
ABSTRACT

ELASHEGH, AHLAM E.A. Mathematical and Computational Mixture Models for Cartilage
Regeneration in Cell-Seeded Scaffolds. (Under the direction of Dr. Mansoor Haider.)

Articular cartilage is an avascular and aneural biological soft tissue that has a limited

capacity for growth and repair, and exhibits a high incidence of osteoarthritis with aging.

Osteoarthritis can result in the appearance of osteochondral defects within the tissue layer or

severe degradation of the cartilage extracellular matrix (ECM), necessitating joint replacement.

Consequently, strategies and techniques for regeneration of cartilage ECM based on tissue en-

gineering approaches are of great interest and potential importance. One common technique

involves the seeding of specialized cells in biocompatible, porous scaffold materials. Mathe-

matical models provide a theoretical framework within which coupling between biophysical,

biochemical, biomechanical and physiological mechanisms can be quantified and analyzed as

an alternative to, or in combination with, tissue engineering experiments which may be time

intensive or costly.

A multiphasic continuum mixture model was developed for regeneration of cartilage ECM

in the local environment of a single cell seeded within a scaffold. Model variables accounted

for spatio-temporal evolution of solid displacement, fluid velocity, pore pressure, (bound) solid

phases including scaffold and linked ECM, as well as (unbound) solutes in the interstitial fluid

including unlinked ECM and growth factor. The model was specialized to the one-dimensional

case of a single spherical cell surrounded by a spherical region that is a highly porous scaffold

whose pores accumulate linked ECM as time evolves and the scaffold degrades. A product

inhibition hypothesis was used to model cell-mediated biosynthesis of unlinked matrix proteins.

Linking required to transform unlinked ECM into linked ECM was assumed to depend on both

the growth factor concentration and the evolving porosity of the mixture. The latter relationship

was modeled as a nonlinear, Gaussian function of evolving porosity in the extracellular region

to account for phenomena of poor linking for very dilute scaffolds, and reductions in pore size

with ECM accumulation that inhibit spatial distribution and ECM linking.

The resulting model consists of a system of partial differential equations in both the cell and

extracellular regions along with boundary and interface conditions. A finite difference method

was used to develop a numerical scheme that was implemented in MATLAB. Accuracy of

temporal aspects of the scheme and its implementation were verified by developing an analytical

series solution for a special case of the model that corresponds to a reaction-diffusion system

on the extracellular region with a time-varying boundary condition capturing dynamic effects

of the cell. Cartilage ECM regeneration in the local environment of a single cell was simulated

numerically by first distinguishing between biophysical parameters, scaffold design parameters



and physiological parameters. Biophysical and scaffold parameter values were set based on the

literature, while physiological values were calibrated to yield ECM regeneration on realistic

time scales. Via a parametric analysis, simulations involving perturbations of this baseline case

demonstrated sensitivity of tissue outcomes to both the level of initial scaffold porosity and to

physiological parameters related to both the ECM linking model and the product inhibition

hypothesis for cell-mediated biosynthesis. Based on the parametric analysis, a reduced model

was also identified.
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Chapter 1

Introduction and Background

1.1 Articular Cartilage

Articular cartilage is a biological soft tissue that is both avascular, in that it contains no blood

vessels and aneural since it has no nerve endings. As a result, it has a limited capacity for

growth and repair and these processes are predominantly regulated by the cells within the

tissue. Articular cartilage is found mainly in diarthrodial joints such as shoulders, hips, and

knees (Figure 1.1a). In healthy individuals, articular cartilage provides a resilient load-bearing

surface for several decades. Cartilage is a multiphasic tissue in that its structure arises from an

extracellular matrix (ECM), occupying roughly 15-20% of the tissue volume (Figure 1.1b). The

ECM is saturated with interstitial fluid that comprises most of the remaining tissue volume,

and contains dissolved ions, nutrients and other solutes that are vital for tissue health. Via

ECM deformation, fluid pressurization, and fluid-sold drag during interstitial flow, this tissue

facilitates load support and energy dissipation under compressive mechanical loading in joints

[34]. Cartilage ECM consists of a cross-linked network of proteins with an embedded population

of sparsely distributed cells, called chondrocytes. These cells occupy between 1-10% of the tissue

volume, depending on age and other factors. Chondrocytes regulate their metabolic activity in

response to biophysical and biomechanical cues in their local environment within the ECM.

The associated physiological processes are of vital importance in cartilage primarily due to the

fact that the tissue is avascular and aneural. The two primary ECM constituents are collagen

and large macromolecules called proteoglycans (PGs) (≈ 25%-35% by dry weight) that have

a net negative charge. The collagen network is comprised of mostly type-II collagen (≈ 60%

by dry weight) which is neutrally charged with a fiber arrangement that is isotropic in the

mid-zone but more parallel near the synovial interface and more normal near the bone. PGs,

which are intertwined within the collagen network, are comprised of a hyaluronic acid protein

core with negatively charged side chains consisting of sulfated glycosaminoglycans (GAGs),
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(a) (b)

Figure 1.1: (a) Articular cartilage is a biological soft tissue that lines the surfaces of bones in
diarthrodial joints, such as the knee. (b) Cross-section of a layer of articular cartilage, indicating
the presence of sparsely distributed cells, called chondrocytes, which monitor and maintain
the extracellular matrix. (Reprinted from Osteoarthritis and Cartilage, 2/2, Farshid Guilak,
B. Christoph Meyer, Anthony Ratcliffe and Van C. Mow, The effects of matrix compression
on proteoglycan metabolism in articular cartilage explants, 91-101, Copyright (1994), with
permission from Elsevier).

keratin-sulfate, and chondroitin sulfate [12]. At the macroscopic scale of the tissue, the PGs

give rise to a negative fixed charge density that enhances load support in compression via

charge-to-charge repulsion and other osmotic effects. Since cartilage exhibits a low capacity for

direct cellular communication, each chondrocyte is able to alter its metabolic activity using

micro-environmental signals such as physical forces or soluble mediators such as growth factors

and cytokines [68, 70], that are signaled to the cell via mechanosensitive ion channels or other

receptors, such as G-protein coupled receptors [12, 20, 36].

1.2 Osteoarthritis

Millions of Americans each year experience cartilage damage caused by injury or diseases such

as osteoarthritis (OA). While OA impacts most of the tissues within articulating joints, it most

severely affects the articular cartilage. OA is a painful degenerative disease that is primarily

associated with aging and leads to structural ECM degradation and fluid loss resulting in joint

stiffness, decreased mobility and painful bone-on-bone contact necessitating joint replacement

surgery. In OA, chondrocytes express higher levels of catabolic cytokines, decreasing synthesis

of ECM constituents and increasing levels of degradative enzymes such as matrix metallino-

2



proteinases [51]. Along a joint surface, cartilage defects occurring due to injury or degradation

lead to ECM erosion and joint degeneration [16, 39]. Often the ECM deteriorates beyond the

point of self-repair as the disease progresses (Figure 1.2) [7].

(a) (b) (c)

Figure 1.2: (a) In healthy articular cartilage proteoglycans are uniformly distributed in the
upper portion of the tissue layer, as indicated by the red-purple staining. (b) In early OA,
proteoglycan content decreases from the surface towards the bone, as shown by the loss of
red-purple stain and structural degradation of the ECM follows. (c) A later stage of OA in
which the tissue degrades beyond a point of self-healing. (Photos courtesy of Dr. Lori Setton,
Cartilage Mechanics and Tissue Engineering Laboratory, Duke University.)

1.3 Cartilage Tissue Engineering

Due to the limited natural ability of articular cartilage for self-healing, a few surgical techniques

have been developed to aid or stimulate cartilage repair within damaged tissue. Since these

techniques are less-invasive surgical methods, they can be considered as an option prior to total

joint replacement [38]. Two such techniques are microfracture and autologous chondrocyte

implantation (ACI), but limited success has been seen with either therapy. In microfracture,

the subchondral bone is drilled to induce migration of mesenchymal progenitor cells from the

marrow to the lesion site to initiate ECM repair. In contrast, ACI involves the expansion of

chondrocytes harvested from the patient that are expanded in cell culture and then transplanted

to the defect site. In both of these therapies, the resulting tissue does not have the correct

composition, structure or biomechanical properties, often leading to tissue overgrowth or the

formation of a fibrocartilaginous scar tissue that has limited efficacy [1, 5, 38].
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The field of cartilage tissue engineering has seen many advances in recent years and the

development of associated mathematical models is the focus of this work. Cartilage tissue en-

gineering involves the regeneration of cartilage ECM by seeding cells in a natural or synthetic

biomaterial that acts as a three-dimensional scaffold with initial structural support for tis-

sue growth, concurrent with scaffold degradation- see Figure 1.3 for an example. A primary

functional outcome is the compressive elastic stiffness modulus of the tissue construct, which

transitions from the initial scaffold elastic modulus of a few KPa in most hydrogel systems

to a targeted range of approximately 0.5-1.0 MPa that is observed in mature articular car-

tilage [25, 30, 62]. There are many proposed natural and synthetic scaffold biomaterials that

are amenable to initiation of cellular processes of differentiation, proliferation, migration, and

degradation by proteolytic enzymes. Important scaffold properties known to influence outcomes

include the porosity, affecting cell proliferation and ECM formation, and permeability, which

affects convective transport of nutrients and metabolic waste [5, 26, 40, 61, 62].

Once seeded in a biocompatible scaffold, cells will initiate biosynthesis and secretion of

proteins that are initially dissolved in the interstitial fluid and serve as the ECM building blocks.

These proteins initially become entrapped in the chains of the hydrogel. As the hydrogel begins

to degrade, cellular up-regulation of matrix protein biosynthesis occurs, transport of smaller

proteins and nutrients is sustained and crosslinked ECM can form [12, 27]. Initially, the soluble

side chains of PG are synthesized and then, subsequently cross-linked to other matrix molecules.

Similarly, chondrocytes synthesize soluble procollagen as a precursor to later be assembled into

the collagen network [12, 21]. Cross-linkers include families of matrilins, small leucine rich

proteins, thrombospondins, and transglutaminases [20, 63]. It has been show that a high local

PG concentration will exert negative feedback on further matrix production [8], but the process

by which the chondrocyte senses local PG concentration is not known and could be mechanical

or through a receptor signaling pathway. By culturing cell-seeded scaffolds for many weeks

to few months, samples can be extracted at various time points and chemically stained for

histological analysis of ECM content and organization. Staining assays include Safranin-O or

Alcian Blue for GAG/PG, which can be used in combination with Fast-green FCF/Hematoxylin

counterstain or Picrosirius Red to image collagen and cell nuclei [52].

Tissue engineering of functional cartilage, with a correct combination of biomechanical prop-

erties, biomechanical content and ECM structure, depends on several diverse factors including

scaffold properties, cell type, initial cell seeding density, mechanical stimulation, and chemical

stimulation (culture medium and growth factors) [14, 26, 49, 62]. The two main choices for

cell type are adult (mature) chondrocytes and stem cells [24]. Chondrocytes exhibit low yield

when harvested, can be difficult to culture and when expanded, produce ECM constituents,

but often lose their phenotype and chondrogenic potential over time [15, 66]. Mesenchymal

stem cells (MSCs) differentiate into chondocytes and are easily accessible and expanded from
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(a) (b)

(c) (d)

Figure 1.3: Illustration of the tissue engineering process. (a) Cells are mixed into a solution
of elastinlike polypeptide (ELP) hydrogel scaffold polymers, (b) Tailored design of the scaffold
polymer enables a phase transition from liquid to a gel at physiological temperatures, (c) Image
of an osteochondral defect, (d) An osteochondral defect with implanted cell-biomaterial scaffold.
(Reprinted from Tissue Engineering Part A, 15/8, Dana L. Nettles, Ashutosh Cilkoti, and Lori
A. Setton, Early metabolite levels predict long-term matrix accumulation for chondrocytes
in elastin-like polypeptide biopolymer scaffolds, 2113-2121, Copyright (2009), with permission
from Mary Ann Liebert, Inc.)
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bone marrow, fat, and the synovium [14]. While mechanical properties of MSC-based constructs

are often lower than those using primary chondrocytes, MSCs are readily accessible without

causing further cartilage damage [23]. Increased mechanical properties could potentially be

achieved with an optimal combination of initial scaffold properties, timing of growth factors

and mechanical stimulation [25, 36]. Adult stem cells have been successfully grown in multiple

types of biomaterials, maintaining chondrocyte phenotype and forming cartilaginous tissue [18].

1.4 Mathematical Modeling Approaches

The potential role of mathematical modeling in the design of engineered cell-scaffold systems

has been the subject of several studies [13, 44, 54, 55]. There are some similarities with wound

healing models [37, 45, 59, 71], which also consider cell-ECM interactions accounting for an-

giogenesis, but these interactions are quite different in articular cartilage since it is avascular

and exhibits much less cell movement. Similarly, many models of tumor formation simulate

developmental growth of new tissue and account for factors such as cell viability and nutrient

transport, but these models are also focused on vascular tissue and/or more fluid-based model-

ing approaches [4, 33, 47, 50, 60]. Properties that are unique to cartilage regeneration include its

avascular nature, its stiff and negatively charged ECM, and the macroscopic solid mechanical

properties that ultimately determine the success of engineered tissue functional outcomes.

Initial models of ECM accumulation or cell growth in conjunction with degradation of poly-

meric scaffolds used compartmental (ODE) models [53, 67, 69]. For example, Wilson et al.

[69], formulated two elementary, decoupled ODEs to capture ECM synthesis via a logistic-type

model for ECM product inhibition and a simple exponential decay model for scaffold degra-

dation. Spatio-temporal partial differential equation (PDE) models have mostly been based on

a system of reaction-diffusion equations. These include 1D reaction-diffusion models with one

bound and one soluble ECM component in Cartesian coordinates [10], and a 1D radial model

of the local chondrocyte environment that incorporated advection [65]. Olson and Haider [46]

developed a two-zone reaction-diffusion model of a cartilage defect filled with a scaffold, rep-

resenting the gel-tissue interface as a moving boundary using a level-set method. Obradovic

et al. [44] developed a 2D reaction-diffusion model for a rotating bioreactor with local oxygen

and GAG concentrations as primary variables and using Michaelis-Menten kinetics. Similar

reaction-diffusion models have been developed to account for cellular consumption of nutrients

and synthesis of matrix constituents [43, 56, 57, 58, 65]. In particular, Sengers et al. [57], devel-

oped both a compartmental model and a separate model with a single mass balance equation

to capture effects of dynamic loading on chondrocyte metabolism via calibration with experi-

mental data for GAG synthesis. Haugh [22] developed a spatio-temporal PDE model combining

a level set approach with a system of reaction-diffusion equations for modeling a single cell in
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the local environment of a hydrogel scaffold, but did not employ a formulation accounting for

mixture effects.

The models outlined above cannot, inherently, account for the role of evolving porosity as

cell-synthesized ECM forms and begins to accumulate in the pores of the scaffold. Mixture

continuum models provide a natural framework for delineating multiple time-varying system

constituents (phases). They also intrinsically distinguish between measures such as dry mass,

wet mass, solute concentrations, and intrinsic vs. apparent densities of bound constituents. In

this context, mixture approaches to date have included models for tissue growth based on porous

flow mixture theory to study cell mobility and aggregation in a porous scaffold [29], as well as

a homogenized scalar model for cell growth with advective and diffusive transport [9]. It should

also be noted that mixture frameworks have been used in modeling growth of vascular tumors

[6], biofilms [72], and in modeling morphogenesis [31, 32] where, in both cases, fluid flow and

pressure are the primary quantities of interest. Mixture modeling for cartilage tissue engineering

has seen only limited development and is ripe for further investigation. A detailed mixture model

of cartilaginous tissue growth was published in 2009 by Ateshian et al. [3]. In its application to

cartilage tissue engineering, this model accounted for cell division, and osmotic effects arising

due to changes in fixed charge density with proteoglycan (PG) accumulation. However, this

study did not account for unbound ECM constituents and its application to cartilage was

limited to quasi-static conditions based on an analytical homogenization assumption. In 2011,

Haider et al. [19] developed a compartmental model of cartilage regeneration in a cell-seeded

scaffold, by extending the much simpler two-variable model of Wilson et al. [69] to the mixture

framework. The model developed therein is briefly summarized in section 2.2. This mixture

model tracks the average apparent densities (mass of phase/mixture volume) of the three phases:

bound scaffold (Sc), unbound unlinked matrix (UM) and bound linked matrix (LM). Since

linked ECM apparent density is correlated to tissue elastic stiffness, this model suggests that

key functional outcomes depend nonlinearly on initial properties of the cell-biomaterial system

and can aid in optimal system design. While this compartmental model, which is summarized

in section 2.2, captures some features of cartilage regeneration in cell-seeded scaffolds, many

important aspects of the problem were neglected. These include spatial effects, cell growth and

proliferation, diffusive and advective transport of nutrients, growth factors and cell-synthesized

proteins, and the capacity of deformation to enhance tissue regeneration.

To date, no PDE mixture models accounting for evolution of linked ECM, unlinked ECM and

regulation of biosynthetic activities by cells have been developed in the context of cartilage tissue

engineering. However, the 2003 modeling study by Mauck et al. [35] and the 1999 modeling study

by Sun et al. [64] developed multiphasic continuum mixture models accounting for dissolved

solutes. In particular, this model formulation was used in [35] to demonstrate that dynamic

compressive loading can enhance the transport of neutral solutes in a porous permeable gel,
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i.e. with no cells. While their study did not model active biological phenomena, it provides an

excellent starting point for the new mixture models that will serve as the foundation of this

dissertation.

The primary goal of this dissertation is to extend the ODE mixture model developed in [19]

to the spatio-temporal (PDE) framework within the context of multiphasic continuum mixture

theory. The details of this extension are developed in Chapter 2. The general formulation in

Chapter 2 is then specialized to a one-dimensional spherical formulation in Chapter 3 and used

to develop a model of cartilage ECM regeneration in the local environment of a single cartilage

cell (chondrocyte), idealized as a sphere, that is seeded in a porous scaffold material. In Chapter

4, a numerical solution scheme is developed and implemented in MATLAB, based on use of the

finite difference method applied to a nondimensionalized form of the governing equations. An

analytical solution for a simplified case of the model, that reduces to a reaction-diffusion system,

is also developed in Chapter 4 and used to verify accuracy and convergence rate. In Chapter

5, the model and numerical scheme developed in Chapters 3-4 are applied to simulate cartilage

ECM regeneration in the local environment of a single cell. Model parameters are delineated into

categories of biophysical, scaffold design and physiological parameters and their values are fixed

or calibrated to formulate a baseline case representative of cartilage regeneration on realistic

time scales. Perturbation of the baseline case is then considered in a parametric analysis to

demonstrate a few key effects of scaffold design and physiological parameters on cartilage ECM

regeneration, focusing on the effect of porosity. Lastly, based on the results of this parametric

analysis, a reduced model is identified.

8



Chapter 2

Development of a Spatio-Temporal

Mixture Model for Cartilage ECM

Regeneration

2.1 Introduction

Cartilage structure arises from a dense extracellular matrix (ECM) comprised of collagen fibers

and proteoglycan macromolecules that is saturated by interstitial fluid. Biphasic (fluid-solid)

continuum mixture models of articular cartilage can account for partitioning between fluid

pressurization and ECM deformation, as well as energy loss due to fluid-solid drag that occur

during load bearing. While such mixture models describe biomechanical deformation, they do

not account for active biological or physiological mechanisms in a natural or a tissue engineered

cartilage system.

To date, only a few studies have considered extensions of the mixture modeling approach

that account for mechanisms such as active cellular responses or cell-matrix interactions that

are needed to model cartilage regeneration. A detailed mixture model of cartilagenous tissue

growth was published in 2009 by Ateshian et al. [3]. While this study distinguished between

charged and uncharged ECM constituents, it did not account for unbound ECM constituents

explicitly. Its application to modeling cartilage growth was also limited to the quasi-static case

and based on an analytical homogenization assumption. In 2011, Haider et al. [19] developed

a temporal model of cartilage ECM regeneration in a cell-seeded scaffold based on a system

of ordinary differential equations (ODEs). This model extended the much simpler two variable

model of Wilson et al. [69] to the mixture framework by accounting for mixture volume fractions

of bound and unbound ECM constituents in addition to the scaffold.

The primary goal of this work is to extend the temporal ODE model described above to
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a spatio-temporal (PDE) model within the framework of continuum mixture theory. Spatio-

temporal models have mostly been based on a system of reaction-diffusion equations. These

models include 1D reaction-diffusion models with one bound and one soluble ECM component

in Cartesian coordinates [10], and a 1D radial model of the local chondrocyte environment

that incorporated advection [65]. Olson and Haider [46] developed a two-zone reaction-diffusion

model of a cartilage defect filled with a scaffold, representing the gel-tissue interface as a moving

boundary using a level-set method. Obradovic et al. [44] developed a 2D reaction-diffusion

model for a rotating bioreactor with local oxygen and GAG concentrations as primary variables

and using Michaelis-Menten kinetics. Similar reaction-diffusion models have been developed to

account for cellular consumption of nutrients and synthesis of matrix constituents [43, 56, 58,

57, 65]. In particular, Sengers et al. [57] developed both a compartmental model and a separate

model with a single mass balance equation to capture effects of dynamic loading on chondrocyte

metabolism via calibration with experimental data for GAG synthesis. Overall, the PDE models

outlined above cannot, inherently, account for the role of evolving porosity in the engineered

cartilage system.

One relevant study was published in 2003 by Mauck et al. [35]. In this study, a multiphasic

continuum mixture model was formulated to evaluate and demonstrate that dynamic compres-

sive loading can enhance neutral solute transport in a (passive) porous permeable gel. While

their study did not account for active biological effects, it provides a starting point for the de-

velopment of new spatio-temporal PDE models of cartilage regeneration within the framework

of continuum mixture theory. In this chapter, the temporal ODE mixture model [19] is briefly

reviewed and then its extension to a spatio-temporal setting is developed.

2.2 Temporal Mixture Model of Cartilage Regeneration

This model tracks the (spatially) averaged apparent densities of three phases: bound scaffold

(Sc), unbound unlinked matrix (UM) and bound linked matrix (LM) [19], assuming a homog-

enized mixture of these constituents. As in [69], a simple scaffold degradation model is used

but cell-mediated ECM biosynthesis and linking are modeled using two separate differential

equations.

2.2.1 Mixture Variables

The mixture volume is denoted by V for a tissue construct that is idealized to be a fluid-solid

mixture. The mixture is assumed to be saturated so that V = V ω + V s, where V ω and V s

denote the volume of the fluid and solid phases, respectively. The average solid volume fraction

is denoted by φ̄s = V s/V and the average porosity is denoted by φ̄ω = V ω/V . The volume
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occupied by unbound constituents that are dissolved in the interstitial fluid is assumed to be

negligible (i.e. V UM ≈ 0) resulting in the relation:

φ̄ω + φ̄s = 1, (2.1)

The (bound) solid phase of the mixture is separated into three sub-phases. These are the linked

ECM (LM), the scaffold (Sc) and the cells (c), i.e. V s = V LM +V Sc +V c. As noted earlier, the

volume occupied by the unlinked ECM is neglected (V UM ≈ 0). This approximation is based on

the assumption that the unlinked ECM is a dilute solute within the interstitial fluid solution.

As a result, the solid phase volume fraction in the mixture can be expressed as

φ̄s = φ̄LM + φ̄Sc + φ̄c, (2.2)

where the cell volume fraction φ̄c is assumed to be constant. It is also important to note that

in mixture models apparent densities within the mixture, denoted by ρ̄α, are related to the

volume fractions by:

ρ̄α =
mα

V
= φ̄αραT , α = c, LM,Sc, (2.3)

where ραT and mα are the true density and the mass of constituent α, respectively. Note that

0 ≤ ρ̄α ≤ ραT .

2.2.2 Biosynthesis, Degradation and Linking

The degradation of total scaffold mass mSc is modeled by the equation

dmSc

dt
= −kScmSc, (2.4)

where kSc is the scaffold degradation rate.

The cell-scaffold system is assumed to have a constant cell volume fraction φ̄c and a contin-

uous mass supply of nutrients or growth factors. In the temporal model, diffusive time scales of

these constituents are assumed to be fast relative to other time scales in the system. As a result,

the concentration of nutrients or growth factors in the system is modeled to be both spatially

and temporally constant, with the value of this concentration denoted as N∗. The following

equation was used to model evolution of unlinked ECM mass in the system:

dmUM

dt
= V cN∗φ̄ωkUM

(
ρ̄ωUM −

mUM

V ω

)
− f(φ̄s)

(
ρ̄ωUM −

mUM

V ω

)
mUM , (2.5)

where kUM is the unlinked ECM synthesis rate that is mediated by the cells. This production

of unlinked ECM is assumed to continue until an average critical solute concentration ρ̄ωUM
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is reached. This assumption is based on the observation that, in engineered cartilage systems,

product inhibition is known to occur and results in slowing down of cell-mediated ECM biosyn-

thesis as ECM accumulates [8]. Based on the mixture formulation, the specific hypothesis used

in the temporal model is that the cells detect the concentration of unlinked ECM in the in-

terstitial fluid to regulate ECM biosynthesis. The second term in (2.5) models the removal of

unlinked ECM from the system as it is assembled into (bound) linked ECM. This process is

also assumed to be regulated by the cells in the identical manner to the biosynthesis of unlinked

ECM. The remaining parts of the second term in (2.5) account for the fact that unlinked ECM

mass will be removed in proportion to the amount of unlinked ECM mass present in the system,

and based on a linking rate f that is assumed to depend only on the evolving porosity in the

system.

The evolution of linked ECM mass is assumed to occur only by accumulation, via transfor-

mation, of unlinked ECM, leading to the model:

dmLM

dt
= f(φ̄s)

(
ρ̄ωUM −

mUM

V ω

)
mUM . (2.6)

Linking rates in the system are modeled as following a Gaussian distribution with respect to

porosity (expressed in terms of solid phase volume fraction):

f(φ̄s) = kULe
−(φ̄s−φ̄s∗)2

2σ2 , (2.7)

where kUL is the maximum linking rate, occurring when φ̄s = φ̄s∗. The mathematical form in

(2.7) was chosen to simultaneously reflect the following properties of the system: (i) that the

ability for formation of linked ECM in the system is enhanced as a solid network of fibers forms

and facilitates cell attachment and guidance of biopolymer network assembly, and (ii) that as

the porosity (φ̄ω = 1 − φ̄s) decreases beyond a critical point, the decreasing average pore size

in the network inhibits the ability of unlinked ECM to assemble and form linked ECM within

the tissue construct.

2.2.3 Summary of Temporal Mixture Model

Using the relations in (2.3), the governing equations for the temporal (ODE) mixture model of

cartilage ECM regeneration are written in terms of the average apparent densities as

dρ̄Sc

dt
= −kScρ̄Sc, (2.8)

dρ̄UM

dt
= φ̄CN∗φ̄ωkUM

(
ρ̄ωUM −

ρ̄UM

φ̄ω

)
− f(φ̄s)

(
ρ̄ωUM −

ρ̄UM

φ̄ω

)
ρ̄UM , (2.9)
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dρ̄LM

dt
= f(φ̄s)

(
ρ̄ωUM −

ρ̄UM

φ̄ω

)
ρ̄UM . (2.10)

Assuming that ECM synthesis starts at t = 0, the initial condition for scaffold density is

formulated in terms of the average initial scaffold porosity φ̄Sc0 and the scaffold polymer true

density, resulting in the following set of initial conditions:

ρ̄UM (0) = 0, ρ̄LM (0) = 0, ρ̄Sc(0) = φ̄Sc0 ρ
Sc
T . (2.11)

Since linked ECM apparent density is correlated to tissue elastic stiffness, this model provides an

initial description that quantifies the manner in which a key functional outcome might depend,

nonlinearly, on initial properties of the cell biomaterial system. The development of models with

this property can contribute to the optimal design of engineered cartilage systems.

While the compartmental model (2.8)-(2.11) captures some essential features of cartilage

regeneration in cell-seeded scaffolds, many important aspects of the problem were neglected.

These include spatial effects, cell growth and proliferation, diffusive and advective transport of

nutrients, growth factors and cell synthesized proteins. An extension of this compartmental mix-

ture model to the spatio-temporal (PDE) case is required for a more detailed characterization

of cartilage regeneration in cell-seeded scaffolds.

2.3 Spatio-temporal (PDE) Mixture Model

In this section, a framework for developing mathematical models that govern interactions among

biomechanical, biophysical, chemical and physiological phenomena during cartilage regenera-

tion in cell-seeded scaffolds will be provided. Examples of biomechanical mechanisms considered

include ECM deformation, interstitial fluid flow, fluid pressurization and energy loss due to

fluid-solid drag. Biophysical phenomena considered include diffusive and convective transport

of solutes dissolved within the interstitial fluid. Chemical models will account for scaffold degra-

dation and transformation of unlinked ECM into linked ECM, while physiological phenomena

include cell-mediated biosynthesis of unlinked ECM constituents as well as regulation of ECM

cross-linking.

2.3.1 Mixture Formulation

In extending the mixture formulation to account for spatial effects, denote the mass, volume,

and number of moles of phase α by mα, V α, and nα respectively, where α indicates the water

(solvent) phase, or a specific phase of a bound solid constituent or an unbound solute within the

mixture. The total volume of the mixture is denoted by V =
∑

α V
α and the following quantities

are defined in differential form over infinitesimal volumetric regions within a continuum mixture
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model of the biomaterial. Following the notation used by Mauck et al. [35], define the volume

fractions within the mixture as:

φα =
dV α

dV
, α = ω, s, f, (2.12)

where the subscripts and superscripts ω, s, and f denote the solvent phase, solid phase, and

solute phase, respectively. Apparent densities are defined as the mass of a phase per unit volume

of the mixture:

ρα =
dmα

dV
, α = ω, s, f, (2.13)

while the true density of each phase is its mass per unit volume of the same phase:

ραT =
dmα

dV α
, α = ω, s, f. (2.14)

For (unbound) solutes in the mixture, concentrations can be defined based on the mixture

volume as:

c̃α =
dnα

dV
, α = ω, f, (2.15)

or based on the solvent volume as:

cα =
dnα

dV ω
, α = f, (2.16)

where nα represents the number of moles of phase α. The molecular weight of phase α in the

mixture is then given by:

Mα =
dmα

dnα
α = f. (2.17)

The molecular weight and true density are constant for a given phase α and each phase is

assumed to be intrinsically incompressible. Based on these properties, the following relations

hold among the variables defined above:

∑
α

φα = 1, ρα = φαραT , c̃α = φωcα =
ρα

Mα
. (2.18)

Therefore, in models developed based on this formulation of mixture variables, concentrations

and volume fractions can be used as primary variables as an alternative to apparent densities

for each of the phases in the mixture.

2.3.2 Primary Variables

A model is now developed for cartilage regeneration within the framework of the mixture

variables outlined in the previous section. A new notation is adopted in which the superscript
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s indicates the solid phase, the superscript α indicates an unbound solute phase, and the

superscript β denotes a bound solid phase. As in the temporal (ODE) model, the mixture is

assumed to be saturated, so that V = V ω + V s and φω + φs = 1, and the solutes are assumed

to occupy negligible volume so that V α ≈ 0 and φα ≈ 0.

The primary variables in such a system are now summarized. Biomechanical variables tra-

ditionally associated with biphasic continuum mixture models of cartilage deformation include

the solid phase displacment us, fluid phase velocity vω, pore pressure p of the interstitial fluid

and the water volume fraction φω. The evolution of bound constituents is tracked by volume

fractions φβ, with the choice of specific constituents (number of β’s) depending on the desired

complexity of the model under consideration. Examples of such constituents include the scaf-

fold, linked ECM constituents (e.g. collagen, PG), and cells attached to the ECM or scaffold.

Under deformation, such bound constituents are assumed to move together with the solid phase

velocity u̇s ≡ ∂tu
s. Similarly, the number of unbound constituents to be considered (number

of α’s) depends on the complexity of the model and is tracked via both concentations cα and

velocities vα in the mixture. Examples of unbound constituents include nutrients and growth

factors, cell-synthesized ECM proteins (prior to assembly and cross-linking), and metabolic

waste products subsequent to ECM or scaffold degradation.

2.3.3 Governing Equations

The governing equations are formulated by considering balance of mass, balance of momentum

and by assuming that the mixture is saturated and that its phases are intrinsically incompress-

ible.

Mass balance of water, which is a biologically passive constituent, is written in the standard

form

∂tρ
ω +∇ · (vωρω) = 0. (2.19)

For each bound constituent β, a mass balance equation is written assuming that the motion

follows that of the solid phase s and that biological interactions are governed by a constitutive

model F β involving bound and unbound constituents and porosity so that

∂tρ
β +∇ · (u̇sρβ) = F β(ρω, {ρβ}, {ρα}). (2.20)

Similarly, for each unbound constituent α, a mass balance equation is written with inherent

advection and a constitutive model Fα with similar dependencies as

∂tρ
α +∇ · (vαρα) = Fα(ρω, {ρβ}, {ρα}). (2.21)

Momentum balance is written for the entire mixture in terms of pore pressure of the inter-
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stitial fluid and the solid phase elastic stress as follows

−∇p+∇ · σE(us) = 0, (2.22)

where σE is the solid phase elastic stress. Momentum balance is also written for water and for

each unbound phase in terms of the corresponding chemical potentials µω, µα, and diffusive

drag terms that account for energy dissipation due to relative motion between phases. In such

statements of momentum balance, the gradients of the chemical potentials are the motive forces,

balanced by the frictional forces occurring as one phase flows past another in the mixture. As

in most cartilage models, inertial terms are neglected due to dominance of intrinsic and inter-

phase energy dissipation mechanisms and the slow time scales for cartilage regeneration. Thus

the momentum equations are

−ρωTφω∇µω + fωs(u̇s − vω) +
∑
α

fωα(vα − vω) = 0, (2.23)

−Mαφ
ωcα∇µα + f sα(u̇s − vα) +

∑
γ 6=α

fγα(vγ − vα) = 0, (2.24)

where µω and µα are the chemical potentials for water and for the unbound phases, respectively.

Here, the fαβ’s are frictional coefficients per unit tissue volume between the unbound phases

α and bound phases β. As is the case in triphasic mixture theory for articular cartilage, the

diffusive drag between phases α and β are assumed to be symmetric, i.e. fαβ = fβα.

Lastly, the mixture is assumed to be saturated so that:

φs + φω = 1, where : φs =
∑
β

φβ, φα ≈ 0, (2.25)

with the porosity being φω = 1 − φs, where the solid phase volume fraction is the sum of all

volume fractions for bound phases, based on the assumption that all unbound, dissolved phases

occupy negligible volume.

2.3.4 Constitutive Equations

A key goal of the spatio-temporal PDE model extension considered in this thesis is to develop

more realistic models for cartilage regeneration in cell-seeded scaffolds. Ideally, this should be

done in coordination with experimental measurements of spatially and temporally evolving

constituent volume fractions and mechanical properties at both microscopic and macroscopic

levels. Unfortunately, to date, very limited data of this nature is available. Furthermore, the

manner in which several key material properties of engineered cartilage (e.g. Young’s modulus)
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depend on the evolving solid phase variables in system is unknown. Of particular relevance is

the analysis of the momentum balance equations (2.22)-(2.24) under quasi-static conditions,

i.e. at a time snapshot of experimental testing. When the solid phase is assumed to be linear

and isotropic, the fluid phase is considered inviscid, and the predominant energy dissipation

mechanism is fluid-solid drag, the constitutive functions in (2.22), (2.23), and (2.24) have the

assumed forms: [64]

σE = λtr(es)I + 2µes, (2.26)

µω =
p

RT
− φ

∑
α

cα, α 6= f (2.27)

µα = γαc
α, α = f (2.28)

In the equations above, es = 1/2[(∇us) + (∇us)T ] is the infinitesimal strain tensor, (λ, µ)

are the elastic Lamé coefficients, R is the universal gas constant, T is the absoulute ambient

temperature, φ is the osmotic coefficient, and γα is the activity coefficient of the solute. Note

that

λ =
Eν

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
, (2.29)

where E is the Young’s modulus and ν is the Poisson’s ratio.
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Chapter 3

Spherical Mixture Model in the

Local Environment of a Single Cell

3.1 Introduction

The current chapter focuses on specializing the spatio-temporal PDE formulation described in

Section 2.3 to model cartilage ECM regeneration in the local environment of a single cartilage

cell (chondrocyte) seeded in a scaffold material. Both the cell and the surrounding scaffold are

assumed to be spherically symmetric. The assumption of spherical symmetry for the cell and its

surrounding environment is more natural for a scaffold, which has a high porosity as compared

to mature articular cartilage.

Based on this assumption, all variables in the model depend on only one spatial coordinate

(r) and time (t), similar to the study by Dimicco et al. [10]. The resulting one-dimensional

spatio-temporal (PDE) model captures interactions among biomechanical mechanisms such

as interstitial flow, ECM or cell deformation and fluid pressurization, biophysical phenomena

like diffusive and convective transport, chemical degradation of the scaffold, and physiological

phenomena such as cell-mediated regulation of ECM biosynthesis and cross-linking. The model

assumes that unbound ECM constituents are synthesized inside the cell and transported within

both the cellular and extracellular domains by diffusion or convection within the fluid phase, in

a circumferentially uniform way. As unlinked ECM accumulates in the extracellular region, the

presence of dissolved growth factors allows the ECM to cross-link and form bound and linked

ECM while, simultaneously, the scaffold degrades. The interaction of these mechanisms within

the framework of this one-dimensional model are illustrated in Figure 3.1.
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Figure 3.1: (a) A hydrogel scaffold (blue) containing dissolved growth factors (orange) is seeded
with sparsely distributed chondrocytes (red). (b) Over time, the chondrocytes synthesize new
ECM (white). (c) In this chapter, the model describes interactions in the local environment of
a single chondrocyte where cell-synthesized unlinked ECM (green) is transformed into linked
ECM (white) using growth factors (orange).

3.2 Primary Variables

The primary variables in this system are now summarized. Biomechanical variables, include

the solid phase displacement (us), fluid phase velocity (vω), pore pressure (p) of the interstitial

fluid and the water volume fraction or porosity (φω). The evolution of bound constituents is

tracked by volume fractions φβ where the constituents β are chosen to be linked ECM (LM)

and scaffold (Sc). Similarly the unbound constituents can be represented by volume fractions

φα where the constituents α are chosen to be unlinked ECM (UM) and growth-factor (G).

However, the unbound constituents are dissolved in the interstitial fluid and assumed to occupy

negligible mixture volume. Hence, in the model formulation, their evolution is tracked using

both concentrations (cUM ) and (cG) and velocities (vUM ) and (vG). Based on the choice of

these primary variables and the relations

ρβ = φβρβT , (β = ω,LM,Sc), and ρα = φωcαMα, (α = UM,G), (3.1)

the spatio-temporal PDE model that was presented in section 2.3 can be written as:

Mass Balance

∂tφ
ω +∇ · (vωφω) = 0, (3.2)

∂tφ
LM +∇ · (u̇sφLM ) = FLM (φω, φLM , φSc, cUM , cG), (3.3)
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∂tφ
Sc +∇ · (u̇sφSc) = FSc(φω, φLM , φSc, cUM , cG), (3.4)

∂t
(
φωcUM

)
+∇ · (vUMφωcUM ) = FUM (φω, φLM , φSc, cUM , cG), (3.5)

∂t
(
φωcG

)
+∇ · (vGφωcG) = FG(φω, φLM , φSc, cUM , cG). (3.6)

Saturated Mixture

φs + φω = 1, where : φs = φLM + φSc, φUM ≈ 0 φG ≈ 0, (3.7)

Momentum Balance

−∇p+∇ · σE(us) = 0, (3.8)

−ρωTφω∇µω(p, cUM , cG) + fωs(u̇s − vω) + fω(UM)(vUM − vω) + fωG(vG − vω) = 0, (3.9)

−MUMφ
ωcUM∇µUM (cUM ) + fs(UM)(u̇s − vUM ) + fω(UM)(vω − vUM ) = 0, (3.10)

−MGφ
ωcG∇µG(cG) + f sG(u̇s − vG) + fωG(vω − vG) = 0, (3.11)

Constitutive Equations

σE(us) = λtr(es)I + 2µes,where: es = 1/2
(
(∇us) + (∇us)t

)
(3.12)

µω(p, cUM , cG) =
p

RT
− φ(cUM + cG), (3.13)

µUM (cUM ) = γUMc
UM , (3.14)

µG(cG) = γGc
G. (3.15)

The equations as formulated above are now specialized to the case of a one-dimensional spherical

model.

3.3 One Dimensional Spherical Model of a Cell Seeded in a

Porous Scaffold

In this model two regions are considered (Figure 3.2), an inner spherical region (Region 1)

that represents a cell with radius a and an outer spherical ring (Region 2) of dimension b that

represents the evolving extracellular region. The extracellular region is initially assumed to

contain only scaffold with interstitial fluid and dissolved growth factors while the cell is assumed

to contain a solid phase, interstitial fluid and dissolved solutes. Both regions are modeled as

saturated continuum mixtures.

A spherically symmetric model is developed by assuming that the kinematic variables. i.e.
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Figure 3.2: Illustration of the initial configuration for one dimensional spherical model of a
single cell seeded in a scaffold.

solid displacements and fluid and solute velocities, are exclusively radial and depend on only

the radial coordinate (r) and time (t). Hence, in a spherical coordinate system

us = (us(t, r), 0, 0), vα = (vα(t, r), 0, 0), (α = w,UM,G), (3.16)

3.3.1 Cell Region

The interaction function Fα in section 2.3, equation (2.21), where α = UM is chosen to be

FUM (ρω, ρs, ρUM ) = kUMN
∗
(
ρUM∗ − ρUM

φω

)
φω. (3.17)

By using (3.1) and the following relation involving the critical unlinked ECM density within

the surrounding interstitial fluid

ρUM∗ = cUM∗ MUM , (3.18)

we obtain

FUM (φω, φs, cUM ) = kUMN
∗ (cUM∗ − cUM

)
φω. (3.19)

Also, the constitutive law for the solid phase elastic stress σE in (3.8) is written as:

σE(us) = λctr(e
s)I + 2µce

s (3.20)

where (λc, µc) are the elastic Lamé coefficients for the cell. Governing equations for the cell

region are formulated for 0 < r < a and t > 0 as follows:
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Mass Balance:

∂tφ
ω +

(
∂

∂r
+

2

r

)
(vωφω) = 0, (3.21)

∂tφ
s +

(
∂

∂r
+

2

r

)
(u̇sφs) = 0, (3.22)

∂t(φ
ωcUM ) +

(
∂

∂r
+

2

r

)
(vUMφωcUM ) = kUMN

∗(cUM∗ − cUM )φω. (3.23)

Saturated Mixture:

φs + φω = 1, φUM ≈ 0, (3.24)

Momentum Balance:

−∂p
∂r

+ (λc + 2µc)
∂

∂r

(
∂us

∂r
+

2

r
us
)

= 0, (3.25)

−ρωTφω
∂

∂r
µω + fωs(u̇s − vω) + fω(UM)(vUM − vω) = 0, (3.26)

−MUMφ
ωcUM

∂

∂r
µUM + fs(UM)(u̇s − vUM ) + fω(UM)(vω − vUM ) = 0. (3.27)

In (3.23), kUM [(s ·mol/L)−1] is the unlinked ECM synthesis rate and N∗[(mol/L)] is a saturated

nutrient concentration, based on the assumption that diffusive transport of small solutes is fast

relative to transport mechanisms of synthesized ECM constituents. Production of unlinked ECM

is assumed to proceed until the critical unlinked ECM concentration within the surrounding

interstitial fluid cUM∗ is reached within the surrounding interstitial fluid.

3.3.2 Extracellular Region

The interaction functions F β and Fα in section 2.3 where β = LM,Sc and α = UM,G are

chosen to be

FLM (ρω, ρLM , ρSc, ρUM , ρG) = f(φs)ρUMρG, (3.28)

FSc(ρω, ρLM , ρSc, ρUM , ρG) = −kScρSc, (3.29)

FUM (ρω, ρLM , ρSc, ρUM , ρG) = −f(φs)ρUMρG, (3.30)

FG(ρω, ρLM , ρSc, ρUM , ρG) = −f(φs)ρUMρG, (3.31)

Using the relations in (3.1), these functions can be represented in terms of our primary variables

as:

FLM (φω, φLM , φSc, cUM , cG) =
f(φs)MUMMG

ρLMT
(φω)2cUMcG, (3.32)

FSc(φω, φLM , φSc, cUM , cG) = −kScφSc, (3.33)
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FUM (φω, φLM , φSc, cUM , cG) = −f(φs)MG(φω)2cUMcG, (3.34)

FG(φω, φLM , φSc, cUM , cG) = −f(φs)MUM (φω)2cUMcG. (3.35)

Also, the solid phase elastic stress in the extracellular region (scaffold region) is defined by

σE(us) = λSctr(e
s)I + 2µSce

s, (3.36)

where (λSc, µSc) are the elastic Lamé coefficients in the scaffold region and this relation for σE

is used in (3.8). Governing equations for the extracellular region are formulated for a < r < b

and t > 0 as follows:

Mass Balance:

∂tφ
ω +

(
∂

∂r
+

2

r

)
(vωφω) = 0, (3.37)

∂tφ
LM +

(
∂

∂r
+

2

r

)
(u̇sφLM ) =

f(φs)MUMMG

ρLMT
(φω)2cUMcG, (3.38)

∂tφ
Sc +

(
∂

∂r
+

2

r

)
(u̇sφSc) = −kScφSc, (3.39)

∂t(φ
ωcUM ) +

(
∂

∂r
+

2

r

)
(vUMφωcUM ) = −f(φs)MG(φω)2cUMcG, (3.40)

∂t(φ
ωcG) +∇ · (vGφωcG) = −f(φs)MUM (φω)2cUMcG, (3.41)

Saturated Mixture:

φs + φω = 1, where : φs = φLM + φSc, φUM ≈ 0, , φG ≈ 0, (3.42)

Momentum Balance:

−∂p
∂r

+ (λSc + 2µSc)
∂

∂r

(
∂us

∂r
+

2

r
us
)

= 0, (3.43)

−ρωTφω
∂

∂r
µω + fωs(u̇s − vω) + fω(UM)(vUM − vω) + fωG(vG − vω) = 0, (3.44)

−MUMφ
ωcUM

∂

∂r
µUM + fs(UM)(u̇s − vUM ) + fω(UM)(vω − vUM ) = 0, (3.45)

−MGφ
ωcG

∂

∂r
µG + fsG(u̇s − vG) + fωG(vω − vG) = 0. (3.46)

The linking rate f(φs) that appears in (3.38), (3.40), and (3.41) is modeled using as a

Gaussian distribution with respect to the solid phase volume fraction φs, similar to the ODE
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model in Section 2.2 as:

f(φs) = kULexp

(
−(φs − φs∗)2

2σ2

)
, (3.47)

where kUL[(s · kg/L)−1] is the maximum linking rate, occurring when φs = φs∗. In (3.47), the

parameters φs∗ and σ define regimes in which rates for formation of linked ECM are enhanced

or inhibited. At low solid volume fraction φs, linking is assumed to increase with increasing φs

due to cell-scaffold biocompatibility. However, as φs increases past φs∗, the linking rate begins

to slow down with decreasing average porosity φω = 1 − φs, to capture adverse effects on the

ability of unlinked ECM to form linked ECM as the pore size in the evolving tissue construct

reduces.

The term on the right hand side of (3.38) represents the interaction between the synthesized

unlinked ECM and the growth factor that facilitates assembly of the unlinked ECM into linked

ECM. Specifically, ECM linking is assumed to be regulated by both product inhibition and a

continuous set of linking rates f [(s · kg/L)−1] that depend on the time-varying average solid

volume fraction φs in the construct, as modeled in (3.47).

In (3.39), kSc[s
−1] is the scaffold degradation rate. Terms on the right hand side of (3.40)

and (3.41) describe how unlinked ECM and growth factors are utilized in the system to produce

linked ECM.

3.3.3 Initial, Boundary and Interface Conditions

To complete the model formulation we must specify initial conditions on the two-zone spherical

domain (0 < r < b), boundary conditions at r = 0, b, and interface conditions along the fixed

interface, which corresponds to the cell membrane, at r = a. Initially, in a cartilage cell-scaffold

system, the cell is seeded within a scaffold of known initial porosity that is assumed to have a

uniform concentration of growth factor. Initially, it is also assumed that the system is at rest

and free of any unlinked or linked ECM. The resulting initial conditions for 0 < r < b are:

cG(0, r) = cG0 , φSc(0, r) = φSc0 , (3.48)

p(0, r) = 0, φLM (0, r) = 0, cUM (0, r) = 0, us(0, r) = 0. (3.49)

On the cell boundary r = a, interface conditions consist of continuity relations for the solid

phase normal stress and the water and unlinked ECM fluxes relative to the solid phase:

σErr
∣∣
r=a−

= σErr
∣∣
r=a+ , (3.50)

φω(vω − u̇s)|r=a− = φω(vω − u̇s)|r=a+ , (3.51)
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φωcUM (vUM − u̇s)
∣∣
r=a−

= φωcUM (vUM − u̇s)
∣∣
r=a+ , (3.52)

The cell membrane is assumed to be impermeable to scaffold (Sc), linked ECM (LM), and

growth factor (G) present in the extracellular region, leading to the no-flux conditions

∂φSc

∂r
(t, a+) = 0,

∂φLM

∂r
(t, a+) = 0,

∂cG

∂r
(t, a+) = 0. (3.53)

Based on symmetry and physical constraints, boundary conditions at the center of the cell are

∂cUM

∂r
(t, 0) = 0,

∂φω

∂r
(t, 0) = 0, us(t, 0) = 0,

∂p

∂r
(t, 0) = 0. (3.54)

The outer boundary of the extracellular region (r = b) is assumed to lie in the far-field region

of the system. This boundary is assumed to be stress-free and no-flux conditions are prescribed

for the scaffold, linked matrix, unlinked matrix, and growth factor leading to the boundary

conditions

p(t, b) = 0, σErr(t, b) = 0, (3.55)

∂φSc

∂r
(t, b) = 0,

∂φLM

∂r
(t, b) = 0,

∂cUM

∂r
(t, b) = 0,

∂cG

∂r
(t, b) = 0, (3.56)

The resulting one-dimensional spatio-temporal cartilage regeneration model then consists of the

equations (3.21)-(3.27) and equations (3.37)-(3.46) subject to the conditions (3.48)-(3.56).

3.4 Model Reduction

The model developed in the previous section can be further reduced. Adding together (3.21)

and (3.22) and using the fact the mixture is saturated (3.42), we obtain the reduced equation

∂

∂r
(r2(φωvω + (1− φω)u̇s)) = 0. (3.57)

Integrating with respect to r gives

(φωvω + (1− φω)u̇s) = f(t)/r2, (3.58)

where f(t) is an arbitrary function. Since our solutions must be bounded for all time at r = 0,

we take f(t) = 0, giving the relation

φωvω + (1− φω)u̇s = 0 (3.59)
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which will be used in the place of (3.22). Again, using the fact that the mixture is saturated

(3.42) and the approximations φUM ≈ 0 and φG ≈ 0, (3.37) is replaced by the summation of

(3.37)-(3.39), leading to the reduced equation:(
∂

∂r
+

2

r

)
(vωφω + u̇s(1− φω)) = −kScφSc +

f(φs)MUMMG

ρLMT
(φω)2cUMcG (3.60)

The diffusive drag coefficients between phases in our mixture can be related to solute diffu-

sivities using the relations [64]

fωs =
φω

k
, fω(UM) =

RTφωcUM

Dω(UM)
, fωG =

RTφωcG

DωG
. (3.61)

In (3.61), k is the hydraulic permeability constant, Dω(UM), and DωG are the diffusivities of

unlinked ECM and growth factor, respectively, in water. Dω(UM), and DωG are assumed to be

functions of φω as defined in [17] by

Dω(UM) =
DUM (φω)2

(2− φω)2
, DωG =

DG(φω)2

(2− φω)2
, (3.62)

where DUM and DG are the diffusivity of unlinked matrix ECM and the growth factor, respec-

tively, in free solution. Similar to the approach used in [64], we assume that fs(UM) ≈ 0 and

fsG ≈ 0.

Based on the transformed relations above, the full 1D model is now re-written in a simpler

form. In doing so, we substitute µω from (3.13) in (3.26) and (3.44), µUM from (3.14) in (3.27)

and (3.45), and µG from (3.15) in (3.46). Also, substituting the diffusive drag coefficients (3.61)

in (3.26), (3.27), (3.44), (3.45), and (3.46), the equations (3.26), (3.27), (3.44), (3.45), and (3.46)

become linear equations in vω, vUM , and vG. We solve the linear system (3.26) and (3.27) for

vω, vUM and the linear system (3.44), (3.45), and (3.46) for vω, vUM , and vG. Lastly, we

substitute the relations obtained for vω, vUM , and vG into all relevant equations to eliminate

these variables. The reduced model is now summarized for each region in the following two

subsections.

3.4.1 Cell Region

In the cell region, the reduced model contains four dependent variables that are the pore

pressure (p), solid phase displacement (us), water volume fraction (φω), and unlinked ECM

concentration (cUM ). For 0 < r < a and t > 0, the reduced governing equations are:

−∂p
∂r

+ (λc + 2µc)
∂

∂r

(
∂us

∂r
+

2

r
us
)

= 0, (3.63)
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∂tφ
ω +

(
∂

∂r
+

2

r

)
[(φω − 1) u̇s] = 0, (3.64)

u̇s = k
∂p

∂r
−RTk(φ− 1)

∂cUM

∂r
, (3.65)

∂t(φ
ωcUM ) +

(
∂

∂r
+

2

r

)[
(φω − 1)cUM u̇s −Dω(UM)φω

∂cUM

∂r

]
=

kUMN
∗(cUM∗ − cUM )φω. (3.66)

3.4.2 Extracellular Region

In the extracellular region, the reduced model contains six dependent variables that are the

pore pressure (p), solid phase displacement (us), linked ECM, and scaffold volume fractions

(φLM and φSc), and unlinked ECM and growth factor concentrations (cUM and cG). We note

that the porosity φω can be determined from φLM and φSc since the mixture is saturated. For

a < r < b and t > 0, the reduced governing equations are:

−∂p
∂r

+ (λSc + 2µSc)
∂

∂r

(
∂us

∂r
+

2

r
us
)

= 0, (3.67)

(
∂

∂r
+

2

r

)[
−k∂p

∂r
+RTk(φ− 1)

(
∂cUM

∂r
+
∂cG

∂r

)
+ u̇s

]
=

− kScφSc +
f(φs)MUMMG

ρLMT
(φω)2cGcUM , (3.68)

∂tφ
LM +

(
∂

∂r
+

2

r

)
(u̇sφLM ) =

f(φs)MUMMG

ρLMT
(φω)2cGcUM , (3.69)

∂tφ
Sc +

(
∂

∂r
+

2

r

)
(u̇sφSc) = −kScφSc, (3.70)

∂t(φ
ωcUM ) +

(
∂

∂r
+

2

r

)[
−kcUM ∂p

∂r
+
(
RTk(φ− 1)cUM −Dω(UM)φω

) ∂cUM
∂r

+ φωcUM u̇s
]

+

(
∂

∂r
+

2

r

)[
RTk(φ− 1)cUM

∂cG

∂r

]
= −f(φs)MG(φω)2cGcUM , (3.71)
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∂t(φ
ωcG) +

(
∂

∂r
+

2

r

)[
−kcG∂p

∂r
+
(
RTk(φ− 1)cG −DωGφω

) ∂cG
∂r

+ φωcGu̇s
]

+

(
∂

∂r
+

2

r

)[
RTk(φ− 1)cG

∂cUM

∂r

]
= −f(φs)MG(φω)2cGcUM . (3.72)

3.4.3 Initial, Boundary, and Interface Conditions

For the four variables that are present in both the cell and extracellular regions, we have the

initial conditions for 0 < r < b:

p(0, r) = 0, cUM (0, r) = 0, us(0, r) = 0, φω(0, r) =

{
(φω0 )c 0 < r < a

(φω0 )Sc a < r < b
. (3.73)

In the extracellular region (a < r < b), initial conditions for the additional variables are:

cG(0, r) = cG0 , φLM (0, r) = 0, (3.74)

where we note that the initial solid phase volume fraction in the extracellular region is φs0 =

1− (φω0 )Sc.

At the cell center (r = 0), the boundary conditions are

∂cUM

∂r
(t, 0) = 0,

∂φω

∂r
(t, 0) = 0, us(t, 0) = 0,

∂p

∂r
(t, 0) = 0, (3.75)

and at the interface (r = a) between the cell and the extracellular region, the interface conditions

become:

(λc + 2µc)

(
∂us

∂r

)
+

2λc
r
us
∣∣∣∣
r=a−

= (λSc + 2µSc)

(
∂us

∂r

)
+

2λSc
r

us
∣∣∣∣
r=a+

, (3.76)

−k∂p
∂r

+RTk(φ− 1)
∂cUM

∂r

∣∣∣∣
r=a−

= −k∂p
∂r

+RTk(φ− 1)
∂cUM

∂r

∣∣∣∣
r=a+

, (3.77)

−kcUM ∂p

∂r
+
(
RTk(φ− 1)cUM −DUMφω

) ∂cUM
∂r

∣∣∣∣
r=a−

=

−kcUM ∂p

∂r
+
(
RTk(φ− 1)cUM −DUMφω

) ∂cUM
∂r

∣∣∣∣
r=a+

, (3.78)

∂φSc

∂r
(t, a) = 0,

∂φLM

∂r
(t, a) = 0 ,

∂cG

∂r
(t, a) = 0. (3.79)

Finally, at the outer boundary of the extracellular region (r = b), the boundary conditions
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become:

(λSc + 2µSc)

(
∂us

∂r

)
+

2λSc
r

us
∣∣∣∣
r=b

= 0, (3.80)

p(t, b) = 0,
∂φSc

∂r
(t, b) = 0,

∂φLM

∂r
(t, b) = 0,

∂cUM

∂r
(t, b) = 0,

∂cG

∂r
(t, b) = 0. (3.81)

The system of equations above consists of the simplified equations (3.63)-(3.66) and (3.67)-

(3.72) subject to the conditions (3.74)-(3.81). Prior to considering finite difference schemes for

the numerical solution of this system, the system of equations is nondimensionalized, as outlined

in the next section.

3.5 Nondimensionalization

The system is nondimensionalized to facilitate a parametric analysis of interactions among

mechanisms captured in the model and to prevent ill conditioning of the linear algebraic sys-

tem associated with the discretized governing equations. The following transformations are

introduced and all nondimensional variables are indicated using the hat notation ·̂

r̂ =
r

a
, t̂ =

D0

a2
t, ĉUM =

cUM

c0
, ĉG =

cG

c0
, ûs =

us

a
, ˆ̇us =

a

D0
u̇s, p̂ =

p

Hα
A

. (3.82)

In the equations above, a, c0, and D0 are characteristic scales for the cell radius, concentration,

and diffusivity, respectively and

Hα
A = λα + 2µα, (3.83)

where α represent the cell (c) and the scaffold (Sc). Substituting (3.82) into (3.63)-(3.81) yields

the following nondimensionalized model

3.5.1 Cell Region

For 0 < r̂ < 1 and t̂ > 0, the nondimensionalized governing equations are:

−∂p̂
∂r̂

+
∂2ûs

∂r̂2
+

2

r̂

∂ûs

∂r̂
− 2

r̂2
ûs = 0, (3.84)

∂t̂φ
ω +

(
∂

∂r̂
+

2

r̂

)[
(φω − 1) ˆ̇us

]
= 0, (3.85)

ˆ̇us = Rcg
∂p̂

∂r̂
−Kg(φ− 1)

∂ĉUM

∂r̂
, (3.86)
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∂t̂(φ
ω ĉUM ) +

(
∂

∂r̂
+

2

r̂

)[
(φω − 1)ĉUM ˆ̇us −DUM

r φω
∂ĉUM

∂r̂

]
=

k̂UMN
∗(ĉUM∗ − ĉUM )φω. (3.87)

3.5.2 Extracellular Region

For 1 < r̂ < b̂ and t̂ > 0, the nondimensionalized governing equations are:

−∂p̂
∂r̂

+
∂2ûs

∂r̂2
+

2

r̂

∂ûs

∂r̂
− 2

r̂2
ûs = 0, (3.88)

(
∂

∂r̂
+

2

r̂

)[
−RScg

∂p̂

∂r̂
+Kg(φ− 1)

(
∂ĉUM

∂r̂
+
∂ĉG

∂r̂

)
+ ˆ̇us

]
= −k̂ScφSc + k̂1(φ

ω)2ĉGĉUM ,

(3.89)

∂t̂φ
LM +

(
∂

∂r̂
+

2

r̂

)
(ˆ̇usφLM ) = k̂1(φ

ω)2ĉGĉUM , (3.90)

∂t̂φ
Sc +

(
∂

∂r̂
+

2

r̂

)
(ˆ̇usφSc) = −k̂ScφSc, (3.91)

∂t̂(φ
ω ĉUM ) +

(
∂

∂r̂
+

2

r̂

)[
−RScg ĉUM

∂p̂

∂r̂
+
(
Kg(φ− 1)ĉUM −DUM

r φω
) ∂ĉUM

∂r̂
+ φω ĉUM ˆ̇us

]
+

(
∂

∂r̂
+

2

r̂

)[
Kg(φ− 1)ĉUM

∂ĉG

∂r̂

]
= −k̂2(φω)2ĉGĉUM , (3.92)

∂t̂(φ
ω ĉG) +

(
∂

∂r̂
+

2

r̂

)[
−RScg ĉG

∂p̂

∂r̂
+
(
Kg(φ− 1)ĉG −DG

r φ
ω
) ∂ĉG
∂r̂

+ φω ĉG ˆ̇us
]

+

(
∂

∂r̂
+

2

r̂

)[
Kg(φ− 1)ĉG

∂ĉUM

∂r̂

]
= −k̂3(φω)2ĉGĉUM , (3.93)

where

Rcg =
kHc

A

D0
, RScg =

kHSc
A

D0
, Kg =

RTkc0
D0

, (3.94)

DG
r =

DωG

D0
, DUM

r =
Dω(UM)

D0
, k̂UM =

a2

D0
kUM , k̂Sc =

a2

D0
kSc, (3.95)

k̂1 =
f(φs)(MUM )2

ρLMT

c20a
2

D0
, k̂2 = f(φs)MG

c0a
2

D0
, k̂3 = f(φs)MUM

c0a
2

D0
. (3.96)
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3.5.3 Initial, Boundary, and Interface Conditions

For both the cell and extracellular regions, we have the nondimensionalized initial conditions

for 0 < r̂ < b̂:

p̂(0, r̂) = 0, ĉUM (0, r̂) = 0, ûs(0, r̂) = 0, φω(0, r̂) =

{
(φω0 )c 0 < r̂ < 1

(φω0 )Sc 1 < r̂ < b̂.
(3.97)

In the extracellular region (1 < r̂ < b̂), initial conditions for the additional variables are:

ĉG(0, r̂) =
cG0
c0
, φLM (0, r̂) = 0, (3.98)

where φs0 = 1− (φω0 )Sc in the extracellular region.

At the center of the cell (r̂ = 0), the nondimensionalized boundary conditions are

∂ĉUM

∂r̂
(t̂, 0) = 0,

∂φω

∂r̂
(t̂, 0) = 0, ûs(t̂, 0) = 0,

∂p̂

∂r̂
(t̂, 0) = 0, (3.99)

and at the interface (r̂ = 1) between the cell and the extracellular region, the nondimensionalized

interface conditions become:

(λc + 2µc)

(
∂ûs

∂r̂

)
+

2λc
r̂
ûs
∣∣∣∣
r̂=1−

= (λSc + 2µSc)

(
∂ûs

∂r̂

)
+

2λSc
r̂

ûs
∣∣∣∣
r̂=1+

, (3.100)

−Hc
A

∂p̂

∂r̂
+RTc0(φ− 1)

∂ĉUM

∂r̂

∣∣∣∣
r=1−

= −HSc
A

∂p̂

∂r̂
+RTc0(φ− 1)

∂ĉUM

∂r̂

∣∣∣∣
r=1+

, (3.101)

−Hc
Aĉ

UM ∂p̂

∂r̂
+

(
RTc0(φ− 1)ĉUM − Dω(UM)

k
φω

)
∂ĉUM

∂r̂

∣∣∣∣∣
r̂=1−

=

−HSc
A ĉUM

∂p̂

∂r̂
+

(
RTc0(φ− 1)ĉUM − Dω(UM)

k
φω

)
∂ĉUM

∂r̂

∣∣∣∣∣
r̂=1+

, (3.102)

∂φSc

∂r̂
(t̂, 1) = 0,

∂φLM

∂r̂
(t̂, 1) = 0,

∂ĉG

∂r̂
(t̂, 1) = 0. (3.103)

At the outer boundary of the extracellular region (r̂ = b̂), the nondimensionalized boundary

conditions become:

(λSc + 2µSc)

(
∂ûs

∂r̂

)
+

2λ

r̂
ûs
∣∣∣∣
r̂=b̂

= 0, (3.104)

31



p̂(t̂, b̂) = 0,
∂φSc

∂r̂
(t̂, b̂) = 0,

∂φLM

∂r̂
(t̂, b̂) = 0,

∂ĉUM

∂r̂
(t̂, b̂) = 0,

∂ĉG

∂r̂
(t̂, b̂) = 0. (3.105)
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Chapter 4

Numerical Methods and Simplified

Analytical Solution for Verification

4.1 Introduction

The finite difference method is used to formulate a numerical scheme for the approximate

solution of the nondimensionalized system (3.84)-(3.93) subject to the boundary and interface

conditions (3.97)-(3.105). The application of the resulting numerical scheme to the simulation of

cartilage ECM regeneration results is discussed in Chapter 5. The spatio-temporal PDE model

developed in the previous chapter is formulated in two regions and is comprised of several

PDEs formulated in terms of multiple unknowns, along with both boundary and interface

conditions. Furthermore, numerical stability conditions for this system of governing equations

are unknown. For these reasons, an analytical solution for verification of the numerical scheme

is also developed in this chapter and used to evaluate accuracy of both the scheme and its

implementation in MATLAB.

4.2 Numerical Scheme

We discretize the spatial and temporal domains using fixed step sizes ∆r̂ and ∆t̂, respectively.

In the cell region, the non-dimensional spatial step size is taken as ∆r̂ = 1/m, where m is

prescribed. In the extracellular region, the same spatial step size ∆r̂ is used and the location

of the outer boundary b is adjusted to align with the mesh. The temporal step size is taken to

be ∆t̂ = t̂f/n, where the final time in the simulation tf is prescribed.

To approximate the numerical solutions at every time step of the nondimensionalized equa-

tions in the cell region (3.84)-(3.87), let p̂ji = p̂(t̂j , r̂i), (ûs)ji = ûs(t̂j , r̂i), (φω)ji = φω(t̂j , r̂i),

(ĉUM )ji = ĉUM (t̂j , r̂i) for i = 1, 2, ...,m − 1, j = 1, 2, ..., n, where r̂i = i∆r̂, and t̂j = j∆t̂. Note
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that the numerical solution at the current time is at t̂ = t̂j+1 . The discretization of Equation

(3.84), which does not explicitly depend on time, is written as

−∂p̂
j+1

∂r̂
+
∂2(ûs)j+1

∂r̂2
+

2

r̂

∂(ûs)j+1

∂r̂
− 2

r̂2
(ûs)j+1 = 0. (4.1)

For (3.86) the time discretization is handled using backward Euler (implicit) time stepping so

that
(ûs)j+1 − (ûs)j

∆t̂
= Rcg

∂p̂j+1

∂r̂
−Kg(φ− 1)

∂(ĉUM )j+1

∂r̂
. (4.2)

The remaining two governing equations in the cell region (3.85) and (3.87) also depend explicitly

on time, but are nonlinear. The nonlinearity in equation (3.85) arises from a product of the

evolving porosity and the solid phase velocity. This equation is discretized to yield a linear

equation by using a backward Euler scheme for the solid phase velocity and treating the porosity

as an explicit term, i.e. evaluated at the previous time step:

(φω)j+1 − (φω)j

∆t̂
+

(
∂

∂r̂
+

2

r̂

)[(
(φω)j − 1

) (ûs)j+1 − (ûs)j

∆t̂

]
= 0. (4.3)

Similarly, (3.87) has nonlinear terms involving products of evolving porosity, solid phase velocity

and unlinked ECM concentration. These terms are also discretized to yield a linear discretized

equation. Backward Euler is used for terms involving the solid phase velocity and the gradient

of the unlinked ECM concentration, and all porosities are treated explicitly, i.e. evaluated at

the previous time step, resulting in the discrete equation:

(φω)j(ĉUM )j+1 − (φω)j(ĉUM )j

∆t̂

+

(
∂

∂r̂
+

2

r̂

)[
((φω)j − 1)(ĉUM )j

(ûs)j+1 − (ûs)j

∆t̂
− (DUM

r )j(φω)j
∂(ĉUM )j+1

∂r̂

]
= k̂UMN

∗(ĉUM∗ − (ĉUM )j+1)(φω)j . (4.4)

Similarly, the techniques used above for both time discretization and treatment of nonlinear

terms are applied to discretize the remaining equations (3.88) through (3.93) resulting in the

following numerical scheme scheme for j = 1, 2, ..., n at points outside of the cell, i.e. i =

m+ 1,m+ 2, ...,M (the spatial discretization scheme is addressed at the end of this section):

−∂p̂
j+1

∂r̂
+
∂2(ûs)j+1

∂r̂2
+

2

r̂

∂(ûs)j+1

∂r̂
− 2

r̂2
(ûs)j+1 = 0, (4.5)
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(
∂

∂r̂
+

2

r̂

)[
−RScg

∂p̂j+1

∂r̂
+Kg(φ− 1)

(
∂(ĉUM )j+1

∂r̂
+
∂(ĉG)j+1

∂r̂

)
+

(ûs)j+1 − (ûs)j

∆t̂

]
= −k̂Sc(φSc)j+1 + k̂1((φ

ω)j)2(ĉG)j(ĉUM )j+1, (4.6)

(φLM )j+1 − (φLM )j

∆t̂
+

(
∂

∂r̂
+

2

r̂

)(
(φLM )j

(ûs)j+1 − (ûs)j

∆t̂

)
= k̂1((φ

ω)j)2(ĉG)j(ĉUM )j+1, (4.7)

(φSc)j+1 − (φSc)j

∆t̂
+

(
∂

∂r̂
+

2

r̂

)(
(φSc)j

(ûs)j+1 − (ûs)j

∆t̂

)
= −k̂Sc(φSc)j+1, (4.8)

(φω)j(ĉUM )j+1 − (φω)j(ĉUM )j

∆t̂

+

(
∂

∂r̂
+

2

r̂

)[
−RScg (ĉUM )j

∂p̂j+1

∂r̂
+
(
Kg(φ− 1)(ĉUM )j −DUM

r (φω)j
) ∂(ĉUM )j+1

∂r̂

]
+

(
∂

∂r̂
+

2

r̂

)[
(φω)j(ĉUM )j

(ûs)j+1 − (ûs)j

∆t̂
+Kg(φ− 1)(ĉUM )j

∂(ĉG)j+1

∂r̂

]
= −k̂2((φω)j)2(ĉG)j(ĉUM )j+1, (4.9)

(φω)j(ĉG)j+1 − (φω)j(ĉG)j

∆t̂

+

(
∂

∂r̂
+

2

r̂

)[
−RScg (ĉG)j

∂p̂j+1

∂r̂
+
(
Kg(φ− 1)(ĉG)j −DG

r (φω)j
) ∂(ĉG)j+1

∂r̂

]
+

(
∂

∂r̂
+

2

r̂

)[
(φω)j(ĉG)j

(ûs)j+1 − (ûs)j

∆t̂
+Kg(φ− 1)(ĉG)j

∂(ĉUM )j+1

∂r̂

]
= −k̂3((φω)j)2(ĉUM )j(ĉG)j+1. (4.10)

Time discretization of the boundary conditions at r̂ = 0 are handed as:

∂(ĉUM )j+1

∂r̂
(t̂, 0) = 0,

∂(φω)j+1

∂r̂
(t̂, 0) = 0, (ûs)j+1(t̂, 0) = 0,

∂(p̂)j+1

∂r̂
(t̂, 0) = 0, (4.11)

and time discretization of the interface conditions at r̂ = 1 are:

(λc + 2µc)

(
∂(ûs)j+1

∂r̂

)
+

2λc
r

(ûs)j+1

∣∣∣∣
r=1−

=

(λSc + 2µSc)

(
∂(ûs)j+1

∂r̂

)
+

2λSc
r

(ûs)j+1

∣∣∣∣
r̂=1+

, (4.12)
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−Hc
A

∂(p̂)j+1

∂r̂
+RTc0(φ− 1)

∂(ĉUM )j+1

∂r̂

∣∣∣∣
r̂=1−

=

−HSc
A

∂(p̂)j+1

∂r̂
+RTc0(φ− 1)

∂(ĉUM )j+1

∂r̂

∣∣∣∣
r̂=1+

, (4.13)

−Hc
A(ĉUM )j

∂(p̂)j+1

∂r̂
+

(
RTc0(φ− 1)(ĉUM )j − (Dω(UM))j

k
(φω)j

)
∂(ĉUM )j+1

∂r̂

∣∣∣∣∣
r̂=1−

=

−HSc
A (cUM )j

∂(p̂)j+1

∂r̂
+

(
RTc0(φ− 1)(ĉUM )j − (Dω(UM))j

k
(φω)j

)
∂(ĉUM )j+1

∂r̂

∣∣∣∣∣
r̂=1+

, (4.14)

∂(φSc)j+1

∂r̂
(t̂, 1) = 0,

∂(φLM )j+1

∂r̂
(t̂, 1) = 0,

∂(ĉG)j+1

∂r̂
(t̂, 1) = 0. (4.15)

At the outer boundary of the extracellular region (r̂ = b̂), the discretized boundary condi-

tions become:

(λSc + 2µSc)

(
∂(ûs)j+1

∂r̂

)
+

2λSc
r̂

(ûs)j+1

∣∣∣∣
r̂=b̂

= 0, (4.16)

(p̂)j+1(t̂, b̂) = 0,
∂(φSc)j+1

∂r̂
(t̂, b̂) = 0,

∂(φLM )j+1

∂r
(t̂, b̂) = 0, (4.17)

∂(ĉUM )j+1

∂r̂
(t̂, b̂) = 0,

∂(ĉG)j+1

∂r
(t̂, b̂) = 0. (4.18)

It should be noted that, for simplicity of the presentation above, finite difference approxima-

tions for the spatial derivatives were not shown. All spatial derivatives above were discretized

using a second order difference (central differences) for the second order derivatives and a first-

order scheme for all first derivatives.

4.3 Simplified Model for Verification

In this section the full non-dimensional model is reduced to a simplified model that admits an

analytical solution. This analytical solution is applied to verify the accuracy and implementation

of the numerical scheme that was formulated in the previous section, with an emphasis on

temporal aspects of the problem.

For the cell region, both the solid displacement ûs(t̂, r̂) and pore pressure p̂(t̂, r̂) are assumed

to be zero. The unlinked matrix concentration is assumed to depend only on time, so that

∂ĉUM/∂r̂ = 0. Based on these assumptions, the equations (3.84) and (3.86) are automatically

satisfied. The remaining equations to be solved in the cell region are the reduced versions of
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(3.85) and (3.87) which are
∂φω

∂t̂
= 0, (4.19)

∂ĉUM

∂t̂
= k̂UMN

∗(ĉUM∗ − ĉUM ). (4.20)

For the extra-cellular region, both solid displacement and pore pressure are assumed to be

zero, i.e. ûs(t̂, r̂) = 0, and p̂(t̂, r̂) = 0. It is also assumed that the growth factor concentration

(ĉG) is constant, and that the scaffold does not degrade, i.e. kSc = 0. Lastly, we assume that

linked matrix does not form from unlinked matrix by taking kUL = 0 and the osmotic coefficient

φ is taken to be 1. These assumptions lead to satisfaction of (3.88), (3.89), and (3.93) and the

remaining equations (3.90), (3.91), and (3.92) reduce to:

∂φLM

∂t̂
= 0 (4.21)

∂φSc

∂t̂
= 0 (4.22)

∂ĉUM

∂t̂
+

(
∂

∂r̂
+

2

r̂

)[
−DUM

r

∂ĉUM

∂r̂

]
= 0 (4.23)

The initial conditions and boundary conditions at r̂ = 0 and r̂ = 1 are based on those for the

non-dimensionlized model in section 3.5. The interface conditions (3.100), (3.101), and (3.103)

are automatically satisfied, while the interface condition (3.102) mathematically reduces to:

∂ĉUM

∂r̂

∣∣∣∣
r̂=1+

= 0. (4.24)

However, since unlinked matrix concentration in the cell region is assumed to depend only

on time, the condition for flux continuity across the interface is replaced by a condition for

continuity of concentration that supplies cell-synthesized unlinked matrix to the extracellular

region via the modified interface condition:

ĉUM
∣∣
r̂=1+ = ĉUM

∣∣
r̂=1−

. (4.25)

Lastly, in the reduced model, the outer boundary of the extracellular region b̂ is chosen to

have the dimensionless value 2. The full set of governing equations for the reduced model is

summarized below. 
∂φω

∂t̂
= 0 t̂ ≥ 0, 0 ≤ r̂ ≤ 1

φω(0, r̂) = (φω0 )c 0 ≤ r̂ ≤ 1
(4.26)

37




∂(ĉUM )

∂t̂
= k̂UMN

∗(ĉUM∗ − ĉUM ) t̂ ≥ 0, 0 ≤ r̂ ≤ 1

ĉUM (0, r̂) = 0 0 ≤ r̂ ≤ 1
(4.27)


∂φLM

∂t̂
= 0 t̂ ≥ 0, 1 ≤ r̂ ≤ 2

φLM (0, r̂) = 0 1 ≤ r̂ ≤ 2
(4.28)


∂φSc

∂t̂
= 0 t̂ ≥ 0, 1 ≤ r̂ ≤ 2

φSc(0, r̂) = φSc0 1 ≤ r̂ ≤ 2
(4.29)


∂ĉUM

∂t̂
+

(
∂

∂r̂
+

2

r̂

)[
−DUM

r

∂ĉUM

∂r̂

]
= 0 t̂ ≥ 0, 1 ≤ r̂ ≤ 2

ĉUM (0, r̂) = 0 1 ≤ r̂ ≤ 2

ĉUM |r̂=1+= ĉUM |r̂=1− ,
∂ĉUM

∂r̂
(t̂, 2) = 0 t̂ ≥ 0

(4.30)

We observe that the reduced model effectively treats the cell region solution as a reaction,

i.e. variables are independent of r̂, that interacts with a diffusion model for unlinked matrix

concentration in the extracellular region.

4.4 Analytical Solution of The Simplified Model

Equations (4.26), (4.27), (4.28), and (4.29) are ODEs that admit the following analytical solu-

tions:

φω(t̂, r̂) = 1− φs0, ĉUM (t̂, r̂) = ĉUM∗ − ĉUM∗ e−N
∗kUM t̂, φLM (t̂, r̂) = 0, φSc(t̂, r̂) = φSc0 , (4.31)

respectively.

To find the analytical solution of (4.30) the method of separation of variables method was

used. For clarity of the presentation, the “hat” notation is dropped for the remainder of this

section.

Assume that

cUM (t, r) =
u(t, r)

r
(4.32)
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Substituting (4.32) into (4.30) we obtain
∂u

∂t
−DUM

r

∂2u

∂r2
= 0 t ≥ 0, 1 ≤ r ≤ 2

u(0, r) = 0 1 ≤ r ≤ 2

u(t, 1) = cUM∗ − cUM∗ e−N
∗kUM t, 2

∂u

∂r
(t, 2)− u(t, 2) = 0 t ≥ 0

(4.33)

(4.33) is a diffusion equation with nonhomogeneous boundary conditions. It can be transformed

into a diffusion equation with homogeneous boundary conditions via the change of variable

u(t, r) = v(t, r) + (cUM∗ − cUM∗ e−N
∗kUM t)r. (4.34)

Substituting (4.34) into (4.33) we obtain
∂v

∂t
−DUM

r

∂2v

∂r2
= −(cUM∗ N∗kUMe

−N∗kUM t)r t ≥ 0, 1 ≤ r ≤ 2

v(0, r) = 0 1 ≤ r ≤ 2

v(t, 1) = 0, 2
∂v

∂r
(t, 2)− v(t, 2) = 0 t ≥ 0

(4.35)

Note that the PDE above is a nonhomogeneous diffusion equation but now has homogeneous

boundary conditions. The solution is assumed to be of the form v(t, r) = R(r)T (t). By ignoring

the source term in (4.35), we first find the eigenvalues and eigenfunctions of R(r) by solving

the problem {
R′′ + αR = 0 1 ≤ r ≤ 2

R(1) = 0, 2R′(2)−R(2) = 0.
(4.36)

When α < 0, we write α = −λ2 and the equation for R becomes

R′′ − λ2R = 0,

which has general solution

R(r) = c1 cosh(λr) + c2 sinh(λr).

The condition R(1) = 0 gives

c1 = − sinh(λ)

cosh(λ)
c2.

The value of c1 resulting from enforcing the boundary condition 2R′(2)−R(2) = 0 above gives

c2[− sinh(λ)(2λ sinh(2λ)− cosh(2λ)) + cosh(λ)(2λ cosh(2λ)− sinh(2λ))] = 0.
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If c2 6= 0, it can be readily shown (e.g. using MAPLE) that the term inside the bracket is never

zero for λ < 0. Thus, c2 = 0 and the case α < 0 yields only trivial solutions.

Similarly in the case α = 0, the differential equation reduces to R′′ = 0 with general solution

R(r) = c1r + c2. The only way to satisfy the boundary conditions on R is to take c1 = c2 = 0

which again leads to the trivial solution R = 0. In the only remaining case we have

α = λ2 > 0.

The corresponding boundary value problem in R is{
R′′ + λ2R = 0 1 ≤ r ≤ 2

R(1) = 0, 2R′(2)−R(2) = 0.

The general solution of the differential equation is

R(r) = c1 sin(λr) + c2 cos(λr).

The condition R(1) = 0 gives

c1 = −cos(λ)

sin(λ)
c2

Substituting this expression for c1 into the second boundary condition 2R′(2)−R(2) = 0 gives

c2 [− cos(λ)(2λ cos(2λ)− sin(2λ))− sin(λ)(2λ sin(2λ)− cos(2λ))] = 0.

Assuming that c2 6= 0, we obtain the condition

− cos(λ)(2λ cos(2λ)− sin(2λ))− sin(λ)(2λ sin(2λ)− cos(2λ)) = 0.

This equation has an infinite number of positive solutions λ1, λ2, ..... While we do not have

explicit formulas for the λn, approximate numerical values of the λn’s can be determined using

MAPLE. Assuming that these eigenvalues can be computed, the solutions R(r) of (4.36) are

eigenfunctions that can be written as:

Rn(r) = sin(λnr)− tan(λn) cos(λnr), n = 1, 2, . . . ,

and the solution of (4.35) will be of the form

v(t, r) =
∞∑
n=1

(sin(λnr)− tan(λn) cos(λnr))Tn(t). (4.37)
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Substituting (4.37) into (4.35) yields

∞∑
n=1

(sin(λnr)− tan(λn) cos(λnr))T
′
n(t)−

DUM
r

∞∑
n=1

(−λ2n sin(λnr) + λ2n tan(λn) cos(λnr))Tn(t) = −(cUM∗ N∗kUMe
−N∗kUM t)r. (4.38)

Assuming that the right hand side of (4.35) has the same series form as v(t, r), we obtain

−(ĉUM∗ N∗kUMe
−N∗kUM t)r =

∞∑
n=1

(sin(λnr)− tan(λn) cos(λnr))Fn(t). (4.39)

This implies that

Fn(t) = Kne
−N∗kUM t, (4.40)

where Kn is a constant which can be written as

Kn =

2∫
1

−(cUM∗ N∗kUM )r(sin(λnr)− tan(λn) cos(λnr))dr

2∫
1

(sin(λnr)− tan(λn) cos(λnr))2dr

. (4.41)

Substituting (4.39) into (4.38) gives{
T ′n(t) +DUM

r λ2nTn(t) = Fn(t) t ≥ 0

Tn(0) = 0,
(4.42)

which is first a order ordinary differential equation. It can be solved for every positive integer

n ≥ 1 and the solution is

Tn(t) =
Kn(e−D

UM
r λ2

nt − e−N∗kUM t)

DUM
r λ2n −N∗kUM

. (4.43)

Then v(t, r), the solution of (4.35), can be written by substituting (4.43) into (4.37) to

obtain

v(t, r) =
∞∑
n=1

(sin(λnr)− tan(λn) cos(λnr))
Kn(e−D

UM
r λ2

nt − e−N∗kUM t)

DUM
r λ2n −N∗kUM

. (4.44)
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After finding the v(t, r) we can write u(t, r) as

u(t, r) = (cUM∗ − cUM∗ e−N
∗kUM t)r+
∞∑
n=1

(sin(λnr)− tan(λn) cos(λnr))
Kn(e−D

UM
r λ2

nt − e−N∗kUM t)

DUM
r λ2n −N∗kUM

. (4.45)

Lastly, the solution of (4.35) is thus obtained as:

cUM (t, r) = (cUM∗ − cUM∗ e−N
∗kUM t)+

∞∑
n=1

(sin(λnr)− tan(λn) cos(λnr))
Kn(e−D

UM
r λ2

nt − e−N∗kUM t)

(DUM
r λ2n −N∗kUM )r

(4.46)

4.5 Verification of Numerical Scheme Using The Simplified Model

(a) (b)

Figure 4.1: Evaluation of the error between the numerical and simplified analytical solutions:
(a) Absolute value of the error as the mesh is refined based on the choices in Table 4.1 shown at
the time t=23.6 days, (b) a log-log plot of the infinity norm of the error between the numerical
and simplified analytical solutions at the time t=23.6 days demonstrating a first-order rate of
convergence.

We used the simplified model developed in the previous sections to verify accuracy and

implementation of the temporal aspects of the numerical method. The MATLAB code for
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Table 4.1: Mesh sizes and infinity-norm error between the numerical and simplified analytical
solutions at the time t = 23.6 days.

m color ||E||∞
50 Black 0.0029

100 Red 0.0016

200 Blue 8.6923x10−4

300 Green 5.9061x10−4

400 Yellow 4.4716x10−4

500 Magenta 3.5976x10−4

600 Cyan 3.0092x10−4

700 Black 2.5863x10−4

800 Red 2.2675x10−4

the full model, that was implemented based on the nondimensionlized model in Section 3.5,

was reduced to simulate the simplified model developed in this chapter. Note that the interface

conditions in the nondimensionlized model given by (3.100)-(3.103) were replaced by a simplified

boundary condition, as outlined in section 4.3, due to the fact the simplified model in the

cell region was independent of r̂. All model parameters that appear in (4.27) and (4.30) were

assumed to have the same values that are used in the baseline case presented in the next chapter

(see Section 5.2 and Tables 5.1-5.3).

Let m and n to be the number of steps with respect to space (r̂) and time (t̂). For the

simplified model, the choice n = 6m yielded simulations that all exhibited numerical conver-

gence as the mesh was refined. Let ĉUM and ˜̂cUM to be the analytic solution and the numerical

solution respectively. Define

E =
∣∣∣ĉUM − ˜̂cUM

∣∣∣
and

||E||∞ = max
0≤r̂≤1

∣∣∣ĉUM − ˜̂cUM
∣∣∣ .

To illustrate numerical convergence rates of the method, E was found locally when t̂ = 2.5773x107

(i.e. t = 23.6 days) and is plotted versus r̂ with n = 6m in Figure 4.1a based on the mesh sizes

specified in Table 4.1 The numerical discretization in time, developed in section 4.1, exhibits

numerical convergence that is first order in time as seen in Figure 4.1b.
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Chapter 5

Parametric Analysis and Results

5.1 Introduction

In this chapter, the spatio-temporal PDE continuum mixture model for cartilage extracellular

matrix regeneration in the local environment of a single cell is applied in a parametric analysis.

The investigation focuses on the effects of evolving scaffold porosity on accumulation of linked

ECM in the (extracellular) region surrounding the cell. The associated governing equations,

along with the interface and boundary conditions developed in Chapter 3, are solved using

the numerical discretization scheme outlined in Sec. 4.2. Results for evolution of the primary

variables in the model are illustrated in terms of a baseline set of parameter values. Several

of these values are fixed based on known physical or chemical properties of components of

the cell-scaffold system. Other parameter values that govern the physiological interactions of

system components are calibrated to yield ECM regeneration times that are on realistic scales

for tissue engineered articular cartilage. e.g. from a few weeks to several months.

5.2 Baseline Model Parameters

Parameters in the spatio-teporal PDE model described in Chapter 3 can be separated into three

main categories: biophysical parameters, scaffold design parameters, and physiological param-

eters. Although there is a fourth group which are geometric parameters, in a one-dimensional

model the primary geometric parameter is the cell radius whose value is well known for chon-

drocytes, e.g. a = 5x10−6m is a typical radius of a chondrocyte [28]. In the non-dimensional

model (Sec. 3.5), this cell radius is used in setting r̂ = 1 as the location of the cell-scaffold in-

terface. Based on this choice, the (far-field) outer boundary for the extracellular region is taken

as r̂ = 2. Also, there are several constants that have fixed values independent of interactions

within the cell-scaffold system. These are the universal gas constant (R = 8.31432 J/mol ·K),
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the absolute ambient temperature taken as T = 298 K and the osmotic coefficient (φ = 1) for

ideal solutions [41]. In addition, the nutrient concentration required to sustain biosynthesis in

living cells is fixed at a value of N∗ = 0.1 mol/L [19]. Note that diffusion of these nutrients

was not modeled explicitly since these solutes are small relative to unlinked ECM and growth

factors and, as a result, their diffusion times are relatively fast.

5.2.1 Biophysical Parameters

In our model, biophysical parameters refer to parameters that govern passive material properties

of the system constituents and diffusive transport times. In referring to diffusivities of unbound

solutes, it is important to note the distinction between values in free solution versus those in

a porous mixture. Recall that the parameters DUM and DG denote the diffusivity of unlinked

ECM and the growth factor, respectively, in free solution. D0 is the reference diffusivity used to

nondimensionalize the other diffusivity parameters in (3.82) and was chosen to be the same as

DUM . In our system, we assume that the diffusivity of the growth factor (DG) is significantly

less than the diffusivity of the unlinked ECM (DUM ) since diffusivity increases as particle size

decreases, and the molecular weight of unlinked ECM (MUM ) is assumed to be significantly less

than that of the growth factor (MG). The choice D0 = DUM was made since unlinked ECM

is the smallest diffusing solute modeled in our system and, thus, the characteristic times for

slower phenomena such as diffusion of larger solutes, scaffold degradation and ECM linking will

occur on a larger time scale than O(1). Specific values for each of the diffusivities were chosen

based on values reported by Mauck et al. ([35],Table 1).

The elastic Lamé coefficients of the solid phase (λ, µ) were related to the Young’s mod-

ulus (E) and the Poisson’s ratio (ν) in equation (2.29). For the cell, the values (Ec, νc) =

(1000 Pa, 0.35) were chosen. The value of the aggregate modulus Hc
A = λc + 2µc can also be

determined using equation (2.29) and (3.83). In the extracellular region, which is initially scaf-

fold, the values (ESc, νSc) = (10Ec, 0.1) were chosen. Lastly, the true density of linked matrix

(ρLMT ) was fixed at a value of 1.3x103 kg/L [48]. The choice of all biophysical parameter values

in the baseline case is summarized in Table 5.1.

5.2.2 Scaffold Design Parameters

The scaffold design parameters include the initial scaffold solid volume fraction (φSc0 ) as well as

the hydraulic permeability (k). The initial scaffold porosity was chosen to be 98% corresponding

to a value of φSc0 = 0.02 [19]. In the parametric analysis conducted later in this chapter, the

effects of varying the value of φSc0 on the spatial-temporal accumulation of linked ECM in the

region around the cell is considered. The hydraulic permeability constant was chosen to have

a value k = 51.4x10−15 m4/N · s, based on [35] (Table 2). The scaffold design parameter values
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Table 5.1: Biophysical parameter values that are used to analyze the spatio-temporal PDE
model in the baseline case.

Parameter Description Value Ref.

DUM Diffusivity of unlinked matrix in free solution 3.16x10−10 (m2/s) [17],[35]

DG Diffusivity of the growth factor in free solution 6.97x10−11 (m2/s) [17],[35]

D0 Reference diffusivity DUM [35]

MUM Molecular weight of unlinked matrix 20 (kg/mol) [35]

MG Molecular weight of growth factor 67 (kg/mol) [35]

(Ec, νc) Young’s modulus and Poisson’s ratio for the cell (1000 Pa, 0.35)

λc First elastic Lamé coefficient for the cell
Ecνc

(1 + νc)(1− 2νc)

µc Second elastic Lamé coefficient (shear modulus)
for the cell

Ec
2(1 + νc)

(ESc, νSc) Young’s modulus and Poisson’s ratio for the
scaffold (extracellular region)

(10Ec, 0.1)

λSc First elastic Lamé coefficient for the scaffold
(extracellular region)

EScνSc
(1 + νSc)(1− 2νSc)

µSc Second elastic Lamé coefficient (shear modulus)
for the scaffold (extracellular region)

ESc
2(1 + νSc)

ρLMT True density of linked matrix 1.3x103 (kg/L) [48]
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Table 5.2: Parameter values for the scaffold that are used to analyze the spatio-temporal PDE
model in the baseline case.

Parameter Description Value Ref.

φSc0 Initial scaffold solid volume fraction 0.02 [19]

k Hydraulic permeability 51.4x10−15 (m4/N · s) [35]

for the baseline case are summarized in Table 5.2.

5.2.3 Physiological Parameters

We refer to physiological parameters in our model as those that govern phenomena regulated by

the biological cells in a tissue engineered construct. The first important parameter is the critical

unlinked matrix concentration ĉUM∗ = cUM∗ /c0. This parameter is based on the phenomena of

product inhibition in tissue engineered cartilage [8]. In this context, product inhibition refers

to the observation that the rate of cell-mediated biosynthesis of ECM components slows down

as the total amount produced increases. The specific formulation in our model is based on the

hypothesis that the cell detects the concentration of unlinked matrix in the fluid phase within

the cell. The choice of ĉUM∗ was made by taking the critical unlinked matrix density (ρ̄UM∗ ) in

(3.18) and converting it to a concentration in moles of solute per volume of solvent, using the

molecular weight of unlinked matrix (MUM ), where the solvent is the fluid phase of the mixture.

Note that the characteristic unlinked matrix concentration used in our nondimensionalization

(3.82) was taken to be c0 = 0.1 M [64].

As was the case for the temporal (ODE) model, the rates for assembly and cross-linking of

unlinked matrix dissolved in the fluid phase into bound, linked ECM was modeled as a Gaussian

function of the solid phase volume fraction or, equivalently, the evolving porosity in the mixture.

Specifically, the parameters φs∗ and σ in (3.47) determine the mean value of the porosity (at

which matrix assembly rates are a maximum) and the standard deviation of these rates in a

normal distribution, respectively. The values of these parameters were chosen as φs∗ = 0.04 and

σ = 0.01 for the baseline case. (It is noted that mature, healthy cartilage has a solid phase

volume fraction that is roughly 20%.)

Lastly, the scaffold degradation rate (kSc), the cell-mediated rate for unlinked ECM synthesis

(kUM ), and the maximum linking rate (kUL (s · kg/L)−1) in the ECM linking model (3.47) need

to be specified. Like the parameters described in the previous paragraph, these values depend

on physiological interactions between the cells and biological macromolecules or biocompatible

polymers in the system. Their values are difficult to measure directly via experiments but
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Table 5.3: Physiological parameter values that are used to analyze the spatio-temporal PDE
model in the baseline case.

Parameter Description Value Ref.

cUM∗ Critical unlinked matrix concentration 1/MUM (mol/L) [19]

c0 Basic scale of concentration 0.1 M [64]

(φs∗, σ) Gaussian linking model parameters defining
regimes in which rates for formation of linked
ECM are enhanced or inhibited

(0.04, 0.01)

kSc Scaffold degradation rate 3.858x10−7 (s)−1 [19]

kUM Unlinked ECM synthesis rate 8.102x10−4 (s ·mol/L)−1 [19]

kUL Maximum linking rate 100kUM (s · kg/L)−1

could, ultimately, be obtained using parameter estimation based on analysis of experimental

data for tissue engineered constructs. The choice of values for these parameters was based on an

assumption that the processes they model occur on slower time scales relative to diffusive time

scales for unbound solutes in the model. The maximum linking rate (kUL) was assumed to be the

fastest of all these rates and chosen to be (100 ∗ kUM ) where kUM = 8.1019x10−4 (s ·mol/L)−1.

The scaffold degradation rate (kSc) was chosen to be 3.858x10−7 (s)−1 and both kUM and kSc

values are taken from [19]. Note that the nondimensional formulas for (kSc) and (kUM ) are

given by (3.95). Dimensional values for all physiological parameters in the baseline case are

summarized in Table 5.3.

5.3 Mesh Refinement Study

Prior to conducting a parametric analysis, the numerical solution for the baseline case was

evaluated for numerical convergence in a mesh refinement study. The mesh was systematically

refined with respect to r̂ by taking the associated number of spatial points m to be 50, 100,

200, 400, and 800. In each case, the number of time steps was fixed at n = 6400. The numerical

solution on the finest mesh, i.e. m = 800, was chosen as the “true” solution with respect to

which error norms were computed. Specifically, the average L2 norm error was calculated for

the numerical solutions in the cases m = 50, 100, 200, and 400, i.e. relative to the finer-scale

solution at m = 800. The results are summurized in Table 5.4. The log-log plot of the average

L2 error is observed to exhibit numerical convergence that is roughly second order in space

(i.e. with respect to r̂).
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Table 5.4: Mesh sizes and average L2 error between the fine-scale numerical solution atm = 800
and the coarser numerical solutions at m = 50, 100, 200, and 400, where n = 6400.

(m,m) (L2 error)/mn

(800,50) 2.4532x10−6

(800,100) 8.1982x10−7

(800,200) 2.4997x10−7

(800,400) 5.9080x10−8

Figure 5.1: A log-log plot of the average L2 error between the numerical solution at m = 800
and the numerical solutions at m = 50, 100, 200, and 400 demonstrating a roughly second order
rate of convergence.
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5.4 Simulations for the Baseline Case

Based on the mesh refinement study described in the previous section, the value m = 200 was

chosen for all simulations shown in this chapter. The parameter values summarized in Tables

5.1, 5.2, and 5.3 were used to define the baseline case for the model (3.84)-(3.93) subject to

the boundary and interface conditions (3.97)-(3.105). The numerical solution of these governing

equations was carried out using the finite difference scheme that was detailed in Section 4.2.

Spatio-temporal results for the baseline case are shown for all primary quantities of interest

in the model. Specifically, these are the Gaussian model for ECM linking f(φs) (Figure 5.2),

linked matrix volume fraction φLM (Figure 5.6), scaffold volume fraction (Figure 5.5), total

solid phase volume fraction φs (Figure 5.3), porosity φw = 1−φs (Figure 5.4), unlinked matrix

concentration ĉUM (Figure 5.7), and the growth factor concentration ĉG (Figure 5.8).

Figure 5.2a illustrates the relation for dependence of the Gaussian model of ECM linking

rate (3.47) on the solid volume fraction φs. Its variation with spatial location in the extracellular

region (r̂ > 1) is shown in Figure 5.2b, where the arrow indicates the direction of increasing

r̂. Recall that the Gaussian model was chosen to capture phenomena of low linking rates in

the case of very low density scaffold polymer structure and the case of relatively high density

polymer structure that may inhibit assembly and cross-linking of ECM constituents. In the

baseline case, we observe that the peak rate for formation and accumulation of linked ECM

occurs around t̂ = 3x107 (i.e t = 27.5 days) at points closest to the cell. After this time, the

Gaussian profile exhibits a front-like propagation away from the cell into the extracellular region

as accumulation of ECM increases the value of the solid phase volume fraction φs behind the

front.

The spatial and temporal evolution of the solid volume fraction (φs) and the mixture porosity

(φw = 1 − φs) are shown in Figure 5.3 and Figure 5.4, respectively. Spatial profiles indicate

that the extracellular porosity, which is initially uniform, begins to decrease rapidly in regions

closer to the cell boundary (Figure 5.4a). However, at later times, as the Gaussian front in the

linking model advances outward, the porosity returns to being spatially uniform as it decreases

to a steady-state value near 92%. Temporal profiles shown in Figure 5.4b demonstrate that the

porosity in extracellular regions closest to the cell drops rapidly relative to those further away

from the cell boundary, where the arrow indicates the direction of increasing r̂. For the solid

volume fraction (φs), spatial (Figure 5.3a) and temporal (Figure 5.3b) evolution profiles exhibit

an opposite response due to the relation with porosity φs = 1 − φw. It can be observed that

the dimensionless time of t̂ ≈ 2 at which the first Gaussian peak is achieved for the linking rate

(and closest to the cell boundary) (Figure 5.2b) corresponds roughly to the time at which the

temporal profiles of φs begin to exhibit a dependence on spatial location r̂ (Figure 5.3b). The

spatial and temporal evolution of the volume fraction of scaffold (φSc) are shown in Figure 5.5.
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(a) (b)

Figure 5.2: Simulations of the Gaussian model for the ECM linking rate f(φs) in the baseline
case: (a) plot of f(φs) versus the solid phase volume fraction to φs, (b) plot of the spatio-
temporal evolution of f(φs) where the final time corresponds to a value of 120 days.

(a) (b)

Figure 5.3: Simulations of the mixture solid volume fraction φs in the baseline case: (a) plot
of spatial profiles of φs at time intervals of six days. Note that the cell boundary is located at
r̂ = 1 and the outer boundary of the scaffold is located at r̂ = 2, (b) plot of temporal evolution
of φs where the final time corresponds to a value of 120 days.
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(a) (b)

Figure 5.4: Simulations of the mixture porosity φw in the baseline case: (a) plot of spatial
profiles of φw at time intervals of six days. Note that the cell boundary is located at r̂ = 1 and
the outer boundary of the scaffold is located at r̂ = 2, (b) plot of temporal evolution of φw

where the final time corresponds to a value of 120 days.

(a) (b)

Figure 5.5: Simulations of the scaffold volume fraction φSc in the baseline case: (a) plot of
spatial profiles of φSc at time intervals of six days. Note that the cell boundary is located at
r̂ = 1 and the outer boundary of the scaffold is located at r̂ = 2, (b) plot of temporal evolution
of φSc where the final time corresponds to a value of 120 days.
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(a) (b)

Figure 5.6: Simulations of the linked matrix volume fraction φLM in the baseline case: (a) plot
of spatial profiles of φLM at time intervals of six days. Note that the cell boundary is located at
r̂ = 1 and the outer boundary of the scaffold is located at r̂ = 2, (b) plot of temporal evolution
of φLM where the final time corresponds to a value of 120 days.

(a) (b)

Figure 5.7: Simulations of the unlinked matrix concentration ĉUM in the baseline case: (a) plot
of spatial profiles of ĉUM at time intervals of six days. Note that the cell boundary is located at
r̂ = 1 and the outer boundary of the scaffold is located at r̂ = 2, (b) plot of temporal evolution
of ĉUM where the final time corresponds to a value of 120 days.
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(a) (b)

Figure 5.8: Simulations of the growth factor concentration ĉG in the baseline case: (a) plot of
spatial profiles of ĉG at time intervals of six days. Note that the cell boundary is located at
r̂ = 1 and the outer boundary of the scaffold is located at r̂ = 2, (b) plot of temporal evolution
of ĉG where the final time corresponds to a value of 120 days.

These profiles exhibit very little spatial dependence, as might be expected due to the simple

decay model used for scaffold degradation (3.91). For the linked ECM volume fraction, spatial

and temporal profiles (Figure 5.6a-b) are similar to those for the solid phase volume fraction

φs (Figure 5.3). Differences between φs and φLM are more pronounced at earlier times, prior

to the degradation of the scaffold from the engineered cartilage system.

Lastly, spatial and temporal profiles in the baseline case are shown for the unlinked ECM

(ĉUM ) concentration (Figure 5.7) and the growth factor concentration (ĉG) (Figure 5.8). Both

sets of profiles are observed to exhibit very little spatial dependence, resulting from the fact

that diffusive times scales for unlinked matrix and growth factor in the model are relatively

fast compared to time scales for ECM synthesis, linking and scaffold degradation. Figure 5.7

demonstrates that, for a majority of the simulation, unlinked ECM is being consumed to form

linked ECM faster than it can be produced by the cell. At much later times, when the Gaussian

linking has fully propagated through most of the spatial region, the cell-mediated biosynthesis

of unlinked ECM eventually dominates the linking rate. This results in increasing values of cUM

that approach the steady-state value based on the product inhibition assumption.

Overall, the baseline case indicates that variables modeling unbound solutes dissolved in the

interstitial fluid, i.e. ĉUM , ĉG, as well as the scaffold volume fraction φSc exhibit predominantly

temporal responses. The remaining independent variables, φs and φLM exhibit more complex
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dependencies over both the spatial and temporal domains considered for the baseline case.

5.5 Perturbations of the Baseline Case

In this section, some perturbations of the baseline case are considered to demonstrate sensitivity

of the spatio-temporal model to a few key parameters that affect engineered tissue properties

and outcomes. Specifically, one parameter relating to design of the initial scaffold is considered

along with two parameters that govern physiological interactions in the engineered cartilage

system.

5.5.1 Scaffold Porosity

As ECM regeneration proceeds in the engineered tissue construct, the porosity of the bound solid

phase φs provides an outcome measure that is expected to have a strong positive correlation with

elastic stiffness of the construct. In 2009, Erickson et al. [11] cultured mesenchymal stem cells

(MSCs) in hyaluronic acid scaffolds with varying initial scaffold volume fractions of 1%, 2% and

5%. Engineered constructs cultured to 6 weeks exhibited higher measures of the elastic Young’s

modulus in macroscopic mechanical testing for the scaffolds with lower initial scaffold polymer

volume fractions. Histological imaging of the samples revealed increasing spatial localization of

cell synthesized proteoglycans near the cells as the initial hydrogel volume fraction was increased

(Figure 5.9). These findings suggest that transport and cross-linking of a key cell-synthesized

ECM constituent may be adversely affected by initial scaffold porosity values above a critical

threshold.

Based on these experimental findings, our model enables examination of a hypothesis that

the increasing porosity in an engineered system may adversely affect the accumulation of linked

ECM volume at later times. To evaluate this hypothesis, perturbations of the baseline case were

considered in which the initial scaffold solid volume fraction was varied between the three values

φSc0 = 0.01, φSc0 = 0.02, and φSc0 = 0.05. Spatial profiles of the linked ECM volume fraction φLM

are shown at time points of 3 days (first row), 7 days (second row) and 14 days (third row),

where the columns represent initial scaffold volume fractions of 1%, 2% and 5% (Figure 5.10).

We observe spatial profiles (Figure 5.10) that resemble those in the experiment, particularly in

the case φSc0 = 0.05 (right-most column) where linked ECM is highly localized in space near

the periphery of the cell, whereas it is more evenly spread out when the scaffold is designed

to be less dense and more porous. Since diffusive transport occurs on relatively fast scales in

our model, these simulations indicate that convective transport and the effects of porosity on

transformation of unlinked ECM into linked ECM in our model may explain lower values of

macroscopic elastic stiffness of the construct for scaffold designs that are not porous enough.
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Figure 5.9: Histological (Alcian blue) staining of cell-synthesized proteoglycans (PGs) in MeHA
hydrogels seeded with mesenchymal stem cells (MSCs). The columns correspond to initial scaf-
fold volume fractions of 1%, 2%, and 5% and an agarose scaffold (control) after 3 days (top),
7 days (middle), and 14 days (bottom) in chondrogenic culture media. Pericellular accumula-
tion of PGs is evident in MeHA constructs with higher initial scaffold density while a more
even spatial distribution of PGs is observed in constructs originating from 1% MeHA scaffolds.
(Reprinted from Osteoarthritis and Cartilage, 17/12, I.E. Erickson, A.H. Huang, S. Sengupta,
S. Kestle, J.A. Burdick, R.L. Mauck, Macromer density influences mesenchymal stem cell chon-
drogenesis and maturation in photocrosslinked hyaluronic acid hydrogels, 1639-1648, Copyright
(2009), with permission from Elsevier).
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Figure 5.10: Simulations of perturbations to the baseline case for the spatio-temporal cartilage
regeneration model to simulate the effects of scaffold porosity on the spatial distribution of
linked ECM φLM shown around a single cell. The columns correspond to initial scaffold solid
volume fractions φSc0 of 1% (left column), 2% (middle column), and 5% (right column). Spatial
profiles are shown after 3 days (top row), 7 days (middle row), and 14 days (bottom row).
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5.5.2 Interaction Mechanisms

As discussed in Section 5.2.3, physiological parameters in our model regulate interactions be-

tween the cells and their local environment in our models of cartilage ECM regeneration. This

category of parameters is expected to vary from one cell-scaffold system to another and, ulti-

mately, could be used with experimental data to quantitatively characterize differences between

engineered biomaterial systems of various types. Perturbations to two physiological parameters

were considered to illustrate sensitivity of the model to these interaction mechanisms. The first

was the critical porosity φs∗ in the Gaussian models for ECM linking that delineates regimes

of increasing versus decreasing linking rate as a function of porosity. The second was the criti-

cal unlinked ECM concentration ĉUM∗ for regulation of cell-mediated biosynthesis based on the

product inhibition hypothesis.

The value of the critical porosity parameter in the baseline case φs∗ = 0.045 was perturbed

to consider the two additional values φs∗ = 0.035 and φs∗ = 0.055, and results are shown in

Figure 5.11. Increasing φs∗ to 0.055 (Fig. 5.11) significantly delayed achievement of the peak

ECM linking rate (Fig. 5.11l), past the time of complete scaffold degradation and until a

sufficient amount of linked ECM accumulated in the system. This resulted in a decrease in the

steady-state value of the linked ECM volume fraction in the case φs∗ = 0.055, relative to the

baseline case (φs∗ = 0.045) (Fig.5.11b vs Fig.5.11c). The steady-state values of φLM are also

affected by the duration of time during which larger values of growth factor concentration ĉG

(Fig. 5.11d-f) are present in combination with active ECM linking (Fig. 5.11j-l). As a result,

the lower steady-state value of φLM in the case φs∗ = 0.055 is also caused by the delayed ECM

linking which occurs in a time frame where the growth factor concentration has decreased

significantly.

The critical unlinked ECM concentration ĉUM∗ was also perturbed from its baseline value

of ĉUM∗ = 0.5 and the two additional cases ĉUM∗ = 0.4 and ĉUM∗ = 0.6 were considered. Results

for the linked matrix volume fraction φLM , for ĉUM and for the linking rate f(φs) are shown in

Figure 5.12. It is observed that the steady-state value of φLM increases as the value of ĉUM∗ is

increased from 0.4 to 0.6 (Figure 5.12a,b,c). Recall that the product inhibition hypothesis results

in a linearly decreasing cell-mediated rate of unlinked ECM biosynthesis as the concentration

ĉUM increases. As a result, lower values of ĉUM∗ lead to a longer period of linking due to slower

cell-mediated biosynthesis of unlinked ECM (Figure 5.12g,h,i). While linking occurs over a

longer duration (Figure 5.12g,h,i), the lack of adequate supply of cell-synthesized unlinked

ECM can adversely affect the total amount of linked ECM that accumulates over long time

periods. Hence, we observe larger steady-state values of φs at higher values of ĉUM∗ due to both

the larger biosynthesis rate, relative to the linking rate, at earlier times as well as interactions

with larger concentrations of the (limited supply of) growth factors present in the system, as
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.11: Effects of perturbing the critical porosity parameter φs∗ on key variables: the
cases shown are φs∗ = 0.035 (left column), the baseline case φs∗ = 0.045 (middle column),
and φs∗ = 0.055 (right column). Results are shown for the dependent variables: linked ECM
volume fraction φLM (first row), growth factor concentration cG (second row), unlinked ECM
concentration cUM (third row), and ECM linking rate f(φs) (fourth row).
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was the case in Figure 5.11.

5.6 Identifying a Reduced Model

All simulations shown in the previous section had some common aspects suggesting that a

reduced version of the two-zone spatio-temporal PDE model can be identified. Specifically, all

simulations had values of |ûs|, |ˆ̇us| and |p̂| that were less than 10−10. Hence, we can formulate a

reduced model by assuming that ûs ≈ 0, p̂ ≈ 0, and ˆ̇us ≈ 0. In the cell region,these assumptions

imply that φω is constant with respect to both r̂ and t̂, while ĉUM depends only on t̂. We now

apply these assumptions to the non-dimensional model (Section 3.5), noting that the osmotic

parameter φ is taken to be 1.

In the cell region, equations (3.84)-(3.86) will be satisfied exactly and equation (3.87) reduces

to
dĉUM

dt̂
= k̂UMN

∗(ĉUM∗ − ĉUM ), (5.1)

where the solution of the above equation with respect to the initial condition ĉUM (0, r̂) = 0 is

ĉUM = ĉUM∗

(
1− e−N∗kUM t̂

)
. (5.2)

Hence, the cell region can be eliminated from the model and replaced by a time-varying bound-

ary condition for ĉUM based on the last formula.

In the extracellular region, the first equation (3.88) will be satisfied automatically but the

second equation (3.89) will be reduced to

−k̂ScφSc + k̂1(φ
ω)2ĉGĉUM = 0. (5.3)

For the baseline case considered in this chapter, we evaluated the left hand side in the equation

above and found that its value was less than 10−9. Equations (3.90) and (3.91) reduce to

∂φLM

∂t̂
= k̂1(φ

ω)2ĉGĉUM , (5.4)

which is a PDE since k̂1 = f(t̂, r̂), and

dφSc

dt̂
= −k̂ScφSc, (5.5)

which is an ODE. Based on the initial condition φSc = φSc0 this ODE has solution

φSc = φSc0 e
−kSc t̂. (5.6)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.12: Effects of perturbing the critical unlinked ECM concentration ĉUM∗ on key vari-
ables: the cases shown are ĉUM∗ = 0.4 (left column), the baseline case ĉUM∗ = 0.5 (middle
column) and ĉUM∗ = 0.6 (right column). Results are shown for the dependent variables: linked
ECM volume fraction φLM (top row), unlinked ECM concentration cUM (middle row), and
ECM linking rate f(φs) (bottom row).
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The remaining two equations (3.92) and (3.93) are reduced to

∂t̂(φ
ω ĉUM ) +

(
∂

∂r̂
+

2

r̂

)[
(−DUM

r φω)
∂ĉUM

∂r̂

]
= −k̂2(φω)2ĉGĉUM , (5.7)

and

∂t̂(φ
ω ĉG) +

(
∂

∂r̂
+

2

r̂

)[
(−DG

r φ
ω)
∂ĉG

∂r̂

]
= −k̂3(φω)2ĉGĉUM . (5.8)

Based on these simplifications, the identified reduced model is summarized as

(1 < r̂ < b̂, t̂ > 0):
∂φLM

∂t̂
= k̂1(φ

ω)2ĉGĉUM (5.9)

dφSc

dt̂
= −k̂ScφSc (5.10)

∂t̂(φ
ω ĉUM ) +

(
∂

∂r̂
+

2

r̂

)[
(−DUM

r φω)
∂ĉUM

∂r̂

]
= −k̂2(φω)2ĉGĉUM , (5.11)

∂t̂(φ
ω ĉG) +

(
∂

∂r̂
+

2

r̂

)[
(−DG

r φ
ω)
∂ĉG

∂r̂

]
= −k̂3(φω)2ĉGĉUM , (5.12)

where the initial conditions are

φLM (0, r̂) = 0, φSc(0, r̂) = φSc0 , ĉUM (0, r̂) = 0, ĉG(0, r̂) = cG0 , (5.13)

the boundary conditions at r̂ = 1 are

∂φLM

∂r̂
(t̂, 1) = 0,

∂φSc

∂r̂
(t̂, 1) = 0, ĉUM (t̂, 1) = ĉUM∗

(
1− e−N∗kUM t̂

)
,
∂ĉG

∂r̂
(t̂, 1) = 0, (5.14)

and the boundary conditions at r̂ = b̂ are

∂φLM

∂r̂
(t̂, b̂) = 0,

∂φSc

∂r̂
(t̂, b̂) = 0,

∂ĉUM

∂r̂
(t̂, b̂) = 0,

∂ĉG

∂r̂
(t̂, b̂) = 0, (5.15)

where b̂ is the outer boundary of the region.

5.7 Conclusions and Future Directions

Multiphasic continuum mixture models are widely used to describe both biomechanical defor-

mation and transport of water and solutes in articular cartilage [42]. Cartilage is an avascular

and aneural biological soft tissue, resulting in a limited capacity for growth and repair, and

a high incidence of osteoarthritis with aging [38]. The cartilage extracellular matrix (ECM) is
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maintained by a single population of sparsely distributed cells called chondrcytes that regulate

their metabolic activity in response to biophysical and biomechanical cues in their local en-

vironment. When chondrocytes are seeded into a biomaterial scaffold, these cells recapitulate

many of the metabolic events involved in the process of development, providing an excellent in

vitro system for studying tissue regeneration. While trial-and-error approaches for developing

engineered tissues have led to many early advances, the complexity of the cartilage regener-

ation process requires a more rational, design-based approach to develop functional cartilage

replacements in an optimal manner. Achieving this goal requires the formulation and solution

of a continuum mixture model to describe interactions among the biophysical, biomechanical

and physiological mechanisms at the cellular scale.

In this dissertation, the ODE mixture model developed in [19] was extended to the spatio-

temporal (PDE) case by using the modeling framework of multiphasic continuum mixture the-

ory. This approach allowed for the development of a mathematical model capturing interactions

among biophysical, biochemical, biomechanical and physiological phenomena during cartilage

ECM regeneration in an evolving tissue engineered construct arising from an initial cell-seeded

scaffold. The general formulation, developed in Chapter 2, was based on delineating primary

variables into those that are bound to the solid phase of the mixture and those that are unbound

in that they are dissolved in the interstitial fluid. In Chapter 3, this formulation was specialized

to a one-dimensional spherical model of a single chondrocyte in an extracellular region that

is initially scaffold but, over time, evolves into an engineered tissue construct. The primary

variables included in this formulation were the solid displacement, fluid velocity, pore pressure,

solid volume fractions of scaffold and linked ECM, and concentrations of the (unbound) solutes

that are the unlinked matrix and growth factor. This model assumed that unlinked ECM is

synthesized within the cell and is transported in the system by both convection and diffusion.

Growth factor was assumed to be present in only the extracellular region and was required

in modeling the interaction mechanism that transforms unlinked (unbound) ECM into linked

(bound) ECM, causing the solid phase volume fraction within the mixture to increase. Link-

ing rates were modeled as depending, in a nonlinear fashion, on the evolving porosity of the

mixture. A Gaussian model was used to represent the phenomena of poor linking when the

initial scaffold is very dilute or when the pore size within the construct reduces to the point

of inhibiting spatial distribution of unlinked ECM and formation of linked ECM. This model

was solved, numerically, using a finite difference method that was implemented in MATLAB.

The implementation was verified for accuracy by developing an analytical series solution for

a reaction-diffusion model arising as a special case of the general model (Chapter 4). The nu-

merical solution was applied to simulate cartilage ECM regeneration in the local environment

of a single cell based on delineating model parameters into categories of biophysical, scaffold

design and physiological parameters. Values of the biophysical and scaffold parameters were
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fixed based on the literature and physiological parameter values were calibrated to formulate a

baseline case that modeled regeneration of cartilage ECM on realistic time scales. Perturbation

of the baseline case via a parametric analysis demonstrated the sensitivity of tissue outcomes to

both the choice of scaffold porosity and to physiological parameters that are expected to vary

from one cell-biomaterial system to another. Based on the full set of simulations considered,

a reduced model in which the cell region was eliminated and replaced by a time-dependent

boundary condition was also identified.

The model developed in this dissertation provides a detailed quantitative framework that

captures several key biophysical, physiological, and biomechanical mechanisms that interact

within an engineered cartilage system. Trial-and-error approaches to achieving desired or op-

timal functional outcomes in an engineered cartilage construct can be both time-consuming

and costly. The integration of mathematical models into the experimental design process has

the potential to accelerate progress along the path to realization of optimal cartilage tissue

engineering. For example models calibrated, via parameter estimation, on an initial system

design or a data set of smaller size could then be used in simulations that could suggest an

improved design to manufacture and test in the lab. Use of a mixture modeling approach can

facilitate this process, since natural distinctions between various experimental measures such

as dry mass versus wet mass, density versus volume fraction, and diffusivities in free solution

versus a mixture are built into the modeling framework.

While the mixture model developed in this dissertation is a spatio-temporal extension of the

previously published ODE mixture model [19], it was limited to one spatial dimension based on

idealizing the cell and its surrounding ECM as having spherical geometry. Extensions to higher

dimensions are needed to more accurately represent realistic cell geometries for engineered

cartilage cell-scaffold systems. Such extensions would naturally require a reformulation of the

numerical methods in terms of finite elements which more naturally conform to cell shapes

in two and three-dimensions. The model also assumed fixed values for the elastic material

properties in the extracellular region, even though the properties of the solid phase are changing

significantly with time. This assumption was reasonable for the modeling applications considered

in this work as they were focused on biosynthesis and transport. Consequently, throughout

all simulations, solid displacements and the pore pressure were negligibly small, resulting in

automatic satisfaction of the mixture momentum equation which is the equation involving

the elastic material parameters. Use of the modeling framework to simulate biomechanical

deformation, e.g. via the application of external loading, will require an extension to include a

model for the evolution of the elastic Young’s modulus and Poisson’s ratio with accumulating

linked ECM density. To date, the nature of such relations is not well understood. It should also

be noted that the model is highly sensitive to the Gaussian form that was chosen to represent

the relation between ECM linking rate and porosity of the mixture. Ideally, as more data from
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experiments that image accumulating ECM content in engineered cartilage become available,

the mathematical form of this term would need to be assessed for its validity and refined as

needed.

The model developed in this work focuses on cell-matrix interactions at the scale of individ-

ual cells. Relating biophysical, biochemical, biomechanical and physiological phenomena that

occur at this microscopic scale with related phenomena at the macroscopic scale of a tissue

layer requires approaches to bridging models at these two diverse scales. Models at the scale of

individual cells can serve as useful tools for identifying relationships between primary variables

that can be averaged and upscaled to formulate constitutive laws for cellular effects in models

at the macroscopic tissue scale. Viability of this approach was demonstrated for a reaction-

diffusion model of diffusive nutrient transport and uptake in a cell-seeded scaffold in [2] where a

numerical homogenization approach was used to bridge scales. In future studies this multiscale

modeling approach could be extended to models formulated within the mixture framework,

including the one developed in this dissertation, to develop more detailed, realistic models for

cell-matrix interactions in tissue engineered articular cartilage at the macroscopic scale.
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