Avian Malaria in African Black-Footed Penguins

Michael K. Stoskopf, DVM, and John Beier, BA

SUMMARY

Ten captive-reared African black-footed penguins (Spheniscus demersus) from a large outdoor colony were monitored for avian malaria, using several diagnostic tests. One treatment regimen was evaluated.

Thin smear blood evaluation enabled detection of seven parasitemias involving Plasmodium relictum and Plasmodium elongatum in the penguins. Leukocytosis (relative lymphocytosis) was characteristic of infected birds.

Parasitemia was detected as early as 21 days prior to onset of clinical signs (depression, anorexia, regurgitation, pale mucous membranes, and respiratory distress). The single bird that died had clinical signs only a few hours prior to its death. Treatment consisted of 0.03 mg of primaquine phosphate base/kg body weight, administered orally once daily for 3 days. Oral chloroquine phosphate therapy, given simultaneously, was administered in an initial loading dose of 10 mg of chloroquine phosphate base/kg body weight, followed by doses of 5 mg/kg at 6, 18 and 24 hours after the initial chloroquine dose. This treatment regimen prevented mortality and cleared parasites from the blood. Recurrences of malaria occurred in two birds that had received this treatment.

Avian malaria is the most important cause of death in captive penguins displayed in open air exhibits around the world. In the past 10 years, 75% of all juvenile penguin mortality and 64% of all adult penguin mortality in the Baltimore Zoo outdoor penguin colony has been associated with avian malaria. Two species of Plasmodium are known to infect captive penguins. Plasmodium relictum infections have been reported in six species of captive penguins, including the African black-footed penguin (Spheniscus demersus).1-7 The only report of a natural infection of P relictum in a penguin is of an African black-footed penguin from the southern coast of Africa.1 Plasmodium elongatum infections have been demonstrated in captive African black-footed penguins and Humboldt penguins (Spheniscus humboldti),4,5,8-10 but there are no reports of this organism infecting wild penguins. Both organisms are known to infect wild passerine birds on all continents.11,12 The problems of antemortem diagnosis and treatment of avian malaria in penguins are the major concerns for zoo veterinarians responsible for the health of penguin colonies. Either organism is capable of causing rapidly fatal disease in penguins. Premortem signs are often subtle, and frequently lacking altogether. Depression, anorexia, regurgitation, pale mucous membranes, and respiratory distress rarely appear before the bird is near death. Antemortem diagnosis is further complicated by the prevalence of exoerythrocytic forms and low-grade parasitemias in penguins infected with P elongatum.5-13 Pathologic descriptions of fatal infections have been reported.2,9 The purpose of this study was to evaluate diagnostic methods available to zoo clinicians, to determine which is the most reliable for diagnosis of avian malaria in penguins, and to evaluate a treatment regimen for the disease.

Materials and Methods

Seven juvenile and three adult African black-footed penguins were selected from the zoo's open air colony. All study birds were marked and observed daily at two hand feedings.

The study group was evaluated for avian malaria during the season of peak incidence, late August through October. Blood samples were taken from the brachial vein for the evaluation of several blood tests for their relative ability to enable detection of malaria. Isodiagnosis, using young Pekin or Muscovy ducks (5 to 20 days old), was used in an attempt to magnify infections in a more easily evaluated host. This technique was also used as a reference since there is little chance of false-positive results. Susceptible ducks were inoculated with 0.5 ml of heparinized penguin blood, either intravenously or intramuscularly.14 After inoculation, blood from the ducks was examined three times a week for parasites in thin blood smears. A penguin was considered negative for malaria after nine negative samplings from its isodiagnostic counterpart.

Thin smear diagnosis consisted of making six standard air dried blood smears and fixing them in absolute methanol. These were then stained for 10 minutes with a 10% solution of Giemsa stain in pH 7.2 phosphate buffer. Approximately 4 x 106 erythrocytes were examined in a minimum of 400 oil emersion fields. Parasitized cells were identified and reported as a percentage of the total number of erythrocytes observed.

Leukocyte and erythrocyte counts were performed with a 1 to 100 dilution technique, utilizing Nat-Herrick avian diluent15 on a standard hemacytometer. The packed cell volume was determined by microcapillary tube technique. Total protein was evaluated by refractive index, using an
Results

Five of the ten penguins developed parasitemias detectable by thin smear analysis. In two birds, the parasitemia was separated by a month or more of negative results on thin smears. The parasitemias ranged from 0.001% to 1.88% of infected erythrocytes, with parasitemias of less than 0.01% being most frequently observed.

Six of seven parasitemias involved Plasmodium elongatum. One parasitemia was too low for accurate speciation of the parasite. Plasmodium relictum was identified in only one bird, as a mixed infection. This bird had the highest percentage of infected erythrocytes detected, and was the only study bird to die.

Isodiagnosis agreed with thin smear diagnosis in 10 of 13 trials; three parasitemias were detected by thin smear, but not detected by Pekin duck isodiagnosis. Muscovy ducks proved refractile to infection for isodiagnosis, failing to develop parasitemias when inoculated with a relatively large number of parasites, when compared to that for Pekin duck inoculations. Positive results from isodiagnosis were not obtained sooner than 6 days after inoculation. Nine or 10 days were often required before diagnosis was possible by this method.

Appreciable changes were not seen in the total erythrocyte count, packed cell volume, or total serum protein content of infected birds. Birds with parasitemias had a marked relatively lymphocytosis when compared with baseline values. Birds in the study also had varying degrees of relative lymphocytosis, as compared with baseline values before parasitemia was detected. Thus, it might be that infections exist even though they are not detectable by isodiagnosis or by direct thin smear analysis. Three arbitrary levels of relative lymphocytosis were correlated with the eventual detection of parasitemia in a bird (Table 1).

The total leukocyte count in infected birds was elevated above the baseline mean in 5 of the 7 trials wherein parasitemia was confirmed. In the two trials without the expected leukocytosis, the same bird was involved. This bird had a relative lymphocytosis in only one of these two trials. Total leukocyte counts as high as 98,000/mm³ were obtained from infected birds, but counts in the range of 20,000 to 30,000/mm³ were more common.

Four birds were given the experimental treatment regimen after detection of parasitemia. Two birds were given two rounds of treatment, as they each had parasitemias a second time. One bird with a parasitemia was not treated and died 21 days after detection of the infection. This bird became anorectic and depressed a few hours before death. None of the treated birds died. Anorexia, depression, pale mucus membranes, regurgitation, and respiratory distress were evident in one bird in which parasitemia developed twice. The other bird in which parasitemia developed twice was anorectic and had convulsions prior to the detection of the first infection. A third bird was anorectic and depressed prior to treatment. Twice, penguins had no clinical signs at the time of detection of parasitemias. Affected birds became clinically normal within 4 days of beginning treatment.

Discussion

Five of 10 birds developed naturally occurring malaria parasitemias during the course of this study. Plasmodium elongatum was responsible for most of the parasitemias detected in this study, with Plasmodium relictum being observed only once. The mixed infection of P elongatum and P relictum was noteworthy because it confirmed a low degree of cross immunity conferred by P elongatum infections against other avian malarial species. Plasmodium elongatum is rapidly fatal in Pekin ducks but causes only low parasitemias. It has been postulated that its pathogenicity is due to the predominant exoerythrocytic forms. Exoerythrocytic forms of P elongatum cause extensive pathologic changes in black-footed penguins, and this study confirms that peripheral parasitemias tend to be low in these birds.
usually less than 0.01%. Observations on the single
bird that died showed that parasitemia can be demon-
strated up to 21 days before the onset of clinical signs.
They also demonstrated that the interval between the
onset of clinical signs and death can be as short as a
few hours.

Diagnosis from clinical signs alone is not accurate.
Penguins have been known to die from avian malaria
without any premonitory signs.2 When signs do develop,
they are nonspecific and can be confused with other
penguin diseases such as aspergillosis and bacterial
gastroenteritis. Twice in this study, birds had a para-
sitemia without any clinical signs.

Observing a parasite in a thin smear establishes
malarial infection with certainty, but a negative result
does not rule out the possibility of an exoerythrocytic
form of the disease. Thin smear technique is capable
of detecting parasitemias as low as 0.001% in penguins
if smears are of good quality and well-stained. A
minimum of 40,000 erythrocytes should be examined to
be able to detect parasitemias this low. Properly trained
technicians can use this technique to identify infected
birds weeks before signs appear. Isodagnosis by inoc-
ulation of infected blood into susceptible hosts such as
Pekin and Muscovy ducks has been used in avian ma-
laria research to increase the sensitivity of thin smear
diagnosis. The false-negative results with this tech-
nique and the prohibitively long time required to read
the tests make it undesirable as a clinical tool. The
 technique can be of value when speciation of the malarial
parasite is important, but the results may not always
be available before the affected bird dies. This is cer-
tainly true if the penguin has signs of illness when
the test is initiated.

Studies on baseline hematologic values have shown
an appreciable rise in total leukocyte count and dif-
ferential lymphocyte count in the fall of the year. It
has been postulated that these increases may be related
to avian malaria, since most cases of fatal penguin ma-
laria are also seen in the fall.14 This study lends support
to that hypothesis. Leukocyte counts of 19,000/mm³
or more were indicative of malarial infections. All
known infected penguins, except one, demonstrated total
leukocyte counts above the baseline range of 11,566 ±
6,427/mm³. The one exception may have been de-
pleted of leukocytic precursors by the time of sampling.
It did not have a leukocytosis but did have a relative
lymphocytosis.

Relative lymphocytosis was promising as a diagnostic
criterion for penguin malaria. A healthy penguin has a
relative lymphocyte count of 33% to 37%.14 A relative
lymphocytosis of 50% or more in this study gave few
false-negative results when compared to eventual con-
firmation of parasitemia. Many birds with 50% or more
lymphocytes failed to develop a parasitemia initially,
but most of these were eventually confirmed to have
infections, indicating that relative lymphocytosis might
be a more sensitive indicator of infection than thin
smear diagnosis or isodagnosis. An increase in cir-
culating lymphocytes may be a response to exoerythro-
cytic forms of the disease occurring before parasitemias
are demonstrable. If this is the case, false-positive re-
sults or birds with increased lymphocyte counts, but
never confirmed to have parasitemia, probably indicated
subclinical exoerythrocytic infections. Studies in other
birds indicate that chronic low-level exoerythrocytic
infections are responsible for premunition against further
infection.15 A similar situation may exist in the penguin.
A relative lymphocytosis of 70% or more was seen in
most smears associated with parasitemias, suggesting
that the degree of lymphocytosis is an indicator of the
severity of infection.

Severe anemia is a sign of malaria in ducks.13 In
this study, packed cell volumes, total erythrocyte counts,
and total serum protein determinations failed to confirm
anemia as a component of malaria in penguins. This
study indicates that the most useful profile for diag-
osing avian malaria in penguins would include thin
smear diagnosis and differential and total leukocyte
counts. A leukocytosis correlated with a lymphocytosis
should be considered indicative of avian malaria, even
in the absence of documentable parasitemia.

The therapeutic regimen was based on standard
human infant treatment schedules for the drugs used.
Although early treatment appeared to decrease expected
mortality, it failed to free the host of malarial organisms
in two cases. The lymphocyte data from this study
coulds the evaluation of the effectiveness of this treat-
ment regimen, since it indicates that penguins may de-
velop nonfatal subclinical infections. Most treated birds
had developed clinical signs prior to the beginning of
therapy and were considered gravely ill. We can say
that the treatment cleared the subjects of any observ-
able parasitemia, and that none of the treated patients
died of malaria. The apparent failure to free the pengu-
ins of all malarial organisms may be an advantage
if immunity is indeed based on premunition from chronic
infection.18,19 The question unanswered is whether the
two recurrences of malaria were due to reinfection or
recrudescence. No toxic side effects of either of the
drugs used were seen in any of the treated birds.

References

1. Fantah HB, Porter A: On a plasmodium (Plasmodium
 relictus var sphenisidae n var) observed in four species of
2. Griner LA, Sheridan BW: Malaria (Plasmodium relie-
 1:7-17, 1967.
3. Grunberg W, Kuter E: Infektionen mit Plasmodium
 praecox bei Humboldt (Spheniscus humboldti) und bulbepen-
 guinen (Spheniscus demersus). Zentralbl Bakteriol Parasitenkd
 Infektionskr Hyg Abl I Orig 189:511-520, 1963.
4. Huff CG, Bloom W: A malaria parasite infecting all
 blood and blood-forming cells of birds. J Infect Dis 57:315-
 336, 1935.
5. Huff CG, Shiroishi T: Natural infection of Humboldt’s
6. Rodhain J: L’infection a Plasmodium relictum chez les
7. Rodhain J, Andrannne VF: Deux nouveaux cas d’impo-
 tation par plasmodium chez des pingouins. Ann Parasitol Hum
 logic confirmation of malaria (Plasmodium elongatum) in Afri-
 can Penguins (Spheniscus demersus). Bull World Dis A 4:132-
 135, 1968.
 aria (Plasmodium elongatum) in captive African penguins
 (Spheniscus demersus). J Am Vet Med Assoc 153:928-935,
 1968.

JAVMA, Vol 175, No. 9