
ABSTRACT

MANGUM, AMANDA JEAN. Self-Organizing Maps for Data Clustering in Acoustic Radiation
Force Ultrasound Imaging of Cardiovascular Tissues. (Under the direction of Mansoor Haider.)

Atherosclerosis is a cardiovascular disease in which plaque accumulates along the wall of an

artery, altering blood flow and increasing the risk for heart attack or stroke. Acoustic Radiation

Force Impulse (ARFI) is an ultrasound imaging technique in which acoustic waves are focused

at a point, causing displacement of the tissue that is then tracked over time to measure elastic

and viscoelastic material properties from the imaging data. The emitted ultrasonic waves are

sequenced in a manner that allows a pulse to be focused both spatially and temporally and the

resulting tissue displacement to be recorded and analyzed. We investigate the application of

data clustering algorithms, based on Self-Organizing Maps (SOMs), to ARFI imaging for early

detection and characterization of atherosclerotic plaques. In this context, SOMs cluster images

based on similar patterns in the data set that are identified via a projection of the data vector

space onto a lower dimensional map. This map is obtained in a training phase that utilizes a

neighborhood function to ensure that neighboring data clusters are more similar than clusters

far away from each other (in terms of the map topology). Based on the dimension, size and

scope of image patterns considered in this work, the SOM configuration used for all data sets

considered was a 3x3 lattice of nine neurons. Once a SOM is trained using a particular data

set, the number of used and unused neurons, the first metric, serves as an indicator of the scope

of patterns identified in the data set. The second metric was a statistic calculated from the

training data set that measured the extent to which these patterns were spread out in the data

space. It was hypothesized that higher values of this measure would correlate with successful

SOM performance.

The first set of data considered was comprised of ARFI peak displacement and relaxation

time images for gels constructed to mimic arterial tissues with atherosclerotic plaques (phan-

toms) and was provided by the Gallippi Ultrasound Lab at UNC-Chapel Hill. When the data

was used to train a SOM with vectorization, the trained SOM used two neurons to correctly

identify the primary distinguishing feature as plaque stiffness (hard or soft), but failed to cluster

on the other features reflected in the data set. However, subsequent training of SOMs on each

data subgroup (soft and hard), resulted in a clustering that used three neurons and identified

additional features such as plaque size and location. In an attempt to utilize more neurons in

a trained SOM, two data sets were manufactured to mimic larger data sets with continuous

variations in major features. The SOMs trained on these two manufactured data sets achieved

better clusterings, using up to five of the nine available neurons. The final data set that was

investigated came from an ex vivo ARFI imaging study on porcine iliac arteries performed at



the Gallippi Ultrasound Lab. An extensive analysis of SOM performance was carried out by

training SOMs for possible combinations of expanded training sets comprised of either 6 or 7

original patterns. In each instance, an optimal sort resulting in only one unused neuron was

identified. The second data expansion method was then applied to the original disease patterns

by taking weighted averages of the original patterns, creating an expanded data set with more

realistic and continuous variations in plaque features relative to the first expansion method. This

expanded data set was partitioned into training and validation sets before training a SOM. On

this more varied data set, optimally trained SOMs now contained mismatches but each pattern

in the training or validation set mapped to no more than two neurons in the trained SOM.

For clustering of data in both the training and validation sets, roughly 80% of the original dis-

ease patterns clustered to the same neuron. Results demonstrated a strong correlation between

larger values of the statistic and the ability of the trained SOM to successfully cluster data in

both the training and validation sets.
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Chapter 1

Introduction

1.1 Atherosclerosis

Heart attacks and strokes are among the leading causes of death in the United States for both

men and women (WHO fact sheet no. 317, Feb. 2007) [40, 71]. One cause of these life-threatening

events is atherosclerosis, a condition in which plaque composed of fatty substances, cholesterol,

cellular waste products, calcium, and fibrin accumulates along the wall of an artery. Plaques

are relatively stiff so that plaque build-up can lead to hardening and a loss of elasticity in

the artery. Large lipid pools, thin or disrupted fibrous caps, and soft lipid cores are material

characteristics that make plaques vulnerable [3, 25, 49, 67].

Atherosclerosis often progresses without notice because it may be asymptomatic for decades;

however, proper testing can diagnose atherosclerosis as early as childhood. If detected early

enough, lifestyle changes such as exercise, diet, and quitting smoking can slow or stop the

progress of the disease before expensive or invasive medical action is required. Plaque can build

up in arteries throughout the body and can remain a serious medical threat unless detected.

Figure 1.1 shows the progression of a healthy artery to an advanced stage of disease. A

healthy muscular artery has three layers: the inner layer or tunica intima, the middle layer or

tunica media, and the outer layer or adventitia. A monolayer of endothelial cells lines the tunica

intima and is in contact with blood. The tunica media contains smooth muscle cells that are

embedded in a complex extracellular matrix. Arteries damaged by atherosclerosis often contain

areas of demarcated laminae in this layer of the artery, evidenced by layers of elastin between

strata of smooth muscle cells [37, 73].

The initial stages of atherosclerosis involve a variety of changes to the structural composition

of the arterial wall. Leukocytes in the blood adhere to the monolayer of cells lining the tunica

intima, bound leukocytes begin to move into this first layer, monocytes begin to mature into

macrophages, and the uptake of lipids begins creating foam cells.
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Figure 1.1: Strokes are one possible effect of atherosclerosis. A healthy artery is shown in
(a). The initial phase of atherosclerosis is shown in (b). The lesion progression is shown in
(c), and thrombosis is shown in (d). (Reprinted from Nature, Peter Libby, Paul Ridker, and
Goran Hansson, Progress and challenges in translating the biology of atherosclerosis, 317-325,
Copyright (2011), with permission from Nature.)

The disease continues to evolve as the smooth muscle cells from the tunica media move to

the tunica intima. Smooth muscle cells in the initima begin to proliferate as well. Extracellular

matrix macromolecules such as collagen, elastin, and proteoglycans also begin to be produced

at heightened levels. As the lesion advances, some macrophages and smooth muscle cells can

die, and these dead cells can accumulate in a central region of a plaque, forming a lipid, or

necrotic core.

Thrombosis (more commonly referred to as a blood clot) is the most advanced stage of the

disease. At this stage, a physical disruption of the atherosclerotic plaque may occur, causing

the plaque to detach from the arterial wall and enter the blood stream. Plaques still attached

to the wall at this stage may impede blood flow when the fibrous cap breaks and allows blood

coagulation components to interact with the contents of the lipid core.

Classical imaging methods are proficient at detecting stenotic plaque that narrows the ves-

sel lumen but fail to accurately detect nonstenotic plaques [3, 26, 38, 68]. Therefore, increased
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knowledge of plaque composition and its risk for detaching from the arterial wall has shifted

the focus of clinical methods away from traditional procedures and toward those able to report

data on plaque composition and those capable of detecting stenotic and nonstenotic plaques

alike. New imaging techniques being explored include X-ray computed tomography (CT) [68],

cardiovascular magnetic resonance imaging (MRI) [82], integrated backscatter (IB), virtual his-

tology (VH) methods, intravascular ultrasound (IVUS) [8, 10, 51], and acoustic radiation force

impulse imaging (ARFI) [2, 3, 4, 16, 77]. These methods focus more on characterizing plaque

composition than on lumen characteristics, such as flow resistance and severity of obstruction.

Since thin fibrous caps, large lipid cores, and high macrophage contents are markers for at-risk

plaques, these methods aim to identify plaque composition as well [84]. Some traditional meth-

ods, such as angiography, and new methods, such as IVUS elastography, carry inherent risk to

the patient due to their invasive nature [10, 15, 66].

1.2 Acoustic Radiation Force Impulse (ARFI) Imaging

Acoustic Radiation Force Impulse (ARFI) imaging is one new technique being explored by

several labs. ARFI relies on scattering and absorbing properties of acoustic waves that are

propagating in tissue [56, 59]. Soft tissue generally absorbs acoustic waves; however, if acoustic

frequencies are quickly varied (increased), the waves in the tissue become out of phase with

the acoustic wave because the tissue cannot respond quickly enough to the change in positive

and negative pressures [56, 59]. Relatively high intensity impulses excite the tissue for a short

duration of time in the region to be imaged [3]. ARFI utilizes a clinical ultrasonic imaging

scanner equipped with standard clinical imaging transducers and emits two pulses, an excitation

pulse and then a tracking pulse, which are emitted over a short time [3]. These pulses compress

the tissue in a specified region, and ARFI then measures the recovery of the tissue from the

compression force by tracking tissue displacements. The raw ultrasound images are translated

into ARFI images of peak displacement or a recovery time that is commonly defined as the

time it takes the tissue to return to 67% of its pre-compressed height. It is hypothesized that

AFRI technology can identify dangerous arterial plaque not detected by conventional B-mode

ultrasound imaging because ARFI imaging can provide additional information about plaque

stiffness, the presence of calcium deposits, and the relative composition of collagen and elastin

[3, 69]. ARFI has also been shown to effectively delineate tissue structure in human as well as

pig arteries [14, 76, 83]. This new technology is noninvasive and allows for small amounts of

ultrasonic energy to be focused into very precise tissue locations.

The magnitude of this force can be modeled as:

|F | = 2αI

c
(1.1)
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where F is a body force, α is a tissue absorption coefficient that depends on frequency, I is the

acoustic intensity, and c is the sound speed (1540 m/s) in the tissue [56, 62].

Figure 1.2: Illustration of ARFI imaging procedure in the Gallippi Ultrasound Lap at UNC
[19]. This image depicts how the acoustic waves interact with the tissue and how the tracking
pulse records tissue behavior.

ARFI research has been directed in three main arenas. These include using (zero-dimensional)

ODE viscoelastic models, spatio-temporal models of wave propagation, and utilizing data min-

ing techniques [9, 27, 39, 45, 46, 47, 56, 64]. Viscoelastic tissue properties have been esti-

mated using ARFI technology, but challenges arise in large three-dimensional computations

mostly due to tissue inhomogeneities [39]. While shear-wave propagation is used to estimate

the Young’s modulus, the relatively small displacements of the tissue pose difficulties for calcu-

lations [57]. Several labs are working on applying acoustic pulse technology to imaging tissues

and organs such as the prostate, breast mass, tumors, the liver, atherosclerotic plaques, the gas-

trointestinal tract, lesions, abdominal organs and aortic aneurysms, thrombosis, myocardium,

and muscle degeneration [1, 3, 7, 9, 11, 15, 17, 27, 29, 50, 58, 60, 61, 63, 79]. Research has also

been conducted that uses ARFI to identify atherosclerosis in arteries which also leads to re-

search focused on minimizing background noise and noise created by blood flow during imaging

[3, 4, 5, 6, 16, 20, 21, 22, 23, 68, 74, 76, 80, 82]. While some of these studies have implemented K-

Means clustering on temporal response patterns, they have not explored using Self-Organizing

Maps for spatial pattern recognition of ARFI images to probe for specific plaque characteristics

and predict characteristics of new images [46, 47].
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1.3 Machine Learning based on Self-Organizing Maps

Artificial Neural Networks (ANNs) are a class of machine learning algorithms that are inspired

by biological features of neuronal networks in the brain [43, 70]. Within the context of machine

learning, there are two main types of learning: supervised learning and unsupervised learning.

Supervised learning involves the presentation of input data and correct answers (output data)

to an algorithm that adjusts weights to reproduce these relationship as accurately as possible.

Supervised learning is well suited to applications where the ANN can be trained on a set of

known input-output pairs of vectors. The trained ANN is then used to predict output values

for new values of the inputs [70]. In contrast, unsupervised learning involves the sorting of

data vectors into clusters that have similar features. Clusters are identified via weight vectors

that have the same dimension as the data. Data contained in clusters that are far away from

each other have different features when an unsupervised ANN is trained successfully [43, 70].

Self-Organizing Maps (SOMs) are a type of unsupervised ANN that project data onto a lower-

dimensional map in order to cluster data according to the prominent features in a data set

(detailed in Section 2.2). While SOMs are a clustering algorithm like K-Means, SOMs include a

neighborhood function that ensures two neighboring clusters in a trained SOM will have more

similarities than two non-neighboring clusters (detailed in Section 2.2). Several studies have

been completed with ARFI imaging that implement K-Means clustering on temporal response

data [46, 47], but SOMs have not been developed and applied to analysis of spatial images in

this application area.

SOMs along with ARFI technology may greatly aid in early detection of atherosclerosis.

Research has shown that SOMs are useful for clustering data relating to brain tumors, breast

cancer, and pancreatic tumors [13, 42, 78, 81, 85]. ARFI technology allows for clear arterial

images along with a measurement of arterial mechanical properties, and SOMs identify clusters

based on patterns and similarities present in the data set. Therefore, the SOM may be used to

sort the large images produced by ARFI imaging.

In this dissertation, specialized clustering algorithms were developed for analyzing ARFI

ultrasound imaging data for gel-derived tissue phantoms, manufactured data, and for diseased

tissue from porcine iliac arteries. In our application to ultrasound imaging data, SOMs achieve

clustering by projecting high dimensional data onto a lower dimensional space of neurons ar-

ranged on a two dimensional lattice. In Chapter 2, the basic SOM algorithm is presented and

factors relating to efficient implementation for high dimensional data, expansion methods for

data sets of real images, and approaches for validation are developed. Two data expansion tech-

niques are considered to increase the number of image samples as well as the variety of patterns

contained in the images used to train the SOMs. Two metrics are also proposed in order to

determine the quality of the data clustering. In Chapter 3, data sets of increasing complexity
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are considered to develop and refine the SOM methods presented in Chapter 2. The first set of

data considered is comprised of ARFI peak displacement and relaxation time images for gels

constructed to mimic arterial tissues with atherosclerotic plaques (phantoms). In an attempt to

improve the success of the trained SOM, two data sets were manufactured to mimic larger data

sets with continuous variations in major features. In Chapter 4, the SOM techniques developed

and evaluated in Chapters 2 and 3 are used to evaluate SOM-based data clustering for ARFI

images of porcine tissues obtained from the Gallippi Ultrasound Lab. This data came from

an ex vivo ARFI imaging study on porcine iliac arteries. The second data expansion method

was then applied to the original disease patterns by taking weighted averages of the original

patterns, creating an expanded data set with more realistic and continuous variations in plaque

features relative to the first expansion method. In order to identify when a training set is cor-

related with optimal SOM clustering, the statistic developed in Chapter 2 is used to evaluate

clustering capabilities of SOMs across all training sets.
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Chapter 2

ANN Methods based on

Self-Organizing Maps

2.1 Introduction to Artificial Neural Networks

Artificial Neural Networks (ANNs) are machine learning algorithms which are biologically mo-

tivated by the way the brain operates and learns. The neocortex, the most highly developed

section of the brain, contains about 100,000 neurons (closely interconnected nerve cells) [70]. The

dendritic tree of a specific neuron sums the output from the surrounding, connected neurons.

If the sum (of the electric potential of each neighboring neuron) is above a certain threshold,

a short electrical spike is produced and carried out along a pathway, affecting the synapses of

other nearby neurons. Not only do nearby neurons have an electrical effect on their thousands

of neighboring neurons, but the strength of the synaptic connections between neurons changes

based on the firing of two connected neurons [43].

The first models based on neural networks date to the early 1940s. In 1943, McCulloch and

Pitts introduced the idea that neurons could be treated in a binary sense–on or off [48]. Each

neuron possessed a threshold, a pre-specified number of input channels, and an output channel.

The neuron changes from the off state (0) to the on state (1) if the sum of the input channels

(also in binary on or off states) reached the neuron’s threshold. This work was important for

demonstrating that neurons may carry out logical operations but did not explain the formation

of neuron connections during learning and depended on error-free functioning [70].

In 1949, Hebb expanded the theory presented by McCulloch and Pitts to include changes

in neuron connections proportional to the activity of the connection receiving an input from a

neighboring neuron and the output connection to other neighboring neurons [28, 70]. The Hebb

Hypothesis is still implemented in learning models. One formulation of the hypothesis for the

change in synaptic strength is as follows:
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∆wi = ε · y(x) · xi (2.1)

where the strength of the ith synapsis is wi, x is a vector of the receiving inputs of the neuron

where xi is the input of the ith synapse, y(x) is the excitation of the neuron, and ε > 0 is the

size of a single learning step [70]. From there, the theory has expanded, and rapidly so since

the advent of the modern computer.

Analysis of data using ANN models occurs in two phases. During the training phase, un-

known weights in the network are iteratively changed until a set of pre-specified criteria are

achieved. Once values of the weights are finalized, the ANN is “trained” and may be used in

applications such as classification or predictive analysis. This stage is commonly referred to

as validation. ANN training is also classified as either supervised or unsupervised, although

hybrid approaches have also been used. In supervised learning, the data under consideration is

partitioned into features or components that are inputs and those that are outputs. During the

training phase, ANN weights are then varied by minimizing a cost function comparing predicted

ANN output values to those in the training data set. Once trained, the supervised ANN is used

to predict outputs for new input values. By contrast, unsupervised learning is more commonly

used for sorting or clustering data. During unsupervised training, weights are adjusted based

on inherent relationships between the data vectors and the weights themselves. Once trained,

the unsupervised ANN sorts or classifies the data vectors into clusters. In validation, new data

vectors presented to the ANN can then be classified into a representative cluster that was iden-

tified during the training phase. Due to these features, ANN models based on unsupervised

learning also fall into the category of clustering algorithms, many of which have origins in field

other than neural networks.

In general, clustering algorithms identify groups of data vectors that are “near” each other

and, as a result, have similar features. One of the oldest and most commonly used clustering

algorithms is K-Means clustering. In this algorithm, weight vectors have the same dimension

as data vectors and one weight vector represents each cluster to be identified. The user sets the

initial value of each of the weight vectors and, for each data vector, distances between that data

vector and the weight vector associated with each cluster are computed. As each data vector

is presented during training, the nearest weight vector (“the winner”) is moved closer to the

piece of data. This process continues until a stop criterion is reached, at which point the weight

vector for each cluster ends up “roughly” in the middle of the set of data vectors that are now

associated with that cluster. When viewed in the context of ANN models, a prominent property

of K-means clustering is that there is only one winner as each data vector is presented during

the training phase. For example, the potential for weight vectors representing clusters near the

(single) winner to be moved in the direction of the data vector is not considered.
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The self-organizing map (SOM) is an algorithm that is similar to K-means, but also takes

into account the aforementioned feature during training. While each weight vector is still as-

sociated with a data cluster, the weights are associated with neurons in a map (the SOM) in

which the notion of neighbors is introduced. This additional feature is biologically motivated

from the brain and the definition of neighboring neurons is based on the concept of nearest

distance within an arrangement of these neurons into a SOM. Sense organs full of receptors

such as the skin, eyes, and ears are connected to neuron maps in the cortex of the brain. These

topographic maps preserve a (sometimes distorted) image of the receptors. Receptors close to

each other on the skin, for example, cause the firing of neurons close to each other in the cortex.

In this way, spatial proximity is preserved in the neuron map. Studies on the somatosensory

cortex of monkeys, on the optical tectum of owls, and auditory cortex of bats have studied these

maps in greater detail [32, 33, 75]. Relative to K-Means clustering, Self-Organizing Maps add

the biologically inspired concept of neighborly influences to the process of iteratively adjusting

weights during the training phase.

2.2 Introduction to Self-Organizing Maps

SOMs are a type of ANN based on Kohonen’s network model in which the algorithm maintains a

spatial structure in the lower dimensional space comprised of neurons, incorporating neighboring

relationships, while clustering data vectors that reside in a space of higher dimension [34, 35, 36].

Once a SOM has been trained, this means that clusters associated with neighboring neurons

contain data that is more similar than for clusters far away from each other within the map

topology. An illustration of how SOMs cluster by projecting the data onto a lower dimensional

space of neurons is shown in Figure 2.1 for data that is two-dimensional and a SOM that

is a one-dimensional arrangement of five neurons. The neurons are connected thus defining

neighbor relationships and allowing topological relationships to be preserved throughout the

training process. Each neuron of the SOM has an associated weight vector residing in a vector

space of equivalent dimension to that of the data (Figure 2.2). This is called the weight space for

the neurons (Figure 2.2). During training, the SOM algorithm cycles through the data vectors

one at a time. For each chosen vector, the neuron (in the weight space) closest to that data

vector is chosen as a winner. By analogy, the winning neuron is the one that would fire in the

brain as a response to a sensory receptor being stimulated on the body. During SOM training,

the winning neuron as well as its near neighbors then move their weight vectors in weight space

towards the data vector that was presented to the SOM (Figure 2.3). Learning rate parameters,

z and ζ (Table 2.1), specify how much the winning weight vector and its near neighbors move

toward the presented data vector in the weight space. The full SOM algorithm is summarized

in Table 2.1.
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Figure 2.1: An illustration of how SOM training projects higher dimensional data (upper box)
onto a lower dimensional neuron space comprised of five neurons (lower box). Note that if the
data is projected down onto a one-dimensional neuron space, then the order of the clusters
(color-coded) should be preserved. In this way, data mapped to neighboring clusters should be
more similar than data mapped to neurons farther apart.

Figure 2.2: An illustration of relationships between the data space, weight space and neuron
topology in a two-dimensional Self-Organizing Map. Each neuron in the SOM (blue) has an
associated weight vector that is the same dimension as the data. For instance, if the data has
three dimensions (black), then each of the nine neurons in the SOM will have a 3-dimensional
weight vector associated with it.
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Figure 2.3: Illustration of the training process for a 1-d SOM with five neurons arranged in a
one-dimensional line. Here, neighbors are determined to be neurons one away from the winning
neuron. The weights of the winning neuron and neighboring neurons move closer to the data
point presented (open circle, top). After training, each neuron corresponds to a cluster of data
points (below).
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Table 2.1: General Algorithm for Training of 2-D Self-Organizing Maps

General Algorithm:

1.) Chose the topological arrangement for the neurons (n×m) and denote the total number

of neurons as N = n ∗m.

2.) Initialize the weight vector wj , j = i, ..., N , associated with each neuron.

3.) For each data vector, d, presented, determine the nearest weight vector, wj∗ , by com-

puting the Euclidean distance between the presented data vector and each weight vector

wj . The neuron associated with the nearest weight vector is described as “winning”.

4.) For each data vector, d, presented, move the winning weight vector in the direction of

the presented data vector using the relation:

wj∗ = wj∗ + (z) ∗ (d−wj∗) (2.2)

5.) Identify a set Q of indices for weight vectors of the neurons that are topological neighbors

of the winning neuron. For k ∈ Q, move the weight vectors for these neighboring neurons

in the direction of the presented data vector using the relation:

wk = wk + (ζ) ∗ (d−wk) (2.3)

6.) Update the two learning rate parameters z and ζ.

z = (α) ∗ z
k

kmax (2.4)

ζ = (α) ∗ z
k

kmax (2.5)

where k represents the current iteration count through steps 3–6, and α is chosen to be

positive and less than one.

7.) Repeat steps 3–6 until the maximum number of iterations, kmax, is reached.

There are a number of parameters for the user to prescribe in the SOM algorithm. First,

the dimension of the topological space of the neurons and the number of neurons are specified

(Step 1 in Table 2.1). The neighborhood structure for the topological neuron space requires

specification (for Step 5). For instance, in a two-dimensional neuron grid, near neighbors may

either be defined as those neurons one away by the taxi cab metric in the neuron space or as the

neurons one or two away by the taxi cab metric (Figure 2.4). (The taxi cab metric with neighbors
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two away will include those neurons “diagonally” away from the winning neuron as neighbors on

the grid.) A variation of SOM that also moves the neurons unidentified as a winner, or secondary

neighbors to the winner, away from the data vector being presented may also be considered

(between Steps 5 and 6). Specification of online versus batch learning is also required. In online

learning, Steps 4 and 5 happen immediately after each data vector is presented; however, in

batch learning, Steps 4 and 5 occur after the nearest weight vector has been determined for each

data vector in the set. The stopping criteria for the SOM algorithm is the last parameter to be

prescribed. Termination of the iterations of the algorithm occurs when the specified maximum

iteration, kmax is achieved (Step 7). Alternatively, an SOM algorithm may be constructed such

that termination occurs when the weight vectors change by less than a specified tolerance.

For the the learning rate parameters, the user must specify the percentage, z, that winning

weight vectors will move relative to the distance between the data and winning weight vector

(Equation 2.2). A separate percentage, ζ, representing the shift of near neighboring weight

vectors must also be set as a parameter (Equation 2.3). This neighborhood function causes

SOM to differ from K-means and also leads to the preservation of nearness in corresponding

regions of both the data/weight space and the geometrical arrangement of neurons in the SOM.

As the algorithm progresses, both of these parameters will decrease at a chosen rate, α, at the

end of each iteration (Equations 2.4 and 2.5). Since the data presented here comes from medical

imaging, there are a large number of pixels recorded for each image, making the computations

in Step 3 slow.

Figure 2.4: Possibilities for defining the neighborhood function. For the two-dimensional neu-
ron space as shown we could consider neighbors to be those neurons one grid step away or
those one grid step away and “diagonals”. The relevant neuron is shown in black, and the two
possible neighborhood definitions are shown graphically by the red neurons.

It is clear that the consideration of neighbors in Step 5 of the SOM training algorithm is the

main difference between K-Means and SOMs. While both algorithms locate clusters present

in the data, SOMs rely on the structure of the neuron space during the training process.

This neighbor structure ensures that the data associated with neighboring neurons will have
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more in common than the data associated with non-neighboring neurons. When this concept

is incorporated into SOMs in two (or higher) dimensions, the connection to K-Means is less

clear. While both K-Means and SOM also leave room for interpolated patterns based on the

data presented since it is not required that every neuron have an associated weight vector that

is near a cluster of data, the neighborhood feature of the SOM ensures that the interpolated

patterns have similarities with the nearby neurons. The difference between K-Means and SOMs

is illustrated in Figure 2.5.

(a)
(b)

(c)

Figure 2.5: Illustration of how the weights of each neuron in a 2-D SOM project into a 2-D
space. If the circular space shown in (a) is full of ordered pairs used as data for an SOM,
then the 4x4 neuron grid (b) may have weights (in the same 2-D space of the circle) that are
positioned as in (c).

2.3 Weight Initializations

The data clusterings resulting from SOM training are sensitive to the initialization of the weight

vectors in Step 2 due to the SOM’s dependence on the position of these weight vectors relative

to the presented data vectors. Consequently, random initialization of weight vectors is not a

wise strategy for most practical applications of SOMs to data clustering. Some effort is then

needed to identify an initialization that can be generalized for the data set and that produces

consistent and useful sorting within each application area.

The weight initialization should reflect the scope of the data since the training ends after

a pre-determined amount of time. (Other termination criterion, for example, might signal the

end of the loop when the weight vectors move less than a specified distance after one iteration

through the data.) There are several ways to ensure this. One simple way to ensure that the

weight vectors are spaced throughout the range of training data is to sort the data and assign
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the initial weight vectors to evenly spaced (in terms of the sorted array) data vectors. Another

way to achieve weight vectors appropriately spaced in the data space is to use the average

values of sorted data vectors. This method is particularly helpful when there are less original

data vectors than neurons. When the scope of the data is known, this is also fairly easy to

implement because weights may be constructed in a manner that reflects the range of the

major distinguishing features of the data.

In order to reduce the sensitivity of the results to the weight initializations, the majority of

the results on one particular type of data set were computed using the same scheme for weight

vector initialization. The weight initializations for certain data sets were changed, however,

to specifically address the unique features in the data. For example, weight initializations were

hand-selected and not automated for the manufactured data sets (Section 3.3) because the scope

of the data was well-defined and known. The weight vector initializations for data obtained from

ARFI scans, on the other hand, were created by sorting the given data set and selecting data

vectors with increasing norms. Overall, in most applications a priori knowledge of the scope and

features of the data set is sufficient to identify a weight initialization scheme that adequately

distributes weight vectors within the data space prior to the commencement of SOM training.

2.4 Data Expansion

The ARFI image data considered in this study comes from either gels created in the lab that are

designed to mimic tissues (phantoms), or from ultrasound imaging of arteries in sacrificed pigs.

Typically, the number of neurons used in a SOM is on the order of the total number of unique

patterns associated with the specific application. In all data sets considered in this work, only

a small number (often one) image was available for each unique pattern. Consequently, data

sets were expanded prior to training to enhance the robustness and predictive capability of the

trained SOMs. The first approach we used perturbed each pixel of the original data pattern

using a normal distribution where the original value of the pixel , which ranged from 0 to 25, was

the mean and σ was generally equal to .2. Sensitivity to the choice of σ was evaluated by training

on data sets using increasing values of σ in the expansion. Its value was found to have relatively

little impact until σ was about 1.5, so large that expanded patterns lacked resemblance to a

biologically plausible pattern. After running multiple experiments with different croppings and

subsets with this data, we determined that a richer expansion was needed to demonstrate the

full power of using a SOM with this data, and, therefore, a second method of data expansion

was considered.

The second method for expanding the diseased porcine data set created more varied patterns

that are still medically plausible. In order to achieve this, new images were added to the data

set by taking weighted averages of existing disease images rather than perturbing individual
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pixels of a single image. We first created a random array ~a of 90 integers between 1 and 10,

where 10 was chosen since it was the number of unique disease patterns in the data set. Then,

an array ~r of 90 random real numbers chosen from a uniform distribution between 0.8 and 1.0

was constructed to provide values for construction of new images via a weighted average. For

each integer in the first array aj , a new piece of disease data is created in the following manner:

Table 2.2: General method of expansion of data based on weighted averages of original disease
patterns

Let the matrix D be comprised of rows that are the ten original disease patterns. Let Dk

denote the kth row of D.

For each integer ai and weight ri:

1.) Choose Dai as the base pattern to be used as the basis for creating a new pattern.

2.) Compute the Euclidean distance between Dai and all other original patterns Dj,:, keeping

track of all the computed distances.

3.) Sort the computed distances, and save the indices of the sorted distances in the array ~d.

4.) Create one new data pattern by using a weighted average of disease images as follows:

NewPattern = ri ·Dd1 + 1−ri
2 ·Dd2 + 1−ri

3 ·Dd3 + 1−ri
6 ·Dd4

An expanded data set created on the basis of the technique in Table 2.2 has several ad-

vantages. The primary advantage is that new patterns constructed as weighted averages of real

images create new images that are more realistic than those obtained via random perturbations.

This approach is also consistent with the progression of atherosclerotic disease in a spatially

and temporally continuous manner. Furthermore, by choosing values of the weights r closer to

1, we have an idea of which original pattern the new piece of data will most closely resemble,

which can then be used to evaluate the success of a given clustering.

2.5 Measuring the Success of a Clustering

After completion of the SOM training algorithm, clusters are computed by mapping each data

vector to the nearest weight vector (same as Step 3). Each vector in the data set is then

associated with the neuron associated with that nearest weight vector. One way to grade the

success of the clustering is to examine the data associated with each neuron at the end of
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this final clustering based on the fully trained SOM. A well-trained SOM should give rise to

clusters of data with clear common properties or features. Furthermore, if the data set has been

expanded, then the majority of the data created through expansion to resemble a particular

pattern should cluster to the same neuron.

The number of neurons that have data associated with them after the final iteration of the

algorithm is yet another way to determine the success of the SOM training. When training the

SOM, the user may have an idea of the number of distinct patterns in the training set based

on prior knowledge of that particular set of data. If the trained SOM has data mapping to

roughly the same number of neurons as unique patterns in the training set, then the clustering

may be counted as a success. For example, a data set may contain six pieces of data but have

only two types of unique patterns. If the SOM has data associated with only two of its neurons

after training and if the data associated with each neuron all have the same common type, then

the clustering may be called successful because the SOM appropriately sorted the data based

on the main distinguishing feature. Neurons with data associated with them after training will

be referred to as “used” while neurons with no data associated with them after training are

referred to as “unused.” It is important to note that there may be more neurons in the map

than distinct features or patterns in the data used to train the SOM.

Unused neurons that do not have any data associated with them after training still have

associated weight vectors in the same space as the data. These final weights associated with

unused neurons are interpolated patterns. Successful clusterings should produce final weights

for unused neurons that are biologically plausible due to the topological properties of the SOM

algorithm. Specifically, the weight vectors for the unused neurons potentially represent realistic

patterns that were not present in the data set used for training the SOM. For example, a

SOM may be trained on images representing ten types and varying degrees of atherosclerosis;

however, these ten disease patterns should not be expected to exactly represent every possible

combination of disease type and severity physically feasible across all subjects. The new patterns

associated with unused neurons in the trained SOM may then prove to be closer to images for

new subjects relative to the patterns from the original subject population used to train the SOM.

One method for quantitatively assessing the SOM’s ability to interpolate useful patterns via

unused neurons is to partition data into non-overlapping subsets that can be used for training

and validation.

2.6 Training and Validation Data Sets

Large enough data sets are often partitioned into two distinct, non-overlapping subsets: a train-

ing set and a validation set. The training set should contain data that fairly represents the scope

of the data set and is used to train and thus arrive at final values of the weights in the SOM.
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The validation set should contain data corresponding to patterns that are not included in the

training set. The trained SOM is then used to cluster data in the validation set and hence

determine the winning neuron for each piece of data. Validation data mapping to a neuron clas-

sified as used after the training phase should have features that are similar to the training data

mapped to the same neuron. However, since the SOM also interpolates new patterns based on

weights of unused neurons, some of the newly presented patterns should also cluster to neurons

that were unused after SOM training. When data is partitioned into training and validation

subsets, the success of the clustering may then be measured by analyzing the total number of

unused neurons subsequent to clustering of data in both the training and validation subsets.

In developing SOM algorithms and assessing their capabilities in a specific application area,

the choice of an ideal or optimal training set is not well understood. Also, the data available

to train a SOM may be limited or constrained due to considerations such as cost or privacy.

As a result, it is beneficial to analyze the effectiveness of SOMs as the size and composition

of training sets are varied. In order to determine the most effective way to split the data into

training and validation sets, all possible combinations of choosing six of the original ten data

patterns (and any expanded data belonging to those chosen patterns) were used to train and

then validate a SOM. For each run c of a possible combination of
(
10
6

)
, the number of used

neurons after the training phase of the SOM was recorded in the array u, and the number of

previously unused neurons that had validation data cluster to them was recorded in the array

n. A basic rule of thumb to find optimal partitions of the data defined by most used neurons

after both training and validation becomes:

max
c∈(106 )

uc + nc (2.6)

This formula may be refined, though, to include the condition that the number of used neurons

after training on any set of data for six original patterns, uc, should not exceed six, since this

would suggest that the final clustering of the training data set would map data based on one

type of original pattern to more than one neuron after training. This training mistake is more

likely to happen in the case where the data expansion was performed using the second method

described in Section 2.4 of weighted averages.
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Chapter 3

SOM Clustering for Tissue

Phantoms and Manufactured Data

3.1 Gel-Based Tissue Phantoms

Gel-based materials with mechanical properties that are tunable in a controlled manner can

serve as “phantoms” that mimic tissues for the purposes of evaluating imaging techniques.

Agar/gelatin formulations containing type-A gelatin (Acro Organics, Geel, Belgium), agar

(Fisher Scientific, Fair Lawn, NJ, USA), Photo-Flo (Eastman Kodak Co., Rochester, NY, USA),

n-propanol, powdered graphite, 1:10 buffered formalin, and de-ionized water, ingredients from

published recipes, were created in the Gallippi Ultrasound Lab at UNC [3, 41]. Specific elastic

modulus values in the agar/gelatins were created by varying the amount of agar while keeping

other ingredients constant. A ∼3 mm layer (in the axial dimension) was included in each gel to

represent an arterial wall based on the range of human carotid plaque thicknesses [18, 72]. The

background tissue was created to be a ∼20 mm layer beneath the region representing the arte-

rial wall. Two inclusion sizes with width 2.5 mm or 5 mm in the lateral dimension were created

with two different stiffnesses per inclusion size. Soft inclusions were manufactured to have an

inclusion stiffness of ∼110 kPa embedded in an arterial wall with stiffness ∼190 kPa while hard

inclusions were manufactured with a stiffness of ∼190 kPa and embedded into arterial walls

with stiffness ∼110 kPa.

In this chapter, we demonstrate that the SOM methods outlined in Chapter 2 can effectively

sort patterns in the data set of images of tissue phantoms manufactured as outlined above. This

set of images was produced by applying ARFI imaging techniques, using a Siemens SONOLINE

Antares™(Siemens Medical Solutions USA, Inc., Ultrasound Division) on gel tissue phantoms

that mimic atherosclerotic tissue. Twelve 2055x40 data images were created by imaging four

phantom gels (one for each combination of inclusion stiffness and size) with the inclusion lat-
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erally offset 0, -3, and -6 mm from the center of the VF7-3 transducer mounted on an optical

air table (Newport Corp., Irvine, CA, USA). The data were analyzed using a SOM with nine

neurons arranged on a 3x3 lattice. This data set contained only two basic patterns–soft or hard

inclusion. The variation in plaque stiffness caused the most easily detectable difference among

the phantom images because it alters the values of more pixels per image than the size variation.

3.1.1 ARFI images of tissue phantoms

(a) (b) (c)

Figure 3.1: Three images, B-mode ultrasound (a), peak displacement (b), and recovery time
(c), given in ARFI data for a hard inclusion of size 2 mm.

Figure 3.1 shows the three types of images that are collected during ARFI imaging. Figure

3.1(a) depicts a B-mode ultrasound scan of a phantom artery with a 2mm hard inclusion in the

middle of the viewing area. The depth and lateral position of the inclusion are typically reported

in millimeters. The image in Figure 3.1(b) shows the same region in terms of peak displacement,

where every pixel represents the maximum displacement over time, in microns, from the ARFI

push registered at that point in space. Since a higher maximum displacement would mean that

the tissue is relatively soft, soft regions show up in red, denoting a higher registered value of

tissue displacement. Alternatively, regions of stiff tissue are colored in light green and yellow.

The inclusion can be seen as the yellow and (light) green region breaking the horizontal red

region in the middle of the viewing area in Fig. 3.1b. It can be determined that this is a hard

inclusion because the peak displacement values in and around the plaque are very low compared

to the other arterial wall regions. It should be noted that since the artery is full of blood, its

interior does not compress much (if any) during the push and appears to have a value of zero

(shown in navy blue). The third ARFI image shown in Figure 3.1(c) depicts the time it takes

(in milliseconds) for the tissue to recover to 33 % of the maximum displacement. This recovery
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time which measures how long it takes to return 67 % of the tissue’s natural position pre-

ARFI push can capture both elastic and viscoelastic effects. Faster recovery times are typically

associated with high tissue elastic shear modulus, low tissue density, whereas slower recovery

times correlate with higher levels of internal viscoelastic damping. In Fig. 3.1c, the red region

where the plaque is located suggests that possible properties of the plaque may include a low

shear modulus, higher density or increased viscoelastic properties relative to the surrounding

tissue (light blue). Taken together, data for both the peak displacement and recovery time

suggest that the plaque has a high stiffness, high density and increased viscoelasticity relative

to the surrounding tissue.

Figure 3.2: ARFI images of peak displacement for tissue phantoms with hard inclusions. The
top row of images correspond to hard 2 mm inclusions, and the bottom row corresponds to 5
mm inclusions.

Figure 3.2 shows the ARFI images for the phantom data set that include hard inclusions of

size 2 mm and 5 mm. The position of the inclusion is also slightly varied in the lateral direction.

The plaque is located on the bottom surface of the phantom artery in each image (roughly in

the middle of each image vertically). In the set of hard inclusions, the lower arterial wall has a

relatively high displacement everywhere except at the site of the inclusion.
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Figure 3.3: ARFI images for peak displacement in tissue phantoms with soft inclusions. The
top row of images corresponds to phantom tissues with 2 mm inclusions, and the bottom row
corresponds to phantom tissues with 5 mm inclusions.

The ARFI soft inclusion peak displacement data for tissue phantoms is shown in Figure

3.3. Again, there are two inclusion sizes, 2 mm and 5 mm, with laterally varying locations.

These inclusions are also along the lower arterial wall (roughly in the the center of the image

vertically). The coloration shows that the inclusions are softer than the surrounding arterial

wall. In both Figures 3.2 and 3.3 some noise is present in the lower half of the image.

3.1.2 Application of SOMs

The ANN modeling techniques described in Section 2.2 were implemented for the case of a 3x3

SOM comprised of nine neurons arranged on a grid. Close neighbors were defined as those neu-

rons one grid interval away in the horizontal or vertical direction, with diagonal neighbors being

those located across the diagonal within the same grid cell. During training, close neighbors of

winning neurons were moved closer to the presented data vector than the diagonal neighbors

in a ratio that reflects the difference in distance along the 3x3 grid between near neighbors and

diagonal neighbors. Since the size of the phantom data set is relatively small (12 images), the

weights were initialized by creating a single marker of one pixel per weight initialization where

plaques were roughly located (on the axial axis) in the data images. This initialization method

does not bias the data significantly because the size or depth of the plaque is not estimated

and since a lab technician would commonly identify an anchor point for the region of interest

in the viewing window. Similarly, the weight initializations for the manufactured data sets (to

be discussed in Sec. 3.3) were constructed by hand, utilizing knowledge that all plaques were

centered at the same point in this manufactured data set and were designed with a fixed range
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of stiffness in relation to the background tissue as well as a fixed range of plaque size. The

weights were initialized in such a way that the full spectrum of possible features of the data in

the manufactured data set were represented.

3.1.3 Vectorization

All code was written for and implemented in MATLAB®(7.10 R2010a). To ensure maximum

flexibility and the ability to tailor algorithms, the Neural Network Toolbox was not used but,

instead, custom code was developed for all SOMs used in this work. In order to take full

advantage of MATLAB®’s capabilities on muticore processors, vectorization was implemented

throughout the code. With vectorization, the SOM algorithms easily scaled up to the vectors

of relatively large dimension associated with ultrasound imaging, taking in data images with

sizes roughly 500x40 to 2055x40 pixels (equivalent to vectors of dimension 20,000 and 82,200,

respectively). Note that the images in Figure 3.1 are scaled and do not reflect the true size of

the data images seen in Figures 3.2 and 3.3. By feeding in each image as one vector and by

taking advantage of MATLAB®’s built-in vector operations, Steps 3-5 in the SOM algorithm

(Table 2.1) were accelerated, allowing the code to run in an acceptable amount of time. In

MATLAB® vectorized pieces of the code distribute operations to the available cores of the

multicore processor. Table 3.4 demonstrates typical differences in computation time for the

SOM algorithm on two different multicore processors with and without vectorization.

Table 3.1: The execution time for the training of a SOM and the effects of vectorization.
Execution times with vectorization (a) and without vectorization (b) on a dual core processor
(MacBook Pro with 1.83 GHz Intel Core Duo, 2GB RAM) and a dual quadcore processor (Mac
Pro with dual 2.8GHz quadcore Intel Xeon, 4GB RAM)

Dual Core Dual Quadcore

45.62 min 3.46 min

(a)

Dual Core Dual Quadcore

214.33 min 60.76 min

(b)

Code was also initially designed to make Step 3 of Table 2.1, the winning neuron search,

occur in a parfor loop. However, the overhead setup for the parfor loop of a rather quick

computation (computing a norm) resulted in slower run times. Therefore, only the vectorized

version of the code described above was implemented for all results presented in this dissertation.
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3.2 Trained SOMs for Analysis of Tissue Phantoms

In order to fully explore the data and the capabilities of the SOM to cluster proficiently, based

on the methods outlined in Section 2.6, multiple SOMs were trained on different manipulations

of the data set for tissue phantoms. Since the data is of very large dimension (roughly 80,000

pixels per image), computation can be further accelerated if unnecessary pixels in peripheral

regions of each image are cropped out. This cropping results in there being less work involved

in computing the nearest neighbor and in moving the weights associated with neighboring

neurons towards the winning weight vector (Steps 3-5 in Table 2.1). Cropping was carried out

in two stages. First, all tissue phantom images were cropped to 1205x40 pixels to eliminate the

majority of the artery below the region of interest and resulted in cropping out roughly the top

half of each image. Later, the data set was cropped further to 500x40 pixels to focus even more

closely on the region of interest near the plaque. Code was not constructed to automate the

process of identifying the region of interest since, in practice, a lab technician would use their

discretion to recognize any regions of interest that should be explored in more depth and via

manual section using a rectangular box.

3.2.1 Initial Cropping

SOM clustering results for the data set of tissue phantom images are shown in Figure 3.4. Figure

3.4a shows the numbering system used for the nine neurons in the 3x3 SOM. The images for

the final weights and data averages are arranged in this 3x3 pattern. Figure 3.4b shows the final

weights of the SOM trained on all 12 phantom ARFI images for peak displacement. During

the training phase, the evolving weights corresponding to each neuron serve as representative

data vectors for all real data clustered to that neuron, or as interpolated patterns in the case

that the neuron is unused. The final weights shown have interpolated patterns corresponding

to both soft inclusions and hard inclusions. Each final weight is a possible pattern that could

appear in clinical data even if none of the 12 phantom tissue patterns actually map to it.

Subsequent to SOM training, the neurons that were used are shown in Figure 3.4c. For each

of the two neurons that were used, the pattern representing the average of all images clustered

to that neuron is shown. The neurons represented in dark blue were given an average of zero in

each pixel to readily identify unused neurons in relating the actual data to the trained SOM.

There were only two neurons (neuron 6 and neuron 8) that had training data mapped to them.

All of the hard inclusions were mapped to neuron 6 while all the soft inclusions were mapped to

neuron 8. Hence, the SOM clustered the data according to the difference in inclusion stiffness.

Even though the plaque size and position varied for each inclusion type, the type (hard versus

soft) was the primary feature that the SOM used to differentiate the data.
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Figure 3.4: A 3x3 SOM was trained on the full data set for gel tissue phantoms containing both
hard and soft inclusions with cropped images in order to reduce the run time and noise. Shown:
(a) index numbers used to refer to individual neurons, (b) the final weights corresponding to
each neuron in the trained SOM, and (c) the average of all images clustered to each neuron.
Since unused neurons appear as dark blue, it is clear that only two neurons had data associated
with them after training.
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3.2.2 Probing the Trained SOM

(a)

(b)

Figure 3.5: Each neuron in the SOM trained on data for tissue phantoms was probed to analyze
the characteristics of images clustering to each of the two used neurons. (a) Images clustered
to neuron 6. (b) Images clustered to neuron 8. Note that images with hard inclusions mapped
to neuron 6 while images with soft inclusions mapped to neuron 8.

By probing each neuron to determine the images clustering to that neuron at the end of the

SOM training, it was observed that all data corresponding to hard inclusions mapped to neuron

6, while all data corresponding to soft inclusions mapped to neuron 8. Figure 3.5 also shows

each of the six images that mapped to neuron 6 (a) and each of the six images that mapped to
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neuron 8 (b). It is observed that the SOM did not make distinctions based on the size of the

inclusion (2 mm versus 5 mm) or the lateral location. Instead, the SOM separated the data in

a manner that identified the primary feature as being the hardness or softness of the inclusion.

This illustrates an attractive feature of unsupervised learning algorithms in that the primary

feature for sorting the data was not specified a priori, but is identified during the training

process. As mentioned in Section 2.5, we can conclude that the clustering was successful in that

the SOM correctly identified two main groups of data based on inclusion stiffness; however, the

SOM had seven of nine neurons unused at the end of the training phase, indicating that the

feature identified (inclusion stiffness) dominated other features that may have been present in

the data set.

3.2.3 Analysis of Data Subsets for Soft and Hard Inclusions

The trained SOM for the full set of ARFI imaging data for tissue phantoms only used two

neurons after training, clustering all the soft inclusions to one neuron and all the hard inclusions

to the other. To further analyze SOM clustering capabilities, new SOMs were trained on subsets

of the data that included tissue phantoms with only hard inclusions and, then a SOM considering

tissue phantoms with only soft inclusions. The aim of this retraining was to assess the ability

of the SOM to detect the more subtle differences of inclusion size and location within each

subset. Results for the two trained SOMs are shown in Figure 3.6. The final weights for the

SOM trained on the hard inclusion data subset show only image patterns that are reflective of

hard inclusion data (Fig. 3.6a). The data averages for each of the two neurons that were used

subsequent to training show that the SOM clustered the hard inclusion data by inclusion size

(Fig. 3.6b). All the data in this subset with 2 mm inclusions mapped to neuron 3 while all the

data corresponding to 5 mm inclusions in this subset mapped to neuron 5 (Figure 3.7). Similarly,

the SOM trained on the subset containing only images for tissue phantoms with soft inclusions

interpolated only patterns reflective of soft inclusion images in the final weights associated with

each neuron, shown in Figure 3.6c. The data averages for the data mapping to each neuron after

training show that the data was clustered on both inclusion size and position (Figure 3.6d).

Data corresponding to 2 mm inclusions in the left and middle of the viewing window mapped

to neuron 2 while the data corresponding to 5 mm inclusions located to the left and middle of

the viewing region mapped to neuron 8 (Figure 3.8). The 2 mm and 5 mm inclusions located

the farthest right in the viewing window each mapped to neuron 6 (Figure 3.8). Therefore,

the trained SOM for the soft inclusions clustered the data based on both inclusion size and

location. Overall, the sequential use of SOMs for the tissue phantom data set demonstrated the

capability of delineating image patterns based on primary features including inclusion stiffness,

size and location within the image.
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(a) (b)

(c) (d)

Figure 3.6: The trained 3x3 SOMs for the cropped images separated into subsets containing
only data for tissue phantoms with hard inclusions (a-b) and with only soft inclusions (c-d).
The final weights in the trained SOM for each case are shown in (a) and (c), and the average
of all images clustered to each neuron after training are shown in (b) and (d). Unused neurons
appears as dark blue.
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(a) (b)

Figure 3.7: Images clustered to each neuron that was used in the SOM trained on data for
tissue phantoms containing only hard inclusions. The trained SOM mapped all 2 mm inclusions
in this data subset to neuron 3 and all 5 mm inclusions to neuron 5.

(a) (b)

(c)

Figure 3.8: Images clustered to each neuron that was used in the SOM trained on data for
tissue phantoms containing only soft inclusions. The trained SOM clustered the data based
on both inclusion size and location. The data clustered to neuron 2 contains data with 2 mm
inclusions located to the left and to the middle of the viewing region. Neuron 6 contains data
with the inclusion located to the farthest right of the viewing rectangle, one with a 2 mm
inclusion and one with a 5 mm inclusion.
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3.2.4 Adding a Plaque-free Pattern

Since the SOM successfully clustered the full data set for tissue phantoms by the main dis-

tinguishing features, the data set was augmented with an additional pattern to make it more

reflective of patterns for a patient population. Specifically, the new image was a manufactured

pattern that serves as a rough approximation of a sample with no plaque. It should be noted

that this pattern was not created in the lab and that the nature of its composition was not

based on known AFRI images of arterial tissue regions that are free of plaque. Three manufac-

tured pieces of data were used to represent tissue with no plaque and were added to the data

set prior to training. The extent to which these new patterns might change the interpolated

weights associated with each neuron in the final SOM was evaluated.

Results for clustering using the SOM trained on the expanded data set are shown in Figure

3.9. Even though the two existing patterns for the tissue phantoms were more similar to each

other than the new manufactured data, the trained SOM still identified three distinct patterns

in the data: hard inclusions, soft inclusions, and the new no plaque pattern (Figure 3.9). Probing

used neurons for the clustered data after training, it was observed that all images corresponding

to hard inclusions mapped to neuron 6, all data corresponding to soft inclusions mapped to

neuron 2, and all of the manufactured data approximating images with no plaque mapped to

neuron 8. The interpolated final weights associated with each neuron are quite different than

those in Figure 3.4 where the SOM was trained on the data not containing a no plaque image.

The interpolated weight vectors (Fig. 3.9a) are observed to exhibit patterns reflecting a range

of possible images for patients with little or no plaque present in the left and lower left portions

of the trained SOM.
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(a) (b)

Figure 3.9: A SOM was trained on the data set for tissue phantoms with the three added images
approximating tissue with no plaque. The final weights are shown in (a), and the averages of all
the data mapped to each neuron after training is shown in (b). Unused neurons are displayed
in dark blue. The trained SOM partitioned the data based on plaque stiffness (hard, soft, and
no plaque).

3.2.5 Cropping for the Region of Interest

To further reduce computational cost and mimic imaging procedures in a clinical setting, images

were cropped down to a region of interest. This manipulation of the data set also reduced the

number and variation in values of pixels due to noisy regions of the image located far away

from the plaque. Note that the manufactured data approximating images with no plaque were

not considered for this training.
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(a) (b)

Figure 3.10: A SOM was trained on the data set for tissue phantoms after each image was
cropped to only show a region of interest near the plaque. The final weights associated with
each neuron are shown in (a), and the averages of the data associated with each neuron in the
trained SOM are shown in (b). The SOM sorted this data set based on the primary distinction
of hard versus soft inclusion.

The final weights associated with each neuron in the trained SOM and the average values

of the data associated with each neuron are shown in Figure 3.10(a) and (b), respectively.

It is observed that images corresponding to the interpolated weights reflect a richer set of

patterns due to containment to the region of interest in the data set for tissue phantoms. The

interpolated patterns exhibit more detailed characteristics of a plaque than the interpolated

patterns shown for images covering a wider field of view (Figure 3.4). However, again, as in

Figure 3.4, the interpolated final weights associated with each neuron in the trained SOM only

show patterns that include a plaque. The interpolated patterns in the final weights move from

patterns representing hard inclusions in the top and left (with the exception of neuron 2) to

patterns corresponding to soft inclusions in the bottom right. While seven of the nine neurons in

the trained SOM are unused, the interpolated patterns shown in the final weights for the trained

SOM are reflective of real patterns that may occur in patients. As a result, newly collected data

may map to one of these unused neurons when clustered using this trained SOM.

3.2.6 Analysis of Data Subsets for Hard and Soft Inclusions

The data for tissue phantoms cropped to a region of interest was again partitioned into two

subgroups: hard inclusions and soft inclusions. The SOM was separately trained on each sub-

group. Figure 3.11(a) shows the final weights clustered to each neuron in the trained SOM,
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and Figure 3.11(b) shows the averages of the phantom data associated with each neuron after

training. Unlike the trained SOM from Figure 3.6 (a-b), the trained SOM used three (instead

of two) neurons. The data was clustered in a manner that delineated both inclusion size and

location. All three patterns corresponding to 2 mm hard inclusions mapped to neuron 1. Neuron

3 contained the one piece of data corresponding to a 5 mm hard inclusion located to the right,

and neuron 7 contained the two pieces of data corresponding to a 5 mm hard inclusion located

to the left and middle of the viewing region (Figure 3.12).

(a) (b)

Figure 3.11: A SOM was trained on the data set for tissue phantoms with hard inclusions
cropped to only show the region of interest. The final weights associated with each neuron in
the trained SOM are shown in (a), and the averages of all the data mapped to each neuron in
the SOM after training is show in (b). Three neurons (1, 3, and 4) had phantom data mapped
to them after training.
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(a) (b)

(c)

Figure 3.12: Images clustered to each neuron that was used in the SOM trained on data for
tissue phantoms cropped to the region of interest and containing only hard inclusions. All three
images corresponding to a 2 mm inclusion mapped to neuron 1. The image containing the 5
mm inclusion located the most to the right (of the 5 mm inclusions) mapped to neuron 3, while
the other two images corresponding to 5 mm inclusions mapped to neuron 4.

Figure 3.13(a) shows the final weights associated with each neuron in the SOM trained on

the soft inclusions cropped to the region of interest, and (b) shows the averages of the phantom

data associated with each neuron after training. Figure 3.13(a) shows that the trained SOM

only interpolated patterns with soft inclusions (as opposed to hard inclusions or no inclusions

or a combination). The size and stiffness of the soft inclusions varies among the interpolated

patterns shown in the weights associated with the unused neurons. Similar to Figures 3.6(d)

and 3.8, three neurons (specifically neurons 2, 6, and 8) had data associated with them after the

SOM training was completed. However, the SOM trained on data for images for soft inclusions

cropped to a region of interest produced a different sort. Figure 3.14 shows the images clustered

to each neuron after the training was completed. The data associated with neuron 2 were both

5 mm inclusions that were located to the middle and to the left of middle in the viewing region.
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Neuron 6 contained two 2 mm inclusions and one 5 mm inclusion that were all centrally located

in the viewing region. (The two 2 mm inclusions were located in the middle and slightly to the

right of center in the viewing regions.) Neuron 8 had only one piece of phantom data associated

with it, a 2 mm inclusion located to the left of the viewing rectangle.

(a) (b)

Figure 3.13: A SOM was trained on the data set for tissue phantoms with soft inclusions
cropped to only show the region of interest. The final weights associated with each neuron in
the trained SOM are shown in (a), and the averages of the data mapped to each neuron in the
SOM after training is shown in (b). Three neurons (2, 6, and 8) had phantom data mapped to
them after training.
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(a) (b)

(c)

Figure 3.14: Images clustered to each neuron that was used in the SOM trained on data for
tissue phantoms cropped to the region of interest and containing only soft inclusions. Two
pieces of phantom data, both with 5 mm inclusions located to the left and right of the viewing
window, were mapped to neuron 2. Two pieces of data with 2 mm inclusions (located in the
middle and to the right of center in the viewing window) and a piece of data with a 5 mm
inclusion located in the middle of the viewing window were mapped to neuron 6. The piece of
phantom data with a 2 mm inclusion located to the left of the viewing region mapped to neuron
8.

While the SOM clearly delineates the major, distinct features in the phantom data set, a

larger and more diverse data set is needed for further model development. Such a data set could

contain more realistic patterns that could occur in patients and therefore create more diverse

interpolations that correspond to the diverse patterns seen in patients at varying stages in the

progression of the disease.
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3.3 Introduction to the Manufactured Data Sets

The most neurons a trained SOM used when clustering the data for tissue phantoms was 3, and

this occurred only when we trained a SOM on either the subset of all hard inclusions or all soft

inclusions (otherwise only two neurons were used). The SOM sorted on the feature of plaque

stiffness, as opposed to location, because plaque stiffness affects more pixels in the image than

location. The distinct difference between soft and hard inclusions creates much greater distance

between these images in the data space than between images of the same plaque stiffness but

where the plaque location varies. Therefore, we considered manufacturing data to simulate more

continuous transitions in image features and, hence, increase the usage of more neurons in a

trained SOM.

3.3.1 Introduction to the Rectangular and Elliptical Data Sets

In order to display the robust nature of the clustering SOMs can offer, two data sets containing

500x40 pixel images with more features were manufactured. First, as a rough proof of concept,

a manufactured data set was created to incorporate a small arterial region, tissue, and a rectan-

gular plaque. The size and stiffness of the plaque was varied, but the location of the rectangular

plaque was always centered laterally. Since a technician could center the plaque in the viewing

region during ARFI imaging, the location of the center of a plaque within the viewing window

can be largely controlled. The inverse tissue stiffness was set at 15 (relatively elastic), while the

inverse plaque stiffness ranged from 2 to 15, where a “plaque” inverse stiffness of 15 represents

no plaque. Nine basic patterns were created, and each of the nine basic patterns was perturbed

at each pixel by using the original pixel value as the mean and drawing the perturbation from

a normal distribution with σ = .7 to create three random perturbations of each of the nine

basic patterns. The plaque size and stiffness for the rectangular manufactured data can be seen

in Table 3.2 and Figure 3.15 while the SOM initialization can be seen in Figure 3.16. The

initialization was constructed such that plaque size increased from left to right and from top

to bottom and such that the plaque stiffness decreased from top to bottom and was constant

along rows with the exception of the pattern corresponding to no plaque.
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Table 3.2: This table contains the description of the plaque sizes and inverse stiffnesses in the
nine basic patterns created for the manufactured data set. Three perturbations of each of these
nine patterns were used to create the full manufactured rectangular data set.

Plaque Size Inverse Stiffness of Plaque

0x0 No Plaque 15

15x3 12

10x4 12

30x6 9

100x20 2

150x4 5

25x24 11

5x15 13

50x10 9
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Figure 3.15: Images of each type in the rectangular manufactured data set (detailed in Table
3.2) to be trained in a SOM with a 3x3 lattice.
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Figure 3.16: Details of the plaque in the initialization scheme for each of the weights associated
with each of the nine neurons to be trained in a SOM with a 3x3 lattice.

Next, a manufactured elliptical data set was constructed in order to allow for more flexibility

in the 500x40 data created. In this data set, a small region of pixels with value zero in the top

of each image corresponds to the small arterial portion of the tissue phantom data cropped to

highlight the region of interest. Plaques were represented by randomly generated ellipses and

given a variety of “stiffnesses” in relation to the background tissue. The ellipses in the 27 new

images were generated by randomly selecting the length of the major and minor axes. Similar

to the rectangular manufactured data, each ellipse was centered to control for the position of

the plaque laterally. Figure 3.17 shows the initial weights associated with each neuron before

the SOM was trained. The initial weights were chosen to represent a number of plaque sizes

and stiffnesses possibly presented in the elliptical manufactured data. Plaque size and stiffness

increased from top left to bottom right in the 3x3 lattice.
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Figure 3.17: The weights associated with each neuron in the 3x3 lattice were initialized to
vary plaque size and stiffness in order to represent a range of possible plaque patterns that may
be randomly generated for the elliptical manufactured data set. The size and stiffness of the
plaques in the initialization increase from top left to bottom right.

3.3.2 Clustering Results for the Manufactured Data Sets

There is some flexibility related to calibration of SOM algorithm parameters, including the

weight initializations, and we will only present our best results for each type of manufactured

data set to evaluate the ability to increase the number of used neurons in a data set comprised

of images with more continuously varying features.
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(a) (b)

Figure 3.18: A SOM was trained on the manufactured rectangular data set. The final weights
associated with each neuron of the SOM are shown in (a), and the averages of the data mapped
to each neuron after training the SOM are shown in (b). There were four neurons with manu-
factured data clustered to them after training.

A SOM was trained on this new, rectangular manufactured data set. The final weights

associated with each neuron in the trained SOM (Figure 3.18(a)) show interpolated patterns

with sharp (90◦) corners of varying sizes and stiffnesses where each interpolated pattern still

maintains the centered position of the plaque. The area of the plaque region increases from

left to right, and the plaque stiffness increases from top to bottom in the trained SOM (Figure

3.18(a)). Figure 3.18(b) shows the trained SOM has data clustered to four of the nine neurons

(2, 5, 7, and 9). The final weights of neurons 2, 7, and 9 strongly represent the patterns of

the manufactured data clustered to them. The resemblance between the average of the data

clustered to neuron 5 and the final weight for neuron 5 is not as strong, but neuron 5 also has

the most neighbors that affect the weight of the neuron during training of any neuron in the

3x3 lattice.
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(a) (b)

Figure 3.19: A SOM was trained on the 27 manufactured elliptical images with the weight
initialization shown in Figure 3.15. The final weights associated with each neuron in the trained
SOM are shown in (a) and the averages of the data clustered to each neuron after training the
SOM are shown in (b). Five of the nine neurons (1, 3, 4, 7, and 8) had elliptical manufactured
data clustered to them after training the SOM.

The final weights after training the SOM on the 27 images generated for the manufactured

elliptical data set are shown in Figure 3.19(a). Even though the weights were initialized contain-

ing elliptical plaques and the final weight patterns were created from training data containing

only elliptical plaques, non-elliptical patterns emerged as two dissimilar ellipses were averaged

together in Steps 5 and 6 of the SOM training process (Table 2.1). While these non-elliptical

patterns are not represented in the manufactured training data, these interpolated patterns

represent other, more complex plaque shapes that may occur. The randomly generated ellipti-

cal data clustered to five of the nine neurons (1, 3, 4, 7, and 8) after the SOM was trained. The

data averages shown in Figure 3.19(b) reveal that the SOM clustered images containing small

plaques to the upper left while images with larger plaques were sorted to the lower right. The

plaque stiffness also increases from upper left to lower right in the 3x3 lattice.

These two manufactured data sets demonstrate that the SOM can utilize more neurons if

major features in the training data set have more continuous variations. Therefore, we would like

to investigate a realistic and a more diverse data set corresponding to porcine atherosclerosis.

We investigate such a data set in Chapter 4.
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Chapter 4

SOM Clustering for Porcine Data

4.1 Porcine Data Set

4.1.1 Collection and Details of the Data Set

We have further developed and optimized our SOM algorithms within the context of data for an

ex vivo study of porcine arteries from the Gallippi lab in which ARFI imaging was combined with

histological analysis of plaque composition. Two types of pigs were represented in this study:

pigs on a normal, low cholesterol diet that do not develop atherosclerosis and pigs receiving a

high fat diet leading to hypercholesterolemia and atherosclerosis [3, 12, 52, 53, 54, 55]. The two

pigs imaged for this data set were a 3 year 6 month old normocholesterolemic female used as

a control and a 3 year 1 month old dietary hypercholesterolemic female [3]. Porcine samples

were used because the atherosclerotic lesions developed in the dietary hypercholesterolemic

pigs resembles the histopathology observed in humans [3, 12, 24, 52, 65]. This data set includes

ARFI images from 22 distinct locations in the porcine iliac arteries of two pigs. Image locations

were varied along the left and right femoral arteries. Three images were obtained at each

location, one for each of three different beam sequence parameters. Twelve of the images are

controls, coming from arteries with no plaque, and the remaining ten images are of diseased

arteries that contain varying degrees of plaque. Subsequent to ARFI imaging, the arteries were

harvested, cut longitudinally, and prepared for histological scoring based on light microscopy

[30, 31]. The microscopy images were divided into four equal subsections, based on dividing

the ARFI image into four equal subsections. An experienced pathologist then graded the light

microscopy images according to the criteria established by the American Heart Association

Committee on Vascular Lesions. If plaque was detected, structural and compositional features

of the plaque such as collagen deposition, calcium deposition, degradation of the internal elastic

lamina (IEL), the presence of lipid pools, and fibrous caps were also graded (Tables 4.1–4.3).

44



Identifiable landmarks were used to spatially correlate histology to ARFI images [3].

The availability of quantitative histological scores for each image in the data set allows us to

evaluate capabilities of the SOM in identifying underlying structural features of atherosclerotic

plaques. For example, images clustered to the same neuron can be probed for common histo-

logical features or quantitative histological measures can be plotted along the trained SOM to

identify correlations and trends among tissue mechanical responses (measured using ARFI) as

well as tissue composition. Furthermore, expansion of the data set to enable partitioning into

training and validation subsets can accelerate the path to realization of optimal SOM modeling

approaches.

Table 4.1: Description of Plaque Composition Classifications

Type Plaque Composition

I Isolated macrophage foam cells

II Multiple foam cell layers formed, fatty streak

III Pre-atheroma with isolated extracellular lipid pools

IV Atheroma with confluent extracellular lipid core

Va Fibroatheroma surrounded by fibromuscular tissue layers with lipid or necrotic core

(sometimes classified as simply Type V)

Vb Calcification predominates (sometimes classified as Type VII)

Vc Fibrous tissue changed predominate, absent/minimal lipid core (sometimes classified

as Type VIII)

VI Fissure, ulcerated, hemorrhagic, thrombotic lesion
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Table 4.2: Numerical Ratings Based on Type

Plaque

Detec-

tion

Plaque

Not

Present

Type I Type II Type III Type IV Type V Type VI

Collagen Severe

Decrease

(>50%)

Mild

Decrease

(<50%)

No

Change

Mild

Increase

(<50%)

Severe

Increase

(>50%)

— —

Internal

Elastic

Lamina

Intact Somewhat

Dis-

rupted

Heavily

Dis-

rupted

— — — —

Calcium None Low High — — — —

Lipid

Pool/

Fibrous

Cap

None Small Large — — — —

Ordinal

Value

1 2 3 4 5 6 7
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Table 4.3: Description of the Data Based on the Gold Star Standards

Data

Label

Histo

Label

NC or

DH

Plaque

Thick-

ness

C or

D

Sect 1 Sect 2 Sect 3 Sect 4

D1 1 DH — D 1 1 1 1

C3 2 NC — C 0 0 0 0

C4 3 DH — C 1 1 0 0

D2 4 DH 1.008 D 1 4 5 5

C5 5 DH — C 1 1 1 1

D3 6 DH 1.908 D 1 5 1 1

D4 7 DH 1.601 D 1 2 5 5

D5 8 DH 1.293 D 5 5 1 0

D6 9 DH .959 D 0 2 5 5

D7 10 DH 1.599 D 5 5 2 1

C6 11 DH — C 1 1 1 1

D8 12 DH .971 D 0 1 3 2

C7 13 DH — C 1 1 1 1

D9 14 DH 1.031 D 2 5 2 2

D10 15 DH 2.129 D 1 5 5 5

C8 16 NC — C 1 1 1 1

C9 17 NC — C 0 0 0 0

C10 18 NC — C 0 0 1 0

C11 19 NC — C 0 1 1 0

C12 20 NC — C 0 0 1 1

C1 21 NC — C 0 0 1 0

C2 22 NC — C 1 0 0 0

Legend:

Table Abbrevia-
tion

Explanation

C or D Control or Disease

NC or DH Normo-Cholesterolemic Diet or Dietary-
Hypercholesterolemic Diet
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(a) (b)

(c) (d)

Figure 4.1: Examples of B-mode images for the ex vivo data set are shown: (a) a control, (b)
a false positive for a calcium deposit, (c) a clearly visible internal elastic lamina, (d) an artery
with a lipid pool, a fibrous cap and a calcium deposit.

ARFI ultrasound images for all porcine data in this data set were obtained from the Gallippi

Lab at the University of North Carolina at Chapel Hill. Some sample B-mode ultrasound images

are shown in Figure 4.1. There are 12 control images and 10 diseased images in the data set.

The artery sizes vary slightly in this data set and are not all “centered” axially in the image.

ARFI peak displacement and recovery time data was also collected for each piece of data.

4.1.2 Applying SOMs to the Porcine Data

As in Chapter 3, SOMs with a 3x3 lattice of nine neurons with two types of neighbors (close

neighbors and diagonal neighbors) were implemented for all the results presented in this chapter.

For details on the implementation please refer to Section 2.2. To mimic imaging data for a large

population sample size, two approaches were used to expand the data set. In the first approach,
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the original set of porcine images was expanded by perturbing each pixel of the original images

using the technique outlined in Section 2.4 to create an expanded data set containing 80 images.

Weight initializations needed to be constructed to accommodate the new porcine data. Several

initializations (described with their results in Section 4.2.1) were implemented first. In order to

construct the initializations for the weights associated with each neuron in cropped data sets,

various forms of sorting the data vectors based on their means were implemented. In the most

complex case, averages of every possible pair of original data were taken. The original data and

their averages were then placed in a vector, and that vector was sorted according to size of

each data entry. The number of entries in this sorted vector was divided by nine, the number

of neurons: temporarily call the floor of this result n. The weights were initialized to be every

nth entry from the sorted vector of original data and their averages. A second approach was

also considered and the original set of images was expanded through the method of weighted

averages of original images that is outlined in Section 2.4.

4.1.3 Parallelization and Cluster Computing

The computing cluster in the Mathematics Department at North Carolina State University can

be accessed remotely and is comprised of a Dell PowerEdge R620 with dual Intel Xeon E5-2690

2.90GHz processors and 128GB of RAM. Code was run by remotely logging into the cluster

and by submitting batches of jobs. As the complexity of our computational studies increased,

the code was run in parallel with three workers (as described in Sections 4.2.4, 4.2.5, and 4.3).

Additional workers would further speed up computation time, but three enables the code to

run in reasonable time without too much overhead required to distribute the computations.

Typical run times for the most computationally intensive cases considered in this chapter were

about three hours, noting that jobs from other users logged into the cluster were often running

simultaneously.

4.2 Application of SOM based on the First Data Expansion

As mentioned earlier, the porcine data set consisted of 10 unique images and two methods, as

outlined in Section 2.4, were used to expand the data set to a total of 80 images. The first

method, in which the original images are perturbed with noise applied at each pixel of the

the image, is considered in this section. As with the tissue phantom data, the expanded data

sets were also cropped prior to training to focus in on a region of interest near the plaque and

to accelerate the SOM algorithm. The expanded porcine data set was then partitioned into

training and validation sets as outlined in Section 2.6. Lastly, the SOM was used to analyze

sensitivity to training and determine the training sets that yielded the most used neurons in
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the trained SOM after both training and validation. Such an assessment of SOM performance

evaluates both the ability of SOM training to sort data into meaningful clusters as well as

capabilities to interpolate weight vectors resembling new patterns in the validation set.

4.2.1 Data Expansion and Clustering of the Diseased Data

B-Mode ultrasound images of the porcine iliac arteries are shown in Figure 4.2, and ARFI peak

displacement images for the same positions in the porcine iliac arteries are shown in Figure 4.3.

The ten diseased porcine peak displacement data images were used as the basis patterns for

the expanded data set. It should be noted that the images in Figure 4.3 include a substantial

amount of noise away from the plaque region along the bottom wall of the artery and that

the size of the image (2040x220) is large. It should also be noted that the peak displacement

image for pattern III. is significantly different than the patterns presented in the remaining nine

images. As with the data for tissue phantoms, the computation time for the SOM algorithm

can be accelerated significantly if the images are cropped.
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(a) I. (b) II. (c) III.

(d) IV. (e) V. (f) VI.

(g) VII. (h) VIII. (i) IX.

(j) X.

Figure 4.2: Original B-mode ultrasound images for diseased arteries in the Porcine data set.
Each image is labelled with the pattern number I-X and distinguishes the different tissue sam-
ples.
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(a) I. (b) II. (c) III.

(d) IV. (e) V. (f) VI.

(g) VII. (h) VIII. (i) IX.

(j) X.

Figure 4.3: ARFI peak displacement images for the diseased arteries in the Porcine data set
whose B-mode images are shown in Figure 4.2. Images are labeled with the pattern numbers
I-X that distinguish tissue samples.
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I. II. III.

IV. V. VI.

VII. VIII. IX.

(a)

(b)

I. II. III.

IV. V., X. VI.

VII. VIII. IX.

(c)

Figure 4.4: The diseased porcine data was expanded with σ = .8 and then used to train a 3x3
SOM. The weight initialization for each neuron is shown in (a). The averages of the disease
porcine data mapped to each neuron after training are shown in (b). All nine neurons were
utilized, and there were no mismatches. The disease patterns that clustered to each neuron
after training are shown in (c).

A SOM with a 3x3 lattice of neurons was trained on an expansion of the diseased porcine

data set using σ = .8. The average of the data clustered to each neuron is shown in Figure 4.4.

All of the perturbations of each pattern clustered to the same neuron as the original disease

pattern itself, and hence there were no mismatches in the trained SOM. Pattern X was the only

original disease pattern that did not have an initial weight weight vector assigned to it before

training. We observe from Figure 4.3 that pattern X is similar to pattern V (both clustered to

neuron 5) and that the final weight for neuron 5 will be the most influenced by other weight

patterns since it has the most neighbors of any neuron in the 3x3 lattice. It is unclear, however,

if the SOM clustered the data on information relevant to the plaques present in each image

or on background information. In order to test this, we evaluated the effects of changing the

weight initialization and also analyzed the effects on the trained SOM of cropping the data.

The same expanded diseased porcine data set was then used to train a SOM where the

weights were initialized by sorting the average values of the ten original disease images (Figure

4.5). Again, there were no mismatches in the trained SOM because all of the perturbed patterns

clustered to the same neuron as the original disease pattern from which they were created, and

all nine neurons were used. Pattern VII. was the only original disease pattern that did not have

a corresponding initial weight, and all of the data corresponding to pattern VII. clustered to

neuron 3. We can also conclude from Figure 4.3 that this is a reasonable placement for pattern

VII. As with the previously trained SOM in Figure 4.4, it is not clear yet if the SOM sorted
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on a feature specific to the plaques or if it trained primarily on background information within

the image.

III. IX. X.

VI. I. V.

VIII. IV. II.

(a)

(b)

III. IX. VII., X.

VI. I. V.

VIII. IV. II.

(c)

Figure 4.5: The diseased porcine data was expanded with σ = .8 and then used to train a 3x3
SOM. The weight initialization for each neuron is shown in (a). The averages of the disease
porcine data mapped to each neuron after training are shown in (b). All nine neurons were
utilized, and there were no mismatches. The disease patterns that clustered to each neuron
after training are shown in (c).

The diseased porcine data expanded with σ = .8 was used to train another SOM with

different weight initializations. This time the averages of each image in the expanded data

set were sorted into a vector. Since there were 80 data images, the image corresponding to

every 8th entry in the sorted vector of averages was used for a weight initialization. The weight

initializations are shown in Figure 4.6(a). The letters a - g are used here to denote the seven

perturbed images (in order) that were created based off of an original disease pattern. Even

though more than one image corresponding to pattern V. was used in initializing the weights

of the neurons in the SOM, there were still no mismatches after training. The SOM effectively

gathered all images corresponding to pattern V. in neuron 4 and, across the entire trained SOM,

all perturbed patterns clustered to the same neuron as the original disease pattern. There

are, however, three unused neurons seen in Figure 4.6. We observe that the weights shifted

substantially during the training because neuron 9 was initialized to have a perturbation of

pattern X, and yet, all patterns corresponding to pattern X. clustered to neuron 3.
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V.d I.c V.f

VII.e VIII.a V.e

VI.b II.f X.f

(a)

(b)

III. VII., X.

IV., V., VI., IX. I.

VIII. II.

(c)

Figure 4.6: The diseased porcine data was expanded with σ = .8 and then used to train a 3x3
SOM. The weight initialization for each neuron is shown in (a). The averages of the disease
porcine data mapped to each neuron after training are shown in (b). All nine neurons were
utilized, and there were no mismatches. The disease patterns that clustered to each neuron
after training are shown in (c).

The weight initialization was changed again, but this time the control patterns were included

in the expanded porcine disease data set with σ = 1. The first three numbers in a random

permutation of integers one to twelve, corresponding to the number of original control patterns,

and the first six numbers in a random permutation of integers one to ten, corresponding to the

number of original disease patterns, was used to determine the weight initialization (Figure

4.7(a)). The averages of all the data clustered to each neuron in the trained SOM is shown

in Figure 4.7(b). We observe that there were no unused neurons; however, there were many

mismatches in the control image group. The control patterns clustered to four of the nine

neurons, and neurons 1 and 3 contained only one one control pattern each after training the

SOM. The SOM did, however, correctly cluster each perturbed image with its corresponding

original disease pattern. Neurons 2 and 4 contained both control and diseased data after the

training of the SOM.
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Control 10 Control 12 Control 8

VI. I. IV.

VIII. VII. III.

(a)

(b)

Control 10 Controls 1, 2, 3, 5, 9, 11, 12 Control 8

IX., X.

Controls 4, 6, 7 II., V., VI. I. IV.

VIII. VII. III.

(c)

Figure 4.7: The control patterns were added to the diseased porcine data that was expanded
with σ = 1 and then used to train a 3x3 SOM. The weight initialization for each neuron is
shown in (a). The averages of the disease porcine data mapped to each neuron after training
are shown in (b). All nine neurons were utilized, but there were mismatches in the control data.
The patterns that clustered to each neuron after training are shown in (c).

4.2.2 Crops of Diseased Data

To accelerate the computation time for SOM training and focus in on the region of interest

for atherosclerotic plaques, several approaches to cropping the diseased data were considered.

In the first approach, the images were cropped to retain the lower half of the image, resulting

in cropped images with dimensions of 1020x220 pixels. As shown in Figure 4.8, the trained

SOM clustered each subset of the data corresponding to one particular disease pattern to one

neuron. However, with this cropping method, it is still unclear whether the main feature the

SOM clustered on was related to features of the plaque such as its stiffness or its size. Data

corresponding to pattern III. clustered to neuron 1, but this pattern is significantly different

from the other disease patterns. The remaining disease patterns appear to cluster within the

3x3 lattice based on the area of the arterial flow region in the image as well as the level of noise
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present in the tissue. For example, the size of the arterial flow region present in the clustered

images decreased from top to bottom in the trained SOM.

Results of the initial cropping method demonstrate that a new cropping technique that is

individualized or automated may be be required. Specifically, at the stage of atherosclerosis

in the porcine data set, the size and characteristics of the plaque are the primary feature of

interest. In contrast, for more advanced stages of the disease, narrowing of the arterial flow

region may be of greater importance. For example, there is a much larger arterial region in the

data clustered to neuron 3 than neuron 9 and it is not clear whether this is due to significant

narrowing or, more likely, due to the need to register images to a common anatomical point

across images taken from different pigs. Ultimately, in order to omit extra pre-processing of

data, customized standards will need to be developed within a clinic to direct clinicians to

center the ARFI image on the relevant region of interest.

III. IX. IV.

I. II. VI.

X. VIII. V.

(a)

(b)

III. IX. IV.

I. II. VI.

VII., X. VIII. V.

(c)

Figure 4.8: The porcine images were cropped in half to focus on the region of interest in the
lower portion of the artery wall. The weight initializations are shown in (a). The averages for
the data associated with each neuron in the trained 3x3 SOM is shown in (b). All nine neurons
had porcine data associated with them. The patterns clustered to each neuron after training
the SOM are shown in (c).
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To improve cropping, an automated cropping was developed for each of the ten porcine

disease images and aimed to locate the top of the plaque on the lower arterial wall. Once

this point was identified, the image was cropped so that the peak of the lower arterial wall

plaque was at the top of the cropped image. Pixels were retained in a manner such that each

cropped image was comprised of the row of the image containing the peak of the arterial wall

and the next 400 consecutive rows beneath the peak. Since the blood in the artery should be

imaged as navy blue (having a value of zero for peak displacement), cropping was implemented

by determining the first nonzero pixel below the beginning of the artery, defined as the first

row of consecutive zeros. This automated cropping procedure reduces some of the superfluous

differences in the ten disease patterns that are unrelated to the primary disease marker in the

porcine data set. Figure 4.9 shows the results of the automated cropping of each of the ten

original porcine disease patterns.
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(a) I. (b) II. (c) III.

(d) IV. (e) V. (f) VI.

(g) VII. (h) VIII. (i) IX.

(j) X.

Figure 4.9: New images after the automated cropping technique was applied to focus on the
region of interest. Each of the patterns in Figure 4.3 was cropped so that the row containing
the peak of the plaque in the lower arterial wall moved to the first row of the image. Pattern
III contained considerable noise and therefore did not crop as well in the automated method.
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Once these images are cropped using the automated method, features other than artery size

and background noise become the prominent differences between each pattern (Figure 4.9). It

is much easier to identify features governed by the presence of plaque in the artery once images

have been cropped to show the regions of interest. It should be noted that patterns VII. and

VIII. are quite similar to each other, within the range of the ten patterns in the original data

set, in that both images exhibit a sharp peak in the lower arterial wall in the left-hand portion

of the cropped image (Figure 4.9). These patterns are also very similar to each other in that

their peaks are very narrow. Pattern VI. also has one distinct peak, but it is much wider, like

the peak in pattern X. It should also be noted that pattern III. is unique in that it is very

different from all other patterns present. It is the only pattern that contains extra noise in the

fluid region of the artery, making the automated cropping of the image more difficult. After

the automated cropping, differences in the area of the arterial flow region now correspond to

information relating to the plaque content of the image rather than an arbitrary or standard

choice for the viewing window across all images. The greater likelihood that the SOM will now

cluster on the size and shape of the plaque enables the image analysis to focus on the primary

feature relating to the atherosclerosis present on the arterial wall.

(a) (b)

Figure 4.10: The porcine data was automatically cropped based on the peak of the plaque
above the bottom wall to focus on the region of interest located below the artery wall and then
used to train a SOM. The data expansion here used σ = .2. The final weights associated with
each neuron (a) and averages of data associated with each neuron after training the 3x3 SOM
(b) is shown.

A SOM was trained on the expanded porcine disease data set with the automated cropping
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technique and the results are shown in Figure 4.10. The SOM mapped all images associated

with the same disease pattern to the same neuron, resulting in no mismatches. Pattern III.

mapped to neuron 1, and this pattern has an obvious effect on the final weight associated

with neuron 1 in Figure 4.10(a), making it very different than the other final weight patterns.

We observe that the SOM does still use some information from background noise to sort these

images. For example, the final weight vectors associated with the top row (neurons 1-3) have less

noise on the bottom half of the image than the bottom row of neurons (7-9) (Figure 4.10(b)).

While the shape of the plaque is similar in the final weights of neurons 2 and 7, these two

patterns did not cluster to neighboring neurons due to their differences in background noise

throughout the bottom half of the image. Overall, the sequence of SOM methods and cropping

approaches resulted in successful clustering of images by neuron number in the trained SOM

map. To further analyze the capabilities of the SOM for the porcine data set, a partition of the

original data pattern into training and validation sets was considered. Training using a data

set with reduced patterns enables evaluation of capabilities of the trained SOM to interpolate

new, physiologically realistic patterns that may not be present in the training set.

4.2.3 Partitioning the Data: Seven Training and Three Validation Patterns

The ability of a SOM to both accurately sort and interpolate or infer patterns within a larger set

of images can be evaluated by partitioning data into training and validation subsets. Since there

are numerous ways to partition, criteria can be specified to identify the best ways to partition

a given data set. The diseased porcine data set was partitioned into two groups: a training

set containing all of the images corresponding to seven of the ten original disease images and

a validation set containing all the images corresponding to the remaining three patterns. The

SOM was trained on the first set of data and then the final weights were used to determine the

closest associated weight (winning neuron) for each of the patterns in the validation set. The

code circulated through all combinations of choosing seven (of the original ten) data patterns

for the training data set, and a parfor loop was implemented to run several realizations of

training data sets at the same time. The images associated with the remaining three patterns

were then used for validation after the SOM training was complete. Since the training set only

contains seven patterns (and their perturbations), a successfully trained SOM will have at least

two unused neurons at the end of the training process, implying that all of the images associated

with one particular pattern clustered to the same neuron.
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(a) (b)

Figure 4.11: The SOM was trained on seven of the ten disease porcine patterns of data (I.,
III., IV., V., VI., VII., X.). The final weights (a) and averages of data (b) associated with each
neuron in the trained 3x3 SOM is shown.

The trained SOM in Figure 4.11 has four unused neurons, so multiple patterns mapped to

the same neuron in two instances. Patterns VI. and VII. both mapped to neuron 5 (Figure

4.11(b)). These two patterns both display a peak to the left of the image. Note that these two

images are similar to each other considering that pattern VIII. was not included in the validation

set. Even though patterns VII. and VIII. are quite similar, pattern VIII. did not map to neuron

5 in the validation phase. This occurred because the final weight for neuron 5 was influenced

by both patterns VI. and VII. during training. Therefore, the final weight pattern associated

with neuron 1 was closest to pattern VIII. during the validation phase. Pattern II. mapped

to an “unused” neuron (6) during the validation phase. Both the final weight associated with

neuron 6 and pattern II. have a gradual peak in the left half of the viewing region. Clustering

of images in the validation set to a neuron with no data previously associated with it shows

that the interpolation of patterns fine-tuned during the SOM training is useful for detecting

new, possible patterns that may not be present in the training set.
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Table 4.4: This table shows validation for remaining three patterns the SOM was not trained
on for Figure 4.9. Note that neuron 6 was unused in the training (because no data used for
training was associated with it after training). The interpolation of final weights associated with
each neuron provided a pattern that was closer to pattern II. than any of the used neurons.

Pattern: Mapped to Neuron Number:

II. 6

VIII. 1

IX. 1

By cycling through all possible combinations of choosing seven of the ten disease patterns

to formulate the training set, optimally trained SOMs could be identified by the number of

unused neurons at the end of training and validation.

The trained SOM in Figure 4.11 has four unused neurons after training and three after

validation since neuron 6 was unused after the SOM was trained but the images corresponding

to pattern II. are closest to the final weight associated with neuron 6 (Figure 4.11 and Table

4.4). The SOM was trained on the seven original patterns I., III., IV., V., VI., VII., and X.

Images with a peak of plaque on the lower arterial wall mapped to neurons 5 and 8. The level

of noise in the tissue under the artery decreases from left to right and top to bottom in the

trained SOM. An optimally trained SOM could have less unused neurons, however, since the

seven distinct training patterns only clustered to five distinct neurons during training.
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(a) (b)

Figure 4.12: The SOM was trained on seven of the ten patterns of data (II., IV., V., VI., VII.,
VIII., X.). The final weights (a) and data averages (b) for each neuron in the trained 3x3 SOM
is shown.

Table 4.5: This table shows the validation for the remaining three patterns the SOM was not
trained on for Figure 4.10. Neuron 4 was unused after training, but pattern I. mapped to it
during validation.

Pattern: Mapped to Neuron Number:

I. 4

III. 1

IX. 1

Based on a different partition into training and validation subsets, the trained SOM in

Figure 4.12 now has only three unused neurons after the training phase. The plaque peaks in

the final weights decrease from top to bottom and from left to right along the trained SOM.

The vertical bar of zero values appearing in pattern IV. (mapped to neuron 8) also affects the

final weights for its neighbors (neurons 5, 7, and 9). Patterns VI. and X. both mapped to neuron

6 during training. Both of these patterns have little arterial fluid imaged above the lower wall

and have a solid portion under the wall before any noise begins below. Pattern I. mapped to

previously unused neuron 4 during the validation phase (Table 4.5 and Figure 4.12). Both the

final weight associated with neuron 4 and pattern I. display a small amount of arterial fluid,
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a well-imaged region without much noise under the arterial wall, and lack the vertical bar of

zero-values.

(a) (b)

Figure 4.13: A SOM was trained on seven of the ten patterns corresponding to diseased porcine
data (I., II., III., IV., VII., VIII., X.). The final weights corresponding to each neuron in the
trained SOM (a) and the averages of the data clustered to each neuron after training (b) are
shown.

Table 4.6: The validation results for remaining three diseased porcine patterns not used in
the training of the SOM results presented in Figure 4.11 are shown. Neuron 2 had none of
the training data clustered to it; however, one of the validation patterns (IX.) mapped to this
neuron.

Validation Pattern: Mapped to Neuron:

V. 5

VI. 5

IX. 2

The SOM shown in Figure 4.13 optimized the number of unused neurons after both training

the SOM on seven of the ten diseased porcine patterns and then determining which final weights

were closest to the remaining three diseased porcine patterns. There were only two neurons

that had no training data clustered to them after the training phase which is optimal since
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there were seven patterns and nine neurons used. During validation, one of the two previously

unused neurons was used as well (Table 4.6). This leaves only one neuron that does not have

data associated with it after the training and validation phases are complete. All realizations

of possible combinations of seven of the ten disease patterns were considered (along with their

perturbed expansions) to train a SOM, and this case minimized the number of neurons that have

no data associated with them after both the training and validation phases. The final weights

for the trained SOM show that the weights associated with the neurons have a decreasing area

of arterial fluid from left to right and have decreasing peaks from left to right. Pattern IX. in

the validation set mapped to previously unused neuron 2 because the final weight associated

with neuron 2 was closest in that there is little noise, no large peak, and no vertical rectangle

of zero-values.

4.2.4 Partitioning the Data: Six Training and Four Validation Patterns

This process of cycling through patterns to train and validate was repeated for all possible

combinations of training on six of the diseased porcine patterns and validating on the remaining

four patterns.

(a) (b)

Figure 4.14: A SOM was trained on each possible combination of six of the ten diseased porcine
patterns. The final weights associated with each neuron after training (a) and the averages of
the training data clustered to each neuron after training (b) is shown for the following six
training patterns (and their perturbed expansions): I., III., IV., V., VII., IX.
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Table 4.7: Validation results for the remaining four patterns.

Validation Pattern: Mapped to Neuron:

II. 6

VI. 5

VIII. 5

X. 9

The trained SOM shown in Figure 4.14 has diseased porcine data mapped to the maximum

number of neurons after the training phase since there were only six distinct patterns (and their

perturbed expansions). This realization of a SOM trained on six of the ten diseased porcine data

is also optimal because it has the maximum number (two) of new neurons with data mapped to

them during validation of all the SOMs that were trained and evaluated for validation. Neurons

5 and 6 do not have any of the six training patterns clustered to them, but patterns VI. and VII.

from the validation set cluster to neuron 5 and pattern II. clusters to neuron 6 after training

has been completed (Table 4.7 and Figure 4.14(b)).

(a)

III. IX.

I.

IV. VII. V.

(b)

Figure 4.15: The final weights associated with each neuron after training a SOM are shown in
(a), and the final location of each of the six original disease patterns used during the training
phase is shown in (b). Each of the six original patterns used in the training clustered to their
own neuron.

Comparing the original six disease patterns to the final weights associated with each neuron
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in the trained SOM, it is again evident that pattern IV. (mapped to neuron 7) affected the final

weights of its neighbors, creating a trace of the vertical rectangle of zero-values in each of the

final weights in the first column (Figure 4.15). The noise along the right-hand side of the image

for pattern I. also exhibits a trace of this column of zero-values, making this pattern neighbors

with pattern IV. instead of pattern IX., which has minimal arterial fluid, and a well-imaged

(low-noise) region below the lower arterial wall. There is also a distinct column of vertical noise

in the left of the image for pattern VII. that affects the final weights in the second column of

the 3x3 grid (Figure 4.15).

Figure 4.16: A comparison of final weights associated with each neuron in the trained 3x3 SOM
shown in Figure 4.14 and the validation patterns mapping to the previously unused neuron 5.

The noise level increases from top to bottom in the final weights associated with each neuron

in the trained SOM (Figure 4.16). Both patterns VI. and VIII. have moderate noise and a peak

toward the left of the viewing area (Figure 4.16). Both of these patterns mapped to neuron 5

in the validation phase (Table 4.7). Since the final weights are set (and no longer move) before

the validation data is presented, the fact that pattern VI. mapped to neuron 5 does not affect

the trained SOM or the fact that pattern VIII. mapped to neuron 5 (and vice versa).
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(a) (b)

Figure 4.17: Comparison of final weights associated with each neuron in the trained SOM (a)
and the validation pattern that mapped to neuron 6 (b). The absence of a noticeable vertical
bar of low pixel-values does not lend the pattern to map to the first column (on the left) of final
weights in (a). The peak shown in (b) is smooth and a relatively small arterial area is present,
mapping the pattern to neuron 6.

Pattern II. also displays moderate noise, placing it in the same range as the noise levels of

the second row of the final weight vectors associated with the neurons in the second row of the

SOM (Figure 4.17). Pattern II. follows the trend of the lower arterial wall having a dip and

then two peaks from left to right (Figure 4.17(b)). This is most similar to the pattern seen in

the interpolated pattern of the weight vector for neuron 6, where pattern II. mapped in the

validation process.

No data mapped to the second neuron because the interpolated pattern associated with

neuron 2 has a pattern unlike the ten given disease patterns (Figure 4.9). The final weight

associated with neuron 2 has more noise in the arterial fluid than the other final weights

associated with the other neurons. This noise is due to the fact that it neighbors the neuron (1)

that the data for pattern I. mapped to during training. Neuron 1 does not have as much arterial

noise, though, because it is also affected by its neighbors, such as pattern I that is mapped to

neuron 4 in training.

Throughout this chapter, the majority of the trained SOMs exhibited the property that

perturbed data originating from the same image disease pattern always cluster to the same

neuron. In other words, the trained SOMs rarely exhibited mismatches during the data clus-

tering. While mismatches would be generated but increasing σ, image patterns at this level of

noise looked unrealistic. This finding suggests that the method used to the expand the data

set may need to be extended to create new images that mimic more realistic variations across
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patient populations. Therefore, in the next section we explore a new method of expanding the

diseased data that gives a richer set of patterns for the SOM to cluster.

4.3 Second Data Expansion Method

In this section, we will explore a second method for expanding the diseased porcine data set as

an alternative to randomly perturbing each individual pixel. The second method also creates

more variation in patterns yet retains medically plausible images. In order to achieve this, we

constructed new images by taking weighted averages or the original disease images, as outlined

in Table 2.2. One of the ten original disease patterns was assigned the heaviest weighting in

the average (Step 4 in Table 2.2) and also serves as the pattern used to evaluate success of

the clustering in both the training and validation sets. The set of original disease images was

used to create 90 new patterns. First, a vector of 90 weight values r (Step 1 in Table 2.2) were

drawn from a uniform distribution between 0.5 and 1. The sorted weight values generated in

this manner are shown in Figure 4.18. The number of times that each of the original disease

patterns was chosen as a base pattern for expansion is shown in Figure 4.19(a). The number

of times that each of the original disease patterns was used as the second, third, and fourth

closest patterns in the weighted average in Step 4 of Table 2.2 is shown in Figure 4.19(b)-(c).

Figure 4.18: A sorted bar graph of the uniformly distributed variable r, the rate at which the
randomly selected original disease pattern is weighted in the process of creating a new image
for the expanded data set.
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(a) (b)

(c) (d)

Figure 4.19: Bar graphs showing how many times each of the original disease patterns was
used as the basis for a newly created image, (a), the closest data image Dd2 in the weighted
average (b), the second closest data image Dd3 in the weighted average (c), and the third closest
data image Dd4 in the weighted average described in Table 2.2.

The newly expanded data set was used to train multiple SOMs. After expansion, the 100

image patterns (10 original and 90 new) were partitioned into training and validation sets as

in Section 4.2.5. To create the training set, all combinations of six of the ten original disease

patterns were used in the training phase. In contrast to Section 4.2.5, the patterns identified

for the training set each contain different numbers of images (Figure 4.19). Consequently, four

images were chosen for each pattern in the training set and any remaining patterns were assigned

to the validation set. Therefore, there were always 24 images in the training set. In contrast to

the partitioning approach used for the first data expansion, the new method reserves images
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associated with patterns in the training set that can be evaluated to determine to which neuron

they cluster in the validation phase. The weight vectors were initialized by sorting the original

six patterns chosen for the training set and all of their pair-wise averages as described in Section

4.1.2.

SOMs were trained for all possible combinations of the training and validation sets. Trained

SOMs were evaluated and compared based on the number of unused neurons after training and

the extent to which these unused neurons were used in clustering images from the validation

set. Figure 4.20 shows SOM results for an example of an optimal combination of training and

validation sets based on training with patterns I, II, III, IV, V and VI. After training, there

were three unused neurons (neurons 2,3, and 4) which is optimal since the training set contained

six patterns. There was only one mismatch after training: an image created from patterns VI.

(dominant), X., V. and VII. was mapped to neuron 8 instead of neuron 6. It should be noted,

though, that pattern V. is the second closest (in the 2-norm sense) to pattern VI. after X.,

which was not included in this training set. This mismatch was probably also related to a low

r-value being assigned to the original pattern during the image’s creation.

III

I VI

II V (VI) IV

(a)

(b)

Figure 4.20: The table in (a) shows the final position of each of the original patterns chosen
for the training set. The averages of the training data mapped to each neuron after the SOM
was trained is shown in (b).
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Table 4.8: The results of the validation on the trained SOM shown in Figure 4.20. The numbers
in parenthesis after each pattern number indicates the number of images of that pattern type
clustered to the neuron.

II. (2), III. (2), X. (10) VII. (1), VIII. (6) unused

VII. (6) I. (9) V. (5)

I. (1), II. (9) IV. (4), V. (2), VI. (5), VIII. (1), IX. (8), X. (1) III. (3), IV. (1)

Results for clustering images in the validation set using the trained SOM are shown in

Table 4.8. We observe that two previously unused neurons (2 and 4) had data cluster to them

during validation. Hence, neuron 3 is the only unused neuron subsequent to training the SOM

followed by using the remaining images for validation. The validation images clustering to both

(originally unused) neurons 2 and 4 were from patterns that had not been used for training.

After clustering images from the validation set some mismatches are apparent (Table 4.8).

However, no pattern has its associated images map to more than two clusters. Patterns I, IV,

VII. VIII and X have only one mismatched image, while patterns II., III., and V. had two

mismatched images. Pattern III has a 3-2 split and pattern V has a 5-2 split. Overall, among

patterns that were in the training set, 23 of 43 (53%) mapped to the cluster identified after

training. Among patterns in the validation set, 30 of 33 (91%) mapped to the cluster containing

the larger number of images for that pattern. Among all patterns, 35 of 43 (81%) mapped to

the cluster containing the larger number of images for that pattern.

To illustrate a less than optimal case, Figure 4.21 shows the SOM that was trained on the

original porcine disease patterns III., IV., V., VI., IX., and X. Figure 4.21(c) demonstrates that

there were five unused neurons after the SOM had been trained on data corresponding to six

patterns, and Figure 4.21(a) shows where the training data clustered by pattern number. Figure

4.21(b) shows how many training images mapped to each neuron after the SOM was trained.

Patterns III., IV., V., and IX. were the training patterns with no mismatches–all the training

images based on these particular patterns clustered to the same neuron as the original pattern

during training. Unfortunately, neuron 9 is the only neuron that contains images of only one

pattern type after training. The validation for this SOM is shown in Table 4.9. After training

the SOM and using the validation set, the previously unused neuron 4 is now used, but there are

still four unused neurons. There are also many mismatches in the validation set. For example,

images based on the original porcine disease pattern I. are clustered to four different neurons

in validation.
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III, X

VI IV, VI, IX, X

V

(a)

7 0 0

0 3 10

0 0 4

(b)

(c)

Figure 4.21: The table in (a) shows the final position of each of the original patterns chosen
for the training set. The number of images mapped to each neuron after training is shown in
(b). The averages of the training data mapped to each neuron after the SOM was trained is
shown in (c).

Table 4.9: Results of the validation set of images for the trained SOM shown in Figure 4.21.
The numbers in parenthesis after the pattern type give the number of images of that pattern
mapped to that neuron.

I. (2), II. (3), III. (4), VIII. (2) unused unused

III. (1), IV. (5), V. (7), I. (2), II. (3) I. (4), II. (9), VI. (5),

VIII. (3), IX. (4), X. (6) VII. (7), VIII. (2), X. (1)

unused unused I. (6)
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4.3.1 Towards Optimizing the Choice of Training Sets

Based on the many realizations of training and validation data subsets considered in the previous

section, a natural question is whether a feature or statistic of the training set correlates to

success in validation. In a clinical setting, this type of quantitative measure could be used to

design or assess the quality of a data set or subsets being considered for training an SOM to

be used, later on, for classifying new images. To briefly investigate this question, the following

quantitative analysis was performed:

1. For each original pattern Di in the training set, compute the distance between Di and all

other patterns Dj(j 6= i) in the training set.

2. Record the minimum of these distances, referring to the value as dk.

3. Formulate a statistic ρ as the sum of all values of dk, i.e. for each pattern in the training

set.

The statistic ρ provides a quantitative measure of the combined distance between vectors

(images) in the training space. When this statistic is calculated across varying candidates for

training sets, it measures the extent to which training vectors are spread out in the data space. It

is hypothesized that training sets with larger values of ρ will exhibit better performance in both

training and validation than those with significantly lower values of ρ. Table 4.10 shows three

of the 210 training set combinations that were predicted to perform well and three training

set combinations that were predicted to not perform well. A strong correlation between the

performance of the SOM in both training and validation and the value of ρ is observed.

Table 4.10: The table displays three training sets predicted to train a SOM well (a), and three
training sets predicted to not train a SOM well (b) based on their computed values of the
statistic ρ for the training set.

Training Set Statistic

R1 3404.6

R8 3212

R18 3015.5

(a)

Training Set Statistic

R188 2604.9

R136 2860.6

R94 2760.8

(b)

The training sets designated by R1 (shown in Figure 4.20), R8, and R18 each have three

unused neurons after training a SOM and only one unused neuron after validation. The training
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sets designated by R188 (shown in Figure 4.21), R136, and R94 all have five unused neurons

after training a SOM and four unused neurons after validation. Values of ρ were significantly

higher for the SOMs that performed optimally as compared to those that performed poorly

(3016-3405 vs 2605-2861). These results suggest that the statistic ρ can be used to compare a

variety of choices for data subsets being considered for use in training a SOM.

4.4 Summary and Conclusions

Heart attacks are a leading cause of death worldwide and the development of novel and in-

novative techniques to detect atherosclerosis early and characterize a patient’s risk level have

potential impacts on both the quality of life as well as healthcare costs. Atherosclerosis is initi-

ated when the arterial wall begins to change due to a series of events that can lead to thrombosis.

ARFI provides a novel technique for non-invasive imaging of arteries by using the scattering

and absorbing properties of acoustic waves applied to tissue. The emitted ultrasonic waves are

sequenced in a manner that allows a pulse to be focused both spatially and temporally and

the resulting tissue displacement to be recorded and analyzed. This information provides peak

displacement and recovery time data at each point in space for the region of interest in the tis-

sue. Much work has also been done to mask the noise created by blood flowing through imaged

arteries in order to produce useful images [3, 20, 21, 22]. Transformed images based on tissue

responses measured using ARFI provide more details about the mechanical properties of tissue

regions containing plaque than traditional B-mode ultrasound images. They are therefore useful

for diagnosing both the presence and the severity of atherosclerosis and the type of plaque. In

this dissertation, specialized clustering algorithms were developed for analyzing ARFI ultra-

sound imaging data for gel-derived tissue phantoms and for diseased tissue from porcine iliac

arteries. The clustering algorithms were based on the use of Self-Organizing Maps (SOM), a

type of artificial neural network based on unsupervised learning that employs an underlying

network of connected neurons whose weight vectors represent patterns identified in the data

set.

In our application to ultrasound imaging data, SOMs achieve clustering by projecting high

dimensional data onto a lower dimensional space of neurons arranged on a two dimensional

lattice. These neurons are interconnected and the notion of neighboring neurons occurs based

on the distances between neurons in the SOM. In Chapter 2, the basic SOM algorithm was

presented and factors relating to efficient implementation for high dimensional data, expansion

methods for data sets of real images, and approaches for validation were developed. Based on

the dimension, size and scope of image patterns considered in this work, the SOM configuration

used for all data sets considered was a 3x3 lattice of nine neurons. Once a SOM is trained using

a particular data set, the number of used and unused neurons serves as an indicator of the scope
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of patterns identified in the data set. Since only a relatively small number of original images

were available, SOMs trained on only original images commonly had a large number of unused

neurons. As a result, two data expansion techniques were considered to increase the number

of image samples as well as the variety of patterns contained in the images used to train the

SOMs. The first expansion method perturbed images at each pixel by randomly sampling a

normal distribution based on average pixel value in the original image and a specified variance.

Alternatively, the second expansion scheme used weighted averages of original images to create

an expanded data set with more realistic looking images that exhibited a more continuous

transition in plaque features. After training a SOM, two metrics were also proposed in order

to determine the quality of the data clustering. The first metric determined the success of a

trained SOM by examining the number of unused neurons after both training and validation.

The second metric was a statistic calculated from the training data set that measured the

extent to which these patterns were spread out in the data space. It was hypothesized that

higher values of this measure would correlate with successful SOM performance.

In Chapter 3, data sets of increasing complexity were considered to develop and refine the

SOM methods presented in Chapter 2. The first set of data considered was obtained from the

Gallippi Ultrasound Lab at the University of North Carolina at Chapel Hill. This data set

was comprised of ARFI peak displacement and relaxation time images for gels constructed to

mimic arterial tissues with atherosclerotic plaques (phantoms). In the synthesis of these tissue

phantoms, two inclusion sizes and two inclusions stiffnesses were manufactured. When the data

was used to train a SOM with vectorization, the trained SOM used two neurons to correctly

identify the primary distinguishing feature as plaque stiffness (hard or soft), but failed to cluster

on the other features reflected in the data set. However, subsequent training of SOMs on each

data subgroup (soft and hard), resulted in a clustering that used three neurons and identified

additional features such as plaque size and location. The difficulty in identifying secondary

features in the full data set occurred because displacements in plaque regions have relatively

large magnitudes and affect substantial portion of each image’s pixels. In an attempt to utilize

more neurons in a trained SOM, two data sets were manufactured to mimic larger data sets with

continuous variations in major features. The first manufactured data set contained rectangles

of various sizes and stiffnesses to represent plaques, and the second manufactured data set

contained ellipses of different sizes and stiffnesses. The SOMs trained on these two manufactured

data sets achieved better clusterings, using up to five of the nine available neurons. This led us

to search for a realistic data set for ARFI imaging of actual tissues that also contained more

continuous variations in features.

In Chapter 4, the SOM techniques developed and evaluated in Chapters 2 and 3, were

use to evaluate SOM-based data clustering for ARFI images of porcine tissues obtained from

the Gallippi Ultrasound Lab. This time the data came from an ex vivo ARFI imaging study
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on porcine iliac arteries. Compared to the data sets considered in Chapter 3, there was more

variation in the diseased samples as well as more noise since samples were obtained from actual

tissue (as opposed to tissue phantoms) and since ARFI imaging was conducted on live pigs.

These pigs were either fed a high fat diet to produce hypercholesterolemia and atherosclerosis

or fed a low cholesterol diet to maintain good health. Expansion of the data set was considered

using both methods summarized above. New patterns obtained by the pixel-by-pixel expansion

with noise resembled the original pattern to the extent that the pattern number was used to

evaluate clustering by the trained SOM. The SOM trained on this data had no mismatches

and used all nine neurons. To ensure that the SOM was not distinguishing patterns based on

features in the image away from the plaque region, the data set was cropped. Again, the re-

trained SOMs did not have any mismatches within pattern types and used all nine neurons.

In order to evaluate SOM interpolation and pattern recognition capabilities for larger, more

varied data sets, the expanded data set was partitioned into training (of less than nine patterns)

and validation subsets. An extensive analysis of SOM performance was carried out by training

SOMs for possible combinations of training sets comprised of either 6 or 7 patterns. In each

instance, the number of unused neurons following both the training and validation of each SOM

was examined to evaluate success of the method. An optimal sort resulting in only one unused

neuron was identified. The second data expansion method was then applied to the original

disease patterns by taking weighted averages of the original patterns, creating an expanded

data set with more realistic and continuous variations in plaque features relative to the first

expansion method. This expanded data set was partitioned into training and validation sets and

each possible combination of six original patterns was used to train a SOM. On this more varied

data set, optimally trained SOMs now contained mismatches but each pattern in the training or

validation set mapped to no more than two neurons in the trained SOM. For clustering of data

in both the training and validation sets, roughly 80% of the original disease patterns clustered

to the same neuron. In order to identify when a training set is correlated with optimal SOM

clustering, the statistic developed in Chapter 2 was evaluated across all training sets. Results

demonstrated a strong correlation between larger values of the statistic and the ability of the

trained SOM to successfully cluster data in both the training and validation sets.

While methods were developed and capabilities evaluated in the context of ARFI ultrasound

imaging data sets, several considerations were beyond the scope of this work. First, the data

sets considered in this study were almost exclusively based on values of peak displacement

measured using ARFI imaging. Combined analysis of image data for both peak displacement

and relaxation time could potentially expand the feature identification capabilities of the SOM.

In particular delineation or the correlation of elastic or viscoelastic plaque properties with

structural features of the plaque (e.g. collagen or elastic composition) would be possible. The

approach used for weight initialization was almost exclusively based on knowledge of the data
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used for training. This technique is most relevant to studies in which the SOM is trained on

a limited set of patient images and later used to cluster and classify image patterns obtained

from new patients. While patterns in the SOM are initially set to specific data vectors, the

relationship between distances among patterns in data space and in the space of the lower

dimension projection onto the 2-D SOM is non-trivial. Future studies could consider alternate

approaches to weight vector initialization such as the use of Principle Components Analysis for

initialization prior to SOM training. All results presented in this study were based on the use

of a 3x3 map of nine neurons. This choice was well suited to the number of varied patterns and

the size of the data sets considered in this work. Studies on larger and more diverse data sets

based on imaging of normal and diseased tissue across broader patient populations could explore

the use of self-organizing networks that grow in the number of neurons and the dimension of

the SOM during training [44]. While the methods developed in this study were in a research

setting, in clinical practice, cropping methods and implementing multiple training sets could

pose potential problems for real-time in-clinic use. Since the training phase for large data sets

can take a substantial amount of time, it would be most useful, in practice, for clinics to obtain

a SOM that is already trained appropriately and then used to evaluate new patient data as

demonstrated for our validation sets in Chapter 4 in order to classify new images relative to

existing, well established disease patterns. Overall, the artificial neural network methods and

algorithms, data expansion techniques, and approaches to validation developed in this study

demonstrate the strong potential for application of SOM-based clustering to pattern recognition

and classification in ultrasound imaging of atherosclerotic tissues.
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