THE EFFECT OF YOHIMBINE ON PLASMA LEVELS OF T₃, T₄ AND CORTISOL IN XYLAZINE-IMMOBILIZED WHITE-TAILED DEER

GEORGE A. BUBENIK* and ROBERT D. BROWN†

*Department of Zoology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1. Telephone (519) 824-4120, and †Caesar Kleberg Wildlife Research Institute, Texas A & I University, Kingsville, TX 78363, USA

(Received 7 April 1988)

Abstract—1. The effect of yohimbine (Y) on blood levels of thyroxine (T₄), triiodothyronine (T₃), and cortisol was investigated in 5 mature male white-tailed deer immobilized with xylazine hydrochloride (X).
2. T₃ levels were erratic in X-treated deer, but stabilized in the X- and Y-treated deer.
3. T₄ remained unchanged in both groups.
4. Cortisol levels have increased in X-treated deer, but declined in X- and Y-treated deer.
5. Yohimbine is a potent and safe antidote of X not affecting T₃ and T₄. Caution should be used in using R or Y in cortisol studies.

INTRODUCTION

For more than 15 years xylazine hydrochloride (X) (Rompun®) has been used as a safe and effective sedative and anaesthetic for deer species (Bauditz, 1972; Presnell et al., 1973; Roughton, 1975; Bubenik, 1982). Since immobilization by X is used routinely for investigation of endocrine parameters, concerns have been raised whether this compound might influence blood hormonal levels. However, it soon became clear, that X does not significantly influence blood levels of thyroxine (T₄), triiodothyronine (T₃), calcitonin, parathormone, testosterone, androstenedione, growth hormone or prolactin (Faulkner et al., 1979; Mautz et al., 1980; Bubenik, 1982). The only exception reported has been cortisol, for which blood levels were found to increase after X administration (Chao et al., 1984; Van Mourik and Stelmasiak, 1984).

Until recently, the recovery from X immobilization was a rather slow process, which could be facilitated only indirectly by central analeptic drugs such as doxapram or caffeine (Bubenik, 1982; MacKintosh and VanReenen, 1984). However, several years ago yohimbine hydrochloride (Y) was tested in deer and found to be a potent and safe antidote of X (Jessup et al., 1983; Hsu and Shulaw, 1984; Mech et al., 1985; Renecker and Olsen, 1985; Van Der Eems and Brown, 1986).

As the popularity of Y in deer endocrine research increased, occasionally this drug had to be used in emergencies, such as during serial blood sampling which often lasted for several hours. Because it was not determined whether Y influence hormonal parameters, we devised a study which investigated the blood levels of hormones and enzymes in X immobilized deer treated subsequently with Y. In this article we report the effect of Y on plasma levels of T₃, T₄, and cortisol.

MATERIALS AND METHODS

Animals and experimental procedure

All experiments were performed in the deer facility of Caesar Kleberg Wildlife Research Institute, Texas A & I University in Kingsville, Texas, USA (latitude 27·3°N). Five mature, pen-raised, adult male white-tailed deer (Odocoileus virginianus) were housed in 5 x 5 m, covered individual pens and fed a complete pelleted diet and fresh water ad libitum.

In the first experiment performed on 2 July the deer were immobilized with X (Rompun® 100 mg/ml; Haver-Lockhard Lab., Shawnee, KS 66201, USA) using Telinject blow-dart (Telinject USA, Inc., Newhall, CA 91321, USA). The doses of X (3·3; 3·3; 3·6; 4·4 and 7·2 mg/kg) were calculated according to individual sensitivity of animals to achieve full lateral recumbency. All bucks were fully immobilized except No. 38, which received the highest dose, was heavily sedated but remained standing. After immobilization the animals were sampled from the jugular vein into heparinized syringes. After taking 3 samples 15 min apart 10 ml of saline was injected intravenously (i.v.) and another 5 samples were taken at the same time interval.

In the second experiment, performed on 14 July, the procedure was repeated, except that yohimbine hydrochloride (5 mg/ml; Sigma Chemical Co., St Louis, MO 63178, USA) was injected i.v. in a dose of 0·3 mg/kg instead of saline. Both experiments were performed between 07:30 and 10:00 hr.

Blood samples were placed on ice immediately and after each experiment they were centrifuged and plasma frozen for later assays.

Radioimmunoassays

Plasma total triiodothyronine (T₃), thyroxine (T₄) and cortisol levels were measured in duplicate samples using highly specific radioimmunoassays (RIA) (RIA Inc. Scarborough, Ontario, Canada). Intr-assay and inter-assay variability was less than 10%, and good correlations were found between sample volume and measured hormone levels for all assays. The lowest detectable levels were as follows: T₃, 12 ng/dl; T₄, 0·2 μg/dl, and cortisol, 0·5 μg/dl. The percentage binding at T₃ was 43·2 ± 0·2 (mean ± SE) and for T₄ 59·8 ± 1·7. All hormone assays were carried out within 3 months of the sample collection.

Statistical analysis

The first 3 pre-treatment samples were averaged for a pretreatment value and are depicted in Table 1 as the period 1. Each subsequent post-treatment sampling (samples 4-8) were treated as a separate period (2-6). As there are often
GEORGE A. BUBENIK and ROBERT D. BROWN

Table 1. Mean values (X) and standard deviations (SD) for plasma hormone levels in 5 adult white-tailed deer treated with xylazine and saline or xylazine and yohimbine and sampled every 15 min

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Period</th>
<th>X</th>
<th>SD</th>
<th>X</th>
<th>SD</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortisol</td>
<td>X + S</td>
<td>8.51A</td>
<td>5.9</td>
<td>5.5A</td>
<td>4.2</td>
<td>0.1252</td>
</tr>
<tr>
<td></td>
<td>X + Y</td>
<td>13.48BC</td>
<td>6.3</td>
<td>7.18A</td>
<td>5.0</td>
<td>0.0363</td>
</tr>
<tr>
<td>T3</td>
<td>X + S</td>
<td>14.98B</td>
<td>6.7</td>
<td>4.00BC</td>
<td>4.1</td>
<td>0.0293</td>
</tr>
<tr>
<td></td>
<td>X + Y</td>
<td>14.98B</td>
<td>6.9</td>
<td>3.56BC</td>
<td>4.2</td>
<td>0.0109</td>
</tr>
<tr>
<td>T4</td>
<td>X + S</td>
<td>13.50BC</td>
<td>4.5</td>
<td>2.59C</td>
<td>2.7</td>
<td>0.0053</td>
</tr>
<tr>
<td></td>
<td>X + Y</td>
<td>10.43AC</td>
<td>5.5</td>
<td>1.97C</td>
<td>1.6</td>
<td>0.0299</td>
</tr>
<tr>
<td>T5</td>
<td>X + S</td>
<td>180.80A</td>
<td>46.1</td>
<td>146.91A</td>
<td>62.1</td>
<td>0.1301</td>
</tr>
<tr>
<td></td>
<td>X + Y</td>
<td>185.80A</td>
<td>50.9</td>
<td>157.00A</td>
<td>80.3</td>
<td>0.2476</td>
</tr>
<tr>
<td>T6</td>
<td>X + S</td>
<td>199.80A</td>
<td>36.2</td>
<td>158.40A</td>
<td>72.9</td>
<td>0.1298</td>
</tr>
<tr>
<td></td>
<td>X + Y</td>
<td>221.40A</td>
<td>76.1</td>
<td>153.80A</td>
<td>60.8</td>
<td>0.0628</td>
</tr>
<tr>
<td>T7</td>
<td>X + S</td>
<td>245.20A</td>
<td>77.2</td>
<td>147.68A</td>
<td>41.4</td>
<td>0.0068</td>
</tr>
<tr>
<td></td>
<td>X + Y</td>
<td>224.60A</td>
<td>118.4</td>
<td>147.64A</td>
<td>54.3</td>
<td>0.1200</td>
</tr>
</tbody>
</table>

*Paired t-test, xylazine + yohimbine vs xylazine + saline.
†Period 1 is mean of 3 samples (N = 15) after immobilization and prior to injection of saline or yohimbine.
‡Period means, within treatments and parameters, with the same capital letter are similar (P > 0.05), as established by analysis of variance (randomized complete block) and Fisher’s least significant difference test (Gill, 1978).

RESULTS

Except for deer No. 38, all bucks were completely sedated by X, and the first few blood samples were taken in lateral recumbency. Injection of saline did not change that condition, but with passing time the deer switched to sternal recumbency. Administration of Y induced a rapid recovery (deer attempted to stand up and walk within 1–5 min). One deer (No. 38) had to be manually restrained to take blood samples.

For T3, (Fig. 1) there was no difference (P > 0.05) between X + Y and X + S groups except for period 5. Within group comparisons indicated that T3 remained stable throughout sampling in both groups (Table 1).

For T4, (Fig. 2) there was also no difference (P > 0.05) between the X + Y and X + S groups, except for the period 5. For the X + Y group, the T4 values first increased, then decreased and finally increased again (Table 1).

For cortisol (C), (Fig. 3) the pre-treatment values were not different between groups (P > 0.05), but for periods 2–6, the X + S values were significantly greater than the X + Y values (Table 1). Within group comparisons indicated that the X + S values increased in periods 2–5, then declined in period 6.

Cortisol levels in the X + Y group tended to decline with time.

DISCUSSION

Yohimbine hydrochloride, an alpha-2-adrenoceptor blocker (Goldberg and Robertson, 1983)

Fig. 1. Blood levels of triiodothyronine (T3) in 5 X-immobilized white-tailed bucks treated intravenously (arrow) with either saline (S) or 0.3 mg/kg yohimbine (Y). Samples taken 15 min apart.
T₄, T₃ and cortisol after yohimbine in deer

The Y dose chosen for our study (0.3 mg/kg), was higher than that used by Jessup and co-workers (1983) (0.125 mg/kg) or Hsu and Shulaw (1984) (0.1 mg/kg). It has been reported that a higher dose than 0.1 mg/kg reduces recovery time to only several minutes (MacKintosh and VanReenen, 1984; Brown, personal communication). However it was also observed that a threshold dose of about 0.26 mg/kg may exist for white-tailed deer, beyond that not decrease of recovery time can be achieved (Mech et al., 1985).

Speed of recovery is essential in emergencies during serial blood sampling. On the other hand the fast recovery process might influence levels of blood hormones.

Generally, the levels of thyroid hormones were not substantially influenced by Y treatment. The levels of T₄ in white-tailed deer are maintained in a relatively narrow range (Bubenik et al., 1977, 1983; Bubenik and Bubenik, 1978; Bubenik and Smith, 1986). During our serial sampling, values of T₄ in X + S group exhibited somewhat erratic fluctuations, which were eliminated in the Y treated group (Fig. 2).

Unlike the stable seasonal levels of T₄ in white-tailed deer (Bubenik, 1986), the levels of T₃ are reported to have pronounced seasonal variations (Bubenik and Leatherland, 1984; Bubenik et al., 1986). Blood concentrations of T₃ also increase in response to intramuscular administration of T₄ (Bubenik and Smith, 1986), and in white-tailed deer investigated for circadian variation during one yearly cycle, T₃ exhibited the largest 1 hr variation of 7 hormones measured (Bubenik et al., 1983). So far, no circadian rhythm of T₃, T₄ or cortisol has been detected in deer (Bubenik et al., 1983; Van Mourik and Stelmasiak, 1984). In the present experiment the fluctuation of T₃ levels were not statistically significant during the 2 hr of sampling, and yohimbine had no effect on T₃ levels (Fig. 1).

Blood levels of glucocorticoids have been used as an indicator of response to stress (Panaretto and Vickery, 1972; Baldwin et al., 1974). The blood levels of C in deer are generally low as compared to some other mammals (Brown and Martin, 1974), and an increase during blood sampling varies tremendously according to the character and the level of habituation of individual deer (Bubenik, 1982; Bubenik, 1986). In this experiment the concentration of C (Fig. 3) reached in the third sample of the deer No. 36 in the X + S group was very close to the maximum levels observed in deer treated with 40 I.U. of ACTH (Bubenik, 1986). That the highest values (over 25 µg/dl) observed in deer No. 36 were almost 4 times higher than maximal levels in animal No. 32 is fairly typical of individual sensitivity of deer to stress of sampling (Bubenik, 1986).

The pre-treatment values of C were not different (P > 0.05) between the X + S and X + Y groups, but post-treatment concentrations were significantly different in all periods. This indicates that Y reduced the increase in C observed in the X + S deer. In all but one deer (the most excitable No. 36) the cortisol concentrations returned to basal levels (between 1 and 3 µg/dl) within 15 min after Y administration.

It can be concluded that Y does not alter the plasma concentration of T₃ or T₄ during serial, long term sampling in X immobilized deer. It appears
that Y stabilizes fluctuating levels of T₄ and significantly reduces the elevation of C levels found in X treated deer. The use of Y can therefore be recommended as a safe X antidote in studies investigating thyroid hormone in deer. Alternatively, the significant decline in C levels 30 min after Y administration might limit the use of this drug in corticoid studies.

Acknowledgements—The authors would like to thank Tom W. Dailey and Janice Kidwell for their skillful technical help, as well as to Ralph Bingham and Nancy E. Koerth for their help with the statistical evaluation.

REFERENCES


