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Integral equations for fluids of linear molecules 

III. Orientational ordering 

by F. LADO 

Department of Physics, North Carolina State University, 
Raleigh, North Carolina 27650, U.S.A. 

(Received 6 April 1982 ; accepted 10 May 1982) 

T h e  connection between the orientation correlation function, Kirkwood 
parameters, and spherical harmonic  coefficients of the pair distribution 
function is obtained for classical fluids of linear molecules. The  general 
results are illustrated with computed  values f rom a recent  integral equation 
solution for a fluid of hard dumbells.  

1. INTRODUCTION 

In recent publications [1, 2], a procedure was described whereby any 
integralequation may be solved for the structure and thermodynamics of any 
classical fluid of linear molecules, and its use illustrated with a study of the 
hard dumbell model. In this paper, we examine how the results of the integral 
equation solution may be used to describe orientational ordering in a molecular 
fluid. 

This is an application of particular interest in the study of nematic liquid 
crystals [3], where the state of orientational order is often described in terms of 
a singlet distribution function 

f(O) = } • (2l+ 1)/~lP,(cos 0). (1) 
l 

In this expression, 0 is the angle between the molecular axis and an externally- 
imposed 'd i rec tor ' ,  P,(x) the lth-order Legendre polynomial, and /~, the 
orientational order parameters, commonly calculated in mean field approxi- 
mation. We note in the next section that in the absence of an external field 
imposing a special direction, the singlet description is inadequate and ordering 
must be sought in pair correlations. The final result, however, has the same 
form as equation (1), with 0 reinterpreted as the relative angle between two 
molecules and the/51 determined in terms of the spherical harmonic coefficients 
of the pair distribution function. 

2. ORIENTATION CORRELATION FUNCTION 

In the absence of any external potential, the configuration energy of a 
molecular system can depend only on the relative separations and relative 
orientations of the N molecules. With the use of periodic boundary conditions 
for convenience, this property may be expressed by saying that there is an 
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314 F. Lado 

essential arbitrariness in the origin and orientation of the coordinate frame. 
As a consequence, the singlet number  density 

P(1)(r) = E ~(r-r~)  =N/V (2) j=l 
is uniform, whether the system is in the crystalline or fluid phase [4]. Similarly, 
the singlet distribution function for molecular orientations 

/ ~ 1 ) N = o j) = ( 3 )  j= 
is also uniform, regardless of the extent of orientational ordering in the system. 
Evidence of ordered structures in either case is to be sought in correlations 
between pairs of molecules. 

We define the orientation correlation function as 

where, as also above, the brackets denote a canonical ensemble average and 
o~=(0, ~b), referred to an arbitrary axis. (Keeping N and V fixed will ensure 
that G(co, o/) vanishes for orientationally disordered states, eliminating an 
extraneous contribution to (4) from density fluctuations.) Expanding the 
product in (4), we have 

1 [ <  > ( N ) 2 + N ' ( ~ o - o / ) l  (5) 
- 

t , ]  

where the prime on the summation means i#j. In terms of the generalized 
pair density [5] 

p(21(12) = N(N-  1) Q I drN-2 deoN-2 exp [--~ e(r  N, 0.oN)] (6) 

Q = j dr N &o N exp [ -  13U(r ~v, coN)], (7) 

equation (5) becomes 

G(~176 [ ~ drldr~p'2,(12)-(N~2+N\4~] ~ ~(~ 

(4~)21 dr12 h(12) + ~(~ol - o~2), (8) 

where we have put 

p(2)(12) = ~ g(12) (9) 

and h=g-1. The  total correlation function h(12) is most conveniently ob- 
tained from an integral equation solution in the form 

h(12)=4~r ~ hht2m(r12) Yhm(o)1) Yhm(~o~) , (10) 
lxl2m 

where m = - m  and the orientations co1, oJ 2 are referred to the intermolecular 
vector r12 as polar axis. Rotation of the coordinate frame to an arbitrary 
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Orientational ordering 315 

orientation converts (10) to [6] 

h(12)=47r Y~ h(rl=; 11121) ~, (llm112m2[11121m~ +m2) 
lllfl mlmz 

• Yt ..... (C~ Ytzm2(~176176 ' (11) 

where the bracket is a Clebsch-Gordan coefficient, co' is the orientation of r~2, 
and 

( 4rr "~ 112 
h(r ; l l l f l )=  \2 l+  1] ~m ( l lml2mll l l f lO)h" '~m(r) '  (12) 

which has the inverse 

h,,,~m(r)= ~] (l,  ml2mllflflO > ( 2 l +  1) 1/2 I --~-~ ] h ( r  ; 11121 ). (13)  

The integral over r12 now gives 

I dr1= h(12)=4~ Z S d~l= rl~ 2 h(rl~ ; llZ=0) 
lfl~ 0 

x E (llm12m[111200) Yhm(r176 Yz=m(~~ x/2 
m 

= ~ [~(0 ; 110)( - 1)' \--~-~--- / P,(cos 012), 

= y~ (2l+ 1)huo(0)P,(cos 0~2), (14) 
l 

where 
GO 

h(o ; uo)  S dr r 2 h(r ; 110) (15) 
0 

is a Fourier transform evaluated at k = 0, 
huo(O ) = ( -  1)'[4,a-(2l+ 1)] -1/2 h(O ; llO) (16) 

from the transform version of (13) (noting that h(0; 11121 ) ~-0 for l#  0), and we 
have used the spherical harmonics addition theorem [7] 

47r 
P,(cos 812) - 2/+ 1 ~m Y,,~*(oJ'=) rtm(~o'l) (17) 

and the particular Clebsch-Gordan coefficient [7] 

(llm12ml111200) =( -- 1)q m(2ll + 1) -l/z 8hh. (18) 

The orientation correlation function 

P G(wl, w2) = ~ s (21+ 1 )h uo(0)P,(cos 812 ) + L l 4~r 8(O)1 -- r (19)  

is now manifestly dependent on just the relative orientation of the two molecules. 
We may reduce the description by integrating over 001 to get 

G(~ ~ I d~ G(~ ~ 

_147r { l + p  ,=~0 (21+l)hn~176 

oo 
- P }~ (2l+ 1)huo(0)P,(cos 01~), 

4~r 1=1 
M,P. 

(20) 

L 
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316 F. Lado 

since in the canonical ensemble 

1 + Phooo(0 ) = 0, (21)  

density fluctuations having been suppressed. Another reduction can be made 
by integrating out the irrelevant ~l~ variable to give finally 

G(012 ) ~ ~ d~12 G(r 
oo 

= 1 ~ (2l+ 1)pf~uo(O)Pt(cos 0~). (22) 
t=l  

It is easy to show that the coefficients of this expansion are just the Kirkwood 
parameters [5] 

2 ~ y~ pl(cos Oi,) ) (23) GI-----~ \i< j 

= phuo(O),  

which play the role of order parameters in liquid crystals [3]. 

Computed order parameters for a fluid of hard dumbells. 

pd 3 0.2 0.4 0.6 0.8 

0.2 G~ 0.0015 0.0044 0.0090 0.0141 

G4 0-0005 0-0010 0-0017 0-0027 

0.4 G2 0.0033 0-0092 0.0185 0-0287 
G4 0.0013 0.0029 0.0055 0.0089 

0.6 G2 0.0043 0.0105 0.0197 0.0309 
G4 0.0029 0.0069 0.0128 0.0205 

0.8 G~ 0-0011 -0.0047 - 0.0216 -0.0585 
G4 0-0060 0.0145 0.0234 0.0253 

These coefficients are readily determined from an integral equation solution. 
We show in the table the first two non-vanishing parameters, G 2 and G4, for 
fused hard spheres (hard dumbells) of diameter a and centre-to-centre elonga- 
tion l [2]. All the values are.quite small, confirming that orientational ordering 
in this system is very short ranged. The tendency of G 2 to turn negative with 
increasing density and elongation, indicating a preference for perpendicular 
alignment under these conditions, is clear. This is further illustrated in the 
graph of the (truncated) correlation function in the figure for pd 8= 0.896, and 
l /a=0.6,  for which G 2 and G4 are -0.0685 and 0.0232, respectively. (Here d 
is the diameter of a sphere with volume equal to that of the dumbell.) 
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COS 8iz 
Orientation correlation function for hard dumbells of elongation /=0.6a  at the density 

pd 3 = 0.896. 
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