Sensory Functions of the Palps and First Tarsi of *Macrocheles muscaeae domesticae* (Acarina: Macrocheilidae), a Predator of the House Fly

D. J. FARISH AND R. C. AXTELL
North Carolina State University at Raleigh

ABSTRACT

The effect of amputations of the palps and tarsi I on the sensory behavior of *Macrocheles muscaeae domesticae* (Scopoli), a mite which is predaceous on house fly, *Musca domestica* L., eggs and phoretic on adult house flies, was determined. With tarsi I removed, the mites did not attach to house flies and were not attracted to the adults, eggs, or pupae of house flies. With the palps removed, the mites were less mobile than normal, but responded normally to a repellent. It was demonstrated that the palps touch the substrate alternately when the mite is walking. It was concluded that receptors of olfactory stimuli are on tarsi I and receptors of contact stimuli are on the palps.

Macrocheles muscaeae domesticae (Scopoli) is a mure-inhabiting mesostigmaitid mite, predaceous on the eggs and first-instar larvae of the house fly, *Musca domestica* L. The rate of predation was investigated by Axtell (1961, 1963) and Rodriguez et al. (1962), nutrition by Rodriguez and Wade (1961), and life history by Wade and Rodriguez (1961).

The adult female *M. muscaeae domesticae* are transported to new areas of manure by attaching to house flies. The stable fly, *Stomoxys calcitrans* (L.), and the little house fly, *Fannia canicularis* (L.), also transport macrocheilid mites (Filippini 1960, Axtell 1964). Since there is no apparent feeding by the mite during this period of attachment, this is a case of phoresy, rather than parasitism (Filippini 1955).

The factors affecting the rate of phoresy are now under investigation in this laboratory. One aspect is an investigation of the means by which the mites locate the flies. It has generally been assumed that the first pair of legs of Macrocheilidae perform sensory functions (Hughes 1959, p. 154), but neither the function of the legs nor of the palps has been established experimentally. The effects of amputation of the palps and the first pair of tarsi on the behavior of female *M. muscaeae domesticae* are presented in this report.

MATERIALS AND METHODS

M. muscaeae domesticae were reared in plastic dishes on a substrate of fresh cow manure, CSMA* medium previously used to raise house fly larvae, and vermiculite in a 3:2:1 ratio. The mites were fed house fly eggs which were previously frozen to prevent hatching.

The palps and tarsi I were removed with scalpels of fine (.02 mm-diam.) tungsten wire imbedded in glass. To prepare the cutting edge, the free end of the wire was heated, plunged into sodium nitrite, and further sharpened with a fine carborundum block. Operations were performed at first with a Leitz* micromanipulator, and later by hand.

The mites were anesthetized with ether prior to surgery. (Preliminary studies showed that ether had no apparent effect on the phoretic rate.) Amputations were performed on a polystyrene base to prevent unnecessary dulling of the knife edge. Amputee mites were held 1 day or more before being tested. Samples of the amputated structures were slide-mounted and examined microscopically to verify the degree of amputation. The mites were examined before and after tests to ensure that the structures were totally removed. The tarsus of leg I, the tarsus of leg II (a normal walking leg), and a palp are illustrated in Fig. 1.

The emergence container (Fig. 2) used to compare the phoretic response of amputee and intact mites consisted of 2 polystyrene containers (52x36 mm).* The eccentric positioning of the connective tubing facilitated fly emergence and discouraged their return to the lower container. In tests, 10 amputee mites, 10 intact mites, and 10 house flies were placed together in the lower chamber of the emergence con-

1 This investigation was supported in part by U. S. Public Health Service Research Grant EF-00454 from the Division of Environmental Engineering and Food Protection and grant no. 64-1 from the Faculty Research and Professional Development Fund, North Carolina State. Contribution from the Entomology Department, North Carolina Agricultural Experiment Station, Raleigh. Published with the approval of the Director of Research, Paper no. 2003 of the Journal Series. Accepted for publication, June 4, 1965.

2 Graduate Research Assistant and Assistant Professor of Entomology, respectively.

*Chemical Specialties Manufacturers' Association medium, obtained from Ralston-Purina Co., St. Louis, Mo.

*Obtained from Tri-State Plastic Molding Co., Henderson, Ky.
Fig. 1.—Macrocheles muscaedomesticae. A, Tarsus of leg I. B, Tarsus of leg II (a walking leg). C, Tibia and tarsus of palp.

tainer. The flies were placed in a freezer (−14°C) for 4 min, rendering them immobile for 5 min after transfer to the emergence container, during which time the mites could attach. After 10 min, the flies began emerging into the upper container, and after 30–60 min both containers were placed into the freezer. Counts were made of the amputee and the intact mites attached to flies after all were frozen. Except where otherwise noted, each experiment involved 5 replications.

Two types of olfactometers were used to compare the reactions of amputee mites and intact mites to candidate materials. Both were constructed primarily of polystyrene containers. The first (Fig. 3) consisted of a container (26×9 cm) with plastic boxes (2 cm square) placed below each of 4 screened ports (1 cm diam.) equally spaced around the perimeter of the base. In tests, 2 boxes held 5 flies each, and the other 2 were empty. After the flies were inside 30 min, 25 mites were added singly through the hole in the top of the container. Counts were made of the numbers of mites at each port at 4 or 5 successive 1-hr intervals. The boxes were interchanged during the test. Since 2 of the boxes were empty, water was tested to assess the possibility of a positive hygrotoxic. Other tests utilized treated pupae and adult flies. The response to house fly eggs was tested in an olfactometer of the same design but having a diameter of 9 cm.

The second olfactometer (Fig. 4) was used to compare the reactions of amputee and intact mites to a repellent. A side-arm (25 cm long) of polyethylene tubing (1 cm diam.) was attached to a 32×36-mm polystyrene container with the inside bottom covered with blotting paper. In each test, 25 mites were added to the distal end of the tubing and shaken to the proximal end. At the end of 30 min the mites in the distal centimeter of tubing were counted. Tests were conducted with 20 drops of the repellent MGK 5780° and 15 drops of water added to the blotting paper and with only the water added.

To substantiate the observation that mites normally touch their palps to the substrate as they move, mites were allowed to walk on kymograph paper blackened with kerosene soot.

RESULTS

The rates of phoretic attachment by M. muscaedomesticae at 1- to 5-day intervals after removal of the first tarsi were consistent indicating no temporary change in phoretic behavior owing to postoperative shock (Table 1A). The rate of intact mite attachment ranged from 70% to 90%, whereas the rate of the amputee mites was never higher than 10%. As a further test for the effects of shock, the tarsi of legs III (walking legs) were removed instead of the tarsi of legs I, the assumption being that a roughly equivalent injury would be produced. However, the mites were not able to move normally with this degree of injury to their walking legs and this test was rejected. As a third means of assessing the effect of shock, the first tarsi were removed from a total of 40 deutonymphs on 3 different days. Of the mites which survived the operation, 34 molted to adults. The phoretic rate of these adults was very low in comparison with intact mites (Table 1B), and similar to the rate of

° Courtesy McLaughlin-Goosley-King Co., MGK 3790 consists of 75% ethyl hexanoate, 1% N-ethyl bicyclohexylamine diacetate (MGK 326), 1% 2,2,4,4-tetrahydronaphthalene (MGK 111), 1% di-propyl isoamyl benzene (MGK 326), and 19% iso-propyl.
for 15 min, and mashed adults, but were not attracted to pupae or adults dried overnight in an oven (135°C) and only slightly to water (Table 4). Palpless mites did not move when placed in the same type olfactometer with flies and fly eggs, but did react to the repellent in the side-arm type of olfactometer. Both intact and palpless mites moved immediately from the repellent whereas the tarsiless mites did not respond (Table 5).

The mite trail in kerosene soot (Fig. 5) demonstrated that the palps are touched alternately to the substrate as the mite walks. In the linear representation of the photograph, the solid black dots represent the places where the palp mark is clearly seen.

DISCUSSION

The waving of the first pair of legs as *M. muscae-domesticae* moved suggested a sensory function. (Similar behavior was reported by Lees (1948), who termed it “questing” in the tick *Ixodes ricinus* L., and by Rapp (1959), who called it “wittern” (scenting) in *Parasitus coleoptarorum* L.) Morphologically, the first tarsi are distinct from the walking legs since they bear many very long setae and have neither claws nor caruncles. No structure appearing morphologically to be a specialized light receptor was found on tarsi I. Positive reaction by intact mites to live flies, frozen flies, mashed flies, living fly pupae, frozen

Fig. 2.—Emergence container used to compare the rate of phoretic attachment of mites. Mites and flies were placed at position A.

Fig. 3.—(Top) Olfactometer used to determine reactions of mites to attractants. A. Area where mites were first placed. B. Port covered with 100-mesh screen, allowing diffusion of odors from lower box. C. Position of attractant (only 2 boxes contained the attractant).

Fig. 4.—(Bottom) Repellent chamber. A. Screened cap, and area where mites were first placed. B. Screened cap, and area where mites were counted after ½ hr. C. Location of repellent.
Table 1.—Numbers of adult female *Macrocheles muscaedomesticae* attaching to house flies after mutilation by removal of tarsi I or of palps.

<table>
<thead>
<tr>
<th>Days after surgery</th>
<th>Replicate no.</th>
<th>No. mites/test</th>
<th>No. attached to flies</th>
<th>No. controls*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Tarsi I removed from flies when adults</td>
<td>1</td>
<td>b</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>b</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>b</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>b</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>b</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>B. Tarsi I removed from flies when deantomys</td>
<td>—</td>
<td>—</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>C. Palpi removed from flies when adults</td>
<td>—</td>
<td>1</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>2</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>3</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>4</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>5</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

*Equal numbers of intact mites were used as controls in the several experiments.

Total of 3 replicates (50 mites)/day.

fly pupae, and pupae killed in acetone, but no such reaction to pupae and adults dried in an oven indicated that visual stimuli were not important in determining the mites' responses. All experiments indicated that the first tarsi were involved in odor reception. On the basis of 250 mites having both tarsi I amputated, there was a phoretic rate of only 2.3% as compared with 83% for the same number of intact mites. Mites with a single tarsus I removed were 8% phoretic, a rate closer to that of tarsiless mites than intact mites. The mites lacking a single tarsus I apparently were able to detect odors but were less able than intact mites to locate the source of the odors. Perhaps the differences in the intensities of the stimuli received by the right and by the left tarsus orient the mite toward the odor source.

The abundance of setae on the palps implicated them in sensory reception. The mites were observed to drape their palps over a fly egg when feeding, suggesting the reception of contact stimuli. However, the palpsless mites did not move in the olfactometer containing flies. This suggested that either the palps were needed for the reception of olfactory stimuli or some other sensory reception was removed by palpal amputation. The fact that palpsless mites reacted in the same way as intact mites in the presence of a repellent, whereas the tarsiless mites did not respond, demonstrated that the palps were not apparently necessary for olfactory reception. (It is not known if repellent and attractant reception involves the same sensory routes in *M. muscaedomesticae*.) In addition, we observed that intact mites touched their palps to the substrate as they walked. This contact was further substantiated by the palpal prints in the mite's trail. Thus, with no palps, the mites were unable to detect the substrate, and hence became immobile. On the basis of this evidence, we concluded that the palps of *M. muscaedomesticae* possess the receptors for contact stimuli. It is not known whether these "contact stimuli" involve mechanoreception (touch) or chemoreception (taste), or a combination of the two.

Amputations have been used to determine the locations of sensory receptors in other Acarina with similar results. Hindle and Merriman (1913) were able to pinpoint the olfactory sense of the tick *Argas persicosa* (Oken) in Haller's organ. Lees (1948) reported that in *Ixodes ricinus* one-half of Haller's organ is responsible for the perception of olfactory stimuli, and, finding no tick attachment when the palps were removed, concluded that warmth and chemotactile reactions caused the ticks to attach. Camin (1953) imm-

Table 2.—Number of *Macrocheles muscaedomesticae* occurring at ports (with and without flies) of olfactometer after 1 hr. 25 mites per treatment per experiment.

<table>
<thead>
<tr>
<th>Exp. no.</th>
<th>Tarsi I intact</th>
<th>Tarsi I removed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ports with flies</td>
<td>Ports without flies</td>
</tr>
<tr>
<td>1</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>21</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 3.—Number of *Macrocheles muscaedomesticae* occurring at ports (with and without fly eggs) of olfactometer after 15 minutes. 25 mites per treatment per experiment.

<table>
<thead>
<tr>
<th>Exp. no.</th>
<th>Tarsi I intact</th>
<th>Tarsi I removed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ports with eggs</td>
<td>Ports without eggs</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>4</td>
</tr>
</tbody>
</table>

*Since a smaller olfactometer (9 cm diameter) was used with these tests, although the port diameter remained 1 cm, the numbers are somewhat higher than in Table 2. As a result of the reduced area, the mites were often located near a port when counts were made even though they were not necessarily attracted to the port.

Table 4.—Number of *Macrocheles muscaedomesticae* occurring at ports (with and without test materials) of olfactometer after 45 min. 50 mites per treatment per experiment.

<table>
<thead>
<tr>
<th>Test material</th>
<th>Ports with materials</th>
<th>Ports without materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated house fly pupae</td>
<td>32</td>
<td>3</td>
</tr>
<tr>
<td>Frozen house fly pupae</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>Acetone-dipped house fly pupae</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>Dried house fly pupae</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Live house fly adults</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>Frozen house fly adults</td>
<td>27</td>
<td>1</td>
</tr>
<tr>
<td>Mashed house fly adults</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>Dried house fly adults</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Water</td>
<td>10</td>
<td>4</td>
</tr>
</tbody>
</table>
Table 5.—Number of adult female intact, tarsless, and palpless *Macrocheles muscadomesticae* located, after 30 minutes exposure, in the distal centimeter of the sidearm of a chamber alternately containing water and a repellent (MGK 5780). 25 mites per treatment per replicate.

<table>
<thead>
<tr>
<th>Rep. no.</th>
<th>Intact</th>
<th>Tarsi I removed</th>
<th>Palps removed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water</td>
<td>Water</td>
<td>Water Repell.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>21</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>15</td>
<td>2</td>
</tr>
</tbody>
</table>

plicated club-shaped setae at the tip of tarsi I in olfactory reception by *Ophionyssus natricus* (Gervais) (Macronyssidae). In several oribatid mites, Pauly (1956) determined that the pseudostigmatic organs of the dorsal shield (which are not present in *M. muscadomesticae*) were mechanoreceptors, and the first legs olfactory receptors. Rapp (1959) reported olfactory reception in *P. coleoptatorum* (Parasitidae) by the first tarsi, and to a lesser extent by the palps.

Of the species cited, only *P. coleoptatorum* is phoretic and lacks claws and caruncles on the first legs. However, the deutonymphs are phoretic; not the adults, as in *M. muscadomesticae*. Rapp did not investigate the phoretic behavior of amphetamine mites. His conclusion that the palps function as secondary olfactory receptors could not be substantiated in *M. muscadomesticae*. Nevertheless, a consistency holds throughout the Acarina regarding the function of the palps and particularly the first tarsi.

Although Sychevskaya (1964) cites 16 species of flies in 14 genera to which *M. muscadomesticae* has

![Figure 5](image)

Fig. 5.—Photograph of mite trail on kymograph paper, with line-drawing tracing. Circles and hollow oblongs represent tracks of walking legs; black dots represent tracks of palps.
been found attached, it has been found most frequently
attached to *M. domestica* (Filipponi 1960). This rela-
tionship may exist simply because of similar eco-
logic niches or there may be some selection by the
mites since they utilize olfactory and contact stimuli
to locate food and transport hosts. Moreover, the mite
finds its host and attaches in manure yet will detach
upon being carried to fresh manure, indicating a bal-
ance between the relative attractiveness of the fly
and the manure. These relationships deserve further

REFERENCES CITED

Macrochelidae (Acarina: Mesostigmata) and their
Amer. 54: 748.

1963. Effect of Macrocheliidae (Acarina: Mesos-
tigmata) on house fly production from dairy cattle
manure. J. Econ. Entomol. 56: 317–21.

1964. Phoretic relationship of some common manure-
inhabiting Macrochelidae (Acarina: Mesostigmata)
to the house fly. Ann. Entomol. Soc. Amer. 57:
594–7.

and sensory behavior of the snake mite, *Ophionyssus
nativus* (Gervais) (Acarina: Macronyssidae). Chi-

Filipponi, A. 1955. Sulla natura dell'associazione tra
Macrocheles muscardinomiticus e *Musca domestica.*

1960. Macrochelidi (Acarina, Mesostigmata) foretici
di mosche. Risutati parziali di una indagine ecologica

Hindle, E., and G. Merriman. 1913. The sensory per-
ceptions of *Argus persicus.* Parasitology 5: 208–16.

Hughes, T. E. 1959. Mites, or the Acari. The Athlone

Lees, A. D. 1948. The sensory physiology of the sheep

Pauly, F. 1956. Zur Biologie einiger Belbiden (Ori-
batei, Moosmilben) und zur Funktion ihrer pseudo-
stigmatischen Organe. Zool. Jahrb. (Syst.) 84:
275–326.

Rapp, A. 1959. Zur Biologie und Ethologie der Käu-
fermilbe *Parasitus coleopterorum* L. 1758. (Ein
(Syst.) 86: 303–66.

of *Macrocheles muscardinomiticus* (Acarina: Macro-
cheleidae) in relation to its predatory action on the

Nematodes as a natural food for *Macrocheles
muscardinomiticus* (Acarina: Macrocheleidae), a predator
of the house fly egg. Ann. Entomol. Soc. Amer. 55:
907–11.

Sychevskaya, V. L. 1964. Mites found on synanthropic
flies in Uzbekistan. (In Russian, with English sum-

of *Macrocheles muscardinomiticus* (Acarina: Macro-
Soc. Amer. 54: 776–81.