
ABSTRACT

OLSEN, CHRISTIAN HAARGAARD. Modeling Heart Rate Regulation by the Baroreflex. (Under
the direction of Mette Olufsen and Hien Tran.)

The baroreceptor reflex is responsible for short term regulation of blood pressure. During
orthostatic stress, such as posture changes, the baroreflex maintains constant blood pressure by
regulating (among others) venous volume, systemic resistance and heart rate through the sympathetic
and parasympathetic nervous system. This dissertation aims to develop a model for the baroreflex
regulation of heart rate during head-up-tilt (HUT) considering blood pressure and respiration as
input to the model. The model includes description of the strain of the arterial wall and the enclosed
stretch-sensitivity baroreceptor neurons, the afferent neuron firing, sympathetic and parasympathetic
activity, neurotransmitter concentrations at the synapse of the pacemaker cells of the heart, and a
lumped description of intracellular pathways of the pacemaker cell and it’s depolarization. The model
is shown to exhibit positivity of solution under correct parametrization.

A correct mathematical description of the regulation of heart rate during orthostatic stress would
make it possible to learn about system configuration not immediately measurable, through fitting of
model output to experimental data. While this idea is simple, it posses several mathematical challenges,
such as the question whether model parameters can be estimated, and what uncertainties follow such
estimates and accompanying model predictions. The first question is answered through sensitivity and
identifiability analysis, while the other is related to uncertainty quantification.

This dissertation provides a discussion of Sobol Indices and Morris elementary effects for global
sensitivity analysis, and of structural correlation matrix method (SCM) and orthogonal sensitivities
method (OSM) for identifiability analysis. The methods are applied to multiple examples of increasing
complexity to present the underlying properties of each method, and possible forces and shortcomings
of the methods.

Using the presented methods for identifiability analysis different subsets of parameters are con-
structed, and the model is fitted to experimental data for each subset, allowing only the chosen
parameters to vary, while keeping the remaining fixed. Finally Delay-rejection adaptive Metropolis
(DRAM) is used to determine parameter densities and model prediction intervals. Simulation results
suggests that the model is able to produce an increase in heart rate following HUT, but that the
implementation of respiration in it’s current form do not increase the predictive power of the model,
as it is unable to reproduce some of the faster dynamics. Furthermore, as an optimization where all
parameters were allowed to vary produced the best fit, it is possible that the strategies used for building
parameter subsets may be too restrictive in deeming parameters unidentifiable.
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Chapter 1
Introduction

The cardiovascular system is important for the health and well-being of all humans. It is responsible
for the transport of nutrients and waste products, hormones used for signaling across the body, as
well as the removal of excessive heat from the internal tissue to the skin (Burton 1966). One specific
important role of the cardiovascular system is the supply of oxygen to organs, among which the brain
is the most prominent recipient. Insufficient perfusion of the brain and subsequent deficiency of
oxygen may cause light-headedness or syncope.

It is estimated that 35% of all people experience syncope during their lifetime (Van Dijk et al.
2006). In the emergency departments in Europe approximately 1% of all visits are due to syncope.
Of these visits, approximately 40% are hospitalized with a median stay of 5.5 days (Abe et al. 2009).
The total cost of syncope related hospitalizations was an estimated $2.4 billion in 2000 in the US
alone (Sun, Emond, and Camargo Jr 2005). In addition, recurrent syncope has a large impact on the
affected individual’s quality of life, comparable to those of chronic illnesses such as chronic arthritis
and end-stage renal disease, with levels of somatization, anxiety and depression comparable to those of
psychiatric disorders (Abe et al. 2009; Linzer et al. 1991; Van Dijk et al. 2006). However, syncope is
not just one syndrome but covers a numbers of conditions. The most common type of syncope is
reflex syncope, which refers to a specific group of conditions, including:

• Vasovagal syncope (common fainting) induced by emotion or orthostatic stress.

• Situational syncope often occurring in young athletes or in the middle-aged/elderly as a
precondition to orthostatic intolerance.

• Carotid sinus syncope triggered by mechanical stimulation of the carotid sinus.

• Atypical syncope describing occurrences that do not fit the other categories.

Reflex syncope occurs when a normally helpful control mechanism causes an inappropriate response
that triggers vasodilation or bradycardia, which leads to a decrease in blood pressure and cerebral
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perfusion (Abe et al. 2009). While cerebral regulation is the mechanism responsible for regulating
blood flow to the brain locally, it depends on an adequate systemic blood pressure and cardiac output
controlled by the autonomic nervous system.

The baroreceptor reflex, which is a mechanism of the autonomic nervous system, is associated
with maintaining homeostasis of the cardiovascular system. The reflex is initiated when sensory
neurons located in the carotid sinus and aortic arch, called baroreceptors, sense changes in arterial
wall strain imposed by changes in blood pressure. In response strain sensitive baroreceptors innervate
the cardiovascular control center in the nucleus tractus solitarius (NTS). Here different responses are
initiated via activation or deactivation of sympathetic and parasympathetic pathways. An increase in
sympathetic activity causes a release of noradrenaline onto smooth muscle cells lining the wall of the
systemic arteries, as well as on the pacemaker cells and cardiac muscle of the heart inducing increased
force and rate of heart contractions. All are effects that leads to an increase in blood pressure and
cardiac output. Parasympathetic activation works in opposition to sympathetic activation. It releases
the neurotransmitter acetylcholine onto the pacemaker cells, which slows heart rate and reduces
cardiac output (Burton 1966; Hall 2011). Inefficient or faulty regulation by the baroreceptor reflex
may lead to inadequate perfusion and syncope.

To asses the baroreceptor reflex many diagnostics tests exists including carotid sinus massage, active
standing, tilt table test, electrocardiographic monitoring, etc. (Abe et al. 2009). Classically the use of data
from these experiments rely on statistical analysis or qualitative interpretation of measurements by a
health professional, and may therefore ignore information hidden in the dynamics of responses. It has
been suggested that the use of mathematical models in life sciences can facilitate better development
and tests of hypothesis (Beard and Kushmerick 2009), and for analysis of otherwise unobservable
dynamics (Ottesen 2011).

William Harvey (1578-1657) was a pioneer in the field of mathematical modeling in physiology.
He combined clinical observations of blood flow with a simple mathematical model to infer the
circulatory system, predicting the existence of the capillaries, turning over a 1500 year old view of
the cardiac system (Harvey and Ginsberg 1995). At the same time the application of mathematics in
physics exploded after Newton (1642-1726) invented calculus and stated his famous laws of motion.
One of the many insights brought by Newton was that the natural laws governing the motion of
planets is equivalent to the ones governing the behavior on the surface of the earth. These advances
made it possible to determine the distance and weights of planets, which was otherwise out of reach
through the observation of the encapsulating system.

While physiological systems are accessible, it is typically impossible to measure system components
through controlled experiments due to the complex and fragile nature of the system. However, with
a mathematical description of the physiological system, equivalent to Newtons laws of motion for
the planetary system, it is possible to infer information about different parts of the system merely
by observing the system behavior. The development of cheap and accessible computers, and the
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accompanying development of numerical methods, has increased the use of mathematical models in
physiology.

While some fields of mathematical modeling make use of system identification (Ljung 1987),
models in physiology are typically build from first principles to allow for a physical interpretation of
components and parameters. An example of such efforts are the models developed by Ursino 1998
predicting blood pressure control in response to hemorrhage. Other efforts characterizing parts of
the system include studies by Landgren 1952 Taher et al. 1988 and Ottesen 1997b, who developed
mathematical models for the response of baroreceptors to pressure changes, and by Warner and Cox
1962 who presented a model for the relationship between autonomic nervous activity and heart rate.
More recent models with similar goals for active stand and tilt table tests have been developed by
Ottesen 1997a ,Olufsen, Tran, et al. 2006 and Ottesen and Olufsen 2013.

It is important to distinguish these modeling efforts from the more classical statistical investigations
such as the study by Smyth, Sleight, and Pickering 1969 who investigated the baroreflex sensitivity
through statistical analysis of clinical data from 20 individuals. Statistical analysis can reveal correla-
tions between observations and provide valueable information about the observed data, but ignores
knowledge of the structure of the observed system. Mathematical models on the other hand, provide
a precise description of behavior of different parts of the system, and determine system configuration
from experimental data (Tarantola 2005). The practical goal for using mathematical models in this
setting is to be able to identify biomarkers in the form of parameters in the mathematical model that
can point to physiological dysfunctionalities and guide the planning of treatment.

While this idea is simple, the mission contains an element of mathematical challenge. First, there
is no guarantee that a solution fitting experimental data exists, or if it does, that the configuration that
leads to this solution is easily found and that it has physiological meaningful values for parameters and
substates. These problems increases as models become more complex and involve more parameters.
Sensitivity and identifiability analysis are branches of mathematical modeling related to experimental
design that are concerned with questions if model parameters have an influence on the model output
and if their values can be identified (Miao et al. 2011; Saltelli, Ratto, et al. 2008).

Identifiability and numerical challenges are not the only important challenges. If model parameters
can be estimated that enables the model to reproduce experimental data, it is now thought that the
estimated parameter values give insight into the state of the real system. Moreover, it is important to
consider the uncertainties associated with using a model and numerical approximations. Uncertainty
quantification is the branch of mathematical modeling addressing the reliability of the model output
and parameter estimates (R. C. Smith 2014). For practical use, it is important that parameter and
model prediction uncertainties be calculated and presented as part of the results.
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1.1 Overview of dissertation

The goal of this study is to develop a baroreflex model predicting heart rate regulation during postural
change from sitting to standing. The model is investigated using dynamical systems analysis to show
positivity of solutions, and through the use of numerical methods for estimating parameter sensitivities
and identifiability. Finally parameter uncertainties will be quantified by computing parameter densities
using a Bayesian framework, and these densities will be used to estimate prediction intervals for model
output.

• Chapter 2 gives an introduction to the cardiovascular system and its control mechanisms.
Specific attention is given to the baroreceptor reflex and the regulation of heart rate.

• Chapter 3 gives a description of the experimental data used for modeling.

• Chapter 4 describes the baroreflex model.

• In Chapter 5 the developed model is analyzed predicting behavior in terms of positivity of
solutions and stability.

• Chapter 6 introduces identifiability. Local and global methods are used analysing the
identifiability of models. The use of these methods are demonstrated by a number of
examples.

• Chapter 7 gives a short introduction to uncertainty quantification and one method to
calculate and propagate parameter uncertainties.

• Chapter 8 shows results from numerical simulations, fitting the model to experimental and
simulated data.

• Chapter 9 contains concluding remarks.
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Chapter 2
Physiological Background

This chapter gives an introduction to the cardiovascular system and the general mechanisms involved
in regulating blood flow and blood pressure, as well as a more thorough description of how heart rate
is regulated by the baroreceptor reflex system. The chapter is based on the texts by Burton 1966, Boron
and Boulpaep 2012 and Hall 2011. Section 2.1 contains a brief introduction to the cardiovascular
system, Section 2.2 provides a description of the mechanisms regulating the cardiovascular system, and
Section 2.3 gives a more in-depth description of baroreflex regulation of the heart rate.

2.1 Cardiovascular system

The cardiovascular system consists of the blood, the heart pumping the blood and the vessels carrying
it around the body. It is a transport system, ensuring efficient exchange and transport of

• oxygen and carbon dioxide,

• nutrients and waste materials,

• hormones, and

• thermal energy.

The cardiovascular system consists of two circuits originating from the heart: The systemic circuit
transports blood around the body while the pulmonary circuit transports blood through the lungs.
The two circuits are connected such that the blood returning from the systemic circuit, is directed
into the pulmonary circuit, from where it is, again, directed to the systemic circuit, completing the
cardiovascular cycle. In each of the two circuits the blood travel through arteries to the capillaries
where the exchange of oxygen for carbon dioxide occurs. Subsequently, de-oxygenated blood is
transported back to the hearth through a network of veins.
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While the two circuits follow the same simple layout, the conditions they work under are quite
different. On the systemic side the pressure generated by the heart has to be higher to facilitate the
flow of blood to the furthest extremities of the body, while the blood pressure in the pulmonary
circuit only needs to facilitate the transport through the lungs. Since the exchange is most efficient
at low velocity, it is desirable that the blood flow is kept close to constant. Near constant flow is
achieved by the large compliance of the large arteries that receive the blood from the heart, and the
large volume of the veins. On the systemic side the large compliance of the large arteries is responsible
for keeping the pressure approximately constant, typically oscillating between 80-120 mmHg. As the
blood vessels bifurcate the pressure drops gradually to near 20-30 mmHg at the capillary level. Past the
capillaries, the large volume of the venous side ensures that the pressure does not increase significantly
as blood arrives from the capillaries. The blood pressure in the largest veins are as low as 2-5 mmHg.
This configuration allows for near constant pressure gradient across the systemic circuit, and thereby a
near constant flow.

Figure 2.1 shows an outline of the circulation, while Figure 2.2 shows how blood flow and oxygen
consumption is distributed in the systemic circuit. Considering the distribution of blood flow between
different organs, one should remember that 100% of the blood flows through the lungs on every
cycle, as that is the sole purpose of the pulmonary circulation. Using the blood supply distribution as
marker, it is clear that the supply of oxygen and removal of carbon dioxide is of highest importance
for the well being of the person.

It is interesting to look at the disparity between the distribution of blood flow and oxygen
consumption of the different organs. For most of the organs the flow corresponds fairly well to the
oxygen consumption, except for the kidney, skeletal muscle and to some degree the skin. From the
chart in Figure 2.2 it is clear that muscles consume huge amounts of oxygen, extracting more oxygen
per volume blood than any other organ. The kidneys, on the other hand, is heavily perfused not
caused they need oxygen, but rather by the need of the blood to be filtered for removal of waste
products. Finally, the perfusion of the skin is due to thermal regulation, as the skin is used to deposit
excess heat from the body.

Before beginning the discussion of regulation, it is important to emphasize that while all functions
of the cardiovascular system is important for survival, the supply of oxygen and removal of carbon
dioxide is the most critical function.
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Figure 2.1: Overview of the cardiovascular circulation. Blood is pumped at high pressure from the
left heart into the systemic arteries, from where it flows slowly at almost constant velocity through
the capillaries to the veins. From the systemic veins, it flow into the right side of the heart, from
where it is pumped into the pulmonary arteries. In the pulmonary circuit the blood flows from the
arteries, through the capillaries and into the veins to return to the left side half of the heart. While
the mechanism is similar, the pressure is lower on the pulmonary than on the systemic side. (Figure
adapted from ("2003 Dual System of Human Circulation" by OpenStax College - Anatomy & Physiology
n.d.) under Creative Commons Attribution 3.0 Unported license.)
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Figure 2.2: Distribution of cardiac output and oxygen consumption to different organs at rest. Based
on numbers from Burton 1966.
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2.2 Regulation of the cardiovascular system

As stated in the introduction the cardiovascular system is responsible for transport of oxygen, carbon
dioxide, nutrients, waste, hormones and heat. Not only is it important that the entities are transported,
but also that the right amounts reaches (or are removed from) the parts of the systems where they are
required (or in excess) at the right times. This require system regulation, the topic of this section.

2.2.1 Cardiac output

As the different parts of the cardiovascular system and it’s regulation is complex and intertwined, the
description given here will take cardiac output (CO - the volume of blood pumped by the heart per
unit time) as the basis. It can be calculated as the product of the stroke volume of the heart (SV) and
the heart rate (HR)

CO= SV×HR. (2.1)

Both SV and HR may vary. SV can be determined by the return of blood to the heart due to what
is known as the Frank Starling mechanism, which refers to an empirical law stating that the stroke
volume increases with the volume of blood that is returned to the heart (Burton 1966). The existence
of this mechanism implies that SV is determined mainly by the venous return, in turn making it
dependent on the systemic resistance to flow and the pressure drop from the arterial to the venous
side of the circuit.

Local blood flow regulation refers to the mechanism ensuring that blood flow in the arteries near
tissue cells, called arterioles, is restricted or increased to supply the needed perfusion. This local
blood flow regulation will increase the cross-sectional area of the arterioles when oxygen or nutrients
are needed through dilation of smooth muscle surrounding the arterioles. Likewise, if the oxygen
concentration of the surrounding tissue is higher than necessary, constriction of the smooth muscle
will decrease the flow of blood through the arterioles. Figure 2.3 shows how the local control increases
blood flow when the oxygen concentration of the supplied blood is low, and decrease blood flow when
the concentration is high. It is believed that the degree of smooth muscle contraction is determined
primarily by the oxygen concentration, as oxygen is necessary for the contraction. It is however
speculated that other factors might affect the degree of restriction as well.

In addition to ensuring adequate perfusion of the local tissue local blood flow regulation direct the
blood flow to where the resistance is smallest and blood is needed the most. If several parts of the
circuit requires increased perfusion, local control of each part will reduce it’s resistance to flow by
dilating arterioles. The cumulative effect if local controls of large parts of the circuit decrease resistance
to flow, is that the systemic resistance is decreased. A decrease in systemic resistance causes the blood
to flow through faster, and for more blood to return to the heart, increasing the stroke volume and
cardiac output. Hence the local tissue needs, expressed through the local blood flow regulation, also
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Figure 2.3: Effect of arterial oxygen saturation on blood flow through an isolated dog leg. Reprinted
with permission from A.C. Guyton 1971.

regulates the cardiac output. The only requirement for the local blood flow regulation to determine
the blood flow is the presence of blood and adequate arterial pressure, which in turn depends on the
total blood volume. Hence, long term regulation of blood volume through digestion and excretion is
also a requirement for proper function.

While the intrinsic control of the cardiovascular system in general ensures correct cardiac output,
it can be helpful to simultaneously regulate the entire system at once. Such system wide regulation
is achieved through hormonal and nervous control by the autonomic nervous system, for example
during exercise or other activities that stress the system.

Long term intrinsic regulation of blood volume

The regulation of blood volume (and thereby pressure) is very complex. A simple explanation is given
based on the diagram in Figure 2.4 describing the system that regulates arterial blood pressure and the
cardiac output over longer time scales. Starting in the top left corner and following the outer edge of
the diagram the parts involved are:

1. The relationship between the arterial blood pressure and the decrease in extra cellular fluid
(ECF - the amount of body fluids outside of cells) through output in the Kidneys. Increased
arterial blood pressure (ABP) will increase the amount of liquid excreted, d E

d t (o) (o for out).

2. The total change in ECF volume is given by the sum of negative (through kidneys) and
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Figure 2.4: The intrinsic regulation of arterial pressure (AP) and cardiac output (CA). (1) The
amount of excreted fluid volume is determined from ABP. (2) Total change in ECF. (3) Current
ECF is the integrated changes. (4) BV is determined from ECF. (5) BV determines MSP. (6) BRP is
determined from MSP and RAP. (7) CO determined by BRP and RVR. (8) AP determined by CO
and TPR. (9) RVR is considered to be a praction of TPR. (10) On a longer timescale (2 days) TPR is
regulated to match CO. (11) TPR is affected by metabolic activity. Reprinted with permission from
A.C. Guyton 1971.
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positive (through intake of fluids) changes in the ECF

d E
d t
=

d E
d t
(i)−

d E
d t
(o). (2.2)

3. The current level of ECF volume is given by the complete history of changes, or in a
mathematical term integration of the changes.

E(t ) =
∫ t

−∞

d E
d t

d t . (2.3)

4. Blood volume (BV) is determined from the current ECF.

5. The BV will determine the mean systemic pressure (MSP).

6. The pressure difference driving blood into the heart (blood return pressure BRP) depends
on the MSP and the pressure in the heart, the right atrial pressure (RAP)

BRP=MSP−RAP. (2.4)

7. The flow of blood into the heart, is also the flow of blood leaving the heart and thus the
cardiac output (CO). It is dependent on the BRP and on the resistance to venous return
(RVR)

CO=
BRP
RVR

. (2.5)

8. Completing the cycle, the arterial pressure is given as CO divided by the total peripheral
resistance (TPR)

AP=
CO
TPR

. (2.6)

The remaining 3 parts of the regulation of the system describes the impact of the local blood flow
regulation on the total blood flow.

9. In step 7 the cardiac output (CO) depend on the resistance to venous return (RVR). Resis-
tance to venous return (RVR) is usually considered to be a set fraction of the total peripheral
resistance(TPR)

RVR= 0.07TPR. (2.7)

10. The long term local blood flow regulation will increase the resistance to flow if the tissue is
experiencing excess perfusion. This regulation however happens exponentially with a 1/2
time of approximately 2 days. Thus the total peripheral resistance (TPR) will gradually move
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towards the value corresponding to the current cardiac output (CO) as shown in Figure 2.4
at (10).

11. In addition to the long term regulation of the local blood flow regulation the TPR is
also sensitive to the metabolic rate - primarily determined by the activity of the muscles.
Metabolic activity will lead to a dilation of the vessels adjacent to the active tissue, to ensure
increased perfusion. This increased perfusion will lead to an overall decrease in TPR given
by,

TPR=
Normal TPR

Metabolic dilation
. (2.8)

Regulation through the autonomic nervous system

The intrinsic regulation presented above operates with no direct neural input. However, in certain
situations it is advantageous for the body to change the function of the cardiovascular circulation
quickly. The autonomic nervous system, consisting of the sympathetic and parasympathetic nervous
system, does exactly this.

Sympathetic nervous system

With regards to the regulation of the cardiovascular system the sympathetic nervous system is the one
with the larger effect. The main effect of the sympathetic nervous system is to increase the arterial
pressure and cardiac output - usually in situations where large amount of nutrients is required for the
muscles.

The sympathetic nervous system innervates almost every blood vessel in the body - allowing
for quick effects on the local resistance to blood flow - as well as the heart. Figure 2.5 shows how
the sympathetic nerves innervates the different parts of the blood circulation on either side of the
capillaries. Depending on the tissue and the type of stimuli of the vasomotor center, the sympathetic
activation might cause vasoconstriction for both arteries, arterioles, venules and veins. Tissue where all
vessels are constricted by sympathetic activation is usually found in kidneys, stomach, and other tissue
that can do without perfusion if additional nutrients are required in the muscles for physical work.
For muscle tissue the effect is different. Here sympathetic activation typically induces vasodilation,
to accommodate the increase in required perfusion. The overall effect of sympathetic activation is
increased arterial pressure and cardiac output.

Parasympathetic nervous system

The impact of the parasympathetic nervous system is smaller than that of the sympathetic nervous
system. The parasympathetic tone is mediated through the vagus nerve and innervate the heart. At the
heart the effect of the parasympathetic activation is to decrease heart rate and the force of contraction.

13



Figure 2.5: Innervation of the systemic circulation of the sympathetic nervous system. Reprinted
with permission from A.C. Guyton 1971.

It does not affect blood vessels like the sympathetic nervous system does. Since, cardiac output is the
product of stroke volume and heart rate

CO= SV×HR, (2.9)

activation of the parasympathetic nervous system leads to a decrease in cardiac output.

2.2.2 Determinants of arterial blood pressure

During a cardiac cycle the blood pressure changes between high pressure during the contraction called
the systolic blood pressure and a low pressure before the contraction, called the diastolic blood pressure.
This pressure difference between the systolic and diastolic value is the dynamic component, while the
level is called the static component.

Static component of arterial blood pressure

Control of the static component of the arterial blood pressure is achieved by multiple regulation
mechanisms that work on different timescales.

Short timescale

On the shortest timescale (seconds to minutes) the autonomic nervous system will be activated
through the baroreceptor (pressure/stretch sensitive) reflex, the chemoreceptor (chemical sensitive) or
the ischemic response (low oxygen) reflex depending on the change that needs adoption to.

The regulation of these systems is through the autonomic nervous system with the signal being
mediated through the concentration of the neurotransmitters acetylcholine and noradrenaline. The
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effectors of these systems are the smooth muscle lining blood vessels and the pacemaker cells of the
heart. Acetylcholine concentration is regulated from the activity of the parasympathetic nervous
system and it’s primary effect regarding blood pressure is on the pacemaker cells of the heart. Increased
amounts of acetylcholine will slow the heart rate while a decreased concentration will increase the
heart rate. Noradrenaline concentration on the other hand is regulated from the activity of the
sympathetic nervous system. Like acetylcholine noradrenaline also affects the pacemaker cells of the
heart, but with an opposite effect. An increased concentration of noradrenaline will increase heart rate
and decreased concentration will decrease heart rate. Noradrenaline also affects the cardiac muscle of
the heart increasing the contractility of the heart. Finally the sympathetic nervous system innervates
smooth muscles lining the arterial wall, as described in subsection 2.2.1, allowing constriction of blood
vessels.

It is worth noting that increased tone of the smooth muscle cells lining blood vessels not only
leads to increased arterial resistance, which leads to increased arterial pressure, but also to a decrease
in the volume of blood pooled in peripheral limbs (Burton 1966, p. 180). Hence, the immediate
regulation of blood pressure is primarily done by regulation of peripheral resistance and heart rate,
while a constriction of vessel volume plays a role as well, as it increase the rate at which the blood
returns to the heart, and thereby increases the cardiac filling and stroke volume.

Intermediate timescale

On the intermediate timescale (hours) the capillary fluid shift will counteract changes in blood pressure
by shifting fluid volume between blood and interstitial fluid at the capillaries from high pressure to
low pressure. On the same timescale the stress-relaxation will change the volume available for storage
of the blood in vessels throughout the body.

Long timescale

On the longer timescale (hours to days) the kidney will regulate the arterial blood pressure by
controlling the retention of salts and water and thereby controlling the total volume of fluid in the
body. The complete feedback system for this regulation was described in Section 2.2.1.

Dynamic component

The dynamic component of the arterial blood pressure is the pulse pressure - the difference between
systolic and diastolic pressure. This difference is determined by the vessel compliance. The pressure
increases as the heart contracts, leading up to systole. Due to the large resistance to flow, most of
the force/pressure expelled by the heart goes towards distending the wall of the large arteries. This
increases the volume of the arteries, as the ejected blood is pooled in the arteries. The distensibility
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of the wall is described by the compliance C of the arterial wall, defined as the volume change per
pressure change,

C =
∆V
∆P

. (2.10)

Hence a vessel with large compliance will expand greatly as pressure increase, while a vessel with small
compliance will require a large pressure to distend. Note that qualitative nature of compliance is the
inverse of elasticity, which is a measure of the change in force generated by displacement.

Figure 2.6: A typical pulse pressure profile. Figure from Wikimedia Commons (http://commons.
wikimedia.org/wiki/File:Arterial-blood-pressure-curve.svg).

After the heart valve is shut at the end of the contraction, the difference between the pressure
exerted by the distended wall in the aorta and the pressure in the systemic veins, will drive a steady
flow of blood through the circulation. As the blood leaves the aorta, the driving pressure difference
between arterial and venous side decreases exponentially towards 0. The discharge is analogous to that
of a charged capacitor in an electric RC circuit.

Since the blood causing the distention of the wall is the volume of one heart contraction and the
compliance is a characteristic of the wall, one can relate the pulse pressure ∆P to the physiologically
defined stroke volume SV=∆V

SV=C∆P. (2.11)

Hence, for situations where the compliance can be considered constant measurements of the pulse
pressure can be used as an indicator of the stroke volume. Equation (2.1) stated that cardiac output is
the product of stroke volume and heart rate. Thus, combining the pulse pressure with a measurement
of the heart rate gives an indicator for the cardiac output

CO= SV×HR=C∆PHR. (2.12)
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Figure 2.7: Aortic Pulse-wave velocity versus age. Graph is produced from digitized data from Burton
1966.

Pulse pressure velocity

Simultaneous measurements of the pulse pressure different distances from the heart shows that the
pulse propagation is not instantaneous. The pulse pressure velocity can be determined by dividing
the distance between measurement points by the delay of the pulse pressure profile. Experimental
measurements (Hallock 1934) has shown that the velocity increases with age, as is demonstrated in
Figure 2.7. This increase in pulse-wave velocity with age is due to a decrease in arterial compliance.
This relation is build on classical derivation for the velocity of propagation of transverse elastic
waves (Burton 1966). The relation states that,

v =
3.57
p

D
, or D =

�

3.57
v

�2
, (2.13)

where v is the pulse-wave velocity and D =
∆V/V
∆P is the distensibility (or relative compliance). Using

this formula the pulse wave velocity data in Figure 2.7 can be related to distensibility. A velocity of
10 m/s is recorded for the eldest group and corresponds to a distensibility of 0.13 1/mmHg. Meanwhile a
velocity of 5 m/s is recorded for the youngest group and correspond to a distensibility of 0.51 1/mmHg.
The graph is a clear indicator that the arterial wall stiffens as we age.

Another interesting effect of this relationship is that the pulse-wave profile changes as it propagates.
Figure 2.8 shows the pulse pressure profile at different points in the arteries of the systemic circulation.
Looking at the first two frames showing the profile at Proximal aorta and the femoral aorta we see
that the inclining slope initiating the pressure wave is steeper in the femoral artery. Figure 2.9 shows
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174 Unit IV The Circulation

Abnormal Pressure Pulse Contours
Some conditions of the circulation also cause abnor-
mal contours of the pressure pulse wave in addition 
to altering the pulse pressure. Especially distinctive
among these are aortic stenosis, patent ductus arterio-
sus, and aortic regurgitation, each of which is shown in
Figure 15–4.

In aortic stenosis, the diameter of the aortic valve
opening is reduced significantly, and the aortic pres-
sure pulse is decreased significantly because of dimin-
ished blood flow outward through the stenotic valve.

In patent ductus arteriosus, one half or more of the
blood pumped into the aorta by the left ventricle flows
immediately backward through the wide-open ductus
into the pulmonary artery and lung blood vessels, thus
allowing the diastolic pressure to fall very low before
the next heartbeat.

In aortic regurgitation, the aortic valve is absent or
will not close completely. Therefore, after each heart-
beat, the blood that has just been pumped into the
aorta flows immediately backward into the left ventri-
cle. As a result, the aortic pressure can fall all the way
to zero between heartbeats. Also, there is no incisura
in the aortic pulse contour because there is no aortic
valve to close.

Transmission of Pressure Pulses 
to the Peripheral Arteries

When the heart ejects blood into the aorta during
systole, at first only the proximal portion of the aorta
becomes distended because the inertia of the blood
prevents sudden blood movement all the way to the
periphery. However, the rising pressure in the proxi-
mal aorta rapidly overcomes this inertia, and the wave
front of distention spreads farther and farther along
the aorta, as shown in Figure 15–5. This is called trans-
mission of the pressure pulse in the arteries.

The velocity of pressure pulse transmission in the
normal aorta is 3 to 5 m/sec; in the large arterial
branches, 7 to 10 m/sec; and in the small arteries, 15 to
35 m/sec. In general, the greater the compliance of
each vascular segment, the slower the velocity, which
explains the slow transmission in the aorta and the
much faster transmission in the much less compliant
small distal arteries. In the aorta, the velocity of trans-
mission of the pressure pulse is 15 or more times the
velocity of blood flow because the pressure pulse is
simply a moving wave of pressure that involves little
forward total movement of blood volume.

Damping of the Pressure Pulses in the Smaller Arteries, Arteri-
oles, and Capillaries. Figure 15–6 shows typical changes
in the contours of the pressure pulse as the pulse
travels into the peripheral vessels. Note especially in
the three lower curves that the intensity of pulsation
becomes progressively less in the smaller arteries,
the arterioles, and, especially, the capillaries. In fact,
only when the aortic pulsations are extremely large or
the arterioles are greatly dilated can pulsations be
observed in the capillaries.

Wave fronts

Figure 15–5

Progressive stages in transmission of the pressure pulse along the
aorta.
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Figure 15–6

Changes in the pulse pressure contour as the pulse wave travels
toward the smaller vessels.

Figure 2.8: The pulse pressure profile recorded at different locations of the arterial system. Note
the delay of the signal in the femoral artery as well as the increased initial slope. The delay enables
the calculation of the pulse-wave velocity. The change in slope is due to higher wave speed at higher
pressure, causing the top of the wave to overtake the initial incline. Reprinted with permission from
Hall 2011.
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172 Unit IV The Circulation

individual vessels. This value is called the compliance
or capacitance of the respective vascular bed; that is,

Compliance and distensibility are quite different. A
highly distensible vessel that has a slight volume may
have far less compliance than a much less distensible
vessel that has a large volume because compliance is
equal to distensibility times volume.

The compliance of a systemic vein is about 24 times
that of its corresponding artery because it is about 8
times as distensible and it has a volume about 3 times
as great (8 ¥ 3 = 24).

Volume-Pressure Curves of the
Arterial and Venous Circulations

A convenient method for expressing the relation of
pressure to volume in a vessel or in any portion of the
circulation is to use the so-called volume-pressure
curve. The red and blue solid curves in Figure 15–1 
represent, respectively, the volume-pressure curves 
of the normal systemic arterial system and venous
system, showing that when the arterial system of the
average adult person (including all the large arteries,
small arteries, and arterioles) is filled with about 700
milliliters of blood, the mean arterial pressure is 
100 mm Hg, but when it is filled with only 400 milli-
liters of blood, the pressure falls to zero.

Vascular compliance
Increase in volume
Increase in pressure

=

In the entire systemic venous system, the volume
normally ranges from 2000 to 3500 milliliters, and a
change of several hundred millimeters in this volume
is required to change the venous pressure only 3 to
5 mm Hg. This mainly explains why as much as one
half liter of blood can be transfused into a healthy
person in only a few minutes without greatly altering
function of the circulation.

Effect of Sympathetic Stimulation or Sympathetic Inhibition on
the Volume-Pressure Relations of the Arterial and Venous
Systems. Also shown in Figure 15–1 are the effects that
exciting or inhibiting the vascular sympathetic nerves
has on the volume-pressure curves. It is evident that
increase in vascular smooth muscle tone caused by
sympathetic stimulation increases the pressure at each
volume of the arteries or veins, whereas sympathetic
inhibition decreases the pressure at each volume.
Control of the vessels in this manner by the sympa-
thetics is a valuable means for diminishing the 
dimensions of one segment of the circulation, thus
transferring blood to other segments. For instance, an
increase in vascular tone throughout the systemic cir-
culation often causes large volumes of blood to shift
into the heart, which is one of the principal methods
that the body uses to increase heart pumping.

Sympathetic control of vascular capacitance is also
highly important during hemorrhage. Enhancement of
sympathetic tone, especially to the veins, reduces the
vessel sizes enough that the circulation continues to
operate almost normally even when as much as 25 per
cent of the total blood volume has been lost.

Delayed Compliance 
(Stress-Relaxation) of Vessels
The term “delayed compliance” means that a vessel
exposed to increased volume at first exhibits a large
increase in pressure, but progressive delayed stretching
of smooth muscle in the vessel wall allows the pressure
to return back toward normal over a period of minutes
to hours. This effect is shown in Figure 15–2. In this
figure, the pressure is recorded in a small segment of a
vein that is occluded at both ends. An extra volume of
blood is suddenly injected until the pressure rises from
5 to 12 mm Hg. Even though none of the blood is
removed after it is injected, the pressure begins to
decrease immediately and approaches about 9 mm Hg
after several minutes. In other words, the volume of
blood injected causes immediate elastic distention of the
vein, but then the smooth muscle fibers of the vein begin
to “creep” to longer lengths, and their tensions corre-
spondingly decrease. This effect is a characteristic of all
smooth muscle tissue and is called stress-relaxation,
which was explained in Chapter 8.

Delayed compliance is a valuable mechanism by
which the circulation can accommodate much extra
blood when necessary, such as after too large a transfu-
sion. Delayed compliance in the reverse direction is one
of the ways in which the circulation automatically
adjusts itself over a period of minutes or hours to dimin-
ished blood volume after serious hemorrhage.
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Figure 15–1

“Volume-pressure curves” of the systemic arterial and venous
systems, showing the effects of stimulation or inhibition of the sym-
pathetic nerves to the circulatory system.

Figure 2.9: Pressure of arterial and venous system as a function of volume. Note that the arterial side
reaches a maximum volume as pressure increases. As the volume approaches this maximum value the
slope goes to infinity, corresponding to the compliance approaching zero. Reprinted with permission
from Hall 2011.

the pressure plotted against volume of the arterial and venous systems. As the volume of the arteries
goes to their maximum, the slope of the curve goes to infinity. Since the slope is given by d P

dV , it is the
inverse of compliance, and the vertical curve reflects the compliance approaching zero. This effect is
revealed in Figure 2.10 where the data for the arterial system from Figure 2.9 is plotted with the axis
swapped along with the derivative - the compliance. We saw earlier that lower compliance results in
increased wave propagation speed. This means that the top of the pressure wave travels faster than the
rest of the wave, resulting in the top "catching up" to the initial rise in pressure, increasing the slope.

To summarize, the pulse pressure is determined primarily by the compliance of the arterial wall.
The compliance of the arterial wall can be determined by the pulse-wave velocity and decreases with
age. In addition the compliance is subject to the regulation through the sympathetic activation of the
smooth muscle cells lining the arterial wall, as described earlier. In addition to causing constriction
sympathetic stimulation will also decrease arterial compliance. Likewise, sympathetic inhibition will
increase compliance of the smooth muscle cells.
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Figure 2.10: Arterial volume and compliance plotted against pressure. The volume curve is a sigmoidal
plotted from digitized data from Figure 2.9 and the compliance is the derivative of the sigmoidal.

2.2.3 Blood flow regulation

The overall purpose of the blood circulation is the transport of nutrients, waste products and heat.
In general tissue uses nutrients and produces waste products and heat. Depending on the state of
the body different kinds of tissue/areas of the body are prioritized by the cardiovascular circulation.
When high physical activity is required skeletal muscles are prioritized, when resting and digesting,
intestines are prioritized. When temperature of the body is high flow to the skin is increased, when it
is low, blood flow to the skin is decreased and mechanisms to produce heat activated.

A few local regulatory mechanisms are worth considering to give representative examples of local
regulation specific for different organs: Blood flow in the brain, in the skin and to skeletal muscle.

Blood flow regulation in the brain

Proper function of the brain requires constant supply of oxygen and removal of carbon dioxide. This
means that the regulation of blood flow to the brain primarily has the purpose of maintaining constant
blood flow. The local control will respond to carbon dioxide and ischemia.

Increased carbon dioxide concentration in the blood is a very strong inhibitor of the vasoconstrictor
mechanism of the vasomotor center. Exactly how the C O2 concentration stimulates the vasomotor
center is unknown, but it is presumed that carbon dioxide acts directly on the neuronal cells.

Ischemia is when blood flow to the brain is insufficient to maintain regular metabolism. Ischemia
induces a response very similar to that of the high carbon dioxide concentrations - it activates the
sympathetic nervous system vasoconstriction through the vasomotor center. This ischemic reaction

20



is useful if, for example, the pressure in the cerebral spinal fluid increases. If the pressure in the
cerebrospinal fluid increases to that of the arteries in the cranial vault, the arteries will start to contract,
and thus decrease blood flow to the brain. This decrease triggers an ischemic response through the
vasomotor center increasing the arterial pressure. When the arterial pressure is increased sufficiently,
blood will again flow to the brain.

Blood flow regulation in the skin

The main function of the circulation of blood through the skin is ensuring correct internal temperature
of the body. Thermosensitive sensors are located in the thermal control center of the hypothalamus,
in the skin, spinal chord and larger veins in the upper body. The hypothalamus contains both heat
and cold sensitive sensors, whereas the skin and the deep body sensors in the spinal chord and larger
veins in the upper body are primarily sensitive to cold. The nervous signals for these different sensors
are integrated in the posterior hypothalamus, which then initiates the appropriate actions of the body
to regulate the temperature.

Vasoconstriction of the blood vessels in the skin decreases blood flow to the skin retaining heat
in the body. This works in cooperation with an increased heat production to maintain proper
temperature in the body. Another effect is piloerrection, which causes contraction of the muscles
surrounding the hair follicles on the skin resulting in the hair standing up. This has no real effect on
humans due to our furless skin, but on other animals this leads to a thicker insulating layer of air
around the skin. Vasodilation has the opposite effect as it increases the blood flow to the skin and
thus help cool the body. Vasodilation works in cooperation with sweating and decrement of heat
production.

Blood flow regulation skeletal muscle

The primary purpose of blood flow to the skeletal muscle is to supply adequate nutrients corresponding
to the current level of activity and to remove excess heat. When the muscles are active the demand for
nutrients increases, and the flow of blood should be adjusted accordingly.

Locally the blood flow is regulated intrinsically at the arteriolar level. As described in Section 2.2.1
this regulation is done through dilation of arterioles when oxygen levels of the tissue surrounding the
capillaries are low and constricting them when oxygen levels are high.

Intensive and extensive activation of skeletal muscle usually follows sympathetic activation. This
means that as the demand for oxygen increases, the cardiovascular system is already prepared to
increase perfusion of the skeletal muscles. Preparation involves increased cardiac output and arterial
pressure via an increase in systemic resistance and systemic venous volume.
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2.3 Baroreceptor Reflex

While many organs of the human body are considered essential for survival, the brain and the heart are
critical (Burton 1966). The health of the brain is reliant on sufficient supply of nutrients and removal
of waste. Local regulation can increase resistance to reduce flow in case of high blood pressure, but no
local mechanism can compensate for insufficient blood supply due to low arterial blood pressure. It is
therefore vital for the brain that the system-wide blood pressure regulation, the baroreceptor reflex or
simply the baroreflex, is functioning properly.

One should understand the baroreflex as a feedback loop with sensors, an integrator and several
effectors - not unlike a thermostat. For a thermostat, changes in temperature away from the set point
is registered by a thermometer that signals some kind of integrating unit, which in turns activate the
effectors, thereby either heating or cooling to drive the temperature back to the set point. For the
baroreceptor reflex, the baroreceptors are the sensors, that reads the level of and changes in blood
pressure, the Nucleus Tractus Solitarius (NTS) works as the integrator, integrating the different sensory
inputs, and signals the effectors that drives the blood pressure back towards the desired range of
function. A well functioning baroreflex have several effectors to activate in response to a drop in blood
pressure (Hall 2011):

• Increased system resistance to blood flow by contraction of smooth muscles lining arterioles.
An increased resistance means that it will be harder to push blood through the vessels,
increasing the arterial pressure (in front of the arterioles).

• Decreased venous volume through contraction of smooth muscles lining the veins. In
addition to increasing systemic resistance slightly, the decreased venous volume increases
cardiac return, which in turn increase cardiac output through the effect of the Frank-Starling
mechanism, and thereby increase arterial blood pressure.

• Increased heart rate and contractile force of the heart, increasing the rate at which blood
is moved from the venous to the arterial side of the circulation, increasing arterial blood
pressure.

Figure 2.11 sketches the components involved in the baroreceptor reflex and the responses described
above. While all of these effects are important for an effective regulation, this study focuses on the
latter mechanism regulating heart rate in response to changes in blood pressure. The following will
therefore describe only the parts of the system related to heart rate control.

2.3.1 Baroreceptors

The baroreceptors are pressure sensitive neurons originating in the wall in the large arteries with the
highest densities being in the aortic and carotid arches as shown in Figure 2.11. Just as other neurons,
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Reflex Mechanisms for Maintaining
Normal Arterial Pressure

Aside from the exercise and stress functions of the
autonomic nervous system to increase arterial pres-
sure, there are multiple subconscious special nervous
control mechanisms that operate all the time to main-
tain the arterial pressure at or near normal. Almost 
all of these are negative feedback reflex mechanisms,
which we explain in the following sections.

The Baroreceptor Arterial Pressure Control
System—Baroreceptor Reflexes
By far the best known of the nervous mechanisms for
arterial pressure control is the baroreceptor reflex.
Basically, this reflex is initiated by stretch receptors,
called either baroreceptors or pressoreceptors, located
at specific points in the walls of several large systemic
arteries. A rise in arterial pressure stretches the
baroreceptors and causes them to transmit signals into
the central nervous system. “Feedback” signals are
then sent back through the autonomic nervous system
to the circulation to reduce arterial pressure down-
ward toward the normal level.

Physiologic Anatomy of the Baroreceptors and Their Innerva-
tion. Baroreceptors are spray-type nerve endings that
lie in the walls of the arteries; they are stimulated when
stretched. A few baroreceptors are located in the wall
of almost every large artery of the thoracic and neck
regions; but, as shown in Figure 18–5, baroreceptors
are extremely abundant in (1) the wall of each inter-
nal carotid artery slightly above the carotid bifurca-
tion, an area known as the carotid sinus, and (2) the
wall of the aortic arch.

Figure 18–5 shows that signals from the “carotid
baroreceptors” are transmitted through very small
Hering’s nerves to the glossopharyngeal nerves in 
the high neck, and then to the tractus solitarius in the
medullary area of the brain stem. Signals from the
“aortic baroreceptors” in the arch of the aorta are
transmitted through the vagus nerves also to the same
tractus solitarius of the medulla.

Response of the Baroreceptors to Pressure. Figure 18–6
shows the effect of different arterial pressure levels on
the rate of impulse transmission in a Hering’s carotid
sinus nerve. Note that the carotid sinus baroreceptors
are not stimulated at all by pressures between 0 and
50 to 60 mm Hg, but above these levels, they respond
progressively more rapidly and reach a maximum at
about 180 mm Hg. The responses of the aortic barore-
ceptors are similar to those of the carotid receptors
except that they operate, in general, at pressure levels
about 30 mm Hg higher.

Note especially that in the normal operating range
of arterial pressure, around 100 mm Hg, even a slight
change in pressure causes a strong change in the
baroreflex signal to readjust arterial pressure back
toward normal. Thus, the baroreceptor feedback
mechanism functions most effectively in the pressure
range where it is most needed.
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Figure 18–5

The baroreceptor system for controlling arterial pressure.
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Figure 18–6

Activation of the baroreceptors at different levels of arterial 
pressure. DI, change in carotid sinus nerve impulses per second;
DP, change in arterial blood pressure in mm Hg.
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Sympathetic Nerve Fibers to the Heart. In addition to
sympathetic nerve fibers supplying the blood vessels,
sympathetic fibers also go directly to the heart, as
shown in Figure 18–1 and also discussed in Chapter 9.
It should be recalled that sympathetic stimulation
markedly increases the activity of the heart, both
increasing the heart rate and enhancing its strength
and volume of pumping.

Parasympathetic Control of Heart Function, Especially Heart
Rate. Although the parasympathetic nervous system is
exceedingly important for many other autonomic
functions of the body, such as control of multiple gas-
trointestinal actions, it plays only a minor role in 
regulation of the circulation. Its most important circu-
latory effect is to control heart rate by way of parasym-
pathetic nerve fibers to the heart in the vagus 
nerves, shown in Figure 18–1 by the dashed red line
from the brain medulla directly to the heart.

The effects of parasympathetic stimulation on 
heart function were discussed in detail in Chapter 9.
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Figure 18–1

Anatomy of sympathetic nervous
control of the circulation. Also
shown by the red dashed line is a
vagus nerve that carries parasym-
pathetic signals to the heart.
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Arterioles

Capillaries
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Figure 18–2

Sympathetic innervation of the systemic circulation.

Figure 2.11: An overview of the components involved in the baroreflex. Left: Changes in arterial
blood pressure are sensed by pressure sensitive neurons called baroreceptors in wall of arterial wall
in the aortic arch and at carotid. Baroreceptors induces a nerve signal mediated by the vagus or
Hering’s nerve respectively, both terminating in Tractus Solitarius of the Medulla. Reprinted with
permission from Hall 2011. Right: The black lines reflect the sympathetic nerves, while the dashed
red line represent the vagus nerve that transmits the parasympathetic signal. Upon drop in pressure
the vasoconstrictor center is activated causing an increase in sympathetic tone that leads to contraction
of smooth muscles in arterioles and veins and an increase in rate and force of heart contractions. Mean-
while the vasomotor center withdraws parasympathetic tone in the vagus nerve, thereby increasing
heart rate. Reprinted with permission from Hall 2011.

baroreceptors have a resting membrane potential of approximately −65mV. The negative potential is
generated by the so called sodium-potassium pump that exchanges three Na+ ions from the inside to the
outside of the cell in exchange for two K+ ions. At −65mV, the electrical potential and concentration
gradients across the membrane are so large that an amount of ions equivalent to the one pumped leaks
through the cell membrane, thereby reaching a constant level of polarization.

When the pressure sensitive end of the baroreceptor neuron is stimulated it causes a flow of positive
ions into the neuron thereby depolarizing it (becoming less negative). As the membrane potential
is increased to approximately −45mV voltage-gated sodium channels opens, allowing a large influx
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of positive ions into the neuron. When the potential is close to zero the sodium-gated channels are
deactivated, and voltage-gated potassium channels are activated, which will eventually start building up
the membrane potential again. Since the depolarization happens at the end of the neuron, naturally,
the excess amount of positive ions will begin to flow towards the remainder of the neuron, which is
still highly polarized. This flux of positive ions will depolarize the membrane further, illustrated in
Figure 2.12, causing voltage-gated sodium channels further down the neuron to open as the potential
spreads, thereby starting a chain of depolarization along the neuron. This travelling wave of electrical
potential is called an action potential, and works analogous in all nerve cells. It is important to note
that the electrical potentials are always of the same magnitude and that large stimulation leads to a
higher frequency rather than larger electrical "waves".

Figure 2.12: A schematic of a baroreceptor neuron with Na+ and K+ channels. Notice that the
voltage gated channels are primarily placed along the axon to facilitate the propagation of action
potentials.

2.3.2 Afferent firing

The baroreceptors are sensitive to pressure level and to changes in pressure, but mostly so at the typical
operating pressure (Boron and Boulpaep 2012). Figure 2.13 shows the generated firing rate from the
carotid baroreceptors for different levels of arterial blood pressure. It should be noted that:

• Firing at normal blood pressure is not zero. This means that the baroreceptors are able to
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signal both positive and negative changes in blood pressure.

• Firing goes to zero for a healthy adult as the blood pressure drops near 50 mmHg, and
reaches a maximum as blood pressure increases above 180 mmHg.

• The gradient of the curve is largest at normal blood pressure values around 100 mmHg.
This means that the largest changes in the signal is sensed when blood pressure moves away
from the set point at the normal value. This allows for quick and precise regulation by the
baroreflex.

• The generated firing depends greatly on how fast the pressure changes. If blood pressure
suddenly increases rapidly the response from the baroreceptors will be much larger than if
it increases slowly. This is due to the graded generator potential from the sensory receptor
causing larger depolarization, and thus causing more action potentials, for fast pressure
changes.
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Reflex Mechanisms for Maintaining
Normal Arterial Pressure

Aside from the exercise and stress functions of the
autonomic nervous system to increase arterial pres-
sure, there are multiple subconscious special nervous
control mechanisms that operate all the time to main-
tain the arterial pressure at or near normal. Almost 
all of these are negative feedback reflex mechanisms,
which we explain in the following sections.

The Baroreceptor Arterial Pressure Control
System—Baroreceptor Reflexes
By far the best known of the nervous mechanisms for
arterial pressure control is the baroreceptor reflex.
Basically, this reflex is initiated by stretch receptors,
called either baroreceptors or pressoreceptors, located
at specific points in the walls of several large systemic
arteries. A rise in arterial pressure stretches the
baroreceptors and causes them to transmit signals into
the central nervous system. “Feedback” signals are
then sent back through the autonomic nervous system
to the circulation to reduce arterial pressure down-
ward toward the normal level.

Physiologic Anatomy of the Baroreceptors and Their Innerva-
tion. Baroreceptors are spray-type nerve endings that
lie in the walls of the arteries; they are stimulated when
stretched. A few baroreceptors are located in the wall
of almost every large artery of the thoracic and neck
regions; but, as shown in Figure 18–5, baroreceptors
are extremely abundant in (1) the wall of each inter-
nal carotid artery slightly above the carotid bifurca-
tion, an area known as the carotid sinus, and (2) the
wall of the aortic arch.

Figure 18–5 shows that signals from the “carotid
baroreceptors” are transmitted through very small
Hering’s nerves to the glossopharyngeal nerves in 
the high neck, and then to the tractus solitarius in the
medullary area of the brain stem. Signals from the
“aortic baroreceptors” in the arch of the aorta are
transmitted through the vagus nerves also to the same
tractus solitarius of the medulla.

Response of the Baroreceptors to Pressure. Figure 18–6
shows the effect of different arterial pressure levels on
the rate of impulse transmission in a Hering’s carotid
sinus nerve. Note that the carotid sinus baroreceptors
are not stimulated at all by pressures between 0 and
50 to 60 mm Hg, but above these levels, they respond
progressively more rapidly and reach a maximum at
about 180 mm Hg. The responses of the aortic barore-
ceptors are similar to those of the carotid receptors
except that they operate, in general, at pressure levels
about 30 mm Hg higher.

Note especially that in the normal operating range
of arterial pressure, around 100 mm Hg, even a slight
change in pressure causes a strong change in the
baroreflex signal to readjust arterial pressure back
toward normal. Thus, the baroreceptor feedback
mechanism functions most effectively in the pressure
range where it is most needed.
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Figure 18–5

The baroreceptor system for controlling arterial pressure.
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Activation of the baroreceptors at different levels of arterial 
pressure. DI, change in carotid sinus nerve impulses per second;
DP, change in arterial blood pressure in mm Hg.

Figure 2.13: Firing of carotid baroreceptors as a function of arterial blood pressure. Note that firing
rate for typical blood pressure is not zero, hence allowing for both positive and negative changes to be
sensed by the baroreflex. Reprinted with permission from Hall 2011.

2.3.3 Autonomic Nervous System

The Autonomic Nervous System (ANS) is the part of the nervous system that works autonomous,
without conscient direction from the brain. The signals from the baroreceptors are integrated in the
area of the medulla called Nucleus Tractus Solitarius (NTS). Figure 2.14 contains a schematic of the
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brain that shows the location of the medulla. For blood pressure control these signals are used to
activate the vasoconstrictor and vasodilator centers of the vasomotor center when necessary. Control

206 Unit IV The Circulation

Principally, parasympathetic stimulation causes a
marked decrease in heart rate and a slight decrease in
heart muscle contractility.

Sympathetic Vasoconstrictor System and 
Its Control by the Central Nervous System
The sympathetic nerves carry tremendous numbers of
vasoconstrictor nerve fibers and only a few vasodilator
fibers. The vasoconstrictor fibers are distributed to
essentially all segments of the circulation, but more to
some tissues than others. This sympathetic vasocon-
strictor effect is especially powerful in the kidneys,
intestines, spleen, and skin but much less potent in
skeletal muscle and the brain.

Vasomotor Center in the Brain and Its Control of the Vasocon-
strictor System. Located bilaterally mainly in the retic-
ular substance of the medulla and of the lower third
of the pons, shown in Figures 18–1 and 18–3, is an area
called the vasomotor center. This center transmits
parasympathetic impulses through the vagus nerves to
the heart and transmits sympathetic impulses through
the spinal cord and peripheral sympathetic nerves 
to virtually all arteries, arterioles, and veins of the
body.

Although the total organization of the vasomotor
center is still unclear, experiments have made it 

possible to identify certain important areas in this
center, as follows:

1. A vasoconstrictor area located bilaterally in the
anterolateral portions of the upper medulla. The
neurons originating in this area distribute their
fibers to all levels of the spinal cord, where they
excite preganglionic vasoconstrictor neurons of the
sympathetic nervous system.

2. A vasodilator area located bilaterally in the
anterolateral portions of the lower half of the
medulla. The fibers from these neurons project
upward to the vasoconstrictor area just described;
they inhibit the vasoconstrictor activity of this area,
thus causing vasodilation.

3. A sensory area located bilaterally in the tractus
solitarius in the posterolateral portions of the
medulla and lower pons. The neurons of this area
receive sensory nerve signals from the circulatory
system mainly through the vagus and
glossopharyngeal nerves, and output signals from
this sensory area then help to control activities of
both the vasoconstrictor and vasodilator areas of
the vasomotor center, thus providing “reflex”
control of many circulatory functions. An example
is the baroreceptor reflex for controlling arterial
pressure, which we describe later in this chapter.

Continuous Partial Constriction of the Blood Vessels Is Nor-
mally Caused by Sympathetic Vasoconstrictor Tone. Under
normal conditions, the vasoconstrictor area of the
vasomotor center transmits signals continuously to 
the sympathetic vasoconstrictor nerve fibers over the
entire body, causing continuous slow firing of these
fibers at a rate of about one half to two impulses per
second.This continual firing is called sympathetic vaso-
constrictor tone. These impulses normally maintain a
partial state of contraction in the blood vessels, called
vasomotor tone.

Figure 18–4 demonstrates the significance of vaso-
constrictor tone. In the experiment of this figure,
total spinal anesthesia was administered to an animal.
This blocked all transmission of sympathetic nerve
impulses from the spinal cord to the periphery. As a
result, the arterial pressure fell from 100 to 50 mm Hg,
demonstrating the effect of losing vasoconstrictor tone
throughout the body. A few minutes later, a small
amount of the hormone norepinephrine was injected
into the blood (norepinephrine is the principal 
vasoconstrictor hormonal substance secreted at the
endings of the sympathetic vasoconstrictor nerve
fibers throughout the body). As this injected hormone
was transported in the blood to all blood vessels, the
vessels once again became constricted, and the arterial
pressure rose to a level even greater than normal for
1 to 3 minutes, until the norepinephrine was destroyed.

Control of Heart Activity by the Vasomotor Center. At the
same time that the vasomotor center is controlling the
amount of vascular constriction, it also controls heart
activity. The lateral portions of the vasomotor center
transmit excitatory impulses through the sympathetic
nerve fibers to the heart when there is need to increase
heart rate and contractility. Conversely, when there is
need to decrease heart pumping, the medial portion of
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Figure 18–3

Areas of the brain that play important roles in the nervous regula-
tion of the circulation. The dashed lines represent inhibitory 
pathways.

Figure 2.14: Schematic of parts of the brain important for circulatory regulation. Reprinted with
permission from Hall 2011.

of heart rate is done through the sympathetic and parasympathetic nervous system which are respectively
activated through the lateral and medial portion of the vasomotor center. An increased sympathetic
signal generally leads to an increase in heart rate, while an increased parasympathetic signal leads to a
decrease in heart rate. Mostly a decrease in parasympathetic tone will be accompanied by an increase
in sympathetic tone, and vice versa, but not always. The two systems act differently on the heart, and
complex behavior may arise where they are not inversely related. Simultaneous stimulation might
for example lead to a decrease in heart rate, which usually leads to a decrease in cardiac output, and
an increase in contractile force of the heart, usually leading to increased cardiac output. As shown
in Figure 2.11 the sympathetic signal is mediated to the heart in an indirect manner through an
interconnected network of neurons. At the termination of the sympathetic neurons at the synaptic
junction at the pacemaker cells at the heart, the sympathetic neurons release the neurotransmitter
noradrenaline. As is also shown in the figure, the parasympathetic signal is mediated directly via the
vagus nerve to the heart, where the neurotransmitter acetylcholine is released onto the pacemaker cells.
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2.3.4 Neurotransmitters, sinus node pacemaker and heart

At the synapse at the pacemaker cells of the heart the sympathetic and parasympathetic neurons release
the neurotransmitters noradrenaline and acetylcholine.

Acetylcholine is synthesized in the terminal nerve ending where it is stored in large vesicles in
highly concentrated form until release. Upon release acetylcholine exists for a few milliseconds before
it is broken down to an acetate ion and choline catalyzed by the enzyme acetylcholinesterase. The
formed choline is reabsorbed into the terminal ending and used to synthesize new acetylcholine.

The synthesis of noradrenalin begins in the terminal endings and in the storage vesicles where
dopamine is hydroxylated to noradrenaline. After secretion into the synaptic junction noradrenaline is
removed in different ways, usually after 1-2 seconds. 50-80% of the noradrenaline is reuptaken into
the terminal ending, while the main part of the remaining noradrenaline is removed by diffusion into
the surrounding body fluids. Through the blood it usually makes way to the liver where it is broken
down.

The sinus node is a strip of cardiac muscle that has no contractile properties, but is able to
autonomously generate action potentials. The sinus node is connected to the atrial muscle of the
atrium such that any action potential generated in the sinus node spreads to the atrial muscle and causes
contraction. The resting membrane potential of the sines nodal fiber is similar to that of the neurons
explained earlier, but with a significant constant influx of sodium ions that works to depolarize the
membrane. This leak is illustrated in Figure 2.15 as the lower part of the potential profile with
a constant gradient. As the potential reaches approximately −40mV, slow acting sodium-calcium
channels open and initiate the action potential. For the ventricular muscles, the dynamics are different
which is illustrated by the different shapes of the potential profile. The resting potential is significantly
lower, −90mV, and the spike is initiated by the activation of fast sodium channels when the potential
is larger than approximately −85mV. Due to these fast channels, the potential can change faster than
for the sinus nodal fibers causing the almost discrete behavior of the action potential.

Note that the primary determinant of the heart rate is the depolarization caused by diffusion.
As soon as the potential hits −40mV, the action potential starts and the contraction of the heart is
initiated. When acetylcholine is released at the synapse it causes a change in membrane permeability
to potassium K+, as illustrated in Figure 2.16. This causes potassium to leak out of the cell due to the
concentration gradient, thereby hyperpolarizing the membrane potential and decreasing the action
potential and heart contraction frequency. While the mechanism is not fully understood the release of
noradrenaline increases the membrane permeability to sodium and calcium ions Na+ and C a2+. This
allows Na+ and C a2+ to enter the cell faster, increasing the rate of depolarization, leading to shorter
time between action potentials and heart contractions. Figure 2.16 gives an overview of the synapse
and the effect on the pacemaker cells.
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Chapter 10 Rhythmical Excitation of the Heart 117

the fibers of the heart’s specialized conducting system,
including the fibers of the sinus node. For this reason,
the sinus node ordinarily controls the rate of beat 
of the entire heart, as discussed in detail later in 
this chapter. First, let us describe this automatic 
rhythmicity.

Mechanism of Sinus Nodal Rhythmicity. Figure 10–2 shows
action potentials recorded from inside a sinus nodal

fiber for three heartbeats and, by comparison, a single
ventricular muscle fiber action potential. Note that the
“resting membrane potential” of the sinus nodal fiber
between discharges has a negativity of about -55 to 
-60 millivolts, in comparison with -85 to -90 millivolts
for the ventricular muscle fiber.The cause of this lesser
negativity is that the cell membranes of the sinus fibers
are naturally leaky to sodium and calcium ions, and
positive charges of the entering sodium and calcium
ions neutralize much of the intracellular negativity.

Before attempting to explain the rhythmicity of the
sinus nodal fibers, first recall from the discussions of
Chapters 5 and 9 that cardiac muscle has three types
of membrane ion channels that play important roles in
causing the voltage changes of the action potential.
They are (1) fast sodium channels, (2) slow sodium-
calcium channels, and (3) potassium channels. Opening
of the fast sodium channels for a few 10,000ths of a
second is responsible for the rapid upstroke spike of
the action potential observed in ventricular muscle,
because of rapid influx of positive sodium ions to the
interior of the fiber. Then the “plateau” of the ven-
tricular action potential is caused primarily by slower
opening of the slow sodium-calcium channels, which
lasts for about 0.3 second. Finally, opening of potas-
sium channels allows diffusion of large amounts of
positive potassium ions in the outward direction
through the fiber membrane and returns the mem-
brane potential to its resting level.

But there is a difference in the function of these
channels in the sinus nodal fiber because the “resting”
potential is much less negative—only -55 millivolts in
the nodal fiber instead of the -90 millivolts in the ven-
tricular muscle fiber. At this level of -55 millivolts,
the fast sodium channels mainly have already become
“inactivated,” which means that they have become
blocked. The cause of this is that any time the mem-
brane potential remains less negative than about -55
millivolts for more than a few milliseconds, the inacti-
vation gates on the inside of the cell membrane that
close the fast sodium channels become closed and
remain so. Therefore, only the slow sodium-calcium
channels can open (i.e., can become “activated”) and
thereby cause the action potential. As a result, the
atrial nodal action potential is slower to develop than
the action potential of the ventricular muscle. Also,
after the action potential does occur, return of the
potential to its negative state occurs slowly as well,
rather than the abrupt return that occurs for the 
ventricular fiber.

Self-Excitation of Sinus Nodal Fibers. Because of the
high sodium ion concentration in the extracellular
fluid outside the nodal fiber, as well as a moderate
number of already open sodium channels, positive
sodium ions from outside the fibers normally tend to
leak to the inside. Therefore, between heartbeats,
influx of positively charged sodium ions causes a slow
rise in the resting membrane potential in the positive
direction. Thus, as shown in Figure 10–2, the “resting”
potential gradually rises between each two heartbeats.
When the potential reaches a threshold voltage of
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Sinus node, and the Purkinje system of the heart, showing also
the A-V node, atrial internodal pathways, and ventricular bundle
branches.
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Rhythmical discharge of a sinus nodal fiber. Also, the sinus nodal
action potential is compared with that of a ventricular muscle fiber.Figure 2.15: Electrical potential of a sinus nodal fibers as it generates action potentials that initiate

heart contraction. Continuous leaking of Na+ and C a2+ depolarizes the membrane until the discharge
potential is reached and the action potential is initiated. For the ventricular fibers the action potential
is initiated as soon as any depolarization happens as it is driven by fast voltage gated sodium channels.
Reprinted with permission from Hall 2011. It should be noted that resting potential refers to the lowest
potential value, not the depolarization shown in the figure.

Figure 2.16: A schematic overview of the pacemaker cell synapse.
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Chapter 3
Data

Typical experiments for testing the baroreceptor reflex includes postural challenges such as active
stand or tilt-table tests, manipulation of systemic blood pressure such as lower body negative pressure,
or respiratory challenges, including valsalva, forced breathing and C O2-rebreathing. The modeling
efforts of this study are based around experimental tilt table data obtained by MD. Jesper Mehlsen at
Frederiksberg Hospital, Copenhagen, Denmark. This section describes the experimental procedure,
what data are collected, and how the data are prepared for use in the mathematical model.

3.1 Experiment

To induce a response from the baroreflex the head-up-tilt (HUT) test changes the posture of the
test subject by tilting the subject from supine to standing position. Initially the test subject is lying
horizontally on a table, before being tilted to a 60◦ upright angle, as illustrated in Figure 3.1. As
illustrated, the tilt causes pooling of the blood in the lower extremities, decreasing blood pressure for
all points above center of gravity. This drop in pressure activates the baroreflex, and the response can
be observed.

During the tilt, electrocardiogram (ECG) and blood pressure (BP) is measured. ECG is monitored
using a five-electrode system, and blood pressure is monitored using a photoplethysmography (Finapres
Medical Systems B.V) device mounted on the finger sampling at 1 kHz. To obtain an estimate of the
blood pressure at the heart level, the test subject’s hand is placed in a sling and held at the level of the
heart. Figure 3.1 shows the experimental setup, with a test subject in upright position.

The procedure for atypical experiment is as follows:

• ECG and finapres is mounted on the test subject.

• The test subject is placed in supine position until breathing, heart rate and blood pressure
are steady, typically 5-10 minutes.
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(a)

3 Experimental setup

The hut tests were performed at Frederiksberg Hospital by chief physician Jesper
Mehlsen. The subject was a 25 year old young volunteer with no known heart or
vascular diseases. Figure 3.1 and 3.2 shows the tilt-table before and during a tilt (note,
that the volunteer on the pictures is not our subject). The subject is in the supine po-

Figure 3.1 The patient in the supine position. Figure 3.2 The patient in the upright position.

sition and is then tilted an angle of approximately 60◦. The tilt itself takes 14 seconds.
In our tests, the subject stayed tilted for five minutes, and was then brought back to
the supine position. ECG was measured using five electrodes connected to the chest
and a pressure monitor was connected to the right index finger. From these sensors
blood pressure and ECG were measured at a frequency of 1000 Hz. The entire test
took approximately 30 minutes and consisted of two tilts. The first tilt was performed
with the blood pressure sensor located at heart level, and at the second tilt the sensor
was located at the neck, in proximity to the location of the carotid sinus baroreceptors.
In Figure 3.3 the entire blood pressure data is shown, and Figure 3.4 shows a segment of
the ECG data. The heart rate is computed as the distance between each large spike, so
this quantity can actually be identified from the data without invoking any modeling.
Figure 3.5 shows a section of the blood pressure measurement. The diastolic pressure
is a little low when compared to standard text books, the systolic pressure is normal.

When looking at the data shown in Figure 3.3, 3.4, and 3.5, it is clear that there
is a lot of fluctuation. This has to do with the fundamental problem of performing
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(b)

Figure 3.1: (a) When the test subject is tilted during HUT, the distribution of the blood volume is
changed due to gravitational pull. This causes a decrease in blood pressure in the upper body, which
activates the baroreflex. (b) Experimental setup for the HUT experiment, with the test subject in
upright position. ECG is measured using five electrodes and BP is measured using a finapres device on
the finger, with the hand located at heart level.

• The test subject is informed that the tilt is about to be initiated, and the table tilts 60◦ over a
period of approximately 14 seconds.

• The test subject is left standing for approximately 10 minutes.

• The subject is tilted down.

The data used for this study are from tests performed on young healthy male individuals in their
mid twenties believed to have perfectly functioning baroreflex regulation.

3.2 Blood pressure

Blood pressure is measured using photoplethysmography (Finapres Medical Systems B.V) mounted
on the index finger, with the hand placed at heart level with the help of a closed loop sling around the
neck.

Figure 3.2 shows blood pressure data from two different individuals.
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Figure 3.2: Blood pressure for two individuals. Left: only blood pressure available. Right: blood
pressure and ECG available.

3.3 Calculation of heart rate

During the test blood pressure (BP) and electrocardiogram (ECG) are recorded. Due to the nature of
the machines, different disturbances may occur. ECG is quite sensitive to movements of the chest such
a coughing, while BP is sensitive to movement of the finger where the sensor is attached. In addition,
the machinery measuring BP has a built-in calibration tool that might trigger during experiments to
cause disturbances of measurements. Since the periodicity of the heart is seen in both the ECG and
BP, both can be used to calculate heart rate (HR).

Figure 3.3 shows HR calculated from ECG and from BP. It is clear that there are some small
deviations, but that the agreement between the two is very good in general. Since the heart rate
calculated from blood pressure in general has more noise than that calculated from the ECG, I will be
using the heart rate extracted from the ECG.

Electrocardiogram (ECG)

Extraction of heart rate from ECG is done using the software LabChart version 7.2.4 from AD

Instruments. The software has built-in algorithms for recognising periods in an ECG curve1. Figure
3.4 illustrates how LabChart identifies the maximum of the QRS-complex.

1The settings used for Labchart are: ECG mode with QRS-width= .06s, normalization with a window of 5 seconds,
minimum peak height of 0.9 S.D., Two-sided height detector, with maximum as trigger and a minimum period of 0.4
seconds.
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Figure 1: Heart rate calculated from electrocardiogram and blood pressure.
Left: Agreement on a large timescale, with deviations from distrurbances in
blood pressure data. Right: Agreement on short timescale, with a small delay
on the BP curve due timing of markers of periods in BP and ECG data.

Figure 2: LabChart’s builtin algorithm identifies the peaks of QRS-complex for
calculating heart rate.

2 Hydrostatic contribution to blood pressure

During the experiment blood pressure is meassured using a finapres mounted on
the finger, with the hand and finger held at heart level. In supine position this
gives a good representation of the blood pressure at the carotid sinus barore-
ceptors. In the upright position, however, the blood pressure at heart level will
have a larger hydrostatic component than the blood pressure at the carotid sinus
baroreceptors. Assuming that the blood vessels of the measurement point and

2

Figure 3.3: Heart rate calculated from electrocardiogram and blood pressure. Left: Agreement on a
large timescale, with deviations from disturbances in blood pressure data. Right: Agreement on short
timescale, with a small delay, ∼ 1sec, on the BP curve due timing of markers of periods in BP and
ECG data.

Figure 3.4: LabChart’s builtin algorithm identifies the peaks of QRS-complex for calculating heart
rate.
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3.4 Hydrostatic contribution to blood pressure

During the experiment blood pressure is measured using a finapres mounted on the finger, with the
hand and finger held at heart level. In supine position this gives a good representation of the blood
pressure at the carotid sinus baroreceptors. In the upright position, the blood pressure at heart level
will have a larger hydrostatic component than the blood pressure at the carotid sinus baroreceptors.
Assuming that the blood vessels of the measurement point and the baroreceptor is well connected, the
only difference in blood pressure will be the difference in hydrostatic pressure. This contribution can
be estimated as (Williams et al. 2013),

P = hρg (3.1)

where h is the height difference, ρ is the density of the liquid, and g is the gravitational constant.
Alternatively, assuming the density of blood is similar to the density of water, one can use the units
described by (Thompson and Taylor 2008),

1 mmH2O= 9.80665 Pa, 1 mmHg= 133.3224 Pa, (3.2)

to translate the blood column height directly to mmHg through the ratio,

r =
9.80665 Pa/mmH2O

133.3224Pa/mmHg
≈ 0.074 mmHg/mmH2O. (3.3)

If we let d denote the distance from the heart to the baroreceptor, the vertical height difference
between the heart and the carotid sinus can be determined from the tilt angle φ as,

h (φ) = sin (φ)d . (3.4)

Hence, the blood pressure at the carotid sinus can be modeled as the blood pressure at heart level
minus the hydrostatic contribution,

PCS = Pheart− h × 0.074 mmHg/mmH2O.

The tilt table operates with a constant angle velocity, ω = π/(3× 14), and the height during the tilt can
be modelled as

hφ(t ) = sin
�

π

3
1
14

t
�

d . (3.5)

33



Hence the model of the carotid sinus blood pressure is,

Pcs =



















Pheart if t ≤ ttilt

Pheart− r hω (t − ttilt) if ttilt t ≤ ttilt+ 14

Pheart− r sin
�π

3

�

d if ttilt+ 14< t .

(3.6)

Figure 3.5 shows blood pressure measured at heart level and the modeled pressure at carotid sinus.
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Figure 5: Blood pressure measured at heart level, and the blood pressure at
carotid sinus as modelled by equation (7). Vertical lines marks the line of
beginng and end of tilt from supine to upright position.

5

Figure 3.5: Blood pressure measured at heart level, and the blood pressure at carotid sinus as modelled
by equation (3.6). Vertical lines marks the line of beginning and end of tilt from supine to upright
position.

3.5 Respiration

While experimental methods exist for monitoring respiration, no such measurements were made while
collecting data for this study. However, good approximations can be obtained by analysing ECG data.
The electrodes of the ECG measures impedances and direction of electrical current through the upper
body. As the lungs are filled with air during inspiration, the distances between electrodes change due
to changes in volume, and as a result the impedance changes due to change in conductivity of the
thoracic volume.

In the ECG signal the changes induced by respiration is reflected in the potential difference between
the Q- and the R-peaks. The method used for extracting the respiration signal from the ECG follows
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suggestion by Thomas et al. 2005 and Widjaja et al. 2010:

1. Identify Q- and R-wave peaks, and use potential differences as discrete measurements of
respiration signal. See Figure 3.6.

2. Interpolate between points using a cubic spline, to obtain a continuous respiratory signal.
See Figure 3.7.

3. Investigate reliability of amplitude and frequency of respiratory signal and extract frequency.

Amplitude detection and interpolation

Because the impedance of the breast is different when the lungs are filled with air, the difference in
potential between the peaks of the Q and R waves varies over the respiratory cycle. Hence, information
about the respiratory cycle can be obtained from the potential difference for each cycle.

Figure 3.6 shows the located peaks of Q and R waves for a small interval. The detected amplitudes
should be such that the amplitude does not deviate more than 20% of the average of Q-R-amplitudes
in a window of 41 cycles centered around the cycle in question (Thomas et al. 2005). Q-R pairs that
do not satisfy this condition are removed.
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Figure 3.6: The located Q- and R-peaks of the ECG.

The left panel of Figure 3.7 shows the amplitudes plotted against the time precisely between the
Q and R peaks, and the signal interpolated using a cubic spline. This cubic spline approximates the
respiratory signal.
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Figure 3.7: Left: The calculated amplitude difference between the Q- and R-eaks of the ECG, and the
corresponding cubic spline interpolation, used as an approximation to respiration. Right: Located
peaks and valleys of the respiratory signal.

Verification of respiratory signal

To ensure that the extracted respiratory signal are realistic, peaks and valleys are detected, as illustrated
in Figure 3.7, and are used to check the respiratory signal for the following two conditions given by
Widjaja et al. 2010.

Duration: The duration of a respiratory cycle should be at least 1.5 second. Shorter respiratory
cycles are eliminated by removal of a peak and a valley such that the amplitude difference
between the surrounding valley and peaks are maximal.

Amplitude: The amplitude difference between a peak and a valley should be at least 15% of the
previous and the following amplitude. If it is not, a peak and a valley is removed such that
the amplitude difference between surrounding peaks and valleys are maximal.

Respiratory frequency

The respiratory frequency is calculated using both the peaks and the valleys of the respiratory signal,
as the inverse of the time between the previous and current time point. Calculated frequency data
points and their cubic interpolations for peaks and valleys are plotted in the left panel of Figure 3.8,
together with the approximated respiratory frequency calculated as the mean of the two splines. The
right panel of the figure shows the entire respiratory frequency series.
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Figure 3.8: Left: Respiratory frequencies found using minimum and maximum values of the respi-
ratory signal, their cubic spline interpolations, and the mean of the cubic splines consider the best
approximation to the respiratory frequency. Right: The approximated respiratory frequency for the
entire time series.
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Chapter 4
Mathematical modeling of the baroreceptor
reflex

Numerous modeling studies have addressed baroreflex regulation (e.g. Bannister 1993,Mosqueda-Garcia
et al. 2000,Heusden et al. 2006), however, most of these only analyzed some aspects of the system, and
most were validated against literature and/or animal data. To our knowledge, only a few models have
described the complete system from blood pressure to heart rate regulation (Olufsen, Tran, et al. 2006;
Bugenhagen, Cowley, and Beard 2010; Ottesen and Olufsen 2011). One obstacle in designing patient
specific models is that human data are only available at the ends of the chain: blood pressure, which
serves as an input to the system, and heart rate, the model output.

The mathematical model investigated in this chapter describes the negative baroreflex feedback
system, that modulates heart rate, and respiration. The latter is believed to explain low frequency
variation in heart rate (Yasuma and Hayano 2004). The model describes short-term regulation of
heart rate as a function of arterial blood pressure and respiratory frequency. The dependence on these
inputs reflects two mechanisms: baroreflex regulation and respiratory sinus arrhythmia (RSA).

The model, shown in Figure 4.1, includes the following components: A nonlinear elastic model
describing total arterial wall strain in response to blood pressure changes, a viscoelastic model describ-
ing the arterial wall deformation, a linear model describing the afferent firing rate of the baroreceptor
neurons in response to deformation of baroreceptor neurons, models describing the sympathetic and
parasympathetic nervous outflows, models describing synaptic concentrations of acetylcholine and
noradrenaline, and models describing intracellular compounds modulated via β1 and M2 receptors,
and finally a model predicting heart rate. Below each model component is described in detail.
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WS: εw (p)
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M2-f: CAF
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H R
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Figure 4.1: Overview of heart rate model. Model components include: Input blood pressure (BP) and
respiratory frequency (Resp), arterial wall strain (WS), neuron strain (NS), firing rate (f), sympathetic
(ST) and parasympathetic tone (PT), noradrenaline (Nor) and acetylcholine (Ach) concentration,
pacemaker cell pathways β1 slow (β1− s ), M2 slow (M2− s ) and fast (M2− f ), and heart rate (HR).

4.1 Model input

4.1.1 Blood pressure

Pulsatile continuous measurements of arterial blood pressure comprises the input to the model. To
test whether the proposed model can predict known static and dynamic responses, it is tested against
three stimuli shown in Figure 4.2: A step pressure change, an oscillating ramp down pressure, and
experimental pulsatile blood pressure measured using a CNAP device during head-up-tilt (HUT).

4.1.2 Respiration

As respiratory frequency is hypothesized to influence the heart rate, and the model includes a
description of the possible mechanism, respiratory frequency data is required as a model input.

As the available experimental data contains no measurements of respiration, an approximation is
extracted from ECG using the method described in Section 3.5. When no ECG is available the model
is parameterized to ignore respiratory input. For the data set presented earlier that does include ECG,
the extracted respiratory signal is shown in Figure 4.3.
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Figure 4.2: Input pressure signal used to investigate the qualitative behavior of the model. Left: a step
input. The pressure increases from 70 to 100 mmHg, stays at the increased pressure for 10 sec, then
returns to 70 mmHg. Middle: pressure oscillating with an amplitude of 20 mmHg and a period of 0.8
seconds. Initially the offset is 100 mmHg, but is decreased to 70 mmHg over 14 secods (corresponding
to the tilt duration in the experimental data). Right: measurements from a HUT experiment.
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Figure 4.3: Example of data for respiration frequency used as model input.

4.2 Pressure-wall strain relation

It is known that the pressure-area relationship of the arterial wall is nonlinear and viscoelastic (Valdez-
Jasso et al. 2011), and that the relation between arterial wall strain and nerve firing is viscoelastic (Ka-
tona and Barnett 1969; Coleridge et al. 1981; Valdez-Jasso et al. 2011). Given that two viscoelastic
components in series are not distinguishable, the wall deformation is assumed elastic, while deforma-
tion of nerve ending is viscoelastic.
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The nonlinear pressure-area relation observed for arteries during steady-state experiments (Laurent
et al. 1994; Atienza et al. 2007), can be modelled using a sigmoidal function that saturate of the form,

A(p) =A0+(AM −A0)
pk

pk
0 + pk

(4.1)

where p denotes the applied blood pressure, AM , A0 the maximum and unstressed cross-sectional
area, while k and p0 determine the steepness of the sigmoidal function and the pressure at which the
transition from minimum to maximum area is centered around. A general principle, often observed in
physiological systems, is that the largest response to changes in input happens at the typical functioning
value (Burton 1966). Assuming this principle is correct, it is included in the model by setting p0, the
pressure at which the area is most sensitive, equal to the mean pressure at rest, i.e. p0 = p̄. In reality
the arteries are distended at the typical pressure of operation, but the cross sectional at this pressure is
lower than the midpoint between maximum and minimum cross-sectional area (Burton 1966).

The vessel strain εw can be related to deformation by,

εw =
r − r0

r
, (4.2)

where r and r0 denote the stressed and unstressed vessel radius. Using (4.1) the strain, (as illustrated
in Figure 4.4) can be expressed as

εw = 1−

√

√

√

√

pk
0 + pk

pk
0 +AM 0 pk

, AM 0 =
AM

A0
. (4.3)

Further assuming that the initial pressure is at equilibrium at rest (i.e. p(0) = p̄), the initial strain of
the arterial wall is given by

εw (0) = 1−
√

√

√
2

1+AM 0
. (4.4)

Figure 4.4 shows a plot of the sigmoid function describing the wall strain.

Parameters.

The parameters needed to predict the wall strain are: the ratio of maximum to unstressed cross-sectional
area AM 0 and the parameter determining the rate of change of the sigmoid function k. In addition the
constant p0 = p̄ is set as described above.

Using literature data and a few assumptions (outlined below) initial estimates of AM 0 and k can
be calculated. Arndt, Klauske, and Mersch 1968 measured carotid artery diameter during the regular
cardiac cycle in vivo for 9 humans in supine position using ultra sound. Table 4.1 lists the data recorded
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Table 4.1: Data recorded from Arndt, Klauske, and Mersch 1968 from in vivo human subjects using
ultra sound.

Sub Sex Age H-CA BP ∆p R diast. ∆r
cm cm H2O cm H2O cm cm

(mmHg) (mmHg)
systol. diastol.

AR m 34 26 177 (130) 122 (90) 55 (40) 0.36 +0.04
BE m 23 26 177 (130) 106 (78) 71 (52) 0.40 +0.05
BO m 24 26 177 (130) 95 (70) 82 (60) 0.35 +0.06
KE m 31 23 143 (105) 88 (65) 55 (40) 0.39 +0.04
KO m 28 27 147 (108) 86 (63) 61 (45) 0.38 +0.06
LE m 28 27 170 (125) 109 (80) 61 (45) 0.43 +0.06
ME m 28 27 170 (125) 113 (83) 57 (42) 0.39 +0.06
SC f 27 22 160 (118) 109 (80) 51 (38) 0.37 +0.06
VO f 28 26 163 (120) 109 (80) 54 (40) 0.36 +0.06

AV M 28 26 166 (122) 103 (76) 63 (46) 0.39 +0.053

for the 7 male and 2 female subjects1.
Assuming that under normal conditions the variations in blood pressure causes the crosssectional

area of the artery to vary in the interval of 35% and 65% of the difference between unstressed and
the maximum areas, k and AM 0 is predicted using mean values from Table 4.1. The mean pressure is
estimated as the mean of systolic and diastolic pressure,

p0 =
122 mmHg+ 76mmHg

2
= 99 mmHg.

Assuming the mean systolic pressure causes a distension of 65%, and that the diastolic pressure causes
a distension of 35%, can be formulated as

0.65=
(122 mmHg)k

(122 mmHg)k + pk
0

, 0.35=
(76 mmHg)k

(76 mmHg)k + pk
0

,

1Note: 1 cmH2O = .736mmHg.
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Isolating and equating p0 from the two expressions allows the calculation of an initial estimate for k

pk
0 = (122 mmHg)k

0.35
0.65

= (76 mmHg)k
0.65
0.35

k = 2
log

�

0.65
0.35

�

log
�

122
76

� ≈ 2.62.

For the parameter AM 0 an estimate can be obtained by assuming that at the smallest cross-sectional
area is obtained at diastole and the maximum value at systole. For example, if at diastole p = 76
mmHg the corresponding area is A(76) = (0.39cm)2π= 0.478cm2, and if at systole p = 122 mmHg,
the corresponding area is A(122) = (0.39cm+ 0.053cm)2π = 0.617cm2. This leads to an estimate of
AM 0

0.478cm2 =A0+(AM −A0)0.35

0.617cm2 =A0+(AM −A0)0.65

A0 = 0.316cm2

AM = 0.780cm2

→

AM 0 = 2.47.

(4.5)

Figure 4.4 shows model fit to the experimental data, with parameters determined as described above
and with values of k half and twice the nominal value.
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Figure 4.4: Fit of wall strain model (knom) with nominal parameter values obtained from average
values of data from Arndt, Klauske, and Mersch 1968 (See Table 4.1), plotted together with the curves
produced using a twice as large k (2knom) and half as large k (1/2knom).

4.3 Baroreceptor strain

The baroreceptor nerve endings are embedded within the arterial wall. It is not known exactly how
these nerve endings stretch relative to the strain of the arterial wall, but certain features of the firing of
the baroreceptors indicates that the strain of the baroreceptors relaxes viscoelastically. In this study, the
approach proposed by (Bugenhagen, Cowley, and Beard 2010; Mahdi, Sturdy, et al. 2013) is followed,
assuming that the baroreceptor nerve endings are elastic, but that the remaining part of the arterial
wall is viscoelastic, i.e. in response to strain, it exhibits both elastic and viscous behavior.

One of the simplest viscoelastic models is the so-called Voigt body, which can be depicted as a
dashpot and a spring in parallel (Alfrey 1997; Bugenhagen, Cowley, and Beard 2010; Fung 1990). The
Voigt body model exhibits stress relaxation at a given rate in response to an applied strain. To account
for more relaxation time scales, Voigt bodies are often placed in series. This study follows suggestions
by Bugenhagen, Cowley, and Beard 2010 and Mahdi, Sturdy, et al. 2013 who analyzed how many
Voigt bodies is needed to describe the deformation of the baroreceptor neurons in response to strain
of the arterial wall. While Bugenhagen, Cowley, and Beard 2010 included three time-scales (using
three voigt bodies in series), the later study by Mahdi, Sturdy, et al. 2013 showed that to account for
known qualitative experimental responses such as overshoot, adaptation, and hysteresis, it is adequate
to include two Voigt bodies.
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Figure 4.5: Right: Voigt body schematic. εb r reflects the elastic part of the strain by a spring, KN . ε2
represents the strain on the left Voigt body, while ε1 reflects the total strain over both Voigt bodies,
illustrated by the lines above. Left: the model can be interpreted as the arterial wall consisting of three
different kinds of tissue, that are connected in serial, forming a loop around the circumference of the
artery.

The deformation displayed by the two Voigt bodies can be predicted by

d ε1

d t
=− (α1+α2+β1)ε1+(β1−β2)ε2+(α1+α2)εw ,

d ε2

d t
=−α2ε1−β2ε2+α2εw ,

εb r = εw − ε1,

(4.6)

where αi = KN/Bi ,βi = Ki/Bi and εb r denotes the strain of the baroreceptor neuron, ε2 the strain of the
second Voigt body and ε1 is the sum of the strain of both Voigt bodies, as shown in Figure 4.5.

Initial conditions for the differential equations are obtained by assuming that at rest the system is
in equilibrium, ie. d ε1

d t =
d ε1
d t = 0.

ε1 (0) = κεw , κ=
α1β2+α2β1

α1β2+α2β1+β1β2
,

ε2 (0) =
α2

β2
(1−κ)εw ,

εb r (0) = εw (1−κ) = εw
β1β2

α1β2+α2β1+β1β2
.

(4.7)

Figure 4.6 shows the response generated when combining the elastic wall deformation model with
the two Voigt body viscoelastic model for the two types of input presented earlier: a step increase
followed by a step decrease and data from a tilt table experiment.
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Figure 4.6: Strains of the viscoelastic components in response to, Left: a step in pressure. Middle: an
oscillating ramp-down pressure signal. Right: experimental pressure data.

Parameters.

KN represents the spring constant of the baroreceptor neuron, K1 and K2 the spring constants of the
two Voigt bodies, and B1 and B2 the dampening effect from the dashpots in the two Voigt body model.
The scaled parameters α1,α2,β1,β2 represents the spring constants scaled by the dampening from the
dashpots.

To distinguish the two dashpots, the time scales of the viscoelastic components should be different,
α1 6= α2. Nominal parameter values are: α1 = 0.75,α2 = 0.1,β1 = 2,β2 = 0.5. The time scales for this
configuration are τ2 = 0.566 and τ1 = 2.784 sec−1.

4.4 Baroreceptor neuron firing

As noted in Chapter 2, afferent firing of baroreceptor neurons originates when action potentials are
initiated by strain of stretch-sensitive ion channels. This can be modeled using a Hodgkin Huxley
type model (Schild et al. 1994), which in its simplest form can be reduced to an integrate and fire
model (Abbott 1999; Lapicque 1907; Koch and Segev 1998). (Mahdi, Sturdy, et al. 2013) compared the
integrate and fire model with a simple linear model, and noted that except for situations where the
pressure is decreased discretely, baroreceptor firing does not cease and that a simple linear model is
adequate. As such sudden drops in blood pressure are not expected to happen in vivo, it is assumed hat
firing rate f can be predicted by

f = εb r s1+ s2, (4.8)

where s1 and s2 denotes the gain and shift respectively (Bugenhagen, Cowley, and Beard 2010).
Realizations of this model is shown in Figure 4.7 for both a step increase in pressure and experimental
pressure data.
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Figure 4.7: Left: Afferent neuron firing in response to step pressure increase. Middle: Response to
oscillating ramp-down signal. Right: Baroreceptor firing for the experimental pressure input data.

Parameters.

Assuming the smallest and largest possible firing rates are 0 and 1, set

s1 =
1

κ+ 1

p

AM 0
p

AM 0− 1
≈ 2.0,

s2 =
κ

κ+ 1
≈ 0.27.

(4.9)

The origin of these expressions are discussed in Section 5.2.3.

4.5 Parasympathetic and sympathetic outflow

The baroreceptor firing is integrated in the nucleus tractus solitarius (NTS), from which efferent
signals are generated along sympathetic and parasympathetic pathways. The parasympathetic outflow
is transmitted via the vagus nerve, while the sympathetic outflow is transmitted via the sympathetic
ganglia. An increase in afferent baroreceptor firing (corresponding to an increase in pressure) leads
to an increase in the parasympathetic outflow (or tone), whereas a decrease in afferent baroreceptor
firing (corresponding to a decrease in pressure) leads to an increase in sympathetic outflow. Moreover,
the response saturates at high and low pressure.
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Similar to Olufsen, Tran, et al. 2006, these responses are modeled using Hill functions of the form

Tp,br ( f ) = Tpm
+
�

1−Tpm

� f ξ

f ξ + f ξp
,

Ts ( f ) = 1−
�

1−Tsm

� f η

f η+ f ηs
,

(4.10)

where Tp,br and Ts denote the contributions from the baroreflex (br) to parasympathetic (p) and
sympathetic (s) tone. Tpm

and Tsm
denote the minimum values of the non-dimensional parasympathetic

and sympathetic tone. The maximum value is 1. fs and fp determines the firing at which the system is
most sensitive to changes and the value denoting the transition from minimum to maximum value. η
and ξ are not shown on the figure but determines the slope of the curve during the transition between
the minimum and maximum value. Figure 4.8 illustrates the qualitative behavior of these functions,
while Figure 4.9 shows the tones corresponding to the model input.

fp fs

f

Tpm

1

Tsm

fp fs

Figure 4.8: Hill functions used to model the contribution of the baroreflex to the parasympathetic
and sympathetic outflows.

Parameters.

Assuming that the smallest and largest possible afferent firing rates lead to a values 10% and 90%
between the minimum and maximum value of the parasympathetic tone, a nominal value for ξ can be

48



0

0.3

0.6

0.9

1.2

Fi
ri

ng

10 20 10 20
Time (s)

175 350 525

Tp,br Ts T d
s
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estimated.
f ξm

f ξm + f ξ0
= 0.1,

f ξM
f ξM + f ξ0

= 0.9,

ξ = 2
log (9)

log
� fM

fm

�
.

(4.11)

It should be noted that the larger the ratio between fm and fM , the smaller the value of ξ . This
is reasonable as a larger proportional difference means that the change from minimum to maximum
happens over a longer interval, and therefore the gradient is smaller. The analysis for the sympathetic
expression is analogous.

Parameters fp and fs describe the point with the maximum gradient of the Hill functions, and
thereby the firing rate where the system is most sensitive to changes. By setting these equal to the firing
rate at the initial steady state pressure p = p0, it is ensured that the parasympathetic and sympathetic
tone are most sensitive to changes at their typical operation value. For an initial estimate of the
nominal value, fs = fp are given by

fp = fs = εb r (p0)s1+ s2 = (εw (p0)− ε1(p0)) s1+ s2

= εw (p0) (1−κ) s1+ s2

=
�

1−
√

√

√
2

1+AM 0

�

(1−κ) s1+ s2,

(4.12)

using the expressions found for initial conditions of εb r and the value of εw at p = p0 from (4.4).
Though this lead to reasonable estimate, one might also choose fs = 0.65 and fp = 0.35 to reflect
the different levels of afferent firing where the activity level of the sympathetic and parasympathetic
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system changes. η= ξ = 6 are set to reflect and expectation of maximum to minimum neuron firing
ratio of approximately 2.

4.5.1 Parasympathetic contribution from respiration

Earlier efforts of modeling the baroreceptor reflex regulation were not able to predict the fast fluc-
tuations happening at around 0.3 Hz (Olufsen, Tran, et al. 2006; Olufsen and Ottesen 2013). These
oscillations are also seen in blood pressure and ECG. They originate in the respiratory control center,
which, in addition to controlling breathing, also stimulate the pacemaker cells of the heart directly via
the vagus nerve (Mehlsen et al. 1987).

To account for respiration the total parasympathetic tone Tp is predicted as the sum of two
weighted terms corresponding to baroreceptor input, Tp,br and respiratory input, Tp,resp

Tp = αTp,br+βTp,resp. (4.13)

It has been found that the effect of respiration on the heart rate depends on posture (Kobayashi
1996). This is modelled by letting α and β change with posture, represented by the angle φ,

α(φ) = αm +(αM −αm)
φkα

φkα +φkα
α

,

β(φ) =βM − (βM −βm)
φkβ

φkβ +φ
kβ
β

.
(4.14)

In supine position (φ= 0), the respiratory input is the primary source of parasympathetic activity,
while the baroreceptor induced signal is the primary source in vertical position (φ= 60◦ = π/3). In
addition, it is believed that the total parasympathetic tone should be stronger in supine than upright
position , ie. αm +βM >αM +βm .

Figure 4.10 shows a qualitative example of how the weighting of the two components can shift,
and at the same time increase or decrease the total effect.

A high respiration frequency will increase heart rate to accommodate the increased rate of carbon
dioxide and oxygen exchange in the lungs (Mehlsen et al. 1987). The respiratory signal itself Tp,resp is
predicted by a Hill function dependent on the respiration frequency fr,t,

Tp,resp = 1−
f kr
r

f kr
r + f kr

r,t

, (4.15)

where fr,t = 0.25 is the set point for the respiration frequency, and kr = 5 determines the slope of
the transition from no to full effect of the respiratory input. The Hill function ensures that high
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Figure 4.10: Hill functions describing the weighting of the contributions to the parasympathetic tone
by the baroreflex and by respiration.

respiratory frequencies leads to a decrease in parasympathetic tone, in turn, increasing heart rate and
cardiac output.

Parameters.

Nominal parameter values are chosen to be αm = 0.4,αM = 0.6,βm = 0.3,βM = 0.6 based on the
hypothesis that the weighting of the two inputs changes with tilt angle. The chosen parameter values
gives, αm +βM > αM +βm , ensuring that the total parasympathetic signal is smaller in upright
position, and that the sum is on the order of 1. Parameters determining the slope of the weighting
functions are set at kα = kβ = 5, localizing the changes around the correct angle, while also avoiding
that the change is discrete.

4.5.2 Sympathetic delay

The sympathetic signal is modeled as a distributed delay, such that the signal at the synapse at the
heart is described as a convolution of the ANS sympathetic tone with a gamma distribution,

Ts ,d =
∫ t

−∞
Ts (η)g

ρ
α (t −η)dη, gρα (u) =

αρuρ−1e−αu

(ρ− 1)!
, (4.16)

where α and ρ are integers that determines the shape of the gamma distribution. The gamma
distributions for different values of ρ with mean delay td = ρ/α= 5 are plotted in Figure 4.11.

Equation (4.16) can be rewritten as

Ts ,d = kT ρ
d

, k =
αρ

(ρ− 1)!
, T ρ

d
=
∫ t

−∞
Ts (η)(t −η)

(ρ−1)e−α(t−η) dη, (4.17)
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delay td = ρ/α = 5 and α = 1. The weighting function with ρ = 5 is used for the delay of the
sympathetic pathway, while ρ = 1 (and α = 1.5) is the one used to smooth the input pressure data
in (??) and (??).

2011. Expanding and rewriting (??) yields

Tp ,d = k T
ρ

d , k =
αρ

(ρ−1)!
, T

ρ
d =

∫ t

−∞
Tp (η)(t −η)(ρ−1)e−α(t−η)dη. (2.8)

Differentiation for each ρ gives a simple system of differential equations of the form

d T
ρ

d
d t =

"
ρ−1

#
T
ρ−1

d −αT
ρ

d ,
...

d T 1
d

d t = Tp (t )−αT 1
d .

(2.9)

For this study ρ = 5 representing a trade-off between a narrow distribution and fewer differential

equations. A physical interpretation of these equations would be that the delay is generated as the

signal is passed through a series of compartments.

Using the distributed delay, the sympathetic outflow is predicted as

Ts =
1−Tp ,d

1+βTp
, (2.10)

where β is a constant controlling the damping of the sympathetic Ts outflow by parasympathetic

Tp .

The normalized concentration of the neurotransmitters acetylcholine Ca and noradrenaline

13

Figure 4.11: Shape of the weighting function gρα (u) for different values of ρ, all with same mean delay
td = ρ/α= 5 and α= 1. The weighting function with ρ= 5 is used for the delay of the sympathetic
pathway.

which can be written as a system of ode’s using the linear chain trick (H. Smith 2010; MacDonald
1978)

d T ρ
d

d t = (ρ− 1)T ρ−1
d
−αT ρ

d
,

...
d T 2

d
d t = T 1

d −αT 2
d ,

d T 1
d

d t = Ts (t )−αT 1
d .

(4.18)

The initial conditions are set to reflect equilibrium,

d T ρ
d

d t =
d T ρ−1

d
d t = · · ·= d T 1

d
d t = 0,

⇒
T 1

d (0) = Ts (0)
α

T 2
d (0) =

T 1
d (0)
α

...

T ρ
d (0) =

(ρ−1)T ρ−1
d
(0)

α .

(4.19)

Parameters.

The mean time delay td is the only parameter associated with this model of the sympathetic delay. The
degree of the gamma distribution is chosen as ρ= 5 as a trade-off between the width of the distribution
and the number of differential equations required for the implementation. The size of the delay is
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ambiguous as different sources report different values. Hammer and Saul 2005 suggest td < 1 second,
Warner et al. 1969 2-2.5 seconds (modeling of the response for dogs), Ottesen 1997b suggests 4-7
seconds, and A.C Guyton and Harris 1951 13 seconds. For this study, the nominal value is set in the
low end of the span of suggested values, at td = 1.5 seconds.

4.6 Neurotransmitter concentrations

The neurotransmitter concentrations are predicted assuming first order kinetics as described by Ottesen
and Olufsen 2013, but with an added term for the release of acetylcholine reflecting the inhibitory
effect of noradrenaline

d CA

d t
=−

CA

τA
+ qpTp − kiN CN Tp =−

CA

τA
+
�

qp − kiN CN

�

Tp ,

d CN

d t
=−

CN

τN
+ qs Ts ,d .

(4.20)

Here, the concentrations of acetylcholine and noradrenaline are denoted by CA and CN , respectively,
Tp and Ts ,d are the parasympathetic and delayed sympathetic tone, τA and τN are time constants
describing the rate at which the neurotransmitters are removed, qp and qs are parameters describing the
sensitivity to parasympathetic and sympathetic tone, and kiN is a parameter describing the inhibitory
effect of noradrenaline on the release of acetylcholine. Since parasympathetic and sympathetic tones
are nondimensionalized, the neurotransmitters are nondimensionalized similarly. Figure 4.12 shows
concentrations predicted by the equations above for step input pressure and for experimental input
pressure.

The initial concentrations are determined by assuming equilibrium with the initial sympathetic
and parasympathetic tones, Tp (p0),Ts ,d (p0). This gives the expressions

CN (0) = qsτN Ts ,d (0)

CA (0) = τA

�

qp − kiN CN (0)Tp (0)
�

.
(4.21)

Parameters.

The parameters are the time constants for removal of free neurotransmitter τA and τN , the sensitivity
to the parasympathetic and sympathetic signals qp and qs and the inhibitory effect of noradrenaline
on the release of acetylcholine kiN . Nominal values are qp = 5, qs = 0.11. Nominal values of the time
scales are set as the inverse of the sensitivities τA = 0.2,τN = 9.1, kiN = 0.5. It should be noted that
the parameters are selected such that qp > kiN CN , because if not, this term will increase removal, not
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Figure 4.12: Neurotransmitter concentrations for Acetylcholine CA and Noradrenaline CN . Left:
using step input. Middle: oscillating ramp-down signal. Right: using experimental data as model input.
Both modeled with no respiratory input.

just inhibit release. In addition, this requirement guarantees that the initial condition for CA> 0 as
can be seen from (4.21).

4.7 Cell pathways

As described in Section 2.3.4 noradrenaline affects the depolarization rate of the pacemaker cells
while acetylcholine affect both the depolarization rate and the resting potential. Ottesen and Olufsen
2013 lump the mechanisms initiated by acetylcholine into a fast and a slow component, while the
mechanism initiated by noradrenaline has only one slow component. The description is based on
simple assumptions about the mechanisms of how the neurotransmitters activate the receptors. Since
the effect saturate at high concentrations, the effects are modeled by

d CAF

d t
=

1
τAF

�

µ
C 2

A

C 2
A+K2

A

−CAF

�

,

d CAS

d t
=

1
τAS

�

(1−µ)
C 2

A

C 2
A+K2

A

−CAS

�

CAT =CAS +CAF

d CN S

d t
=

1
τN S

�

C 2
N

C 2
N +K2

N

−CN S

�

.

(4.22)

Here CAF and CAS represent the fast and slow pathways of acetylcholine, and CN S the effect nora-
drenaline, τAF ,τAS ,τN S the decay rates of the effective quantities, KA and KN one half of the max
responses of acetylcholine and noradrenaline, and µ describes the weighting of fast versus slow pathway
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for acetylcholine.
Assuming that the fast effect for acetylcholine is instantaneous, CAF can be predicted by a quasi-

steady-state assumption as

CAF =µ
C 2

A

C 2
A+K2

A

. (4.23)

Figure 4.13 shows the mediated signals through the different pathways for the step input pressure and
the experimental input pressure.

Initial values for CAS and CNS are determined from steady state using the initial values of neuro-
transmitter concentrations CA(0) and CN(0),

CAS (0) = (1−µ)
CA (0)

2

CA (0)
2+K2

A

CN S (0) =
CN (0)

2

CN (0)
2+K2

N

.

(4.24)
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Figure 4.13: The fast CAF and slow CAS acetylcholine concentrations and the slow CN S noradrenaline
concentration. Left: using step input. Middle: Using an oscillating ramp-down signal. Right: using
experimental data as model input. Both modeled with no respiratory input.

Parameters.

The nominal values of the time scales are τAS = 2 and τN S = 2.5, the values for one half of the
maximum responses are set at the initial neurotransmitter concentrations KA=CA(0) and KN =CN (0),
and µ= 0.75 (Ottesen and Olufsen 2013). Setting KA,KN from initial neurotransmitter concentrations
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also means that CAS(0) = 1−µ/2,CAF = µ/2 and CNS(0) = 1/2.

4.8 Heart Rate

The heart rate is affected by all the three lumped pathways described above. The general effect of CN S

is to increase heart rate while the effect of CAS ,CAF is to decrease heart rate. However, as illustrated
in Figure 4.14 CAF and CN S interacts through their effect on cyclic AMP. The heart rate is predicted

Figure 4.14: Schematic of the synapse at the pacemaker cell.

following a similar model by Ottesen and Olufsen 2013 but alternated to reflect that only the fast
acetylcholine activated pathway interact with the noradrenaline activated pathway. In addition, since
the heart rate is a discrete signal, the expression below is used to describe the change in the cumulative
number of heart beats

d h
d t
= h0+ hM CN S − hm (CAS +CAF )−

1
h0

hM hmCNSCAF, h(t0) = 0, (4.25)

Here h0 denote the base depolarization rate in the absence of ANS stimuli, and hM and hm denote the
sensitivity to acetylcholine and noradrenaline activated pathways. The initial conditions just signifies
that the count of heart beats will be started from 0. The mean heart rate for a period in time from ta

to tb can then be calculated as

H R(ta , tb ) =
h(tb )− h(ta)

tb − ta
. (4.26)
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If a continuous signal is required the heart rate is to be considered constant with value determined
from the most recent contraction cycle.

0

30

60

90

120

H
R

[b
pm

]

10 20 10 20
Time [s]

175 350 525

T
ilt

Model
Data

Figure 4.15: Output heart rate for the three different input signals. Note that for the right figure the
parameter values used to generate the plot has not been optimized to fit the data.

Parameters.

Tanaka, Monahan, and Seals 2001 found that the maximum heart rate for healthy adults follows the
expression HRmax = 208− 0.7× age [bpm]. For a 25 year old subject the maximum heart rate is
approximately 190 bpm. It is assumed that the minimum heart rate is 20 bpm (resting heart rate lower
than 30 bpm are often reported for top athletes), i.e. the model should cover a span in heart rate from
20 to 190 bpm.

Assuming that the minimum value occurs with full parasympathetic and no sympathetic activity,
and that the maximum occurs with full sympathetic and no parasympathetic activity, hm + hM = 170
bpm. Assuming the intrinsic heart rate with no autonomic stimulation is approximately h0 = 100
bpm, one get estimates for the nominal parameter values hm = 80bpm and hM = 90bpm.

4.9 Model discussion

4.9.1 Effect of sympathetic delay

While it has been physiologically observed that there is a delay associated with sympathetic pathways
(Hall 2011), it is unclear if this delay has a significant impact on the heart rate. Previous mathematical
models of the baroreceptor reflex have been divided on whether to include this delay or not, and none
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have implemented the delay as distributed (Ottesen 1997a; Ottesen 1997b; Ottesen and Olufsen 2011;
Olufsen and Ottesen 2013; Olsen, Gøtze, and Mosegaard 2011).

To decide whether or not the delay should be included in this mathematical model, the impact on
model output of different values of mean delay td = 0,1,5,10,15 is investigated.
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Figure 4.16: Delayed sympathetic outflow for different delays. Left: complete time series. Right:
zoom around the tilt.

Figure 4.16 shows the delayed sympathetic signal for the different delays while Figure 4.17 shows
the corresponding model output heart rate along with experimental data. This figure also includes a
line showing the model output where the sympathetic signal is held constant to illustrate the effect of
removing sympathetic dynamics. Note that no respiratory effect is included for these data.

Observations

Considering the two figures showing the delayed sympathetic signal, it is observed that:

• Increasing the value of the delay parameter td increases the delay. This is especially clear in
the right panel of Figure 4.16 where the change in sympathetic tone following the tilt in the
experiment shows an increase in delay with increased value of td .

• There is a smoothing and dampening effect associated with introducing the delay. This effect
increases with the amount of delay.

Considering the two figures showing the model output heart rate, a couple of observations can be
made as well:
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Figure 4.17: Model output heart rate calculated with different values of the delay and with constant
sympathetic activity shown along with experimental heart rate data. Left: complete time series. Right:
zoom around the tilt.

• The curves for different values of td are very similar. From the left panel of Figure 4.17 it is
not possible to distinguish between the curves. Even when zooming in on the curves, right
panel of Figure 4.17, the curves are very similar.

• The curves corresponding to a larger delay tend to have smaller amplitude on oscillations.
This is visible on the interval 200-220 seconds on the zoomed graph in the right panel of
Figure 4.17.

• The peak of oscillations does not appear to be shifted with the delay. Even when the levels
are shifted, the curves corresponding to the model output have peaks at the same points in
time.

• Using a constant value for the delayed sympathetic tone does not lead to a signal qualitatively
different when considering the entire time series. Looking at the zoomed graph, it is clear
that the graph for constant sympathetic tone is different and shows less oscillations than the
other configurations.

Discussion

From the observations made on the delayed sympathetic signal, it is clear that a distributed delay
can be implemented using the suggested method. The result is a signal that is both delayed and
smoothed/damped as suggested by the convolution equation, (4.16).

From the observations made on the heart rate, it appears that the primary effect of introducing a
distributed delay on the sympathetic pathway is that the peak values are dampened. As the signals

59



have not been fitted, it is not possible to say which of the delay configuration would be able to match
the experimental data better, but it is clear that the quality of such fits would be very similar.

One would expect that a delay on the sympathetic pathway might lead to a delay in peak values of
heart rate following stimulation of the baroreceptors during HUT, but the data suggests that, at least
for this model, fast changes in heart rate is primarily due to the effects of the parasympathetic system.

It is also worth noting that other parts of the model contain transients that might account
mechanistically for the physiological sympathetic delay. These transients include the model for the
concentration of the neurotransmitter noradrenaline associated with the sympathetic system, as well
as the model of intracellular pathway effects of the pacemaker cells associated with noradrenaline.

Constant value of the sympathetic delay leads to a model output heart rate qualitatively similar to
other configurations when looking at the overall graph. When zooming in it is clear that oscillations
in heart rate are smaller in amplitude, making the heart rate for the constant sympathetic signal look
like it could be an extrapolation of increasing the mean delay td to larger values.

Conclusion

The method used for implementing a distributed delay works very well. The sympathetic signal is
both smoothed/damped and delayed. While the sympathetic delay exists and it is possible to model it,
the results of this simple investigation suggests that it is unnecessary to include it in this model. Note
that this may be due to the effect not being important for heart rate regulation during HUT, or to the
effect being included in other parts of the model.

4.9.2 Effect of respiration

The model reflects the hypothesis that the respiratory frequency affects the parasympathetic part
of the autonomic nervous system, as discussed in Section 4.5.1. Since this mechanism has not been
included in previous modeling attempts for the baroreceptor reflex, it is relevant to perform a simple
investigation of the effect of the implementation on the model output heart rate.

Respiration can be measured experimentally or extracted approximately from ECG data. As
the data set considered during the development of the model consist solely of blood pressure data,
it is impossible to extract respiratory data from it. Figure 4.18 shows blood pressure, heart rate
and respiratory frequency for another healthy subject. The extraction of respiratory frequency was
discussed in Section 3.5, but the data set is used here for evaluating the effect of including respiration
in the model.

The left panel of Figure 4.19 shows total parasympathetic tone as predicted by the model using
three different configurations, one that gives no weight to the respiratory input (a), and two that do
(b,c).

a) αm = 1.0, αM = 1.0, βm = 0.0, βM = 0.0,
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Figure 4.18: An experimental data set with respiration extracted from ECG.

b) αm = 0.4, αM = 0.6, βm = 0.4, βM = 0.6,

c) αm = 0.2, αM = 0.8, βm = 0.2, βM = 0.8.

The right panel of Figure 4.19 shows the model output heart rate for the three configurations along
with experimental data.
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Figure 4.19: Left: Example of model total parasympathetic tone with (b,c) and without (a) effect of
respiration. Right: Corresponding model output heart rate plotted along experimental data. Note
that model output has not been fitted against experimental data.
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Observations

Considering the total parasympathetic signal in Figure 4.19 the following observations are made.

• The parasympathetic tone falls dramatically following the tilt.

• Inclusion of the respiratory signal dampens some fast fluctuations in the signal before the
tilt, reflecting respiratory input dominating the faster oscillations in blood pressure.

• The level of parasympathetic activity is similar with and without input from respiration.
It should be noted that the configurations have been made such that αm +βM = αM +βm .
Other configurations are possible.

Likewise, respiratory effect on model output heart rate is considered and the following observations
are made.

• The baseline heart rate is lower when the respiratory signal is included (with the current
configurations), even though the parasympathetic signals are of similar magnitude.

• Varying parameter values for the weighting results in different model output heart rates.

Conclusion

The total parasympathetic signal is a weighted sum of the contributions from the baroreceptors
and the respiration with weights changing from favoring respiration to baroreceptors at the time
of the tilt. It is therefore not surprising that including the respiratory input has an impact on the
total parasympathetic signal. As desired, the effect of the respiration appears to be largest before the
tilt indicated by the dampening of the fluctuations otherwise carried from the oscillations in blood
pressure.

It is notable how different the model output is between the different configurations given the very
similar, in terms of magnitude, parasympathetic signals. It is not possible from the current simple
investigation to say if including the respiration or not provides a more accurate description of heart
rate, only that the respiration allows for different dynamics. For this reason the respiratory input will
be kept as part of the model.
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Chapter 5
Model analysis

The model description from the previous chapter does not mention restrictions on values of modeled
quantities. However, for the physiological system it is clear that the model description of quantities
such as physical length, frequencies and concentrations, should be restricted to positive values. This
chapter introduces terminology from dynamical systems analysis, discusses the heart rate model under
this framework to determine if it can be guaranteed that the model show proper behaviour.

5.1 Desired properties

5.1.1 Positivity

Positivity of solutions guarantees that state variables x defined on Rn , n ∈Z of a system of ordinary
differential equations (ode) with positive initial conditions remains positive at all times. For such a
system the first orthant is left invariant with respect to the flow related to the differential operator d/dt .
L. Allen 2007 describes what she defines as persistence which is a bit more strict.

Definition 1 (Persistence) Given a system of differential equations dX /d t = F (X , t ), X (0) = X0,
where X (t ) = (x1 (t ) , x2 (t ) , . . . , xn (t ))

T ∈Rn , n ∈Z, the system is said to be persistent if for any positive
initial condition, X0 > 0, i.e. all coordinates are strictly positive, the solution X (t ), fulfill

lim
t→∞

inf xi (t )> 0

for i = 1,2, . . . , n.
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5.1.2 Trapping region

A trapping region R is a compact (closed and bounded) connected region in the phase space Rn for
which it is true that if x (t0) ∈ R, then ∀ t+ : t+ > t0 |x

�

t+
�

∈ R. That is a trajectory located in R at
time t0 will remain in R for all times following. Consequently R is left invariant with respect to the
flow determined by the ode. In some contexts the existence of a trapping region can help guarantee
a closed orbit within the trapping region. In two dimension the existence of such a closed orbit is
guaranteed in the trapping region R by the Poincare-Bendixson theorem provided no fixed point exists
in R (Strogatz 1994). For the context of this study, a trapping region located in the first orthant can
guarantee that trajectories originating in the region remain positive.

5.1.3 Stable fixed point

For an equilibrium point, (x̂, ŷ), for the dynamical system

d
d t

�

x
y

�

=
�

f (x, y)
g (x, y)

�

, (5.1)

the Jacobian is given by

a =
∂ f
∂ x
(x̂, ŷ) , b =

∂ f
∂ y
(x̂, ŷ)

c =
∂ g
∂ x
(x̂, ŷ) , d =

∂ g
∂ y
(x̂, ŷ) .

(5.2)

Any small perturbation around the fixed point

�

u
v

�

=
�

x − x̂
y − ŷ

�

(5.3)
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can be approximated by a linearization that involves the entries of the Jacobian plus higher order
terms (Strogatz 1994)

u̇ = ẋ = f (x̂ + u, ŷ + v)

= f (x̂, ŷ)+ u
∂ f
∂ x
(x̂, ŷ)+ v

∂ f
∂ y
(x̂, ŷ)+O

�

u2, v2, uv
�

= u
∂ f
∂ x
(x̂, ŷ)+ v

∂ f
∂ y
(x̂, ŷ)+O

�

u2, v2, uv
�

= au + b v +O
�

u2, v2, uv
�

,

v̇ = ẏ = g (x̂ + u, ŷ + v)

= g (x̂, ŷ)+ u
∂ g
∂ x
(x̂, ŷ)+ v

∂ g
∂ y
(x̂, ŷ)+O

�

u2, v2, uv
�

= u
∂ g
∂ x
(x̂, ŷ)+ v

∂ g
∂ y
(x̂, ŷ)+O

�

u2, v2, uv
�

= c u + d v +O
�

u2, v2, uv
�

.

(5.4)

Ignoring higher order terms, the behavior of perturbations can be described by

�

u̇
v̇

�

=
�

a b
c d

��

u
v

�

. (5.5)

The behavior of trajectories around the fixed point can be determined by considering the eigenvalues
λn and corresponding eigenvectors wn of the Jacobian matrix A

Awn = λn wn , A=
�

a b
c d

�

. (5.6)

For the linear system real negative eigenvalues guarantees that the perturbation will decay in the
direction of the corresponding eigenvector. For Real positive eigenvalues perturbations will increase in
the direction of the corresponding eigenvector. Complex eigenvalues gives rise to spiraling trajectories
with direction towards the fixed point if Re(λn) < 0 and direction away from the fixed point if
Re(λn)> 0. If Re(λn) = 0, one will see oscillations around the fixed point.

The stability of the linearized system is relevant because of the Hartman-Grobman theorem, which
states that if Re(λi ) 6= 0,∀i , then a homeomorphism exists between the non-linear and the linearized
system near the equilibrium point (Strogatz 1994). Hence if Re(λ) 6= 0, the stability of the linearized
system determines the properties of the fixed point in the nonlinear system.

As a side note, when determining stability, it is often useful to remember that the sum of the
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eigenvalues of an N ×N matrix is given by the trace,

Tr (A) = λ1+ · · ·+λN , (5.7)

and that the product of the eigenvalues is equal to the determinant,

Det (A) =
N
∏

i=1

λi . (5.8)

5.2 Model analysis

5.2.1 Wall Strain

The wall strain of the heart rate model is given by (4.3)

εw = 1−

√

√

√

√

pk
0 + pk

pk
0 +AM 0 pk

, AM 0 =
AM

A0
.

Since the wall strain is a relative measure of the radial strain of the blood vessel, it should be positive
and bounded. From the derivation in Valdez-Jasso 2011 it is clear that it should be bounded between 0
and 1. Analyzing εw gives insight into the limits,

lim
p→0

εw = 1− lim
p→0

 √

√

√
αk + pk

αk +AM 0 pk

!

= 1−

√

√

√αk

αk
= 0,

lim
p→∞

εw = 1− lim
p→∞

 √

√

√
αk + pk

αk +AM 0 pk

!

= 1−

√

√

√

√

limp→∞
�

pk
�

AM 0 limp→∞
�

pk
� = 1− (AM 0)

− 1
2 ,

d εw

d p
=

1
2

�

αk +AM 0 pk
�− 1

2 k pk−1

×
�

AM 0

�

αk + pk
�

1
2
�

αk +AM 0 pk
�−1
−
�

αk + pk
�− 1

2

�

.

(5.9)

Since AM 0 > 1,
AM 0α

k +AM 0 pk

αk +AM 0 pk
> 1,

AM 0

�

αk + pk
�

1
2
�

αk +AM 0 pk
�−1

>
�

αk + pk
�− 1

2 ,

(5.10)
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which ensures that d εw
d p > 0 for all p > 0. Hence for 0 < pm ≤ p ≤ pM <∞, the wall strain is

restricted to some interval εw ∈
�

εwm
,εwM

�

with 0 < εwm
and εwM

< 1− (AM 0)
− 1

2 . This interval
ensures a positive wall strain for feasible input.

5.2.2 Baroreceptor strain

The strain of the baroreceptor nerve ending εb r is given by (4.6),

εb r = εw − ε1.

The physical model shown in Figure 4.5 imposes the restriction,

ε2 < ε1 < εw , (5.11)

where the strains ε1,ε2 are determined by the ode

d ε1

d t
=− (α1+α2+β1)ε1+(β1−β2)ε2+(α1+α2)εw ,

d ε2

d t
=−α2ε1−β2ε2+α2εw .

This is a linear and inhomogeneous dynamical system. Assuming a constant wall strain εw , the
system is homogeneous and it is possible to further investigate it. Calculating the Jacobian yields

J =
�

− (α1+α2+β1) (β1−β2)
−α2 −β2

�

, (5.12)

from which the trace and determinant can be obtained,

Tr (J ) = λ1+λ2 =− (α1+α2+β1)−β2 < 0,

Det (J ) = λ1λ2 =β2 (α1+α2+β1)+α2 (β1−β2)

=β2 (α1+β1)+α2β1 > 0.

(5.13)

Since all parameters are positive, if any equilibrium point exists it will be stable.
If β1 = β2, the equation describing the strain does not depend on ε2, essentially reducing the

model to one voigt body. Assuming therefore a choice of β1 6=β2 calculating the nullclines yields,

ε2 =
α1+α2+β1

β1−β2
ε1−

α1+α2

β1−β2
εw ,

ε2 =−
α2

β2
ε1+

α2

β2
εw .

(5.14)
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For positive parameter values these two straight lines have different slopes, they will intersect exactly
once, and the Voigt-body model will have exactly one fixed point.

The analysis of the Jacobian shows that any fixed point will be stable, but does not guarantee that
it exists in the first orthant. Equating the two nullclines gives an expression for ε1 for the fixed point,

ε1 =
α1β2+α2β1

α1β2+α2β1+β1β2
εw

= κεw ,
(5.15)

for κ= α1β2+α2β1
α1β2+α2β1+β1β2

. Since all parameters are strictly positive, both numerator and denominator
are strictly positive, and since the denominator is larger, 0 < κ < 1. The fixed point will be on the
interval (κεm ,κεM )⊂ (0,εM ). Inserting the expression for ε1 for the fixed point into the expression
for the ε2-nullcline, gives

ε2 =
α2

β2
(εw −κεw )

=
α2

β2
(1−κ)εw

(5.16)

for the fixed point. Expanding

α2

β2
(1− k) =

α2

β2

�

β1β2

α1β2+α2β1+β1β2

�

=
α2β1

α1β2+α2β1+β1β2

<κ< 1,

(5.17)

guarantees that the fixed point (ε1,ε2) ∈ (0,εM )× (0,εM ). Also, since ε2 <κεw , then ε2 < ε1, which
satisfy the restriction from the physical interpretation of the model in (5.11).

To guarantee positivity for ε2 it is required that

lim
ε2→0

ε̇2 = (εw − ε1)> 0.

which implies that it is required and sufficient that εw > ε1. For ε1 the requirement is,

lim
ε1→0

ε̇1 = (β1−β2)ε2+(α1+α2)εw > 0,

which is always true if β1 > β2 which is the configuration described earlier. Hence positivity is
guaranteed if εw > ε1, which is also the constraint from the physical model.

Figure 5.1 shows a sketch of the phase plane for this system, with parameters α1 = α2 = β2 =
1,β1 = 2 and εw = 0.5. It shows ε1- and ε2-nullclines, the fixed point and the physical boundaries
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ε1

ε2

εw

α2
β2
εw ε1-nullcline

ε2-nullcline
bound: ε2 = ε1
bound: ε1 = εw

Fixed point

Figure 5.1: A sketch of the ε1- and ε2-nullclines in the (ε1,ε2)-phase plane, as well as a trapping region
(black line). Below the ε2-nullcline, ε̇2 > 0, and above ε̇2 < 0. Likewise, left of the ε1-nullcline, ε̇1 > 0
and right of it, ε̇1 < 0.

ε2 = ε1,ε1 = εw . In addition to guaranteeing positivity, the physical boundaries also gives a trapping
region.

The vertical and horizontal boundaries have already been discussed. For the inclined boundary
ε2 = ε1 it is required that the flow in the vertical direction is smaller than the flow in the horizontal
direction

lim
ε2→ε−1

ε̇2 < lim
ε2→ε−1

ε̇1. (5.18)

Evaluating the flow gives

lim
ε2→ε−1

ε̇1 =− (α1+α2+β2)ε1+(α1+α2)εw

lim
ε2→ε−1

ε̇2 =− (α2+β2)ε1+α2εw .
(5.19)

Inserting these two expressions into the inequality,

− (α2+β2)ε1+α2εw <− (α1+α2+β2)ε1+(α1+α2)εw

0<−α1ε1+α1εw

ε1 < εw ,

(5.20)
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which is the requirement for positivity as well. Hence when approaching any part of the boundary of
the trapping region, the flow points into the region.

Since the baroreceptor strain is given by εb r = εw − ε1 and ε1 ∈
�

0,εwM

�

, it is guaranteed that

εb r ∈
�

0,εwM

�

. By assuming a constant input εw it has been shown that under such conditions, the
model has a trapping region given by the physical constraints of the model with a stable fixed point in
the first orthant. Furthermore it was shown, that ε1 < εw guarantees positivity of solution.

Dynamical wall strain

Since εw is changing dynamically, the trapping region found above will not be static. This can cause
problems if ε̇w < ε̇1 as the boundary of the trapping region might overtake the ε1 value, causing
ε1 > εw . If this happens, it will result in an unphysical configuration where the strain of the two
viscoelastic components is larger than the total strain of the wall. Hence, to prevent unphysical
behavior the restrictions ε2 < ε1 < εw can be checked when solving the model.

Alternatively, assuming that the time scale of the fluctuations of the trapping region is so much
faster than the time scales of the system, that any violations against the constraints are quickly rectified,
keeping ε1 > 0,ε2 > 0, one can choose to ignore the violation of the physical model and focus on
ensuring positive neuron firing. Choosing this approach the maximum and minimum neuron strain
εbr can be calculated. Given that the trajectory started with an ε1 value lower than that of the fixed
point for maximum arterial wall strain, ε1 <κεwM , the maximum value the first component can take
is at the fixed point ε1 = κεwM . Assuming the wall strain drops to 0 instantaneously, the strain of the
neuron will be

εbr,min = 0−κεwM =−κεwM .

Likewise, if an instantaneous change goes the other way, ε1 = 0 and εw = εwM and the maximum
strain will be

εbr,max = εwM − 0= εwM .

5.2.3 Baroreceptor neuron firing

The nondimensionalized neuron firing,

f = εb r s1+ s2,

should be limited to values on the interval [0,1].
If the solution is checked to ensure the constraint ε2 < ε1 < εw is satisfied, the minimum strain
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possible is εb r,mi n = 0, and the maximum strain is εb r,max = κεwM . This gives the expressions

0= s1 (0)+ s2,

1= s1 (εwM )+ s2,
(5.21)

and the nominal values s2 = 0 and s1 =
1
εwM
=
p

AM 0p
AM 0−1

, since εwM = 1− 1p
AM 0

.

Alternatively, if temporary negative neuron strain is allowed, and the constraints relaxed, one can
determine the minimum neuron strain is εbr,min =−κεwM and the maximum strain is εbr,max = εwM .
This gives the expressions

0= s1 (−κεwM )+ s2
1= s1 (εwM )+ s2.

(5.22)

Solving yields,

s1 =
1

κ+ 1
1
εwM

=
1

κ+ 1

p

AM 0
p

AM 0− 1
,

s2 = s1κεwM =
κ

κ+ 1
.

(5.23)

In summary, it is possible to select the parameters such that firing rate is guaranteed to be positive.
However, it should be noted, that these values may not guarantee a physiological response, as it is
based on the assumption on very rapid changes in the strain of the arterial wall.

5.2.4 Parasympathetic and sympathetic outflow

Since (4.10) describing the sympathetic and parasympathetic activity are simple Hill functions

Tp,br ( f ) = Tpm
+
�

1−Tpm

� f ξ

f ξ + f ξp
,

Ts ( f ) = 1−
�

1−Tsm

� f η

f η+ f ηs
,

they are bounded between
lim

f→∞
Tp = 1,

lim
f→0

Tp = Tpm
,

lim
f→∞

Ts = Tsm
,

lim
f→0

Ts = 1,

(5.24)
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guaranteeing positive solutions for the parasympathetic and sympathetic tone for positive values
Tpm

,Tsm
.

5.2.5 Neurotransmitter concentrations

Equation (4.20) describes the concentration of free neurotransmitters with synapse inhibition,

d CA

d t
=−

CA

τA
+ qpTp − kiN CN Tp =−

CA

τA
+
�

qp − kiN CN

�

Tp ,

d CN

d t
=−

CN

τN
+ qs Ts .

Consider first the concentration of noradrenaline. If the concentration approaches 0, the change
in concentration is positive

lim
CN→0+

ĊN = qs Ts > 0,

since qs > 0,Ts ∈ (0,1). In addition, due to this restriction on Ts

lim
CN→C ∗N

ĊN < 0

for any C ∗N ≥ qsτN , since 0< Ts < 1. Hence, one upper bound for CN is C ∗N = qsτN . Since the initial
value is CN (0) = τN qs Ts ∈ (0, qsτN ), the solution will remain within this trapping region and thereby
remain positive.

For the concentration of acetylcholine to remain positive for positive initial conditions it is
required that

lim
CA→0+

ĊA=
�

qp − kiN CN

�

Tp > 0.

This is satisfied if
�

qp − kiN C ∗N
�

Tp > 0, which means that CA remains positive for positive initial
conditions if

C ∗N <
qp

kiN
.

Hence the requirement for positive solutions for noradrenaline and acetylcholine is

qsτN <
qp

kiN
.
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5.2.6 Cell pathways

The cell pathway concentrations are given by Equation (4.22),

CAF =µ
C 2

A

C 2
A+K2

A

d CAS

d t
=

1
τAS

�

(1−µ)
C 2

A

C 2
A+K2

A

−CAS

�

CAT =CAS +CAF

d CN S

d t
=

1
τN S

�

C 2
N

C 2
N +K2

N

−CN S

�

,

Since CA> 0,CN > 0 acetylcholine and noradrenaline concentration has a lower bound CA> C̃A>

0,CN > C̃N > 0.
For CAF the positive solutions for CA and CN imply

CAF >µ
C̃ 2

A

C̃ 2
A+K2

A

> 0,

as µ ∈ (0,1). Since

lim
CA→∞

C 2
A

C 2
A+K2

A

= 1,

CAF is bounded from above as well by CAF <µ.
The two other concentrations will be bounded from below by

lim
CA→C̃A

(1−µ)
C 2

A

C 2
A+K2

A

= C̃AS and

lim
CN→C̃N

C 2
N

C 2
N +K2

N

= C̃N S

since then

lim
CAS=C̃AS

ĊAS =
1
τAS

�

(1−µ)
C 2

A

C 2
A+K2

A

− C̃AS

�

> 0,

lim
CNS=C̃NS

ĊNS =
1
τNS

�

C 2
N

C 2
N +K2

N

− C̃NS

�

> 0,

(5.25)

with µ ∈ (0,1).
For large concentrations of acetylcholine and noradrenaline, CAS and CN S will be bounded from
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above by

lim
CA→∞

(1−µ)
C 2

A

C 2
A+K2

A

= (1−µ) and

lim
CN→∞

C 2
N

C 2
N +K2

N

= 1,

sice

lim
CAS→(1−µ)

ĊAS =
(1−µ)
τAS

�

C ∗2A

C ∗2A +K2
A

− 1

�

< 0,

lim
CNS→1

ĊNS =
1
τNS

�

C ∗2N

C ∗2N +K2
N

− 1

�

< 0.

Hence trapping regions for both concentrations exists: CAS ∈
�

C̃AS , (1−µ)
�

and CN S ∈
�

C̃N S , 1
�

.
Since the initial conditions are given by

CAS (0) = (1−µ)
CA (0)

2

CA (0)
2+K2

A

> (1−µ)
C̃ 2

A

C 2
A+K2

A

= C̃AS

CN S (0) =
CA (0)

2

CA (0)
2+K2

N

>
C̃ 2

N

C 2
N +K2

N

= C̃N S

the concentration will remain positive, and be bounded from above by CAS < (1−µ) and CN S < 1.
Since the bounds on the fast pathway is 0 < CAF < µ, the total activity of pathways activated by
acetylcholine is CAT ∈ (0,1).

5.2.7 Heart rate

The pace maker cell depolarization rate, and thus the cumulative depolarization, is predicted by
Equation (4.25),

d h
d t
= h0+ hN CN S − hA (CAS +CAF )−

1
h0

hN hACNSCAF, h(t0) = 0.

Due to the signs of the terms, the largest and smallest obtainable values of the derivative are obtained
in the limits where

lim
CAT→0,CN S→1

ḣ = h + hM ,

lim
CAT→1,CN S→0

ḣ = h − hm ,
(5.26)

which shows that the smallest possible depolarization rate is h − hm and the largest is h + hM .
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5.2.8 Heart rate

Since the depolarization rate is always positive, the number of heart beats will be strictly increasing,
which in turn guarantees that the numerator of (4.26) is positive. Therefore, evaluating the heart rate
only for positive increments in time guarantees a positive heart rate.

5.2.9 Summary

The voigt body model might show negative values for the baroreceptor neuron strain, and therefore also
possibly negative values for firing for some parameter configurations. Given the model formulation
negative firing will be detected by most simulation software due to it being the base of the exponential
in the expression describing the activity of the sympathetic and parasympathetic pathways.

For the concentration of acetylcholine the constraint

qsτN <
qp

kiN

guarantees that the given initial condition will provide a solution that remains positive.
The remaining part of the model will be positive for the given initial conditions, and provide

physical/physiological sound behavior. Whether or not the model is a good representation of the
dynamics within these boundaries is another question.
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Chapter 6
Sensitivity and Identifiability Analysis

To solve inverse problems one relies on different numerical techniques to determine parameter values
for which the model has the best fit experimental data The routines that exists to solve such problems
are many and diverse, each with different niches of application. However, all routines depends on the
mathematical structure of the model and associated data to allow for estimation of model parameters,
as well as available data to do so.

This chapter will introduce terminology and analysis methods for discussing and determining
whether model parameters can be estimated or not. The first part will be concerned with introducing
the terms identifiability and sensitivity, along with simple examples for illustration. The second part
will introduce numerical methods for sensitivity and identifiability analysis, and demonstrate the use
of these methods using examples of increasing complexity.

6.1 Identifiability

Identifiability is a property that describes whether it is possible to uniquely determine parameter
values. In this section two different types of identifiability will be introduced: practical and structural
identifiability.

Concepts and methods will be presented with reference to the system of ordinary differential
equations given by

ẋ (t ) = f (t , x (t ) , u (t ) ,θ) ,

y (ti ) = h (x (ti ) , u (ti ) ,θ) ,
(6.1)

where x is the model state vector, t is the independent variable, u(t ) model input, θ the parameter
vector, and h(x, u,θ) the observation function that relates the model states to the observable model
output y(ti ) at t = ti .
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Definition 2 Practical Identifiability. The dynamical system (6.1) is said to be practically identifiable if
θ can be uniquely determined given input u(t ) and the measurable system output y(t ).

It should be emphasized that practical identifiability depends not only on the structure of the
mathematical model, but also on available data. Structural identifiability on the other hand considers
the structure of the mathematical model, not limited by the availability of data (Miao et al. 2011;
Ljung and Glad 1994).

Definition 3 Structural Identifiability. The system structure is said to be structural (algebraically) identi-
fiable if a meromorphic function

Φ= Φ
�

θ, u, u̇, . . . , u (k), y, ẏ, . . . , y (k)
�

,Φ ∈ Rp (6.2)

can be constructed based on algebraic equations of the system state x , the input u , and the output y in a
finite number of algebraic or differentiation steps such that Φ= 0 and det ∂ Φ∂ θ 6= 0 hold in [t0, t1] for any
(θ, x0, u) in an open and dense subset of Θ×M ×C N

u [t0, t1]. Here k is a positive integer, u̇, . . . , u (k) are
derivatives of u , and ẏ, . . . , y (k) the derivatives of y , Θ the parameter space, M an open set of initial system
states, andC N

u the function space spanned by all input functions differentiable up to order N .

In short, this definition states that the system is structurally identifiable if and only if it is possible
to uniquely determine parameter values given the model output for all possible input functions. Input
data that properly elucidates the structure of the mathematical model and allows for identification of
all parameters are called persistently exciting (Ljung and Glad 1994). Hence, for a model to be practical
identifiable it must be structural identifiability and have a persistently exciting input. Two examples
are presented to demonstrate the difference between structural and practical identifiability.

6.1.1 Example: Structural unidentifiability

The concentration of a chemical compound can be described by the differential equation,

d x
d t
=−ax(t )+ b u(t ), x(0) = 0, (6.3)

where x(t ) is the concentration, u(t ) represents the admission of the chemical compound into the
system, while a and b are model parameters. Assume that the chemical concentration cannot be
measured directly at time ti , but only via the relation

y (ti ) = c x (ti ) , (6.4)

where c is another parameter. Now, given data for y, is it possible to uniquely determine the values of
the parameters a, b , c?
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Structural identifiability considers the question if it is possible to determine values for the parame-
ters given any possible input u(t ) with a corresponding output y(t ) with infinite precision. On the
other hand practical identifiability is concerned with the question whether it is possible to identify
parameter values given the model and a specific input-output data set. For example, if the model
is used to describe some chemical compound admitted to a patient at a hospital, restrictions exists
on what input is allowed, and with what precision output data can be obtained. In other settings,
measurements may only be available at certain times and with limited precision, or the model may
only be a good description of reality in some range of the parameter space.

If the problem is written in algebraic form it’s structure can be revealed,

1
c

d y
d t
=−a

1
c

y (t )+ b u (t ) ,

0= b c u (t )− y ′ (t )− ay (t ) .
(6.5)

The identifiable coefficients in this relation are b c and a, i.e. several combinations of b and c may
produce the same product b c and thereby the same input-output mapping. If initial conditions are
known, it may be possible to use this extra information to determine the value of one parameter or
parameter combination. For this example, the information gained about the system is

x(0) = x0→ y(0) = c x0. (6.6)

If x0 is non-zero and known, it is possible to determine the value of c from this relation, in turn
allowing for identification of parameter b . However, if x0 = 0 no information about the value of c can
be extracted from the initial condition. In summary, the structure of the problem makes it possible to
identify two parameter components {b c ,a}, under the assumption that available input/output data is
persistent excitatory.

For a simple problem like this, the structural unidentifiability can be recognised in the solution,

y (t ) = b c
∫ t

0
e−at ∗u (t − t ∗)d t ∗, (6.7)

as b and c only occur as the product b c .

6.1.2 Example: Practical unidentifiability

The heart rate model described in Chapter 4 uses Hill functions to describe saturating components of
the baroreceptor reflex. The Hill function is given by

y(x) = b − (b − a)
xk

xk + xk
∗

, (6.8)
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with the parameters a, b , k , x∗. Here b and a represents the function value before and after the change,
x∗ the point at which the change happens and k determines how rapidly the change occurs.

There may however be restrictions in the data that makes it impossible to identify correct parameter
values. If measurements are only available near the bounds, as illustrated in Figure 6.1, the values of a
and b are identifiable, while the parameters associated with the transition, k and x∗, are not practical
identifiable.

For this example it is obvious that the transition cannot be described with the presented data, but
for more complicated models this effect might not be directly observable.

x∗

b

a

Figure 6.1: Two different parameter configurations of the Hill function match the data points (red
dots) equally well. While the parameters ya , yb that describe the output levels at the ends of the
intervals are identifiable, parameters k , x∗ that describe the transition are not.

The two examples presented illustrates two different mechanisms for unidentifiability. In the
first example, the relationship between the different parameters meant that different combinations
could yield the same model output. Hence, unidentifiability was due to the relationship between the
parameters. For the second example, unidentifiability was caused by not having persistently exciting
data (missing information). Turning this description of the restriction upside down, the practical
unidentifiability can be related to the insensitivity of the model output at the given measurement
points to the parameters describing the transition.

As the heart rate model have large restrictions on available input (blood pressure) for which output
measuremnts (heart rate) exists, the focus in this study will be on practical identifiability.
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6.2 Sensitivities

Sensitivities describe the change in the model output due to changes in parameter values. Two different
approach to sensitivity analysis will be presented here: Local sensitivities are calculated as the derivative
of the model output with respect to the parameters at a given parameter configuration (local), and
global sensitivities quantifying the effect of varying parameters over some subspace of the parameter
space.

6.2.1 Derivative based sensitivities

Local derivative based sensitivities Sθ(t ) are derivatives of the model output y(t ) with respect to the
parameters θ,

Sθ(t ,θ) =
d y(t ,θ)

dθ
. (6.9)

For simple problems these can be calculated analytically, but for more complex problems it is
often advantageous to approximate these numerically. Three different computational methods exists
for computing the derivatives: Sensitivity equations, automatic differentiation, and finite differences
approximation.

Sensitivities of the model states to parameter values Sx
θ
= ∂ x

∂ θ can be computed using the sensitivity
equations method as the solution to the ode

d
d t

�

∂ x
∂ θ

�

=
d f
dθ
+

d f
d x

∂ x
∂ θ

d Sx
θ

d t
= Jθ+ Jx Sx

θ,
(6.10)

obtained by differentiating the model ode f (x,θ, t ) with respect to the parameter vector θ. Here Jθ =
d f
dθ is the parameter Jacobian and Jx =

d f
d x the model Jacobian which can be calculated analytically, using

finite difference approximations, or by automatic differentiation (Griewank et al. 1989). Subsequently
the state sensitivities S x

θ
can then be used to calculate the model output sensitivities Sθ by application

of the chain rule on the output function y = h(x, t ,θ).
Alternatively, the derivative with respect to θi can be calculated using the forward difference

approximation

Ŝθi
(t ) =

y(t ,θ+ hei )− y(t ,θ)
h

, (6.11)

where h is chosen appropriately to reflect the precision of the model output, and ei is the unit vector
in the i ’th component direction. If the error in the model evaluation is on the order of ε, the step size
should be h =

p
ε to get similar error on the sensitivities (Pope et al. 2009).

For the heart rate model the ode’s are solved using the Sundials CVODES library, which has
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included algorithms for calculating sensitivies via sensitivity equations with finite difference approxi-
mations of the jacobian and parameter jacobian (Serban and Hindmarsh 2005).

6.2.2 Global sensitivity analysis

Global sensitivity analysis measures how model output is affected by changes in parameter values over
some interval or subspace of the parameter space.

In this study global sensitivities are calculated using two methods: Sobol indices and the Morris
method. Sobol indices are computed by analyzing the model output variance over parameter space and
decomposing it to contributions from the different parameters. The larger the impact on the variance,
the more sensitive the parameter is. The Morris method calculate sensitivities by quantifying the effect
of large changes parameter values one at the time, starting from different points in parameter space.

Sobol indices

The method was originally developed by Sobol 2001 but several variations exists, see Saltelli, Annoni,
et al. 2010. The description of the Sobol indices and the algorithm for calculating first order effects
follows the presentation by R. C. Smith 2014, but with modifications to reflect the algorithm presented
by Jansen 1999.

Consider a scalar valued nonlinear model

Y = f (Θ), (6.12)

with parameters represented by the vector of random variables Θ =
�

Θ1, . . . ,Θp

�

,Θi ∈ Γi ⊂Rn while
ρΘ (θ) =

∏p
k=1

ρΘk
(θk ), where Γi denotes the range of the random variable Θi and ρΘ(θ) and ρΘi

(θi )
are the joint and individual probability densities.

Consider the model decomposition Sobol 1993

f (θ) =
∑

i′⊆{1,2,..., p}
fi′(θi′), (6.13)

where f is the model output, i′ = {i1, . . . , is} is a set of parameters with cardinality s , θi′ =
�

θi1
, . . . ,θis

�

and f; = f0. Then if
∫

Γk

fi′ (θi′)ρk (θk )dθk = 0

for any parameter θk and i′ = {1, . . . , s} that includes k, the decomposition is unique and the compo-
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nent functions are given by

fi′ (θi′) =
∫

Γ p−s
f (θ)ρθ (θ∼i′)dθ∼i′ −

∑

l ′⊂i′
l ′ 6=i′

fl ′ (θl ′) .

To determine the effect of the parameter interaction in the set i′, consider the conditional partial
variance,

Di′ =
∫

Γ s
f 2
i′ (θi′)ρθ (θi′)d qi′ = var [E (Y |θi′)]−

∑

l ′⊂i′
l ′ 6=i′,l ′ 6=;

Dl ′ ,

and the total variance
D =

∫

Γ
f 2 (θ)ρΘ (θ)dθ− f 2

0 =
∑

i′⊆{1,2,..., p}
i′ 6=;

Di′ .

The Sobol indices are defined as
Si′ =

Di′

D
(6.14)

giving
∑

i′⊆{1,2,..., p}
i′ 6=;

Si′ = 1.

The total sensitivity index
STi′
≡
∑

k ,i′∈k

Sk

describes the sensitivity of the model output variance to the parameter k, including the effects of
interactions with other parameters.

Algorithm for estimating Sobol sensitivity indices.

A naive brute-force approach for estimating the first order indices Si and STi
requires M 2 model

evaluations for each parameter, where M is the number of points (in parameter space) used to evaluate
the conditional mean E (Y |θi ), see Equation (6.14) and (R. C. Smith 2014). Saltelli, Annoni, et al.
2010 put forward an algorithm that reduces the number of model evaluations required to M (p + 2),
while the algorithm used in our study is due to Jansen 1999 and requires 2M (p + 2) evaluations for
a better trade off between precision and cost. It should be noted that these algorithms truncate the
variance decomposition after 2nd order. If higher order interactions are present in the model, these
algorithms may give incorrect estimates.

Algorithm 1 Sobol indices. Using M model evaluations and p parameters,
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1. Create two M × p sample matrices

A=









θ1
1 · · · θ1

i · · · θ1
p

...
...

θM
1 · · · θM

i · · · θM
p









, B =









θ̂1
1 · · · θ̂1

i · · · θ̂1
p

...
...

θ̂M
1 · · · θ̂M

i · · · θ̂M
p









,

where θ j
i and θ̂ j

i are parameter samples drawn from the distribution corresponding to parameter
i . In addition create the matrix

C =
�

A
B

�

.

2. Create two M × p matrices

Ai
B =









θ1
1 · · · θ̂1

i · · · θ1
p

...
...

θM
1 · · · θ̂M

i · · · θM
p









, B i
A=









θ̂1
1 · · · θ1

i · · · θ̂1
p

...
...

θ̂M
1 · · · θM

i · · · θ̂M
p









,

that is, let Ai
B =A, but replace the i ’th column with the i ’th column from B . Likewise, let B i

A= B ,
but replace the i ’th column with the i ’th column from A.

3. Compute the model output vectors

yA= f (A), yB = f (B), yAi
B
= f (Ai

B ), yB i
A
= f (B i

A), (6.15)

noting that

yC =
�

yA

yB

�

. (6.16)

4. Estimates of the first order sensitivity indices can be computed by

S∗i =

1
M
∑M

j=1 y j
Ay j

B i
A
− y j

Ay j
B

1
2M
∑M

j=1 y j
C y j

C −
�

1
M
∑M

j=1 y j
C

�2 =
1
M yT

A

�

yB i
A
− yB

�

1
2M yT

C yC −
�

1
M
∑M

j=1 y j
C

�2

S∗Ti
=

1
M
∑M

j=1

�

y j
Ay j

Ai
b

�2

1
2M
∑M

j=1 y j
C y j

C −
�

1
M
∑M

j=1 y j
C

�2 =
1
M

�

yA− yAi
B

�T �
yA− yAi

B

�

1
2M yT

C yC −
�

1
M
∑M

j=1 y j
C

�2 .

(6.17)

83



Table 6.1: Analytical first order Sobol indices Si , as well as estimated first order S∗i and total effect
S∗Ti

, for the Ishigami function using M = 10,000 evaluations. Values of coefficients used were a = 7,
b = 0.05 and qi ∼U (−π,π).

Measure θ1 θ2 θ3

Si 2.22 · 10−1 6.97 · 10−1 0.00 · 100

S∗i 2.12 · 10−1 6.87 · 10−1 9.64 · 10−3

S∗Ti
2.93 · 10−1 6.87 · 10−1 6.19 · 10−2

Test of implementation: Ishigami function.

The implementation of the Sobol algorithm was tested using the Ishigami function,

f (q) = sin (θ1)+ a sin (θ2)
2+ bθ4

3 sin (θ1) , (6.18)

with values a = 7, b = .05 as suggested by Sobol and Levitan 1999, and θi ∼U (−π,π). In Table 6.1
first order estimates are compared with analytical values given by R. C. Smith 2014. Deviations of less
than 5% indicates that the implementation correctly estimates the partial variances for M = 10,000.

Since STi
is the sum of all effects including θi , and Si the first order effect, the difference STi

− Si

is be the sum of interaction terms including θi . The degree of higher order interaction associated
with parameter i may thus be observed through the different S∗Ti

− S∗i . For θ2 the difference is ≈ 0,
suggesting that only first order effects are relevant. For θ1 and θ2 the difference is non-zero, suggesting
that these parameters are involved in higher order effects. Both suggestions are confirmed from the
analytical results where the only non-zero higher order variance is D13.

Morris Screening

Morris screening describes the sensitivity of model output to each parameter qi by sampling the
elementary effects (Morris 1991; R. C. Smith 2014)

di (θ) =
f (θ+∆ei )− f (θ)

∆
, (6.19)
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from a grid of points Γl in the parameter distribution range Γ , and estimating the mean and variance
of the distribution of |di (θ)|,

u∗i =
1
r

r
∑

j=1

�

�

�d j
i (θ)

�

�

�

σ2∗
i =

1
r − 1

r
∑

j=1

�

d j
i (θ)−µi

�2
, µi =

1
r

r
∑

j=1

d j
i (θ) .

(6.20)

This provides an estimate of large scale local effects of sensitivity to the parameter θi .
The choice of the number of points (in each dimension) on the grid l and the value of ∆ is

important as they determine the sampling of the parameter space. By choosing l to be even and
∆ = l

2(l−1) it is possible to ensure an even probability sampling from Γl , as this guarantees equal
probability for all points on the grid (R. C. Smith 2014).

Implementation.

The implementation presented here creates a trajectory through the grid in the parameter space,
such that for each step on the trajectory just one parameter is changed. Creating such a trajectory
one elementary effect sampling can be obtained for each of the p parameters using p + 1 function
evaluations (R. C. Smith 2014).

Algorithm 2 Morris Indices
For each j = 1, . . . , r :

1. Sample an initial parameter vector θ∗ from the uniform distributionU (0,1).

2. Create the (p + 1)× p permutation matrix B∗ where each row represents a parameter configura-
tion. A completely deterministic permutation matrix is given by

B∗j = Jp+1, pθ
∗+∆B , (6.21)

where Jp+1, p is a (p + 1)× p matrix of ones, ∆ is the chosen grid step size, and B is a lower
triangular matrix of ones. Each row in B∗ differs in exactly one column, corresponding to the
parameter for which the step is made. A random permutation matrix can be obtained by applying
the orientation matrix

B∗j =
�

Jp+1, pθ
∗+
∆

2

��

2B − Jp+1, p

�

D∗+ Jp+1, p

�

�

P ∗, (6.22)

where the p × p matrix D∗ is diagonal with elements randomly chosen from the set {−1,1}, and
the p × p matrix P ∗ is created by perturbing the columns of a p × p identity matrix.
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3. Map the uniformly distributed values in B∗ to the correct distributions using the mapping m.
This is achieved using the inverse survival function, and the survival function for the uniform
distribution x ∼ U (0,1): 1− x . Let mk (θk ) be this mapping for the k ’th parameter. When
applied a new matrix C j is formed

C j =









m1(B
∗
j (1,1)) · · · mi (B

∗
j (1,i)) · · · mp (B

∗
j (1, p))

...
...

m1(B
∗
j (p+1,1)) · · · mi (B

∗
j (p+1,i)) · · · mp (B

∗
j (p+1, p))









(6.23)

with values following the correct distributions.

4. Evaluate the model output for each of these p + 1 configurations, in the p + 1× 1 vector

y j = f (C j ). (6.24)

5. Through analysis of B∗ identify which two consecutive rows k and k + 1 that corresponds to each
parameter i , and calculate the corresponding elementary effect,

d j
i =

y j ,k+1− y j ,k

∆
. (6.25)

Finally the sampling mean µ∗i and variance σ2∗
i for each parameter i can be estimated by

u∗i =
1
r

r
∑

j=1

�

�

�d j
i (θ)

�

�

�

σ2∗
i =

1
r − 1

r
∑

j=1

�

d j
i (θ)−µi

�2
, µi =

1
r

r
∑

j=1

d j
i (θ) .

(6.26)

Example: Sobols’ function.

The function

Y =
p
∏

i=1

gi (Θi ), gi (Θi ) =
|4Θi − 2|+ ai

1+ ai
(6.27)

where ai ≥ 0 are fixed coefficients, is due to Sobol 2001, and often used as a test case for global
sensitivity analysis since by construction it is highly nonlinear, non-monotonic and has non-zero
interactions. Similar to R. C. Smith 2014 the values l = 4,∆= 2

3 , p = 6, a1 = 78,a2 = 12,a3 = 0.5,a4 =
2,a5 = 97,a6 = 33 and θi ∼U (0,1) , i = 1, . . . , 6 are used to compute the estimates listed in Table 6.2.
The listed values µ∗i ,σ∗i are obtained using an implementation of Algorithm 2. As the estimates are of
the same order of magnitude the implementation is considered correct.
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Table 6.2: µS
i ,σ S

i are numerical estimates from R. C. Smith 2014, µ∗i ,σ∗i are obtained using my
implementation of the naive algorithm for Morris measures.

Measure θ1 θ2 θ3 θ4 θ5 θ6

µS
i 5.60 · 10−2 2.77 · 10−1 1.76 · 100 1.19 · 100 3.50 · 10−2 9.90 · 10−2

µ∗i 3.94 · 10−2 3.05 · 10−1 1.73 · 100 7.44 · 10−1 2.59 · 10−2 8.68 · 10−2

σ S
i 3.84 · 10−2 1.90 · 10−1 1.68 · 100 1.13 · 100 3.74 · 10−2 2.38 · 10−2

σ∗i 3.34 · 10−2 3.32 · 10−1 2.02 · 100 9.16 · 10−1 1.48 · 10−2 7.36 · 10−2

Mapping uniformly distributed random variable to other distributions.

For some problems parameter values are known to follow certain distributions. Since the Morris
algorithm is described for parameters following uniform distributions, one can interpret the grid as
a division based on the percentile of the distribution. This interpretation makes it easy to translate
the uniformly sampled point θU ∼U (0,1) to another distribution, given that the inverse survival
distribution function (iSDF) or the inverse cumulative distribution function (iCDF) is available. The
following describes how to use the iSDF to map between distributions.

For the random variable θU first determine the survival distribution function (SDF) value of θU
for the uniform distribution y = SDFU (θU ). For the uniform distributionU (0,1) the SDF is simple,
SDFU (x) = 1− x. Next, map this survival probability to the target distribution T using the iSDF of
the target distribution iSDFT (y). In conclusion: One can obtain a random variable θT distributed
according to T by

θT = iSDFT (1−θU ) (6.28)

given that θU ∼U (0,1).
Figure 6.2 shows the probability density function and the survival distribution functions for the

uniform distribution and the beta distribution with parameter values a = 2, b = 7.

Example: SIR-model

To illustrate the two methods consider an SIR model given by (R. C. Smith 2014)

d S
d t = δN −δS − γkI S, S(0) = S0,
d I
d t = γkI S − (r +δ) I , I (0) = I0,
d R
d t = r I −δR, R(0) = R0.

(6.29)

Here, S represents the number of susceptible individuals, I the number of infected, and R the number
of recovered. N = S + I + R is the total number of individuals, the size of the population. The
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(iCDF) is available. I have used the iSDF as that that function was available
in the software package I used.

For the random variable qU we will first determine the survival distribution
function (SDF) value of qU for the uniform distribution y = SDFU (qU ). For
the uniform distribution U (0, 1) the SDF is very simple, SDFU (x) = 1 − x.
Next we will map this survival probability to the target distribution T through
the iSDF of the target distribution, iSDFT (y). In conclusion we can obtain a
random variable qT distributed according to T by,

qT = iSDFT (1 − qU ), (26)

given that qU ∼ U (0, 1).
Figure 1 shows the probability density function and the survival distribution

functions for the uniform distribution and the beta distribution with parameter
values a = 2, b = 7.

0

1

0 0.5 1

PDF

0 0.5 1

SDF

U(0, 1)
β(2, 7)/4

U(0, 1)
β(2, 7)

Figure 1: Probability density function and survival distribution function for the
uniform distribution and beta distribution with parameters a = 2, b = 7.

3.3 Test of implementation

I have implemented Example 15.17 from (Smith 2013). The function,

Y =

p∏

i=1

gi(Qi), gi (Qi) =
|4Qi − 2| + ai

1 + ai
(27)

where ai ≥ 0 are fixed coefficients, is often used as a test case for global sensi-
tivity analysis since by construction it is highly nonlinear, non-monotonic and
has non-zero interactions. Smith 2013 uses l = 4, ∆ = 2

3 , p = 6, a1 = 78, a2 =

7

Figure 6.2: Probability density function and survival distribution function for the uniform distribu-
tion and beta distribution with parameters a = 2, b = 7.

parameters in the model represents:

γ : Infection coefficient. Describes how efficient an infection is transmitted by individuals in
contact.

k: Interaction coefficient. Describes the degree of interaction between individuals.

r: Recovery rate.

δ: Death/birth rate. Describes the rate at which individuals, independently of the infection, are
”reborn” into the susceptible group.

The parameters follows the distributions

γ ∼U (0,1), k ∼β (a, b ) , r ∼U (0,1) , δ ∼U (0,1) .

The β-distribution is shown in Figure 6.3 for two different configurations: β(2,7) and β(0.2,15).
The SIR model was implemented in Python and the differential equations solved using lsoda from

the Fortran library odepack through a wrapper in the python package SciPy, scipy.integrate.odeint
(Jones, T. Oliphant, P., et al. 2001–; T.E. Oliphant 2007).

As the algorithms for Sobol and Morris considers a scalar model output, consider the response
function

y =
∫ 5

0
R (t ,θ)d t . (6.30)
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Figure 6.3: Beta probability distribution function (pdf) for high degree of interaction, a = 2, b = 7,
and for low degree of interaction, a = 0.2, b = 15.

While this function can be evaluated using a quadrature rule, it may also be evaluated by adding an
additional state y to system of differential equations

d y
d t
= R, y(0) = 0. (6.31)

Sampling of random variables was done using the library numpy.random, and the remapping of
distributions was done using the library scipy.stats.

Figure 6.4 shows the result with the initial conditions S0 = 900, I0 = 100, R0 = 0, with parameters
set at the mean values for large degree of interaction, i.e. γ = r = δ = 0.5 and k = 2

2+7 .
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0 1 2 3 4 5

Susceptible
Infected

Recovered

Figure 6.4: Solution of the model for mean parameter values for high degree of interaction.
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Table 6.3: Measures obtained using different configurations for the distribution of k.

(a) a = 2, b = 7

Measure γ k r δ

Si 4.44 · 10−2 −8.30 · 10−3 7.79 · 10−1 1.12 · 10−1

STi
−4.48 · 10−2 −1.07 · 10−1 6.38 · 10−1 1.93 · 10−1

µ∗i 2.21 · 102 6.16 · 102 2.26 · 103 1.36 · 103

σi 3.37 · 102 1.59 · 103 9.52 · 102 5.39 · 102

(b) a = 0.2, b = 15

Measure γ k r δ

Si 6.01 · 10−2 5 · 10−1 1.74 · 10−1 1.19 · 10−1

STi
2.82 · 10−1 7.35 · 10−1 2.89 · 10−1 2.31 · 10−1

µ∗i 5.15 · 102 2 · 103 1.08 · 103 8.26 · 102

σi 7.34 · 102 2.23 · 103 1.44 · 103 8.69 · 102

High degree of interaction.

Results obtained for a = 2 and b = 7 are shown in Table 6.3a. From the Sobol indices the order of
importance is r,δ,γ , k, with r and δ being one order of magnitude more important than γ , which
is again one order of magnitude more important than k. The Morris measures tells a similar story,
although they rank γ and k more evenly, one order of magnitude below r and δ. This suggests that
the parameters γ and k does not contribute significantly to the model for this configuration. These
suggestions are further supported by the scatter plots of parameter value against number of recovered
individuals at time t = 5, shown in Figure 6.5. The figure shows that the expected value of R(5) do
not change with the value of parameters γ and k (uniform distribution of points), whereas it clearly
depends on the value of r and δ.

Figure 6.3 shows the beta distribution for k. It is clear that for a large degree of interaction,
a = 2, b = 7, the values obtained for k will have a median removed from both 0 and 1.

Figure 6.6 shows the estimated probability density function of R(5) for the case where all param-
eters are allowed to vary and for the case where only r and δ are allowed to vary.Fixing γ and k is
found to be unimportant to model output, as it does not change the statistical behavior of the model.

Low degree of interaction.

Results obtained for a = 0.2 and b = 15 are shown in Table 6.3b. The Sobol indices suggest the
ordering k , r,δ,γ , with k being five times as significant as r , which is in turn approximately twice
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Figure 6.5: Scatter plots of parameter values vs. the number of recovered individuals R at time t = 5
for the configuration corresponding to a high degree of interaction.

as significant as γ and δ. The Morris indices suggest the ordering k , r,δ,γ . These suggestions are
supported by the scatter plots in Figure 6.7 where the number of recovered individuals at time t = 5 is
plotted against the value of the parameters. Note that the value of the parameter k has been remapped
and plotted as the value on the uniform distributionU (0,1) that has the same survival distribution
function. Figure 6.3 shows the beta distribution. The plots reveal that the probability of experiencing
an extreme low value of k is significant. Since the infection coefficient γ < 1 an extreme low value
of k would lead to very slow disease dynamics, and may even cause the disease to go extinct, if the
recovery rate r and the birth/death rate δ is large enough. This is illustrated in Figure 6.6, where the
estimated probability density function of R(5) is plotted for the case where all parameters are allowed
to vary and for the case where only k,r and δ are allowed to vary, while γ and k are fixed at their
mean values. Furthermore, to show the importance of k the estimate of the probability distribution
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Figure 6.6: (a) Gaussian kernel density distribution of R(5) obtained using 1,000 realizations of the
model with parameter values drafted from their respective distributions. The two curves represents
varying parameters {γ , k , r,δ} and {r,δ} respectively. Parameters not varied were set at the mean
value of the associated distribution. (a) The parameters for the β-distribution for k was a = 2 and
b = 7. (b) The parameters for the β-distribution for k was a = 0.2 and b = 15. The third curve is
included to show the resulting distribution if k wrongly had been fixed at mean value.

with k set at the mean value has been included, corresponding to the reduced model configuration
with high degree of interaction. Note that with this probability distribution, the value of k is quite
significant for the disease dynamics.
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Figure 6.7: Scatter plots of parameter values vs. number of recovered individuals R at time t = 5 for
the configuration corresponding to a low degree of interaction. Note: Values of parameter k has been
mapped to the value on the uniform distribution with the same survival density function value to
better show how the percentile of the random variable affects the model output.

6.3 Identifiability analysis/Subset selection

As discussed earlier in Section 6.1, unidentifiability can be due to the model output being insensitivity
to the parameters in question, or to only a combination of parameters being identifiable. The first
type of unidentifiability was illustrated with the Hill function example and the second by the linear
input example where the parameters where structural unidentifiable.

While the sensitivity estimates introduced above will show if parameters affect the model output, it
does not reveal parameter interactions or possible over-parametrisation. Attention will therefore now
turn to methods for finding identifiable subsets of parameters, subset selection. The methods applied
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in this study are based on local sensitivities and include both an element of the magnitude of model
sensitivity to the parameters and parameter interactions.

Two methods are presented here: The structural correlation method (SCM) (Jacquez 1985; Miao
et al. 2011; Ottesen and Olufsen 2013) and the orthogonal sensitivities method (OSM) (Li, Henson, and
Kurtz 2004). SCM is based on identifying pairwise correlations between parameter estimates. A subset
will be selected by first removing insensitive parameters, and then removing one parameter at the time
until no correlations are left in the subset. OSM starts with an empty set and adds one parameter at
the time based on the magnitude of sensitivity to the parameter and the linear independence between it
and the existing subset. Numerous other methods for subset selection exists, including the Eigenvalue
and the SVD-QR method. Miao et al. 2011 provides a good overview of available methods that are
based on local sensitivities.

Before discussing the two methods it is relevant to discuss the Fisher Information Matrix as it is a
core component of both methods.

Fisher Information Matrix

For Equation (6.1) the Fisher information matrix (FIM) is given by

F = σ−2ST S, (6.32)

where S is given by (6.9) for some specific parameter configuration and σ2 is the variance associated
with the problem.

For a least-squares problem in general the objective is to minimize the cost function (sum of
squares)

SS=
1
2

n−1
∑

i=0

r 2
i , (6.33)

where
ri = vi − yi

are the residuals where vi is the measured data and yi is the i’th output of the function. For the heart
rate model, yi would denote the model output (heart rate) at time ti .

In optimization the goal is to find the parameter configuration θ∗ that minimizes (6.33). For this
optimum the gradient vector is zero, g (θ∗) = 0. The Taylor expansion of the cost function around
the optimum point θ∗ in the parameter space is given by

SS(θ) = SS (θ∗)+ g∆+∆T H∆+O
�

∆3� . (6.34)
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where ∆= (θ−θ∗), g is the gradient given by

g j =
∂ SS
∂ θ j

=
n−1
∑

i=0

ri
∂ ri

∂ θ j

and H is the Hessian (square matrix with second-order partial derivatives) of the cost function given
by

H j k =
∂ g j

∂ θk
=

n−1
∑

i=0

∂ ri

∂ θk

∂ ri

∂ θ j
+ ri

∂ 2 ri

∂ θ j∂ θk
.

Ignoring higher-order terms of the taylor expansion in (6.3), and re-arranging gives

SS(θ) = SS(θ∗)+∆T H∆

since g (θ∗) = 0. If H is singular there exists some ∆ 6= 0, such that H∆= 0, which in turn means that
SS (θ) = SS (θ∗), and thereby, that the minimizer of the cost function is not unique.

When r is small or when r varies nearly as a linear function near an minimum of (6.33), a good
approximation to the Hessian is obtained by ignoring the second-order term (Wolfram 2013).

H j k ≈
n−1
∑

i=0

∂ ri

∂ θk

∂ ri

∂ θ j
.

Since ri = vi − yi the derivative of the residual is given by

∂ ri

∂ θ j
=

∂

∂ θ j
(vi − yi ) =−

∂ yi

∂ θ j
=−Si j .

Hence the Hessian approximation can be written as a matrix product,

H ≈ ST S = F ,

and analysis of FIM will show which parameters may cause unidentifiability.
While the presentation above is based on the absolute sensitivities, similar arguments can be made

for the relative sensitivities. Define ỹi = ln yi and θ̃ j = lnθ j , then the Hessian of the relative cost
function

H̃ = S̃T S̃

can be approximated by FIM using the relative sensitivities

S̃i j =
∂ ln yi

∂ lnθ j
.
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Structural Correlation Method

In statistics, correlations between parameters can be determined by estimating parameter values by
solving the inverse problem against different sets of data and calculate correlations on the resulting
series of parameter estimates. A simple recipe for calculating correlations in this manner would be
to (Miao et al. 2011)

1. Select nominal values for the parameters. Call this set θ0.

2. Obtain the solution to the mathematical model y(ti ,θ0) using the nominal parameter values.

3. Using the solution y(ti ,θ0) generate n new data sets by adding iid. noise from a normal
distribution

y j (ti ) = y(ti ,θ0)+N (0,σ2), for j = 0, . . . , n− 1

4. For each artificial data set y j , determine the parameter set θ j that minimizes the least squares
cost

SS j =
1
N

N−1
∑

i=0

�

y j (ti )− y(ti ,θ j )
�2

.

5. Calculate covariances of the obtained parameters by

Cov [a, b ] = E
h

�

a−E
�

a
�� �

b −E
�

b
��

i

≈ 1
n

n−1
∑

j=0

 

a j −
1
n

n−1
∑

j=0

a j

! 

b j −
1
n

n−1
∑

j=0

b j

!

6. Here, the variance of the parameter a is given by

Var [a] =Cov [a,a].

7. Correlations are then calculated by scaling with the variance of each parameter

Cor(a, b ) =
Cov [a, b ]

p

Var [a]Var [b ]
.

Often these correlations are presented in a matrix called the correlation matrix, where each
parameter are represented by a row and a column. As covariances are independent of the
order of the parameters, the covariance and correlation matrix are often depicted as triangular
matrices.

While this method makes it clear how to understand what correlations are, the computational cost of
this method is high. The covariance matrix C can also be approximated as the inverse of the Fisher
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information matrix (FIM) - the first order approximation to the model Hessian. This covariance
matrix will tell about the variances to expect for parameter estimates, and enable calculation of the
correlations analogous to above. For problems with constant variance σ the parameter covariance is
given as the inverse of the FIM, given in Equation (6.32), by

C = F −1. (6.35)

The idea behind the structural correlation method is that if a pair of parameters show a large correlation,
that is, that their uncertainty is strongly coupled, it is not feasible to estimate both parameters. The
correlations can be based on either absolute S j (t ) =

∂ y(t )
∂ θ j

or relative sensitivities S̃ j (t ) =
∂ y(t )
∂ θ j

θ j

y(t ) .
Often relative sensitivities are preferred since this enables one to compare different model output and
parameters with values of different orders of magnitudes.

Algorithm 3 Structural Correlation Method (Daun et al. 2008; Olufsen and Ottesen 2013)

1. For each parameter calculate the 2-norm of the sensitivity of the model output to this parameter

S̄ j =

√

√

√

√

N−1
∑

i=0

S j (ti )2.

2. Fix insensitive parameters for which S̄ j <
p
ε where ε is the tolerance used when calculating the

sensitivities.

3. Repeat through the following steps.

(a) Calculate the covariance matrix by inverting the FIM, C = (F )−1 =
�

ST S
�−1, and deter-

mine correlations as described above. If the largest correlation is smaller than some value γ ,
the subset reduction procedure is complete.

(b) For the correlation with the largest absolute value, fix the parameter with the lowest overall
sensitivity, determined by the 2-norm of the sensitivities S̄ j .

(c) The parameter to be fixed is noted, and the column of S corresponding to this parameter are
removed from S , before correlations are calculated again, and the process is repeated.

Orthogonal sensitivities

Contrary to the structural correlation method, this method builds a subset by selecting one parameter
at the time and adding it to a subset of identifiable parameters. The method by Li, Henson, and Kurtz
2004 combines two of the methods presented by Miao et al. 2011, the principle component analysis
(PCA) and the orthogonal method. For each parameter an importance index e is calculated using
PCA and each time the subset of already selected parameters is updated the remaining parameters
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have their orthogonality index d calculated. At each iteration the parameter with the highest product
I = ed is added to the subset.

Importance index/principle component analysis.

The name principle components refers to the eigenvectors v corresponding to eigenvalues λ of the matrix
F

F v = Fλ. (6.36)

For the OSM method the matrix of interest is

F = S̃T S̃,

where S̃ = ∂ y
∂ θ

θ
y =

∂ ln y
∂ lnθ is the relative sensitivities. Eigenvectors describe directions for which the

matrix will only scale the vector.
For this particular context the eigenvectors of F will describe directions in the parameter space

that change proportional to the corresponding eigenvalues. To find parameters that may cause a large
impact on the model output, it is relevant to look for parameters for which the gradient can change
when parameter values are changed, that is for eigenvectors with large eigenvalues. Hence to investigate
the impact of parameter j on the gradient for the i ’th eigenvalue-eigenvector combination, consider
the product of the j ’th component of the eigenvector and the eigenvalue from (6.36)

(λi vi ) j .

Combining the eigenvectors into a matrix Q where the i ’th column is the vector vi , the Importance
index e j used in OSM is calculated by summing over all the eigenvalues, and normalizing by the sum
of the eigenvalues

e j =

∑m−1
i=0 λi Q j i
∑m−1

i=0 λi
. (6.37)

Orthogonality index / Linear independence.

While building the identifiable subset, the columns of the sensitivity matrix S corresponding to the
already selected parameter i = l1, . . . , ls span a space denoted by S̃s = span

�

S̃l1
, . . . , S̃ls

�

. For each of the
remaining parameters, i = k1, . . . , kp−s the projection of the corresponding column of the sensitivity
matrix S̃i onto S̃s is found as

s̃ =
ls
∑

i=l1

αi S̃i .
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This is done by finding the coefficients αi that solves

min
αi

1
2

�

S̃ j − s̃
�T �

S̃ j − s̃
�

,

which is equivalent to solving the linear system









s̃T
l1

s̃l1
. . . s̃T

ls
s̃l1

... . . . ...
s̃T
l1

s̃ls
. . . s̃T

ls
s̃ls









α=









S̃T
j s̃l1
...

S̃T
j sls









, (6.38)

since the column corresponding to the already selected parameters are linearly independent1. s̃ is now
the projection of S̃i onto S̃s . If S̃i can be expressed in the basis of S̃s the two vectors will be equivalent
(in direction), and the parameter i adds no dynamics to the model output (that has not already been
included). In this case, the parameter is insignificant, and would be rejected for the subset. On the
contrary, if s̃ is very different from S̃i , Si should be included in the subset.

The linear independence is determined by observing sine to the angle between the projection s̃
and S̃i . This is called the orthogonality index,

di = sin

�

arccos

�

ST
i s̃

‖S̃i‖‖ s̃‖

��

. (6.39)

Identifiability index.

After calculating the orthogonality index for all non-ranked parameters, their total identifiability
index can be calculated as

Ii = di ei (6.40)

Now, select the parameter with the highest identifiability index, and repeat the process from calculating
orthogonality indices.

Example: Structucal unidentifiability revisited

To illustrate the ideas behind these two methods the example of structural unidentifiability from
Section 6.1.1 will be revisited. For this example, the initial condition of x0 is treated as a variable and
sensitivities are analyzed for a specific input signal.

ẋ(x, t ) =−ax + b u(t ), x(0) = x0

y(x) = c x.
(6.41)

1If one seeks to continue ranking after building a full rank basis, one should then consider only the importance index.
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where x is the state, u(t ) some input signal, y(t ) the model output and α,β, c , x0 are parameters.
The solution to the differential equation and the model output is given by

x(t ) = x0e−at +
∫ t

0
e−a(t−s)b u(s)d s ,

y(t ) = c x0e−at + c b
∫ t

0
e−a(t−s)u(s)d s .

(6.42)

Here the parameter c only appears in combination with the initial condition/parameter x0

and in combination with the parameter b . Hence, as discussed earlier, there is not a one-to-one
correspondence between parameters and the model output, as different configurations of parameter
values can give an identical model output.

The sensitivities can be calculated analytically

∂ y
∂ a
(t ,θ) =−c t x0e−at − c b

∫ t

0
(t − s) e−a(t−s)u(s)d s ,

∂ y
∂ b
(t ,θ) = c

∫ t

0
e−a(t−s)u(s)d s ,

∂ y
∂ c
(t ,θ) = x0e−at + b

∫ t

0
e−a(t−s)u(s)d s ,

∂ y
∂ x0

(t ,θ) = c e−at .

(6.43)

Using input function u(x) = sin (x), parameters a = 1.5, b = 2, c = 3 and x0 = 1 for xi ∈ [0,7] the
resulting sensitivities are as shown in Figure 6.8. From Equation (6.42) it can be seen that it is
impossible to identify all of {b , c , x0} at the same time, as these parameters only occur two places in
the solution, and only in combinations. From this analysis it should be possible only to identify two
of these three parameters, due to the structural link between their roles.

Calculating the condition number (hints at the difficulty of inverting the matrix/degree of linear
dependence/singularity) of ST S for different subsets of parameters gives the results shown in Table 6.4,
which confirms this suspicion. The results reveal a very large condition number when all parameters
are included, and when only a is excluded. On the other hand, removing parameter b , c or x0 reduces
the condition number to the order of 102.

Looking at the results from the sensitivity analysis with the condition numbers presented in Table
6.4 it is not surprising that letting parameters b or c be fixed reduces the condition number, as the
sensitivity to these parameters are proportional. At the same time it is remarkable that fixing x0 also
reduces the condition number. This hints that slight differences at the beginning of the curves of the
sensitivities for b and c is enough to distinguish these parameters.

Using the orthogonal sensitivities method (OSM) the ranking shown in Table 6.5 is found. Note:
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Figure 6.8: Sensitivities for the linear input example.

Table 6.4: Condition numbers for matrix ST S for different parameter subsets.

Subset κ(ST S)

{a, b , c , x0} 2.73× 1017

{b , c , x0} 3.20× 1016

{a, c , x0} 1.68× 102

{a, b , x0} 6.73× 101

{a, b , c} 4.35× 102

1. c is ranked as most important. This is not surprising when looking at the sensitivity plots.

2. a is ranked 2nd. The orthogonality of a is only .546 but this is still significantly larger than
that of b which is .20. The sensitivity to x0 is more orthogonal with d = .95, but since the
sensitivity to x0 is a lot smaller, the total identifiability index for a is still the largest.

3. b is ranked 3rd. The orthogonality of b is .196, a lot smaller than for x0, which is .934.
However because the importance index of b is .243 while that of x0 only is .031, b is
prioritized.

4. x0 is ranked last. When a, b , c has already been chosen, the orthogonality index of x0 is
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Table 6.5: Ranking obtained using the orthogonal sensitivities method (OSM). Columns shown are
Orthogonality (d ), Importance (PCA) score (e ) and total Importance ( I = d e ).

Rank Parameter d e I

1 c – 0.766 –
2 a 0.546 0.578 0.315
3 b 0.196 0.243 0.047
4 x0 0.000 0.031 0.000

0.000. This confirms the suspicion that the sensitivities are linearly dependent.

Since there is a linear dependence in S, the FIM 6.32 is not invertible. Hence it is impossible to
calculate statistical correlations of the parameters value using the Cramer-Rao bound (Miao et al. 2011).
If however, one of the parameters b , c or x0 is removed from S , the correlation matrix can be calculated
(assuming normally distributed errors with standard deviation 1). Denoting the correlation matrix
obtained without parameter b as Cb and likewise for the other parameters, the resulting matrices are

Cb =







1.000 0.027 −0.006
− 1.000 −0.008
− − 1.000






,

Cc =







1.000 0.027 0.005
− 1.000 0.004
− − 1.000






,

Cx0
=







1.000 0.006 0.005
− 1.000 −0.198
− − 1.000






,

(6.44)

which suggests that all remaining parameters are identifiable when either b , c or x0 is fixed.
One important final remark is that fixation of parameters reduces the degrees of freedom of the

model and introduces a bias. For this example the relationship between b , c and x0 makes it impossible
to say which/that two parameters are identifiable. Since fixing one parameter effectively changes the
model, it does not make sense to compare parameter values for x0 for an optimization where a is fixed
with another value obtained with b fixed. These two estimates of x0 should not be expected to be
similar as they are de facto parameters of different models.
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6.4 Examples

To compare the performance of the local and global methods introduced in this chapter, they are
applied to four different example problems of increasing complexity. The first three considers the
effect called aliasing that occurs when oscillating signals are sampled at a low frequency, while the last
example is the part of the heart rate model that describes the viscoelastic behavior of the arterial wall,
the Voigt-body model.

6.4.1 Aliasing

Consider the function

f (t ,θ) =
p
∑

k=1

θ2
k sin (2πk t ) . (6.45)

If evaluation of the function is restricted to a certain rate, one may experience aliasing. Aliasing is
when an oscillating signal is recorded at such a rate that the recorded signal appears to be oscillating at
a lower frequency or not at all. While this example is nonlinear in the parameters θk , it is based on an
example with linear aliasing in R. C. Smith 2014.

Assume that the function can be evaluated at n evenly spaced values ti = i∆t , i = 0, . . . , n−1,∆t =
1

n−1 and that the parameters are restricted to the interval (0,1). It is clear that the parameters could
be rescaled to obtain a system linear in the parameters. Using n = 5 means that the function can
be observed/evaluated at the points t = 0, 1/4, 1/2, 3/4, 1. For p = 4 this results in the series shown
in Figure 6.9. The figure shows that there is only two non-zero different basis functions with this
resolution of evaluations, and hence it is unlikely that all four parameters can be identified. The
other panels in Figure 6.9 shows the basis functions evaluated at resolutions n− 1= {8,16} and full
resolution. From the figures it can be seen that only one parameter does not contribute to the model
output for n−1= 8 and that all parameters contribute for n−1= 16. These three configurations will
be analyzed using the methods presented in Section 6.3.

Local derivative based sensitivities.

The local sensitivities are given by

∂ f
∂ θ

k

(t ,θ) = 2θk sin (2πk t ) . (6.46)

Since it has already been shown that the basis functions are linearly dependent if evaluated at n = 5
points, the sensitivities will also be linearly dependent. Therefore, it is known in advance that it is not
possible to identify all parameters uniquely.
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Figure 6.9: Basis function evaluated at t = 0, 1/n, 2/n, . . . , n− 1/n, 1 for the three measurement resolu-
tions and full time series.
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Table 6.6: Condition numbers for STS for n−1= 4,8,16. It is evident that the matrix is non-invertible
unless n− 1= 16.

n− 1 K
�

STS
�

Rank
�

STS
�

4 2.7× 1031 1
8 1.5× 1030 3
16 1.0× 100 4

Table 6.7: Correlation matrix for the system with n− 1= 16. No correlations are present, suggesting
that there should be no problem with identifiability.

θ2 θ3 θ4

θ1 −5.3× 10−17 −2.2× 10−32 −5.8× 10−17

θ2 −8.6× 10−17 1.0× 10−16

θ3 6.5× 10−17

Correlation method

Since there is a linear dependence between the four basis functions (two of them being zero), the Fisher
information matrix F = STS is not invertible, and therefore, the correlations cannot be calculated.
Table 6.6 shows the condition numbers of the F = STS -matrix for different values of n. As the Fisher
information matrix is invertible for n− 1= 16, the correlations can be calculated. They are shown in
Table 6.7, and shows no correlations.

Orthogonal method.

Table 6.8 shows the rankings obtained using the orthogonal method for n− 1= 4,8,16. For n− 1= 4
only one parameter is found to be identifiable, while three are found identifiable for n− 1= 8, and all
parameters are identifiable for n− 1= 16.

Global methods

Assume that parameters are uniformly distributed

θi ∼U (0,1).

From the local analysis and arguments about the dimension of the spanned space, it is expected that
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Table 6.8: Ranking obtained using the orthogonal method for n− 1= {4,8,16}. For n− 1= 4 since
the rank of the sensitivity matrix is 1, it is not meaningful to select more than one parameter. From
the E -values, it is known that parameters θ1 and θ3 are identifiable, but not both at the same time.
For n− 1= 8 the rank of the sensitivity matrix is 3, so it is sensible to choose only three parameters.
The choice of θ1,θ2,θ3 is consistent with behavior of the basis functions. For n− 1= 16 the rank of
the sensitivity matrix is 4, so all parameters are expected identifiable.

(a) n− 1= 4

Rank Par d e I

1 θ1 − 0.71 −
2 θ3 0.00 0.71 0.00
3 θ2 0.00 0.00 0.00
4 θ4 0.00 0.00 0.00

(b) n− 1= 8

Rank Par d e I

1 θ1 − 0.47 −
2 θ3 1.00 0.47 0.47
3 θ2 1.00 0.33 0.33
4 θ4 0.00 0.00 0.00

(c) n− 1= 16

Rank Par d e I

1 θ3 − 0.38 −
2 θ2 1.00 0.37 0.37
3 θ1 1.00 0.32 0.32
4 θ4 1.00 0.29 0.29

parameters θ2 and θ4 are non-influential in the n− 1= 4 case, that θ4 is non-influential for n− 1= 8,
and that all parameters are influential for n− 1= 16. In addition it is expected that the effect of all
influential parameters on the model output are similar in magnitude.

Sobol indices.

The estimated first order Sobol indices S∗i and total effects S∗T i are listed in Table 6.9. As expected, for
n− 1= 4 only θ1 and θ3 have an effect on the model output, while θ2 and θ4 have no effect. Also
note that the total effect estimates S∗T i are similar for θ1 and θ3.

Likewise, for n−1= 8 and n−1= 16 the estimated indices match the expected behavior from the
analysis of local sensitivities and the basis functions of the model.

Morris indices.

All parameters are expected to have equal sensitivities, due to equal weights and same mean value, and
those that reduce to the same basis functions with the n− 1= 4 resolution to show some second or
higher order effects. The resulting indices are shown in Table 6.9. The effects predicted by the two
global methods are consistent.

6.4.2 Nonlinear aliasing revisited

Considering the aliasing example above but with p = n = 10 results in global measures shown it
Table 6.10. Both Sobol indices and Morris measures suggests that all parameters are equally sensitive
except for θ5 and θ10 that have no impact on the model output. This result is coherent with the
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Table 6.9: Sobol and Morris indices for the parameters in example 1 with m = 5 and n− 1= 4,8,16
parameters. For n−1= 4 both methods (correctly) estimates that parameters θ2 and θ4 are insignificant
and that θ1 and θ3 have similar (actually equal) effect on the output. For n− 1 = 8 both methods
(correctly) estimates that θ4 are insignificant and that θ1,θ2 and θ3 have similar (actually equal) effect
on the output. For n − 1 = 16 both methods (correctly) estimates that all parameters are equally
influential on model output.

(n− 1) θ1 θ2 θ3 θ4

4

S∗i 0.22 −0.01 0.16 −0.01
S∗T i 0.81 0.04 0.80 0.04
µ∗i 3.88 0.00 3.43 0.00
σ∗i 18.44 0.00 17.35 0.00

8

S∗i 0.33 0.33 0.31 −0.02
S∗T i 0.29 0.29 0.32 −0.06
µ∗i 9.92 10.83 10.52 0.00
σ∗i 83.73 90.08 87.42 0.00

16

S∗i 0.24 0.24 0.25 0.25
S∗T i 0.28 0.28 0.26 0.27
µ∗i 22.15 20.60 22.23 21.97
σ∗i 377.60 312.96 362.59 364.69

rankings obtained using OSM shown in Table 6.11. As indicated by these tables there are two
parameters θ5 and θ10 that does not contribute to the model output, and hence the Fisher information
matrix is invertible, and correlations cannot be calculated using the SCM method.

6.4.3 Added interaction term

For the example with p = 4, n−1= 8 the parameter θ4 was non-influential, but θ1,θ2,θ3 were linearly
independent, and should all be identifiable. Adding to the sum an interaction term θ1θ4 sin (2πt ),
gives the response-function

f (t ,θ) = θ1θ4 sin (2πt )+
4
∑

k=1

θ2
k sin (2πk t ) . (6.47)

One would expect that θ4 now has influence on the model output, but that a large part of the influence
is through interaction. Sobol indices and Morris measures are shown in Table 6.12. Table 6.13 shows
the ordering from OSM using parameter values θi = 1. It is seen that the parameter θ4 now has an
impact (E = 0.18), but that it is does not contribute any dynamics that are not already represented
by the other parameters (namely θ1 that it is linearly dependent on). Again, since there is a linear
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Table 6.10: Sobol indices obtained using Jansen’s implementation and morris indices for p = n− 1=
10.

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10

S∗i 0.05 0.05 0.06 0.04 0.00 0.05 0.05 0.06 0.05 0.00
S∗T i 0.19 0.18 0.18 0.19 -0.02 0.17 0.18 0.17 0.20 -0.02
µ∗i 9.78 8.83 9.25 8.90 0.00 8.82 9.96 8.88 9.22 0.00
σ∗i 112.00 105.67 116.31 93.10 0.00 103.31 134.31 102.61 117.50 0.00

Table 6.11: Ratings obtained using OSM for p = n− 1= 10.

Rank Par d E I

1 θ2 − 0.36 −
2 θ8 0.98 0.36 0.35
3 θ4 1.00 0.30 0.30
4 θ6 0.98 0.30 0.30
5 θ1 0.97 0.25 0.24
6 θ9 0.98 0.25 0.24
7 θ7 0.92 0.23 0.21
8 θ3 0.98 0.23 0.22
9 θ10 0.00 0.00 0.00

10 θ5 0.00 0.00 0.00
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Table 6.12: Global measures obtained for linear aliasing vith interaction term with p = 4, n− 1= 8.

θ1 θ2 θ3 θ4

S∗i 0.61 0.09 0.09 0.08
S∗T i 0.73 0.13 0.13 0.20
µ∗i 19.95 11.85 11.06 4.00
σ∗i 298.03 87.54 93.07 18.81

Table 6.13: Ranking obtained for p = 4, n − 1 = 8 with interaction and parameter values θi = 1.
Compare to Table 6.8 for the same setup without interaction.

Rank Par d E I

1 θ1 − 0.53 −
2 θ3 1.00 0.22 0.22
3 θ2 1.00 0.22 0.22
4 θ4 0.00 0.18 0.00

dependence in the sensitivities, correlations cannot be calculated using the SCM method.

6.4.4 Viscoelastic Two-Voigt-body model

For the last example, consider the Two-Voigt-body model used to represent the viscoelastic strain of
the baroreceptor neurons in the heart rate model. The model shown in Figure 4.5 consists of two
Voigt-bodies in series with a spring, with each Voigt-body consisting of a dash-pot and a spring in
parallel.

The model (4.6) is described by the two differential equations,

d ε1

d t
=− (α1+α2+β1)ε1+(β1−β2)ε2+(α1+α2)εw

d ε2

d t
=−α2ε1−β2ε2+α2εw .

(6.48)

Consider ε2 as the model output, use the Heaviside function as the input εw = H , and parameter
values α1 = 2,α2 = 1,β1 = 2,β2 = 0.4. For the global methods, parameter values will be sampled on
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Table 6.14: Sensitivity Indices for the two Voigt-body model. S∗i and S∗T i are the first order and total
Sobol indices, while µ and σ are the estimates for the mean and variance of the elementary effects of
the Morris method.

α1 α2 β1 β2

S∗i 0.19 0.78 -0.16 -0.21
S∗T i 0.15 0.54 0.15 0.17

µ 0.05 0.09 0.05 0.05
σi 0.01 0.01 0.01 0.00

Table 6.15: Correlation matrix and OSM ranking for the two-Voigt body model.

(a) SCM correlations

α1 α2 β1 β2

α1 – -0.90 -0.56 -0.91
α2 -0.90 – 0.85 0.98
β1 -0.56 0.85 – 0.75
β2 -0.91 0.98 0.75 –

(b) OSM ranking

Rank Par d E I

1.00 β2 – 0.97 –
2.00 α2 0.42 0.18 0.08
3.00 α1 0.23 0.04 0.01
4.00 β1 0.17 0.05 0.01

the intervals of 75− 125% of the nominal value, eg. α1 ∈ 2× (0.75,1.25) and so on. The model is
solved for t ∈ (0,5), with the heaviside function changing at t = 0.5. Parameters α1,α2 determine how
the strain is distributed between the two Voigt bodies, while β1,β2 determine the relaxation time for
each Voigt body.

The resulting sensitivities are depicted in Table 6.14, 6.15, and the local derivative based sensi-
tivities are plotted in Figure 6.10. Results show that the different methods provide different results.
While Mahdi, Meshkat, and Sullivant 2014 found that the model is structurally identifiable when re-
garding wall strain εw as model input and ε1 as model output, the practical analysis suggests otherwise.
Both the Sobol indices and OSM denotes β1 as unidentifiable, while the Morris method finds that β2

has the least influence on the model output and SCM finds a rather large correlation between α1 and
β2.
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Figure 6.10: Sensitivities for the voigt body model.

6.5 Discussion

The concepts and differences of structural and practical identifiability have been introduced. Different
methods for obtaining local sensitivity measures have been discussed, as well as two different methods
for assessing global parameter influence on the model output. Namely, calculation of Sobol indices
and the Morris method. For analysing local sensitivities and determine identifiability SCM and OSM
has been introduced.

The different methods have been applied to examples of increasing complexity to study the
feasibility of the methods and illustrate differences and similarities in the obtained results. For the
most part the methods were found to have similar or comparable results, though with a few differences
for the most complex example. From the examples investigated here it is not possible to decide which
(combinations) of the four methods should be preferred, but a few differences can be highlighted.
Sobol indices is considered to be very reliable, but the used algorithm assumes no interactions of
degree higher than two (Saltelli, Annoni, et al. 2010), and still comes with a high computational cost.
The Morris method provides comparable results for most of the examples considered here, but at
a much smaller cost. The local methods approaches the subset selection procedure differently and
deliver different results for the example where both can be applied. It is worth noting in this context
that even though SCM will reveal the existence of correlations, it will not be able to do so for perfect
correlations, as these will lead to linear dependent sensitivities and thereby a singular FIM. Therefore
SCM might be challenged by over parametrized problems such as the example presented in Section 6.4.
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Chapter 7
Uncertainty quantification

Uncertainty quantification is the process of determining parameter output uncertainties due to
uncertainties in experimental measurements. Using a Bayesian framework, parameters can be described
as random variables for which densities can be estimated and updated upon arrival of new information.
Parameter densities can be used in the calculation of credible intervals, which can be propagated
through the model to obtain uncertianty measurements in form of prediction intervals.

This is in opposition to parameter estimation in the frequentists framework where parameters are
described by an estimate of the "true" value and a confidence interval. While the frequentists approach
allows for calculation of confidence intervals for parameter estimates, confidence intervals does not
represent the probability distribution of the parameter (Belia et al. 2005), and may not be viable as
basis for estimation of model output uncertainties (R. C. Smith 2014).

When credible intervals have been found for parameters, these intervals can be propagated through
the mathematical model to quantify uncertainties in model output. This process is known as un-
certainty propagation. Several methods exist, but for problems with high dimensions and possible
parameter interaction, sampling methods are usually preferred (R. C. Smith 2014). Sampling methods
sample parameter configurations from the joint parameter density, find solutions for these configura-
tions and build densities for the model output based on the results.

Using Markov Chain Monte Carlo methods parameter densities and model output densities can
be computed simultaneously. The methods discussed here will be of this type.

This chapter gives a very brief introduction to Bayesian inference, motivates the use of Markov
Chains to obtain estimate densities, and presents two Markov Chain Monte Carlo (MCMC) algo-
rithms.
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7.1 Bayesian inference

In the Bayesian framework, parameters are regarded as random variables Θ =
�

Θ1, . . . ,Θp

�

and
parameter estimation is thereby the process of estimating the distribution associated with the random
variables. Given the observations v = [v1, . . . , vn], Bayes’ formula,

π (θ | v) =
π (v |θ)π0 (θ)

πΓ (v)
(7.1)

can be used to describe the relationship between the prior parameter density π0 (θ), the posterior
density π (θ | v), the likelihood π (v |θ) of observing the data v for the model given θ, and the
normalization factor (the marginal density) πΓ (v) . Since πΓ (v) is a normalization constant it can
be determined by πΓ (v) =

∫

π (v |θ)π0 (θ) dθ. The result is often known as the Bayes theorem for
inverse problems. For observations vobs, the posterior density estimate is

π (θ | vobs) =
π (vobs |θ)π0 (θ)

∫

π (vobs |θ)π0 (θ) dθ
. (7.2)

If the errors between the model output and measurements are normally and identically indepen-
dently distributed (iid) random variables with mean µ= 0 and variance σ2, the likelihood function
is

π (v |θ) = L
�

v |θ,σ2�=
1

(2πσ2)
n
2

e−SSθ/2σ2
, SSθ =

n
∑

i=1

[vi − fi (θ)]
2 . (7.3)

With the likelihood function given, it is possible to estimate the posterior density π (θ | vobs) with
the prior π0 (θ) if the integral in the denominator of (7.2) can be estimated. While this route is
theoretically possible, the evaluation of high-dimensional integrals is a difficult and expensive task and
methods for doing so is still an active research area including methods such as sparse grids (Smolyak
1963; Bungartz and Griebel 2004) and quasi-Monte Carlo methods (Halton 1960; Joe and Kuo 2003;
Vandewoestyne and Cools 2006).

Another option for estimating the posterior density is by sampling directly from the density
π (vobs |θ)π0 (θ). Such sampling can be achieved using Markov chain monte carlo methods such as the
Metropolis algorithm or the Delayed Rejection Adaptive Metropolis (DRAM).

7.2 Metropolis algorithm

If a chain of samples of a random variable is generated satisfying the Markov property such that the k’th
value only depends on the (k − 1)’th value, the sampled chain will follow the stationary distribution
of the state space of the variable (in this application, the possible parameter configurations).
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The method was originally developed by Metropolis et al. 1953 to describe the state of a physical
system in the context of statistical mechanics.

Algorithm 4 Metropolis Algorithm

1. Initialize the chain: Choose an initial value θ0 that satisfies π
�

θ0 | v
�

> 0

2. For k = 2, . . . , M :

(a) Sample z ∼N (0,1) and construct the new candidate

θ∗ = θk−1+Rz, (7.4)

where R is the Cholesky decomposition of either the parameter covariance matrix estimator
V = σ−2

�

ST S
�−1 (See Section 6.2.1), or a diagonal matrix D where each element denotes

the scaling of the corresponding parameter. This guarantees that each component of the
constructed candidate is normally distributed around the previous value,

θ∗ ∼N
�

θk−1,V
�

.

This also means that the proposal distribution is symmetric between the two states, such that
the probability of proposing θ∗ given θk−1 is equal to the probability of proposing the value
θk−1 given a current value θ∗.

(b) Compute the ratio of the likelihoods

r
�

θ∗ |θk−1
�

=
π (θ∗ | v)
π
�

θk−1 | v
� =

π (v |θ∗)π0 (θ
∗)

π
�

v |θk−1
�

π0
�

θk−1
� . (7.5)

Note that the normalization constant
∫

π (v |θ)π0 (θ) dθ is irrelevant.

(c) Choose the next chain element

θk =







θ∗ with probability α=min (1, r ) ,

θk−1 otherwise.
(7.6)

That is, if the likelihood of data given the new candidate is higher than for the current
configuration, accept the candidate. Otherwise, accept the new candidate with a probability
given by the ratio r .

Note: If a non-informative prior is chosen π0(θ
∗) = π0(θ

k−1), and the assumption of normally

114



identical and independent distributed errors applied, the ratio is given by

r
�

θ∗ |θk−1
�

=
π (v |θ∗)π0 (θ

∗)
π
�

v |θk−1
�

π0
�

θk−1
� =

π (v |θ∗)
π
�

v |θk−1
� =

e−SSθ∗/2σ2

e−SS
θk−1/2σ2 = e−[SSθ∗−SS

θk−1]/2σ2
. (7.7)

7.3 Delayed rejection adaptive metropolis (DRAM)

DRAM combines two methods for improving efficiency of Metropolis-Hastings type (of which
Metropolis algorithm is a simple variant) MCMC algorithms. These two ideas are delayed rejection
and adaptive Metropolis. Delayed rejection allows the algorithm to try additional proposals per step if
the initially proposed step is not accepted. This increases the acceptance rate and thereby mixing of
the chain, which results in better estimates of the posterior densities. Adaptive metropolis allows the
metropolis algorithm to update the covariance matrix based on the history of the chain. This helps
the algorithm make better proposals, and move to the correct posterior distribution faster, reducing
what is called the burn-in period.

Note that updating the proposal function using history of the chain breaks the Markov property,
and other properties need to be established for guarantee sampling from the posterior distribu-
tion (Haario et al. 2006; R. C. Smith 2014). See Haario et al. 2006 for further information.

Haario et al. 2006 provide a Matlab toolbox for MCMC including DRAM at http://helios.
fmi.fi/~lainema/mcmc/.

Algorithm 5 below introduces the algorithm except for the description of the delayed rejection
step, which is is given in Algorithm 6.

Algorithm 5 Delayed Rejection Adaptive Metropolis Algorithm (DRAM) with a uniform prior

1. Set design parameters ns ,σ
2
s , k0, sd and wanted number of chain iterates M

2. Determine θ0 = argminθ
∑N

i=1 [vi − fi (θ)]
2

3. Compute the initial variance estimate: s2
0 =

SSθ0
n−p

4. Construct covariance estimate V = s2
0

�

ST �θ0
�

S
�

θ0
��−1 and R= chol (V )

5. For k = 1, . . . , M

(a) Sample zk =N (0,1)

(b) Construct candidate θ∗ = θk−1+Rzk

(c) Sample uα ∼U (0,1)

(d) Compute the sum of squares SSθ∗ =
∑N

i=1 [vi − fi (θ
∗)]2
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(e) Compute
α
�

θ∗ |θk−1
�

=min
�

1, e−[SSθ∗−SS
θk−1]/2s2

k−1

�

(f) If uα <α, Set
θk = θ∗,SSθk = SSθ∗

Otherwise
Enter Delayed rejection algorithm

(g) Update sk ∼ Inv-Gamma (aval, bval), where

aval =
1
2
(ns + n) , bval =

1
2

�

nsσ
2
s + SSθk

�

.

(h) if mod (k , k0) = 1 then update

Vk = sd Cov
�

θ0,θ1, . . . ,θk
�

.

Otherwise
Vk =Vk−1.

(i) Update Rk = chol (Vk ).

Algorithm 6 Delayed rejection algorithm for DRAM

1. Set the design parameter γ2 =
1
5

2. Sample zk ∼N (0,1)

3. Construct second-stage candidate θ∗2 = θk−1+ γ2Rk zk

4. Sample uα ∼U (0,1)

5. Compute SSθ∗2 =
∑N

i=1

�

vi − fi
�

θ∗2
��2

6. Compute

α2

�

θ∗2 |θk−1,θ∗
�

=min

�

1,
π
�

θ∗2 | v
�

J
�

θ∗ |θ∗2
��

I −α
�

θ∗ |θ∗2
��

π
�

θk−1 | v
�

J
�

θ∗ |θk−1
��

I −α
�

θ∗ |θk−1
��

�

.

7. If ua <α

Set θk = θ∗2,SSθk = SSθ∗2

otherwise
Set θk = θk−1,SSθk = SSθk−1 .
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7.4 Practical challenges for MCMC

In application of the DRAM or other MCMC methods there are a few challenges that need to be
addressed, specifically challenges related to the question of whether the chain has reached the target
density and is sampling from the stationary distribution and how well it does so.

While the points sampled from a Markov chain will reflect the stationary distribution when the
length approaches infinity, this creates some practical challenges. Usually the chain will take a while
before converging and sampling from the correct areas of parameter space. The period for the chain to
reach the range of the stationary distribution is typically called the burn-in, and samples from this
period should be ignored to get a better estimate of the stationary distribution (Haario et al. 2006).
The adaptive component of DRAM increases the speed at which the algorithm will reach the correct
part of parameter space by dynamically adjusting the covariance matrix.

Another problem may arise due to incorrect or imprecise parameter variances, as they will greatly
affect the rate of acceptance for the proposed steps. While the chain may be in the range of the
stationary density, it may not sample well from it if proposed points are rejected due to incorrect
large variances. An optimal acceptance rate should be around 30% (Haario et al. 2006). The delayed
rejection component of DRAM helps in this regard, as it allows for generation of additional proposals
with adjusted variances, in turn increasing the acceptance rate.
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Chapter 8
Simulations

The mathematical model presented in Chapter 4 has been implemented in C using the ode-solver
Sundials Cvodes. Sundials is fast, able to solve stiff equations using backwards differentiation methods
and provides built-in support for calculating local sensitivities using sensitivity equations with finite
difference approximations to the Jacobian and the parameter Jacobian. While programming in C is
cumbersome compared to Matlab or similar numerical methods, the gain in terms of computation
time is significant. Calling and solving the ode using the C-code takes approximately 170ms, while an
analogous implementation in Matlab takes over 30 seconds to solve the system using ode15s. The
implementation in C thus allows for 150-200 times as many model evaluations in the same time frame
as the corresponding implementation in Matlab.

The methods presented for identifiability analysis has been implemented as presented using
Python with the libraries Numpy and Scipy for more advanced mathematical operations such as
matrix operations, and linear algebra in general. For optimization the python library lmfit (http:
//lmfit.github.io/lmfit-py/) has been used, which include Levenberg-Marquardt and Nelder-
Mead algorithms among others. For uncertainty quantification the MCMC toolbox for Matlab
(http://helios.fmi.fi/~lainema/mcmc/), was used as it contains an implementation of the DRAM
algorithm (Haario et al. 2006) discussed in Chapter 7. The same model implementations was used for
all analysis by wrapping calls to the C-code in appropriate ways.

This chapter presents results for identifiability analysis, optimization and uncertainty quantifica-
tion, as well as a brief discussion of the results. Methods for identifiability analysis discussed earlier, is
used for subset selection for the heart rate model presented in Chapter 4. Found subsets are used for
parameter optimization, and in turn uncertainty quantification.
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8.1 Identifiability analysis

The goal is to find a subset of parameters that can be estimated given the model and available data. As
discussed in Chapter 6 there is not "one" correct way to do this. Several methods exists, each with a
set of advantages and disadvantages. However, good subsets should fulfill the following requirements:

Sensitivity: The model output should be sensitive to changes in model parameters. Non-influential
parameters may cause problems for some optimization algorithms.

Identifiability: The model parameters should be identifiable, and contain no parameters for
which the impact on model output caused by a change in one parameter, can be counteracted
by a change in others.

Dynamics: The subset should restrict possible model output dynamics as little as possible. It is
important that the model is still able to reflect the modeled dynamics.

First feasible parameter intervals will be determined for the global analysis. Next, two strategies
will be applied for building identifiable parameter sets:

Strategy 1: Four sets will be build, one for each of OSM, SCM, the Morris and the Sobol method.

Strategy 2: The three sensitivity methods, two-norm of local derivative based sensitivities,
Morris and Sobol methods, are used for removing insensitive parameters, and the remaining
parameters are analyzed using OSM and SCM to build identifiable parameter sets.

Finally the different parameter sets will be tested by optimizing model output against synthetic data
generated using the model with known parameter values. Section 8.2 will build on the results from
this section by using suggested subsets for optimization against experimental data.

8.1.1 Parameters

Parameters of the heart rate model is listed in Table 8.1 with preliminary lower and upper bounds.
The preliminary bounds are chosen such that the maximum allowed value is approximately double and
the minimum value approximately half of the nominal values described in Chapter 4. As established
in Chapter 5 model state positivity can be established by restrictions on parameters. Due to the
formulation of model equations, unphysical behavior such as negative nerve firing frequency will
lead to numerical problems, which in turn will prevent the ode solver from finding a solution.
However, parameter constraints guaranteeing positive solutions are not trivial to include for the global
sensitivity methods presented in Chapter 6.1. An alternative approach for guaranteeing proper model
behavior is to adjust parameter intervals such that the model can be solved for any sampled parameter
configuration.

To investigate the parameter intervals 30,000 different parameter configurations was sampled
using a uniform distribution over the parameter intervals. 2,714 of these parameter configurations,
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Table 8.1: Parameters for the heart rate model with unadjusted minimum and maximum bounds for
global sensitivity analysis.

Name Min Max Name Min Max

p0 – – βm 0.30 1.20
k 1.00 5.00 βM 0.65 2.70

Am0 1.00 5.00 βk 5.00 5.00
α1 0.35 1.50 fr,t 0.15 0.60
α2 0.05 0.20 kr 5.00 5.00
β1 1.00 4.00 td – –
β2 0.25 1.00 τA 0.10 0.40
s1 1.00 5.00 qp 2.50 10.00
s2 0.10 0.50 kiN 0.25 1.00

Tp m 0.10 0.40 τN 4.00 20.00
ξ 1.00 15.00 qs 0.05 0.25
fp 0.2 0.75 µ 0.30 0.95

Ts m 0.10 0.50 KA – –
η 1.00 15.00 τAS 1.00 4.00
fs 0.2 0.75 τN S 1.20 5.00
φ f π/6 π/6 KN – –
αm 0.20 0.80 h0 60.00 120.00
αM 0.30 1.20 hm 20.00 80.00
αk 5.00 5.00 hM 80.00 140.000
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corresponding to 9% of tested configurations, leading to solver break down was recorded, and the
distributions for each parameter in this set was investigated. Table 8.2 shows quartiles for each
parameter, linearly scaled to the interval [0,1].

Values for parameters with no influence on breaking the solver should follow the underlying
uniform distribution. Results in Table 8.2 show that parameters k ,AM 0,α1 and s1 are overrepresented
in the high end of their intervals, as their mean values (indicated by the blue bar) is significantly larger
than 1/2, while β1, s2 are overrepresented in the low end of the interval. α2 and β2 also deviates from
the mean, but since their deviations are smaller, this could be an effect due to interaction with some of
other mentioned parameters. To determine a better interval for these parameters it is beneficial to
look at a histogram of the sampled points, such as the one shown in Figure 8.1 for s2. Adjusting the
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Figure 8.1: Histogram for failed values of s2, scaled to the interval [0,1]

parameter intervals leads to the intervals shown in Table 8.3. Running a similar test for the updated
intervals reveals that 185 parameter configurations, corresponding to 0.6%, lead to the numerical
solver breaking down.

8.1.2 Each method by itself

To facilitaty a comparisson of the different methods for subset selection a fixed size for subsets were
set. The cut-off for the different methods are a bit different, but judging from the sensitivy rakings in
Figure 8.2 the different rankings experienced a decline around 16-17 parameters, leading to the choice
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Table 8.2: Distribution for each parameter for the configurations that caused the solver to fail, as
well as new interval boundaries. The blue dot shows the median, while each end of the bar shows the
25% and 75% percentile respectively. The dashed lines shows the expected median and quartiles for
parameter not influencing the outcome, while the dotted lines show the 37.5% and 62.5% percentile.
Note that quartiles have been linearly scaled to the interval [0,1].

Parameter Quartiles Adjusted low Adjusted high

k

0 0.2 0.4 0.6 0.8

1 4
AM 0 1 4
α1 0.35 1.25
α2 5·10−2 0.2
β1 1.5 4
β2 0.25 1
s1 1 4
s2 0.15 0.5

Tp m 0.1 0.4
ξ 1 15
fp 0.2 0.75

Ts m 0.1 0.5
η 1 15
fs 0.2 0.75
αm 0.2 0.8
αM 0.3 1.2
kα 5 5
βm 0.3 1.2
βM 0.65 2.7
kβ 5 5
τA 0.1 0.4
qp 2.5 10
kiN 0.25 1
τN 4 20
qs 5·10−2 0.25
µ 0.3 0.95
τAS 1 4
τN S 1.2 5
h0 60 120
hm 20 80
hM 80 140
fr,t 0.15 0.6
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Table 8.3: Parameters for the heart rate model with adjusted bounds.

Name Min Max Name Min Max

p0 – – βm 0.30 1.20
k 1.00 4.00 βM 0.65 2.70

Am0 1.00 4.00 βk 5.00 5.00
α1 0.35 1.25 fr,t 0.15 0.60
α2 0.05 0.20 kr 5.00 5.00
β1 1.50 4.00 td – –
β2 0.25 1.00 τA 0.10 0.40
s1 1.00 4.00 qp 2.50 10.00
s2 0.15 0.50 kiN 0.25 1.00

Tp m 0.10 0.40 τN 4.00 20.00
ξ 1.00 15.00 qs 0.05 0.25
fp 0.2 0.75 µ 0.30 0.95

Ts m 0.10 0.50 KA – –
η 1.00 15.00 τAS 1.00 4.00
fs 0.2 0.75 τN S 1.20 5.00
φ f π/6 π/6 KN – –
αm 0.20 0.80 h0 60.00 120.00
αM 0.30 1.20 hm 20.00 80.00
αk 5.00 5.00 hM 80.00 140.000
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of subset size of 17.

Sobol Indices

Using the parameter intervals shown in Table 8.3 to calculate Sobol indices leads to the ranking shown
in Table 8.4. Figure 8.2 shows a graphic illustration of the values. Parameter values with a ratio of
Sobol Indice to the most influential parameter, h0, lower than 1×10−2 is considered noninfluential, in
accordance with the choice of subsets containing 17 parameters.

Morris Indices

Using the parameter intervals shown in Table 8.1 to calculate the Morris indices leads to the ranking
shown in Table 8.4. Figure 8.2 shows a graphic illustration of the values.

SCM

Relative local sensitivities were calculated using the nominal parameters values given in Chapter 4.
Figure 8.2 shows the two norms found for the relative sensitivities. The subset reduction process are
given in Table 8.5. Choosing 17 parameters results in the subset

θSC M =
¦

k ,AM 0,α1,α2,β1, fp ,Ts m ,αM ,βM , qp ,τN ,µ,τAS ,τN S , h0, hM , fr,t

©

. (8.1)

The condition number of the FIM formed with the remaining parameters is ∼ 1.3× 107.

OSM

The rankings obtained using the OSM method is shown in Table 8.6. Choosing 17 parameters results
in the subset

θOSM =
¦

k ,β1,Tp m , fp , fs ,αM ,βm ,βM ,τA, qp ,τN , qs ,µ, h0, hm , hM , fr,t

©

(8.2)

The condition number of the corresponding FIM matrix is ∼ 1.6× 106. Note that even though this
subset contains 17 parameters, the orthogonality index goes to 0 very quickly, suggesting that perhaps
the subset should be even smaller.

Discussion

From Figure 8.2 it is clear that the ranking from the two global methods show similar tendencies
in the ranking. While all methods rank the parameters, none of them suggests how big of a subset
would be preferable. A few things are worth considering: A specific value of correlation for SCM will
determine the size of a subset, as will a specific cut-off value for OSM. In addition Figure 8.2 shows
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Table 8.4: Ordering of parameters using the four different methods. Parameters below the horizontal
line were not selected by the corresponding method.

Rank Morris Sobol OSM SCM Two-norm S2value

1 h0 h0 h0 h0 h0 1
2 hm hm fr,t τN S hm 0.65
3 hM fr,t fp τAS AM 0 0.52
4 fr,t hM fs AM 0 qp 0.48
5 βM s1 αM τN fr,t 0.47
6 AM 0 αM hm qp fp 0.47
7 k s2 βm hM s1 0.46
8 αM AM 0 τN k τA 0.45
9 µ βM µ Ts m s2 0.44
10 s2 β1 τA αM fs 0.43
11 βm µ k α1 hM 0.34
12 αm β2 qp α2 τN 0.33
13 β1 α2 qs β1 qs 0.33
14 fs η βM fp µ 0.23
15 s1 k hM βM αM 0.2
16 β2 fs β1 µ βM 0.16
17 Ts m αm Tp m fr,t αm 0.13

18 η fp η τA βm 0.11
19 α2 βm AM 0 kiN α1 0.11
20 fp τA α1 qs β1 0.11
21 τN τN S τAS Tp m Tp m 6.52 · 10−2

22 ξ τAS β2 β2 α2 5.77 · 10−2

23 α1 ξ ξ ξ β2 5.77 · 10−2

24 Tp m Tp m Ts m s1 k 5.56 · 10−2

25 qs Ts m kiN η Ts m 4.83 · 10−2

26 kiN kiN α2 αm ξ 3.6 · 10−2

27 τAS α1 s2 fs kiN 3.35 · 10−2

28 τA qs τN S s2 η 2.22 · 10−2

29 qp qp s1 hm τAS 4.78 · 10−3

30 τN S τN αm βm τN S 2.18 · 10−3
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Table 8.5: Subset selection result from SCM. This table shows which parameter was removed fixed in
each step.

SCM

Step Correlation Par A Par B Sens A Sens B Result

1 1 βM βm 0.16 0.11 Fix βm
2 0.99 h0 hm 1 0.65 Fix hm
3 −0.99 s1 s2 0.46 0.44 Fix s2
4 1 fp fs 0.47 0.43 Fix fs
5 0.98 αM αm 0.2 0.13 Fix αm
6 0.94 Ts m η 4.83 · 10−2 2.22 · 10−2 Fix η
7 −0.96 AM 0 s1 0.52 0.46 Fix s1
8 −0.97 ξ k 3.6 · 10−2 5.56 · 10−2 Fix ξ
9 0.92 β2 α2 5.77 · 10−2 5.77 · 10−2 Fix β2
10 0.88 hM Tp m 0.34 6.52 · 10−2 Fix Tp m
11 −0.86 τN qs 0.33 0.33 Fix qs
12 −0.9 τN kiN 0.33 3.35 · 10−2 Fix kiN
13 −0.94 qp τA 0.48 0.45 Fix τA

14 −0.85 qp fr,t 0.48 0.47 Fix fr,t
15 0.85 h0 µ 1 0.23 Fix µ
16 0.83 βM αM 0.16 0.2 Fix βM
17 0.82 fp AM 0 0.47 0.52 Fix fp
18 0.73 α1 β1 0.11 0.11 Fix β1
19 −0.81 α2 α1 5.77 · 10−2 0.11 Fix α2
20 0.9 AM 0 α1 0.52 0.11 Fix α1
21 −0.89 αM AM 0 0.2 0.52 Fix αM
22 −0.82 τN Ts m 0.33 4.83 · 10−2 Fix Ts m
23 −0.7 hM k 0.34 5.56 · 10−2 Fix k
24 0.7 hM qp 0.34 0.48 Fix hM
25 0.78 h0 qp 1 0.48 Fix qp
26 0.65 τN AM 0 0.33 0.52 Fix τN
27 0.98 AM 0 h0 0.52 1 Fix AM 0
28 −0.2 τAS h0 4.78 · 10−3 1 Fix τAS
29 3·10−2 h0 τN S 1 2.18 · 10−3 Fix τN S
30 − 0 0 Last parameter h0.
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Table 8.6: Ranking of heart rate model parameters using OSM. The horizontal line denotes the cut
off between identifiable and nonidentifiable parameters.

OSM

Rank Par d E I

1 h0 0 0.52 0
2 fr,t 0.43 0.24 0.1
3 fp 0.31 0.24 7.45 · 10−2

4 fs 0.19 0.22 4.17 · 10−2

5 αM 0.23 8.77 · 10−2 2.04 · 10−2

6 hm 5.58 · 10−2 0.33 1.86 · 10−2

7 βm 0.31 4.87 · 10−2 1.52 · 10−2

8 τN 8.16 · 10−2 0.17 1.38 · 10−2

9 µ 9.63 · 10−2 0.12 1.16 · 10−2

10 τA 2.79 · 10−2 0.23 6.43 · 10−3

11 k 0.21 2.61 · 10−2 5.56 · 10−3

12 qp 1.24 · 10−2 0.25 3.07 · 10−3

13 qs 1.31 · 10−2 0.17 2.22 · 10−3

14 βM 2.77 · 10−2 7.13 · 10−2 1.98 · 10−3

15 hM 6.78 · 10−3 0.18 1.19 · 10−3

16 β1 1.95 · 10−2 5.64 · 10−2 1.1 · 10−3

17 Tp m 2.75 · 10−2 3.29 · 10−2 9.03 · 10−4

18 η 7.21 · 10−2 1.12 · 10−2 8.1 · 10−4

19 AM 0 2.74 · 10−3 0.27 7.42 · 10−4

20 α1 5.93 · 10−3 5.65 · 10−2 3.35 · 10−4

21 τAS 0.43 6.57 · 10−4 2.85 · 10−4

22 β2 7.58 · 10−3 3·10−2 2.28 · 10−4

23 ξ 1.29 · 10−2 1.62 · 10−2 2.1 · 10−4

24 Ts m 4.03 · 10−3 2.48 · 10−2 1·10−4

25 kiN 4.18 · 10−3 1.72 · 10−2 7.21 · 10−5

26 α2 2.06 · 10−3 3·10−2 6.19 · 10−5

27 s2 2.25 · 10−4 0.23 5.11 · 10−5

28 τN S 0.22 1.31 · 10−4 2.83 · 10−5

29 s1 1.49 · 10−8 0.24 3.55 · 10−9

30 αm 2.11 · 10−8 5.55 · 10−2 1.17 · 10−9
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Table 8.7: Ordering and relative change in sensitivity per step down the ordering ladder.

Sobol/Morris/2-norm ordering

Rank Sobol Si Si j/Si j−1 Morris µ µ j/µ j−1 Par S̄ S̄ j/S̄ j−1

1 h0 0.14 0 h0 295.53 0 h0 1 0
2 hm 0.53 0.46 hm 310.36 0.66 hm 0.65 0.65
3 fr,t 2.73 · 10−2 0.39 hM 35.62 0.58 AM 0 0.52 0.81
4 hM 0.18 0.83 fr,t 84.81 0.91 qp 0.48 0.92
5 s1 0.33 0.56 βM 202.27 0.71 fr,t 0.47 0.99
6 αM 0.23 0.87 AM 0 128.37 0.9 fp 0.47 0.99
7 s2 0.72 0.95 k 139.53 0.95 s1 0.46 0.98
8 AM 0 0.6 0.88 αM 218.31 0.88 τA 0.45 0.98
9 βM 4.42 · 10−2 0.93 µ 21.96 0.89 s2 0.44 0.97
10 β1 4.63 · 10−2 0.67 s2 37.11 0.94 fs 0.43 1
11 µ 8.12 · 10−2 0.75 βm 70.69 0.98 hM 0.34 0.79
12 β2 3.86 · 10−2 0.94 αm 99.99 0.96 τN 0.33 0.96
13 α2 0.14 0.78 β1 90.06 0.99 qs 0.33 1
14 η 0.14 0.77 fs 195.76 0.97 µ 0.23 0.71
15 k 8.85 · 10−2 0.99 s1 204.62 0.71 αM 0.2 0.84
16 fs 0.63 0.98 β2 261.24 0.92 βM 0.16 0.83

17 αm 8.04 · 10−2 0.65 Ts m 213.13 0.78 αm 0.13 0.78
18 fp 0.49 0.92 η 343.36 0.9 βm 0.11 0.86
19 βm 5.2 · 10−2 0.99 α2 10.03 0.94 α1 0.11 0.99
20 τA 1.82 · 10−2 0.65 fp 9.51 0.83 β1 0.11 1
21 τN S 3.09 · 10−2 0.9 τN 15.9 0.66 Tp m 6.52 · 10−2 0.6
22 τAS 1.69 · 10−2 1 ξ 46.6 0.8 α2 5.77 · 10−2 0.89
23 ξ 1.86 · 10−2 0.99 α1 18.88 0.96 β2 5.77 · 10−2 1
24 Tp m 0.25 0.95 Tp m 232.26 0.62 k 5.56 · 10−2 0.96
25 Ts m 4.69 · 10−2 0.87 qs 10.2 0.86 Ts m 4.83 · 10−2 0.87
26 kiN 4.69 · 10−2 0.8 kiN 6.43 0.84 ξ 3.6 · 10−2 0.74
27 α1 8.76 0.88 τAS 1,397.23 0.64 kiN 3.35 · 10−2 0.93
28 qs 4 0.68 τA 918.29 0.98 η 2.22 · 10−2 0.66
29 qp 1.29 0.98 qp 532.41 0.95 τAS 4.78 · 10−3 0.22
30 τN 1.55 0.93 τN S 483.69 0.68 τN S 2.18 · 10−3 0.46
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that at certain points the value of the Sobol indices jump more than others. For example, choosing the
cut-off at 13 parameters seems less than optimal for the ranking from Morris indices, a little better for
the Sobol indices, and fine for the sensitivity two-norm.

Considering the first 17 parameters of the ranking from the Morris and Sobol methods, 15
parameters are chosen by both methods

�

k ,AM 0,β1,β2, s1, s2, fs ,αm ,αM ,βM ,µ, h0, hm , hM , fr,t
	

. (8.3)

The parameters that were chosen by one methods but not the other was {α2,η} for Sobol and
{βm ,Ts m} for Morris.

Likewise, considering the first 17 parameters of the ranking from OSM and SCM, 11 parameters
appear in both sets

¦

k ,β1, fp ,αM ,βM , qp ,τN ,µ, h0, hM , fr,t

©

. (8.4)

The parameters that were chosen by only one of the two methods was for OSM
¦

fs ,Tp m ,βm ,τA, qs , hm

©

and for SCM {AM 0,α1,α2,Ts m ,τAS ,τN S}.
Comparing the two local methods we noted that parameters unique to one method compared to

the other appear in similar parts of the model. For example, the parameter τA chosen by OSM likely
have a similar effect on the model output as τAS chosen by SCM. However, if one fixes τA and runs
OSM again, it does not select τAS . Likewise, fixing τAS and running SCM again does not result in a
subset containing τA. For the remaining difference in the subsets there is no apparent connection.
While SCM favors some parameters from the early parts of the model {AM 0,α1,α2}, OSM seems to
favor parameters related to the respiratory input βm and the sympathetic chain { fs , qs}.

Figure 8.3 shows how many times each parameter was selected by the four methods when
prompted with the task of choosing the 17 most identifiable parameters. Subsets are created based on
the frequency at which parameters were selected by the four methods. If θn/4 describes the subset of
parameters selected n times of the four methods, then

θ4/4 = {k ,β1,αM ,βM ,µ, h0, hM } ,

θ3/4 =
�

k ,AM 0,β1, fs ,αM ,βM ,µ, h0, hm , hM , fr,t
	

,

θ2/4 =
¦

k ,AM 0,α2,β1,β2, s1, s2, fp , fs ,αM ,βm ,βM , qp ,τN ,µ, h0, hm , hM , fr,t

©

.

(8.5)

These subsets have respectively 7, 12 and 20 parameters, and the condition numbers for FIM are
3.0× 105 for θ4/4, 3.4× 107 for θ3/4 and 5.5× 109 for θ2/4.
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Table 8.8: Ranking of heart rate model parameters using OSM for the Sobol ranking based subset.

OSM

Rank Par d E I

1 h0 0 0.59 0
2 fr,t 0.43 0.28 0.12
3 AM 0 0.22 0.31 6.95 · 10−2

4 αM 0.37 0.1 3.73 · 10−2

5 fs 9.24 · 10−2 0.26 2.39 · 10−2

6 hm 5.82 · 10−2 0.38 2.24 · 10−2

7 βM 0.16 8.38 · 10−2 1.37 · 10−2

8 µ 9.53 · 10−2 0.14 1.32 · 10−2

9 k 0.27 2.96 · 10−2 8.06 · 10−3

10 hM 2.39 · 10−2 0.2 4.86 · 10−3

11 β1 3.03 · 10−2 6.52 · 10−2 1.98 · 10−3

12 s1 4.53 · 10−3 0.27 1.25 · 10−3

13 η 8.07 · 10−2 1.29 · 10−2 1.04 · 10−3

14 s2 2.21 · 10−3 0.26 5.79 · 10−4

15 β2 1.14 · 10−2 3.47 · 10−2 3.94 · 10−4

16 α2 3.07 · 10−3 3.47 · 10−2 1.07 · 10−4

8.1.3 Combination of global and local methods

The next strategy involves using the different sensitivity ranking methods to select parameters that are
influential and subsequently use the local methods OSM and SCM to determine an identifiable subset
from this reduced set. The different ranking methods selects the parameters

θsobol =
�

k ,AM 0,α2,β1,β2, s1, s2,η, fs ,αM ,βM ,µ, h0, hm , hM , fr,t
	

,

θmorris =
�

k ,AM 0,β1,β2, s1, s2, fs ,αm ,αM ,βm ,βM ,µ, h0, hm , hM , fr,t
	

,

θS̄ =
¦

AM 0, s1, s2, fp , fs ,αM ,βM ,τA, qp ,τN , qs ,µ, h0, hm , hM , fr,t

©

.

(8.6)

The OSM and SCM rankings are shown in Tables 8.8 and 8.9 for the Sobol method, in Table 8.10
and 8.11 for Morris method, and in Table 8.12 and 8.13 for the local 2-norm method. The vertical
lines in the tables represents the threshold separating identifiable from non-identifiable. The limits are
placed based on the subset size as well as relative changes in identifiability measures. Table 8.14 shows
an overview of the identified subsets.
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Table 8.9: Subset selection result from SCM for the Sobol ranking based subset. Note, this table
shows which parameter was fixed in each per step.

SCM

Step Correlation Par A Par B Sens A Sens B Result

1 0.99 h0 hm 1 0.65 Fix hm
2 0.95 s2 k 0.44 5.56 · 10−2 Fix k
3 −0.98 s1 AM 0 0.46 0.52 Fix s1
4 0.9 α2 β1 5.77 · 10−2 0.11 Fix α2
5 0.9 h0 µ 1 0.23 Fix µ
6 −0.82 hM h0 0.34 1 Fix hM

7 −0.78 s2 AM 0 0.44 0.52 Fix s2
8 0.75 β2 fs 5.77 · 10−2 0.43 Fix β2
9 −0.88 AM 0 β1 0.52 0.11 Fix β1
10 0.88 fs AM 0 0.43 0.52 Fix fs
11 0.81 αM βM 0.2 0.16 Fix βM
12 0.78 fr,t αM 0.47 0.2 Fix αM
13 0.66 h0 AM 0 1 0.52 Fix AM 0
14 −0.8 η h0 2.22 · 10−2 1 Fix η
15 0.9 h0 fr,t 1 0.47 Fix fr,t
16 − − − Last parameter h0.
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Table 8.10: Ranking of heart rate model parameters using OSM for the Morris ranking based subset.

OSM

Rank Par d E I

1 h0 0 0.59 0
2 fr,t 0.43 0.28 0.12
3 AM 0 0.22 0.31 6.91 · 10−2

4 αM 0.37 0.1 3.75 · 10−2

5 fs 9.24 · 10−2 0.26 2.38 · 10−2

6 hm 5.82 · 10−2 0.38 2.22 · 10−2

7 βm 0.31 5.57 · 10−2 1.72 · 10−2

8 µ 9.62 · 10−2 0.14 1.32 · 10−2

9 k 0.26 2.96 · 10−2 7.66 · 10−3

10 hM 2.39 · 10−2 0.2 4.82 · 10−3

11 βM 4.47 · 10−2 8.45 · 10−2 3.77 · 10−3

12 αm 5.25 · 10−2 6.42 · 10−2 3.37 · 10−3

13 β1 2.94 · 10−2 6.48 · 10−2 1.91 · 10−3

14 s2 3.66 · 10−3 0.26 9.53 · 10−4

15 s1 1.62 · 10−3 0.27 4.43 · 10−4

16 β2 1.03 · 10−2 3.45 · 10−2 3.56 · 10−4
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Table 8.11: Subset selection result from SCM for the Morris ranking based subset. Note, this table
shows which parameter was fixed in each step.

SCM

Step Correlation Par A Par B Sens A Sens B Result

1 0.97 k s2 5.56 · 10−2 0.44 Fix k
2 0.96 βM βm 0.16 0.11 Fix βm
3 0.97 αM αm 0.2 0.13 Fix αm
4 0.98 h0 hm 1 0.65 Fix hm
5 −0.96 AM 0 s1 0.52 0.46 Fix s1
6 0.91 h0 µ 1 0.23 Fix µ
7 0.84 hM s2 0.34 0.44 Fix hM
8 −0.81 AM 0 s2 0.52 0.44 Fix s2
9 −0.8 β2 β1 5.77 · 10−2 0.11 Fix β2
10 −0.85 AM 0 β1 0.52 0.11 Fix β1
11 0.89 AM 0 fs 0.52 0.43 Fix fs
12 0.86 αM βM 0.2 0.16 Fix βM
13 0 fr,t fr,t 0.47 0.47 Fix fr,t
14 0.95 h0 AM 0 1 0.52 Fix AM 0
15 0.74 h0 αM 1 0.2 Fix αM
16 − − − Last parameter h0.
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Figure 8.2: Two-norm of time series of local derivative based relative sensitivities and of global indices
obtained using the Sobol and Morris methods. Top: ordered by the Sobol indices. Middle: ordered by
Morris elementary effects. Bottom: ordered by local derivative based relative sensitivities.
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Figure 8.3: Histogram of parameter occurrence in subsets of size 16 generated by the four different
methods.

Table 8.12: Ranking of parameters using OSM for the local method ranking based subset.

OSM

Rank Par d E I

1 h0 0 0.52 0
2 fr,t 0.43 0.24 0.1
3 fp 0.31 0.25 7.52 · 10−2

4 fs 0.19 0.23 4.22 · 10−2

5 αM 0.23 8.85 · 10−2 2.06 · 10−2

6 hm 5.58 · 10−2 0.34 1.89 · 10−2

7 τN 8.35 · 10−2 0.17 1.43 · 10−2

8 βM 0.16 7.22 · 10−2 1.18 · 10−2

9 µ 9.53 · 10−2 0.12 1.17 · 10−2

10 τA 3.31 · 10−2 0.23 7.72 · 10−3

11 qp 1.31 · 10−2 0.25 3.25 · 10−3

12 s1 1.2 · 10−2 0.24 2.9 · 10−3

13 qs 1.31 · 10−2 0.17 2.25 · 10−3

14 hM 6.76 · 10−3 0.18 1.2 · 10−3

15 AM 0 3.48 · 10−3 0.27 9.53 · 10−4

16 s2 0 0.23 0
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Table 8.13: Subset selection result from SCM for the local method based subset. Note that the table
shows what parameter was removed per step.

SCM

Step Correlation Par A Par B Sens A Sens B Result

1 0.99 h0 hm 1 0.65 Fix hm
2 0.98 AM 0 fp 0.52 0.47 Fix fp
3 −0.97 s1 AM 0 0.46 0.52 Fix s1
4 −0.95 qs τN 0.33 0.33 Fix qs
5 −0.93 s2 AM 0 0.44 0.52 Fix s2
6 −0.88 fs τN 0.43 0.33 Fix τN
7 −0.89 τA qp 0.45 0.48 Fix τA
8 0.82 fs AM 0 0.43 0.52 Fix fs

9 −0.78 qp fr,t 0.48 0.47 Fix fr,t
10 0.93 αM βM 0.2 0.16 Fix βM
11 0.89 µ h0 0.23 1 Fix µ
12 0.78 qp hM 0.48 0.34 Fix hM
13 0.87 qp h0 0.48 1 Fix qp
14 0.95 h0 AM 0 1 0.52 Fix AM 0
15 0.74 h0 αM 1 0.2 Fix αM
16 − − − Last parameter h0.
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Table 8.14: Overview of the created subsets.

Subset Parameters Size Cond. FIM χ 2
ν AIC

4/4 {k ,β1,αM ,βM ,µ, h0, hM } 7 3·105 26.49 1,420
3/4

�

k ,AM 0,β1, fs ,αM ,βM ,µ, h0, hm , hM , fr,t
	

11 3.4 · 107 25.55 1,409
2/4

¦

k ,AM 0,α2,β1,β2, s1, s2, fp , fs ,αM ,βm ,βM , qp ,τN ,µ, h0, hm , hM , fr,t

©

19 5.5 · 109 25.88 1,422

Sobol SCM
�

AM 0,β1,β2, s2,η, fs ,αM ,βM , h0, fr,t
	

10 1.8 · 106 25.31 1,404
Sobol OSM

�

k ,AM 0, fs ,αM ,βM ,µ, h0, hm , hM , fr,t
	

10 7.2 · 104 25.41 1,405
Sobol combined

�

AM 0, fs ,αM ,βM , h0, fr,t
	

6 3.9 · 103 29.63 1,468

Morris SCM
�

AM 0,β1,β2, fs ,αM ,βM , h0, fr,t
	

8 1.3 · 106 29.63 1,469
Morris OSM

�

AM 0, fs ,αM ,βm ,µ, h0, hm , fr,t
	

8 6.1 · 103 26.47 1,421
Morris combined

�

AM 0, fs ,αM , h0, fr,t
	

5 2.7 · 103 31.16 1,488

Local SCM
¦

AM 0,αM ,βM , qp ,µ, h0, hM , fr,t

©

8 1.1 · 104 26.85 1,427

Local OSM
¦

fp , fs ,αM ,βM ,τA,τN ,µ, h0, hm , fr,t

©

10 1.7 · 104 28.08 1,448
Local combined

�

αM ,βM ,µ, h0, fr,t
	

5 2.9 · 103 32.26 1,503
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8.1.4 Subset tests using synthetic data

On one hand a large subset is more likely to lead to problems with identifiability. On the other,
fixation of parameter values biases the model and reduces the range of the model dynamics.

To test the viability of the selected subsets, the following tests were performed.

• Create a synthetic data set using the model with nominal parameter values, with noise
added. Noise is independent, identically normally distributed with mean µ= 0 and standard
deviation σ = 5.

• Change parameter values to 85% of the nominal value used to create synthetic data.

• Run optimization algorithm for each subset allowing only variation of the parameters in the
subset.

• Compare quality of fits.

Using the method outlined above, and the model output fi using p parameters to synthetic heart
rate data fi with n measurements, results in the least squares cost

χ 2
ν =

1
n− p − 1

n
∑

i=1

(yi − fi )
2 (8.7)

values shown in Table 8.14. In addition the Akaike Information Criteria (IAC) (Akaike 1974) is
calculated as well based on the expression,

AIC= n ln

�

1
n

n
∑

i=1

(yi − fi )
2

�

+ 2(p + 1) (8.8)

under the assumption that errors are independent, identically, normally distributed (Burnham and
Anderson 2004).

Discussion

All tested methods gives reasonable results, with χ 2
ν very close to σ2 = 25. For the first strategy all

three parameters sets give comparable results in terms of cost and AIC score. As subset 4/4 contains
fewer parameters, it is computationally more attractive. For the Sobol and relative local sensitivity
ranking methods, SCM and OSM seems to give very similar results, both better than the combined
subset, and the two best if only considering the AIC. For Morris, OSM is superior, giving a just
slightly worse fit than the best Sobol SCM and OSM subsets, but with 2 parameters fewer, and a very
small condition number. It is also worth noting that the Morris-OSM set is almost a subset of the
Sobol-OSM set, with the only non-shared parameter being βm .
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8.2 Optimization

8.2.1 Data set with respiration

Using the subsets Sobol SCM, Sobol OSM, Morris OSM, Local SCM and Local OSM the model
is fitted against the data set for which respiratory input is available. The algorithm used is Nelder-
Mead from the python library lmfit (http://cars9.uchicago.edu/software/python/lmfit/).
The resulting χ 2

ν -value, AIC and parameter values are given in Table 8.15, while the corresponding
heart rate plots are shown in Figure 8.4. All found parameter configurations satisfied the parameter
constraint put forward in Chapter 4, and did not lead to negative neuron firing frequency. To see the
effect of the respiratory input the optimization was repeated for the same subset, with the parameters
fixed αm = 1,αM = 1,βm = 0,βM = 0, to reflect the model with no respiratory input and constant
full weight of the baroreceptor input. Again parameter estimates satisfied constraints and didn’t lead
to negative neuron firing frequency. Results from this simulation are printed in Table 8.16 and the
graphs of the calculated heart rate are in Figure 8.5.

With respiratory input the subset selected using the Morris method for filtering non-influential
parameters, combined with OSM gave the best fit to data, both in terms of χ 2 and AIC, while it gave
comparable results for the same data set with no respiratory input. The methods based on Sobol
indices provided good fits as well, but with larger parameter sets and slightly larger computational
cost. Based on these results, Morris-OSM is selected for further analysis.

While Morris-OSM gave a reasonable fit there are still challenges to be addressed. Considering
the fit in Figure 8.4, the model output does not show the same degree of dynamics as the data. This
observation is in agreement with the parameter estimates hitting upper bounds, indicating that the
solver has not converged, but stopped when it was violating the boundaries. Especially, parameters
related to the midpoint of Hill type equations, such as fs and ft ,r appears to be problematic. If the
range of input for such functions is far removed from the set midpoint, the output of the Hill function
will be near constant.

To remedy this problem the parameters prescribing the midpoint for the Hill function describing
the parasympathetic and sympathetic signal in response to afferent firing is fixed. Another option
would be to add a penalty to the cost function that increases as fs , fp and fr,t deviates from their
nominal values.

Fixed fs and fp

Calculating the Morris indices with fs = 0.35 and fp = 0.65 fixed gives the ordering shown in Figure 8.6.
Setting the cutoff after α2 results in the subset

θMorris =
�

k ,AM 0,α2,β2, s1, s2,αm ,αM ,βm ,βM ,µ, h0, hm , hM , fr,t
	

.
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Table 8.15: Parameter fits to data with respiration.

Name 4/4 Sobol SCM Sobol OSM Morris OSM Local SCM Local OSM

χ 2
v 90.55 42.48 42.48 40.53 61.69 61.69

Size 7 9 10 8 8 10
AIC 1,949.97 1,625.72 1,626.69 1,604.48 1,785.54 1,787.49

k 2.54 – 2.47 – – –
AM 0 – 2.49 2.51 2.51 2.52 2.52
β1 1 1 – – – –
β2 – 0.43 – – – –
s2 – 0.24 – – – –
η – 1 – – – –
fs – 0.65 0.75 0.74 – –
αM 1.2 1.2 0.94 0.61 1.02 1.02
βm – – – 0.47 – –
βM 1.06 0.65 0.65 – 0.65 0.65
qp – – – – 5.58 5.58
µ 0.3 – 0.9 0.93 0.82 0.82
h0 76.7 – 60 61.35 69.81 69.81
hm – – 49.66 50.37 – –
hM 110.37 – 110.95 – 111.38 111.38
fr,t – 0.36 0.6 0.6 0.6 0.6

140



Table 8.16: Parameter fits to data without respiratory input.

Name 4/4 Sobol SCM Sobol OSM Morris OSM Local SCM Local OSM

χ 2
v 86.48 70.41 70.41 72.41 85.54 85.54

Size 8 6 7 5 5 7
AIC 1,931.13 1,840.56 1,841.54 1,851.65 1,923.47 1,925.44

k 2.39 – 2.5 – – –
AM 0 – 2.49 2.48 2.44 1.59 1.59
β1 1 1 – – – –
β2 – 0.25 – – – –
s2 – 0.32 – – – –
η – 15 – – – –
fs – 0.67 0.75 0.75 – –
qp – – – – 8.9 8.9
µ 0.3 – 0.3 0.7 0.3 0.3
h0 67.44 – 60 60 75.12 75.12
hm – – 58.28 44.96 – –
hM 110.16 – 109.65 – 99.79 99.79

Analysing this subset using OSM results in the ordering shown in Table 8.17 the identifiability falls
with almost a factor 1/3 after the 8th parameter hm , and the final subset

θMorris-OSM =
�

k , s1, s2,αM ,βm ,µ, h0, hm , fr,t
	

with condition number of the corresponding FIM 7.2× 102.
Using these two subsets for fitting to the data with respiration results in the parameter values

shown in Table 8.18 and the model output plotted in Figure 8.7. The obtained χ 2
ν are 38.71 and 38.56

for Morris and Morris-OSM respectively, while the AIC are 1,591 and 1,584. Both sets have lower cost
and AIC than the Morris-OSM subset where fs and fp was allowed to vary, χ 2

ν = 40.53,AIC= 1,604.
None of the parameters with constraints was chosen for optimization, and the values therefore satisfies
the conditions. It is worth noting that the optimization algorithm has still not converged, as some of
the estimated values are on the boundary. Namely s2 and fr,t for Morris-OSM, and αm ,αM , h0 are at
or very near the interval limits.
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Table 8.17: OSM ranking after noninfluential parameters have been removed by Morris ranking, for
fs = 0.35 and fp = 0.65. The horizontal line indicates the largest dip identifiability, and the cutoff for
which parameters are deemed identifiable.

OSM

Rank Par d E I

1 h0 0 0.63 0
2 fr,t 0.43 0.3 0.13
3 s2 0.28 0.26 7.37 · 10−2

4 s1 0.12 0.24 2.88 · 10−2

5 αM 0.24 0.11 2.56 · 10−2

6 βm 0.33 6.08 · 10−2 2·10−2

7 µ 0.12 0.15 1.74 · 10−2

8 hm 3.65 · 10−2 0.41 1.5 · 10−2

9 βM 6.2 · 10−2 9.13 · 10−2 5.66 · 10−3

10 αm 6.34 · 10−2 6.79 · 10−2 4.31 · 10−3

11 hM 1.19 · 10−2 0.22 2.61 · 10−3

12 AM 0 6.99 · 10−3 0.28 1.98 · 10−3

13 k 1.67 · 10−2 5.97 · 10−2 9.97 · 10−4

14 α2 2.16 · 10−2 3.31 · 10−2 7.15 · 10−4

15 β2 9.02 · 10−3 3.33 · 10−2 3·10−4
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Table 8.18: Parameter values obtained for the two subsets found for fs , fp fixed for the dataset with
respiration.

Par Morris Morris-OSM Min Max

χ 2
ν 38.71 38.56 – –

AIC 1,591.47 1,583.99 – –

k 2.52 2.56 1 4
AM 0 2.5 – 1 4
α2 6.97 · 10−2 – 5·10−2 0.2
β2 0.87 – 0.25 1
s1 1.1 3.89 1 4
s2 0.5 0.5 0.15 0.5
αm 0.22 0.48 0.2 0.8
αM 1.17 – 0.3 1.2
βm 0.67 0.48 0.3 1.2
βM 1.46 – 0.65 2.7
µ 0.6 0.87 0.3 0.95
h0 61.6 72.47 60 120
hm 59.16 68.07 20 80
hM 110.5 – 80 140
fr,t 0.6 0.6 0.15 0.6
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8.2.2 Data set without respiration

The model was also fitted to the other data set for which respiratory data is not available. To account
for the missing respiratory input the model parameters describing the weighting of the respiratory
input was fixed at αm = αM = 1,βm =βM = 0. The model was fitted thrice using the Nelder-Mead
algorithm. The estimated parameter values, χ 2

ν and AIC are shown in Table 8.19. For the first fit, all
parameters were allowed to vary, including fs and fp . This fit is referred to as All. For the other two
fits, fs and fp was fixed to ensure appropriate behavior of Hill functions. First, all parameters selected
by the Morris ranking is estimated, next, the one left after the subsequent OSM analysis is outlined in
Section 8.2.1. All parameter configurations satisfies constraints and produced positive neuron firing.
Model output for the estimated parameters sets are plotted against data in Figure 8.8.
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Table 8.19: Parameter values obtained with fs , fp fixed optimizing all parameters as well as the
parameters chosen for the identifiable subset by Morris-OSM. Parameter values has been set to ignore
respiratory input, and give full weight to baroreceptor regulation, αm = αM = 1,βm =βM = 0.

Par All Morris Morris-OSM Min Max

χ 2
ν 31.79 45.11 41.6 – –

AIC 1,601.85 1,652.58 1,613.75 – –

k 2.52 2.52 2.4 1 4
AM 0 2.5 2.5 – 1 4
α1 0.7 – – 0.35 1.25
α2 0.17 0.18 – 5·10−2 0.2
β1 3.68 – – 1 4
β2 0.29 0.66 – 0.25 1
s1 2.66 2.44 3.71 1 4
s2 0.21 0.32 0.15 0.15 0.5

Tp m 0.12 – – 0.1 0.4
ξ 4.8 – – 1 15
fp 0.62 – – 0.25 0.75

Ts m 0.18 – – 0.1 0.5
η 12.89 – – 1 15
fs 0.72 – – 0.25 0.75
τA 0.39 – – 0.1 0.4
qp 2.62 – – 2.5 10
kiN 0.72 – – 0.25 1
τN 18.44 – – 4 20
qs 0.19 – – 5·10−2 0.25
µ 0.56 0.85 0.44 0.3 0.95
τAS 1.09 – – 1 4
τN S 3.21 – – 1.2 5
h0 60.25 60 60 60 120
hm 53.25 62.37 79.95 20 80
hM 110.17 109.97 – 80 140
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Figure 8.4: Optimized model fits to data using respiratory input.
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Figure 8.5: Optimized model fits to data without using respiratory input.
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Figure 8.7: Model output fit to experimental data set with respiratory input.
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Figure 8.8: Model output fit to experimental data set with no respiratory signal available.
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8.3 Uncertainty quantification

DRAM was used to predict parameter uncertainties for both data sets. All parameters was bounded by
0 from below. The parameters Tp m ,Ts m and µ was bounded by 1 from above, while the remaining
parameters was unbounded from above. The initial parameter configurations was those found through
optimization in Section 8.2.

8.3.1 Synthetic data

The optimized values for the Morris-OSM subset was used as initial parameter configuration for
DRAM with 50,000 iterations. The resulting parameter chains are shown in Figure 8.9. Considering
the panel showing the chain for µ, there is a transient initially, but after 2,000 iterations the chains
appears to be sampling from the posterior distribution.

Considering the first 10,000 iterations as the burn in period the sampled points from the remainder
of the chain gives rise to the parameter densities in Figure 8.10 and the pair wise correlations in
Figure 8.11. The correlation between h0 and hm might give rise to identifiability issues, but for
this data set it appears that both are identifiable judging from their densities. Sampling from the
found densities and propagating through the model gives a median prediction and prediction interval
describing where next measurement are expected. Median solution and 95% prediction intervals
are shown in Figure 8.12. The variance predicted by DRAM is s2

DRAM = 25.4871, which is in good
agreement with the variance of the added noise of σ2 = 25. For the synthetic data it is clear that the
model dynamics are well described by the analysed subset, despite the remaining parameters are locked
at 85% of the value used to generate synthetic data.

8.3.2 Dataset without respiration

All parameters

For the first run all parameters were allowed to vary. All parameters was bounded from 0 from below.
The parameters Tp m ,Ts m , and µ was bounded by 1 from above, while the remaining parameters was
unbounded from above. A chain was generated with 50,000 points, as shown in Figure 8.13. The
top panel shows the chains in their entire lengths, while the bottom panel shows only the last 10,000
points. The corresponding densities are shown in Figure 8.14, scatter plots of the most correlated
parameters are shown in Figure 8.15 and solution and prediction intervals are shown in Figure 8.16.
Considering first the scatter plots of correlated parameters it is clear that there exists rather strong
correlations between some parameters. In addition several of the graphs shows clear trajectories,
suggesting that the chain has not converged to sampling from a distribution. The same story is told
by considering the chains plot in Figure 8.13. The jumps in the top panel, suggests that mixing is
not well within the first 40,000 iterations, and the bottom panel does not look like points sampled
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Figure 8.9: Parameter chains obtained from DRAM for fit to synthetic data. Top: entire chain with
50,000 points. It appears that there is a short transient at the beginning which appears to last less than
5,000 iterations. Bottom: last 10,000 points of the chain. The chain appears to be well mixed, and the
samples appears to be random samples from a distribution.

randomly from a distribution. While the sum of squares shown in Figure 8.17 decreases for the chain,
the number of correlated parameters makes it unlikely that running the chain longer would result in
sampling from the posterior distribution. Since a reduced subset has already been found using Morris
and OSM, the continued analysis will be performed for that subset.
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Figure 8.10: Parameter densities obtained from DRAM for fit to synthetic data, ignoring the first
10,000 points of the chain.

Morris-OSM subset

Limiting the subsets to the Morris-OSM subset and creating a chain with 50,000 points leads to a very
large correlation between the parameters h0 and hm , as seen in Figure 8.18. This correlation was also
consistently identified by SCM as correlated for the data set with respiration, as shown in Table 8.5,
8.9, and 8.11. As information is more easily obtainable physiologically for h0 than for hm , h0 is fixed
for the subsequent analysis.

With h0 fixed, DRAM produces the parameters chains shown in Figure 8.19 with 50,000 iterations.
Transients are observed within the first couple of thousand iterations, but the chain is well mixed and
burned in for the remaining iterations. As a result the first 5,000 points are ignored for the generation
of the parameter densities in Figure 8.20 and the correlations in Figure 8.21. For this new chain some
correlation is observed for the pairs s1 and s2, as well as for µ and hm , but none of them are so strong
that they cause problems with identifiability. This is confirmed by the parameter densities which
indicate no multi-modal behavior.

Propagating the estimated parameter densities using 1,000 points results in the solution and
prediction interval shown in Figure 8.22.

The residual obtained for the median of parameter densities are plotted in Figure 8.23. It is clear
that the errors are not iid., and that the model, with this configuration, is missing some dynamics of
the data.
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Figure 8.11: Scatter plot for pairs of sampled parameter values for model fit to synthetic data using
DRAM, ignoring the first 10,000 points of the chain.

8.3.3 Data set with respiration

This data set was only run for the parameter set determined by Morris-OSM. Using 50,000 points
initially leads to very strong correlations between the parameters αm and βm , as well as between
h0 and hm as shown in Figure 8.24. As αm ranks lower in sensitivity from the Morris method in
Table 8.7, αm is locked together with h0 for subsequent analysis.

New chains with 50,000 are generated after αm and h0 have been fixed. Again the first 5,000
iterations are ignored as burn in. The rusulting chains is shown in Figure 8.25. The sampled points
resembles white noise, and the chain is therefore considered well mixed and burned-in. The resulting
parameter densities are shown in Figure 8.26, while the scatter plots for parameter pairs are shown in
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Figure 8.12: Synthetic data (red), median parameter density solution (black) and 95% prediction
intervals (grey) for fit to synthetic data using DRAM.

Figure 8.27. While the scatter plots idicate some correlations, they do not appear to be single valued,
just as the densities show no sign of multi-modal behavior that would indicate identifiability problems.

In addition it should be noted how the value of fr,t , describing the set point for the Hill function
of respiratory input, is estimated to be close to its upper boundary both by Nelders-Mead and DRAM.
A set point so removed from the typical range of the respiratory signal ∼ 0.3Hz, means that the
resulting respiratory effect will be near constant.

Propagating the found parameter densities through the model, using 1,000 sampled points, results
in the model output prediction intervals shown in Figure 8.28. The prediction intervals generated by
DRAM contain 406 out of 431 data points, corresponding to 94.2%, indicating that the prediction
intervals are correctly estimated. It is clear that the fit is not great, and that appears to produce a
fit worse than that for the data set without respiration. On the other hand the residuals shown in
Figure 8.29 appear to be closer to iid, than those presented for the fit to the data without respiration in
Figure 8.23.
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Figure 8.13: The chains of parameter values obtained for the dataset without respiration when all
parameters are allowed to vary from DRAM using 50,000 iterations. Top: all 50,000 points. Bottom:
last 10,000 points. Notice how even after 40,000 iterations the chains have not reached a fixed state,
but are still moving around. It cannot be determined that the chain has reached a point where it is
sampling from the posterior distribution.
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Figure 8.14: Parameter densities obtained for the dataset without respiration when all parameters are
allowed to vary. The last 10,000 points of the chain has been used for these densities. It is clear that
there is some bi-modal behavior for some of the parameters, probably due to interactions between
parameters causing unidentifiability.
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Figure 8.15: Scatter plots of parameters with absolute correlation larger than 0.9 for the last 10,000
points of the chain.
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Figure 8.16: Experimental heart rate (red), model output heart rate (black) and prediction intervals
(grey) obtained with parameter densities estimated by DRAM using last 10,000 samples from 50,000
iterations chain, where all parameters vary.
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Figure 8.17: Chain of sum of residual squares Markov Chain when all parameters are allowed to vary
for the data set with no respiration.
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Figure 8.18: Correlations obtained for the Morris-OSM subset. A very clear observation is seen
between parameters h0 and hm . Since knowledge is more easily obatined about h0 than hm , h0 is fixed
for subsequent analysis.
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Figure 8.19: The chains of parameter values obtained for the dataset without respiration when only
parameters selected by the Morris-OSM subset are allowed to vary from DRAM using 50,000 iterations.
The signals looks like white noise indicating that the chain is well mixed and burned in.
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Figure 8.20: Parameter densities obtained for the dataset without respiration when only the parame-
ters selected by Morris-OSM are allowed to vary. There are very clear distribution for each, and no
multi-modal behavior.
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Figure 8.21: Relationship between parameter samples for the Morris-OSM subset with h0 fixed.
Several correlations are present, but none so single-valued they lead to identifiability issues.
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Figure 8.22: Solution (black) and prediction intervals (grey) obtained using DRAM using 50,000
iterations, letting all parameters vary, along with experimental data (red).
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Figure 8.23: Plotting the residuals from the solution obtained by the mean value of the DRAM chain
for each parameter reveal that the errors are not iid. There seems to be some dynamics that is currently
not being reflected by the model.
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Figure 8.24: Scatter plots for parameter pairs. Strong correlations are observed between αm and βm
and between h0 and hm . Parameters αm and h0 are fixed for subsequent analysis.
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Figure 8.25: The chains of parameter values obtained for the dataset with respiration when only
parameters selected by the Morris-OSM subset are allowed to vary. The points plotted here are samples
after the burn-in period, and their stationary behavior indicate that the chain has converged.
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Figure 8.26: Parameter densities obtained for the dataset with respiration when only the parameters
selected by Morris-OSM are allowed to vary. There are very clear distribution for each, and no
bi-modal behavior.
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Figure 8.27: Parameter scatter plots for the Morris-OSM subset for data set with respiration. No
transients are seen, indicating that the chain has converged. Some correlations are observed between
αm and βm and between h0 and hm .
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Figure 8.28: Experimental data (red), and Solution (black) and prediction intervals (grey) obtained
for the model with respiration using DRAM with 50,000 iterations, fixing parameters αm and h0 but
letting the remainder of Morris-OSM subset of parameters vary.
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Figure 8.29: Plotting the residuals from the solution obtained by the mean value of the DRAM
chain for each parameter reveal that the errors are not completely iid, but better than for the fit to
experimental data without respiration.
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8.4 Discussion

It was shown that different methods can be used for constructing subsets of parameters that are
able to provide reasonable fits to data. The analysis with synthetic data revealed that even small
subsets allowed for fitting constructed data, even though the remaining parameter values had been
fixed at 85% of the "true" value. For the analysis against experimental data it was revealed that the
methods based on global analysis of sensitivities were superior in providing a good fit. Morris-OSM
(χ 2
ν = 41,AIC= 1604) provided the best fit, with Sobol-SCM (χ 2

ν = 42,AIC= 1626) and Sobol-OSM
(χ 2
ν = 42,AIC= 1627) being nearly as good, while local-SCM (χ 2

ν = 62,AIC= 1786) and local-OSM
(χ 2
ν = 62,AIC= 1787) was significantly worse. Because the Morris method provided similar quality

fit to Sobol, but has a signficant lower cost, OSM-Morris was favored in the subsequent analysis. Why
the OSM method proved more efficient than SCM when using for parameters found sensitive by the
Morris method is not clear however. A possible explanation is that it consistently produced subsets for
which the condition number of the FIM was lower when the subsets were of equal size. Something
that can likely be explained by how it considers linear independence between the model sensitivity to
parameters, while SCM considers estimates of pair-wise correlations between parameters estimates.

The lower efficiency of the local methods can most likely be ascribed to the parameter configuration
used for calculation was far from the optimum configurations. While this is an inherent disadvantage
of local methods, one could consider running an initial optimization to close in on the optimum
before calculating local sensitivities. For gradient based optimization algorithms, one might also
consider the subset selection and optimization as an iterative process, where a new sensitivity analysis
and subset selection is performed at each found optimum, before starting the optimization process
again.

Fixation of parameters fs and fp for the Hill functions involved in modeling the autonomic
nervous system response to afferent firing increased the quality of the fit for the OSM-Morris subset
(χ 2
ν = 39,AIC= 1584). Some of the estimated parameter values were still found at or very near the

limits of the allowed intervals. Especially it seemed that the dynamics of the respiration was hard to
encapsulate, suggesting that the respiratory input part of the model might need some reconsideration.

While the model fit to the data set with respiration was acceptable but didn’t show the desired
dynamics, the model fit to the data set without respiration was better. Three different optimizations
was done. One without subset selection (χ 2

ν = 32,AIC= 1602), one with non-influential parameters
removed by Morris (χ 2

ν = 45,AIC = 1652), and finally one for the Morris-OSM subset (χ 2
ν =

42,AIC= 1614). While the parameter describing the base depolarization rate of the pacemaker cells,
h0, hit the limit of the allowed interval, all other parameter estimates was in the interior of the allowed
intervals. It was mentioned earlier that fixing parameter values introduces a bias into the model and
effectively changes the model. This is very clearly illustrated in the parameter estimates obtained for
the data set without respiration. Table 8.19 shows that the obtained fits are somewhat similar in χ 2

ν
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values (41.6 for Morris-OSM and 45.11 for Morris) and Figure 8.8 show that the obtained solutions
are quite similar, yet the parameter estimates are very different. This may also be interpreted as there
being identifiability issues for the non-reduced model. Hence in addition to increasing the chance
of producing unique optimum, the reduced subset also have the advantage that it allows the use of
gradient based optimization methods that are favorable in computational cost.

For all optimized parameter configurations constraints set up to guarantee positivity of relevant
physiological states was met eventhough they were not enforced during the optimization. The only
model states not guaranteed to remain positive was those describing distribution of strain in the
arterial wall, but the resulting neuron firing was positive.

The parameter estimates obtained with Morris-OSM for the two methods were used to calculate
parameter densities and prediction intervals for model output. Here the parameter boundaries are
ignored for parameters where no strict physiological boundaries are present. DRAM is run for four
different problems: synthetic data with OSM-morris subset, experimental data without respiration
with all parameters, experimental data without respiration with Morris-OSM subset and experimental
data with respiration with Morris-OSM subset.

For the synthetic data set DRAM reproduces the experimental data with very tight predictions
intervals, as expected. Parameter interactions shows no signs of identifiability issues, despite some
correlations existing. For the full parameter set for experimental data without respiration DRAM
is not able to converge within 50,000 iterations. In addition correlations between parameters and
the behavior of parameter chains strongly suggests that there is identifiability issues, and that the
chain should not be expected to converge. For Morris-OSM without respiration parameters h0 and
hm are found to be highly correlated. Since h0 can most easily be determined physiologically, it is
fixed at its nominal value and the analysis repeated. The result leads to some correlations between
parameters that are closely related in the mathematical description of the model such as s1 and s2.
None of these correlations have the form of a clear functional relationship, and as such poses no issus
for identifiability. For Morris-OSM with respiration the near single-valued correlation between h0 and
hm is seen again, but in addition the correlation between αm and βm is seen as well. h0 and αm are
fixed and the analysis repeated.

The results from DRAM suggests that the method converges for each data set with the Morris-
OSM parameter subset. The resulting fits however, seems to be missing some of the dynamics. For
the fit to the data set without respiration, it appears that the heart rate does not stay at the level it
should after the tilt. This is possible due to parasympathetic activity increasing or sympathetic activity
decreasing too early after the tilt.

This is clearly indicated in the residual plot in 8.23. For the fit to the data set with respiration the
missing dynamics seems to be less clear, except that the difference between model and data is becoming
more negative towards the end.

While the subset selection based on Morris-OSM is still prefered due to the quality of produced
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fits over the local methods and the higher computational efficiency than Sobol, the restrictive course
chosen towards subset size might not be optimal.
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Chapter 9
Concluding remarks

9.1 Conclusion

The mathematical model developed in this study is based on physiological descriptions of the mecha-
nisms involved in the baroreceptor reflex mechanism. The model contains elements predicting firing
rate in afferent neurons, sympathetic and parasympathetic outflow, concentrations of neurotransmit-
ters acetylcholine and noradrenaline, from which heart rate is predicted. The detail level of the model
is high enough to assert physiological meaning to each parameter, while simple enough that the effect
of each subsystem can be understood and discussed.

A few things should be noted about the model. Nominal parameter values are in large set to match
descriptions from other authors, or are based on simple assumptions about the expected behavior.
To reproduce behavior known from literature, the model for stimulus of the baroreceptors assumes
that the arterial wall distends elastically, and that the baroreceptors are strained viscoelastically. In
reality the distention of the arterial wall is viscoelastic, just as the mechanism for initiating action
potentials in the baroreceptor neuron also plays a role in the viscoelastic response. Likewise, the
description of the intracellular pathways of the pacemaker cells on the heart are not based on the
actual mechanisms, but formulated to describe the expected effect. Simulations using the mathematical
model showed that the inclusion of a distributed sympathetic delay did not change the heart rate
regulation significantly. While this suggests that the sympathetic delay does not greatly affect heart
rate regulation in the physiological system, it is result for the mathematical model with that specific
configuration. A preliminary analysis of the effect of respiration using simulations showed that the
implementation can produce an increase in fast oscillations of model output heart rate, and a decrease
in parasympathetic activity following a change in posture. This is in line with the goal of including
respiration of predicting faster oscillations, and the physiological knowledge of parasympathetic
activity following tilt.
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The mathematical formulation of the model has been shown to guarantee positivity of solution for
relevant state variables under certain restrictions on parameter configurations. The model is able to
describe the mean behavior of heart rate regulation during head-up-tilt (HUT) experiment. While the
tilt itself takes only 14 seconds, the model predicts the behavior over a period starting 3 minutes before
HUT and ending 8 minutes after. Implementation of respiration input has been found to facilitate an
increase in fast oscillations in model output heart rate, and to reflect physiological understanding of
decreased parasympathetic activity following HUT.

While the model was able to correctly predict mean heart rate behavior, it was unable to match fast
oscillations in the experimental data. It is hypothesised that these fast oscillations is due to respiration,
and primarily affected by the respiration frequency. It is impossible to conclude if the shortcoming of
the model is due to wrong description of the respiration effect or to errors in respiration data extracted
from ECG. However, the absence of oscillations in respiration frequency, suggests that perhaps the
signal considered should not be the frequency as done in this study, but rather the more dynamic
respiration signal itself.

Sensitivity and identifiability analysis was performed for the model, using different strategies in
terms of combining results from local and global methods. No clear common tendencies were found
for these methods, which all produced different subsets. To test both the optimization algorithm
implementation, and the ability of the subset to reflect required dynamics, the subsets were tested
against synthetic data. Next, the subsets were tested by fitting the model to experimental data with
respiration, allowing only the parameters of the subset to vary. Here the subset based on the Morris
method, with subsequent analysis of parameter interactions by OSM, produced the best result.

It was found that parameters describing set-points for Hill-functions may pose extra difficulties in
the optimization process. These parameters were fixed and a new subset was produced using Morris-
OSM. Optimization was repeated for this new subset, as well as a subset consisting of parameters
deemed sensitive by the Morris method, and a subset consisting of all parameters. In general the larger
subsets produced better fits.

Parameter densities and model output prediction intervals were estimated using DRAM. When
including all parameters in the analysis for the data set without respiration, the Markov chain did not
converge in 50,000 iterations, but did continue to improve on the residual cost. Using the parameter set
produced by the subset selection strategy Morris-OSM lead to fixation of the parameter h0 describing
the base depolarization rate of the pacemaker cells due to a correlation with the parameter hm

describing the pacemaker sensitivity to acetylcholine. Subsequent analysis with h0 fixed resulted in
reasonable parameter densities, suggesting that all remaining parameters are identifiable using this
subset. For the data set where respiration was included parameter densities were estimated as well.
Here two near single-valued correlations was found and parameters h0 and αm was fixed. αm describes
the weighting of the baroreceptor contribution to the parasympathetic tone before the tilt, and was
correlated to βm which describes the weighting of the respiration contribution to parasympathetic
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tone after the tilt. For this data set it was especially interesting that the set point parameter for the
Hill function describing respiratory input, fr,t , was found to be close to it’s largest allowed value. This
suggests that the algorithm prefers a near constant respiratory input, and that the current inclusion of
the respiration frequency does not increase the descriptive power of the model. For both data sets, the
results produced by DRAM suggests that it is possible to produce better fits by increasing the size of
the parameter subsets.

Future work

While the simulation results presented here are promising, additional research will surely increase the
predictive power of the model. One area of interest is the size of parameter subset used for optimization.
Following optimization and UQ results it is clear that the used subset selection strategies was used too
restrictively. In relation to this, it would be relevant to analyse the impact of fixing physiologically
(relatively) well known parameters such as h0 prior to the subset selection procedures.

In terms of respiration it was hypothesized that the signal used to reflect the influence of respiration
should be the respiration signal itself, in favor of the respiration frequency used here. As the respiration
frequency is usually around 0.3Hz, this should include oscillations on this time scale in the model
output heart rate. Another, but perhaps more laborious, option would be to include a mechanism
generating oscillations in parasympathetic tone based on the respiration frequency. Either way, the
respiration signal should induce oscillations of a frequency around 0.3Hz in the model.
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