if (α|α) ∈ 2Z for all α.

iii ) L is positive definite if (α|α) > 0 for all α ∈ L\{0}.

iv ) L is integral if (α|β) ∈ Z for all α, β.

Remark 2.3.3 A lattice may be equivalently defined as the Z-span of a basis of a finite dimen-

sional rational vector space equipped with a symmetric bilinear form. A lattice isomorphism is

also called an isometry.

Let {α1, . . . , αn} be a Z-basis of a lattice L. Then an equivalent way of determining whether

L is nondegenerate amounts to the condition

det((αi|αj))ni,j=1 6= 0. (2.2)

For a field E of characteristic zero, the lattice L can be embedded in the E-vector space

LE = L⊗Z E and the form on L can be extended to the symmetric E-bilinear form

(·|·) : LE × LE −→ E.

Then L is positive definite if and only if the real vector space LR is a Euclidean space. It can

also be shown that an even lattice is automatically integral.

The dual of a lattice L is the set

L∗ = {α ∈ LQ | (α|L) ⊂ Z}. (2.3)

As long as the lattice L has full rank, the dual L∗ will also be a lattice. Equivalently, the dual L∗

forms a lattice if and only if L is nondegenerate. Note that L is integral if and only if L ⊂ L∗. A

10



2.4. AFFINE LIE ALGEBRAS CHAPTER 2. LIE ALGEBRAS AND ROOT SYSTEMS

lattice L is also called self-dual if L∗ = L. For a nondegenerate lattice L with basis {α1, . . . , αn},
the dual lattice L∗ has as a basis the dual basis {α∗1, . . . , α∗n}, i.e., a basis for which (α∗i |αj) = δij .

Some important examples that are used later involve lattices corresponding to the root

system of the simply-laced simple Lie algebras. Let ∆ be a base for the root system of a

simply-laced simple Lie algebra g. The lattice

Q = Z∆ =
{∑

niαi |ni ∈ Z, αi ∈ ∆
}

(2.4)

generated by ∆ is the root lattice of g. Its dual

P = Q∗ = {α ∈ h | (α|Q) ⊂ Z} (2.5)

is the weight lattice.

Let QX be the root lattice corresponding to the simple Lie algebra X. Then the following

are the root lattices corresponding to An and Dn:

QAn =

{
n+1∑
i=1

miεi

∣∣∣∣∣mi ∈ Z,
∑
i

mi = 0

}
, (2.6)

QDn =

{
n∑
i=1

miεi

∣∣∣∣∣mi ∈ Z,
∑
i

mi ∈ 2Z

}
. (2.7)

The root lattice for E6 will be described in chapter 5. The root lattice QE8 corresponding to E8

is self-dual and the only even self-dual lattice among the root lattices of simple Lie algebras,

even allowing for possible rescaling of the lattices (see [FLM]).

2.4 Affine Lie Algebras

There are two equivalent ways of defining the (untwisted) affine Kac-Moody Lie algebras. One

can give the notion of a generalized Cartan matrix, and define the affine algebras to be one of

three possible classes of such matrices. Alternatively, one can describe an affine algebra as the

central extention of the loop algebra of a simple Lie algebra of finite type (the ones given by the

classification above). We will use this latter definition as it is more explicit and suggestive of

further constructions.

Definition 2.4.1 Let g be a Lie algebra. The algebra g̃ := g⊗ C[t, t−1] = g[t, t−1] is called the

loop algebra of g.

11
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The loop algebra can be described as the set of Laurent polynomials with coefficients in g.

Elements in g[t, t−1] are sums of ones of the form a⊗ tn (a ∈ g, n ∈ Z) and this is abbreviated

as an. The loop algebra indeed forms a Lie algebra under the bracket [an, bm] = [a, b]n+m.

It is well known that the loop algebra g̃ of a Lie algebra g has a one-dimensional central

extension

ĝ = g[t, t−1]⊕ CK, (2.8)

and this set also forms a Lie algebra with bracket defined by

[an, bm] = [a, b]n+m + nδn,−m(a|b)K, (2.9)

[ĝ,K] = 0, (2.10)

where (·|·) is a symmetric invariant bilinear form on g.

Remark 2.4.2 It is necessary for the form (·|·) to be symmetric, invariant and bilinear in order

for ĝ to form a Lie algebra. The construction for ĝ is called the affinization of g.

We thus obtain the following definition of affine algebra [K1].

Definition 2.4.3 Let g be a Lie algebra with symmetric invariant bilinear form (·|·). Then the

Lie algebra

ĝ = g[t, t−1]⊕ CK,

with bracket defined by

[an, bm] = [a, b]n+m + nδn,−m(a|b)K,

[ĝ,K] = 0,

is called the affine Kac-Moody Lie algebra associated with g and (·|·).

When h is a subalgebra of g, we shall consider h̃ and ĥ as subalgebras of g̃ and ĝ in the

obvious way. We will also use an analog of affinization by “twisting” by an involution of g. Recall

an involution is an automorphism σ for which σ2 = 1.

Let σ be an involution of g which is also an isometry with respect to the form (·|·), i.e.,

satisfying the condition

(σx|σy) = (x|y). (2.11)

For i ∈ Z/2Z, set

g(i) = {x ∈ g |σx = (−1)ix}. (2.12)

12
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Then we have the following decomposition:

g = g(0) ⊕ g(1), (2.13)

[g(0), g(0)] ⊂ g(0), [g(0), g(1)] ⊂ g(1), [g(1), g(1)] ⊂ g(0), (2.14)(
g(0)|g(1)

)
= 0. (2.15)

Consider the algebra C[t1/2, t−1/2] of Laurent polynomials in the indeterminate t1/2 whose

square is t, and form the algebra

i = g⊗C C[t1/2, t−1/2]⊕ CK. (2.16)

Formulas (2.9) and (2.10) make i into a Lie algebra. Let θ be the involution of C[t1/2, t−1/2]

given by θ(t1/2) = −t1/2 and denote by σ the automorphism of i determined by

σ(K) = K,

σ(x⊗ f) = σ(x)⊗ θ(f),

for x ∈ g and f ∈ C[t1/2, t−1/2].

Definition 2.4.4 The subalgebra

ĝ[σ] = {x ∈ i |σx = x}

=
(
g(0) ⊗ C[t, t−1]

)
⊕
(
g(1) ⊗ t1/2C[t, t−1]

)
⊕ CK

is the twisted affine algebra associated with g and (·|·).

Two particular Lie algebras will be useful later on, those being the (infinite dimensional)

Heisenberg algebra and the Virasoro algebra. We breifly define each and give some pertinent

details.

Definition 2.4.5 A Lie algebra l is a Heisenberg Lie algebra if the center of l is equal to [l, l],

and is one dimensional.

We will be concerned with the Heisenberg algebra s with basis {an,K |n ∈ Z} and commu-

tation relations

[am, an] = mδm,−nK, [K, am] = 0. (2.17)

13
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The algebra s is also referred to as the oscillator algebra and has a representation on the space

of polynomials in infinitely many variables B = C[x1, x2, . . .] given by:

an =
∂

∂xn
, a−n = nxn, (n > 0)

a0 = 0, K = 1.

It is easily shown that B is indeed a representation of s, called the Bosonic Fock space.

The s-module B is also graded via dimxn = n, i.e., B =
∞⊕
n=0

Bn with dimBn = p(n), where

p(n) is the partition function. The algebra s also has the following triangular decomposition:

s = span{an}n<0 ⊕ span{a0,K} ⊕ span{an}n>0.

As infinite matrices, the elements an, with n < 0, are lower triangular and called creation

operators, and the elements an, with n > 0, are upper triangular and called annihilation

operators. It can further be shown that the Bosonic Fock space B is an irreducible s-module and

that every such representation is isomorphic to B.

Definition 2.4.6 The Virasoro algebra is a Lie algebra with basis {Ln, C |n ∈ Z} and commu-

tation relations

[Lm, Ln] = (m− n)Lm+n +
m3 −m

12
δm,−nC, (2.18)

and [Ln, C] = 0 for all n.

The Virasoro algebra can be constructed in a few different ways. One way is to realize the

Virasoro operators from the Heisenberg operators:

L0 =
1

2
a2

0 +

∞∑
k=1

a−kak, (2.19)

Ln =
1

2

∑
k∈Z

an−kak, n 6= 0, (2.20)

C = 1. (2.21)

The Virasoro operators commute with the Heisenberg operators via [Ln, am] = −mam+n. From

this relation, the commutator (2.18) can then be verified.

14
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Another way is to recognize the Virasoro operators as a central extension of the derivations

of the algebra C[t, t−1]. This Lie algebra is given by

DerC[t, t−1] = C[t, t−1]
d

dt
,

the set of polynomial vector fields on the circle, and has as a basis the set{
dm = −tm+1 d

dt

∣∣∣∣m ∈ Z
}
.

It can be shown that these basis elements satisfy the commutation relation

[dm, dn] = (m− n)dm+n.

Then the Virasoro algebra is a central extension of the Lie algebra DerC[t, t−1]. Suppose in the

central extension DerC[t, t−1]⊕ CC we have

[dm, dn] = (m− n)dm+n + α(m,n)C,

where C is the central element. Then it can be shown that α(m,n) = δm,−n
m3 −m

12
and the

choice of the factor
1

12
comes from physics.

15



Chapter 3

Vertex Algebras

In this chapter we introduce the notion of a vertex operator algebra and present some pertinent

examples. The structure of a vertex algebra was first introduced by Richard Borcherds in 1986

[B] and have since been realized as having deep roots and applications in both mathematics

and physics. Roughly speaking, the elements of these algebras are types of “vertex operators”,

which were introduced when string theory was first coming about. These operators were meant

to describe certain kinds of physical interactions within the context of string theory.

After some time, it was further realized that the theory of vertex operator algebras could

be used to describe a remarkably beautiful mathematical entity called the Monster, the largest

sporadic finite simple group [FLM]. It is a symmetry group of a special structure, the Griess

algebra of dimension 196883. It has been proved that the Monster is actually the full automorphism

group of the Griess algebra.

Vertex algebras have also been recognized as being closely related to two-dimensional quantum

field theory [BPZ]. The application of vertex algebras in this thesis will be the representation

theory of infinite dimensional Lie algebras, which is also the area out of which these objects

were born. For more details on vertex operator algebras and their representations, as well as

information concerning their history, the reader is referred to [FHL; FLM; K2; LL].
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3.1 Definitions and Examples

Let V be a vector space and z be a formal variable. We denote by V [[z, z−1]] the vector space

of formal Laurent series in z with coefficients in V :

V [[z, z−1]] =

{∑
n∈Z

vnz
n

∣∣∣∣ vn ∈ V
}
. (3.1)

Remark 3.1.1 In vertex algebra theory, this vector space is often taken as EndV , the endo-

morphisms of the vector space V , and the formal series is written as
∑

n∈Z vnz
−n−1, where

vn ∈ EndV is parametrized by the element v ∈ V and n ∈ Z. Important such formal series will

be called “vertex operators”.

The space V [[z, z−1]] contains a number of subspaces which become useful in the theory:

V [z, z−1] =

{
k∑

n=−m
vnz

n

∣∣∣∣m, k ≥ 0, vn ∈ V

}
, (formal Laurent polynomials) (3.2)

V [[z]] =

{∑
n∈N

vnz
n

∣∣∣∣ vn ∈ V
}
, (formal power series) (3.3)

V ((z)) =

{∑
n∈Z

vnz
n

∣∣∣∣ vn ∈ V, vn = 0 for n� 0

}
. (truncated Laurent series) (3.4)

The notation vn = 0 for n� 0 means that there exists some integer N < 0 such that vn = 0 for

all n < N , i.e., that vn is zero for n sufficiently negative.

Remark 3.1.2 A formal sum or product of formal series of operators on a vector space is

understood to exist if and only if the coefficient of any monomial in the formal sum or product

acts as a finite sum of operators when applied to any fixed, but arbitrary, vector in the space.

Hence infinite sums of operators are allowed, but only under this restrictive condition.

In general, we cannot always multiply formal series. An example of a nonexistent product in

C[[z, z−1]] is ∑
n≥0

zn

∑
n≤0

zn

 .
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Definition 3.1.3 A formal series of the form∑
m,n,...∈Z

am,n,...z
mwn . . . ,

where am,n,... are elements of a vector space V , is a formal distribution in the indeterminates

z, w, . . . with values in V .

Now consider the affine algebra ĝ. For a ∈ g, the formal distribution

a(z) =
∑
n∈Z

anz
−n−1

is called the current associated to a ∈ g. For a, b ∈ g, the corresponding formal distributions

a(z) and b(w) can be used to write the commutation relations among all am and bn.

In order to write the commutation relation between two formal distributions, we define a

formal distribution in z and w with values in C:

δ(z − w) =
∑
n∈Z

znw−n−1 ∈ C[[z, z−1, w, w−1]], (3.5)

called the formal delta function. Then using this distribution, it can be shown that

[a(z), b(w)] = [a, b](w)δ(z − w) + (a|b)K∂wδ(z − w). (3.6)

The bracket [am, bn] is then determined by computing the coefficient of z−m−1w−n−1.

The delta function has additional properties that characterize an important axiom of vertex

algebras.

Proposition 3.1.4 The following are some properties of the delta function:

i ) δ(z − w) = δ(w − z),

ii ) ∂zδ(z − w) = −∂wδ(z − w),

iii ) (z − w)j+1∂jwδ(z − w) = 0, j ≥ 0.

For the affine algebra ĝ, we therefore obtain

(z − w)2[a(z), b(w)] = 0.

18
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Whenever the bracket between two distributions is in the null space of the operator of multipli-

cation by (z − w)N , for N sufficiently large, we say the distributions are mutually local. The

idea of locality is important for many calculations in vertex algebras and is also a central axiom

of the definition.

Definition 3.1.5 A vertex algebra is a vector space V endowed with a vector |0〉 (called the

vacuum vector), an endomorphism T (called the infinitesimal translation operator), and a linear

map

Y (·, z) : V −→ (EndV )((z)) (3.7)

a 7→ Y (a, z) =
∑
n∈Z

a(n)z
−n−1, a(n) ∈ EndV (3.8)

such that a(n)v = 0 for n� 0 and v ∈ V and the following axioms hold for all a, b ∈ V :

i ) (translation covariance): [T, Y (a, z)] = ∂Y (a, z),

ii ) (vacuum): T |0〉 = 0, Y (|0〉, z) = IV , Y (a, z)|0〉|z=0 = a,

iii ) (locality): (z − w)N [Y (a, z), Y (b, z)] = 0 for N � 0.

Remark 3.1.6 A formal distribution∑
n∈Z

a(n)z
−n−1 ∈ (EndV )[[z, z−1]]

is called a field if a(n)v = 0 for n� 0 and v ∈ V . The elements of a vertex algebra are called

states; the linear map Y is called the state-field correspondence and the coefficients a(n) are

called modes.

An important notion that causes many products among formal distributions to be well

defined is that of normal ordering.

Definition 3.1.7 For two fields a(z) and b(z), their normally ordered product is

: a(z)b(z) := a(z)+b(z) + b(z)a(z)−, (3.9)

where a(z)+ =
∑
n<0

a(n)z
−n−1 and a(z)− =

∑
n≥0

a(n)z
−n−1.
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We now give two important examples of vertex algebras, those corresponding to the Heisenberg

algebra and Virasoro algebra (cf. Section 2.4).

Example 3.1.8 Recall the Heisenberg algebra s with basis {an,K |n ∈ Z} and bracket given by

(2.17). Consider the s-valued formal distribution

a(z) =
∑
n∈Z

anz
−n−1.

Then it is straightforward to check that the commutator is given in terms of the delta function

by the formula

[a(z), a(w)] = ∂wδ(z − w)K.

From this commutator, it is clear that a(z) is local with respect to itself. Here we have that

(a|a) = 1 and the (even) formal distribution a(z) is called a free boson.

Example 3.1.9 The Virasoro field can also be written in terms of the free boson. Define L(z)

to be the field

L(z) =
1

2
: a(z)2 :, (3.10)

where a(z) is the free boson. It is an exercise to show that the commutator is given by

[L(z), L(w)] = ∂L(w)δ(z − w) + 2L(w)∂wδ(z − w) +
1

12
C∂3

wδ(z − w). (3.11)

This commutator relation is equivalent to the bracket given in (2.18). It is also clear that the

field L(z) is local with respect to itself.

Most important examples of vertex algebras used in applications contain a vector whose

corresponding field is the Virasoro field L(z).

Definition 3.1.10 A vector ν in a vertex algebra V is a conformal vector if its corresponding

field Y (ν, z) is a Virasoro field, i.e, satisfies (3.11). Such a vertex algebra is called a conformal

vertex algebra.

In Lie algebra theory, most interesting algebras are either finite dimensional or, more

generally, Z-graded with finite-dimensional homogeneous subspaces. Correspondingly, we are

mostly interested in vertex algebras that have similar properties, those vertex algebras called

vertex operator algebras.
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Definition 3.1.11 A vertex operator algebra is a Z-graded vector space

V =
∐
n∈Z

V(n),

such that

dimV(n) <∞, n ∈ Z,

V(n) = 0, n� 0,

that is equipped with a vertex algebra structure (V, T, Y, |0〉) and a conformal vector ν of weight

2 (ν ∈ V(2)) whose corresponding field satisfies the Virasoro algebra relations, where

Y (ν, z) =
∑
n∈Z

Lnz
−n−1

and the central element C acts as a scalar (the central charge). In addition,

L0v = nv, (n ∈ Z)

where wt v = n for v ∈ V(n), and finally,

L−1 = T. (3.12)

Notice that the L0-eigenspace decomposition of V coincides with its grading.

Definition 3.1.12 A vertex operator algebra of CFT type is a vertex operator algebra for

which V0 = C|0〉 and Vn = {0} for n < 0.

Remark 3.1.13 A vertex algebra can equivalently be defined in terms of (a partial vacuum

axiom and) the Borcherds identity: ∀ a, b, c ∈ V and k,m, n ∈ Z,

∞∑
j=0

(
m

j

)(
a(n+j)b

)
(m+k−j) c =

∞∑
j=0

(−1)j
(
n

j

)(
a(m+n−j)b(k+j)c− (−1)nb(n+k−j)a(m+j)c

)
.
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Some important instances of this formula are useful for calculation:

[a(m), b(n)] =
∑
j≥0

(
m

j

)
(a(j)b)(m+n−j) (commutator formula) (3.13)

(a(−1)b)(n) =
∑
j<0

a(j)b(n−j−1) +
∑
j≥0

b(n−j−1)a(j) (−1st product identity) (3.14)

The last definition we present is the notion of product-preserving maps between vertex

algebras.

Definition 3.1.14 Let V1 and V2 be vertex algebras and φ : V1 −→ V2 be a linear map such

that (v, w ∈ V1)

φ(|0〉) = |0〉, (3.15)

Y (φ(v), z)φ(w) = φ(Y (v, z)w). (3.16)

Then φ is called a vertex algebra homomorphism.

3.2 Lattice Vertex Algebras

Our main object of study is a certain class of vertex algebras called lattice vertex algebras. We

give the general construction of such algebras and present the associated fields. These were the

algebras introduced in Borcherds’ original paper [B].

Let Q be an even lattice equipped with symmetric nondegenerate bilinear form (·|·) :

Q ×Q −→ Z. We denote by h = C ⊗Z Q the corresponding complex vector space considered

as an abelian Lie algebra, with the bilinear form extended to it. The bosonic Fock space (cf.

Section 2.4) for the Heisenberg algebra ĥ = h[t, t−1]⊕CK can also be written as the irreducible

(highest weight) representation

M := Indĥ
h[t]⊕CK C ∼= S(h[t−1]t−1)

with highest weight 1 on which K = 1.

Remark 3.2.1 In other works, this space is denoted M(1), but here we will write M for brevity.

Following [FK; B], we consider a 2-cocycle ε : Q×Q −→ {±1} such that

ε(α, α) = (−1)|α|
2(|α|2+1)/2 , |α|2 := (α|α) , α ∈ Q , (3.17)
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and the associative algebra Cε[Q] with basis {eα}α∈Q and multiplication

eαeβ = ε(α, β)eα+β . (3.18)

Such a 2-cocycle ε is unique up to equivalence and can be chosen to be bimultiplicative. Then

we have

ε(α, β)ε(β, α) = (−1)(α|β)+|α|2|β|2 , α, β ∈ Q . (3.19)

Definition 3.2.2 The lattice vertex algebra [B; FLM; K2; FB; LL] is the tensor product

VQ = M ⊗ Cε[Q], (3.20)

where the vacuum vector is |0〉 ⊗ e0.

Remark 3.2.3 When V is a superalgebra, the parity of all vectors in M ⊗ eα is |α|2 mod 2Z.

We let the Heisenberg algebra act on VQ by

ane
β = δn,0(a|β)eβ , n ≥ 0 , a ∈ h , an = atn . (3.21)

The state-field correspondence on VQ is uniquely determined by the generating fields:

Y (a−1|0〉, z) =
∑

n∈Z an z
−n−1 , a ∈ h , (3.22)

Y (eα, z) = eαzα0 exp
(∑

n<0 αn
z−n

−n

)
exp
(∑

n>0 αn
z−n

−n

)
, (3.23)

where zα0eβ = z(α|β)eβ.

Notice that M ⊂ VQ is a vertex subalgebra, which we call the Heisenberg vertex algebra.

The map h −→ M given by a 7→ a−1|0〉 is injective. From now on, we will slightly abuse the

notation and identify a ∈ h with a−1|0〉 ∈M ; then a(n) = an for all n ∈ Z.

When the lattice Q is even and positive definite, the lattice vertex algebra VQ has the

structure of a vertex operator algebra. Let {ai} and {bi} be dual bases of h (i.e. (ai|bj) = δij).

Then the conformal vector is given by

ν =
1

2

∑
i

ai−1b
i
−1|0〉. (3.24)

The central charge is the rank of the lattice Q, the fields h(z) (h ∈ h) have conformal weight

1, and the fields Y (eα, z) have conformal weight 1
2(α|α). Note that the lattice being even and

positive definite is necessary for the proper grading of a vertex operator algebra.
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Example 3.2.4 When the lattice Q can be written as an orthogonal direct sum, Q = L1 ⊕ L2,

the corresponding lattice vertex algebra is given by the tensor product:

VQ = VL1 ⊗ VL2 . (3.25)

3.3 Twisted Modules

Given a lattice vertex algebra VQ and an automorphism σ of VQ, we will construct a set of

σ-twisted modules. We first define three notions of (untwisted) modules over vertex operator

algebras and also define the terms rational and regular (see [ABD]).

Definition 3.3.1 A weak module of a vertex operator algebra V is a vector space M endowed

with a linear map YM (·, z)· : V ⊗M −→M((z)) (cf. (3.4), (3.8)) such that

i ) (truncation): v(n)w = 0 for n� 0, where v ∈ V and w ∈M ,

ii ) (vacuum): YM (|0〉, z) = IM ,

iii ) the Borcherds identity (cf. Remark 3.1.13 ) holds for a, b ∈ V , c ∈M .

Remark 3.3.2 Of the three types of vertex operator algebra modules, only weak modules have

no grading assumptions. The structure of weak modules coincides with the structure of modules

over vertex algebras.

Definition 3.3.3 An admissible module of a vertex operator algebra V is a weak module M

which carries a Z+-grading

M =
⊕
n∈Z+

M(n) (3.26)

such that if v ∈ V(k), then v(m)M(n) ⊂M(n+ k −m− 1).

Definition 3.3.4 An ordinary module of a vertex operator algebra V is a weak module M

which carries a C-grading

M =
⊕
λ∈C

Mλ (3.27)

such that

i ) dimMλ <∞,

ii ) Mλ−n = 0 for fixed λ and n� 0,

24



3.3. TWISTED MODULES CHAPTER 3. VERTEX ALGEBRAS

iii ) L0w = λw = wt(w)w for w ∈Mλ.

Note that an ordinary module has a grading that matches the L0 action of the Virasoro

representation. It turns out that the finite dimensionality of graded pieces in ordinary modules

is a strong condition, so that ordinary modules are also admissible. Hence we have the following

inclusions of modules:

{ordinary modules} ⊆ {admissible modules} ⊆ {weak modules}.

Definition 3.3.5 A vertex operator algebra is rational if every admissible module is a direct

sum of simple admissible modules.

In other words, a vertex operator algebra is rational if there is complete reducibility of

admissible modules. It is proved in [DLM2] that for rational vertex operator algebras with

a certain finiteness condition, there are only finitely many simple admissible modules up to

isomorphism and any simple admissible module is an ordinary module. The strongest form of

complete reducibility is when weak modules can be realized in terms of ordinary modules.

Definition 3.3.6 A vertex operator algebra is regular if every weak module is a direct sum of

simple ordinary modules.

Thus for regular vertex operator algebras, every simple weak module is an ordinary module.

Now let σ be an automorphism of V of a finite order r. Then σ is diagonalizable. The notion of

a twisted vertex algebra representation was introduced in [FFR; D2; L]. The main difference is

that the image of the above map YM is allowed to have nonintegral rational powers of z.

Definition 3.3.7 A σ-twisted module of a vertex algebra V is a vector space M endowed with

a linear map

a 7→ YM (a, z) =
∑
n∈ 1

r
Z

aM(n)z
−n−1, (3.28)

where aM(n) ∈ EndM , such that the following axioms hold for all a, b, c ∈ V :

i ) (vacuum): YM (|0〉, z) = IV ,

ii ) (covariance): YM (σa, z) = YM (a, e2πiz),

iii ) the Borcherds identity (3.1.13) is satisfied by the modes, provided that a is an eigenvector

of σ.

25



3.3. TWISTED MODULES CHAPTER 3. VERTEX ALGEBRAS

More precisely, the linear map YM satisfies

YM (a, z) =
∑

n∈p+Z
aM(n) z

−n−1 , if σa = e−2πipa , p ∈ 1

r
Z . (3.29)

Remark 3.3.8 The notion of a twisted representation axiomatizes the properties of the so-called

“twisted vertex operators” [L], which were used in the construction of the “moonshine module”

vertex algebra in [FLM] in the study of the Monster group.

When restricted to the σ-invariant subalgebra V σ ⊂ V , a σ-twisted representation for V

becomes untwisted for V σ. This subalgebra will be the main object of study.

Definition 3.3.9 The subalgebra V σ ⊂ V of σ-invariant elements of V is called the orbifold

(see for example [DVVV; KT; DLM2]).

The following theorem is due to Frenkel and Kac (see [FK; K1; K2]) and relates modules

of root lattice vertex algebras to modules over affine Kac-Moody algebras at level 1.

Theorem 3.3.10 (Frenkel-Kac Construction)

Let g be a simply-laced finite dimensional simple Lie algebra, and Q be its root lattice. Then the

untwisted representations of the lattice vertex algebra VQ provide a construction of level the 1

representations of the affine Kac–Moody algebra ĝ in the homogeneous realization.

The next result provides a rigorous interpretation of the operator product expansion in

conformal field theory in the case of twisted modules.

Proposition 3.3.11 ([BM]) Let V be a vertex algebra, σ an automorphism of V , and M a

σ-twisted V -module. Then

1

k!
∂kz

(
(z − w)N YM (a, z)YM (b, w)c

)∣∣∣
z=w

= YM (a(N−1−k)b, w)c (3.30)

for all a, b ∈ V , c ∈M , k ≥ 0, and sufficiently large N .

3.3.1 Twisted Heisenberg Algebra

Let h be a finite dimensional vector space equipped with a symmetric nondegenerate bilinear form

(·|·), as in Section 2.4. Then we have the Heisenberg algebra ĥ and its highest weight representation

(the Fock space M) which has the structure of a vertex algebra. Every automorphism σ of

h preserving the bilinear form induces automorphisms of ĥ and M , which will be denoted
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again as σ. As before, assume that σ has finite order r. The action of σ can be extended to

h[t1/r, t−1/r]⊕ CK by letting

σ(atm) = σ(a)e2πimtm , σ(K) = K , a ∈ h , m ∈ 1

r
Z .

The σ-twisted Heisenberg algebra ĥσ is defined as the set of all σ-invariant elements (see [KP; L]).

In other words, ĥσ is spanned over C by K and the elements am = atm such that σa = e−2πima.

This is a Lie algebra with bracket (cf. (2.17))

[am, bn] = mδm,−n(a|b)K , a, b ∈ h , m, n ∈ 1

r
Z .

Let ĥ≥σ (respectively ĥ<σ ) be the subalgebra of ĥσ spanned by all elements am with m ≥ 0

(respectively m < 0). The elements of ĥ≥σ are the annihilation operators, and the elements of ĥ<σ

are the creation operators.

The σ-twisted Fock space is defined as

M(σ) := Indĥσ

ĥ≥σ⊕CK
C ∼= S(ĥ<σ ) , (3.31)

where ĥ≥σ acts on C trivially and K acts as the identity operator. M(σ) is an irreducible highest

weight representation of ĥσ and has the structure of a σ-twisted representation of the vertex

algebra M (see [FLM; FFR; DL2]). This structure can be described as follows. We let Y (|0〉, z)

be the identity operator and

Y (a, z) =
∑

n∈p+Z
an z

−n−1 , a ∈ h , σa = e−2πipa , (3.32)

where p ∈ 1
rZ (cf. (3.29)), and we extend Y to all a ∈ h by linearity.

The action of Y on other elements of M is then determined by applying several times the

product formula (3.30). More explicitly, M is spanned by elements of the form a1
m1
· · · akmk |0〉,

where aj ∈ h, and we have:

Y (a1
m1
· · · akmk |0〉, z)c =

k∏
j=1

∂
(N−1−mj)
zj

( k∏
j=1

(zj − z)N Y (a1, z1) · · ·Y (ak, zk)c
)∣∣∣
z1=···=zk=z

for all c ∈ M(σ) and sufficiently large N . In the above formula, we use the divided-power

notation ∂(n) := ∂n/n!.

27



3.3. TWISTED MODULES CHAPTER 3. VERTEX ALGEBRAS

3.3.2 Twisted Representations of Lattice Vertex Algebras

Now let Q be a positive definite even lattice and σ be an automorphism of the lattice Q of finite

order r such that

(σα|σβ) = (α|β) , α, β ∈ Q . (3.33)

The uniqueness of the cocycle ε and (3.33), (3.19) imply that

η(α+ β)ε(σα, σβ) = η(α)η(β)ε(α, β) (3.34)

for some function η : Q −→ {±1}, and

ε(α, β)ε(β, α) = (−1)(α|β). (3.35)

Lemma 3.3.12 Let L be a sublattice of Q such that ε(σα, σβ) = ε(α, β) for α, β ∈ L. Then

there exists a function η : Q −→ {±1} satisfying (3.34) and η(α) = 1 for all α ∈ L.

Proof First observe that, by (3.17) and (3.33), (3.34) for α = β, we have η(2α) = 1 for all

α ∈ Q. Since, by bimultiplicativity, ε(2α, β) = 1, we obtain that η(2α+ β) = η(β) for all α, β.

Therefore, η is defined on Q/2Q. If α1, . . . , α` is any Z-basis for Q, we can set all η(αi) = 1

and then η is uniquely extended to the whole Q by (3.34). We can pick a Z-basis for Q so that

d1α1, . . . , dmαm is a Z-basis for L, where m ≤ ` and di ∈ Z. Then the extension of η to Q will

satisfy η(α) = 1 for all α ∈ L.

In particular, η can be chosen such that

η(α) = 1 , α ∈ Q ∩ h0 , (3.36)

where h0 denotes the subspace of h consisting of vectors fixed under σ. The automorphism σ of

Q can be lifted to an automorphism of the lattice vertex algebra VQ by setting

σ(an) = σ(a)n , σ(eα) = η(α)eσα , a ∈ h , α ∈ Q . (3.37)

We now recall the construction of irreducible σ-twisted VQ-modules (see [KP; D2; BK1;

L]). Introduce the group G = C× × exp h0 ×Q consisting of elements c ehUα (c ∈ C×, h ∈ h0,
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α ∈ Q) with multiplication

eheh
′

= eh+h′ , (3.38)

ehUαe
−h = e(h|α)Uα , (3.39)

UαUβ = ε(α, β)B−1
α,β Uα+β , (3.40)

where

Bα,β = r−(α|β)
r−1∏
k=1

(
1− e2πik/r

)(σkα|β)
. (3.41)

Note that B−α,β = B−1
α,β = Bα,−β and that the elements

η(α)U−1
σαUαe

2πi(bα+π0α) , α ∈ Q (3.42)

are central in G, where

bα =
|π0α|2 − |α|2

2
(3.43)

and π0 is the projection of h onto h0. Let Gσ be the factor of G over the central subgroup

Nσ = {η(α)U−1
σαUαe

2πi(bα+π0α) |α ∈ Q}. (3.44)

Then the σ-twisted VQ-modules are in correspondence with representations of Gσ (see [BK1],

Proposition 4.2). The center of Gσ is given by

Z(Gσ) ' C× × (Q∗/Q)σ, (3.45)

U(1−σ)λ ↔ λ. (3.46)

Let Ω be an irreducible representation of G, on which all elements (3.42) act as the identity.

Such representations are parameterized by the set (Q∗/Q)σ of σ-invariants in Q∗/Q, i.e., by

elements λ+Q such that λ ∈ Q∗ and (1− σ)λ ∈ Q (see [BK1], Proposition 4.4).

The action of the group algebra exp h0 on Ω is semisimple:

Ω =
⊕

µ∈π0(Q∗)

Ωµ , (3.47)

where

Ωµ = {v ∈ Ω | ehv = e(h|µ)v for h ∈ h0} . (3.48)
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Then M(σ)⊗ Ω is an irreducible σ-twisted VQ-module with an action defined as follows. We

define Y (a, z) for a ∈ h as before (see (3.32)), and for α ∈ Q we let

Y (eα, z) = : exp

( ∑
n∈ 1

r
Z\{0}

αn
z−n

−n

)
:⊗ Uαzbα+π0α. (3.49)

The action of zπ0α is given by zπ0αv = z(π0α|µ)v for v ∈ Ωµ, and (π0α|µ) ∈ 1
rZ. The action of Y

on all of VQ can be obtained by applying the product formula (3.30). By Theorem 4.2 in [BK1],

every irreducible σ-twisted VQ-module is obtained in this way, and every σ-twisted VQ-module

is a direct sum of irreducible ones.

Example 3.3.13 We present the special case when σ = −1. The results will be needed in

chapter 4.

Here h0 = 0 so that G = C∗ ×Q and the only relation is (3.40). Since r = 2, we have

Bα,β = 4−(α|β), (3.50)

bα = −1

2
|α|2, (3.51)

for any α, β ∈ Q. Since ε(σα, σβ) = ε(α, β) we can set η = 1. Hence the central subgroup Nσ

consists of elements of the form

U−1
−αUα,

and the commutator is given by

Cα,β = UαUβU
−1
α U−1

β (3.52)

= (−1)(α|β). (3.53)

The irreducible representations of G are parameterized by the set of elements λ+Q such that

λ ∈ Q∗ and (1− σ)λ = 2λ ∈ Q. Thus the center of Gσ is given by

Z(Gσ) = C× × {U2λ |λ ∈ Q∗, 2λ ∈ Q}.

When the lattice Q can be written as an orthogonal direct sum, Q = L1 ⊕ L2, such that

both factors L1 and L2 are σ-invariant, each twisted VQ-module can be realized in terms of

twisted modules over VL1 and VL2 . The following lemma will be useful later.

Lemma 3.3.14 Let Q be an even lattice and σ be an automorphism of Q. Suppose Q decomposes
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as the direct sum

Q = L1 ⊕ L2,

such that σ (Li) ⊂ Li (i = 1, 2). In addition, set σi = σ|Li. Then any irreducible σ-twisted

VQ-module M is the tensor product

M 'M1 ⊗M2,

where Mi is an irreducible σi-twisted VLi-module.

Proof Let Mi be a σi-twisted VLi-module for i = 1, 2. Then the tensor product M1 ⊗M2

becomes a twisted module over VQ under the automorphism σ = (σ1, σ2).

Conversely, for any such decomposition of Q, we have the following decomposition of the

σ-twisted Fock space:

M(σ) = M(σ1)⊗M(σ2).

Let Tχ be a Gσ-module with central character χ. Then by (3.53), two orthogonal elements

commute. Let h ∈ h0 and γ ∈ Q. Then h = h1 + h2 and γ = α + β for some h1, α ∈ L1 and

h2, β ∈ L2. Thus for an element ehUγ ∈ G,

ehUγ = eh1+h2Uα+β

= eh1eh2UαUβ

= eh1Uαe
h2Uβ.

Hence Tχ can be decomposed as

Tχ = Tχ1 ⊗ Tχ2 ,

where χi = χ|Li , so that

M(σ)⊗ Tχ = (M(σ1)⊗ Tχ1)⊗ (M(σ2)⊗ Tχ2) .

3.3.3 The case σ = −1

We now describe other work that has been done in the special case when σ = −1. We also

describe the notation used in [D1; DN; AD].

Let L be an even lattice with positive definite integral Z-bilinear form (·|·) and let L̂ be the

31



3.3. TWISTED MODULES CHAPTER 3. VERTEX ALGEBRAS

central extension of L by the cyclic group 〈−1〉 of order 2:

1 −→ 〈−1〉 −→ L̂ −→ L −→ 0.

The commutator map is given by c(α, β) = (−1)(α|β) for α, β ∈ L. Let e : L −→ L̂ be a section

such that e0 = 1 and let ε : L×L −→ 〈−1〉 be the corresponding 2-cocycle that can be taken as

bimultiplicative. Then for α, β, γ ∈ L,

ε(α, β)ε(β, α) = (−1)(α|β) (3.54)

ε(α, β)ε(α+ β, γ) = ε(β, γ)ε(α, β + γ) (3.55)

eαeβ = ε(α, β)eα+β. (3.56)

Recall Dong’s Theorem that the irreducible VL-modules are classified by the set L∗/L (see [D1]).

Explicitly, they are given by:

Vλ+L = M ⊗ Cε[L]eλ , λ ∈ L∗ . (3.57)

Let θ be the automorphism of L̂ used in [DN; AD] defined by θ(eα) = e−α and θ(−1) = −1.

Set K = {a−1θ(a) | a ∈ L̂}. Also define V T
L = M(θ)⊗ T (cf. (3.31)) for any L̂/K-module T such

that −1 acts as the scalar −1. Then V T
L forms a σ-twisted VL-module. The map θ acts on V T

L by

θ
(
h1

(−n1) · · ·h
k
(−nk)t

)
= (−1)kh1

(−n1) · · ·h
k
(−nk)t

for hi ∈ h, ni ∈ 1
2 +Z≥0 and t ∈ T . The eigenspaces for θ are denoted V T,±

L . More explicitly, the

central character is given by

χµ(e2λ) = (−1)(2λ|µ), (3.58)

for some µ ∈ (2L∗ ∩ L)∗. Any irreducible σ-twisted VL-module is isomorphic to V
Tχ
L and the

eigenspaces V
Tχ,±
L are irreducible V +

L -modules. Furthermore, any irreducible V +
L -module of

twisted type is isomorphic to one of V
Tχ,±
L .

Theorem 3.3.15 [DN; AD] Let L be a positive definite even lattice. Then any irreducible

admissible V +
L -module is isomorphic to one of the following:

V ±L , V ±λ+L (λ ∈ L∗, 2λ ∈ L), Vλ+L (λ ∈ L∗, 2λ /∈ L), V
Tχ,±
L ,

for any irreducible L̂/K-module Tχ with central character χ.
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The correspondence with the notation presented in Section 3.3.2 is as follows. We have L̂ = G,

where a = Uα and θ = σ|L. Then

K = {U−1
α U−α |α ∈ Q} = Nσ.

Note that the elements in K are scalar multiples of elements of the form U2α (α ∈ Q). The

irreducible modules over Gσ = L̂/K are classified by the central characters χ of the center

Z(Gσ) (cf. (3.45)).

It has been shown that VL and the orbifold V σ
L are both rational [ABD; Y] and also regular

[ABD; DLM]. Thus we need only be concerned with weak modules over lattice vertex algebras.

Another tool we will need are the intertwining operators. To define them, we add to the list

in (3.1) the space

V {z} =

∑
n∈Q

v(n)z
−n−1

∣∣∣∣v(n) ∈ V

 (3.59)

of V -valued formal series involving rational powers of z, where V is a vector space.

Definition 3.3.16 Let V be a vertex operator algebra and let M1,M2 and M3 be three V -

modules (not necessarily distinct, and possibly equal to V ). An intertwining operator of type(
M3

M1 M2

)
is a linear map Y : M1 ⊗M2 −→M3{z}, or equivalently,

Y : M1 −→ Hom(M2,M3){z}

v 7→ Y(v, z) =
∑
n∈Q

v(n)z
−n−1, v(n) ∈ Hom(M2,M3)

such that for w ∈M1 and u ∈M2,

i ) w(n)u = 0 for n� 0,

ii ) the L−1-derivative property holds (cf. (3.12) and Definition 3.1.5),

iii ) Borcherds identity (3.1.13) holds for a ∈ V, b ∈M1 and c ∈M2 with k ∈ Q and m,n ∈ Z:

∞∑
j=0

(
m

j

)(
a(n+j)b

)
(m+k−j) c =

∞∑
j=0

(−1)j
(
n

j

)(
a(m+n−j)b(k+j)c− (−1)nb(n+k−j)a(m+j)c

)
.

Note that each of the terms in Borcherds identity make sense. For instance, the terms of the

left hand side have the form
(
a(l)b

)
(s)
c with l ∈ Z and s ∈ Q. Since a ∈ V and b ∈M1, we have

a(l)b ∈M1 where l ∈ Z, since M1 is a V -module. Then
(
a(l)b

)
(s)
c ∈M3 where s can be rational.
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Example 3.3.17 The map Y (·, z) acting on v is an intertwining operator of type

(
V

V V

)
,

and Y (·, z) acting on any V -module W is an intertwining operator of type

(
W

V W

)
. These

intertwining operators also satisfy the normalization condition Y (|0〉, z) = 1.

The intertwining operators of type

(
M3

M1 M2

)
form a vector space denoted VM3

M1 M2
.

Definition 3.3.18 The fusion rule associated with an algebra V and its modules is the number

NM3
M1 M2

= dimVM3
M1 M2

(≤ ∞). (3.60)

Example 3.3.19 When V and the V -module W are nonzero, the corresponding fusion rules

NV
V V and NW

VW are positive.

The fusion rules for V +
L were calculated in [A1; ADL] to be either zero or one. In order to

present their theorem, we first introduce some additional notation. Let c(·, ·) be the commutator

map of L̂∗ defined by c(λ, µ) = (−1)(λ|µ)+|λ|2|µ|2 . For λ, µ ∈ L∗, also set

πλ,µ = (−1)(λ|µ)c(λ, µ) = (−1)|λ|
2|µ|2 . (3.61)

Notice that πλ,2µ = 1 for µ ∈ 2L∗ ∩ L. Also when the lattice Zλ+ L is integral, the 2-cocyle ε

can be defined on it using only ±1. Next for a central character χ of L̂/K and λ ∈ L∗ such that

2λ ∈ L set

cχ(λ) = (−1)(λ|2λ)ε(λ, 2λ)χ(e2λ). (3.62)

For any λ ∈ L∗ and central character χ of L̂/K, let χ(λ) be the central character defined by

χ(λ)(Uα) = (−1)(α|λ)χ(Uα) (3.63)

and set Tχ(λ) = T
(λ)
χ . The following theorem will be needed later in order to construct the

orbifold modules.

Theorem 3.3.20 ([ADL], Thm 5.1) Let L be a positive definite even lattice and let λ, µ ∈

L∗ ∩ 1
2L with πλ,2µ = 1. Then the fusion rule of type

(
M3

V ε
λ+L M2

)
, where M2 and M3 are

irreducible V +
L -modules and ε ∈ {±}, is equal to 1 if and only if the pair (M2,M3) is one of the
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following:

(V ε1
µ+L, V

ε2
λ+µ+L), where ε2 = ε1ε, ε1 ∈ {±}, (3.64)

(V
Tχ, ε1
L , V

T
(λ)
χ , ε2

L ), where ε2 = cχ(λ)ε1ε, ε1 ∈ {±}. (3.65)

Furthermore, the fusion rules are zero otherwise.
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Chapter 4

General Results

Throughout this chapter, we assume Q is a positive definite even lattice and that σ is an

automorphism of Q of order two. We provide an explicit description of the orbifold vertex

algebra V σ
Q and classify its irreducible representations.

4.1 The sublattice Q̄

Fix the following notation:

π± =
1

2
(1± σ), α± = π±(α) , (4.1)

h = C⊗Z Q = h+ ⊕ h−, where h± = π±(h) , (4.2)

L± = h± ∩Q, L = L+ ⊕ L− ⊆ Q , (4.3)

L̃± = π±(Q), L̃ = L̃+ ⊕ L̃− ⊇ Q . (4.4)

Note that 2α± ∈ L± and |α±|2 = 1
4 |2α±|

2 ∈ 1
2Z. In particular, the order of all elements in

L̃±/L± is either 1 or 2. It is clear that the automorphism σ acts trivially on the quotient Q/L

since α− σα = 2α− ∈ L− ⊆ L implies α+ L = σ(α) + L = σ(α+ L).

Lemma 4.1.1 For α ∈ Q, the following are equivalent:

i ) σ2(eα) = eα,

ii ) |α±|2 ∈ Z,

iii ) (α|σα) ∈ 2Z.
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Proof Note that 4|α±|2 = |α± σα|2 = 2|α|2 ± 2(α|σα), so that

|α±|2 =
1

2
(α|σα) mod Z.

This shows the equivalence between (ii) and (iii).

Using (3.37), we find σ2(eα) = η(α)η(σα)eα. On the other hand, by (3.19), (3.34) and (3.36),

we have

η(α)η(σα) = ε(α, σα)ε(σα, α) = (−1)(α|σα).

This shows the equivalence between (i) and (iii).

From now on, we let

Q̄ = {α ∈ Q | (α|σα) ∈ 2Z} . (4.5)

Lemma 4.1.2 The subset Q̄ is a sublattice of Q of index 1 or 2.

Proof It is clear that Q̄ forms a sublattice. For any α, β ∈ Q, we have

(α− β|σα− σβ) = (α|σα) + (β|σβ)− (α|σβ)− (β|σα)

= (α|σα) + (β|σβ) mod 2Z ,

since

(α|σβ) = (σα|σ2β) = (β|σα) .

Now if α, β ∈ Q̄ or α, β /∈ Q̄, then α− β ∈ Q̄.

By definition, we have (VQ)σ
2

= VQ̄. Then

V σ
Q =

(
(VQ)σ

2)σ
= V σ

Q̄ . (4.6)

Therefore, we may assume that |σ| = 2 on VQ and only work with the sublattice Q̄. For simplicity,

we use Q instead of Q̄ for the rest of this chapter.

4.2 Description of the orbifold

From [FHL; LL], we have that the tensor product VL ' VL+ ⊗ VL− forms a subalgebra of VQ.
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In order to obtain a precise description of V σ
Q , we break VQ as modules over V σ

L in two steps.

The first step is to break VQ as modules over VL. This is done using the cosets

Q/L = {γ0 + L, γ1 + L, . . . , γr + L}, (4.7)

where γ0 = 0. It follows that

VQ =
⊕
γ∈Q/L

Vγ ,

where each Vγ is an irreducible VL-module [D1]. Set γ = γi + L and γ± = γi,± + L±. Then

writing each γi in the form γi = γi,+ + γi,−, we arrive at the following lemma.

Lemma 4.2.1 For γ ∈ L∗/L, Vγ ' Vγ+ ⊗ Vγ− as VL-modules.

Thus, for each coset representative γ of Q/L, we have that

VQ '
⊕
γ∈Q/L

Vγ+ ⊗ Vγ− (4.8)

as VL-modules. Since σ acts on the module Vγ− , it breaks into ±1-eigenspaces for σ and each

eigenspace is an irreducible V +
L−

-module [AD].

The second step is to restrict each module Vγ− to an eigenspace for σ. We then obtain the

following description of V σ
Q .

Proposition 4.2.2 The orbifold can be realized as the direct sum of V σ
L -modules:

V σ
Q '

⊕
γ∈Q/L

Vγ+ ⊗ V η(γ)
γ− , (4.9)

where η is given by (3.37).

Proof Using (3.37) and Lemma 4.1.1, we have that eγ + η(γ)eσγ ∈ V σ
Q for each γ ∈ Q. Now

eγ + η(γ)eσγ = eγ+ ⊗ (eγ− + η(γ)e−γ−),

where eγ+ ∈ Vγ++L+ and eγ− + η(γ)e−γ− ∈ V η(γ)
γ−+L−

.

4.3 Restricting the Orbifold V σ
Q to V σ

L

From the study of tensor products in [FHL; LL] and the structure of V σ
Q given in (4.2.2),

irreducible V σ
Q -modules are sums of tensor products of irreducible modules over the factors VL+
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and V +
L−

. By Dong’s Theorem [D1], the irreducible VL+-modules are given as Vλ+L+ , where

λ ∈ L∗+. The irreducible V +
L−

-modules are classified in [AD], and come in three types:

Vµ, where µ ∈ L∗−/L− and 2µ 6= L−, (4.10)

V ±µ , where µ ∈ L∗−/L− and 2µ = L−, (4.11)

V
Tχ,±
L−

, (4.12)

where Tχ is an irreducible Gσ-module with central character χ. Futhermore, each of these

V +
L−

-modules can be obtained by restricting a twisted VL−-module.

Proposition 4.3.1 Every V σ
Q -module is a direct sum of irreducible V σ

L -modules. In particular,

V σ
Q has this form.

Proof Consider V σ
L = VL+ ⊗ V +

L−
⊆ V σ

Q . Then V σ
L forms a vertex subalgebra of V σ

Q . It is shown

in Theorem 3.16 of [DLM3] that the vertex algebra VL+ is regular, since L+ is positive definite.

It is also shown in [ABD; DJL] that the vertex algebra V +
L−

is regular. Since the tensor product

of regular vertex algebras is again regular (Proposition 3.3 in [DLM3]), we have that V σ
L is also

regular.

Since irreducible modules of V σ
L are tensor products of irreducible modules over the factors

VL+ and V +
L−

, the V σ
L -modules

1. Vλ ⊗ Vµ, where 2µ 6= 0,

2. Vλ ⊗ V ±µ , where 2µ = 0,

3. Vλ ⊗ V
Tχ,±
L−

,

are the irreducible ones. We refer to the orbifold modules obtained from untwisted VL-modules

as orbifold modules of untwisted type and orbifold modules obtained from twisted VL-modules as

orbifold modules of twisted type.

In order to determine the irreducible V σ
Q -modules, we first start with a V σ

L -module. Any

V σ
Q -module is automatically a V σ

L -module by restriction. It follows from [D1; DN; AD] that the

V σ
L -modules can all be obtained by restricting twisted VL-modules. We will show there exists a

lifting of each twisted VL-module to a twised VQ-module, and describe how the V σ
Q -module is

obtained using the intertwining operators for V σ
L . The twisted VQ-module will be determined

using the orbits of each field Y (eγ , z), for γ ∈ Q, on the set of irreducible V σ
L -modules.
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4.4 Irreducible Modules over V σ
Q

In this section we present the main result, that the irreducible V σ
Q -modules are submodules of

twisted VQ-modules. We also provide an explicit list of the irreducible V σ
Q -modules.

Lemma 4.4.1 Suppose λ+ µ ∈ Q∗. Then for the VL-module M(λ, µ) = Vλ+L+ ⊗ Vµ+L− , there

is a VQ-module given by

MQ(λ, µ) =
⊕
γ∈Q/L

M(λ+ γ+, µ+ γ−). (4.13)

Proof Consider the untwisted VQ-module Vλ+µ+Q. Since untwisted modules over VL have the

form Vλ+L+ ⊗ Vµ+L− , we have that

Vλ+µ+Q =
⊕
γ∈Q/L

Vγ+λ+µ

=
⊕
γ∈Q/L

Vγ++λ ⊗ Vγ−+µ

=
⊕
γ∈Q/L

M (λ+ γ+, µ+ γ−)

as a direct sum of irreducible VL-modules.

From the proof of Lemma 4.4.1, each VQ-module is obtained from the set of VL-modules

whose arguments are closed under addition modulo L.

Theorem 4.4.2 Let Q be an even positive definite lattice for which (α|σα) is even for all α ∈ Q,

VQ the corresponding lattice vertex algebra, and let σ be an automorphism of Q of order two.

Then each irreducible V σ
Q -module is isomorphic to one of the following:⊕

γ∈Q/L

Vγ++λ ⊗ Vγ−+µ, where λ ∈ L∗+/L+, µ ∈ L∗−/L− and 2µ 6= 0, (4.14)

⊕
γ∈Q/L

Vγ++λ ⊗ V
εη(γ)
γ−+µ, where λ ∈ L∗+/L+, µ ∈ L∗−/L−, 2µ = 0, and ε ∈ {±}, (4.15)

⊕
γ∈Q/L

Vγ++λ ⊗ V
T

(γ−)
χ ,εγ

L−
, where λ ∈ L∗+/L+, εγ = εη(γ)cχ(γ−), ε ∈ {±}. (4.16)

Proof Let W be an irreducible V σ
Q -module. Then W is a V σ

L -module by restriction. By Propo-

sition 4.3.1, we have that W is a direct sum of irreducible V σ
L -modules. Suppose A ⊆W is an
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irreducible V σ
L -module and define A(γ) from A as follows:

A Vλ ⊗ Vµ Vλ ⊗ V ±µ Vλ ⊗ V
Tχ,±
L−

A(γ) Vλ+γ+ ⊗ Vµ+γ− Vλ+γ+ ⊗ V
±η(γ)
µ+γ− Vλ+γ+ ⊗ V

T
(γ−)
χ ,±ε

L−

where ε = cχ(γ)η(γ). We work out separatly the untwisted and twisted types.

Let A be of untwisted type so that A is one of the modules Vλ ⊗ Vµ, for 2µ 6= 0, or Vλ ⊗ V ±µ ,

for 2µ = 0. Let B ⊆W be another irreducible V σ
L -module that is possibly of twisted type. By

Proposition 4.2.2, we have that

V σ
Q '

⊕
γ∈Q/L

Vγ+ ⊗ V η(γ)
γ− , (4.17)

where each summand is also an irreducible V σ
L -module and is generated by the vector

vγ = eγ + η(γ)eσγ = eγ+ ⊗ (eγ− + η(γ)e−γ−).

By restricting the field Y (vγ , z) to A and then projecting onto B, we obtain an intertwining

operator of V σ
L -modules of type

(
B

V
η(γ)
γ+L A

)
. From the study of intertwining operators in [ADL],

we have that the intertwining operator Y (vγ , z) can be written as the tensor product

Y (vγ , z) = Y (eγ+ , z)⊗ Y (eγ− + η(γ)e−γ− , z),

where Y (eγ+ , z) is an intertwining operator of type

(
Vλ′+L+

Vγ++L+ Vλ+L+

)
and Y (eγ− + η(γ)e−γ− , z)

is an intertwining operator of type

(
Vµ′+L−

V
η(γ)
γ−+L−

Vµ+L−

)
or of type

( V
±η(γ)
µ′+L−

V
η(γ)
γ−+L−

V ±µ+L−

)
. From

the study of intertwining operators in [DL1], the fusion rules for Y (eγ+ , z) are zero unless

λ′ = λ+ γ+. Since γ− ∈ L∗− ∩ 1
2L− and |λ|2 ∈ Z, we have that πγ−,2λ = 1 (cf. (3.61)). Hence the

fusion rules for Y (eγ− + η(γ)e−γ− , z) are zero unless µ′ = µ+ γ−, by Theorem 3.3.20. Therefore,

for γ + L ∈ Q/L, we have that

vγ : A −→ A(γ)

so that B = A(γ). Therefore A ⊆W implies that
⊕

γ∈Q/LA
(γ) ⊆W . Since W is irreducible, we

must have that

W =
⊕
γ∈Q/L

A(γ).
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Now let A = Vλ+L+ ⊗ V
Tχ,±
L−

and B ⊆W be another irreducible V σ
L -module that is possibly

of untwisted type. As with the untwisted type, the field Y (vγ , z) gives rise to an intertwining

operator of V σ
L -modules of type

(
B

V
η(γ)
γ+L A

)
and can be written as the tensor product

Y (vγ , z) = Y (eγ+ , z)⊗ Y (eγ− + η(γ)e−γ− , z),

where Y (eγ+ , z) is an intertwining operator of type

(
Vλ′+L+

Vγ++L+ Vλ+L+

)
and Y (eγ−+η(γ)e−γ− , z) is

an intertwining operator of type

( V
Tχ′ ,±ε
L−

V
η(γ)
γ−+L−

V
Tχ,±
L−

)
, where ε = cχ(γ)η(γ). As with the untwisted

type, the fusion rules for Y (eγ+ , z) are zero unless λ′ = λ+ γ+. By Theorem 3.3.20, the action of

Y (eγ− , z) on V
Tχ
L−

is determined by computing cχ(γ−) (cf. (3.62)) and is zero unless χ′ = χ(γ−).

Since the lattice Zγ−+L− is integral (cf. Lemma 4.1.1), the map ε can be extended to this lattice

with values ±1. Therefore ε(γ−, 2γ−) = ε(γ−, γ−)2 = 1 and (3.62) becomes cχ(γ−) = χ(U2γ−).

Hence the eigenspace of each summand in the V σ
Q -module may change depending on the signs

of each U2γ− . Therefore, as with the untwisted case, we have that B = A(γ) so that

W =
⊕
γ∈Q/L

A(γ).

Corollary 4.4.3 Let Q be an even positive definite lattice for which (α|σα) is even for all

α ∈ Q, VQ the corresponding lattice vertex algebra and let σ be an automorphism of Q of order

two. Then each irreducible V σ
Q -module is a submodule of a twisted VQ-module.

Proof By Theorem 4.4.2, irreducible V σ
Q -modules of untwisted type are given by (4.14) or

(4.15). Let γ ∈ Q. Then since the nonzero fusion rules for Y (eγ+ , z) and Y (eγ− + η(γ)e−γ− , z)

are equal to 1 and the intertwining operators in [ADL] are given by the usual formula (3.23)

up to a scalar multiple, an action of each eγ for γ ∈ Q can be determined. Using that

(γ|λ+ µ)− (σγ|λ+ µ) = (2γ−|λ+ µ) = (2γ−|µ) ∈ Z,

we have that for some m ∈ Z,

Y (eγ + η(γ)eσγ , z)eλ+µ = (eγ+λ+µ + η(γ)eσγ+λ+µ)z(γ|λ+µ)(E(γ, z) + zmE(σγ, z)),

where E(α, z) = exp
(∑

n<0 αn
z−n

−n

)
exp
(∑

n>0 αn
z−n

−n

)
and contains only integral powers of z.

Hence we must have that (λ+ µ|γ) ∈ Z for any representative γ + L in Q/L. Then by Lemma
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4.4.1, the space MQ(λ, µ) given in (4.4.1) forms a VQ-module and contains the irreducible

V σ
Q -module W . Using the fusion rules and intertwining operators in [ADL], W is a submodule

when restricted to V σ
Q .

By Theorem 4.4.2, irreducible V σ
Q -modules of twisted type are given by (4.16). Let γ ∈ Q.

Then the nonzero fusion rules for Y (eγ+ , z) and Y (eγ− + η(γ)e−γ− , z) are equal to 1 and the

intertwining operators in [ADL] are given by the usual formula (3.23) up to a scalar multiple.

Since these scalars can be absorbed in Uγ , we will have (3.23) without loss of generality. Therefore

an action of each eγ for γ ∈ Q can be determined. Writing eγ = eγ+ ⊗ (eγ− + η(γ)e−γ−), it is

clear from the intertwining operators in [ADL] that

Y (eγ , z) : Vλ ⊗ V
Tχ,±
L−

−→ Vγ++λ ⊗ V
T

(γ−)
χ ,±ε

L−
,

where ε = cχ(γ)η(γ). Hence the twisted VQ-module is given by

T (λ, χ) =
⊕
γ∈Q/L

Vγ++λ ⊗ V
T

(γ−)
χ ,±ε

L−

and contains the irreducible V σ
Q -module W . Using the fusion rules and intertwining operators in

[ADL], W is a submodule when restricted to V σ
Q .
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Chapter 5

Examples

In this chapter, we work out examples of the lattice Q being a root lattice of type ADE,

corresponding to the simply-laced simple Lie algebras discussed in Chapter 2, as well as a

one-dimensional lattice. We use explicitly the classification from [D1; DN; AD] described in

chapter 4 and the construction in [BK] described in Section 3.3.2 to construct the twisted

V σ
Q -modules. In each case, a correspondence between the two constructions is shown.

To use the classification from [D1; DN; AD], we first calculate Q̄ and L. Then the twisted

VL-modules are found. When necessary, the intertwiners from [ADL] are used to construct the

V σ
Q -modules. The V σ

Q -modules from the construction in [BK] are calculated using (Q̄)∗/Q̄ and

its σ-invariant elements.

5.1 One Dimensional Case

Consider the one-dimensional positive definite even lattice Q = Zα, where (α|α) = 2k and

k > 0. Then the only nontrivial automorphism of Q preserving the form (·|·) is σ = −1. This

automorphism can be extended to VQ by letting

σ(hm) = −hm,

σ(enα) = η(nα)e−nα,

where h ∈ h = C⊗Z Q = Cα and m,n ∈ Z. Since (nα|σ(nα)) = −2n2k ∈ 2Z for all n ∈ Z, we

have that Q = Q̄. Here L+ = {0} so that

L− = L = Q = Q̄.
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Hence the quotient Q/L is trivial. Thus, by Proposition 4.2.2, we have that

V σ
Q ' V +

L−
. (5.1)

Using the classification in [DN], the irreducible V σ
Q -modules are parameterized by the set

L∗−/L− = Q∗/Q. The dual lattice of Q is given by Q∗ = Z
α

2k
so that the orbifold modules are

parametrized by the set

Q∗/Q =

{
Q,

α

2k
+Q,

α

k
+Q, . . . ,

α

2
+Q, . . . ,

(2k − 1)α

2k
+Q

}
.

The automorphism σ acts on VQ and Vα
2

+Q since Q∗ ∩ 1
2Q = {0, α2 } and identifies the other

modules in pairs since

σ

(
i

2k
α

)
=

2k − i
2k

α mod Q.

Thus there are k − 1 + 2(2) = k + 3 distinct irreducible V σ
Q -modules of untwisted type

V ±Zα, V ±α
2

+Zα, V 1
2k
α+Zα, . . . , V k−1

2k
α+Zα, (5.2)

and four distinct irreducible V σ
Q -modules of twisted type

V Ti,±
Zα , i = 1, 2. (5.3)

Remark 5.1.1 The k + 7 modules given above are as in Theorem 5.13 in [DN].

We now construct the orbifold modules of twisted type using Section 3.3.2 (cf. Example

3.3.13). The 2-cocycle ε satisfies

ε(α, α) = (−1)2k( 2k+1
2 ) = (−1)k.

Thus by bimultiplicativity,

ε(mα,nα) = (−1)mnk,

ε(mα,nα)ε(nα,mα) = 1.

Since ε(σ(α), σ(β)) = ε(−α,−β) = ε(α, β), we can set η = 1 so that σ(eα) = eσ(α) = e−α. We
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have in this case that h0 = 0 so that G = C× ×Q and h⊥0 = h = Cα. Thus

bα =
1

2

(
|α0|2 − |α|2

)
= −k,

bmα = −m2k, m ∈ Z,

Bmα,nα = 4−(mα|nα) = 16−mnk.

For elements Umα and Unα we have

UmαUnα = ε(mα,nα)B−1
mα,nαU(m+n)α

= (−1)mnk16mnkU(m+n)α

= (−16)mnkU(m+n)α.

In particular, G is abelian (Cmα,nα = 1). Thus the irreducible representations of G will be one

dimensional. The elements of Gσ must satisfy

Uσ(α) = η(α)Uαe
2πibα = Uαe

−2πik = Uα

so that U−α = Uσ(α) = Uα. Applying Uα to both sides yields U2
α = UαU−α = (−16)−k and

therefore Uα has two possible actions: Uα = ±(4i)−k. Other elements of G are determined using

induction on m:

Umα = Uα+(m−1)α

= (−16)−(m−1)kUαU(m−1)α

= (−16)−(m−1)k

(
(±1)m−1(−16)−

(m−1)2

2
k

)
Uα

= (±1)m−1(−16)−
1
2
m2k+ 1

2
kUα

= (±1)m−1(−16)−
1
2
m2k+ 1

2
k
(

(±1)(−16)−
1
2
k
)

= (±1)m(−16)−
1
2
m2k.

Let T+ be the Gσ-module corresponding to Uα = (4i)−k and T− be the Gσ-module corre-

sponding to Uα = −(4i)−k. We therefore have the two σ-twisted VQ-modules M (σ)⊗ T±. The

automorphism σ acts on these twisted modules via σ (α−n1 · · ·α−nk ⊗ t) = (−1)kα−n1 · · ·α−nk⊗t,
where t ∈ T± and ni ∈ 1

2 + Z. Each space then splits into two eigenspaces corresponding to the
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eigenvalues ±1. Therefore there are four total irreducible V σ
Q -modules of twisted type:

M (σ)s ⊗ T±, s ∈ {±},

which coincide with the modules from (5.3).

5.2 The Root Lattice A2

Consider the A2 simple roots {α1, α2}. The nondegenerate symmetric Z-bilinear form (·|·) is

given by (α1|α2) = −1 and (αi|αi) = 2 for i = 1, 2. The associated even lattice is Q = Zα1 +Zα2.

Consider the Dynkin diagram automorphism σ : α1 ←→ α2. Set α = α1 + α2 and β = α1 − α2.

Then α and β are eigenvectors for σ with eigenvalues 1 and −1, respectively. Also, (α|α) =

2, (β|β) = 6 and (α|β) = 0.

In order to determine Q̄, we find conditions for which γ = m1α1 + m2α2 ∈ Q satisfies

(γ|σγ) ∈ 2Z. Since

(γ|σγ) = −m2
1 −m2

2 + 4m1m2

= m1 +m2 mod 2Z,

we have that Q̄ = {m1α1 +m2α2 |m1 = m2 mod 2Z} = Zα+ Zβ. Therefore

L+ = Zα, (5.4)

L− = Zβ, (5.5)

Q̄ = L. (5.6)

Note that L is written as an orthogonal decomposition and the quotient Q̄/L is trivial. Thus by

Proposition 4.2.2, we have that

V σ
Q ' VZα ⊗ V +

Zβ. (5.7)

We can now restrict our attention to the sublattice L. Using the classification in [DN], the

irreducible V σ
L -modules are parameterized by the sets L∗±/L±. Since L∗+/L+ = Zα

2 /Zα =

{Zα, α2 + Zα}, the set of irreducible VL+-modules is given by

VZα, Vα
2

+Zα.
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Since (Zβ)∗ = Zβ
6 , we have that

(Zβ)∗/Zβ =

{
Zβ,

β

6
+ Zβ,

β

3
+ Zβ,

β

2
+ Zβ,

2β

3
+ Zβ,

5β

6
+ Zβ

}
.

The σ-invariant elements in (Zβ)∗/Zβ are Zβ and β
2 + Zβ. The other elements are identified by

σ in pairs. Thus the set of distinct irreducible V +
L−

-modules is parameterized by the set{
Zβ,

β

6
+ Zβ,

β

3
+ Zβ,

β

2
+ Zβ

}
.

The corresponding modules of untwisted type are

V ±Zβ, V ±β
2

+Zβ
, Vβ

6
+Zβ, Vβ

3
+Zβ

and the corresponding modules of twisted type are

V Ti,±
Zβ , i = 1, 2.

By (5.7) and [FHL], every irreducible V σ
L -module is isomorphic to a tensor product of irreducible

VL+ and V +
L−

-modules. Thus there are a total of 20 distinct irreducible orbifold modules, given

by the following list:

VZα ⊗ V ±Zβ, Vα
2

+Zα ⊗ V ±Zβ,

VZα ⊗ V ±β
2

+Zβ
, Vα

2
+Zα ⊗ V ±β

2
+Zβ

,

VZα ⊗ Vβ
6

+Zβ, Vα
2

+Zα ⊗ Vβ
6

+Zβ,

VZα ⊗ Vβ
3

+Zβ, Vα
2

+Zα ⊗ Vβ
3

+Zβ,

VZα ⊗ V Ti,±
Zβ , Vα

2
+Zα ⊗ V Ti,±

Zβ , i = 1, 2.

We now construct the orbifold modules of twisted type using Section 3.3.2. The 2-cocycle ε
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on L satisfies

ε(α, α) = (−1)2( 2+1
2 ) = −1,

ε(β, β) = (−1)6( 6+1
2 ) = −1,

ε(α, β)ε(β, α) = 1.

Thus we can set ε(α, β) = 1 = ε(β, α). It is clear that ε is σ-invariant on L so that we may take

η to be trivial, that is, η(γ) = 1 for all γ ∈ L.

The dual lattice to L is given by

L∗ = Z
α

2
⊕ Z

β

6
. (5.8)

Note that this is an orthogonal decomposition. The σ-invariant elements in L∗/L are L, α
2 + L,

β
2 + L and α

2 + β
2 + L. The other elements are identified by σ in pairs. The distinct irreducible

untwisted and σ-twisted VL-modules are then parametrized by the set{
L,
α

2
+ L,

β

2
+ L,

α

2
+
β

2
+ L,

β

6
+ L,

β

3
+ L,

β

6
+
α

2
+ L,

β

3
+
α

2
+ L

}
.

Thus there are 12 distinct orbifold modules of untwisted type given by

V ±L , V ±α
2

+L, V ±β
2

+L
, V ±α

2
+β

2
+L
,

Vβ
6

+L
, Vβ

3
+L
, Vβ

6
+α

2
+L
, Vβ

3
+α

2
+L
.

We have in this case that h0 = Cα, G = C× × eCα(0) × L and h⊥0 = Cβ. Since G is abelian,

the irreducible representations of G are one dimensional. To determine the orbifold modules of

twisted type, the quantities that will be needed are the following:

Bβ,−β = 212,

bβ =
1

2
(0− 6) = −3.

The elements in Gσ must satisfy Uσγ = η(γ)Uγe
2πi(bγ+γ0). In particular, U−β = Uβe

−6πi = Uβ

so that

U2
β = UβU−β = ε(β,−β)B−1

β,−β = −2−12.
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Thus there are two possible actions of Uβ,

Uβ = ± 1

64
i,

and Uα acts freely on each VL-module. Let Uα act as multiplication by q on the vector space

P = C[q, q−1]. To determine the action of eπiα(0) , consider its commutation relation with Uα:

eπiα(0)Uαe
−πiα(0) = eπi(α|α)Uα = Uα,

i.e., eπiα(0)qe−πiα(0) = q. Thus eπiα(0)qn = qneπiα(0)(1). Since e2πiα(0) = 1, we must have that

eπiα(0)(1) = ±1 so that eπiα(0)qn = ±qn. Thus on the space P we have

eπiα(0) = ±1, (5.9)

Uα = q, (5.10)

Uβ = ± 1

64
i, (5.11)

where the signs in (5.9) and (5.11) are independent. The automorphism σ acts on each of these

modules. To see why, we calculate σ(Uβ · 1) in two different ways. Since

σ(Uβ · 1) = U−βσ(1) = Uβσ(1),

σ(Uβ · 1) = σ(C · 1) = Cσ(1),

we have that σ(1) lies in the same module as 1. The action of σ is then given by

σ(Unα · 1) = Unα · 1 = qn.

Thus the automorphism σ acts as the identity on all modules. Denote these four modules as

Ps, where s = (s1, s2), si ∈ {±} (5.12)

and s1 is the sign in (5.9), s2 is the sign in (5.11). The entire σ-twisted VQ-module is then

M (σ)⊗Ps. Since M (σ) itself decomposes into ±1-eigenspaces of σ, there are a total of 8 orbifold

modules of twisted type:

M (σ)± ⊗ Ps, s = (s1, s2), si ∈ {±}.
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In addition, we have the following correspondence:

M (σ)± ⊗ P(+,+) ' VZα ⊗ V T1,±
Zβ ,

M (σ)± ⊗ P(−,+) ' Vα
2

+Zα ⊗ V T1,±
Zβ ,

M (σ)± ⊗ P(+,−) ' VZα ⊗ V T2,±
Zβ ,

M (σ)± ⊗ P(−,−) ' Vα
2

+Zα ⊗ V T2,±
Zβ .

5.3 The Root Lattice A3

Consider the A3 simple roots {α1, α2, α3}. The nondegenerate symmetric Z-bilinear form (·|·) is

given by (α1|α2) = −1, (α1|α3) = 0, (α2|α3) = −1 and (αi|αi) = 2 for i = 1, 2, 3. The associated

even lattice is Q = Zα1 +Zα2 +Zα3. Consider the Dynkin diagram automorphism σ : α1 ←→ α3

and α2 ←→ α2. Set α = α1 + α3, and β = α1 − α3. Then α and β are eigenvectors for σ with

eigenvalues 1 and −1, respectively. Also, (α|α) = 4 = (β|β) and (α|β) = 0. Since (α1|α3) = 0

and (α2|α2) = 2, we have that α1, α2, α3 ∈ Q̄. Therefore

Q = Q̄, (5.13)

L+ = Zα+ Zα2, (5.14)

L− = Zβ, (5.15)

Q/L = {L,α1 + L}. (5.16)

Hence by Proposition 4.2.2, we have that

V σ
Q '

(
VL+ ⊗ V +

Zβ

)⊕(
Vα

2
+L+
⊗ V +

β
2

+Zβ

)
(5.17)

since (α1)+ = α
2 and (α1)− = β

2 .

In order to compute the V σ
L -modules, we first determine L∗+/L+ using the Gram matrix for

L+. Ordering the basis of L+ as {α, α2}, the Gram matrix for L+ is given by

G =

(
4 −2

−2 2

)
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with inverse

G−1 =

(
1
2

1
2

1
2 1

)
.

Thus a basis for L∗+ is given by
{
α+α2

2 , α2 + α2

}
and therefore

L∗+/L+ =

{
L+,

α

2
+ L+,

α+ α2

2
+ L+,

α2

2
+ L+

}
.

Since (Zβ)∗ = Zβ
4 we have that

(Zβ)∗/Zβ =

{
Zβ,

β

4
+ Zβ,

β

2
+ Zβ,

3β

4
+ Zβ

}
.

Since σ
(
β
4

)
= 3β

4 mod Zβ, the automorphism σ identifies two of the corresponding modules so

that the set of distinct irreducible V +
Zβ-modules is parameterized by the set{

Zβ,
β

4
+ Zβ,

β

2
+ Zβ

}
,

with corresponding modules of untwisted type

V ±Zβ, V ±β
2

+Zβ
, Vβ

4
+Zβ,

and corresponding modules of twisted type

V Ti,±
Zβ , i = 1, 2.

From the proof of Corollary 4.4.3 and (5.16), the irreducible V σ
L -modules are obtained from

elements λ ∈ L∗+ and µ ∈ (Zβ)∗ such that (λ+ µ|α1) ∈ Z. Since (α2
2 |α1) = −1

2 , (α2 |α1) = 1 and

(β4 |α1) = 1
2 , the irreducible V σ

L -modules are one of the following:

VL+ ⊗ V ±Zβ, VL+ ⊗ V ±β
2

+Zβ
, Vα2

2
+L+
⊗ Vβ

4
+Zβ,

Vα
2

+L+
⊗ V ±Zβ, Vα

2
+L+
⊗ V ±β

2
+Zβ

, Vα2
2

+α
2

+L+
⊗ Vβ

4
+Zβ,

VL+ ⊗ V
Ti,±
Zβ , Vα

2
+L+
⊗ V Ti,±

Zβ , i = 1, 2.
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We show below that η can be taken as trivial. Thus by Theorem 4.4.2, each irreducible V σ
Q -module

of untwisted type is isomorphic to one of the following:(
VL+ ⊗ V ±Zβ

)⊕(
Vα

2
+L+
⊗ V ±β

2
+Zβ

)
,
(
Vα2

2
+L+
⊗ Vβ

4
+Zβ

)⊕(
Vα2

2
+α

2
+L+
⊗ Vβ

4
+Zβ

)
,(

VL+ ⊗ V ±β
2

+Zβ

)⊕(
Vα

2
+L+
⊗ V ±Zβ

)
.

The irreducible V σ
Q -modules of twisted type are obtained using the fusion rules for V +

Zβ with

M1 = V +
β
2

+Zβ
. Note that each irreducible character χ : 2L∗− ∩ L− −→ {±1} for which χ(e−α) =

χ(eα) can be written as

χ(eα) = (−1)(α|µ)

for some µ ∈ (2L∗− ∩ L−)∗. Thus

χ(β/2)
µ (eβ) = (−1)(β|β

2
)(−1)(β|µ) (5.18)

= (−1)(β|µ) (5.19)

= χµ(eβ) (5.20)

so that the module V +
β
2

+Zβ
sends V Ti

Zβ to V Ti
Zβ . Since cχ

(
β
2

)
= χ(eβ), we have that

ci

(
β

2

)
= (−1)i−1 (i = 1, 2) (5.21)

corresponding to the twisted modules V Ti
Zβ . So the eigenspaces for V T1

Zβ remain the same in

each summand of the orbifold module but will switch for V T2
Zβ . Hence by Theorem 4.4.2, each

irreducible V σ
Q -module of twisted type is isomorphic to one of the following:(

VL+ ⊗ V
T1,±
Zβ

)⊕(
Vα

2
+L+
⊗ V T1,±

Zβ

)
,
(
VL+ ⊗ V

T2,±
Zβ

)⊕(
Vα

2
+L+
⊗ V T2,∓

Zβ

)
.

We now construct the orbifold modules of twisted type using Section 3.3.2. The 2-cocycle ε

satisfies the following:

ε(αi, αi) = (−1)2( 2+1
2 ) = −1,

ε(α1, α2)ε(α2, α1) = (−1)−1 = −1,

ε(α1, α3)ε(α3, α1) = (−1)0 = 1,

ε(α2, α3)ε(α3, α2) = (−1)−1 = −1.
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Set ε to be the following on the basis:

ε(α1, α2) = 1, ε(α2, α1) = −1,

ε(α1, α3) = 1, ε(α3, α1) = 1,

ε(α2, α3) = −1, ε(α3, α2) = 1.

Then using bimultiplicativity, we have ε(α, α) = ε(β, β) = ε(α, β) = ε(β, α) = 1. With these

notions, we have that ε(σγ1, σγ2) = ε(γ1, γ2) for all γ1, γ2 ∈ Q so that we can take η to be

trivial, that is, η(γ) = 1 for all γ ∈ Q.

The dual lattice to A3 is spanned by the elements

λ1 =
1

4
(3α1 + 2α2 + α3), λ2 =

1

4
(2α1 + 4α2 + 2α3), λ3 =

1

4
(α1 + 2α2 + 3α3).

The only σ-invariant elements in Q∗/Q are Q and λ2 + Q and σ identifies the other two

corresponding modules since σ(λ1) = λ3. Thus there are 5 distinct orbifold modules of untwisted

type:

V ±Q , Vλ1+Q, V ±λ2+Q.

For the orbifold modules of twisted type, the quantities that will be needed are the following:

Bβ,−β = 28,

Bα1,α3 = 4,

Bα1,−α3 =
1

4
,

Bα3,−α3 = 4,

bβ =
1

2
(0− 4) = −2,

bα =
1

2
(4− 4) = 0,

bα3 =
1

2
(1− 2) = −1

2
,

Cγ,θ = (−1)(γ|θ).

The elements in Gσ must satisfy Uσγ = Uγe
2πi(bγ+γ0). In particular, U−β = Uβe

−4πi = Uβ so

that U2
β = UβU−β = ε(β,−β)B−1

β,−β = 2−8. Thus there are two possible actions of Uβ:

Uβ = ±2−4 = ± 1

16
.
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Using the σ-invariance, we then have the following:

Uα3 = Uα1e
2πi(− 1

2
+ 1

2
α(0)) = −Uα1e

πiα(0) ,

Uα = ε(α1, α3)Bα1,α3Uα1Uα3 = −4U2
α1
eπiα(0) ,

U−α3 = ε(α3,−α3)B−1
α3,−α3

U−1
α3

=
1

4
U−1
α1
eπiα(0) ,

Uβ = ε(α1,−α3)Bα1,−α3Uα1U−α3 =
1

16
eπiα(0) .

Consider the vector space P = C[q, q−1, p, p−1]. Since each nontrivial action is determined by

Uα1 and Uα2 , we can let Uα1 act as multiplication by q and Uα2 act as multiplication by p(−1)
q ∂
∂q .

Note that these actions ensure that p and q are commuting variables since the operators Uα1

and Uα2 anticommute. In order to determine the action of eπiα(0) , consider the commutation

relation with Uγ :

eπiα(0)Uγe
−πiα(0) = eπi(α|γ)Uγ .

For γ = α1, we have eπiα(0)qe−πiα(0) = q. Thus eπiα(0)qn = qneπiα(0)(1). Since e2πiα(0) = 1, we

must have eπiα(0)(1) = ±1 so that eπiα(0)qn = ±qn. Similarly for γ = α2, we have eπiα(0)pn = ±pn.

Thus on the space P we have the following:

Uα1 = q,

Uα2 = p(−1)
q ∂
∂q ,

Uα3 = −Uα1e
πiα(0) = ∓q,

Uα = = −4U2
α1
eπiα(0) = ∓4q2,

Uβ = =
1

16
e−πiα(0) = ± 1

16
.

The automorphism σ acts on each of these modules. To determine the action of σ, we

calculate σ(pmqn) = σ(Umα2
Unα1
· 1) on the module P2 corresponding to the positive action of Uβ :

σ(Umα2
Unα1
· 1) = Umα2

Unα3
· 1

= (−1)npmqn.

Thus P2 decomposes into two eigenspaces of σ with eigenvalues ±1. The +1-eigenspace P+
2 is

generated by the elements qmpn, where m is even, and the −1-eigenspace P−2 is generated by the

elements qmpn, where m is odd. Similarly, σ(Umα2
Unα1
·1) = pmqn on the module P1 corresponding
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to the negative action of Uβ. Therefore σ acts as the identity on P1.

The entire σ-twisted VQ-module is then M(σ)⊗Pi for i = 1, 2. Since M(σ) itself decomposes

into ±1-eigenspaces of σ, there are a total of 4 distinct orbifold modules of twisted type:

M(σ)± ⊗ P1,

(
M(σ)± ⊗ P+

2

)⊕(
M(σ)∓ ⊗ P−2

)
.

In addition, we have the following correspondence:

M(σ)± ⊗ P1 '
(
VL+ ⊗ V

T1,±
Zβ

)⊕(
Vα

2
+L+
⊗ V T1,±

Zβ

)
,

(
M(σ)± ⊗ P+

2

)⊕(
M(σ)∓ ⊗ P−2

)
'

(
VL+ ⊗ V

T2,±
Zβ

)⊕(
Vα

2
+L+
⊗ V T2,∓

Zβ

)
.

5.4 The Root Lattice Dn, n ≥ 4

Consider the Dn simple roots {α1, . . . , αn}, where n ≥ 4. The nondegenerate symmetric Z-

bilinear form (·|·) is given by

((αi|αj))i,j =



2 −1 0

−1 2 −1
...

. . .
. . .

. . . 0

−1 2 −1 −1

−1 2 0

0 · · · 0 −1 0 2


.

The associated even lattice is Q =
⊕n

i=1 Zαi. Consider the Dynkin diagram automorphism

σ : αn−1 ←→ αn and αi ←→ αi for i = 1, . . . , n−2. Set α = αn−1 +αn and β = αn−1−αn. Then

α and β are eigenvectors for σ with eigenvalues 1 and −1, respectively. Also, (α|α) = 4 = (β|β)

and (α|β) = 0. Since (αn−1|αn) = 0 and (αi|αi) = 2 for i = 1, . . . , n− 2, we have that Q ⊂ Q̄.
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Therefore

Q = Q̄, (5.22)

L+ =
n−2⊕
i=1

Zαi + Zα, (5.23)

L− = Zβ, (5.24)

Q/L = {L,αn−1 + L}. (5.25)

Hence by Proposition 4.2.2, we have that

V σ
Q '

(
VL+ ⊗ V +

Zβ

)⊕(
Vα

2
+L+
⊗ V +

β
2

+Zβ

)
(5.26)

since (αn−1)+ = α
2 and (αn−1)− = β

2 .

In order to compute the V σ
L -modules, we first determine L∗+/L+ using the Gram matrix for

L+. Ordering the basis of L+ as {α, α1, . . . , αn−2}, the Gram matrix for L+ is given by

G =



4 −2

2 −1

−1 2
. . .

. . .
. . . −1

−1 2 −1

−2 −1 2


.

The inverse is given by

G−1 =



n−1
4

1
2 1 3

2 2 5
2 · · ·

1
2 1 1 1 1 1 · · ·
1 1 2 2 2 2 · · ·
3
2 1 2 3 3 3 · · ·
2 1 2 3 4 4 · · ·
5
2 1 2 3 4 5
...

...
...

...
...

. . .


.

Note that detG = 4 for all n.
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Lemma 5.4.1 The group L∗+/L+ is given by

L∗+/L+ =

{
L+,

n− 1

4
α+ θ + L+,

1

2
α+ L+,

n+ 1

4
α+ θ + L+

}
, (5.27)

where θ = 1
2

∑bn−3
2
c

i=0 α2i+1.

Proof The element corresponding to the first column of G−1 modulo L+ is n−1
4 α + θ + L+.

The nonzero element corresponding to all other columns is 1
2α+ L+. Thus the group L∗+/L+ is

generated by these two elements. When n is even we have

L∗+/L+ =

{
L+,

1

4
α+ θ + L+,

1

2
α+ L+,

3

4
α+ θ + L+

}
, (5.28)

and L∗+/L+ is cyclic. When n is odd we have

L∗+/L+ =

{
L+, θ + L+,

1

2
α+ L+,

1

2
α+ θ + L+

}
, (5.29)

and L∗+/L+ is isomorphic to Z2 × Z2. The statement follows.

Since (Zβ)∗ = Zβ
4 we have that

(Zβ)∗/Zβ =

{
Zβ,

β

4
+ Zβ,

β

2
+ Zβ,

3β

4
+ Zβ

}
.

Since σ
(
β
4

)
= 3β

4 mod Zβ, the automorphism σ identifies two of the corresponding modules so

that the set of distinct irreducible V +
Zβ-modules is parameterized by the set{

Zβ,
β

4
+ Zβ,

β

2
+ Zβ

}
,

with corresponding modules of untwisted type

V ±Zβ, V ±β
2

+Zβ
, Vβ

4
+Zβ,

and corresponding modules of twisted type

V Ti,±
Zβ , i = 1, 2.

From the proof of Corollary 4.4.3 and (5.25), the irreducible V σ
L -modules are obtained from
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elements λ ∈ L∗+ and µ ∈ (Zβ)∗ such that (λ + µ|α1) ∈ Z. Since (θ|αn−1) =

{
−1

2 , n odd

0, n even

and (β4 |αn−1) = 1
2 , the irreducible V σ

L -modules are one of the following:

VL+ ⊗ V ±Zβ, VL+ ⊗ V ±β
2

+Zβ
, Vα

2
+L+
⊗ Vβ

2
+Zβ,

Vα
2

+L+
⊗ V ±Zβ, Vn−1

4
α+θ+L+

⊗ Vβ
4

+Zβ, Vn+1
4
α+θ+L+

⊗ Vβ
4

+Zβ,

VL+ ⊗ V
Ti,±
Zβ , Vα

2
+L+
⊗ V Ti,±

Zβ , i = 1, 2.

We show below that η can be taken as trivial. Thus by Theorem 4.4.2, each irreducible V σ
Q -module

of untwisted type is isomorphic to one of the following:(
VL+ ⊗ V ±Zβ

)⊕(
Vα

2
+L+
⊗ V ±β

2
+Zβ

)
,

(
VL+ ⊗ V ±β

2
+Zβ

)⊕(
Vα

2
+L+
⊗ V ±Zβ

)
,

(
Vn−1

4
α+θ+L+

⊗ Vβ
4

+Zβ

)⊕(
Vn+1

4
α+θ+L+

⊗ Vβ
4

+Zβ

)
.

The irreducible V σ
Q -modules of twisted type are obtained using the fusion rules for V +

Zβ with

M1 = V +
β
2

+Zβ
. Recall each irreducible character χ : 2L∗−∩L− −→ {±1} for which χ(e−α) = χ(eα)

can be written as

χ(eα) = (−1)(α|µ)

for some µ ∈ (2L∗− ∩ L−)∗. Thus

χ(β/2)
µ (eβ) = (−1)(β|β

2
)(−1)(β|µ) (5.30)

= (−1)(β|µ) (5.31)

= χµ(eβ) (5.32)

so that the module V +
β
2

+Zβ
sends V Ti

Zβ to V Ti
Zβ . Since cχ

(
β
2

)
= χ(eβ), we have that

ci

(
β

2

)
= (−1)i−1 (i = 1, 2) (5.33)

corresponding to the twisted modules V Ti
Zβ . So the eigenspaces for V T1

Zβ remain the same in

each summand of the orbifold module but will switch for V T2
Zβ . Hence by Theorem 4.4.2, each
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irreducible V σ
Q -module of twisted type is isomorphic to one of the following:(

VL+ ⊗ V
T1,±
Zβ

)⊕(
Vα

2
+L+
⊗ V T1,±

Zβ

)
,
(
VL+ ⊗ V

T2,±
Zβ

)⊕(
Vα

2
+L+
⊗ V T2,∓

Zβ

)
.

We now construct the orbifold modules of twisted type using Section 3.3.2. The 2-cocycle ε

satisfies the following:

ε(αi, αi) = (−1)2( 2+1
2 ) = −1,

ε(αi+1, αi)ε(αi, αi+1) = (−1)−1 = −1, i = 1, . . . , n− 2,

ε(αn, αn−2)ε(αn−2, αn) = (−1)−1 = −1,

ε(αi, αj)ε(αj , αi) = 1 otherwise.

Set ε to be the following on the basis:

ε(αi, αi+1) = 1, ε(αi+1, αi) = −1, i = 1, . . . , n− 3,

ε(αn−2, αn−1) = 1 , ε(αn−1, αn−2) = −1,

ε(αn, αn−2) = −1, ε(αn−2, αn) = 1.

Then using bimultiplicativity, we have ε(α, α) = ε(β, β) = ε(α, β) = ε(β, α) = 1. With these

notions, we have that ε(σγ1, σγ2) = ε(γ1, γ2) for all γ1, γ2 ∈ Q so that we can take η to be

trivial, that is, η(γ) = 1 for all γ ∈ Q.

The dual lattice to Dn is spanned by the elements λ1, . . . , λn−1, λn, where

λi = α1 + 2α2 + · · ·+ (i− 1)αi−1 + i(αi + · · ·+ αn−2) +
1

2
i(αn−1 + αn), i < n− 1,

λn−1 =
1

2

(
α1 + 2α2 + · · ·+ (n− 2)αn−2 +

1

2
nαn−1 +

1

2
(n− 2)αn

)
,

λn =
1

2

(
α1 + 2α2 + · · ·+ (n− 2)αn−2 +

1

2
(n− 2)αn−1 +

1

2
nαn

)
.

Since λi +Q =
α

2
+Q for i odd such that i < n− 1, we have that

Q∗/Q =
{
Q,

α

2
+Q,λn−1 +Q,λn +Q

}
.

The only σ-invariant elements in Q∗/Q are Q and α
2 + Q and σ identifies the other two

corresponding modules since σ (λn−1) = λn. Thus there are 5 distinct orbifold modules of
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untwisted type:

V ±Q , V ±α
2

+Q, Vλn−1+Q.

For the orbifold modules of twisted type, the quantities that will be needed are the following:

Bβ,−β = 28,

Bαn−1,αn = 4,

Bαn−1,−αn =
1

4
,

Bαn,−αn = 4,

bβ =
1

2
(0− 4) = −2,

bα =
1

2
(4− 4) = 0,

bαn−1 =
1

2
(1− 2) = −1

2
,

Cγ,θ = (−1)(γ|θ).

The elements in Gσ must satisfy Uσγ = Uγe
2πi(bγ+γ0). In particular, U−β = Uβe

−4πi = Uβ so

that U2
β = UβU−β = ε(β,−β)B−1

β,−β = 2−8. Thus there are two possible actions of Uβ:

Uβ = ±2−4 = ± 1

16
.

Using the σ-invariance, we then have the following:

Uαn = Uαn−1e
2πi(− 1

2
+ 1

2
α(0)) = −Uαn−1e

πiα(0) ,

Uα = ε(αn−1, αn)Bαn−1,αnUαn−1Uαn = −4U2
αn−1

eπiα(0) ,

U−αn = ε(αn,−αn)B−1
αn,−αnU

−1
αn =

1

4
U−1
αn−1

eπiα(0) ,

Uβ = ε(αn−1,−αn)Bαn−1,−αnUαn−1U−αn =
1

16
eπiα(0) .

Consider the vector space P (n) = C[p±1
1 , . . . , p±1

n−1]. Since each nontrivial action is determined

by Uαi for i ≤ n− 1, let Uαi act as multiplication by pi(−1)
pi+1

∂
∂pi+1 for i < n− 1 and Uαn−1

act as multiplication by pn−1. Note that these actions ensure that p1, . . . , pn−1 are commuting

variables since the operators Uαi and Uαi+1 anticommute. In order to determine the action of

61



5.4. THE ROOT LATTICE DN , N ≥ 4 CHAPTER 5. EXAMPLES

eπiα(0) , consider the commutation relation with Uγ :

eπiα(0)Uγe
−πiα(0) = eπi(α|γ)Uγ .

For γ = αi with i ≤ n − 1, we have eπiα(0)pie
−πiα(0) = pi Thus eπiα(0)pni = pni e

πiα(0)(1). Since

e2πiα(0) = 1, we must have eπiα(0)(1) = ±1 so that eπiα(0)pni = ±pni . Thus on the space P (n) we

have the following:

Uαn−1 = pn−1,

Uαi = pi(−1)
pi+1

∂
∂pi+1 , i < n− 1,

Uαn = −Uαn−1e
πiα(0) = ∓pn−1,

Uα = = −4U2
αn−1

eπiα(0) = ∓4p2
n−1,

Uβ = =
1

16
eπiα(0) = ± 1

16
.

The automorphism σ acts on each of these modules. To determine the action of σ, we

calculate σ(qmpk11 · · · p
kn−2

n−2 ) = σ(Umαn−1
Uk1α1
· · ·Ukn−2

αn−2 · 1) on the module P2(n) corresponding to

the positive action of Uβ:

σ(Umαn−1
Uk1α1
· · ·Ukn−2

αn−2
· 1) = UmαnU

k1
α1
· · ·Ukn−2

αn−2
· 1

= (−1)mUmαn−1
Uk1α1
· · ·Ukn−2

αn−2
· 1

= (−1)mqmpk11 · · · p
kn−2

n−2 .

Thus P2(n) decomposes into two eigenspaces of σ with eigenvalues ±1. The +1-eigenspace P2(n)+

is generated by the elements qmpk11 · · · p
kn−2

n−2 , where m is even, and the −1-eigenspace P2(n)− is

generated by the elements qmpk11 · · · p
kn−2

n−2 , where m is odd. Similarly, σ(Umαn−1
Uk1α1
· · ·Ukn−2

αn−2 ·1) =

qmpk11 · · · p
kn−2

n−2 on the module P1(n) corresponding to the negative action of Uβ. Therefore σ

acts as the identity on P1(n).

The entire σ-twisted VQ-module is then M(σ) ⊗ Pi(n) for i = 1, 2. Since M(σ) itself

decomposes into ±1-eigenspaces of σ, there are a total of 4 distinct orbifold modules of twisted

type:

M(σ)± ⊗ P1(n),

(M(σ)± ⊗ P2(n)+)
⊕

(M(σ)∓ ⊗ P2(n)−) .
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In addition, we have the following correspondence:

M(σ)± ⊗ P1(n) '
(
VL+ ⊗ V

T1,±
Zβ

)⊕(
Vα

2
+L+
⊗ V T1,±

Zβ

)
,

(M(σ)± ⊗ P2(n)+)
⊕

(M(σ)∓ ⊗ P2(n)−) '
(
VL+ ⊗ V

T2,±
Zβ

)⊕(
Vα

2
+L+
⊗ V T2,∓

Zβ

)
.

5.5 The Root Lattice An, n odd

Consider the An simple roots {α1, . . . , αn}, where n is odd. The nondegenerate symmetric

Z-bilinear form (·|·) is given by

((αi|αj))i,j =



2 −1 0

−1 2 −1
...

. . .
. . .

. . . 0

−1 2 −1

0 · · · 0 −1 2


.

The associated even lattice is Q =
∑n

i=1 Zαi. Throughout this section, set l = n−1
2 . Consider

the Dynkin diagram automorphism σ : αi ←→ αn−i+1. This is also an automorphism of Q with

a fixed point αl+1. For i < l + 1, set

αi = αi + αn−i+1, (5.34)

βi = αi − αn−i+1. (5.35)

Then αi and βi are eigenvectors for σ with eigenvalues 1 and −1, respectively. Products between

these elements are as follows:

(αi|αi) = 4 = (βi|βi),
(αi|αi+1) = −2 = (βi|βi+1), i = 1, . . . , l − 1,

(αi|αj) = 0 = (βi|βj), otherwise,

(αi|βj) = 0.
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Since (αi|αn−i+1) = 0 for i ≤ l and (αl+1|αl+1) = 2, we have that Q ⊂ Q̄. Therefore

Q = Q̄, (5.36)

L+ =

l∑
i=1

Zαi + Zαl+1, (5.37)

L− =
l∑

i=1

Zβi. (5.38)

The cosets Q/L are in correspondence with {0, 1}-valued l-tuples via

(a1, . . . , al)←→
l∑

i=1

aiαi + L (5.39)

so that |Q/L| = 2l. Hence by Proposition 4.2.2, we have that

V σ
Q '

⊕
(b1,...,bl)

(
V 1

2

∑
biαi+L+

⊗ V +
1
2

∑
biβi+L−

)
, (5.40)

where bi ∈ {0, 1} and there are 2l summands.

In order to compute the V σ
L -modules, we first determine L∗+/L+ using the Gram matrix for

L+. Ordering the basis of L+ as {αl+1, α
1, . . . , αl}, the Gram matrix for L+ is given by

G =



2 −2

4 −2

−2 4
. . .

. . .
. . . −2

−2 4 −2

−2 −2 4


.

The inverse is given by
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G−1 =



n+1
4

1
2 1 3

2 2 5
2 · · ·

1
2

1
2

1
2

1
2

1
2

1
2 · · ·

1 1
2 1 1 1 1 · · ·

3
2

1
2 1 3

2
3
2

3
2 · · ·

2 1
2 1 3

2 2 2 · · ·
5
2

1
2 1 3

2 2 5
2

...
...

...
...

...
. . .


.

Lemma 5.5.1 The group L∗+/L+ is generated by the set{
L+,

1

2
αl+1 + L+,

1

2
α1 + L+, . . . ,

1

2
αl + L+

}
(5.41)

and |L∗+/L+| = detG = 2l+1.

Proof It is clear that the elements in (5.41) are in L∗+/L+ and form a linearly independent

set over Z. Since the operation is addition modulo L+, each nonintegral fraction in G−1 can

be replaced with 1
2 . Then every column of G−1 can be written as a linear combination of the

elements (5.41).

Each VL+-module can therefore be represented by a {0, 1}-valued (l + 1)-tuple given by

(a, b1, . . . , bl) −→
1

2

(
aαl+1 + b1α

1 + · · ·+ blα
l
)

+ L+. (5.42)

We determine L∗−/L− using the Gram matrix for L−. Ordering the basis of L− as {β1, . . . , βl},
the Gram matrix for L− is given by

M =


4 −2

−2 4
. . .

. . .
. . . −2

−2 4

 .

Since M is twice the Gram matrix for Al, the dual basis for L− is given by the dual basis of

Al divided by a factor of
√

2. Let K be the root lattice for Al with basis {ν1, . . . νl} such that

σ(νi) = −νi. Then L− =
√

2K and L∗− = 1√
2
K∗. We also have that |L∗−/L−| = detM = 2l (l + 1).
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The dual lattice to Al is spanned by the elements λ1, . . . , λl, where

λi =
1

l + 1
((l − i+ 1)ν1 + 2(l − i+ 1)ν2 + i(l − i+ 1)νi + i(l − i)νi+1 + · · ·+ iνl) ,

and the fundamental group K∗/K is cyclic generated by the element λ1 +K. Let 1
2µi be the

ith fundamental dominant weight of L− so that

1

2
µi =

1√
2
λi

and σ(µi) = −µi. Then L∗−/L− is related to K∗ and K by

L∗−/L− =
1√
2
K∗/
√

2K ' K∗/2K,

where the isomorphism is given by multiplication by
√

2. Now the space K∗/2K is generated by

the elements {λ1 +
∑
bjνj + 2K|bj = 0, 1}. Thus we have

L∗−/L− =
1√
2
K∗/
√

2K

=

 1√
2
aλ1 +

1√
2

l∑
j=1

bjνj +
√

2K

∣∣∣∣∣∣ a ∈ {0, . . . , l}, bj ∈ {0, 1}


=

 1

2
aµ1 +

1

2

l∑
j=1

bjβ
j + L−

∣∣∣∣∣∣ a ∈ {0, . . . , l}, bj ∈ {0, 1}
 .

The σ-invariant elements of L∗−/L− are those for which a = 0. Thus there are 2 · 2l = 2l+1

distinct irreducible V +
L−

-modules corresponding to the l-tuples (b1, . . . , bl), where bi ∈ {0, 1} and

a = 0. The remaining elements in L∗−/L− are identified by σ in pairs. Hence there are

2l(l + 1)− 2l

2
= 2l−1l

distinct irreducible V +
L−

-modules corresponding to the l-tuples (b1, . . . , bl), where bi ∈ {0, 1}
and a 6= 0. Hence the total number of distinct irreducible V +

L−
-modules of untwisted type is

2 · 2l + 2l−1l = 2l−1(l + 4).
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Lemma 5.5.2 The distinct V +
L−

-modules that decompose into eigenspaces correspond to the set

(
L∗−/L−

)σ
=

 1

2

l∑
j=1

bjβ
j + L−

∣∣∣∣∣∣ bj ∈ {0, 1}
 .

The other distinct V +
L−

-modules correspond to the set 1

2
µi +

1

2

l∑
j=1

bjβ
j + L−

∣∣∣∣∣∣ bj ∈ {0, 1}, 1 ≤ i ≤ l + 1

2

 .

Furthermore, when l is odd and k = l+1
2 , a minimal spanning set corresponding to the distinct

V +
L−

-modules contains only elements of the form

1

2
µk +

1

2

l−1∑
j=1

bjβ
j .

Proof For µ = 1
2µi + 1

2

∑
bjβ

j ∈ L∗−, we have

σ(µ) = −µ

=
1

2
µl−i+1 +

1

2

l∑
j=1

bjβ
j + γi mod L−

where γi = 1
2

∑
aijβ

j for some aij ∈ {0, 1}. In particular, when l is odd and k = l+1
2 ,

1

2
µk =

1

4k

(
kβ1 + 2kβ2 + · · ·+ k2βk + · · ·+ 2kβl−1 + kβl

)
=

1

4

(
β1 + 2β2 + · · ·+ kβk + · · ·+ 2βl−1 + βl

)
,

so that

−1

2
µk =

1

2
µk +

1

2

(
β1 + β3 + · · ·+ βl

)
mod L−.

Thus we can take γk = 1
2

(
β1 + β3 + · · ·+ βl

)
and just use representatives with bl = 0.

From the proof of Corollary 4.4.3 and (5.39), the irreducible V σ
L -modules are obtained from

elements λ ∈ L∗+ and µ ∈ L∗− such that (λ+ µ|αi) ∈ Z for i = 1, . . . , l.
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Lemma 5.5.3 We have for j < l + 1,(
1

2
µi

∣∣∣∣αj) =
1

2
δij ,(

1

2
βi
∣∣∣∣αj) =

(
1

2
αi
∣∣∣∣αj) = δij −

1

2
(δi,j−1 + δi,j+1) .

Proof The statement follows from the following calculations:

(
βi|αj

)
=

(
αi|αj

)
= −δi,j−1 + 2δij − δi,j+1,

(µi|αi) =
1

l + 1
(−(i− 1)(l − i+ 1) + 2i(l − i+ 1)− i(l − i)) = 1,

j < i : (µi|αj) =
l − i+ 1

l + 1
(−(j − 1) + 2j − (j + 1)) = 0,

j > i : (µi|αj) =
i

l + 1
(−(l − (j − 1) + 1) + 2(l − j + 1)− (l − (j + 1) + 1)) = 0.

Lemma 5.5.4 There are l + 4 V σ
Q -modules of untwisted type, where l = n−1

2 .

Proof The only elements in L∗+/L+ that have integral products with each αi are

1

2

(
α1 + α3 + · · ·+ αl

)
+ L+, if l is odd, and (5.43)

1

2

(
αl+1 + α1 + α3 + · · ·+ αl−1

)
+ L+, if l is even. (5.44)

Due to (5.40), the orbifold module corresponding to any representative in this list is the same

as the orbifold module corresponding to the representative for either VL+ or V 1
2
αl+1+L+

.

For l odd, the following is a list of all elements in L∗−/L− which have integral products with

each αi:

L−, γ + L− = 1
2

(
β1 + β3 + · · ·+ βl

)
+ L−,

1
2µ2k + 1

2

(
β1 + β3 + · · ·+ β2k−1

)
+ L−, k = 1, . . . , q =

 l+1
4 , 4|(l + 1)

l−1
4 , 4|(l + 3)

,

1
2µ2k + 1

2

(
β1 + β3 + · · ·+ β2k−1

)
+ γ + L−, k = 1, . . . , q′ =

 l+1
4 − 1, 4|(l + 1)

l−1
4 , 4|(l + 3)

.

The following is a list of all x+ L− ∈ L∗−/L− which have half-integral products with each αi
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and satisfy (x+ 1
2αl+1|αi) ∈ Z:

1
2µl + L−,

1
2µl−2k + 1

2

(
βl−1 + βl−3 + · · ·+ βl−2k+1

)
+ L−, k = 1, . . . , r =

 l−3
4 , 4|(l + 1)

l−1
4 , 4|(l + 3)

,

1
2µl + γ + L−,

1
2µl−2k + 1

2

(
βl−1 + βl−3 + · · ·+ βl−2k+1

)
+ γ + L−, k = 1, . . . , r′ =

 l−3
4 , 4|(l + 1)

l−1
4 − 1, 4|(l + 3)

.

The only σ-invariant elements in these lists are L− and γ +L− so that the two orbifold modules

with representatives VL+⊗VL− and VL+⊗Vγ+L− will split into eigenspaces under σ. For elements

in L∗−/L− that are not σ-invariant, there are l−1
2 elements that have integral products with each

αi, and l+1
2 elements in L∗−/L− that have half-integral products with each αi. Thus there are a

total of 2(2) + l−1
2 + l+1

2 = l + 4 orbifold modules of untwisted type.

For l even, the following is a list of all elements in L∗−/L− which have integral products with

each αi:

L−,

1
2µ2k + 1

2

(
β1 + β3 + · · ·+ β2k−1

)
+ L−, k = 1, . . . , s =


1, l = 2

l
4 , 4|l
l−2
4 , 4|(l + 2), l > 2

,

1
2µ2k+1 + 1

2

(
β2k+2 + β2k+4 + · · ·+ βl

)
+ L−, k = 0, . . . , t =

 l−4
4 , 4|l
l−2
4 , 4|(l + 2)

.

The only σ-invariant element in this list is L− so that the orbifold module with representative

VL+⊗VL− will split into eigenspaces under σ. The V +
L−

-modules paired with V 1
2
αl+1+L+

correspond

to the elements in the above list added to the element 1
2

(
β1 + β3 + · · ·+ βl−1

)
, which has half-

integral products with all αi. For elements that are not σ-invariant, there are l
2 elements that

have integral products with each αi. Thus there are a total of 2
(
2 + l

2

)
= l+ 4 orbifold modules

of untwisted type.

Theorem 5.5.5 Let l = n−1
2 . Then the list of l + 4 V σ

Q -modules of untwisted type is equivalent

69



5.5. THE ROOT LATTICE AN , N ODD CHAPTER 5. EXAMPLES

to the following list:

⊕
(b1,...,bl)

(
V 1

2

∑
biαi+L+

⊗ V ±1
2

∑
biβi+L−

)
,

⊕
(b1,...,bl)

(
V 1

2
αl+1+ 1

2

∑
biαi+L+

⊗ V 1
2
µl+

1
2

∑
biβi+L−

)
,

⊕
(b1,...,bl)

(
V 1

2

∑
biαi+L+

⊗ Vµl+ 1
2

∑
biβi+L−

)
,
⊕

(b1,...,bl)

(
V 1

2
αl+1+ 1

2

∑
biαi+L+

⊗ V 3
2
µl+

1
2

∑
biβi+L−

)
,

. . . ,
⊕

(b1,...,bl)

(
V 1

2
αl+1+ 1

2

∑
biαi+L+

⊗ V ±l+1
2
µl+

1
2

∑
biβi+L−

)
,

where bi ∈ {0, 1}.

Proof It is sufficient to show the following identities among the cosets of L∗−/L−:

1

2
µ2k +

1

2

(
β1 + β3 + · · ·+ β2k−1

)
+ L− = kµl + L−,

1

2
µl−2k +

1

2

(
βl−1 + βl−3 + · · ·+ βl−2k+1

)
+ L− =

2k + 1

2
µl + L−,

1

2
µ2k+1 +

1

2

(
β2k+2 + β2k+4 + · · ·+ βl

)
+ L− =

(
l

2
− k
)
µl + L−.

For the first identity, we consider separately the coefficients of βi for i < 2k and i ≥ 2k. For

i < 2k we also consider separately i even and i odd. For i < 2k odd, the coefficient of βi is

i(l − 2k + 1) + l + 1 = (i+ 1)(l + 1)− 2ik.

Since i+ 1 is even, we may take the coefficient to be −2ik. For i < 2k even, the coefficient of βi

is

i(l − 2k + 1) = i(l + 1)− 2ik.

Since i is even, we may take the coefficient to be −2ik. For i ≥ 2k, the coefficient of βi is

2k(l − i+ 1) = 2k(l + 1)− 2ik
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which can be replaced with −2ik. Thus we have

1

2
µ2k+1 +

1

2

(
β2k+2 + β2k+4 + · · ·+ βl

)
+ L− =

2k

2(l + 1)

l∑
i=1

(−iβi) + L−

7→ k

l + 1

l∑
i=1

iβi + L−

= kµl + L−.

For the second identity, we consider separately the coefficients of βi for i < l − 2k and

i ≥ l − 2k. For i ≥ l − 2k we also consider separately i even and i odd. For i ≥ l − 2k odd, the

coefficient of βi = βl−2k+2j+1 can be written as

(l − 2k)(2k − 2j) + l + 1 + j(2l + 2) = (2k + 1)(l − 2k + 2j + 1) = (2k + 1)i

and for i ≥ l − 2k even, the coefficient of βi = βl−2k+2j can be written as

(l − 2k)(2k − 2j + 1) + j(2l + 2) = (2k + 1)(l − 2k + 2j) = (2k + 1)i.

For i < l − 2k, the coefficient of βi is (2k + 1)i. Thus we have

1

2
µl−2k +

1

2

(
βl−1 + βl−3 + · · ·+ βl−2k+1

)
+ L− =

2k + 1

2(l + 1)

l∑
i=1

iβi + L−

=
2k + 1

2
µl + L−.

For the third identity, we consider separately the coefficients of βi for i < 2k + 1 and

i ≥ 2k + 1. For i ≥ 2k + 1 we also consider separately i even and i odd. For i ≥ 2k + 1 even, the

coefficient of βi = β2k+1+2j can be written as

(2k + 1)(l − 2k − 2j − 1) + l + 1 + j(2l + 2) = (l − 2k)(2k + 2 + 2j) = (l − 2k)i

and for i ≥ 2k + 1 odd, the coefficient of βi = β2k+1+2j+1 can be written as

(2k + 1)(l − 2k − 2j − 2) + (j + 1)(2l + 2) = (l − 2k)(2k + 2 + 2j + 1) = (l − 2k)i.
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For i < 2k + 1, the coefficient of βi is (l − 2k)i. Thus we have

1

2
µ2k+1 +

1

2

(
β2k+2 + β2k+4 + · · ·+ βl

)
+ L− =

l − 2k

2(l + 1)

l∑
i=1

iβi + L−

=

(
l

2
− k
)
µl + L−.

We also have l+1
2 µl +L− = γ +L−, where γ = 1

2

(
β1 + β3 + · · ·+ βl

)
. This completes the proof.

For convenience, the modules in Theorem 5.5.5 are referred to by using the summand corre-

sponding to the l-tuple (0, . . . , 0).

Recall the irreducible twisted V +
L−

-modules are given by V
Tχ,±
L−

, where Tχ is an irreducible

L̂−/K-module with central character χ. The irreducible V σ
Q -modules of twisted type are obtained

using the fusion rules for V +
L−

with M1 = V +
1
2

∑
biβi+L−

, where i = 1, . . . , l and bi ∈ {0, 1} (cf.

Definition 3.3.16). Note that each irreducible character χ : 2L∗− ∩ L− −→ {±1} for which

χ(e−α) = χ(eα) can be written as

χ(eα) = (−1)(α|µ)

for some µ ∈ (2L∗− ∩ L−)∗. Since l∑
i=1

biβ
i

∣∣∣∣12
l∑

j=1

bjβ
j

 =
∑
i<j

bibj(β
i|βj) +

1

2

l∑
i=1

b2i (β
i|βi)

= −2
∑
i<j

bibj + 2

l∑
i=1

b2i ∈ 2Z,

we have that

χ
( 1
2

∑
biβ

i)
µ (e∑ biβi) = χµ(e∑ biβi) (5.45)

and hence every module V +
1
2
biβi+L−

sends V
Tχ
L−

to V
Tχ
L−

. Since cχ
(

1
2

∑
biβ

i
)

= χ(e∑ biβi) and

linear characters are homomorphisms, we have that

cχ

(
1

2

l∑
i=1

biβ
i

)
=

l∏
i=1

χ(ebiβi), (5.46)

where bi ∈ {0, 1} and χ(e0) = 1. Thus each irreducible V σ
Q -module of twisted type corresponding

to a choice for χ is obtained in the following way. For each element γ− = 1
2

∑
biβ

i, the eigenspaces
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are determined by computing the product in (5.46). There are a total of 2 · 2l = 2l+1 irreducible

V σ
Q -modules of twisted type.

Example 5.5.6 As an example of composing orbifold modules of twisted type, consider the

case l = 3 and the character χ defined on the basis of L− by χ(eβ1) = −1, χ(eβ2) = −1 and

χ(eβ3) = 1. Then the corresponding orbifold modules of twisted type are

(
VL+ ⊗ V

Tχ,±
L−

)⊕(
Vα1

2
+L+
⊗ V Tχ,∓

L−

)⊕(
Vα2

2
+L+
⊗ V Tχ,∓

L−

)
⊕(

Vα3
2

+L+
⊗ V Tχ,±

L−

)⊕(
Vα1+α2

2
+L+
⊗ V Tχ,±

L−

)⊕(
Vα2+α3

2
+L+
⊗ V Tχ,∓

L−

)
⊕(

Vα1+α3
2

+L+
⊗ V Tχ,∓

L−

)⊕(
Vα1+α2+α3

2
+L+
⊗ V Tχ,±

L−

)
.

We now construct the orbifold modules using Section 3.3.2. The 2-cocycle ε satisfies the

following:

ε(αi, αi) = (−1)2( 2+1
2 ) = −1,

ε(αi, αi+1)ε(αi+1, αi) = (−1)−1 = −1,

ε(αi, αj)ε(αj , αi) = (−1)0 = 1, otherwise.

Using bimultiplicativity, we also have ε(αi, αj) = ε(βi, βj) = ε(αi, βj) = ε(βi, αj) = 1. Set

ε(αi, αi+1) = ε(αn−i+1, αn−i) = 1 and ε(αi+1, αi) = ε(αn−i, αn−i+1) = −1. Then with these

notions, we have that ε(σγ1, σγ2) = ε(γ1, γ2) for all γ1, γ2 ∈ Q. Thus we can take η to be trivial,

that is, η(γ) = 1 for all γ ∈ Q.

The dual lattice to An is spanned by the fundamental dominant weights

λi =
1

n+ 1
((n− i+ 1)α1 + · · ·+ i(n− i+ 1)αi + i(n− i)αi+1 + · · ·+ iαn) ,

for i = 1, . . . , n. The only σ-invariant elements in Q∗/Q are Q and λl+1 +Q and σ identifies l of

the corresponding modules since σ (λi) = λn−i+1. Thus there are l + 4 distinct orbifold modules

of untwisted type given by

V ±Q , Vλ1+Q, . . . , Vλl+Q, V ±λl+1+Q.
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For the orbifold modules of twisted type, the quantities that will be needed are the following:

Bβi,−βi = 28,

Bαi,αn−i+1 = 4,

Bαi,−αn−i+1 =
1

4
,

Bαn−i+1,−αn−i+1 = 4,

bβi =
1

2
(0− 4) = −2,

bαi =
1

2
(4− 4) = 0,

bαn+1
2

=
1

2
(2− 2) = 0,

bαi =
1

2
(1− 2) = −1

2
,

Cγ,θ = (−1)(γ|θ).

The elements in Gσ must satisfy Uσγ = Uγe
2πi(bγ+γ0). In particular, U−βi = Uβie

−4πi = Uβi so

that U2
βi

= UβiU−βi = ε(βi,−βi)B−1
βi,−βi = 2−8. Thus there are two possible actions of Uβi :

Uβi = ±2−4 = ± 1

16
.

Using the σ-invariance, we then have the following:

Uαn−i+1 = Uαie
2πi(− 1

2
+ 1

2
αi) = −Uαieπiαi ,

Uαi = ε(αi, αn−i+1)Bαi,αn−i+1UαiUαn−i+1 = −4U2
αie

πiαi ,

U−αn−i+1 = ε(αn−i+1,−αn−i+1)B−1
αn−i+1,−αn−i+1

U−1
αn−i+1

=
1

4
U−1
αi e

πiαi ,

Uβi = ε(αi,−αn−i+1)Bαi,−αn−i+1UαiU−αn−i+1 =
1

16
eπiαi .

Consider the vector space P (n) = C[q1, q
−1
1 , . . . , ql+1, q

−1
l+1], where l = n−1

2 . Since each

nontrivial action is determined by Uαi , for i ≤ l+1, let Uαi act as multiplication by qi(−1)
qi+1

∂
∂qi+1

for i < l+1 and Uαl+1
act as multiplication by ql+1. Note that these actions ensure that q1, . . . , ql+1

are commuting variables since the operators Uαi and Uαi+1 anticommute. In order to determine

the action of eπiα(0) , consider the commutation relation with Uγ :

eπiα(0)Uγe
πiα(0) = eπi(α|γ)Uγ .
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For γ = αi, we have e
πiαi

(0)qie
−πiαi

(0) = qi. Thus e
πiαi

(0)qni = qni e
πiαi

(0)(1). Since e
2πiαi

(0) = 1, we

must have e
πiαi

(0)(1) = ±1 so that e
πiαi

(0)qni = ±qni . Similarly e
πiαi

(0)qni+1 = ∓qni+1.

Thus on the space P (n) we have the following for i ≤ l:

Uαl+1
= ql+1

Uαi = qi(−1)
qi+1

∂
∂qi+1 ,

Uαn−i+1 = −Uαie
πiαi

(0) = ∓qi,

Uαi = = −4U2
αie

πiαi
(0) = ∓4q2

i ,

Uβi = =
1

16
e
−πiαi

(0) = ± 1

16
.

The automorphism σ acts on each of these modules. To determine the action of σ, we

calculate σ
(
pn
∏l
i=1 q

mi
i

)
= σ

(
Unαl+1

∏l
i=1 U

mi
αi · 1

)
on the module Pχ−(n) corresponding to the

character χ−(eβi) = −1 for all i. Since

σ

(
Unαl+1

l∏
i=1

Umiαi · 1

)
= pn

l∏
i=1

qmii ,

the automorphism σ acts as the identity on Pχ−(n). For other characters χ, σ is determined by

σ (Uαi · 1) = Uαn−i+1 · 1 =

qi, χ(eβi) = −1

−qi, χ(eβi) = 1
.

Thus Pχ(n) decomposes into two eigenspaces of σ with eigenvalues ±1. The +1-eigenspace

Pχ(n)+ is generated by products pn
∏l
i=1 q

mi
i , where

∑
mj is even for each j with χ(eβj ) = 1.

The −1-eigenspace Pχ(n)− is generated by products pn
∏l
i=1 q

mi
i , where

∑
mj is odd for each j

with χ(eβj ) = 1.

The entire σ-twisted VQ-module is then M(σ)⊗ Pχ(n). Since M(σ) itself decomposes into

±1-eigenspaces of σ, there are a total of 2 · 2l = 2l+1 orbifold modules of twisted type:

M(σ)± ⊗ Pχ−(n),

(M(σ)± ⊗ Pχ(n)+)
⊕

(M(σ)∓ ⊗ Pχ(n)−) , χ 6= χ−.

We now present a correspondence between the two constructions. It is clear that each

construction produces the same number of orbifold modules of untwisted and twisted type and
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also that the orbifold modules of twisted type both correspond to the same set of characters.

The following lemma will be used to identify the orbifold modules of untwisted type.

Lemma 5.5.7 The orbifold module Vλ1+Q can be identified with the orbifold module with

representative V 1
2
αl+1+L+

⊗ V 1
2
µl+L−

.

Proof We first show that σ
(

1
2µ1

)
= 1

2µl −
1
2

∑
βi:

1
2µ1 =

1

2(l + 1)

∑
i<l+1

(l − i+ 1)βi

=
1

2

∑
i<l+1

βi − 1

2(l + 1)

∑
i<l+1

iβi

7→ −1

2

∑
i<l+1

βi +
1

2(l + 1)

∑
i<l+1

iβi

= −1

2

∑
i<l+1

βi +
1

2
µl.

Now λ1 can be written as follows:

λ1 =
1

n+ 1

∑
i

(n− i+ 1)αi

=
1

2(n+ 1)

∑
i<l+1

(
(n− i+ 1)

(
αi + βi

)
+ (l + 1− i)

(
αl−i+1 − βl−i+1

))
+
n− l
n+ 1

αl+1

=
1

2(n+ 1)

∑
i<l+1

(
(n+ 1)αi + (n− 2i+ 1)βi

)
+

1

2
αl+1

=
1

2

∑
i<l+1

αi +
1

n+ 1

∑
i<l+1

(l + 1− i)βi +
1

2
αl+1

=
1

2

∑
i<l+1

αi +
1

2
µ1 +

1

2
αl+1.

Due to (5.52), the orbifold module with representative corresponding to λ1 will have another

summand with representative corresponding to each αi replaced with βi. Thus, since

σ :
1

2
µ1 +

1

2

∑
i<l+1

βi +
1

2
αl+1 7→

1

2
µl +

1

2
αl+1,

we have that Vλ1+Q is isomorphic to the orbifold module with representative V 1
2
αl+1+L+

⊗V 1
2
µl+L−

.

Recall the space Q∗/Q for An is cyclic generated by λ1 + Q. This can easily be seen by

writting each root as αi = vi − vi+1, where v1, . . . , vn+1 is an orthonormal basis for an (n+ 1)-
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dimensional vector space (cf. the end of Section 2.2). Then the fundamental dominant weights

are given as λi = v1 + · · ·+ vi. Using induction and that λj+1 = λj + (vj+1 − v1) + v1, we also

have
λj+1 +Q = λj + λ1 +Q

= (j + 1)λ1 +Q.

From these identities, other orbifold modules can be identified using Lemma 5.5.7 and that σ :

Vλi+Q → Vλn−i+1+Q. From the proof of Lemma 5.5.7 and that Q∗/Q is cyclic, it is clear that the

module Vλj+Q can be identified with the orbifold module with representative V j
2
αl+1+L+

⊗V j
2
µl+L−

,

where j = 1, . . . , l, and that V ±λl+1+Q can be identified with the orbifold module with representative

V l+1
2
αl+1+L+

⊗ V ±l+1
2
µl+L−

. This completes the correspondence of orbifold modules of untwisted

type.

To illustrate the correspondence of the orbifold modules of twisted type, consider the module

of twisted type presented in Example 5.5.6. Then we have the following correspondence between

eigenspaces:

M(σ)± ⊗ Pχ(n)+ '
(
VL+ ⊕ Vα3

2
+L+
⊕ Vα1+α2

2
+L+
⊕ Vα1+α2+α3

2
+L+

)
⊗ V Tχ,±

L−
,

M(σ)∓ ⊗ Pχ(n)− '
(
Vα1

2
+L+
⊕ Vα2

2
+L+
⊕ Vα1+α3

2
+L+
⊕ Vα2+α3

2
+L+

)
⊗ V Tχ,∓

L−
.

5.6 The Root Lattice An, n even

Consider the An simple roots {α1, . . . , αn}, where n is even. The nondegenerate symmetric

Z-bilinear form (·|·) is given by

((αi|αj))i,j =



2 −1 0

−1 2 −1
...

. . .
. . .

. . . 0

−1 2 −1

0 · · · 0 −1 2


.

The associated even lattice is Q =
∑n

i=1 Zαi. Throughout this section, set l = n
2 . Consider the

Dynkin diagram automorphism σ : αi ←→ αn−i+1, which is also an automorphism of Q. For
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i < l + 1, set

αi = αi + αn−i+1, (5.47)

βi = αi − αn−i+1. (5.48)

Then αi and βi are eigenvectors for σ with eigenvalues 1 and −1, respectively. Products between

these elements are as follows:

(αi|αi) = 4 = (βi|βi), i < l,

(αl|αl) = 2, (βl|βl) = 6,

(αi|αi+1) = −2 = (βi|βi+1), i = 1, . . . , l − 1,

(αi|αj) = 0 = (βi|βj), otherwise,

(αi|βj) = 0.

In order to determine Q̄, we find conditions for which γ =
∑n

i=1miαi ∈ Q satisfies (γ|σγ) ∈ 2Z.

Since

(γ|σγ) =
n∑
i=1

mimn−j+1(αi|αj)

= 2
l−1∑
i=1

(mimn−i +mn−i+1mi+1)(αi|αi+1) + (ml +ml+1)(αl|αl+1)

= ml +ml+1 mod 2Z,

we have that

Q̄ =

{
n∑
i=1

miαi

∣∣∣∣ml = ml+1 mod 2Z

}

=

l−1∑
i=1

Zαi + Zαl + Zβl +

n∑
i=l+2

Zαi.

Therefore

L+ =

l∑
i=1

Zαi, (5.49)

L− =
l∑

i=1

Zβi. (5.50)
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The cosets Q̄/L are in correspondence with {0, 1}-valued (l − 1)-tuples via

(a1, . . . , αl−1)←→
l−1∑
i=1

aiαi + L (5.51)

so that |Q̄/L| = 2l−1. Hence by Proposition 4.2.2, we have that

V σ
Q '

⊕
(b1,...,bl−1)

(
V 1

2

∑
biαi+L+

⊗ V +
1
2

∑
biβi+L−

)
, (5.52)

where bi ∈ {0, 1} and there are 2l−1 summands.

In order to compute the V σ
L -modules, we first determine L∗+/L+ using the Gram matrix for

L+. Ordering the basis of L+ as {α1, . . . , αl}, the Gram matrix for L+ is given by

G =



4 −2

−2 4
. . .

. . .
. . . −2

−2 4 −2

−2 2


.

The inverse is given by 

1
2

1
2

1
2

1
2

1
2 · · ·

1
2 1 1 1 1 · · ·
1
2 1 3

2
3
2

3
2 · · ·

1
2 1 3

2 2 2 · · ·
1
2 1 3

2 2 5
2 · · ·

...
...

...
...

...
. . .


.

Lemma 5.6.1 The group L∗+/L+ is generated by the set{
L+,

1

2
α1 + L+, . . . ,

1

2
αl + L+

}
(5.53)

and |L∗+/L+| = detG = 2l.

Proof It is clear that the elements in (5.53) are in L∗+/L+ and form a linearly independent set.

Since the operation is addition modulo L+, each nonintegral fraction in G−1 can be replaced
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with 1
2 . Then the columns of G−1 can be obtained as linear combinations of the elements in

(5.53).

Each VL+-module can therefore be represented by a {0, 1}-valued l-tuple given by

(b1, . . . , bl) −→
1

2

(
b1α

1 + · · ·+ blα
l
)

+ L+.

We determine L∗−/L− using the Gram matrix for L−. Ordering the basis of L− as {β1, . . . , βl},
the Gram matrix for L− is given by

M =



4 −2

−2 4
. . .

. . .
. . . −2

−2 4 −2

−2 6


.

We now describle the dual basis of L−. Since each entry of M is even, it is sufficient to find a

dual basis for M ′ = 1
2M . The inverse of M ′ is given by

1

2l + 1



2l − 1 2l − 3 2l − 5 2l − 7 · · · 1

2l − 3 2(2l − 3) 2(2l − 5) 2(2l − 7) · · · 2

2l − 5 2(2l − 5) 3(2l − 5) 3(2l − 7) · · · 3

2l − 7 2(2l − 7) 3(2l − 7) 4(2l − 7) · · · 4
...

...
...

...
. . .

...

1 2 3 4 . . . l


.

We also have that detM ′ = 2l + 1 so that detM = 2l(2l + 1).

Proposition 5.6.2 A dual basis for L− is given by the elements

1

2
µi =

1

2(2l + 1)

(
(2l − 2i+ 1)β1 + · · ·+ i(2l − 2i+ 1)βi + i(2l − 2i− 1)βi+1 + · · ·+ iβl

)
,

where i = 1, . . . , l.
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Proof We show that
(
βi
∣∣1

2µj
)

= δij in cases:

i 6= l :

(
βi
∣∣∣∣12µi

)
=
−2(i− 1)(2l − 2i+ 1) + 4i(2l − 2i+ 1)− 2i(2l − 2i− 1)

2(2l + 1)
= 1,(

βl
∣∣∣∣12µl

)
=

1

2(2l + 1)
(−2(l − 1) + 6l) = 1,

i < j :

(
βi
∣∣∣∣12µj

)
=

2l − 2i+ 1

2(2l + 1)
(−2(i− 1) + 4i− 2(i+ 1)) = 0,

i > j :

(
βi
∣∣∣∣12µj

)
=

j (−2(2l − 2(i− 1) + 1) + 4(2l − 2i+ 1)− 2(2l − 2(i+ 1) + 1))

2(2l + 1)
= 0.

Since

µi =
1

2l + 1

(
(2l − 2i+ 1)β1 + · · ·+ i(2l − 2i+ 1)βi + i(2l − 2i− 1)βi+1 + · · ·+ iβl

)
=

1

2l + 1

(
−2iβ1 − · · · − 2i2βi + i(2l − 2(i+ 1) + 1)βi+1 + · · ·+ iβl

)
mod L−

=
i

2l + 1

l∑
i=1

(2l − 2i+ 1)βi mod L−

= iµ1 mod L−,

the fundamental group L∗−/L− is generated by the elements 1
2µ1 + L− and 1

2β
i + L−, where

i = 1, . . . , l. Thus we have that

L∗−/L− =

 1

2
aµi +

1

2

l∑
j=1

bjβ
j + L−

∣∣∣∣∣∣ a ∈ {0, . . . , 2l}, bj ∈ {0, 1}
 .

The σ-invariant elements of L∗−/L− are those for which a = 0. Thus there are 2 · 2l = 2l+1

distinct irreducible V +
L−

-modules of untwisted type corresponding to the l-tuples (b1, . . . , bl),

where bi ∈ {0, 1} and a = 0. The remaining elements in L∗−/L− are identified by σ in pairs.

Hence there are
2l(2l + 1)− 2l

2
= 2ll

distinct irreducible V +
L−

-modules corresponding to the l-tuples (b1, . . . , bl), where bi ∈ {0, 1}
and a 6= 0. Hence the total number of distinct irreducible V +

L−
-modules of untwisted type is

2 · 2l + 2ll = 2l(l + 2).
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Lemma 5.6.3 The distinct V +
L−

-modules that decompose into eigenspaces corresponds to the set

(
L∗−/L−

)σ
=

{
1

2

∑
bjβ

j + L−

∣∣∣∣ bj ∈ {0, 1}, j = 1, . . . , l

}
.

The other distinct V +
L−

-modules correspond to the set{
1

2
µi +

1

2

∑
bjβ

j + L−

∣∣∣∣ bj ∈ {0, 1}, k ≤ i ≤ l} ,
where k =

 l+1
2 , l odd

l
2 + 1, l even

.

Proof We show the following identity:

σ

(
1

2
µi

)
=

1

2
µl−i+1 +

1

2
µl + γi mod L−,

where γi = 1
2

∑l
j=1 aijβ

j for some aij ∈ {0, 1}. The automorphism σ acts on each µi by

σ(µi) =
1

2l + 1

(
(−2l + 2i− 1)β1 + · · ·+ i(−2l + 2i− 1)βi

+i(−2l + 2i+ 1)βi+1 + · · ·+ i(−1)βl
)

The coefficient of βj for j = 1, . . . , i can be written as

j(−2l + 2i− 1) + j(2l + 1) = 2ij

and the coefficient of βi+j for j = 1, . . . , l − i can be written as

i(−2l + 2i+ 2j − 1) + i(2l + 1) = 2i(i+ j).

Thus we have that

σ(µi) =
1

2l + 1

(
2iβ1 + · · ·+ 2i2βi + 2i(i+ 1)βi+1 + · · ·+ 2ilβl

)
mod L−

=
2i

2l + 1

(
β1 + · · ·+ iβi + (i+ 1)βi+1 + · · ·+ lβl

)
mod L−

= 2iµl mod L−.
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Now

µl−i+1 =
1

2l + 1

(
(2i− 1)β1 + · · ·+ (l − i+ 1)(2i− 1)βl−i+1

+(l − i+ 1)(2i− 3)βl−i+2 + · · ·+ (l − i+ 1)βl
)
.

The coefficient of βl−i+1+j for j = 1, . . . , i− 1 can be written as

(l − i+ 1)(2i− 1− 2j) + j(2l + 1) = (2i− 1)(l − i+ 1 + j).

Therefore

µl−i+1 =
2i− 1

2l + 1

(
β1 + · · ·+ iβi + (i+ 1)βi+1 + · · ·+ lβl

)
mod L−

= (2i− 1)µl mod L−

and hence

σ(µi) = 2iµl mod L−

= (2i− 1)µl + µl mod L−

= µl−i+1 + µl mod L−.

Thus we have that

σ

(
1

2
µi

)
=

1

2
µl−i+1 +

1

2
µl + γi mod L−.

The lemma now follows.

From the proof of Corollary 4.4.3 and (5.51), the irreducible V σ
L -modules are obtained from

elements λ ∈ L∗+ and µ ∈ L∗− such that (λ+ µ|αi) ∈ Z for i = 1, . . . , l.
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Lemma 5.6.4 We have for i < l + 1 and j < l,(
1

2
µi

∣∣∣∣αj) =
1

2
δij ,(

1

2
βi
∣∣∣∣αj) =

(
1

2
αi
∣∣∣∣αj) = δij −

1

2
(δi,j−1 + δi,j+1) ,(

1

2
βl
∣∣∣∣αj) = −1

2
δj,l−1 +

3

2
δjl,(

1

2
αl
∣∣∣∣αj) = −1

2
δj,l−1 +

1

2
δjl.

Proof The statement is clear from the following calculations:

(βi|αj) = (αi|αj) = −δi,j−1 + 2δij − δi,j+1,

(βlαj) = −δj,l−1 + 3δjl,

(αl|αj) = −δj,l−1 + δjl,

(µi|αi) =
1

2l + 1
(−(i− 1)(2l − 2i+ 1) + 2i(2l − 2i+ 1)− i(2l − 2i− 1)) = 1,

j < i : (µi|αj) =
2l − 2i+ 1

2l + 1
(−(j − 1) + 2j − (j + 1)) = 0,

j > i : (µi|αj) =
i

2l + 1
(−(2l − 2i+ 1− 2(j − 1− i))

+2(2l − 2i+ 1− 2(j − i))− (2l − 2i+ 1− 2(j + 1− i))) = 0.

Lemma 5.6.5 There are l + 4 V σ
Q -modules of untwisted type, where l = n

2 .

Proof By Proposition 5.6.4, the only element in L∗+/L+ that has integral products with each

αi is the trivial coset L+. Therefore all orbifold modules can be represented using only VL+ . Set

s =

l, l odd

l − 1, l even
and t =

l − 1, l odd

l, l even
. (5.54)

Also set

γ =
1

2

(
β1 + β3 + · · ·+ βs

)
. (5.55)

Then we have the following list of elements which have integral products with each αi for
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i = 1, . . . , l − 1:

1
2µ2k+1 + 1

2

(
β2k+2 + β2k+4 + · · ·+ βt

)
+ γ, k = 0, . . . , q =

 l−1
2 , l odd

l−2
2 , l even

,

1
2µ2k + 1

2

(
β1 + β3 + · · ·+ β2k−1

)
, k = 1, . . . , r =

 l−1
2 , l odd

l
2 , l even

,

along with the cosets γ + L− and L−. The only σ-invariant elements in this list are γ + L− and

L− so that the two orbifold modules with representatives VL+ ⊗ VL− and VL+ ⊗ Vγ+L− will each

split into eigenspaces with eigenvalues ±1. There are l elements that have integral products

with each αi that are not σ-invariant. Thus there are a total of l+ 2(2) = l+ 4 orbifold modules

of untwisted type.

Theorem 5.6.6 The list of l + 4 V σ
Q -modules of untwisted type is equivalent to the following

list: ⊕
(b1,...,bl−1)

(
V 1

2

∑
biαi+L+

⊗ V ±1
2

∑
biβi+L−

)
⊕

(b1,...,bl−1)

(
V 1

2

∑
biαi+L+

⊗ Vkµl+ 1
2

∑
biβi+L−

)
, k = 1, . . . , l,

⊕
(b1,...,bl−1)

(
V 1

2

∑
biαi+L+

⊗ V ±
γ+ 1

2

∑
biβi+L−

)

where γ is given in (5.55) and bi ∈ {0, 1}.

Proof It is sufficient to show the following identities among the cosets of L∗−/L−:

1

2
µ2k +

1

2

(
β1 + β3 + · · ·+ β2k−1

)
+ L− = 2kµl + L−,

1

2
µ2k+1 +

1

2

(
β2k+2 + β2k+4 + · · ·+ βt

)
+ γ + L− = (2k + 1)µl + L−.

For the first identity, we consider separately the coefficients of βi for i < 2k and i ≥ 2k. For

i < 2k we also consider separately i even and i odd. For i < 2k odd, the coefficient of βi can be
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written as

i(2l − 4k + 1) = i(2l + 1)− 4ik = (i− 1)(2l + 1)− 4ik + (2l + 1).

Since i − 1 is even, we may take the coefficient to be −4ik + (2l + 1). For i < 2k even, the

coefficient of βi can be written as

i(2l − 4k + 1) = i(2l + 1)− 4ik.

Since i is even, we may take the coefficient to be −4ik. For i ≥ 2k, the coefficient of βi can be

written as

2k(2l − 2i+ 1) = 2k(2l + 1)− 4ik.

Hence we may take the coefficient to be −4ik. Thus we have

1

2
µ2k +

1

2

(
β1 + β3 + . . .+ β2k−1

)
+ L− =

−4k

2(2l + 1)

l∑
i=1

(iβi) + L−

7→ 2k

2l + 1

l∑
i=1

iβi + L−

= 2kµl + L−.

For the second identity, we consider separately the coefficients of βi for i < 2k + 1 and

i ≥ 2k + 1. For i < 2k + 1 we also consider separately i even and i odd. For i < 2k + 1 odd, the

coefficient of βi can be written as

i(2l − 2(2k + 1) + 1) = (i− 1)(2l + 1)− 2(2k + 1)i+ (2l + 1).

Since i− 1 is even, we may take the coefficient to be −2(2k+ 1)i+ (2l+ 1). For i < 2k+ 1 even,

the coefficient of βi can be written as

i(2l − 2(2k + 1) + 1) = i(2l + 1)− 2(2k + 1)i.

Since i is even, we may take the coefficient to be −2(2k + 1)i. For i ≥ 2k + 1, the coefficient of

βi can be written as

(2k + 1)(2l − 2i+ 1) = 2k(2l + 1)− 2(2k + 1)i+ (2l + 1).
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Hence we may take the coefficient to be −2(2k + 1)i+ (2l + 1). Thus we have

1

2
µ2k+1 + L− =

−2(2k + 1)

2(2l + 1)

l∑
i=1

iβi +
1

2

(
β1 + β3 + . . .+ β2k−1

)
+

1

2

∑
i≥2k+1

βi + L−

7→ 2k + 1

2l + 1

l∑
i=1

iβi +
1

2

(
β1 + β3 + . . .+ β2k−1

)
+

1

2

∑
i≥2k+1

βi + L−

= (2k + 1)µl +
1

2

(
β2k+2 + β2k+4 + . . .+ βt

)
+ γ + L−.

This completes the proof.

For convenience, the modules in Theorem 5.6.6 are referred to by using the summand corre-

sponding to the (l − 1)-tuple (0, . . . , 0).

The irreducible twisted VL−-modules are V
Tχ
L−

, where Tχ is an irreducible L̂−/K-module

with central character χ. The irreducible V σ
Q -modules of twisted type are obtained using the

fusion rules for V +
L−

with M1 = V +
1
2

∑
biβi+L−

, where i = 1, . . . , l and bi ∈ {0, 1} (cf. Definition

3.3.16). Recall each irreducible character χ : 2L∗− ∩ L− −→ {±1} for which χ(e−α) = χ(eα) can

be written as

χ(eα) = (−1)(α|µ)

for some µ ∈ (2L∗− ∩ L−)∗. Since l∑
i=1

biβ
i

∣∣∣∣12
l∑

j=1

bjβ
j

 =
∑
i<j

bibj(β
i|βj) +

1

2

l∑
i=1

b2i (β
i|βi)

= −2
∑
i<j

bibj + 2
l∑

i=1

b2i + 3b2l ,

we have that

χ
( 1
2

∑
biβ

i)
µ (e∑ biβi) =

χµ(e∑ biβi), bl = 0

−χµ(e∑ biβi), bl = 1
. (5.56)

Hence every module V +
1
2
biβi+L−

sends V
Tχ
L−

to V
Tχ
L−

, for i < l, and V +
1
2
blβl+L−

sends V
Tχ
L−

to

87



5.6. THE ROOT LATTICE AN , N EVEN CHAPTER 5. EXAMPLES

V
T−χ
L−

. Since cχ
(

1
2

∑
biβ

i
)

= χ(e∑ biβi) and linear characters are homomorphisms, we have that

cχ

(
1

2

l∑
i=1

biβ
i

)
= (−1)bl

l∏
i=1

χ(ebiβi), (5.57)

where bi ∈ {0, 1} and χ(e0) = 1. Thus each irreducible V σ
Q -module of twisted type corresponding

to a choice for χ is obtained in the following way. For each element γ− = 1
2

∑
biβ

i, the eigenspaces

are determined by computing the products in (5.57). There are a total of 2 · 2l = 2l+1 irreducible

V σ
Q -modules of twisted type.

Example 5.6.7 As an example of composing orbifold modules of twisted type, consider the case

l = 2 and the character χ defined on the basis of L− by χ(eβ1) = −1, and χ(eβ2) = 1. Then the

corresponding orbifold modules of twisted type are(
VL+ ⊗ V

Tχ,±
L−

)⊕(
Vα1

2
+L+
⊗ V Tχ,∓

L−

)⊕(
Vα2

2
+L+
⊗ V T−χ,±

L−

)⊕(
Vα1+α2

2
+L+
⊗ V T−χ,∓

L−

)
.

We now construct the orbifold modules using Section 3.3.2. The 2-cocycle ε satisfies the

following:

ε(αl, αl) = (−1)2( 2+1
2 ) = −1,

ε(βl, βl) = (−1)6( 6+1
2 ) = −1,

ε(αl, βl)ε(βl, αl) = 1,

ε(αi, αi) = (−1)2( 2+1
2 ) = −1,

ε(αi, αi+1)ε(αi+1, αi) = (−1)−1 = −1,

ε(αi, αj)ε(αj , αi) = 1 otherwise,

where i, j < l. For i < l − 1, set

ε(αi, αi+1) = ε(αn−i+1, αn−i) = 1,

ε(αi+1, αi) = ε(αn−i, αn−i+1) = −1,

ε(αl, βl) = ε(βl, αl) = 1.

Then ε is σ-invariant on Q̄ so that we may take η to be trivial, that is, η(γ) = 1 for all γ ∈ Q̄.
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Proposition 5.6.8 The fundamental weights of Q̄ are given by

λi =
1

2(2l + 1)
(2(2l − i+ 1)α1 + · · ·+ 2i(2l − i+ 1)αi + 2i(2l − i)αi+1

+2i(2l − i− 1)αi+2 + · · ·+ 2i(l + 2)αl−1 + i(2l + 1)αl + iβl

+2i(l − 1)αl+2 + · · ·+ 2iαn)

for i = 1, . . . , l − 1,

λl =
1

2
(α1 + . . .+ lαl + (l − 1)αl+2 + . . .+ αn),

λl+1 =
1

2(2l + 1)
(α1 + . . .+ (l − 1)αl−1 + lβl − (l − 1)αl+2 − . . .− αn),

λi =
1

2(2l + 1)
(2(2l − i+ 1)α1 + · · ·+ 2(2l − i+ 1)(l − 1)αl−1 + (2l + 1)(2l − i+ 1)αl

−(2l − i+ 1)βl + 2(2l − i+ 1)(l + 2)αl+2 + · · ·+ 2i(2l − i+ 1)αi

+2i(2l − i)αi+1 + · · ·+ 2iαn),

for i = l + 2, . . . , n.

Proof We show that each λi is a fundamental weight of Q̄ in cases. For i < l we have

(λ1|α1) =
8l − (4l − 2)

2(2l + 1)
= 1,

(λi|αi) =
−2(i− 1)(2l − i+ 1) + 4i(2l − i+ 1)− 2i(2l − i)

2(2l + 1)
= 1, i = 2, . . . , l − 1,

(λi|αj) =
2l − i+ 1

2(2l + 1)
(−2(j − 1) + 4j − 2(j + 1)) = 0, j < i,

(λi|αj) =
2i

2(2l + 1)
(−2(2l − j + 2) + 4(2l − j + 1)− 2(2l − j)) = 0, i < j < l − 1,

(λi|αl−1) =
−2i(l + 3) + 4i(l + 2)− i(2l + 1)− i

2(2l + 1)
= 0, i 6= l − 1,

(λi|αl) =
−2(l + 2) + 2i(2l + 1)− 2i(l − 1)

2(2l + 1)
= 0,

(λi|βl) =
−2(l + 2) + 6i+ 2i(l − 1)

2(2l + 1)
= 0,

(λi|αj) =
2i(−(j − 4) + 2(j − 3)− (j − 2))

2(2l + 1)
= 0, l < j < n,

(λi|αn) =
−4i+ 4i

2(2l + 1)
= 0.
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For λl and λl+1 we have

(λl|αl) =
−(l − 1) + 2l − (l − 1)

2
= 1,

(λl|βl) =
−(l − 1) + (l − 1)

2
= 0,

(λl|αj) =
−(j − 1) + 2j − (j + 1)

2
= 0, j ≤ l,

(λl|αj) =
−(j − 4) + 2(j − 3)− (j − 2)

2
= 0, j > l + 1,

and

(λl+1|βl) =
−(l − 1) + 6l − (l − 1)

2(2l + 1)
= 1,

(λl+1|αl) =
−(l − 1) + (l − 1)

2(2l + 1)
= 0,

(λl+1|αj) =
−(j − 1) + 2j − (j + 1)

2(2l + 1)
= 0, j < l,

(λl+1|αj) =
−(j − 4) + 2(j − 3)− (j − 2)

2(2l + 1)
= 0, l + 1 < j < n,

(λl+1|αn) =
2− 2

2(2l + 1)
= 0.
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For i > l + 1 we have

(λl+2|αl+2) =
−(l − 1) + 4(l − 1)(l + 2)− 2(l − 2)(l + 2)− (2l + 1)(l − 1)

2(2l + 1)
= 1,

(λi|αi) =
(−2(i− 1) + 4i)(2l − i+ 1)− 2i(2l − i)

2(2l + 1)
= 1, i = l + 3, . . . , n,

(λi|αj) =
2l − i+ 1

2(2l + 1)
(−2(j − 1) + 4j − 2(j + 1)) = 0, j < l − 1,

(λi|αl−1) =
2l − i+ 1

2(2l + 1)
(−2(l − 2) + 4(l − 1)− (2l + 1) + 1) = 0, i 6= l − 1,

(λi|αl) =
2(2l − i+ 1)

2(2l + 1)
(−(l − 1) + (2l + 1)− (l + 2)) = 0,

(λi|βl) =
2(2l − i+ 1)

2(2l + 1)
(−(j − 1) + 2j − (j + 1)) = 0,

(λi|αj) =
2(2l − i+ 1)

2(2l + 1)
(−(l − 1) + (2l + 1)− (l + 2)), l < j < i,

(λi|αj) =
2i

2(2l + 1)
(−(2l − j + 2) + 2(2l − j + 1)− (2l − j)), i < j < n,

(λi|αn) =
−4i+ 4i

2(2l + 1)
= 0.

This completes the proof.

The fundamental group Q̄∗/Q̄ is generated by λ1 +Q̄ and λl+Q̄, where lλ1 = λl+λl+1 mod Q̄,

(l + 1)λ1 = λl − λl+1 mod Q̄ and (2l + 1)λ1 = 0 mod Q̄. In addition, λi = iλ1 mod Q̄ for

i = 1, . . . , l − 1. The only σ-invariant elements of Q̄∗/Q̄ are Q̄ and λl + Q̄ and σ identifies

l − 1 of the corresponding modules since σ(λi) = λn−i+1 for i = 1, . . . , l − 1. In addition,

σ(λl+1) = −λl+1. Thus there are l + 4 distinct orbifold modules of untwisted type given by

V ±
Q̄
, Vλ1+Q̄, . . . , Vλl−1+Q̄, Vλl+λl+1+Q̄, V ±

λl+Q̄
.
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For the orbifold modules of twisted type, the quantities that will be needed are:

Bβi,−βi = 28, i < l,

Bβl,−βl = 212,

Bαi,αn−i+1 = 4, i < l,

Bαl,αl+1
= 8,

Bαn−i+1,−αn−i+1 = 4,

bβi =
1

2
(0− 4) = −2, i < l,

bβl =
1

2
(0− 6) = −3,

bαi =
1

2
(4− 4) = 0,

bαi =
1

2
(1− 2) = −1

2
,

Cγ,θ = (−1)(γ|θ).

The elements in Gσ must satisfy Uσγ = Uγe
2πi(bγ+γ0). In particular, U−βi = Uβie

−4πi = Uβi for

i < l and U−βl = Uβle
−6πi = Uβl . Thus U2

βi
= UβiU−βi = ε(βi,−βi)B−1

βi,−βi = 2−8 for i < l and

U2
βl

= −2−12 so that there are two possible actions of each Uβi :

Uβi = ±2−4 for i < l,

Uβl = ±2−6i.

Using the σ-invariance, we then have the following for i < l:

Uαn−i+1 = Uαie
2πi
(
− 1

2
+ 1

2
αi
(0)

)
= −Uαie

πiαi
(0) ,

Uαi = ε(αi, αn−i+1)Bαi,αn−i+1UαiUαn−i+1 = −4U2
αie

πiαi
(0) ,

Uβi = ε(αi,−αn−i+1)Bαi,−αn−i+1UαiU−αn−i+1 =
1

16
e
−πiαi

(0) .

Consider the vector space P (n) = C[q1, q
−1
1 , . . . , ql, q

−1
l ], where l = n−1

2 . Since each nontrivial

action is determined by Uαi and Uαl , let Uαi act as multiplication by qi(−1)
∂

∂qi+1 for i < l and

Uαl act as multiplication by ql. Note that these actions ensure that q1, . . . , ql are commuting

variables since the operators Uαi , Uαi+1 for i < l and Uαl−1
, Uαl anticommute. In order to
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determine the action of eπiα(0) , consider the commutation relation with Uγ :

eπiα(0)Uγe
−πiα(0) = eπi(α|γ)Uγ .

For γ = αi, we have e
πiαi

(0)qie
−πiαi

(0) = qi. Thus e
πiαi

(0)qni = qni e
πiαi

(0)(1). Since e
2πiαi

(0) = 1, we

must have e
πiαi

(0)(1) = ±1 so that e
πiαi

(0)qni = ±qni . Similarly e
πiαi

(0)qni+1 = ∓qni+1.

Thus on the space P (n) we have the following for i < l:

Uαi = qi(−1)
∂

∂qi+1 ,

Uαl = ql,

e
πiαl

(0) = ±1,

Uαn−i+1 = −Uαie
πiαi

(0) = ∓qi,

Uαi = = −4U2
αie

πiαi
(0) = ∓4q2

i ,

Uβi = =
1

16
e
−πiαi

(0) = ± 1

16
,

Uβl = ± 1

64
i.

The automorphism σ acts on these modules. To determine the action of σ, we calculate

σ
(
qnl
∏l−1
i=1 q

mi
i

)
= σ

(
Un
αl

∏l−1
i=1 U

mi
αi · 1

)
on the module Pχ−(n) corresponding to the character

χ−(eβi) = −1 for all i < l. Since

σ

(
Unαl

l−1∏
i=1

Umiαi · 1

)
= qnl

l−1∏
i=1

qmii ,

the automorphism σ acts as the identiy on Pχ−(n). For other characters χ, σ is determined by

σ (Uαi · 1) = Uαn−i+1 · 1 =

qi, χ(eβi) = −1

−qi, χ(eβi) = 1
,

where i < l. Thus Pχ(n) decomposes into two eigenspaces of σ with eigenvalues ±1. The

+1-eigenspace Pχ(n)+ is generated by products qnl
∏l−1
i=1 q

mi
i , where

∑
mj is even for each j with

χ(eβj ) = 1. The −1-eigenspace Pχ(n)− is generated by products qnl
∏l−1
i=1 q

mi
i , where

∑
mj is

odd for each j with χ(eβj ) = 1.

The entire σ-twisted VQ-module is then M(σ)⊗ Pχ(n). Since M(σ) itself decomposes into
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±1-eigenspaces of σ, there are a total of 2 · 2l = 2l+1 orbifold modules of twisted type:

M(σ)± ⊗ Pχ−(n),

(M(σ)± ⊗ Pχ(n)+)
⊕

(M(σ)∓ ⊗ Pχ(n)−) , χ 6= χ−.

We now present a correspondence between the two constructions. It is clear that each

construction produces the same number of orbifold modules of untwisted and twisted type and

also that the orbifold modules of twisted type both correspond to the same set of characters.

The following lemma will be used to identify the orbifold modules of untwisted type.

Lemma 5.6.9 The orbifold module Vλ1+Q̄ can be identified with the orbifold module with

representative VL+ ⊗ Vµl+L−.

Proof We write λ1 as follows:

λ1 =
1

2(2l + 1)
(4lα1 + 2(2l − 1)α2 + · · ·+ 2(l + 2)αl−1 + (2l + 1)αl

+βl + 2(l − 1)αl+2 + · · ·+ 2αn)

=
1

2(2l + 1)
(2l(α1 + β1) + (2l − 1)(α2 + β2) + · · ·+ (l + 2)(αl−1 + βl−1) + (2l + 1)αl

+βl + (l − 1)(αl−1 − βl−1) + · · ·+ (α1 − β1))

=
1

2

l∑
i=1

αi +
1

2(2l + 1)
((2l − 1)β1 + (2l − 3)β2 + · · ·+ 3βl−1 + βl)

7→ 1

2

l∑
i=1

(αi + βi) +
1

2l + 1

l∑
j=1

jβj

=
1

2

l∑
i=1

(αi + βi) + µl

Due to (5.52), the orbifold module corresponding to the element 1
2

∑l
i=1(αi + βi) + µl will have

another summand with representative corresponding to µl. Hence Vλ1+Q̄ is isomorphic to the

orbifold module with representative VL+ ⊗ Vµl+L− .

From these identities, other module representatives can be identified using Lemma 5.6.9

and that σ : Vλi+Q̄ → Vλn−i+1+Q̄. From Lemma 5.6.9, we have that the module Vλ1+Q̄ can be

identified with the orbifold module with representative VL+ ⊗ Vµl+L− . Therefore, using that

λi = iλ1 mod Q̄ for i = 1, . . . , l − 1, the module Vλj+Q̄ can be identified with the module with

representative VL+ ⊗ Vjµl+L− , where j = 1, . . . , l − 1. In addition, we have that Vλl+λl+1+Q̄
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and V ±
λl+Q̄

can be identified with the orbifold module with representative VL+ ⊗ Vlµl+L− and

VL+ ⊗ V ±γ+L−
, respectively. This completes the correspondence of orbifold modules of untwisted

type.

As an example of the correspondence of orbifold modules of twisted type, consider the

module of twisted type presented in Example 4.3. Then we have the following correspondence

between eigenspaces:

M(σ)± ⊗ Pχ(n)+ '
(
VL+ ⊗ V

Tχ,±
L−

)⊕(
Vα2

2
+L+
⊗ V T−χ,±

L−

)
,

M(σ)∓ ⊗ Pχ(n)− '
(
Vα1

2
+L+
⊗ V Tχ,∓

L−

)⊕(
Vα1+α2

2
+L+
⊗ V T−χ,∓

L−

)
.

5.7 The Root Lattice E6

Consider the E6 simple roots {α1, . . . , α6}. The nondegenerate symmetric Z-bilinear form (·|·)
is given by

((αi|αj))i,j =



2 0 −1 0 0 0

0 2 0 −1 0 0

−1 0 2 −1 0 0

0 −1 −1 2 −1 0

0 0 0 −1 2 −1

0 0 0 0 −1 2


.

The associated even lattice is Q =
∑6

i=1 Zαi. Consider the Dynkin diagram automorphism

σ : α1 ←→ α6, α3 ←→ α5 with fixed points α2 and α4. Then σ is also an automorphism of Q.

Set

α1 = α1 + α6, (5.58)

β1 = α1 − α6, (5.59)

α2 = α3 + α5, (5.60)

β2 = α3 − α5. (5.61)
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Then αi and βi are eigenvectors for σ with eigenvalues 1 and −1, respectively. Products between

these elements are as follows:
(αi|αi) = 4 = (βi|βi),

(α1|α2) = −2 = (β1|β2).

Since (α1|α6) = 0 = (α3|α5) and (α2|α2) = 2 = (α4|α4), we have that Q ⊂ Q̄. Therefore

Q = Q̄, (5.62)

L+ = Zα2 + Zα4 + Zα1 + Zα2, (5.63)

L− = Zβ1 + Zβ2, (5.64)

Q/L = {L,α1 + L,α3 + L,α1 + α3 + L}. (5.65)

Hence by Proposition 4.2.2, we have that

V σ
Q '

(
VL+ ⊗ V +

L−

)
⊕
(
Vα1

2
+L+
⊗ V +

β1

2
+L−

)
⊕
(
Vα2

2
+L+
⊗ V +

β2

2
+L−

)
⊕
(
Vα1+α2

2
+L+
⊗ V +

β1+β2

2
+L−

)
, (5.66)

since (α1)+ = α1

2 , (α1)− = β1

2 , and (α3)+ = α2

2 , (α3)− = β2

2 .

In order to compute the V σ
L -modules, we first determine L∗+/L+ using the Gram matrix for

L+. Ordering the basis of L+ as {α2, α4, α
1, α2}, the Gram matrix for L+ is given by

G =


2 −1 0 0

−1 2 0 −2

0 0 4 −2

0 −2 −2 4

 .

The inverse is given by

G−1 =


2 3 1 2

3 6 2 4

1 2 1 3
2

2 4 3
2 3

 .

Note that detG = 4. Thus a Z-basis for L∗+ is given by {α1

2 ,
α2

2 } so that

L∗+/L+ =

{
L+,

α1

2
+ L+,

α2

2
+ L+,

α1 + α2

2
+ L+

}
.
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We now determine L∗−/L− using the Gram matrix for L−. Ordering the Z-basis of L− as {β1, β2},
the Gram matrix for L− is given by

M =

(
4 −2

−2 4

)

with inverse

M−1 =
1

6

(
2 1

1 2

)
.

Therefore L∗−/L− is generated by the elements 1
2µ1 = 1

6(2β1 + β2) and 1
2µ2 = 1

6(β1 + 2β2) and

|L∗−/L−| = detM = 12. The 12 elements in L∗−/L− can be described by the following list:

a1
β1

2
+ b1

β2

2
+ L−, (5.67)

1

2
µ1 + a2

β1

2
+ b2

β2

2
+ L−, (5.68)

1

2
µ2 + a3

β1

2
+ b3

β2

2
+ L−, (5.69)

where ai, bi ∈ {0, 1} and i = 1, 2, 3.

Since the σ-invariant elements of L∗−/L− correspond to all elements in (5.67), there are 4

distinct irreducible V +
L−

-modules that can be written as a sum of eigenspaces for σ with eigenvalues

±1. The remaining elements in L∗−/L− are identified by σ in pairs since σ
(

1
2µ1

)
= 1

2µ2+ 1
2β

1+ 1
2β

2

and σ
(

1
2µ2

)
= 1

2µ1 + 1
2β

1 + 1
2β

2. Thus there are 2(4) + 4 = 12 distinct irreducible V +
L−

-modules.

We then obtain the following lemma.

Lemma 5.7.1 The distinct V +
L−

-modules of untwisted type that decompose into eigenspaces

corresponds to the set

(
L∗−/L−

)σ
=

{
1

2
b1β

1 +
1

2
b2β

2 + L−

∣∣∣∣ bj ∈ {0, 1}} .
The other distinct irreducible V +

L−
-modules of untwisted type correspond to the set{

1

2
µ1 +

1

2
b1β

1 +
1

2
b2β

2 + L−

∣∣∣∣ bj ∈ {0, 1}} .
From the proof of Corollary 4.4.3 and (5.65), the irreducible V σ

Q -modules are obtained from

elements λ ∈ L∗+ and µ ∈ L∗− such that (λ+ µ|αi) ∈ Z for i = 1, 3. However, due to (5.66), an
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orbifold module corresponding to a representative containing V 1
2
a1α1+ 1

2
a2α2+L+

will have another

summand containing VL+ . Thus we only need to find those µ ∈ L∗− for which (µ|αi) ∈ Z for

i = 1, 3. Since (
1

2
µ1

∣∣∣∣αi) =
1

2
δ1i, i = 1, 3,(

1

2
βi
∣∣∣∣αj) = δij −

1

2
δi,j−2 −

1

2
δi,j+1, i = 1, 2, j = 1, 3,

the only cosets in L∗−/L− that have integral products with both α1 and α3 are L− and
1
2µ1 + 1

2β
2 + L− = µ2 + L−. Therefore, the irreducible V σ

Q -modules of untwisted type are

equivalent to the following list:(
VL+ ⊗ V ±L−

)
⊕
(
Vα1

2
+L+
⊗ V ±

β1

2
+L−

)
⊕
(
Vα2

2
+L+
⊗ V ±

β2

2
+L−

)
⊕
(
Vα1+α2

2
+L+
⊗ V ±

β1+β2

2
+L−

)
,

(
VL+ ⊗ Vµ2+L−

)
⊕
(
Vα1

2
+L+
⊗ V

µ2+β1

2
+L−

)
⊕
(
Vα2

2
+L+
⊗ V

µ2+β2

2
+L−

)
⊕
(
Vα1+α2

2
+L+
⊗ V

µ2+β1+β2

2
+L−

)
.

For convenience, these modules are referred to by using the summands VL+ ⊗ V ±L− and VL+ ⊗
Vµ2+L− , respectively.

The irreducible twisted VL−-modules are V
Tχ
L−

, where Tχ is an irreducible L̂−/K-module with

central character χ. The irreducible V σ
Q -modules of twisted type are obtained using the fusion

rules for V +
L−

with M1 = V +
1
2

∑
biβi+L−

where i = 1, 2 and bi ∈ {0, 1} (cf. Definition 3.3.16). Recall

each irreducible character χ : 2L∗− ∩ L− −→ {±1} for which χ(e−α) = χ(eα) can be written as

χ(eα) = (−1)(α|µ)

for some µ ∈ (2L∗− ∩ L−)∗. Since(
b1β

1 + b2β
2

∣∣∣∣12b1β1 +
1

2
b2β

2

)
= 2(b21 + b22 − b1b2) ∈ 2Z,

we have that

χ
( 1
2

∑
biβ

i)
µ (e∑ biβi) = χµ(e∑ biβi). (5.70)
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Hence every module V +
1
2
biβi+L−

sends V
Tχ
L−

to V
Tχ
L−

. Since cχ
(

1
2

∑
biβ

i
)

= χ(e∑ biβi) and linear

characters are homomorphisms, we have that

cχ

(
1

2
b1β

1 +
1

2
b2β

2

)
= χ(eb1β1)χ(eb2β2), (5.71)

where bi ∈ {0, 1} and χ(e0) = 1. Thus each irreducible V σ
Q -module of twisted type corresponding

to a choice for χ is obtained in the following way. For each element γ− = 1
2

∑
biβ

i, the eigenspaces

are determined by computing the products in (5.71). There are a total of 4 distinct irreducible

orbifold modules of twisted type given by the following:

If χ(eβ1) = 1 = χ(eβ2), we have

(
VL+ ⊗ V

Tχ,±
L−

)
⊕
(
Vα1

2
+L+
⊗ V Tχ,±

L−

)
⊕
(
Vα2

2
+L+
⊗ V Tχ,±

L−

)
⊕
(
Vα1+α2

2
+L+
⊗ V Tχ,±

L−

)
.

If χ(eβ1) = 1 and χ(eβ2) = −1, we have

(
VL+ ⊗ V

Tχ,±
L−

)
⊕
(
Vα1

2
+L+
⊗ V Tχ,±

L−

)
⊕
(
Vα2

2
+L+
⊗ V Tχ,∓

L−

)
⊕
(
Vα1+α2

2
+L+
⊗ V Tχ,∓

L−

)
.

If χ(eβ1) = −1 and χ(eβ2) = 1, we have

(
VL+ ⊗ V

Tχ,±
L−

)
⊕
(
Vα1

2
+L+
⊗ V Tχ,∓

L−

)
⊕
(
Vα2

2
+L+
⊗ V Tχ,±

L−

)
⊕
(
Vα1+α2

2
+L+
⊗ V Tχ,∓

L−

)
.

If χ(eβ1) = −1 = χ(eβ2), we have

(
VL+ ⊗ V

Tχ,±
L−

)
⊕
(
Vα1

2
+L+
⊗ V Tχ,∓

L−

)
⊕
(
Vα2

2
+L+
⊗ V Tχ,∓

L−

)
⊕
(
Vα1+α2

2
+L+
⊗ V Tχ,±

L−

)
.

We now construct the orbifold modules using Section 3.3.2. The 2-cocycle ε satisfies the
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following:

ε(αi, αi) = (−1)2( 2+1
2 ) = −1,

ε(α1, α3)ε(α3, α1) = −1,

ε(α3, α4)ε(α4, α3) = −1,

ε(α4, α5)ε(α5, α4) = −1,

ε(α5, α6)ε(α6, α5) = −1,

ε(α2, α4)ε(α4, α2) = −1,

ε(αi, αj)ε(αj , αi) = 1, otherwise.

Set ε to be the following on the basis:

ε(α1, α3) = 1, ε(α3, α1) = −1,

ε(α3, α4) = 1, ε(α4, α3) = −1,

ε(α4, α5) = −1, ε(α5, α4) = 1,

ε(α5, α6) = −1, ε(α6, α5) = 1,

ε(α2, α4) = 1, ε(α4, α2) = −1.

With these notions, we have that ε(σγ1, σγ2) = ε(γ1, γ2) for all γ1, γ2 ∈ Q. Thus we can take η

to be trivial, that is, η(γ) = 1 for all γ ∈ Q.
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The dual lattice to E6 is spanned by the elements

λ1 =
1

3
(4α1 + 3α2 + 5α3 + 6α4 + 4α5 + 2α6)

=
1

3
(α1 + 2α3 + α5 + 2α6) mod Q,

λ2 = α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6

= 0 mod Q,

λ3 =
1

3
(5α1 + 6α2 + 10α3 + 12α4 + 8α5 + 4α6)

=
1

3
(2α1 + α3 + 2α5 + α6) mod Q,

λ4 = 2α1 + 3α2 + 4α3 + 6α4 + 4α5 + 2α6

= 0 mod Q,

λ5 =
1

3
(4α1 + 6α2 + 8α3 + 12α4 + 10α5 + 5α6)

=
1

3
(α1 + 2α3 + α5 + 2α6) mod Q = λ1 mod Q,

λ6 =
1

3
(2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6)

=
1

3
(2α1 + α3 + 2α5 + α6) mod Q = λ3 mod Q.

The only σ-invariant element in Q∗/Q is the trivial coset Q and σ identifies the other two

corresponding modules since σ(λ1) = λ3. Thus there are 3 distinct orbifold modules of untwisted

type given by

V ±Q , Vλ1+Q.

For the orbifold modules of twisted type, the quantities that will be needed are the following:

Bβi,−βi = 28,

Bα1,α6 = 4 = Bα3,α5 ,

Bα6,−α6 = 4 = Bα5,−α5 ,

bβi =
1

2
(0− 4) = −2,

bα1 =
1

2
(1− 2) = −1

2
,

bα3 =
1

2
(1− 2) = −1

2
,

Cγ,θ = (−1)(γ|θ).
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The elements in Gσ must satisfy Uσγ = Uγe
2πi(bγ+γ0). In particular, U−βi = Uβie

−4πi = Uβi so

that U2
βi

= UβiU−βi = ε(βi,−βi)B−1
βi,−βi = 2−8. Thus there are two possible actions of Uβi :

Uβi = ±2−4 = ± 1

16
.

Using the σ-invariance, we then have the following:

Uα6 = Uα1e
2πi
(
− 1

2
+ 1

2
α1
(0)

)
= −Uα1e

πiα1
(0) ,

Uα5 = Uα3e
2πi
(
− 1

2
+ 1

2
α2
(0)

)
= −Uα3e

πiα2
(0) ,

Uα1 = ε(α1, α6)Bα1,α6Uα1Uα6 = −4U2
α1
e
πiα1

(0) ,

Uα2 = ε(α3, α5)Bα3,α5Uα3Uα5 = −4U2
α3
e
πiα2

(0) ,

U−α6 = ε(α6,−α6)B−1
α6,−α6

U−1
α6

=
1

4
U−1
α1
e
πiα1

(0) ,

U−α5 = ε(α5,−α5)B−1
α5,−α5

U−1
α5

=
1

4
U−1
α3
e
πiα2

(0) ,

Uβ1 = ε(α1,−α6)Bα1,−α6Uα1U−α6 =
1

16
e
πiα1

(0) ,

Uβ2 = ε(α3,−α5)Bα3,−α5Uα3U−α5 =
1

16
e
πiα2

(0) .

Consider the vector space P = C[q1, q
−1
1 , q2, q

−1
2 , q3, q

−1
3 , q4, q

−1
4 ]. Since each nontrivial action

is determined by Uα1 , Uα3 , Uα2 and Uα4 , we can let these operators act as multiplication in the

following way:

Uα1 = q1(−1)
∂
∂q3 ,

Uα2 = q2(−1)
∂
∂q4 ,

Uα3 = q3(−1)
∂
∂q4 ,

Uα4 = q4.

Note that these actions ensure that q1, q2, q3, q4 are commuting variables since (α1|α3), (α3|α4)

and (α2|α4) are all equal to −1.

In order to determine the action of e
πiαi

(0) , consider the commutation relation with Uγ :

e
πiαi

(0)Uγe
−πiαi

(0) = eπi(αi|γ)Uγ .

For γ = α1, we have e
πiα1

(0)q1e
−πiα1

(0) = q1. Thus e
πiα1

(0)qn1 = qn1 e
πiα1

(0)(1). Since e
2πiα1

(0) = 1, we
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must have e
πiα1

(0)(1) = ±1 so that e
πiα1

(0)qn1 = ±qn1 . Similarly we have

e
πiα1

(0)qn3 = ∓qn3 ,

e
πiα2

(0)qn1 = ∓qn1 ,

e
πiα2

(0)qn3 = ±qn3 ,

e
πiαi

(0)qnj = ±qnj , i = 1, 2, j = 2, 4.

Thus on the space P we have the following:

Uα5 = ∓q3(−1)
∂
∂q4 ,

Uα6 = ∓q1(−1)
∂
∂q3 ,

Uαi = ∓4q2
i , i = 1, 2,

Uβi = ± 1

16
, i = 1, 2.

The signs for Uα6 and Uα1 are determined by the sign of Uβ1 and the signs for Uα5 and Uα2 are

determined by the sign of Uβ2 .

The automorphism σ acts on each of these modules. To determine the action of σ, we

calculate σ(ql1q
m
2 p

n
1p

k
2) = σ(U lα1

Umα3
Unα2

Ukα4
· 1) on the module Pχ−(n) corresponding to the

character χ−(eβ1) = −1 = χ−(eβ2). Since

σ
(
U lα1

Umα3
Unα2

Ukα4
· 1
)

= ql1q
m
2 p

n
1p

k
2,

the automorphism σ acts as the identity on Pχ−(n). For other characters χ, σ is determined by

σ (Uα1 · 1) = Uα6 · 1 =

q1, χ(eβ1) = −1

−q1, χ(eβ1) = 1
,

σ (Uα3 · 1) = Uα5 · 1 =

q2, χ(eβ2) = −1

−q2, χ(eβ2) = 1
.

Thus Pχ(n) decomposes into two eigenspaces of σ with eigenvalues ±1. The +1-eigenspace

Pχ(n)+ is generated by products pn1p
k
2q
l
1q
m
2 , where l is even if only χ(eβ1) = 1, m is even if only

χ(eβ2) = 1, and l +m is even if χ(eβ1) = 1 = χ(eβ2). The −1-eigenspace Pχ(n)− is generated

by products pn1p
k
2q
l
1q
m
2 , where l is odd if only χ(eβ1) = 1, m is odd if only χ(eβ2) = 1, and l+m

is odd if χ(eβ1) = 1 = χ(eβ2).
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The entire σ-twisted VQ-module is then M(σ)⊗ Pχ(n). Since M(σ) itself decomposes into

±1-eigenspaces of σ, there are a total of 2 · 4 = 8 orbifold modules of twisted type:

M(σ)± ⊗ Pχ−(n),

(M(σ)± ⊗ Pχ(n)+)
⊕

(M(σ)∓ ⊗ Pχ(n)−) , χ 6= χ−.

We now present a correspondence between the two constructions. It is clear that each

construction produces the same number of orbifold modules of untwisted and twisted type and

also that the orbifold modules of twisted type both correspond to the same set of characters. The

orbifold modules V ±Q are identified with the orbifold modules corresponding to the representatives

VL+ ⊗ V ±L− . The following lemma identifies the other orbifold module of untwisted type.

Lemma 5.7.2 The orbifold module Vλ1+Q can be identified with the orbifold module with

representative VL+ ⊗ Vµ2+L−.

Proof We first write λ1 in terms of elements from L∗.

λ1 =
1

3
(α1 + 2α3 + α5 + 2α6)

=
1

6
(3α1 − β1 + 3α2 + β2)

=
1

2
α1 +

1

2
α2 +

1

6
(5β1 + β2) mod L−

=
1

2
α1 +

1

2
α2 +

1

2
µ1 +

1

2
β1 mod L−.

Due to (5.66), the orbifold module corresponding to λ1 will have another summand with

representative corresponding to 1
2µ1 + 1

2β
2 = µ2.

As an example of the correspondence of orbifold modules of twisted type, consider the case of

the character χ(eβ1) = 1 and χ(eβ2) = −1. We then have the following correspondence between

eigenspaces:

M(σ)± ⊗ Pχ(n)+ '
(
VL+ ⊗ V

Tχ,±
L−

)
⊕
(
Vα1

2
+L+
⊗ V Tχ,±

L−

)
,

M(σ)∓ ⊗ Pχ(n)− '
(
Vα2

2
+L+
⊗ V Tχ,∓

L−

)
⊕
(
Vα1+α2

2
+L+
⊗ V Tχ,∓

L−

)
.
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