
ABSTRACT

ABBEY, RALPH WALTER. Stochastic Clustering: Visualization and Application. (Under the
direction of Dr. Carl D. Meyer.)

Data clustering is an important task in the field of data mining. In many cases clustering

is used as an exploratory tool to better understand data. However, one difficulty in clustering

is determining the quality of a given clustering result. While many clustering algorithms exist,

we focus on a recently developed algorithm: stochastic clustering. We show how the results of

the stochastic clustering can be visualized, and how this visualization indicates the quality of

the clustering result.

One key step in stochastic clustering is to convert a nearly uncoupled similarity matrix

into a doubly stochastic matrix. We propose an alternate iterative method to the commonly

used Sinkhorn-Knopp algorithm, and provide error bounds in the limit. Additionally we develop

stricter bounds than previously determined, that show the conversion to doubly stochastic form

neither creates nor destroys the nearly uncoupled property.

We perform clustering experiments on a wide variety of data sets from different disciplines

and of different sizes, and we compare the stochastic clustering to the popular spectral clustering

method on these data sets. We consider multiple similarity matrices and conclude that the

consensus similarity matrix is the most suitable for use in stochastic clustering.
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CHAPTER 1

Introduction

1.1 Data Clustering

Data clustering, or just clustering, is the task of segmenting a set of observations into groups,

such that similar observation are in the same groups, while dissimilar observations are in dif-

ferent groups. The set of observations we call the data set, and the groups we call clusters.

The task of clustering can be a goal in itself, or part of a larger data mining and knowledge

discovery process, where clustering is used for summarization, compression, or in finding nearest

neighbors ([79] pg. 489).

The SEMMA model of data mining applications, which stands for Sample, Explore, Modify,

Model, and Assess, places clustering in the Explore stage [6]. This is because clustering is

inherently an exploratory task, in which a user seeks to gain new insight into the data.

Clustering is not just a task of academic curiosity, but also of interest to business and in-

dustry, as illustrated in commercial products such as SAS®Enterprise Miner�[70] and Radoop

[65] which include tools for clustering. Clustering is useful in many computational fields such as

pattern recognition, information retrieval, machine learning, classification, and bio-informatics.

Due to the shared interest in both academic and business communities, as well as the wide

variety of fields in which it is used, clustering is a broad topic with many algorithms, both

specialized and generic. One reason for the large quantity of algorithms is summarized nicely

in the following statement.

Theorem 1.1.1. ([41] pg. xiv)

There does not exist a best method, that is, one which is superior to all other methods, for

1



solving all problems in a given class of problems.

Additionally, as clustering is fundamentally an exploratory task, different methods can pro-

vide different results, all of which could be meaningful. While there may be many good clustering

results, and many good clustering methods, we should be careful to not fall into the trap of

thinking that all results and all methods are equally valid. While there may be multiple ‘correct’

answers in clustering, there are still wrong answers: grouping observations that are dissimilar

together.

1.1.1 Motivating Example

Let us consider an industry application of clustering as a motivating example for our goals in

this thesis. We consider a data analyst working for a major credit card company who wishes to

create a model to predict which customers are most likely to churn; that is, to cancel their card.

By creating a model that accurately predicts which customers may churn, the analyst enables

the credit card company to offer special promotions to keep customers from leaving.

The data analyst uses clustering as an initial step to segment the customers into groups.

She then creates a different classification model for each group separately, thereby improving

the overall classification (application paraphrased from [20]). Ultimately the analyst helps the

credit card company retain customers and increase profit.

Clustering is an important part of the predictive modeling process. A good clustering al-

gorithm will group similar customers together, which can improve the predictive methods that

the data analyst uses. The data analyst in our scenario wants several things from a clustering

algorithm. Primarily, she wants the algorithm to work well at the clustering task: segmenting

the customers into groups based on of similarities. She also knows that one specific clustering

algorithm may not perform well in all cases. Thus her second desire is for a way to validate

that the clustering algorithm performed as desired.

Most of the time, validation in this scenario comes at the end of the entire modeling process

in the form of summary statistics, by means of lift charts, or through some measure, such as

root mean square error (RMSE). However if the data analyst could validate the quality of

the clustering, then she would be better able to determine where to focus her model creation

efforts. In this thesis we will use data visualization for the purpose of validation of clustering.

We focus on visualization because visual representation of results is much more understandable

than strictly reporting numbers.
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1.2 Data Visualization

The exploratory task of clustering is also highly tied to data visualization. Data visualization

is the act of presenting representations of the data that a user can see. Visualization supports

the human ability to look for patterns and relationships in the data ([26] pg. 21). It naturally

occurs during the Explore phase of the SEMMA model, just as clustering does. Because there

is no single clustering algorithm that we can turn to in all situations, having good cluster

visualization methods can help indicate to a user whether a given clustering method is useful

for a particular application.

Data visualization is used in many fields of science, and it includes many techniques that

are specialized for a given purpose or data set (e.g. [30], and as can be seen in places such as

[34] [60]). In this thesis we focus specifically on visualization of points in Rn without regard to

a specific field or underlying structure. From our motivating example, we specifically want to

investigate how visualization can aid in cluster validation.

Many generic methods have been proposed to visualize data, especially high dimensional

data, including by using projections [52] [5] [31] [32] [3] [80], plotting parallel coordinates [88],

using interactive methods [14], and using many other methods on which entire books have been

written [26].

Clustering can aid in the visualization process as well, due to the fact that the act of clus-

tering collects similar observations together, based off of patterns in the data. The data can be

reorganized according to the determined clustering, thus allowing a more intuitive presentation

of the data. In addition to the plethora of visualization methods for data, many methods have

been proposed that use clustering in the visualization process [19] [2] [15] [83] [66]. Finally, some

visualization methods, such as those in the Gephi software package [8], are designed for specific

structures of data.

1.3 Similarity Graphs and Matrices

In many traditional clustering formulations a dataset of n observations and m numerical at-

tributes is represented as an m×n matrix, M . An example of this formulation can be found in

organizing textual documents, in which the attributes are the words and thus Mij would be the

number of times that word i appears in document j. Many of the aforementioned visualization

techniques also use this representation in generating the visual representations of the data. An

alternative way to represent the data is through the creation of similarity matrices.

Representing the data in terms of a similarity graph has potential benefits, as graph theo-

retical results now apply to the clustering problem. The clustering problem for the original data

is equivalent to the graph partitioning problem, in which we want the edges between partitions

3



to have low weight.

Given a set of data points xi ∈ Rn and a measure of similarity, a similarity graph is defined

where each vertex vi represents the data point xi, and the edge between vi and vj has weight

Sij . If Sij = 0 then there is no edge between vi and vj .

A similarity matrix S is a symmetric matrix in which Sij is the similarity between xi and xj .

This matrix is the adjacency matrix of the similarity graph. We will continue our discussions in

terms of the similarity matrix, though all of these ideas can be traced back to the graphs that

the similarity matrix describes.

We introduce a few measures of similarity here which will be used in later portions of the

thesis.

� Gaussian kernel [42] similarity - The Gaussian kernel similarity matrix is used in spectral

clustering [84]. This similarity matrix includes a user determined parameter, σ > 0 which

is used to control the spread of the similarity values.

Sij = e
−
‖xi−xj‖

2
2

σij

� Cosine similarity - The cosine similarity is often used with word document sets ([79] pg.

75).

Sij =
xTi xj

‖xi‖2‖xj‖2

� Shared K-nearest neighbor similarity [37] - The shared k-nearest neighbor similarity de-

fines the similarity between two observations by the number of ‘neighbors’ they share.

For each observation and a given distance metric, first construct the list of the K nearest

neighbors. Sij is the size of the intersection of the nearest neighbor lists for observation

i and observation j. In [37] nearest refers to Euclidean distance, but this concept can be

generalized to any distance measure.

� Consensus similarity - The consensus similarity matrix is different from the previous three

similarity matrices in that it requires the observations to have previously been clustered

by multiple algorithms, or multiple times by an algorithm with random initializations.

The consensus similarity, as the name implies, tries creates a similarity in which the goal

is to find a consensus between the previously-run clustering methods.

Sij is the number of times observation i and observation j are clustered together in

multiple clusterings of the data set. Let A(k) be the adjacency matrix of the kth clustering

of a data set. We define the elements

4



a
(k)
ij =

1 : if observations i and j were clustered together

0 : if observation i and j were not clustered together

Definition 1.3.1. ([86] pg. 5)

If {A(1), A(2), . . . , A(r)} is a collection of adjacency matrices created from clusterings of

the same data set, then the sum of these matrices

S = A(1) +A(2) + · · ·+A(r)

is called the consensus similarity matrix or the consensus matrix.

From our earlier discussion of clustering algorithms we know that many different clustering

results can be obtained from a given data set. It is a natural desire, then, to want to find some

agreement between different clustering results. The consensus similarity matrix is of particular

interest due the fact that partitioning it acts as meta-clustering: we use previously determined

clustering results to generate a graph we then seek to partition.

One recently developed method using the consensus similarity matrix is the stochastic con-

sensus clustering algorithm. It is this method that we consider in this thesis.

1.4 Stochastic Consensus Clustering

The stochastic consensus clustering algorithm is shown below:

Algorithm 1.4.1. Stochastic Consensus Clustering Algorithm [86]

Input: N observations xi ∈ Rm.

1. Create the consensus similarity matrix S using a clustering consensus of the user’s choice

2. Use matrix balancing to convert S into a doubly stochastic symmetric matrix P .

3. Compute eigenvalues of P . Sort the eigenvalues of P in descending order and find the

largest difference between successive eigenvalues. Let k be the number of eigenvalues before

the largest difference.

4. Create a random sT0 .

5



5. Track the evolution sTt = sTt−1P . After each iteration, sort the elements of sTt and then

separate the elements into k clusters by dividing the sorted list at the k − 1 largest gaps.

When this clustering remains the same for a user-defined number of iterations, the final

clusters are determined.

Output: Clusters C1, . . . , Ck.

The stochastic consensus clustering algorithm (Wessell [86]) is a recently created algorithm

that uses the consensus similarity matrix to perform data clustering. One of the original motiva-

tions is that stochastic consensus clustering acts as a way to create consensus among multiple

clusterings, thus boosting user confidence in the final confidence of the result - a key factor

in our motivating example. The second motivation is that the stochastic consensus clustering

algorithm provides the user with k, the number of clusters, as opposed to requiring k as an

input.

Other methods for determining k include the statistical technique called the gap statistic

[82]; spectral clustering [84], which is another graph-based method; methods that look at the

percentage of variance explained by different numbers of clusters [38] [81]; using cross-validation

over multiple choices for k [78]; and optimizing a given metric over multiple choices of k [46].

1.4.1 Organization and Goals

All proofs in this thesis are original; non-original theorems are cited without proof. We will often

use the phrase ‘stochastic clustering algorithm’ or ‘stochastic consensus clustering algorithm.’

The latter phrase refers specifically to the formulation in Algorithm 1.4.1, whereas the former

is a more general case in which any similarity matrix is used (not just the consensus similarity

- see step 1). This thesis investigates both the general and the specific cases.

In our motivating example the data analyst wants two main things: for her clustering method

of choice to work well, and to be able to verify that it works well. The traditional method for

showing a clustering method works well for a given application is to use data with known

clusters and to show that the clustering obtains the known result.

We have three main goals in this thesis.

We wish to show that the stochastic clustering algorithm can generally perform well, which

is mainly an experimental endeavor. We will do this by comparing the stochastic clustering

algorithm to spectral clustering, a popular similarity matrix-based clustering method. We com-

pare these two methods on several data sets that have a wide range in number of observations

as well as a wide range in application areas.

We also wish to improve the original stochastic clustering algorithm in terms of speed and

quality. In the future research section of [86], Wessell provides several areas of research for
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which the stochastic clustering algorithm can be improved. We explore three of these questions:

1) Is there another similarity measure for which stochastic clustering will work? 2) Can the

Sinkhorn-Knopp algorithm be replaced by one instance of row and column scaling? 3) Can

we improve the theoretical bounds relating consensus matrix, S, to its doubly stochastic form,

P? We address 1) experimentally and 2) by proposing a faster balancing algorithm to cut the

potentially long convergence times for the Sinkhorn-Knopp.

Finally, we wish to provide a way for a user to validate the clustering output. We propose

a method for visualizing the output of the stochastic clustering algorithm. We claim that this

visualization allows a user to visually validate how the clustering is performing without having

to decipher tables of numbers, or to inspect specific clustering results.

We organize this thesis as follows. In Chapter 2 of this thesis we focus on the theoretical

background for the stochastic clustering algorithm. This theoretical background is necessary

for our goals of improving the algorithm, as well as visualization. In Chapter 3 we show im-

provements for the bounds relating the consensus similarity matrix, S, to the doubly stochastic

matrix, P . In addition, we provide a new algorithm that we argue will convert S to P faster

than currently used methods, when appropriate prerequisites are met.

In Chapter 4 we introduce a method of visualizing the data and clustering from the stochas-

tic consensus clustering method. We argue that through visualization a user can both validate

the quality of clustering as well as improve upon the standard results of the stochastic clus-

tering algorithm. We also discuss the initialization of the Markov chain related to step 4 of

the stochastic clustering algorithm. We expand previous work on the theoretical issues that

can cause poor initializations. Through the use of visualization we argue that it is possible to

understand when a poor initialization has been encountered.

We discuss experimental setup and results in Chapters 5 and 6 respectively. In Chapter 6 we

show experimentally that stochastic stochastic consensus clustering performs well in comparison

to spectral clustering on several different datasets. We show that the consensus similarity matrix

is the appropriate similarity matrix on which to use the stochastic clustering. We also show

how visualization can provide valuable insight for the clustering process and validation.

Finally, we end this thesis with our concluding remarks in Chapter 7.
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CHAPTER 2

Stochastic Consensus Clustering Background

The stochastic clustering algorithm investigated in this thesis is based upon the variable ag-

gregation work of Herbert Simon and Albert Ando [74]. In Section 2.1 we define notation and

terminology that are used in this thesis, as well as provide relevant theorems for the introduced

terminology. In Section 2.1.4 we give a brief overview of the Simon-Ando theory, and we explain

how we use its results in the stochastic clustering algorithm. We finish this chapter by showing

that we can generate an appropriate matrix for the Simon-Ando theory from the similarity

matrices discussed in Chapter 1.

2.1 Notation and Terminology

We start with general notation, after which we break notation down into the topic areas of

eigenvalue notation and notation which deals with matrix structure.

Definition 2.1.1. (Meyer [54], pg. 663)

If A ∈ Rm×n such that aij > 0 for all elements of A, then we say that A is a positive

matrix, which we denote by A > 0.

Definition 2.1.2. (Meyer [54], pg. 670)

If A ∈ Rm×n such that aij ≥ 0 for all elements of A, then we say that A is a nonnegative

matrix, which we denote by A ≥ 0.

Sometimes we need to specify that a nonnegative matrix has at least one element aij 6= 0.

We denote this by A 6= 0.
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2.1.1 Eigenvalue Notation

Eigenvalues are used in this thesis during the discussion of convergence for some of the algo-

rithms later presented. To avoid confusion as to which matrix to which an eigenvalue belongs,

we use λi(A) to denote that λi is an eigenvalue of A.

It is useful to be able to order the eigenvalues of a matrix. For any n×nmatrix A we can order

the eigenvalues by the magnitude of the modulus such that |λ1(A)| ≥ |λ2(A)| ≥ · · · ≥ |λn(A)|.
If we know that A has all real eigenvalues then we can also order by the eigenvalues such

that λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A).

We use both orderings in this thesis, and as such the presence of the absolute value symbol,

or lack thereof, will indicate which ordering is being used.

Definition 2.1.3. (Meyer [54], pg. 497)

The spectral radius of a n × n matrix A, ρ(A), is the maximum of the modulus of all

eigenvalues of A. That is ρ(A) = maxi |λi(A)|.

2.1.2 Non-Zero Structure of a Matrix

We now define the terms fully indecomposable, total support, irreducible, and primitive,

all of which deal with the structure of a matrix, or the locations of zeros and non-zeros in a

matrix. We also provide some additional theorems that relate these concepts to each other.

These terms are used in the theorems that relate to the Simon-Ando theory, and also to show

how the stochastic clustering algorithm satisfies necessary assumptions.

Some concepts have multiple terms associated with them in the literature. For example

completely indecomposable is used in [45], while in many other sources the term used is

fully indecomposable [40] [13] [9]. The term indecomposable has also been used to have

the same meaning as irreducible [21].

Definition 2.1.4. (Meyer [54], pg. 671)

An n×n nonnegative matrix A is said to be reducible if there exists a permutation matrix

Q such that

QTAQ =

[
X Y

0 Z

]
where X and Z are both square. If no such permutation exists then A is said to be irreducible.

Definition 2.1.5. (Meyer [54], pg. 674)

An irreducible matrix A is said to be a primitive matrix if λ1(A) = ρ(A), and |λi(A)| <
|λ1(A)| for i 6= 1.

Not all irreducible matrices are primitive, which we illustrate in Example 2.1.6.
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Example 2.1.6. (If A is an irreducible matrix, then A is not necessarily primitive.)

A =

[
0 1

1 0

]

It is clear that A is irreducible. However A has the eigenvalues of -1 and 1, and thus A is not

primitive because |λ2(A)| 6< |λ1(A)|.

Theorem 2.1.7. (Meyer [54] pg. 678)

If A is an irreducible matrix, then A is primitive if and only if there exists an integer k > 0

such that Ak > 0.

Example 2.1.6 also illustrates Theorem 2.1.7, as A2 = I. Therefore there is no k such that

Ak > 0.

Theorem 2.1.8. (Plemmons [9], pg. 34)

If A is an irreducible matrix with a positive trace, then A is primitive.

It is worth noting that the converse of Theorem 2.1.8 is not necessarily true: if A is primitive,

it is not generally required that A have a positive trace. We illustrate this in Example 2.1.9. In

the case of 2× 2 matrices it is true that A has a positive trace if A is primitive.

Example 2.1.9.

A =

 0 1 1

1 0 1

1 1 0

 , A2 =

 2 1 1

1 2 1

1 1 2


In this case A does not have a positive trace, but A is primitive because A2 > 0.

Several proofs that we discuss later, by Sinkhorn and Knopp, Brualdi, and also Ruiz, require

a generalization of the concept of irreducible.

Definition 2.1.10. (Minc [55] pg. 82)

An n×n nonnegative matrix A is said to be fully indecomposable if there are no permu-

tation matrices Q1 and Q2 such that

Q1AQ2 =

[
X Y

0 Z

]

where X and Z are both square.

If a matrix is fully indecomposable then it is irreducible. However, the converse is not true,

which we illustrate in Example 2.1.11.
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Example 2.1.11. (Irreducible does not imply fully indecomposable)

Q1 and Q2 are the only 2× 2 permutation matrices

Q1 =

[
1 0

0 1

]
, Q2 =

[
0 1

1 0

]
.

If A is

A =

[
0 1

1 1

]
then A is irreducible as neither QT1AQ1 nor QT2AQ2 are reducible. However, A is not fully

indecomposable, as seen by computing Q2AQ1.

Q2AQ1 =

[
1 1

0 1

]

In order to more fully relate irreducible and fully indecomposable, we need the concept of

total support.

Definition 2.1.12. (Sinkhorn and Knopp [75] pg. 343)

Given an n×n real matrix A, and a permutation, σ, of the numbers 1, 2, . . . , n, the sequence

of elements a1σ(1), a2σ(2), . . . , anσ(n) is the diagonal of A corresponding to σ. If σ is the identity

permutation, then the diagonal is called the main diagonal.

Definition 2.1.13. (Sinkhorn and Knopp [75] pg. 343))

If A is an n× n nonnegative matrix, A is said to have total support if A 6= 0 and if every

positive element of A lies on a positive diagonal (where a1σ(1), a2σ(2), . . . , anσ(n) > 0 is one such

diagonal).

As much of the discussion in this thesis focuses on symmetric matrices, especially with a

positive main diagonal, we relate these types of matrices to the concept of total support.

Lemma 2.1.14. If A is a nonnegative symmetric matrix with a positive main diagonal, then

A has total support.

Proof. To prove this, we need to show that every positive element lies on a positive diagonal.

For aij > 0 we define σij to be the permutation where σ(i) = j, σ(j) = i, and σ(k) = k for all

k 6= i, j. Because A has a positive main diagonal we know that if k 6= i, j then akσ(k) = akk > 0.

Since A is symmetric, if aij > 0, then aiσ(i) = aij = aji = ajσ(j) > 0. Thus aij lies on a positive

diagonal.

The following two lemmas provide some relationships between fully indecomposable and

total support.
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Lemma 2.1.15. (Minc [55] pg. 83)

Every positive entry of a fully indecomposable matrix lies on a positive diagonal.

Theorem 2.1.16. (Csima and Datta [18] pg. 149)

Let A be an irreducible symmetric matrix with total support. Then either A is fully inde-

composable or else there exists a permutation matrix Q such that

QAQT =

[
0 B

BT 0

]
where B is fully indecomposable.

It is also noted that if A is a fully indecomposable matrix, then A is also primitive [12] [39]

[9][55]. A proof can be found in [45].

Theorem 2.1.17. (Lewin [45] pg. 756)

If A is a fully indecomposable nonnegative matrix then An−1 > 0.

We synthesize the independent theorems and definitions into one theorem that relates the

concepts of irreducible, primitive, total support, and fully indecomposable. This is especially

useful as the similarity matrices used in this thesis are symmetric.

Theorem 2.1.18. A symmetric matrix A is fully indecomposable if and only if A is irreducible,

primitive, and has total support.

Proof. (⇒) Assume A is fully indecomposable. Then A is irreducible (Definition 2.1.10), A has

total support (Lemma 2.1.15), and A is primitive (Theorem 2.1.17).

(⇐) Assume A is irreducible, primitive, and has total support. Theorem 2.1.16 ensures that

either A is fully indecomposable or A has the form

QAQT =

[
0 B

BT 0

]
,

where B is fully indecomposable and Q is a permutation matrix. Since A is primitive, any

symmetric permutation of A must be primitive. Therefore A is fully indecomposable.

We note that when A is not symmetric, the (⇒) direction is still true, but the (⇐) direction

does not hold. We provide a counter example in Example 2.1.19.

Example 2.1.19. (If A is an irreducible and primitive matrix with total support, then A is not

necessarily fully indecomposable)
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A =

 0 1 1

0 1 1

1 0 0


We see that A has total support by considering the diagonal formed by (a31, a22, a13) and the

diagonal formed by (a31, a23, a12). Each positive element of A lies on one of these two diagonals,

and each of these diagonals is made up of strictly positive elements.

There exists no permutation matrix Q such that QAQT is reducible, and we also see that

A is primitive because A3 > 0. Thus we know that A is irreducible, primitive, and has total

support. Given Q1 and Q2

Q1 =

 0 0 1

0 1 0

1 0 0

 and Q2 =

 1 0 0

0 1 0

0 0 1

 ,
then

Q1AQ2 =

 1 0 0

0 1 1

0 1 1

 .
The computation Q1AQ2 shows that A is not fully indecomposable, which finishes the coun-

terexample.

2.1.3 Nearly Uncoupled Matrices

The Simon-Ando theory, and thus the stochastic clustering algorithm, relies on the concept of

nearly uncoupled matrices.

Definition 2.1.20. (Wessell [87] pg. 1216)

The n× n matrix A is called uncoupled if it can be symmetrically permuted to the form

QAQT =


A?11 0 . . . 0

0 A?22 . . . 0
...

...
. . .

...

0 0 . . . A?kk


where the diagonal blocks A?ii are square with size ni × ni, and n1 + n2 + · · ·+ nk = n.

A matrix that cannot be permuted to the form in Definition 2.1.20 is not uncoupled.

Theorem 2.1.21. (Wessel [86] pg. 13)

If A is symmetric matrix, then A is irreducible if and only if A is not uncoupled.
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If A is a matrix that is ‘very close’ to an uncoupled matrix, then we say that A is nearly

uncoupled. We give a definition for stochastic matrices in 2.1.5, and a more general definition

in Chapter 3.

If the similarity matrix used as input to Algorithm 1.4.1 is nearly uncoupled then we can

use the Simon-Ando theory to find clusters. We examine this theory in the next section.

2.1.4 Stochastic Matrices and the Simon-Ando Theory

Definition 2.1.22. (Meyer [54], pg. 687) A stochastic matrix is a nonnegative matrix Pn×n

in which each row sum is equal to 1.

In some cases a matrix may be referred to as either ‘row stochastic’ or ‘column stochastic’

as an indication of the rows or columns summing to 1 respectively. A matrix whose row sums

and column sums both equal 1 is said to be doubly stochastic.

We call a nonnegative vector πT a probability row vector if ‖πT ‖1 = 1. If P is a stochastic

matrix and πT0 is a probability row vector then we can consider the evolution equation

πTt = πTt−1P, (2.1)

where each πTt will also be a probability row vector.

Definition 2.1.23. (Wessell [86], pg 14) The row vector πT is a stationary distribution vector

of the stochastic matrix P if it satisfies the equations

πT = πTP

πT ≥ 0

πT e = 1

where e is the vector of all ones.

If P is primitive then we are guaranteed that a stationary distribution vector πT exists, and

πT = lim
t→∞

πT0 P

for any initial probability row vector πT0 .

The Simon-Ando theory was initially developed in order to gain understanding of the long

term behavior of the evolution equation (Equation 2.1) when P is nearly uncoupled. It was first

used in modeling micro and macro economies, but has enjoyed a wide range of applications

in other areas including urban design [69], the theory of multicellular evolution [73], computer

queueing systems [17], and neuro-science [77]. Stochastic clustering seeks the opposite approach;
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given a known long-term behavior of the evolution equation, the goal is to find clusters by

observing the short-run and middle-run behavior.

The stochastic clustering method requires that the input similarity matrix be converted

to a doubly stochastic matrix. We continue this chapter with the assumption that such a

conversation is possible. We discuss the details of this conversion at the end of this chapter,

and in Chapter 3 of this thesis.

Simon and Ando argued that if P is primitive and nearly uncoupled, then πTt will go

through several distinct stages before approaching the limit as a stationary distribution vector.

To formally define these stages, we next define the stochastic complement.

2.1.5 Stochastic Complementation

Definition 2.1.24. (Meyer [53], pg. 2) Let P be an n × n irreducible stochastic matrix with

the structure

P =


P11 P12 . . . P1k

P21 P22 . . . P2k

...
...

. . .
...

Pk1 Pk2 . . . Pkk


in which all diagonal blocks are square. Then each Pii has a stochastic complement in P defined

by

Cii = Pii + Pi?(I − Pi)−1P?i,

where Pi is the matrix obtained by deleting the ith row and ith column of blocks from P . Pi? is

the ith row of blocks of P excluding Pii, and P?i is the ith column of blocks also excluding Pii.

P =


P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44


C22 = P22 + P2?(I − P2)

−1P?2

C22 = P22 +
[
P21 P23 P24

]  I − P11 −P13 −P14

−P31 I − P33 −P34

−P41 −P43 I − P44

−1  P12

P32

P42


Figure 2.1: An example of the computation for a stochastic complement (Wessell [86], pg. 16).
The equation for the stochastic complement C22 when P is a matrix with four diagonal blocks.
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Theorem 2.1.25. (Meyer [53], pg. 22) For an n× n irreducible stochastic matrix of the form

P =


P11 P12 . . . P1k

P21 P22 . . . P2k

...
...

. . .
...

Pk1 Pk2 . . . Pkk

 ,

let C be the uncoupled stochastic matrix

C =


C11 0 . . . 0

0 C22 . . . 0
...

...
. . .

...

0 0 . . . Ckk

 ,

and assume that each stochastic complement Cii is primitive. Let the eigenvalues of C be ordered

λ1 = λ2 = · · · = λk = 1 > |λk+1| ≥ · · · ≥ |λn|,

and assume that C is similar to a diagonal matrix

Z−1SZ =

[
Ik×k 0

0 D

]
.

If C∞ denotes the limit

C∞ = lim
t→∞

Ct = C =


ec1 0 . . . 0

0 ec2 . . . 0
...

...
. . .

...

0 0 . . . eck

 ,

where ci is the stationary distribution vector for Cii then

‖P t − C∞‖∞ ≤ t2 max
i
‖Pi?‖∞ + κ|λk+1|t

where

κ = ‖Z‖∞‖Z−1‖∞.

In addition, the difference between πTt and cT where

cT = lim
t→∞

πT0 C
t
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satisfies

‖πTt − cT ‖1 ≤ t2 max
i
‖Pi?‖∞ + κ|λk+1|t.

The quantity maxi ‖Pi?‖∞, given in the equation 2 maxi ‖Pi?‖∞ = ‖P − C‖∞, measures

of how far P is from the matrix C (Meyer [53] pg. 18). As C is uncoupled, we can think of

maxi ‖Pi?‖∞ as the degree of uncoupling for stochastic matrices. We propose a general definition

for the degree of uncoupling in Chapter 3. An important corollary to Theorem 2.1.25 establishes

bounds on t.

Corollary 2.1.26. (Meyer [53], pg. 25) If, for any ε > 0, t lies in the interval defined by

ln(ε/2κ)

ln(|λk+1|)
< t <

ε

4 maxi ‖Pi?‖∞
(2.2)

then

‖P t − C∞‖∞ < ε

and for every πT0 ,

‖πTt − cT ‖1 < ε.

The theory of stochastic complementation is very nuanced and can be found in full in [53].

In addition to a full exposition, explanation is provided as to why the primitivity assumption

for P and Cii, as well as the requirement that C is diagonalizable (found in the statement of

Theorem 2.1.25) are not needed.

The theory for stochastic clustering relies on the existence of the interval given in Corollary

2.1.26. In a general setting we will not have information on many of the variables, such as

λk+1 and κ. In Chapter 3 we discuss maxi ‖Pi?‖∞, and ensuring that this quantity is small. By

requiring that maxi ‖Pi?‖∞ is small, we will guarantee the interval for t to exists.

A consequence of Theorem 2.1.25 is that while t is in the bounds provided by Corollary

2.1.26, the probability vector πTt is given by

πTt ≈
(
α1c

T
1 α2c

T
2 . . . αkc

T
k

)
.

We refer to this as the short-run dynamics of the evolution equation. Wessell showed

([86] pg. 22) that if an additional assumption that P is doubly stochastic is made, then

πTt ≈
(
α1c

T
1 α2c

T
2 . . . αkc

T
k

)
=

(
α1
n1
, . . . , α1

n1

α2
n2
, . . . , α2

n2
. . . αk

nk
, . . . , αk

nk

)
,

where αi depends on the initial probability vector πT0 . Each cTi , the stationary distribution

of the Cii stochastic complement, is a uniform probability vector of length ni.
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Theorem 2.1.27. (Meyer [53] pg. 28) For an n× n irreducible stochastic matrix

P =


P11 P12 . . . P1k

P21 P22 . . . P2k

...
...

. . .
...

Pk1 Pk2 . . . Pkk


with stochastic complements Cii which are each primitive, let cTi be the stationary distribution

vector for Cii and let πTt = π0P
t where πT0 is an arbitrary initial distribution. If ε > 0 is a

number such that there exists a t within the bounds provided by Corollary 2.1.26, then for each

integer larger than t, there exist scalars βi(t) such that

vTt =
(
β1(t)c

T
1 β2(t)c

T
2 . . . βk(t)c

T
k

)
satisfies the inequality

‖πTt − vTt ‖1 < ε.

We call this the middle-run dynamics for the evolution equation. For doubly stochastic

matrices, Wessell showed ([86] pg. 22) that

πTt ≈
(
β1(t)c

T
1 β2(t)c

T
2 . . . βk(t)c

T
k

)
=

(
β1(t)
n1

, . . . , β1(t)
n1

β2(t)
n2

, . . . , β2(t)
n2

. . . βk(t)
nk

, . . . , βk(t)
nk

)
.

If we have converted an input similarity matrix to be a doubly stochastic, then, assuming

that it is nearly uncoupled, we can find the clusters by observing the iterates πTt in the short-run

and middle-run dynamics (t > ln(ε/2κ
ln(|λk+1|)). While we do not know a priori what the αi and βi(t)

are, we know that there are groups of approximately equal probability values in πTt . If the ith

and jth component of πTt , πTt (i) and πTt (j) respectively, are approximately equal then we say

that observations i and j are in the same cluster. We create k clusters by dividing the sorted

list of probability values in πTt at the k − 1 largest (absolute, not relative) gaps.

An important consideration is if there exists a t within the bounds provided by Corollary

2.1.26. In addition, we want πTt to converge slowly to the stationary distribution so that we

are able to observe the short-run and middle-run dynamics. Because πTt = πTt−1P is a power

method type iteration [85], we want the second largest eigenvalue of P to be close to 1 to ensure

slow convergence. We examine these topics further in Chapter 3.
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2.2 The Existence of a Doubly Stochastic Matrix, P

The stochastic consensus clustering algorithm stipulates that given a consensus matrix S we can

construct a doubly stochastic matrix P to make use of the Simon-Ando theory. The following

theorem states that if a general matrix A has the necessary properties, then A can be scaled to

be doubly stochastic.

Theorem 2.2.1. (Brualdi, et. al. [13] pg. 43)

Let A ≥ 0 be an n× n fully indecomposable matrix. Then there exist diagonal matrices D1

and D2 with positive diagonals such that D1AD2 is doubly stochastic. Moreover D1 and D2 are

uniquely determined up to scalar multiples.

Unique up to a scalar multiple means that if D1AD2 = P and D3AD4 = P , then D1 = αD3

and D2 = βD4, where αβ = 1. It is also useful to keep in mind that P is unique if it exists

(Sinkhorn and Knopp [75]). In the case of a symmetric matrix we have a unique scaling.

Lemma 2.2.2. (Cisma and Datta [18] pg. 150)

Let A be a fully indecomposable symmetric matrix. Then there exists a diagonal matrix D

such that DAD is doubly stochastic.

The similarity consensus matrix S is nonnegative, symmetric, and has a positive main

diagonal by construction. By Lemma 2.1.14, S has total support, and if S is also not uncoupled,

thus irreducible, then it is fully indecomposable by Theorem 2.1.18. In this case we know that

there exist unique diagonal matrix D and doubly stochastic matrix P such that P = DSD.

The Gaussian kernel, shared k-nearest neighbor, and cosine similarity matrices are also

nonnegative, symmetric, and have positive main diagonal by construction. Thus if these matrices

are not uncoupled, then they too are suitable for use in the stochastic consensus clustering

algorithm in addition to the consensus similarity matrix. In general we will assume that an

input similarity matrix is not uncoupled, as an uncoupled similarity matrix can be clustered

trivially.

In Chapter 3 we show that the doubly stochastic matrix P formed from a given similarity

matrix S is nearly uncoupled if S is nearly uncoupled. This is important, as the Simon-Ando

theory only applies to nearly uncoupled stochastic matrices. We also discuss specific algorithms

to create P from S, with the goal of computational efficiency.
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CHAPTER 3

Matrix Scaling

Throughout this chapter we will use P to mean the doubly stochastic matrix formed by P =

DAD, where A is a symmetric matrix with suitable properties discussed in Section 2.2. We

focus on two main points: ensuring that P has the structure required for clustering using the

Simon-Ando theory, and the process by which we obtain P from A.

In order to ensure that P has the suitable structure discussed in Chapter 2, we introduce

an uncoupling measure from Wessell [86]. In addition we introduce our own new measure that

relates to the stochastic complement and the theorems presented in Chapter 2. We relate these

two measures, and also provide necessary bounds relating our new measure on A to our new

measure on P .

Several methods for obtaining P from A have previously been developed [75] [40] [29]. Of

these methods, the Sinkhorn-Knopp algorithm is the most well known (by citation count),

and was used in stochastic consensus clustering. We argue that the rate of convergence of the

Sinkhorn-Knopp algorithm guarantees only slow convergence for stochastic clustering. Instead

we propose another algorithm for finding a doubly stochastic matrix, and we show that this new

algorithm has a better rate of convergence than the Sinkhorn-Knopp algorithm when applied

to the stochastic consensus clustering algorithm.

3.1 Properties of a Doubly Stochastic Matrix, P

Our application of the Simon-Ando theory requires that we have a nearly uncoupled, and

symmetric stochastic matrix. We therefore want to show that if A has these desired properties,
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then they are inherited by P . We start with three lemmas covering inherited properties.

Lemma 3.1.1. (Wessell [87], pg. 1221) If A is an n× n symmetric matrix with total support

and P = DAD is doubly stochastic, then P is symmetric.

Lemma 3.1.2. (Wessell [86], pg. 31) If A is an n × n irreducible matrix and P = DAD is

doubly stochastic, then P is irreducible.

Lemma 3.1.3. If A is primitive and P = DAD is doubly stochastic, then P is primitive.

Irreducible and primitive are required properties for Theorem 2.1.25, while symmetry is

required for stochastic clustering. In addition to these properties, we need for P to be ‘nearly

uncoupled,’ which we previously defined as maxi ‖Pi?‖∞. This definition does not make sense

for a general nonnegative square matrix A, as A can take any value, whereas P is required to

be stochastic.

Definition 3.1.4. Let A be an n×n nonnegative, symmetric, and irreducible matrix, such that

A =


A11 A12 . . . A1k

A21 A22 . . . A2k

...
...

. . .
...

Ak1 Ak2 . . . Akk

 .

Let A?i be the ith row of blocks, Ai? be the ith row of blocks of A excluding Aii, and e be the

vector of all ones of an appropriate size. Then the row uncoupling measure of A is given

by

µ(A) = max
i,j

(Ai?e)j
(A?i e)j

(3.1)

The quantity µ(A) is the maximum over all ratios of the off-block diagonal row sums divided by

the entire row sum. That is, µ(A) can also be written as

µ(A) = max
k,ni?

∑
j∈ni? akj∑
j∈[1,n] akj

(3.2)

where ni? corresponds to the set of all n not in the ith diagonal block.

It is worth noting that µ(A) will always be less than or equal to 1, where equality only holds

if each element of the Aii block is equal to 0.

In the case of stochastic matrices, the ratio maxi,j
(Pi?e)j
(P ?i e)j

= maxi ‖Pi?‖∞, as each row sum

of the stochastic matrix is equal to 1. Now that we have an uncoupling measure that is well

defined for general matrices, and that also fits the theory of stochastic complementation, let
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us consider the relationship between the row uncoupling measure of A and row uncoupling

measure of P when P = DAD.

Theorem 3.1.5. If A is an n × n nonnegative, symmetric, and irreducible matrix such that

there exists a P = DAD, then

minm dmm
maxm dmm

µ(A) ≤ µ(P ) ≤ maxm dmm
minm dmm

µ(A),

where dii is a diagonal element of D.

Proof. Since P = DAD we know that pij = diiaijdjj . Let us consider Equation 3.2.

µ(P ) = max
k,ni?

∑
j∈ni? pkj∑
j∈[1,n] pkj

= max
k,ni?

∑
j∈ni? dkkdjjakj∑
j∈[1,n] dkkdjjakj

As the summations are only over j we can factor out and cancel the dkk.

µ(P ) = max
k,ni?

∑
j∈ni? djjakj∑
j∈[1,n] djjakj

We now replace djj with either the maxm dmm or minm dmm dependent on the direction of the

inequality.

minm dmm
maxm dmm

max
k,ni?

∑
j∈ni? akj∑
j∈[1,n] akj

≤ µ(P ) ≤ maxm dmm
minm dmm

max
k,ni?

∑
j∈ni? akj∑
j∈[1,n] akj

Substituting in the definition of µ(A) finishes our proof.

In the case of consensus similarity matrices generated by r clustering runs, we can addition-

ally bound dmm and the ratios used in Theorem 3.1.5.

Theorem 3.1.6. If S is the n×n irreducible consensus matrix created from r clustering results

and there exists a doubly stochastic matrix P = DSD, then

maxm dmm
minm dmm

≤ (n− 1).

Proof. Since S is a consensus matrix, we know that sii = r. We also know that
∑

j diidjjsij = 1

for all i because P is stochastic. Thus by considering only the diagonal element we see that

d2ii ≤
1

r
.
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If we replace dij with 1√
r

we also see that

1 ≤ dii
∑
j

1√
r
sij

√
r∑
j sij

≤ dii

√
r

‖S‖∞
≤ dii.

Assuming that there were no trivial clustering results in which all observations were clustered

together, then ‖S‖∞ ≤ (n− 1)r. We are left with the result

√
r

r(n− 1)
≤ dii.

Finally as the bounds on dii hold for all i, we substitute
√
r

r(n−1) ≤ dii into maxm dmm
minm dmm

, and see

that

maxm dmm
minm dmm

≤

√
r

r(n−1)
1√
r

= (n− 1).

It is important to note that Theorems 3.1.5 and 3.1.6 relate µ(A) to µ(P ). From the theory

of stochastic complementation we need µ(P ) to be small. Specifically, we see that in Corollary

2.1.26, a small µ(P ) will increase the likelihood that there is a nonempty interval in which
ln(ε/2κ)
ln(|λk+1|) < t < ε

4maxi ‖Pi?‖∞ .

While Theorem 3.1.5 does not strictly guarantee that if S is uncoupled then P is uncoupled,

it does let us know that if we wish µ(P ) ≤ ε we need at most µ(S) ≤ ε
n .

This concludes our discussion on which properties of A that P inherits. We have shown

that the doubly stochastic matrix P = DAD will have the necessary properties for stochastic

clustering if we ensure that A is symmetric, irreducible, primitive, and nearly uncoupled.

3.1.1 The ‘Uncoupling Measure’ and the ‘Row Uncoupling Measure’

A different measure for the uncoupling of a matrix was used in the original discussion of the

stochastic clustering algorithm.

Definition 3.1.7. (Wessell [87] pg. 1221)

Let n1 and n2 be fixed positive integers such that n1 + n2 = n, and let A by an n × n

irreducible matrix whose respective rows and columns have been symmetrically permuted to the
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form

QAQT =

[
A11 A12

A21 A22

]
where A11 is n1 × n1 and A22 is n2 × n2 so that the ratio

σ(A,n1) =
eTA12e+ eTA21e

eTAe

is minimized over all symmetric permutations of A. The quantity σ(A,n1) is called the uncou-

pling measure of A with respect to parameter n1.

There are two important results based upon the definition of σ(A,n1), which relate the

second largest eigenvalue of the doubly stochastic matrix P and the uncoupling measure defined

in Definition 3.1.7.

Theorem 3.1.8. (Wessell [87] pg. 1222)

For a fixed integer n > 0, consider an n × n irreducible, symmetric, and doubly stochastic

matrix P . Given ε > 0, there exists a δ > 0 such that if σ(P, n1) < δ then |λ2(P )− 1| < ε.

Theorem 3.1.9. (Wessell [87] pg. 1223)

For a fixed integer n > 0, consider an n × n irreducible, symmetric, and doubly stochastic

matrix P . Given ε > 0, there exists a δ > 0 such that if |λ2(P )− 1| < δ then σ(P, n1) < ε.

While the relation between ε and δ in the above proofs are not presented, the result does

tell us that σ(P, n1) is small if and only if the second largest eigenvalue is also small [87]. It

is important to note that neither µ(P ) and σ(P, n1), nor µ(A) and σ(A,n1) can be computed

a priori due to the effect of permutations. These notions of uncoupling measures exist for

theoretical proofs relating the nearly uncoupled nature of A and P . Theorems 3.1.8 and 3.1.9

provide an actual method for testing the nearly uncoupled nature of doubly stochastic matrices.

Because we need the results of Theorems 3.1.8 and 3.1.9, we must relate the uncoupling

measure to the row uncoupling measure.

Theorem 3.1.10. If A is an n× n nonnegative, symmetric, and irreducible matrix, such that

A =

[
A11 A12

A21 A22

]
,

where A11 is of size n1 × n1, then

σ(A,n1) ≤ µ(A).

Proof. We complete this proof in two steps:
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1. Let α1, α2, β1, β2, and γ be positive numbers such that

0 <
α1

β1
≤ α2

β2
= γ.

Then α1 ≤ β1γ and α2 = β2γ. Adding α1 and α2 we see that

α1 + α2 ≤ (β1 + β2)γ,

which gives us
α1 + α2

β1 + β2
≤ α2

β2
.

2. Let αk =
∑

j∈ni? akj and βk =
∑

j∈[1,n] akj . By Definition 3.1.7 we see that

σ(A,n1) =

∑
k αk∑
k βk

.

Using part 1) gives us the result σ(A,n1) ≤ µ(A).

3.2 Algorithms for Obtaining a Doubly Stochastic Matrix, P

The Sinkhorn-Knopp algorithm is probably the best known method by citation count for finding

a doubly stochastic matrix. However there exist a variety of other algorithms which, while

different, will find the same doubly stochastic matrix (Parlett and Landis [61] & Ruiz [67]). An

advantage of the Sinkhorn-Knopp algorithm is that extensive work has been done in order to

determine the rate of convergence of the algorithm (Knight [39], Franklin and Lorenz [29], &

Soules [76]).

We present the Sinkhorn-Knopp algorithm and some of the theorems and properties of the

algorithm. We then explain why the Sinkhorn-Knopp algorithm is not the optimal algorithm

with respect to rate of convergence for stochastic consensus clustering.

3.2.1 Sinkhorn-Knopp Algorithm

Algorithm 3.2.1. Sinkhorn-Knopp Algorithm

Input: Nonnegative, square matrix A with total support. Let A0 = A.

Start at k = 1
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1. Divide each element of in the ith row of Ak−1 by the ith element of matrix-vector product

Ak−1e. Let this equal Ak−1/2.

2. Divide each element in the jth column of Ak−1/2 by the jth element of vector-matrix product

eTAk−1/2. Let this equal Ak.

3. Repeat steps 1) and 2) until ‖Ak − Ak−1‖ < τ , where the norm and the parameter τ are

the user’s choice.

Output: Ak

The limit limk→∞Ak = P , where P is a doubly stochastic matrix [75]. While this algorithm

describes a sequence of matrices Ak, it can be reformulated into an algorithm in terms of a

sequence of vectors. In order to do so, we first need the definition of the diagonal operator.

Definition 3.2.2. The diagonal operator D(x) : Rn → R
n×n creates an n × n diagonal

matrix in which dii = xi.

Considering the steps in Algorithm 3.2.1 we see that Ak−1/2 = Ak−1D(rk−1)
−1, where

rk−1 = Ak−1e. Likewise Ak = D(ck−1)
−1Ak−1/2, where c = eTAk−1/2. Because the sequence of

matrices Ak converges to the doubly stochastic matrix P , we see that rk and ck should also

converge to an r and c respectively.

The equations

ck+1 = D(AT rk)
−1e, rk+1 = D(Ack+1)

−1e (3.3)

are equivalent to the Sinkhorn-Knopp algorithm when r0 = e [39], and limk→∞ rk = r and

limk→∞ ck = c.

When A is symmetric, then the Equations in 3.3 can be combined into a single expression

xk+1 = D(Axk)
−1e (3.4)

with x0 = e. However, limk→∞ xk does not converge. Instead, the sequence of xk consists of

two convergent sub-sequences, given by x2k = rk and x2k+1 = ck, where rk and ck are from

equation 3.3.

As each iteration of 3.4 corresponds to either a row normalization or a column normalization

in the original Sinkhorn-Knopp algorithm, the computation of equation 3.4 can by coded in

MATLAB as x = 1./(A*x).

Lemma 3.2.3. (Knight [39], pg. 265)

Suppose that A is a symmetric nonnegative fully indecomposable matrix. Then there is a

unique positive vector x? such that D(x?)AD(x?) = P , where P is doubly stochastic.
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In the case of the Sinkhorn-Knopp algorithm we note that x? =
√
D(r)D(c)e. While D(r)

and D(c) are unique only up to a scalar multiple, D(x?) is unique, which allows us to consider

the rate at which the error decreases through the iterative process.

Theorem 3.2.4. (Knight [39] pg. 267)

Suppose that A is a symmetric nonnegative and fully indecomposable matrix, and that x? is

the unique positive vector such that D(x?)AD(x?) = P , where P is doubly stochastic. Let xk be

the sequence generated by equation 3.4 with x0 = e. Then for all ε > 0 there exists a K1 ∈ Z
such that if k ≥ K1 then xk = αkx? + dk, where ‖dk‖ < ε and αk is bounded. Furthermore,

there exists K2 ∈ Z such that if k ≥ K2

‖dk+2‖ ≤ |λ2(P )|2‖dk‖

In theorem 3.2.4 λ2(P ) is the second largest, in magnitude, eigenvalue of P . The error in each

iteration of the equation 3.3, ‖dk+2‖, is bounded by |λ2(P )| and the error of the iteration twice

previous, ‖dk‖. The reason for ‖dk‖ is due to the alternate normalizing of rows and columns

and our comments relating equations 3.3.

For doubly stochastic matrices built on nearly uncoupled matrices we have some prior knowl-

edge of |λ2(P )|. In considering Theorems 3.1.8 and 3.1.9, we see that nearly uncoupled matrices

have |λ2(P )| close to 1. This means that our theoretical bound can only guarantee a slow con-

vergence for the Sinkhorn-Knopp algorithm (Algorithm 3.2.1). We will explore experimental

results showing this in Chapter 6.

While slow convergence is a desired property of the evolution of the stochastic process for

the stochastic consensus clustering algorithm, it is not desired during the steps to produce the

doubly stochastic matrix P . It is possible that in a severe case, the Sinkhorn-Knopp algorithm

will be theoretically convergent, but will take a very long time to converge.

3.3 Alternative to the Sinkhorn-Knopp

Because the Sinkhorn-Knopp algorithm may converge slowly, we wish to consider other methods

for obtaining a doubly stochastic P . We know that given a symmetric nonnegative matrix A

which is fully indecomposable, then there exists a positive vector x? such thatD(x?)AD(x?) = P

(lemma 3.2.3). We propose the following algorithm.

Algorithm 3.3.1. Simultaneous p-Scaling
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Input: An n× n symmetric matrix A with total support, p ∈ (0, 1), a stopping criterion τ ,

and a vector norm.

Let x0 = e, and start at k = 1

1. xk = D(Axk−1)
−pD(xk−1)

1−pe

2. Repeat step 1) until ‖xk − xk−1‖ < τ , where the norm and the parameter τ are the user’s

choice.

Output: xk

We need to show that algorithm 3.3.1 converges to x? if we are to propose it as an alternative

to the Sinkhorn-Knopp algorithm. We begin by showing that x? is a fixed point of equation

xk = D(Axk−1)
−pD(xk−1)

1−pe.

Lemma 3.3.2. If A is a nonnegative symmetric and fully indecomposable matrix, and x? is a

positive vector such that D(x?)AD(x?) = P , a doubly stochastic matrix, then x? is a fixed point

for the function

f(x) = D(Ax)−pD(x)1−pe

Proof. We first note that if P = D(x?)AD(x?) and P is doubly stochastic, then AD(x?)e = Ax?

implies that D(Ax?) = D(x?)
−1. Substituting x? into f(x) gives us

f(x?) = D(Ax?)
−pD(x?)

1−pe

= D(x?)
pD(x?)

1−pe

= D(x?)e

= x?.

We have shown that f(x?) = x?, and now we want to show that f(x) = D(Ax)−pD(x)1−pe

will converge. First we need a statement about differentiability for a general function.

Definition 3.3.3. (Lang [43] pg. 463)

Let U be an open subset in E and let x ∈ U . Let f : U → F be a map. We say that f is

differentiable at x if there exists a continuous linear map Λ : E → F and a map θ defined for

sufficiently small ‖h‖ ∈ F such that

lim
‖h‖→0

θ(h)

‖h‖
= 0,
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and such that

f(x+ h) = f(x) + Λ(h) + θ(h)

The function x = D(Ax)−pD(x)1−pe is a function from R
n to Rn, which allows us to make

an extra statement about the nature of the linear map.

Theorem 3.3.4. (Lang [43] pg. 467)

Let U be an open set of Rn and let f : U → R
m be a map which is differentiable at x. Then

the linear map f ′(x) is represented by the matrix

Jf (x) =
δfi(x)

δxj

called the Jacobian matrix of f at x.

Taking definition 3.3.3 and theorem 3.3.4 we now have

f(x+ h) = f(x) + Jf (x)h+ θ(h).

as the Jacobian has taken the place of the linear map Λ. With this knowledge we now consider

a general theorem on the convergence of a function from R
n to Rn.

Theorem 3.3.5. (Quarteroni [62] pg. 295)

Suppose that f : B ⊂ Rn → R
n has a fixed point x? in the interior of B and that f is

continuously differentiable in a neighborhood of x?. Denote by Jf the Jacobian matrix of f and

assume that ρ(Jf (x?)) < 1. Then there exists a neighborhood C of x? such that C ⊂ B and, for

any x0 ∈ C, the iterates defined by xk+1 = f(xk) all lie in B and converge to x?.

We say that f in theorem 3.3.5 is locally convergent, as it converges for any x0 ∈ C. We

want to know what the values of p are for which the iterative schema are locally convergent.

We do this by looking at how the values of p affect ρ(Jf (x?)), though first we must find the

Jacobian of f .

Lemma 3.3.6. If A is a nonnegative, symmetric, and fully indecomposable matrix, and x? is

a positive vector such that D(x?)AD(x?) = P where P is doubly stochastic, and

f(x) = D(Ax)−pD(x)1−pe,

then

Jf (x?) = (1− p)I − pD(x?)PD(x?)
−1

where Jf (x?) is the Jacobian of f(x), evaluated at x?.
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Proof. Looking at the components of f(x) we see that

fi(x) =
(xi)

1−p

(Aix)p

where Ai is the ith row of A. The Jacobian is defined by Ji,j(x) = δfi(x)
δxj

, and so we see that:

Ji,j(x) = −p(xi)1−p(Aix)−(1+p)Ai,j , i 6= j

Ji,i(x) = (1− p)(xi)−p(Aix)−p − p(xi)1−p(Aix)−(1+p)Ai,j ,

J(x) = (1− p)D(Ax)−pD(x)−p − pD(Ax)−(1+p)D(x)(1−p)A

Substituting the fixed point x? into the Jacobian of f we see

Jf (x?) = (1− p)D(Ax?)
−pD(x?)

−p − pD(Ax?)
−(1+p)D(x?)

(1−p)A

= (1− p)I − pD(x?)
2A

= (1− p)I − pD(x?)D(x?)AD(x?)D(x?)
−1

= (1− p)I − pD(x?)PD(x?)
−1

Now that we have calculated the Jacobian we can investigate the spectral radius as it changes

with p.

Theorem 3.3.7. If A is a nonnegative symmetric and fully indecomposable matrix, and x? is

a positive vector such that D(x?)AD(x?) = P where P is doubly stochastic, and

f(x) = D(Ax)−pD(x)1−pe,

then ρ(Jf (x?)) < 1 for 0 < p < 1. Furthermore

ρ(Jf (x?)) =

|1− p(1 + λn(P ))| if p ≤ 2
3+λn(P )

|1− 2p| if p > 2
3+λn(P )

(3.5)

where λn(P ) = mini λi(P ).

Proof. The spectral radius of the Jacobian ρ(Jf (x?)) depends on the eigenvalues ofD(x?)PD(x?)
−1,

which are the same eigenvalues as P , as they are similar matrices.

Because A is nonnegative, symmetric, and fully indecomposable, then P is as well. By the

Perron-Frobenius theorem we know that ρ(P ) = 1, and because P is primitive, −1 cannot be
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an eigenvalue of P . P is real and symmetric, which guarantees that all of the eigenvalues of P

are real.

The previous statements together show that all the eigenvalues of D(x?)PD(x?)
−1 are in

the interval (−1, 1]. Now that we know this information about the eigenvalues we consider the

Jacobian matrix:

ρ(Jf (x?)) = max
i
|λi(Jf (x?))|.

We substitute the result of lemma 3.3.6 in for Jf (x?) and simplify

ρ(Jf (x?)) = max
i
|λi((1− p)I − pD(x?)PD(x?)

−1)|

= max
i
|λi((1− p)I)− λi(pD(x?)PD(x?)

−1)|

= max
i
|1− p(1 + λi(P ))|

Since every eigenvalue of P is in the interval of (−1, 1] it is easy to see that for values of p ≤ 0

or values of p ≥ 1 the spectral radius of the Jacobian is greater than or equal to one. With a

few minor calculations we find that

ρ(Jf (x?)) =

|1− p(1 + λn(P ))| if 0 < p ≤ 2
3+λn(P )

|1− 2p| if 1 > p > 2
3+λn(P ) .

(3.6)

It is interesting to note that in the case of p = 0 the function f(x) = D(x)e, which is

just the identity function. In the case of p = 1 the function f(x) = D(Ax)−1e, which is the

Sinkhorn-Knopp algorithm.

The results from theorem 3.3.7 only guarantee that if some x0 is chosen “close” to x?,

then the fixed point iteration converges. This is not enough to prove the convergence of algo-

rithm 3.3.1. In the next section we show that the simultaneous scaling method given in [67] is

equivalent to the simultaneous p-scaling algorithm with p = 1
2 .

3.3.1 Simultaneous Scaling

We first present the simultaneous scaling algorithm, and theorems that pertain to the algorithm.

We then show that if A is symmetric, this algorithm is equivalent to simultaneous p-scaling

(algorithm 3.3.1) for p = 1
2 and x0 = e.
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Algorithm 3.3.8. Simultaneous Scaling (Ruiz [67])

Input: An n×n symmetric matrix A with total support, a stopping criterion ε, and a vector

norm.

Let A0 = A, D0 = I and E0 = I, and start with k = 1.

1. Compute the following:

DR = D(Ake)
− 1

2 , DC = D(eTAk)
− 1

2

Dk+1 = DkDR

Ek+1 = EkDC

Ak+1 = DkAEk

2. Repeat 1) until

‖Ake− e‖ ≤ ε and ‖eTAk − eT ‖ ≤ ε

for a norm and ε of the user’s choice.

Output: Ak

Theorem 3.3.9. (Ruiz [67])

If A has total support, then for the sequence of diagonal matrices Dk and Ek for A, described

in algorithm 3.3.8, then both D = limk→∞Dk and E = limk→∞Ek exist and P = DAE is

doubly stochastic.

The simultaneous scaling algorithm and accompanying theorem give us an alternative to the

Sinkhorn-Knopp algorithm. As noted in theorem 2.2.1, if there is a doubly stochastic matrix

such that P = DAE, then P is unique. Therefore we know that the simultaneous scaling

algorithm and the Sinkhorn-Knopp algorithm have the same doubly stochastic matrix limit.

In the case where A is symmetric, we can see that DR = DC and Dk = Ek in algorithm

3.3.8.

Corollary 3.3.10. Let A be nonnegative, symmetric, and fully indecomposable, and let xk be

computed via the simultaneous p-scaling algorithm (algorithm 3.3.1) with p = 1
2 . If P is a doubly

stochastic matrix such that D(x?)AD(x?), then

lim
k→∞

xk = x?.
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Proof. We know that theorem 3.3.9 guarantees that algorithm 3.3.8 converges. We therefore

just need to show that the fixed point iteration produces the same iterates as algorithm 3.3.8.

Since A is symmetric we know that DR = DC and Dk = Ek. We use the diagonal operator

and define DR = D(x) and Dk = D(xk). We then write the update for Dk as

D(xk+1) = D(xk)D(x).

We substitute in D(x) = D(Ake)
− 1

2 , as well as Ak = D(xk)AD(xk), to get

D(xk+1) = D(xk)D(D(xk)AD(xk)e)
− 1

2 .

Given two vectors a and b, the diagonal operator has the property that D(D(a)b) = D(a)D(b).

D(xk+1) = D(xk)D(xk)
− 1

2D(Axk)
− 1

2

= D(Axk)
− 1

2D(xk)
1
2 .

We see the initial condition in that D0 = I corresponds to x0 = e as D(x0) = D0.

Recall that the Sinkhorn-Knopp algorithm can be coded in MATLAB as x = 1./(A*x). For

the simultaneous scaling, the computation can be coded in MATLAB as x = (x./(A*x)).∧(-1/2).

By comparing these two implementations it is easy to see that each iteration (one row

scaling or one column scaling) of Sinkhorn-Knopp requires n2 +n operations. Each iteration of

the simultaneous scaling requires n2 + 2n operations.

While we have not shown that the simultaneous p-scaling algorithm is convergent for all

p ∈ (0, 1) we have noticed that it does converge in the examples we have seen in practice. In

Chapter 6 we will show some of these results, though mathematically we can only be guaranteed

global convergence in the case of p = 1
2 .

In the next section we look at the rate of convergence for the simultaneous p-scaling algo-

rithm. We conduct our analysis using a general p, but we remind the reader again to be aware

that the overall algorithm convergence has only been proven for p = 1
2 .

3.4 Rate of Asymptotic Convergence

In this section we look at the theoretical rate of convergence for Algorithm 3.3.1 in exact arith-

metic. We consider empirical examples of convergence in Chapter 6, as well as show examples

of the effects of floating point arithmetic on the stability of the algorithm.

Theorem 3.4.1. Let A be nonnegative, symmetric, and fully indecomposable, and let f(x) =

D(Ax)−pD(x)1−pe, where 0 < p < 1. If xk+1 = f(xk), with x0 = e, and x? is such that
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P = D(x?)AD(x?) is a doubly stochastic matrix, and if xk = x? + dk, then

lim
k→∞

‖dk+1‖
‖dk‖

≤ ‖Jf (x?)‖

for any norm. Furthermore, for any ε > 0 there exists a norm that depends on ε, ‖ ? ‖ρ,ε such

that

lim
k→∞

‖dk+1‖ρ,ε
‖dk‖ρ,ε

≤ ρ(Jf (x?)) + ε.

Proof. We have that

xk+1 = f(xk).

Substituting in xk = x? + dk gives us

x? + dk+1 = f(x? + dk).

We use the results of the linear map of f to obtain

x? + dk+1 = f(x?) + Jf (x?)dk + θ(dk)

We know that x? is a fixed point of the function f , and so we can simplify to

dk+1 = Jf (x?)dk + θ(dk).

By taking the norm of both sides, using the triangle inequality, and using the compatibility of

matrix and vector norms, we have as a result

‖dk+1‖
‖dk‖

≤ ‖Jf (x?)‖+
‖θ(dk)‖
‖dk‖

.

If we take the limit of this result, then the θ(dk) term will disappear, leaving

lim
k→∞

‖dk+1‖
‖dk‖

≤ ‖Jf (x?)‖.

The first result is proven. The second result follows from (Horn and Johnson [36] pg. 297).

Now we want to compare the rates of convergence between the Sinkhorn-Knopp algorithm

and the simultaneous p-scaling algorithm. Let us recall that for the Sinkhorn-Knopp algorithm

and for the norm described in Horn and Johnson we have the following result:

lim
k→∞

‖dk+2‖
‖dk‖

≤ |λ2(P )|2 + ε.
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We consider p = 1
2 for the simultaneous p-scaling algorithm, as we have shown that this is

guaranteed to converge. Using our previous results on the value of the Jacobian given in Theorem

3.4.1, we have the following result:

lim
k→∞

‖dk+1‖
‖dk‖

≤ |1− λn(P )|
2

+ ε.

We have already stated that if the consensus similarity matrix is nearly uncoupled, then λ2(P )

is close to 1. We next show that λn(P ) ≥ 0. In the worst case of λn(P ) = 0, the error in the

simultaneous p-scaling will be bounded by 1
2 , much smaller than λ2(P ) for nearly uncoupled

matrices.

Lemma 3.4.2. If S is a similarity consensus matrix, which is a similarity matrix formed by

the adjacency matrices of clustering results, then S is positive semi-definite.

Proof. Recall that S =
∑
C(i) where

C(i)ij =

1 if i and j are clustered together

0 if i and j are not clustered together

There are k positive eigenvalues of C(i), each corresponding to a cluster, and there are n − k
eigenvalues equal to 0. Consider the following example:

C =


1 1 1 0 0

1 1 1 0 0

1 1 1 0 0

0 0 0 1 1

0 0 0 1 1


C is made up of k rank 1 sub-matrices. This guarantees that there are n−k eigenvalues equal to

0. Each sub-matrix is an ni×ni sub-matrix of ones, which guarantees that C has an eigenvalue

of ni corresponding to each sub-matrix. Thus C(i) is positive semi-definite, and S is positive

semi-definite.

When considering other similarity matrices, it is important to note that the cosine and Gaus-

sian similarity matrices are also always positive semi-definite. The k-shared nearest neighbor

matrix, however, is not guaranteed to be positive semi-definite.

As a final comment, we wish to note that for non-symmetric matrices the Sinkhorn-Knopp

algorithm will always have a better bound for the error than a generalization of the simultaneous

p-scaling to non-symmetric matrices.
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CHAPTER 4

Initializations and Visualizations

In this chapter we introduce a method for visualizing the stochastic consensus clustering process

and results. We argue that through visualization, a user has the ability to validate the clustering,

as well as potentially improve the quality of clustering results.

While there are many data visualization techniques that already exist, the technique we

specifically propose helps the user validate the output of the stochastic consensus clustering.

We do not argue that this visualization should supplant traditional visualization approaches,

but rather supplement them. The visualization method does not require extra calculations, and

as such, it is achieved at little additional cost.

We also discuss the impact that initialization of the Markov chain can have on the stochas-

tic clustering algorithm. We use the visualization method we propose in our discussions on

initialization, and in the process show how the visualization can give insight to the user about

initializations that perform poorly or well.

In order to illustrate examples we use the Ruspini data set [68], a set of points in R2. We

also use the Ruspini data set for examples in Chapter 5 as well. The Ruspini data set can be

seen in Figure 4.1.

We use the Ruspini data set purely for illustrative purposes, as we are able to see both the

data as well as the stochastic consensus clustering output. In Chapter 6 we present more exper-

imental results and show visualizations on a variety of different data sets that are considerably

more complex.

We print here the stochastic clustering algorithm again in order to reduce page flipping for

the reader. For the examples in this section, the consensus similarity matrix we use has been
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Figure 4.1: Ruspini data [left] and the Ruspini data separated into four clusters [right]

created using multiple runs of k-means. K-means is discussed in more detail in Chapter 5. We

use the doubly stochastic matrix from the consensus matrix converted via the simultaneous

p-scaling method discussed in Chapter 3.

Stochastic Consensus Clustering Algorithm [86]

Input: N observations xi ∈ Rm.

1. Create the consensus similarity matrix S using a clustering consensus of the user’s choice.

2. Use matrix balancing to convert S into a doubly stochastic symmetric matrix P .

3. Compute eigenvalues of P . Sort the eigenvalues of P in descending order and find the

largest difference between successive eigenvalues. Let k be the number of eigenvalues

before the largest difference.

4. Create a random sT0 .

5. Track the evolution sTt = sTt−1P . After each iteration, sort the elements of sTt and then

separate the elements into k clusters by dividing the sorted list at the k− 1 largest gaps.

When this clustering remains the same for a user-defined number of iterations, the final

clusters are determined.

Output: Clusters C1, . . . , Ck.
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4.1 Visualization of the Evolving Markov Chain

Many visualization tools, like the ones mentioned in Chapter 1, are tools which attempt to

provide the user with visualization either before or after a clustering algorithm has been run.

Additionally some of these visualization methods require a large number of computations and

scale poorly with the number of observations, such as the graph visualizations found in Gephi

[8].

A very popular visualization method in use today is to project the data onto its first two

or three principal components [52] [5] [31] [71]. Additional work has been done on using Kernel

PCA [35] in the use of visualization [58] as well. However, PCA-based visualization methods

are not a suitable visualization for validating the results of stochastic clustering because the

stochastic clustering is relying on the interconnectedness of the data in the consensus matrix, as

opposed to just relying on the locations of data points in the original space. We show examples

of native PCA visualization using 2 principal components on data sets in Chapter 6.

Our proposed visualization with the stochastic clustering can work in two ways. The first

way is that the user is returned a visualization upon completion of the algorithm. In this case

the user has the ability to view the visualization in order to see that the expected results of the

Simon-Ando theory are present. The second way is that the user is allowed to help determine

the clustering in an interactive setting. In this way, the visualizations are presented before the

final clustering has been determined. We have created a prototype user interface for Matlab

that allows users to interact with the stochastic clustering algorithm in this way. We present a

walk-through example in Appendix A.

We propose visualizing the steps of the Markov chain by plotting the indices of the probabil-

ity vector, s, by the probability values: i.e. plotting i versus si. While plotting the probabilities

of a Markov chain has always been possible, in a general Markov chain problem, watching these

probabilities provides no extra information to the user. The reason for plotting the probabilities

in stochastic clustering is due to the Simon-Ando theory underlying the algorithm. Recall that

the short-run dynamics are exhibited by

πTt ≈
(
α1c

T
1 α2c

T
2 . . . αkc

T
k

)
=

(
α1
n1
, . . . , α1

n1

α2
n2
, . . . , α2

n2
. . . αk

nk
, . . . , αk

nk

)
,

and that the middle-run dynamics are exhibited by
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πTt ≈
(
β1(t)c

T
1 β2(t)c

T
2 . . . βk(t)c

T
k

)
=

(
β1(t)
n1

, . . . , β1(t)
n1

β2(t)
n2

, . . . , β2(t)
n2

. . . βk(t)
nk

, . . . , βk(t)
nk

)
.

Throughout the short-run and middle-run dynamics, observations within a cluster should

have approximately equal probability. We form clusters by grouping observations that have

approximately the same probability together. When we plot the probability vectors, this yields

a plot in which there are bands of probability at various values, corresponding to the different

clusters.

Plotting the probabilities is a simple command in Matlab: plot(1:n,s,‘.’). For further detail

a user can also color the data points by the clustering determined from Step 5 of the stochastic

clustering algorithm. An example of these probability plots can be found in Figure 4.2. Notice

the bands of probability values around 4 distinct values. This is because there are four clusters

in the Ruspini data set.
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Figure 4.2: Plots of s4, the 4th evolution of the Markov chain, on the Ruspini data. [Left] is
a plot without coloring according to separating at the k − 1 largest gaps, while [Right] shows
coloring by determined cluster.

As the Markov chain evolves through time, we can track this evolution with a series of plots.

From the theory of the stochastic clustering algorithm we know that the Markov chain should go

through several distinct phases. We can see these phases in action and can see the probabilities

for each state separate into bands according to which cluster the state belongs (Figures 4.3,
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4.4, 4.5). If the Markov chain increments through time, these bands of probabilities then tend

towards the uniform probability of 1
n , or in the case of the Ruspini data: 0.01333.
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Figure 4.3: Plots of s0 [Left] and s1 [Right] on the Ruspini data.
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Figure 4.4: Plots of s2 [Left] and s3 [Right] on the Ruspini data.

For the purpose of validation, the stochastic clustering algorithm returns the plot of prob-

abilities for the step of the Markov chain at which the process stops. With each observation
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Figure 4.5: Plots of s19 [Left] and s49 [Right] on the Ruspini data. The probability vector is
converging to the uniform probability vector.

assigned to a cluster it is not difficult to color the dots by cluster membership. This coloring

allows us to easily verify if the probabilities form patterns as described by the Simon-Ando

theory, and that the clustering captures these expected results. If we see a plot such as those

in 4.3, then we know that we obtained a poor clustering.

The probability plots illustrate the idea of the Simon-Ando theory without a user needing

to understand the underlying mathematics. The user only needs to know to look for bands of

probability values, and gaps between. The simplicity in the visualization makes this concept a

powerful tool even for novice data analysts.

Visualizations like this not only help us to better understand the resulting clustering, they

can also help us in validating that the clustering algorithm returned relevant information. For

example, if we see no bands of probabilities upon plotting, then we know that results of the

stochastic consensus clustering are likely not useful.

For interactive use, we can plot each iteration of the Markov chain, step by step. Upon

finding a plot of the probabilities that looks suitable, we can either specify probability values

at which the clusters should be separated or separate the probability values as is normally done

in stochastic clustering. While this is a less automated process, the results can be much better

and are in line with the our motivating example of the data analyst from Chapter 1.

When visualizing the probability plots, it may seem natural to assume that values farther

apart have less in common. This is a possibility, but it is can also be indicative of the initializa-

tion of the Markov chain. Each case may be different, and we warn about reaching conclusions

on this aspect of the visualization.
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4.2 Stochastic Clustering Initialization Concerns

We begin the discussion on initializations by revealing issues that can cause the stochastic

clustering to either fail or perform in undesirable ways. The discussion of probability vectors

leading to no solution paraphrases what has already been written in [86]. In the follow-up

discussion on initial probability vectors leading to misleading solutions, we illustrate additional

ways that poor initializations can cause problems in the stochastic clustering algorithm.

4.2.1 Initial Probability Vectors Leading to No Solution

We know from our discussion in Chapter 3 that the n×n doubly stochastic matrix P obtained

is irreducible and primitive. Because of this we are guaranteed that the stationary distribution

vector for P is

sT =
(

1
n ,

1
n , . . . , 1

n

)
.

If we have chosen our initial probability vector to be the stationary vector, then it is obvious

that no clustering results can be found, as the vector s will never change when multiplied into

P . Additionally it can be shown that if we make a small perturbation such that

sT0 =
(

1
n + ε1,

1
n + ε2, . . . , 1

n + εn

)
where

∑n
i=1 εi = 0 and 0 ≤ 1

n + εi ≤ 1, then if the vector

εT =
(
ε1, ε2, . . . , εn

)
is in the null space of P , sT0 P = s. That is to say, if the error vector is in the null space of P ,

st will converge to the stationary distribution after only one step of the Markov chain. Thus,

if P is singular, then the Markov chain still has the potential to reach the uniform distribution

before short-run or middle-run dynamics are witnessed. If the short-run or middle-run dynamics

are skipped, this will prevent any clustering from being determined.

Depending on how the consensus matrix is constructed, it is not uncommon for it to be

singular (see Lemma 4.2.1), while the cosine and Gaussian consensus matrices are very often

non-singular.

Lemma 4.2.1. If S is a consensus similarity matrix and Sij = Sii for some i 6= j, then S is

singular.

Proof. Recall that Sij is the number of times that objects i and j clustered together. If Sij = Sii,

then objects i and j clustered together every time a clustering algorithm was run. This means
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that Sik = Sjk for all 1 ≤ k ≤ n. Since two rows of the matrix are exactly the same, then S is

non full rank and is singular.

4.2.2 Initial Probability Vectors Leading to Misleading Solutions

A more dangerous situation can arise regardless of whether P is singular or non-singular. For this

discussion let us assume that the states of P are ordered so that the first n1 states correspond

to cluster 1, the next n2 states correspond to cluster 2, and so on. From our discussions in

Chapter 2 we know that in the short-run dynamics

sTt ≈
(
α1c1 α2c2 . . . αkck

)
,

where each αi is a constant that depends on the initial probability vector sT0 . Because the

short-run dynamics are dominated by the connections within the clusters, the we know that for

any t during the short-run, the summation of probability within the clusters is approximately

constant during the short-run.

n1∑
i=1

s0(i) ≈
n1∑
i=1

st(i) ≈
n1∑
i=1

α1c1

n1+n2∑
i=n1+1

s0(i) ≈
n1+n2∑
i=n1+1

st(i) ≈
n2∑
i=1

α2c2

...
n∑

i=n−nk+1

s0(i) ≈
n∑

i=n−nk+1

st(i) ≈
nk∑
i=1

αkck

The summation of the elements of s0 within a cluster can be thought of as the initial

weight for each cluster. We know that each ci is a uniform vector of length ni, that is ci =

( 1
ni
, 1
ni
, . . . , 1

ni
). It is obvious then that there may be a confounding issue between clusters i and

j if αici = αjcj . This will occur if clusters i and j have a proportional weight based off of the

number of states in each cluster. We can determine how the αi and αj are related based off of

the size of each cluster.
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αici ≈ αjcj(
αi
ni
, αi

ni
, . . . , αi

ni

)
≈

(
αj
nj
,

αj
nj
, . . . ,

αj
nj

)
αi
ni
≈ αj

nj

Thus if the weight of cluster i is ni
nj

times the weight of cluster j, the states in clusters i

and j will reach approximately the same values in the short-run stabilization. Even if only two

clusters are close to the correct proportional weights, this can throw off the stochastic clustering

process. Two separate clusters may accidentally be merged into one, while one cluster may be

separated into two.

A further issue that may affect the results of the stochastic clustering algorithm is the rate

at which each cluster in the doubly stochastic matrix demonstrates the short-run dynamics. If

different clusters reach the short-run at different times, this may add additional confounding

factors, even when the initial weights do not fall in the areas described above.

Figures 4.6 and 4.7 show an example in which two clusters have reached the same probability

value during the short-run dynamics, due to appropriate initial weights. Because the largest

gaps no longer occur between clusters of probabilities, a solution here would be misleading.

Color for the clusters has been added to highlight this point.
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Figure 4.6: Plots of s0 [Left] and s1 [Right] on the Ruspini data.
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Figure 4.7: Plots of s2 [Left] and s7 [Right] on the Ruspini data. In s2 we see that two of
the clusters have reached approximately the same value before the short-run dynamics are
witnessed. In s7 we see another problem that if too many steps are taken some of the differences
can become meaningless.

While we had to specify non-random initializations for the Ruspini data set, data sets with

more observations, higher dimensionality, and less well-defined clusters are at risk of being

subject to misleading clustering solutions. This leaves us in a particularly unfortunate place as

we have no metrics to determine what a good initial probability vector is.

4.3 Using Multiple Initial Probability Vectors, and Extending

Visualizations

An easy solution to a poor random initial probability vector is to just pick a different random

initial probability vector. After we run the clustering, we can look at the visualization, and

then restart if the solution does not look acceptable. As only a small number of matrix vector

multiplications are required for a restart of the Markov chain, this is not a very costly method. In

most cases of poor initialization that we encountered throughout this research for the stochastic

clustering algorithm, we merely restarted the Markov chain.

An alternative is to use two initial probability vectors from the start. Thus instead of

watching sTt = sTt−1P only, we instead watch both the evolution of s and the evolution of a

second probability vector rTt = rTt−1P . Instead of representing each observation as its single

probability st(i) at each step of the Markov chain, we instead have a pair of probabilities for

each observation: (st(i), rt(i)). Thus each observation is an ordered pair of probabilities. We
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do not lose the ability to visualize our data with a second initial probability vector, as our

visualization method is now to plot one probability vector versus the other.

When considering the Markov chain with only one probability vector, we know that ob-

servations in the same cluster will all have approximately equal probability after the Markov

chain has reached the short-run equilibrium. In the case of considering two initializations we

know that each probability vector as it steps through the Markov chain will exhibit short-run

dynamics. However, a given cluster may reach the short-run at a different probability value

between the two probability vectors, due to different initializations. In this case when we plot

two probability vectors we expect to see related observations clump together at distinct points

in the plane, and then eventually converge to ( 1
n ,

1
n).

In Figure 4.8 and Figure 4.9 s0 is the same initial probability vector used in section 4.2.2,

while r0 is a second initial probability vector. We can see that the separation of clusters is clear

even though s0 was previously considered a poor choice. In the later steps, many of the obser-

vations in the same cluster appear collocated. This is analogous to the bands of probabilities

that we saw in the case of using only one initial probability vector.
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Figure 4.8: Plots of s0 versus r0 [Left] and s1 versus r1 [Right] on the Ruspini data.

We want to take a moment to discuss in further detail the graphs of Figure 4.9. Two of the

clusters have nearly the same x-axis values. The x-axis corresponds to the vector s2, and these

values can be seen in Figure 4.7. However, because we added a second probability vector, we

created space along the y-axis, effectively separating the two confounded clusters.

While there is no guarantee that using two probability vectors will prevent all issues of
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Figure 4.9: Plots of s2 versus r2 [Left] and s2 versus r2 colored after clustering [Right] on the
Ruspini data.

misleading clusterings, it distinctly lowers the chances, as both initial probability vectors s

and r would need to confound clusters in a similar way for them to remain confounded in two

dimensions.

An important note is that due to using two probability vectors we can no longer cluster

based off of the largest gap in probabilities. Instead we propose to use k-means clustering as

the clusters are relatively compact, and spherical in nature. We do not require k-means, as any

clustering algorithm that scales well with the number of observations should work well, but

k-means is also relatively well-known and simple to implement.

We include this extra visualization method as an option in the user interface which we

discuss in Appendix A. In addition, we supply an example in Appendix A to add clarity on

how a user can interactively use the stochastic clustering algorithm.
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CHAPTER 5

Experimental Setup

In this chapter we provide a background of the various algorithms that we use in the experiments

section. We give a background of the k-means clustering method and the spectral clustering

method. K-means is used both in the creation of consensus similarity matrices, as well as part

of the spectral clustering algorithm. Spectral clustering is a very popular clustering method

(over 1800 citations of [84] and 2000 citations of [72]) that is similar to the stochastic consensus

clustering method. Like the stochastic consensus clustering, spectral clustering uses similarity

matrices and can provide the user with k, the number of clusters in the data.

We do not go into any in-depth analysis of the theory behind k-means or spectral clustering.

Instead we seek to provide the user with a general understanding, as well as references in case

the reader wishes to follow up with more detail. A well-summarized background of the k-means

algorithm and spectral clustering can also be found in [63] in pages 16-20 and pages 27-35.

5.1 K-means

K-means is a clustering algorithm that was designed to assign points x1, x2, . . . , xn in Rm to

clusters C1, C2, . . . , Ck. The term k-means was first used in (MacQueen [48]), but other early

work was done in (Hartigan [33], Lloyd [47], and Forgy [28]). The most widely recognized version

of k-means seeks to minimize

k∑
i

∑
xj∈Ci

‖xj − µi‖22,
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where µi is the mean of the points in Ci. Due to the fact that finding the optimal assignment

is NP-hard (Mahajan et. al [49] and Aloise et. al. [1]), the k-means algorithm is an iterative

process that converges to a local minimum of the objective function.

Algorithm 5.1.1. Kmeans

Input: N observations xi ∈ Rm, and a number k of clusters to construct.

� Initialize with k clusters.

� Calculate the means: µi = 1
ni

∑
xj∈Ci xj, where ni is the number of points in Ci

� Update the clusters: For each xj assign to Ci, where µi is the closest mean to xj in

Euclidean distance.

Output: Clusters C1, . . . , Ck.

The initialization step has been left general as there are many different ways in which k-

means can be initialized. A discussion on some initialization methods follows in section 5.1.1

and some k-means variants follows in section 5.1.2.

5.1.1 K-means Initializations

While there are many initializations for k-means we limit our discussion to three well-known

initialization schemes to provide the reader with a general flavor. Examples of the initializations

are also provided in figures 5.1 and 5.2.

� Random initialization - This initialization scheme randomly assigns each data point to

one of the k clusters. The centroids formed by these initial clusters tend to be closely

packed in the center of the data.

� Forgy initialization (Forgy [28]) - This initialization scheme picks k data points at random

to be the k initial centroids. These centroids tend to be spread further apart than the

centroids formed in the random initialization.

� K-means++ (Arthur and Vassilvitskii [4]) - This initialization method seeks to spread

apart the initial centroids. For the specifics of step 3) we recommend the reader to the

cited paper. The general steps are as follows:

1. Pick a data point at random, this will be the first centroid.
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2. Find the distance from all data points to all previously determined centroids.

3. Assign a probability to each data point based off of the distances, and pick a data

point from the distribution - this is the next centroid.

4. Repeat 2) and 3) until k centroids have been chosen.
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Figure 5.1: Example of the random initialization on the Ruspini data set.
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Figure 5.2: Example of the Forgy initialization on the Ruspini data set. Black data points do
not yet belong to any cluster.
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5.1.2 K-means Variants

In addition to the many initialization methods, k-means also has a plethora of variants. Again

we seek only to provide the reader with a brief overview of some of the well known variants

with references.

� Fuzzy k-means (Bezdek [11]) - A version of k-means in which each data point has a weight

assigned to it for each cluster. The centroids are formed by the weighted averages of all

the data points. The final result is a set of weights for each data point that indicates

partial cluster assignment.

� Spherical k-means (Dhillon et. al. [23]) - In this version of k-means, instead of assigning

xi to cluster j based off of the minimum ‖xi − µj‖2, the assignment is done based off

the maximum cos(θij) =
xTi µj

‖xi‖2‖µj‖2 , the cosine similarity. The centroids are found by

normalizing the average of the data points assigned to each cluster.

Spherical k-means has been shown to be very good for directional data, especially textual

data.

� K-means with other norms - The 2-norm ‖ ? ‖2 can be replaced with any other norm.

During the cluster assignment minimize the desired norm, as opposed to the 2-norm.

5.2 Spectral Clustering

The name spectral clustering comes from being an algorithm which has its background in

spectral theory - theory on eigenvalues and eigenvectors. Spectral clustering focuses on the

eigenvalues and eigenvectors of a matrix referred to as the graph Laplacian. This is not a

unique term, however, as there are many graph Laplacians. A comprehensive review of spectral

clustering is given by von Luxburg [84].

Spectral clustering in its theoretical background is related to the min-cut and n-cut prob-

lems, though an understanding of these problems is not vital to understand the steps of the

algorithm. We first give the definition of the graph Laplacian.

Definition 5.2.1. The unnormalized graph Laplacian matrix is defined as

L = D − S

where S is a similarity matrix, and D is a diagonal matrix such that Dii =
∑

j Sij.

For in depth theory on the Laplacian, including its relation to the Laplace-Beltrami operator

we recommend the reader to [16]. We introduce two popular normalizations for the Laplacian

below.
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Definition 5.2.2. The normalized Laplacian matrix is defined as

L = I −D−1/2SD−1/2

where S is a similarity matrix, and D is a diagonal matrix such that Dii =
∑

j Sij.

Definition 5.2.3. The normalized random walk Laplacian matrix is defined as

Lrw = I −D−1S

where S is a similarity matrix, and D is a diagonal matrix such that Dii =
∑

j Sij.

The normalized Laplacian is used in a spectral clustering variant [59], as well as in Algorithm

5.2.4, while Shi and Malik [72] propose using the random walk Laplacian for use in Algorithm

5.2.4. It is not the goal of this thesis to investigate the merits of one Laplacian normalization

over another, and as such we use the unnormalized Laplacian for experiments in Chapter 6.

It is know that L, Lrw, and L are positive semi-definite (Mohar [56] [57] and Chung [16]),

and that λn(L) = λn(Lrw) = λn(L) = 0, which corresponds to the eigenvector e.

Algorithm 5.2.4. Spectral Clustering

Input: A similarity matrix S, and a number k of clusters to construct.

1. Create L, Lrw, or L.

2. Compute the first k eigenvectors of the chosen Laplacian, u1, u2, . . . uk.

3. Construct U ∈ Rn×k where the jth column of U is uj.

4. For i = 1, . . . , n let yi ∈ Rk be the ith row of U .

5. Cluster the points yi into k clusters using k-means.

Output: Clusters C1, . . . , Ck.

An alternative to having the user input a number k is to compute the eigenvalues of L (or

Lrw, L), and sort by value. The number of eigenvalues “near” 0, as determined by the largest

gap, can be used as an automatically determined k.
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5.2.1 Similarities Between Spectral Clustering and Stochastic Consensus

Clustering

In Chapter 6 we make experimental comparisons between spectral clustering and stochastic

consensus clustering. Before we do, there are several areas of particular interest in which these

two algorithms have in common. While we do not know what these commonalities imply, we

feel it is important to point them out before comparing them experimentally.

� The apparent similarities are that both spectral clustering and stochastic consensus clus-

tering are graph-based in nature, that both rely on the use of a similarity matrix.

� Both the consensus similarity matrix and the graph Laplacian are positive semi-definite.

� For finding the number of clusters in stochastic consensus clustering, we look to the num-

ber of eigenvalues “near” 1, as determined by the largest gap. For finding the number of

clusters in spectral clustering we look to the number of eigenvalues “near” 0, as determined

by the largest gap.

This is particularly interesting because the arguments behind each hinge on similar con-

cepts. Additionally, the eigenvector corresponding to λ1(P ) and to λn(L) is e, the vector

of all ones.

5.3 Experimental Setup

For all experiments the consensus similarity matrix is created by using multiple runs of the

k-means algorithm using the random initialization. We only let the k-means algorithm run 10

iterations instead of allowing it to converge, as we want both increased variation of clustering

results to use in consensus, and we want to bound the number of computations required.

We separate our experiments into two categories: experiments on data sets with known

clusters, and experiments on data sets for exploration. Experiments on the former group provide

results corresponding to the efficiency of the simultaneous scaling algorithm as compared to

the Sinkhorn-Knopp algorithm; the validity of using other similarity matrices for stochastic

clustering; and the comparison of stochastic clustering to spectral clustering. Experiments on

data sets for exploration show how stochastic consensus clustering can make meaningful clusters,

even when we have no prior knowledge of what the “true” clusters are.

In both cases we show examples of the visualization of the stochastic consensus clustering

results. We see that the plots generated by the stochastic consensus clustering clearly show

where clusters are, and whether the clustering results are poor. In the experiments in which we

know the true clusterings, we also show the data projected onto the principal components as

documented in [52] and [31].
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In Chapter 3 we introduced the simultaneous scaling algorithm and showed that in the

limit, the error is smaller than the Sinkhorn-Knopp algorithm when applied to nearly uncoupled

similarity matrices. In Chapter 6 we compute the error per iteration of both the simultaneous

scaling and the Sinkhorn-Knopp algorithms, using the infinity norm. The error is computed by

‖xk−x?‖2. The number of operations for the simultaneous scaling is n2+2n, while the Sinkhorn-

Knopp requires n2 + n operations. We feel it is acceptable to compare the per iteration error,

as each method is O(n2) per iteration.

The theorems and results in Chapter 3 were also discussed in exact arithmetic. We show

experiments showing the difference per iteration between double precision and quadruple preci-

sion calculations of the simultaneous scaling algorithm, in order to experimentally validate the

algorithm in finite arithmetic. We compute the absolute error, ‖xdk − x
q
k‖2, where xdk is the kth

iteration of the absolute scaling in double precision and xqk is the kth iteration of the absolute

scaling in quadruple precision. We compute the relative error as
|xdk−x

q
k‖2

‖xqk‖2
. These calculations

are computed in quadruple precision.

In order to determine the validity of other similarity matrices, we plot the largest magnitude

eigenvalues of the associated doubly stochastic matrix. We know that in order for probability

values to appear in bands, the Simon-Ando theory requires a nearly uncoupled matrix. If the

second largest eigenvalue is not near 1, then the similarity matrix is not nearly uncoupled (by

Theorems 3.1.8 and 3.1.9), and is unsuitable for stochastic clustering, as the Simon-Ando theory

will not apply.

In order to numerically compare results between spectral clustering and consensus clustering,

we need a measure of wellness for clustering. We use the accuracy metric, sometimes called the

purity metric ([51] page 329), which is equal to the ratio of the number of correctly clustered

observations to the total number of observations. We use maximal matching to assign each

created cluster to a target cluster.
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CHAPTER 6

Experimental Results and Discussion

In this chapter we present the results of the experiments discussed in Chapter 5. We first show

results on data sets with known cluster structure. In these examples we show that the simulta-

neous scaling algorithm is computationally more efficient than the Sinkhorn-Knopp algorithm

when balancing consensus similarity matrices. In addition, we show the relative and absolute

difference between double precision and quadruple precision calculation of the simultaneous

scaling algorithm.

We examine the stochastic consensus clustering algorithm on several data sets with high

accuracy. These data sets were chosen to come from different application areas to show the

stochastic consensus clustering on a breadth of data types. We include the visualization plots

and report the clustering accuracy, which enables us to see the separation in the probability

values, as opposed to blindly trusting in the cluster output.

We then examine data sets for which we have no clustering solution using the stochastic

consensus clustering algorithm as an exploratory tool. These examples are meant to demonstrate

how even in situations in which the clusters are unknown, the visualization can still impart useful

information to the user. In these cases we cluster the data, though there is no correct answer

with which we can verify our results. Instead we must use a subjective validation based on

cluster output and visualization. This scenario for clustering occurs widely in industry, and is

noted in our motivating example in Chapter 1. Often times clusters are created this way as a

preliminary step for creating classification models on each cluster.
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6.1 Clustering Data Sets with Known Cluster Structure

In this section we look at three examples of data sets with known number of clusters and

known cluster membership. We use data in which the observation counts vary from hundreds,

to thousands, to ten thousand. In addition the domain of each data set is distinctly different,

as well as the number of attributes for each data set.

6.1.1 Breast Cancer Data Set [50]

This data set from the UCI data repository [7] contains 699 observations and 9 dimensions.

Each observation represents a tissue sample, and the attributes are measurements taken of the

tissue sample from lab analysis. Each tissue sample is categorized as either benign or malignant.

There are two clusters in the data.

Figure 6.1 shows the error per iteration of the Sinkhorn-Knopp matrix balancing as com-

pared to the simultaneous scaling method with p = 1/2 and p = 2/3. We attribute the odd

behavior of the error in the range below 10−15 to calculations involving values around the size

of machine epsilon. We note the slow convergence of the Sinkhorn-Knopp algorithm, and es-

timate that it would take around 700 iterations before an error of 10−10 is reached using the

Sinkhorn-Knopp algorithm.
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Figure 6.1: Plot of the error per iteration of various balancing schemes on the breast cancer
data set.

Figure 6.2 shows the error at each iteration of the simultaneous scaling algorithm between

double precision and quadruple precision. The error calculations were computed in quadruple
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precision, and we can see that the absolute and relative errors converge at less than 10−14.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−16     Absolute Error Between Double and Quadruple Precision: Cancer

Iteration Number

A
bs

ol
ut

e 
E

rr
or

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8
x 10

−15     Relative Error Between Double and Quadruple Precision: Cancer

Iteration Number

R
el

at
iv

e 
E

rr
or

Figure 6.2: Absolute (left) and relative (right) error between double and quadruple precision
of the simultaneous scaling on the breast cancer data set, computed in quadruple precision.

Figure 6.3 shows the eigenvalues of the doubly stochastic matrix created for the four different

similarity matrices. We see that only the consensus similarity and the Gaussian similarity

matrices have the desired eigenvalue spread. Both have the second largest eigenvalue close to

1. While the k-nearest neighbor similarity matrix also has the second largest eigenvalue near 1,

it has no break in eigenvalues, indicating that a lack of cluster structure.

As only the Gaussian and consensus similarity matrices have the necessary structure for a

successful outcome in using stochastic clustering, we examine accuracy and timing results for

just these matrices. We use the stochastic clustering method and spectral clustering on both

the consensus and Gaussian matrices. The results are included in Table 6.1. In this table we

see that both spectral clustering and stochastic clustering perform well using either similarity

matrix. As the number of observations is small, the timing differences between construction of

the similarity matrices is very small.

Figure 6.4 shows the visualization of the clustering as determined by the stochastic consensus

clustering algorithm. We see that there is a visible separation in probability values, and thus

feel confident that two distinct clusters are represented. We also show the same plot ordered by

cluster membership. While unknown data will never be ordered this way, we present the picture

to confirm that each band of probabilities does indeed correspond to a cluster.

We can compare the visualization of the clustering in Figure 6.4 to the visualization of the

data set using Principal Components Analysis (PCA) in Figure 6.5. In this case, PCA yields a
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Figure 6.3: Eigenvalue plots for similarity matrices on the breast cancer data set.

Table 6.1: Accuracy and timing results for the breast cancer data set.

Gaussian Similarity Matrix Consensus Similarity Matrix

Construction Time 0.8 sec 2.1 sec
Spectral Clustering Accuracy 0.927 0.9585

Stochastic Clustering Accuracy 0.9642 0.9585

visualization in which we can see the two clusters.

6.1.2 Medlars, Cranfield, Cisi (MCC) Data Set ([22] pg. 74)

This data set is a conglomeration of three smaller data sets: Medlars, Cranfield, and Cisi. Each

of these data sets are article abstracts from a given field.
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Figure 6.4: Visualization of the clustered data using the consensus similarity matrix on the
breast cancer data set. Indices are unordered (left) and ordered by true cluster (right).
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Figure 6.5: Visualization of the raw breast cancer data using PCA. The observations have been
colored by cluster membership.

� Medlars: 1033 medical abstracts

� Cranfield: 1398 aerodynamics abstracts

� Cisi: 1460 information science abstracts

In total there are three main clusters and a total of 3891 documents. The set contained

15864 unique terms. However, after removing terms that do not appear in multiple documents

(as these can provide no clustering information) the number of terms is slightly lower.
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Figure 6.6 shows the error per iteration of the Sinkhorn-Knopp matrix balancing as com-

pared to the simultaneous scaling method with p = 1/2 and p = 2/3. We again note the odd

behavior when the error has dropped below 10−15, and attribute this to the fact that machine

epsilon for double precision numbers is around 10−16.

We note again that the Sinkhorn-Knopp algorithm exhibits slow convergence, though not

nearly as slow as in Figure 6.1. This corresponds with the fact that the second largest eigenvalue

of the balanced consensus matrix is lower for the MCC data than the breast cancer data. We

see in this case that it takes fewer than 100 iterations before an error of 10−10 is reached using

the Sinkhorn-Knopp algorithm.
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Figure 6.6: Plot of the error per iteration of various balancing schemes on the MCC data set.

Figure 6.7 shows the error at each iteration of the simultaneous scaling algorithm between

double precision and quadruple precision. The error calculations were computed in quadruple

precision, and we can see that the absolute and relative errors converge at less than 10−13.

Figure 6.8 shows the eigenvalues of the doubly stochastic matrix created for the four different

similarity matrices. We see that only the consensus similarity and the Gaussian similarity

matrices have the desired eigenvalue spread, though the Gaussian similarity matrix is more

suspect due to the fact that the second largest eigenvalue is farther away from 1.

We use the stochastic clustering and spectral clustering on both the consensus and Gaussian

matrices. The results are included in Table 6.2. In this table we see that using the Gaussian

similarity resulted in poor clusterings for both spectral clustering and stochastic clustering. On

the other hand, stochastic clustering performed very well in comparison to spectral clustering
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Figure 6.7: Absolute (left) and relative (right) error between double and quadruple precision
of the simultaneous scaling on the MCC data set, computed in quadruple precision.

when using the consensus similarity matrix.

The timing results also show that the consensus similarity matrix was faster to compute

than the Gaussian similarity matrix. This is due to the fact that the Gaussian similarity requires

pairwise comparisons of observations.

Table 6.2: Accuracy and timing results for the MCC data set.

Gaussian Similarity Matrix Consensus Similarity Matrix

Construction Time 383 sec 257 sec
Spectral Clustering Accuracy 0.5623 0.6600

Stochastic Clustering Accuracy 0.3755 0.9797

Figure 6.4 shows the visualization of the clustering as determined by the stochastic consensus

clustering algorithm. We see a visible banded structure in the probability values, indicating three

main clusters. As an interesting side note, we see that the green dots are separated into two

bands, which could indicate a possible sub-cluster in one of the document sets.

We can compare the visualization of the clustering in Figure 6.9 to the visualization of

the data set using (PCA) in Figure 6.10. In the visualization using PCA it is not easy to see

separation between the three clusters.

61



0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
16 Eigenvalues for the Consensus Similarity

Indices

V
al

ue

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
16 Eigenvalues for the Cosine Similarity

Indices

V
al

ue

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
16 Eigenvalues for the Gaussian Similarity

Indices

V
al

ue

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
16 Eigenvalues for the K Nearest Neighbor Similarity

Indices

V
al

ue

Figure 6.8: Eigenvalue plots for similarity matrices on the MCC data set.

6.1.3 Digits Data Set from the MNIST Database [44]

This is a data set from the National Institute of Standards and Technology in which each

observation is a handwritten number. The images have been converted to pixels, and then

size-normalized and centered. We use a subset of the data set which contains only images of

the numbers 1, 2, and 7. This subset contains 13262 observations with three main clusters

corresponding to the numbers 1, 2 and 7. There are 784 dimensions which correspond to the

pixels in the 28-by-28 pixel grid.

Figure 6.11 shows the error per iteration of the Sinkhorn-Knopp matrix balancing as com-

pared to the simultaneous scaling method with p = 1/2 and p = 2/3. We continue to ignore

the results of error in the range of machine epsilon, as the maximum precision has already been

reached.

As in previous examples, the Sinkhorn-Knopp algorithm exhibits slower convergence than
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Figure 6.9: Visualization of the clustered data using the consensus similarity matrix on the
MCC data set. Indices are unordered (left) and ordered by true cluster (right).
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Figure 6.10: Visualization of the raw MCC data using PCA. The observations have been
colored by cluster membership.

the simultaneous scaling for creating the doubly stochastic matrix, P . We again see the correla-

tion between the largest eigenvalue and the slow convergence of the Sinkhorn-Knopp algorithm.

Figure 6.12 shows the error at each iteration of the simultaneous scaling algorithm between

double precision and quadruple precision. The error calculations were computed in quadruple

precision, and we can see that the absolute and relative errors converge at less than 10−12.

Figure 6.13 shows the eigenvalues of the doubly stochastic matrix created for the four

different similarity matrices. The consensus similarity matrix again yields eigenvalues that are
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Figure 6.11: Plot of the error per iteration of various balancing schemes on the digits data set.
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Figure 6.12: Absolute (left) and relative (right) error between double and quadruple precision
of the simultaneous scaling on the Digits data set, computed in quadruple precision.

most in line with what is necessary for stochastic clustering to ensure a nearly uncoupled matrix.

We use the stochastic clustering method and spectral clustering on both the consensus

and Gaussian matrices. The results are included in Table 6.3. As was the case with the MCC

data set, we see that using the Gaussian similarity matrix resulted in poor clusterings for both

spectral clustering and stochastic clustering. The consensus matrix clustered well in both cases

of spectral and stochastic clustering.

The timing results also show that the consensus similarity matrix was faster to compute

than the Gaussian similarity matrix. We see that creating the consensus matrix seems to scale

64



0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
16 Eigenvalues for the Consensus Similarity

Indices

V
al

ue

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
16 Eigenvalues for the Cosine Similarity

Indices

V
al

ue

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
16 Eigenvalues for the Gaussian Similarity

Indices

V
al

ue

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
16 Eigenvalues for the K Nearest Neighbor Similarity

Indices

V
al

ue

Figure 6.13: Eigenvalue plots for similarity matrices on the digits data set.

better with the number of observations. We discuss this issue in more detail at the end of this

chapter.

Table 6.3: Accuracy and timing results for the digits data set.

Gaussian Similarity Matrix Consensus Similarity Matrix

Construction Time 633 sec 286 sec
Spectral Clustering Accuracy 0.7682 0.9162

Stochastic Clustering Accuracy 0.3532 0.9373

Figure 6.14 shows the visualization of the clustering as determined by the stochastic con-
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sensus clustering algorithm. We have kept the same marker size as the previous examples, in

order to make the plots easier to see. However, the number of observations has reached the

point where a better resolution on the plot is desired. In practice we use a smaller dot size to

better aid the user. We again also show the plot ordered by cluster membership to confirm that

bands of probability values do capture the true clusters.
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Figure 6.14: Visualization of the clustered data using the consensus similarity matrix on the
digits data set. Indices are unordered (left) and ordered by true cluster (right).

We can compare the visualization of the clustering in Figure 6.14 to visualization of the data

set using (PCA) in Figure 6.15. In the visualization using PCA it is not easy to see separation

between the three clusters.

6.1.4 Small Practice Data Sets

We also include a table of the stochastic consensus clustering algorithm accuracy on several

small practice data sets in Table 6.4. We do not go into great detail, as these data sets are small

examples, but they do indicate that stochastic consensus clustering works on more than just

the three examples we have discussed so far.

6.2 Exploring Data Sets Using Visualization

The next data sets that we use are ones in which we are not attempting to obtain the specific

clusters that we know exist. These data sets represent scenarios that are closer to those expe-

rienced by data analysts in the world. The goal may be a predictive task, in which clustering
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Figure 6.15: Visualization of the raw Digits data using PCA. The observations have been
colored by cluster membership.

Table 6.4: Accuracy of the stochastic consensus clustering algorithm on small practice data
sets.

Iris data set [27] Leukemia data set [24] Ruspini data set [68]

accuracy 0.9667 0.9474 1.000

is used to improve the quality of the predictive models, or the goal may be to gain insight into

the data by using clustering to explore the connections between various observations.

The use of clustering algorithms in this way is not new to stochastic consensus clustering.

Rather, the benefit of the stochastic consensus clustering is the ability to visualize the steps of

the Markov chain. A user can stop the Markov chain when data appears well-separated, and

can create clusters based upon the perceived separation. Because of the Simon-Ando theory,

we know this translates into a meaningful clustering result. We show this idea in action on the

next few data sets.

As a side note, we use a smaller marker size for the upcoming examples than for the previous

examples.

6.2.1 Spoken Letters Data Set [25]

This data set is referred to as the “Isolet data set” on the UCI repository [7]. This data set

was formed by taking 150 human subjects and recording each person saying the letters of

the alphabet twice. Each spoken letter of the alphabet is an observation, for a total of 7800
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observations. The data separates 120 of the subjects into a training set and 30 subjects into a

test set. In addition, a few observations have been dropped, yielding 6238 training observations

and 1561 test observations.

We use the 6238 training observations, which have 617 dimensions. The stated goal for this

data is to correctly determine what letter is spoken for a given observation. While we know

what letter each observation corresponds to, we are not attempting to use clustering to classify

each observation.
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Figure 6.16: Visualization of the data using the consensus similarity matrix on the letters data
set.

As discussed in Chapter 4, a user can observe each step of the Markov chain when using

stochastic consensus clustering. For example, step 10 of the Markov chain for the letters data

set is presented in Figure 6.16. We note that it appears that there are five dense bands of

probability: two around 1.59× 10−4, two around 1.6× 10−4, and around 1.625× 10−4. There is

one large non-dense area of probability from 1.605× 10−4 to 1.62× 10−4.

From the discussion of the Simon-Ando theory we know that observations in the same

cluster should all have around the same probability. Because of this, we assign each dense band

of probability to a separate cluster, and the non-dense area as well to its own cluster. The

resulting picture of this clustering can be seen in Figure 6.17.

We inspect the assignment of the clusters in Table 6.5. A letter has membership in a partic-

ular cluster if a notable majority of the observations for that letter are members of the cluster.

In the case of “I” “L” and “W” the cluster membership was split. It is clear that many letters

are clustered together due to phonological similarity.
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Figure 6.17: Visualization of the manually clustered data using the consensus similarity matrix
on the letters data set.

Table 6.5: Letters comprising each cluster

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
Letters F S X Q U W B C D E G P T V Z A H J K I L M N W I L O R Y

The separation of letters into distinct clusters allows for the creation of a predictive model by

cluster. A model needs be more precise if the goal is to distinguish a “v” from a “c” than if the

goal is to distinguish an “f” from a “w.” While a human can easily separate letters by sound,

this shows the capability of the stochastic consensus clustering to do the same on unknown

data. Human interaction is still required, but only at the point of choosing the clusters from

the visualization.

6.2.2 Steel Faults Data Set as found on the UCI repository[7]

Each observation in this data set represents a surface defect in a stainless steel plate. There are

27 attributes for each observation, and a total of 1941 observations in the data set. The original

goal for this data set was to classify each observation one of six fault types, though there is a

seventh group of “other faults.”

We see iterations 3 and 4 of the Markov chain in Figure 6.18.

Upon manual inspection of the clusters we note that the stochastic clustering algorithm has

separated the observations, not by fault type, but rather primarily by steel type, and secondarily

by a variable titled: Outside Global Index.
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Figure 6.18: Visualization of index by probability plots using stochastic consensus clustering
on the steel faults data set, ordered by steel fault type.

While the stochastic consensus clustering algorithm does not group each fault type into a

distinct cluster, the algorithm does provide well separated clusters. This allows a user to create

a more refined classification model, by creating a unique model for each cluster, as opposed to

one model for the entire data set.

6.2.3 Million Song Data Set [10]

The data set we use is a subset of the Million Song Data Set that has been provided on the

UCI data mining repository [7]. This is a subset both in the number of songs as well as in the

number of attributes. This specific subset of the Million Song Data Set is intended for creating

models to predict the year of the song.

� 515345 songs; we use a random 224801 song subset.

� 90 attributes: 12 for timbre average and 78 for timbre covariance.

Several initializations for the MSD data set resulted in probability plots that do not have

noticeable bands of probability values, as all our previous examples do. The initialization that

had the best plot is shown in Figure 6.19. We show steps four through seven of the Markov

chain, and there appear to be two small areas of probability with one large blob of probability

values in the center.

The interior blob of probability values is very wide, which is not the expected banded

structure. We have several options for exploring the data more thoroughly: we can extract the
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Figure 6.19: Visualization of probability by index plot, using stochastic consensus clustering on
the Million Song Data Set. We keep the y axis the same in each plot to illustrate the converging
Markov chain.

observations corresponding to the probability values in the middle and try to cluster this subset,

or we can examine two simultaneous initializations of the Markov chain.

In Figure 6.20 we show four iterations of two separate initializations plotted against each

other. If we look at each plot in order, we can see a movement of probability values that is

unclear when considering each probability plot on its own.

In the middle of the plot of “Step 4 of the Markov chain” there is a group of probabilities that

appear as a tail. In the subsequent plots, we see that this tail “moves” to the lower left portion

of the plots, and develops a little hook. This movement of probabilities is more noticeable if we

look at the pictures as an animated gif (from the early 90’s internet days); however, we cannot

show this on paper.

71



Figure 6.20: Visualization of probability by probability plots, using stochastic consensus clus-
tering on the Million Song Data Set. The x and y axis are rescaled for each plot so the points
are more noticeably distinct.

The plots in Figure 6.20 reveal that extra information is contained in the motion of the

probability values from one step of the Markov chain to the next. In plotting only one initial-

ization, as in Figure 6.19, we miss this motion because the motion takes place in the central

blob of probability values.

Unlike the plots generated from other data sets, the probability value plots for the MSD do

not indicate clusters as conclusively. We have several possible explanations:

� There was no underlying consensus among clustering for the consensus similarity matrix,

or the clustering algorithms were not appropriate for this problem.

� There are too many observations for the Simon-Ando theory to be applied effectively.

While Simon-Ando theory guarantees that observations in the same block will have an
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approximately equal probability, it does not guarantee that other observations will not

also have this probability.

� There are too many observations to visualize. While we cannot see the fine detail, mean-

ingful blocks of density really do exist in the probability values.

We are of the opinion that the first and second explanations are the most likely. In the

case of the first explanation, it is possible that there are several true core clusters and many

observations that do not belong to any cluster more than others. Observations that don’t belong

to clusters will be split between clusters during the consensus matrix creation. Further research

is needed on large data sets with known clusters to really determine what the issues may be.

Unfortunately large data sets with well known clusters (that are not synthetically generated)

are hard to find.
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CHAPTER 7

Discussion and Concluding Remarks

We had three main goals in this thesis: to show the stochastic clustering algorithm generally per-

forms well; to improve the original stochastic clustering algorithm; and to provide visualization

to the user as a validation tool for the stochastic consensus clustering.

From the experiments in Chapter 6 we see that the stochastic clustering algorithm accu-

rately assigns clusters on several known data sets when using the consensus similarity matrix.

The cluster accuracy is high in each of the example data sets that we used, and the stochastic

clustering algorithm outperformed spectral clustering each time. We showed the general per-

formance of the stochastic clustering algorithm by ensuring that the data sets had a variety of

sizes, as well as different application areas.

To improve on the stochastic clustering algorithm we addressed three future research ques-

tions posed in the original stochastic clustering paper. We experimentally showed that among

the popular similarity matrices in the literature, the consensus similarity matrix was best suited

for use in the stochastic consensus clustering. We replaced the Sinkhorn-Knopp algorithm with

a new simultaneous scaling algorithm for balancing the consensus similarity matrix. The num-

ber of iterations required for the Sinkhorn-Knopp to converge is a magnitude larger than for the

simultaneous scaling when run on the consensus similarity matrix. We showed this increase in

speed experimentally in Chapter 6, in addition to showing the theoretical bound in the limit as

discussed in Chapter 3. Finally, in Chapter 3 we improved the bounds that relate how uncoupled

S and its doubly stochastic form P are.

We proposed a visualization method for the stochastic clustering algorithm that involves

plotting the probability values for each iteration of the Markov chain. We provided examples
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that show the bands of probability we expect from the Simon-Ando theory. We discussed how

this visualization enables a user to understand if the clustering output is meaningful or not,

and we extended this visualization to plot two initializations of the Markov chain at once.

The visualization of the Markov chain was especially useful in examples where we had no

known cluster structure. In the case of the million song dataset, we were able to claim that

the clustering result indicated clusters, although less definitively than the previous examples.

The existence of the interesting results on the million song data set provides further research

questions to pursue. If we had no visualization, then we would have been unable to know the

quality of clustering output, and further questions would also be unavailable.

7.1 Conclusion

We summarize our contributions below:

7.1.1 Contributions

We introduced a measure µ(A) that we call the row uncoupling measure of A, and we

showed that this measure is consistent with the theory of stochastic complementation, the

underlying theory used in stochastic clustering. We related µ(A) to σ(A,n1), a measure given

by Wessesl, in order to make use of his theoretical proofs on the nature of the eigenvalues of a

nearly uncoupled matrix. Using our new measure, we were able to develop new bounds to show

that when a nearly uncoupled matrix S is converted to a doubly stochastic matrix P , that P is

also nearly uncoupled. These new bounds are important because µ(A) is more closely aligned

to the underlying theory of stochastic complementation than the measure σ(A,n1).

We also introduced a new algorithm for balancing symmetric matrices into doubly stochastic

form. We proved global convergence of this algorithm when p = 1
2 , and local convergence for

all other p ∈ (0, 1). We also showed that when p 6∈ (0, 1) the algorithm will not converge.

We continued by finding the rate of convergence of the algorithm in the limit using exact

arithmetic. We examined the effect of finite precision by computing the absolute and relative

error between double and quadruple precision calculations of the iterates of this algorithm.

Finally, we showed that for consensus matrices, our new algorithm is more computationally

efficient than the popular Sinkhorn-Knopp algorithm.

We introduced a visualization method for use with the stochastic clustering method. We

claim that this visualization is not a replacement for standard visualization approaches, but is

a computationally cheap way to help a user validate the results from the stochastic clustering.

We showed that stochastic clustering performs best on consensus matrices as opposed to

several other popular similarity matrices. We also showed that the stochastic clustering performs
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well on a wide variety of data sets of different sizes.

7.1.2 Future Research

We have identified several areas of future research and future goals from our results in this

thesis.

� Investigate the relationship between the number of observations and the performance of

the stochastic consensus clustering algorithm, with a focus on how our assumptions from

Simon-Ando theory hold.

� Investigate the memory requirements of the consensus similarity matrix for large num-

bers of observations on distributed systems. Unlike other similarity matrices, this can be

efficiently created in parallel.

� Investigate cluster performance and visualization in distributed systems.

� Investigate the use of a drop tolerance in relation to improving the consensus similarity

matrix for clustering and enforcing a nearly uncoupled form [64].

� Seek an industry or topic-specific area in which stochastic consensus clustering adds value

over currently used algorithms in the area.

� Investigate how to capture the “moving” probability values, as opposed to clustering

specific iterations, or snapshots, of the Markov chain.

� Investigate improvements to the visualization method we have proposed, including a step

in which we bin observations into quantiles and then plot only the mean of each quantile.

The goal here would be to show the gaps by limiting the number of distinct points plotted

on the graph.
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APPENDIX A

Stochastic Clustering Matlab GUI

Throughout the thesis we argue that visualization is an important tool when paired with clus-

tering. We claim that visualization is natural and easy in the process of running the stochastic

clustering algorithm.

We have made a graphical user interface (GUI) for Matlab, which allows a user to load in a

similarity matrix, and perform the stochastic clustering on the matrix, along with visualization.

We outline a simple example using the MCC data. We will host the appropriate matlab files at

meyer.math.ncsu.edu.

Figure A.1: First call the GUI using the command SCA in Matlab.
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Figure A.2: This is the interface the user first sees.

Figure A.3: Type in the .mat file, and click ‘balance matrix’. Then click ‘initialize’ and then
click ‘plot’.
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Figure A.4: The first plot that is created by the GUI.
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Figure A.5: By clicking ‘next’, we get this plot.

500 1000 1500 2000 2500 3000 3500

2.545

2.55

2.555

2.56

2.565

2.57

2.575

2.58

2.585

2.59

x 10
−4

P
ro

b
ab

ili
ty

Indices

Evolution of the Markov chain at step 2

Figure A.6: By clicking ‘next’ again, we get this plot.
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Figure A.7: Input 3 into ‘k=’ and then click ‘cluster’.

Figure A.8: Click ‘auto label’ to label the indices automatically.
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Figure A.9: The previous step 2 plot now clustered.
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Figure A.10: Instead we want to import a known clustering. Click ‘use labels’ type in the .mat
file name, and click ‘import’.
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Figure A.11: Now the indices are colored according to true cluster membership.
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APPENDIX B

Distributed Memory Stochastic Clustering

While not used for the experiments in this thesis, we felt that a discussion on distributed

memory computing is important. Many large companies need to resort to distributed memory

computing, as they acquire much more data than they can store on a single machine.

The stochastic clustering algorithm requires a similarity matrix as an input. By nature all

similarity matrices are n × n matrices, as they describe the similarity of every observation to

every other observation. A double precision number in C often requires 8 bytes of storage. With

48 gibibytes of storage (48× 230 bytes), the maximum n is around 80,000. This is by no means

large data.

Often times drop tolerances are used in the case of similarity matrices to enforce some

degree of sparsity. This serves two goals: that the data can now fit in memory, and, by dropping

small similarities, clusters become more separated. However, drop tolerances can only help to

a certain extent; at some point it becomes necessary to distribute the original data, and also

the similarity matrix.

B.1 Distributed Similarity Construction

If the original data is distributed across multiple machines, it becomes time-consuming to

construct large similarity matrices. As each observation needs to be compared to every other

observation the data needs to be passed around from machine to machine, as each calculates

pairwise comparisons of the various observations that the machines store in memory.

For the consensus similarity matrix this is different. The consensus matrix requires the
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input from clustering algorithms. As such, if clustering methods are optimized to run in a

distributed memory environment, then the clustering results will be quickly obtained. It is

quite fast to construct the sparse vector format for a given clustering adjacency matrix. After

several clustering algorithms have been run, these matrices only need be added together. If each

machine in the distributed memory environment is responsible for specific rows of the consensus

similarity matrix, then no passing of data is required after the clustering algorithms have been

run and the clustering results shared with all machines.

B.2 Distributed Stochastic Clustering

Once a similarity matrix has been constructed, the stochastic clustering algorithm relies only

on matrix vector products. This is true both for balancing the matrix, and for watching the

Markov chain. The doubly stochastic matrix P should never be calculated, and instead only

the vector x?. By using the simultaneous scaling algorithm we can be sure that if a cluster

structure exists in the similarity matrix, the algorithm will have error less than 10−10 within

40 iterations (assume a decrease in error by 1/2 for each iteration).

Ultimately we feel confident that stochastic consensus clustering in a distributed environ-

ment will be much faster than spectral clustering. Spectral clustering requires the computation

of the smallest k eigenvalues, eigenvector pairs. In a distributed memory environment this will

take much more time than 60 matrix vector multiplications.
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