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We consider the problem of determining rigorous third-order and fourth- 
order bounds on the effective conductivity reof a composite material 
composed of aligned, infinitely long, equisized, rigid, circular cylinders of 
conductivity cr, randomly distributed throughout a matrix of con-
ductivity cr,. Both bounds involve the microstructural parameter [,
which is an integral that depends upon S,, the three-point probability 
function of the composite (G. W. Milton, J .  Mech. Phys. Solids 30, 
177-191 (1982)). The key multidimensional integral [, is greatly 
simplified by expanding the orientation-dependent terms of its integrand 
in Chebyshev polynomials and using the orthogonality properties of this 
bask set. The resulting 

L 
exmession is com~uted  for 

L" simnlified 
L 

an 
equilibrium distribution of rigid cylinders a t  selected $, (cylinder volume 
fraction) values in the range 0 < $, < 0.65. The physical significance of 
the parameter [,for general microstructures is briefly discussed. For a 
wide range of 6,and LX = cr2/cr1, the third-order bounds significantly 
improve upon second-order bounds which only incorporate volume 
fraction information; the fourth-order bounds, in turn, are always more 
restrictive than the third-order bounds. The fourth-order bounds on cr, 
are found to be sharp enough to yield good estimates of refor a wide 
range of $,, even when the phase conductivities differ by as much as 
two orders of magnitude. When the cylinders are perfectly conducting 
fa = a).moreover. the fourth-order lower bound on cr- ~rovides  an 

1 ,  c L 

excellent estimate of this quantity for the entire volume-fraction range 
studied here, i.e. up to a volume fraction of 65%. 

This paper studies the problem of predicting the effective thermal (or electrical) 
conductivity cr, of a two-phase material composed of equisized, parallel, circular 
cylinders, of conductivity CT, and volume fraction $,,distributed randomly 
throughout a matrix of conductivity cr, and volume fraction $,. To determine 
cr, exactly, it is necessary to know not only cr,, cr, and $, = 1-$,, but an infinite 
set of correlation functions which statistically characterize the microstructure of 
the two-phase mediunl (Brown 1955 ; Milton 1981 ; Torquato 1985 a ) .  Such a 
complete statistical characterization of the medium is almost never known in 
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practice. Given cr,, cr,, and limited microstructural information on the composite, 
one may rigorously bound cr,, however. Rigorous upper and lower bounds on 
effective properties are useful because: (i) they enable one to test the merits of a 
theory or computer-simulation experiment for the property; (ii) as successively 
more microstructural information is included, the bounds become progressively 
tighter ; (iii) one of the bounds can typically provide a relatively accurate estimate 
of the bulk property even when the reciprocal bound diverges from it  (Torquato 
1985 a). 

Using only cr,, cr,, and $,, Hashin (1970) has obtained the best possible bound 
on the effective conductivity of transversely isotropic fibre-reinforced materials. 
By a 'fibre-reinforced' material, we generically mean any material whose phase 
boundaries are cylindrical surfaces, with generators parallel to one axis. 

More restrictive bounds which include additional microstructural information 
on the fibre-reinforced material have been derived by Silnutzer (1972) and Milton 
(1981) for any isotropic two-phase material. The Silnutzer bounds depend upon an 
integral c, which involves the three-point probability function S,. S,(r,, ...,r,) 
gives the probability of finding n points a t  positions r,, . ..,r, all in one of the 
phases, say phase 2. Milton's bounds depend not only on c, but an integral 
involving S,, which itself can be expressed solely in terms of $, and c,. Thus, the 
key microstructural parameter that arises in both the Silnutzer and Milton bound 
is c,. Application of the Silnutzer and Milton bounds has been very limited because 
of the difficulty involved in ascertaining S,, either experimentally or theoretically. 
Recently, Torquato & Stell (1982) have provided a means of systematically 
representing and calculating the S, for random distributions of inclusions or 
particles, given the n-particle probability density function p, which characterizes 
the probability of finding any n particles with a particular configuration. 

To our knowledge, the Silnutzer and Milton bounds on rehave heretofore not 
been computed for the practically useful model of aligned, infinitely long, 
equisized, rigid, circular cylinders (or circular discs in two dimensions) distributed 
randomly throughout a matrix. In  this study, we shall carry out such calculations. 
Using the series representation of the 8, for a distribution of identical discs 
(Torquato & Stell 1982), we first greatly simplify the key multidimensional cluster 
integral c, by expanding orientation-dependent terms of its integrand in 
Chebyshev polynomials and using the orthogonality properties of this basis set. 
This analysis is general in that it may be applied to composites consisting of 
inclusions of arbitrary shape, size and penetrability (e.g, rigid, circular cylinders 
with particle-size distributions; rigid, elliptical cylinders; partially penetrable 
cylinders). We then compute the microstructural parameter c2for an equilibrium 
distribution of cylinders (discs) from the well-known results for the structure of 
rigid-disc fluids (Lado 1968). We briefly discuss the physical significance of c2for 
general microstructures. The Silnutzer and Milton bounds are then evaluated for 
our model for a wide range of phase conductivities and volume fractions. 

The rigid-disc model described above is a realistic model of fibre-reinforced 
materials possessing long but aligned impenetrable fibres. The results of this 
investigation are also of interest in thin-film physics, where films consisting of 
columns of one material in a matrix of another are observed (Perrins et al. 1979). 
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For reasons of mathematical analogy, the results of this study translate 
immediately into equivalent results for the dielectric constant and magnetic 
permeability of the composite, or the diffusion coefficient associated with flow past 
fixed inclusions. 

2. THIRD-ORDERA N D  FOURTH-ORDERB O U N D S  

Given cr,, r,, $2,  and two integrals involving certain three-point correlation 
functions, rigorous bounds on the effective conductivity reof any fibre-reinforced 
material, statistically isotropic in the transverse plane, have been derived by 
Silnutzer (1972). Milton (1982) showed that the Silnutzer bounds may be 
expressed in terms of r,, r,, $,, and a single integral c2 (defined below) which 
depends upon the three-point probability function described in the Introduction. 
The simplified form of the Silnutzer bounds are given by 

where 

and 

Here we define (b) = b, $, + b, $,, (6) = bl $, + b, $,, and (b)c = bl el+ b, c2,where 
b represents any property. In addition, we have 

where I is an integral operator defined below. The quantities S,(r) and S,(r, s, t) 
are, respectively, the probabilities of finding in phase 2 the end points of a line 
segment of length r and the vertices of a triangle with sides of length r, s, and t. 
Sl is simply the volume fraction $, of phase 2. 

For any function f ( r , s , t ) ,  the integral operator I is defined through the 
relation 

where 0 is the included angle opposite the side of length t, so that t2 = r2+s2 
-2rs cos0. In the first line of (2.6), the vector positions r and s are integrated 
over the entire infinite area. Note that for any function f that does not depend 
upon t, we have that IGf(r, s)] = 0. Thus, although the term S,(r) S2(s)/Sl of (2.5) 
contributes nothing to I, its presence ensures the absolute convergence of the 
integral I[$,], i.e. X^,(r,s,t) tends to zero when r + O ,  s+O, r + m ,  or s +  m 
(Brown 1955). 

The bounds (2.1) are exact through third order in (r2-r,)and hence are 
referred to as third-order bounds. The fact that c, (or el) lies in the interval [O,1] 
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implies that the Silnutzer bounds always improve upon the corresponding second- 
order bounds of Hashin (1970). The Hashin upper bound on cr, for cr, > cr, is 
exactly realized by a two-phase material composed of 'composite' cylinders 
consisting of a core of conductivity cr, and radius R,, surrounded by a concentric 
shell of conductivity cr, and radius R,. The ratio RE/R: = $, and thus the 
composite cylinders fill all space, implying there is a distribution in their size 
ranging to the infinitesimally small. For el = 0 or, equivalently, for c, = 1, the 
third-order bounds (2.1) coincide and are equal to the Hashin upper bound for 
cr, 2 crl. Hence, el = 0 (or c2= 1) for the singly coated composite cylinder 
assemblage (CCA) corresponding to the second-order upper bound. The Hashin 
lower bound on cr, for cr, 2 crl corresponds to the singly coated CCA but with 
phase 1interchanged with phase 2. For c, = 0 (el= I ) ,  the third-order bounds (2.1) 
coincide and are equal to the Hashin lower bound for cr, > cr,. Therefore, for the 
CCA corresponding to the second-order lower bound, c, = 0 (or el = 1). 

Milton (1981) has derived fourth-order bounds on cr,, which depend not only 
upon cr,, cr,, and c,, but upon a multifold integral that depends upon the four-point 
probability function 8,. (Note that these fourth-order bounds on cr, are the two- 
dimensional analogues of bounds derived by Phan-Thien & Milton (1982) for 
three-dimensional isotropic two-phase composites.) Using a phase-interchange 
theorem for fibre-reinforced materials, Milton showed that the microstructural 
parameter involving S,  can be expressed in terms of $, and c, only. Milton's 
fourth-order bounds for transversely isotropic materials, for the case cr, > cr,, are 
given by 

where 

and 

The upper bound (2.8) is exactly realized for a two-phase system composed of 
composite circular cylinders consisting of a core of conductivity cr, and radius 
R,, surrounded by a concentric shell of conductivity cr, and outer radius R,, which 
is in turn surrounded by a concentric shell of conductivity cr, and outer radius R. 
The ratio RE/Ri is such that i t  equals the product $, el and the composite cylinders 
fill all space, implying that there is a distribution in their sizes ranging to the 
infinitesimally small. For this doubly coated CCA, the more conducting phase 
(phase 2) is generally the continuous phase and hence the CCA percolates for all 
$,, except $, = 0. This means that the fourth-order upper bound on (T, goes to co 
in the limit a = cr2/cr1+ co. (This statement applies as well to the second-order 
and third-order upper bounds.) The fourth-order lower bound (2.9) is realized for 
the aforementioned doubly coated CCA, but where the role of the individual phases 
are interchanged. Hence, the two-phase geometry corresponding to (2.9) generally 
possesses a dispersed or discontinuous conducting phase and can only percolate a t  
the trivial value $,  = 1. This implies that the fourth-order lower bound on cr, 
always remains finite even in the limit a + co. (This statement applies as well to 
the second-order and third-order bounds.) Finally, we note that the Milton bounds 
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(2.7)always improve upon the second-order bounds of Hashin and the third-order 
bounds of Silnutzer. 

The fact that the bounds diverge in the cases where the phase conductivities are 
drastically different does not mean the bounds have no use in such instances. 
Torquato (1985 a)  has observed that lower-order lower bounds (such as second- 
order, third-order, and fourth-order bounds) should yield good estimates of 
cr,/cr, for a B 1,provided that the volume fraction of the highly conducting phase, 
$,, is below its percolation-threshold value $: and that the average cluster size of 
phase 2,  A,, is much smaller than the scaled macroscopic dimension of the sample 
L. (A cluster of phase i is defined as that part of phase i which can be reached from 
a point in phase i without touching any part of phase j ,  i # j .  L is defined to be 
the dimensional characteristic length of the sample divided by the microscopic 
lengthscale associated with inhomogeneities.) Of course, the accuracy of the lower- 
order lower bounds increases as the order increases. Note that the condition A,  < L 
alone implies that $, < 4:. For periodic as well as random arrays of impenetrable 
cylinders, the condition A ,  < L is satisfied for all $,, except a t  the respective close- 
packing value, i.e. $, = $;. Similarly, lower-order upper bounds on cr,/cr, for 
a 9 1 should provide useful estimates of cr,, given that q5, > $: and A,  < L, where 
A,  is the average cluster size of phase 1. Again, the accuracy of the lower-order 
upper bounds increases as the order increases. 

Until now, the three-poir& parameter c, has only been computed for two 
random-media models, namely, symmetric-cell materials (Beran & Silnutzer I 97I ) 
and fully penetrable cylinders (Torquato & Beasley 1986 ; Joslin & Stell 1986). 
Symmetric-cell materials (Miller I 969) are constructed by partitioning space into 
cells of possibly varying shapes and sizes, with cells randomly and independently 
designated as phase 1 or phase 2 with probabilities q5, and $,, respectively. 
Although a useful mathematical construct, a symmetric-cell material could not be 
used as a model of the more realistic two-phase microstructure of a distribution of 
equisized impenetrable cylinders in a matrix, because the space could not be 
completely filled by such cells. By 'fully penetrable' cylinders we mean a 
distribution of randomly centred, and thus spatially uncorrelated, cylinders. As 
the fibre fraction is increased for such distributions, the fibres tend to form 
clusters, and eventually, a t  the percolation threshold, changes from a dis-
continuous structure to a continuous one. The space ultimately can be entirely 
filled with cylinders. Hence, distributions of fully penetrable cylinders, a t  high 
fibre fractions, are not useful models of a large class of fibre-reinforced materials -
that possess impenetrable fibres. I n  many instances, the latter percolates or forms 
an infinite cluster only a t  the maximum, close-packing volume fraction of the 
system. 

3. SIMPLIFICATIONO.F T H E  P A R A M E T E R  c ,  F O R  I M P E N E T R A B L E  

C Y L I N D E R S  

The general n-point probability function for the ith phase of a two-phase system 
of arbitrary dimensionality composed of inclusions distributed throughout a 
matrix phase has been shown by Torquato & Stell (1982) to be given by an infinite 
series. For the special case of an isotropic distribution of identical, impenetrable 
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discs (parallel cylinders) of radius R a t  area (volume) fraction $,, the infinite series 
for the probability function of the included phase (phase 2) terminates with the 
nth term (Torquato & Stell 1982). In  the specific instance n = 3, it is given by 

where in the diagram notation of Torquato & Stell (1985). 

In this shorthand, a solid circle represents a vector position that is integrated over 
the entire infinite area, the labelled open circles stand for r,, r,, or r, (with rij= 
1 rj-ri 1 ), and the broken line represents the bond 

between the two positions, the solid line represents the pair or radial distribution 
function g ,  of the discs, and the cross-hatched triangle for their triplet distribution 
function g,  ; thus, for example, 

The g ,  are related to the n-particle probability density function p ,  through p, = 
png,, where p is the number density of discs (cylinders). Finally, A, = nR2is the 
area of one disc. 

The graphs (3.2)-(3.4) have simple interpretations. Xi1)  $, gives the contribution 
to S ,  when all three points lie in the same disc (or sphere in three dimensions) : a 
quantity which is trivially related to the intersection area (volume) of three discs 
(spheres) with centres separated by distances r,,, r,,, and r,,. Si2)$,2is the 
probability of finding one point in one disc (sphere) and two points in some other 
disc (sphere). Finally, S f ) $ ;  gives the probability of finding each of the three 
points in different discs (spheres). Although SF) is independent of $,, SF) and Xi3)  
are both functions of $, through their dependence upon g ,  and g,. Note that S ,  
in the papers by Torquato & Stell, unlike this work, denotes the probability 
function associated with the matrix phase, which actually is simply related to the 
included-phase counterpart (Torquato & Stell 1982). 

It is seen that S3involves two-fold, four-fold, and six-fold integrals. Hence, the 
integral ~[k?,] (and, thus, g,) consists of complicated multifold integrals which we 
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now simplify. It should be noted that the analysis given below is general in that 
it may be applied to composites consisting of inclusions of arbitrary shape, size 
and penetrability (e.g. rigid, circular cylinders with particle-size distributions; 
rigid, elliptical cylinders; partly penetrable cylinders, etc.). The three-point 
probability function for dispersions containing particles of arbitrary shape and 
size has the same functional form as (3.1)-(3.4). 

(a) Evaluation of IISil)] 

Keeping the origin of a polar coordinate system fixed a t  r, and aligning the 
x-axis along f12 = r12/r12 (r12 = r2 -rl) for convenience, we have 

where O,,, = arcos (ti, ti,).ij 

The angular integration in (3.7) can be carried out by expanding the angle- 
dependent functions in a cosine series or equivalently in Chebyshev polynomials. 
For example, 

m 

m(r24)  = C Mn(r12, r14) Tn (cos '214), (3.8) 
n=o 

where T,(acosO) = cosn0 is the Chebyshev polynomial of the first kind. The 
expansion coefficients are then given by 

where 

I n  Appendix A it is shown that the coefficients may be alternatively expressed 
as 

where fi(k) is the Fourier transform of m(r) and J,(x) is the Bessel function of 
order n. Similarly, we write m(r3,) as 

where, upon invoking the addition formula for the Tn (Abramowitz & Stegun 
1964),we have introduced the Chebyshev polynomial Vn(cos 0) = sin n0. The Vn 
are related to the Chebyshev polynomials of the second kind U, defined in 
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Appendix B. The addition formula is used to bring out the specific angular 
variables needed. The orthogonality properties 

A J  dBV,(x)T, = 0, for a l lmandn,  
n o  

will prove to be very useful. Here am, is the Kronecker delta and x = cos8. 
Using the expansions (3.8) and (3.12), and the orthogonality relations 

(3.13)-(3.15), we now have in (3.7) 

and thus finally 

Now by (3.11) and noting that &(k) = 2nRJl(kR)/k, we have 

where H(x) is the Heaviside step function, defined to be zero when its argument is 
negative, one otherwise. (The Bessel function integrals used in getting (3.18) can 
be found in Abramowitz & Stegun (1964).) Because of the conflicting step 
functions, we finally find the simple result 

Because Sil)is independent of the structure, (3.19) is a universal result for any 
ensemble of equisized discs. 
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( b )  Evaluation of I[Sp)] 
Again, keeping the origin of coordinates fixed a t  rl and aligning the x-axis along 

f12, the first graph of (3.3), with m(r,,), m(r3,) and g2(r4,) expanded in Chebyshev 
polynomials, is given by 

In  arriving a t  (3.20) we again have used the addition formula for the Tn and the 
orthogonality properties of Tn and Vn. Here G, are the expansion coefficients 
associated with the radial distribution function. Therefore, 

again because of the conflicting demands of the step functions on r,,. Interchanging 
the labels 2 and 3 clearly leads to the same integrals, thus the second diagram in 
(3.3)also contributes nothing to I. 

The only non-zero contribution to I from (3.3) is from the last graph. Instead 
of integrating over r,, r,, r,, and r5, as we did for the two previous diagrams, we 
shall, by- virtue of the homogeneity and isotropy of the system, integrate over 
rl, r2,  r3, and r4. Hence, we have 

where W(r45) = 7' Idrl dr2 dr3 m(r15) m(r24) m(r34) 
T2(c0s '213) 

4 r122r123 ' 

Now consider first the integral over r3 in (3.23) which requires the expansion of 
m(r3,) as in (3.12) : 

The second line of (3.24) follows from (3.18). Because we have assumed the 
fibres (discs) to be mutually impenetrable, then the radial distribution function 
g(r4,)= 0 for r4, < 2R. Moreover, m(r15) = 0 for r15 > R. Accordingly, for r15 < R 
and r4, > 2R, we have r14 > R and thus can drop the step function H(r14 -R) from 
(3.24). I n  a similar manner, we get 
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Application of (3 .24)and (3.25)gives 

de  

(r2+s2-2rs cos 0 )2  


where r = r,,, s E r15,t E r14,and 0 is the angle opposite the triangle side of 
length t ;  the implied fixed origin is a t  r ,  and the x-axis along f,,. 

Introduction of (3.26)into (3.22)and use of (3 .3)finally yields 

where we have used the constraint that g2(r)= 0 for r < 2R. Thus, we have 
reduced an eight-fold integral (3.22)to the one-dimensional quadrature (3 .27) .  

( c )  Evaluation of I[Sp)]  

Simplification of the final integral is again considerably aided by exploiting the 
freedom, offered by the homogeneity and isotropy of the system, to change as 
convenience dictates the origin and orientation of the coordinate frame. Consider 
writiig the desired integral in the form 

The implied fixed origin for (3.28)is now a t  r,. Let us first consider the integral 
over r ,  in (3 .29) ,which requires expansion of m(r,,) .With an origin of coordinates 
a t  r ,  and the x-axis along t12,we find 

The presence of the three-body distribution function g, in (3.28)requires r,, > 2R. 
This result combined with the constraint r14< R (because of m(r14) ) ,necessarily 
gives that r16> R and hence we can drop the step function H(r16 -R)  in (3 .30) .  
Next consider the integral over r2 such that we keep the origin a t  rl but align the 
x-axis along 6,: 
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As before, the step function H(r15-R) is always satisfied and hence (3.29) now 
becomes 

Now to integrate over r,, we place the origin a t  r4. Because = 8415+8416,we 
have, using the addition formula for the Tn, 

It is shown in Appendix B that the expressions within the brackets in (3.33) can 
be expanded in terms of the corresponding opposite angles a t  the base of the 
coordinate frame, giving now 

The second line of (3.34) is obtained by applying the addition formulas to the 
Tn(cos dl,,) and Vn(cos dl,,) and then by using the orthogonality properties 
(3.13)-(3.15). Substitution of (3.34) into (3.28) yields 

m 

= 2 (n- 1)RznP4Som5Som$1 S, t)T ~o), ((3.35)~ ~ ~ 
n=2 

where r, s, and t are the lengths of sides of a triangle and 6' is the angle opposite 
the side of length t. Hence, we have reduced a tenfold integral (3.28) to the three- 
dimensional quadrature (3.35). 

As remarked earlier, although the term S2(r)S2(s)/Sl of (2.5) makes no 
contribution to I ,  its presence ensures the absolute convergence of the integral 
I[#,]. The expression for S2(r12) for the case of impenetrable discs can be obtained 
from (3.1)-(3.4) for S3(r12, r,,, r,,) by letting r, -,r, : 

(3.36) 
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We can now summarize the results of this section for the simplification of (2.4) 
with the finding that, by (3.1), (3.19), (3.27), (3.35) and (3.36), we have 

where 

The term g2(r)g(s) in (3.39) arises from I[S2(r)S2(s)/Sl] and hence ensures the 
convergence of I%,, a point of particular interest for numerical calculations. Note 
that the symmetry of the integrand in r and s has enabled us to change the limits 
of integration on s from 0 < s < cc [(3.35)] to 0 < s < r [(3.39)] ; this brings out a 
factor of two. The three-point parameter C2 is trivially related to (3.37) through 
(2.4). It should be emphasized that (3.37)-(3.39) are valid for any isotropic 
distribution of equisized impenetrable cylinders. 

Here we compute the microstructural parameter c2for a random distribution of 
parallel cylinders (discs) in a matrix. To evaluate the two-body and three-body 
integrals of (3.37) we need to know the pair g, and triplet g, distribution functions 
for the model. By assuming an equilibrium distribution of rigid cylinders, we can 
employ approximations for g, and g, used in the study of the liquid state. An 
equilibrium distribution of rigid discs may be regarded, in a qualitative sense, as 
the 'most' random distribution of discs subject to the constraint of mutual 
impenetrability. Specifically, we use the Percus-Yevick approximation to g, for 
rigid discs obtained numerically by Lado (1968). The calculation of the triplet 
distribution, as is well known, is more problematical. Lacking any more 
fundamental alternative, we turn to the familiar Kirkwood superposition 
approximation (Hansen & McDonald I 976). 

to compute this quantity. The superposition approximation is exact for all 
possible configurations of three particles in the zero-density limit and when one 
particle is distant from the other two, regardless of the density. For equilateral- 
triangle configurations, the superposition approximation is accurate, especially a t  
high densities; the approximation is less accurate a t  low densities and for less 
symmetric triplet configurations. A study by Beasley & Torquato (1986) indicates 
that the use of the superposition approximation to compute the three-dimensional 
analogue of 5, for suspensions of spheres slightly underestimates the geometric 
parameter (i.e. provides a lower bound on 5,) ; the error increases with increasing 
density. The use of a lower bound on c, (at some fixed volume fraction) in either 
two-dimensional or three-dimensional conductivity bounds still provides rigorous 
bounds on re,albeit bounds which are weaker than the ones incorporating the 
exact 5,. Because the integral (2.4) bears a strong similarity to its three- 
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dimensional counterpart, i t  is expected that application of the superposition 
approximation in (3.39) should not lead to significant errors in 5,. Henceforth, we 
shall denote g, by g. 

For numerical calculations, it is advantageous to replace g(r) in the first integral 
of (3.37) with 1+h(r), where h(r) is the total correlation function. For cylinders of 
unit diameter, we have then 

where now the integrand with h(r) vanishes rapidly for large r. Given the 
Percus-Yevick h(r) (Lado 1968), the integral of (4.2) can be computed with any 
standard numerical quadrature technique. 

In  the superposition approximation, the second integral of (3.37) (for cylinders 
of unit diameter) becomes 

Note that we have used the fact that g(r) = 0 for r < 1.We compute this threefold 
integral by using a Gaussian-Chebyshev quadrature technique (Abramowitz & 
Stegun 1964). Such numerical integration schemes have been used to accurately 
evaluate related multifold integrals (Torquato & Beasley I 986). Because h(t)= -1 
for t < 1 and is discontinuous a t  t = 1,we rewrite the integral k ,  so as to explicitly 
account for the discontinuity a t  t = 1 and hence divide it up into the following five 
parts : 

where 

In  the equations above, 8, = arcos [(r2 +s2- 1)/2rs] is the angle a t  which t = 1. 
Equations (4.5) and (4.6) thus give the contribution to k ,  for t < 1. The remaining 
integrals, (4.7)-(4.9), give the contribution to k ,  for t > 1. To ensure proper 
sampling of the integration region, the integrals I,were subdivided further so that 
24 gaussian points in each dimension gave convergence to four significant figures. 
In  principle, the expansion (4.4) in Chebyshev polynomials is infinite, but in 
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practice only the first seven to nine terms are needed to give convergence to four 
significant figures. To compute k, a t  large volume fractions (the most time- 
intensive cases), the gaussian quadrature scheme required about 48 min of CPU 
time on a VAX 785. We also evaluated the two-body integral of (4.2) using the 
same gaussian technique ; here we used 64 gaussian points. 

In  table 1we present our results for the microstructural parameter 

a t  selected values of the volume fraction. Because the Percus-Yevick approxi-
mation for the pair distribution function appears to break down as the random 
close-packing volume fraction 4, % 0.81 (Stillinger et al. 1964) is approached, the 
highest volume fraction reported here is $, = 0.65, a t  which the Percus-Yevick 
results are still in relatively good agreement with Monte Carlo simulations. The 
percolation threshold $: for an equilibrium distribution of impenetrable discs 
has been conjectured to be the random-packing limit. The value $, = 0.65 is 
considerably above the close-packing volume fraction of 0.55 for random 
sequential addition of rigid discs (Feder I 980). 

TABLE1. THREE-POINTPARAMETER c2FOR AN EQUILIBRIUM DISTRIBUTION O F  

IMPENETRABLE CYLINDERS 

Before comparing our results for 5, to other calculations, it is useful to obtain 
the low-density expansion of I[$,] or c2.To do so, we require the low-density 
expansion of the total correlation function h(r). Through order p, we exactly have 
(Hansen & McDonald 1976) that 

where Apt(r)= [n 2 arcsin (ir) - -r) (4.12)- r(1- ar2)i] ~ ( 2  

is the intersection area of two discs of unit radius whose centres are separated by 
distance r. Substitution of (4.11) into (4.2) yields 

Because k, is multiplied by an additional factor $,, we need only substitute the 
zero-density limit of the total correlation function (i.e. h(r) = -H(1 -r)] into (4.3) 
to obtain 

k, = -1.024+ 0($,). (4.14) 

Note that because the superposition approximation for g, is exact in the limit 
p -t 0, (4.14) is exact (within the accuracy of the numerical quadrature technique). 
Therefore, use of (3.41), (4.10), (4.13) and (4.14) leads to 
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Equation (4.15) involves no approximation and hence is exact through order 4:. 
The first-order coefficient of (4.15) depends upon go(r), the zero-density limit of 
g(r). The second-order coefficient of (4.16) depends on g(r) through order p and on 
the zero-density limit of the triplet distribution function g,(r, s, t) = go(r) go(s) go(t). 
The aforementioned statements regarding the dependence of the first-order and 
second-order coefficients on g and g, apply generally to any distribution of discs 
(e.g. fully penetrable discs, discs with size distributions, etc.). Interestingly, the 
low-density expansion (4.15) provides a relatively good approximation of our 
calculations of 5, through all orders in 4, (table 1) for the range 0 < 4, < 0.4. 

In  figure 1, the three-point parameter c2computed here is compared with the 
relatively few calculations of g2 for other microstructures. This includes the 
symmetric-cell material (SCM) with cylindrical cells (Beran & Silnutzer 1971) for 
which 5, = $,, square and hexagonal arrays of cylinders (McPhedran &: Milton 
1981) up to 4, very near their respective close-packing volume fraction, and fully 
penetrable cylinders (Torquato & Beasley 1986). Recall that the deviation of 5, 
from 0 to 1 is a measure of the microstructural differences between the model of 
interest and the singly coated CCA geometries in which phase 2 and phase 1 are the 
dispersed phases, respectively. 

0 0.2 0.4 0.6 0.8 1.0 

$2 

FIGURE1. Three-point parameter c2 for arrays of cylinders, including the symmetric-cell 
material (SCM), fully penetrable cylinders (FPC), square array (sA), hexagonal array (HA), 

and the random impenetrable array computed in this study. 

Note that for all the models shown in figure 1, c2is a monotonically increasing 
function of 4, with c,($, = 0) = 0. For general distributions, c,($, = 0) depends 
only upon the shape of the inclusion and hence is independent of the size 
distribution. 

As remarked earlier, the slope of 5, a t  $, = 0, ci(4, = O), for general distributions 
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of inclusions, depends not only upon the shape of the inclusion but upon go(r), the 
zero-density limit of the radial distribution function. The effect of size distribution 
of the inclusions, therefore, will be reflected in G($, = 0). For the equisized 
impenetrable-cylinder models depicted in figure 1 (square and hexagonal arrays 
and the random array), G($, = 0) is determined by integral (3.38) (or, 
equivalently, (4.2)). For random arrays of cylinders, the impenetrability 
constraint prohibits two centres from being closer than a diameter (go(r) = 0, 
r < 1) but for separations greater than a diameter (2R), the second cylinder 
relative to the first occupies all positions with equal probability (go(r) = 1, r > 1). 
This go(r) leads to &($,= 0) = $ as we have seen (cf. (4.15)). On the other hand, for 
regular arrays, go(r) = Olfor r less than distances of the order of R$;: and unity 
otherwise. Because R$ii $- 1 a t  dilute conditions, the form of the integrand of 
(3.38)implies that k, and thus 5;($, = 0) are zero. Thus, because periodic systems 
are 'well separated' for $, -4 1, the expansion of 5, through first order in 4, for 
these models is equal to that of the singly coated CCA model (5, = 0) in which 
phase 2 is dispersed. In the case of fully penetrable discs, we have exactly that 
g(r) = 1 for all r, i.e. the cylinder centres are randomly centred and thus 
completely uncorrelated. For this model, integral (3.38) (which accounts for 
cylinder separations greater than 1) as well as integrals involving g(r) for r < 1 
(Torquato 1985 b) contribute to G($, = 0). The latter contribution is positive, 
implying that G($, = 0) for this model must be greater than C;($, = 0) for random 
rigid cylinders which is determined by (3.38) only. In the former case, G($, = 0) 
x 0.615. Finally, although both the SCM and distributions of fully penetrable 
inclusions are models characterized by a high degree of 'randomness ', the former, 
unlikeAthe latter, is composed of cylindrical cells with a distribution of sizes such 
that they are space filling. This difference will be reflected in the go(r) for these two 
models and presumably is the reason why C;($, = 0) for the SCM is larger than the 
corresponding slope for fully penetrable cylinders. 

It is noteworthy that 5, for the SCM is exactly linear in 6, (5, = $,, Milton 1982) 
and hence is completely determined by the zero-density limit of the radial 
distribution function. Interestingly, for the case of fully penetrable cylinders, c2is 
nearly linear over the entire range of $, and thus G($, = 0) is the dominant term 
in the expansion. The aforementioned similarities between the two models should 
not lead one to conclude that they are, in some rough sense, topologically similar. 
In fact, topologically they are strikingly different. Whereas the SCM exhibits 
topological equivalence, fully penetrable cylinders do not. (In cases where the 
morphology of phase 1 a t  volume fraction $, is identical to that of phase 2 when 
the volume fraction of phase 1 is 1 -$,, the composite is said to possess topological 
equivalence.) Unlike regular arrays of cylinders, 5, for random impenetrable 
cylinders is approximately linear for the range 0 < 4, < 0.4. For random and 
periodic impenetrable cylinders, 5, sharply rises as $, approaches its respective 
close-packing value $; and apparently takes on its maximum value at  $;. 
Exclusion-volume effects present in such models causes c2to sharply increase as 
6;. This is to be contrasted with the approximately linear behaviour of 5, for the 
case of fully penetrable cylinders in which exclusion-volume effects are totally 
absent. For this model, 5, is not characterized by any marked change in its 
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behaviour a t  the percolation threshold $: x 0.68 (Gawlinski & Stanley 1981 ), 
which occurs well below $, = 1, i.e, the volume fraction a t  which [, is a 
maximum. 

What is the significance of the precipitous increase of 5, for square arrays over 
and above the values of the corresponding parameter for fully penetrable cylinders 
in the range $, 2 0.775 ? To answer this question, we first examine the behaviour 
of the [, for these models for $, less than the smaller of the two percolation 
thresholds, i.e. for $, < 0.68, where $: = 0.68 is the critical value for fully 
penetrable cylinders (Gawlinski & Stanley 1981). For such $,, [,for penetrable 
inclusions is always greater than [, for the square array. Based upon the 
discussions in $2, this implies, for highly conducting inclusions (a % I ) ,  that 
fourth-order lower bound on re (the bound that gives the good estimate of re 
provided that A, -4 L) for the former will be above the one for the latter. This is 
fully consistent with our intuition that the effective conductivity of a system in 
which the inclusions may cluster must be larger than the u,of a system in which 
the inclusions are never in contact with one another. As soon as we cross the 
threshold for the overlapping case (4, > 0.68), then the fourth-order upper bound 
on u, will yield the useful estimate of the property for a % 1. For the range 
0.775 < $, < in (6: = in for the square array), [,for the periodic system is always 
greater than [,for overlapping cylinders. Hence, the fourth-order lower bound for 
the former will be above the one for the latter, given a %- 1. This does not mean 
that the lower bounds are incorrectly implying that u, for square arrays is larger 
than re for fully penetrable cylinders: a system above its threshold. On the 
contrary, because the former is below its threshold, the fourth-order lower bound 
gives the estimate of u,,which clearly is below the estimate of refor the fully 
penetrable case (i.e. the fourth-order upper bound). 

Finally, we would like to note the interesting observation that [,= $, for the 
SCM provides an upper bound on [,for all of the models described in figure 1, 
Placement of bounds on the parameter [,for any distribution of circular cylinders 
would be of great value, however, we cannot presently derive such bounds. 

5. EVALUATIONO F  T H I R D - O R D E R  A N D  F O U R T H - O R D E R  B O U N D S  O N  re 

Using the results of the previous section for the microstructural parameter [,, 
we evaluate the third-order bounds (2.1) and fourth-order bounds (2.7) for a 
random array of cylinders in a matrix. In figure 2 we plot the third-order and 
fourth-order bounds on the scaled conductivity u,/r,as a function of the cylinder 
volume fraction for a = 10. We include in this figure the corresponding second- 
order bounds due to Hashin. Note that the third-order and fourth-order upper 
bounds, rather than the corresponding lower bounds, provide most of the 
improvement relative to the second-order upper bound, as expected. The third- 
order bounds significantly improve upon the second-order bounds; the fourth- 
order bounds, in turn, are more restrictive than the third-order bounds. At $, = 
0.5, the third-order bounds are about 3.7 times narrower than the Hashin bounds, 
whereas the fourth-order bounds are about 2.1 times narrower than the third- 
order bounds. For the range 0.1 < a < 10, the Milton bounds are sharp enough to 
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FIGURE2. Bounds on a,/a, as function of $, a t  a = 10. ---, Hashin bounds, ...,Silnutzer 


bounds; ----, Milton bounds for a random array of impenetrable cylinders. 


give a good estimate of ae/alfor the entire range of volume fractions reported. 
(For the case a = 0.1 -not shown here -the Silnutzer and Milton bounds provide 
similar improvement over the Hashin bounds, except that most of the im- 
provement is in the lower bound.) 

In  figure 3 we plot all three bounds on ue/al as a function of q5, for a = 100. All 
the bounds, as expected, widen. At 4, = 0.5, the Silnutzer bounds are about a 
factor of 2.8 narrower than the Hashin bounds; the Milton bounds are about a 
factor of 1.7 narrower than the Silnutzer bounds and hence are almost 5 times 
more restrictive than the Hashin bounds. For the range 0.01 < a < 100, the 
Milton bounds are sufficiently restrictive so as to give a good estimate of ae/alfor 
the volume fraction range 0 < q5, < 0.4. 

The fact that the bounds diverge as a is made larger does not mean that they 
cannot be used to estimate a,. As discussed in $2, because q5, is below the 
percolation point (4; x 0.81) for randomly distributed rigid cylinders and because 
there are no particle contacts ( A , -4L), the lower bound should give a relatively 
good estimate of a, for a B 1. 

In figure 4 we plot all three lower bounds for the extreme case a = co, i.e. 
perfectly conducting cylinders (the instance in which all upper bounds diverge to 
infinity). Milton's fourth-order lower bound is expected to yield a good estimate 
of a,, with the maximum error occurring at  the maximum volume fraction 
reported here, i.e. at  q5, = 0.65 or q5,/q5; x 0.80. We can estimate the maximum 
error by comparing the Milton lower bound (2.9) for square and hexagonal arrays 
(McPhedran & Milton 1981) a t  q5,/q5; = 0.80 and for a = co to the exact results 
of Perrins et al. (1979). For square arrays, a f ) / u  = 4.89, whereas the exact result 
for ae/al= 4.93. For hexagonal arrays, af)/al= 6.51, whereas the exact result 
for a,/al = 6.53. Therefore, the maximum error in using Milton's lower bound to 
estimate the conductivity of a random array of perfectly conducting cylinders is 
expected to be about 1 % for 0 < q5, < 0.65. For values of a in the range 1 < a < co, 
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FIGURE3. As figure 2, with a = 100. 
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FIGURE co.Upper bounds do not appear because they diverge to infinity 4. As figure 2, with a = 
in the limit a + oo.Milton's fourth-order lower bound, however, gives an excellent estimate 
of 8,/cT1 

the deviation of Milton's lower bound from exact results is even less than it is 
for or. = co. In  short, the fourth-order lower bound on u, provides an excellent 
estimate of this quantity for random arrays of cylinders for the entire volume- 
fraction range studied here, even when the cylinders are infinitely conducting. 
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APPENDIX A. ALTERNATIVE R E P R E S E N T A T I O N  O F  E X P A N S I O N  


C O E F F I C I E N T S  


Consider some function f(t) which depends only on the magnitude t of the vector 
t. The orthogonality of the Chebyshev polynomials yields the inverse of the 
expansion 

m 

f(t) = C F n  (r,8)Tn(COS 6) (A 1) 
n=o 

where the cn are given by (3.10) and t2 = r2+s2-2rs cos 8. Now suppose that  f(t) 
possesses a Fourier transform flk), so that 

1
f ( t )  = 4rrP J dkflk) exp (ik . 1). 

Here k is the magnitude of the wavenumber vector k and i = 1/ -1. We now show 
that  (A 2) can alternatively be written in terms of the transformflk). Arrange the 
coordinate frame such that the vector r emanates from the origin and lies along 
the x-axis; in this frame, let 4 be the angular coordinate of k. Letting P = 8-4,  
we then have 

exp (ik . t) = exp [ik . (s-r)] = exp [iks cos P] exp ( -ikr cos 4) 
m 

Jo(ks)+2 C ( - l)mJ2,(ks) cos 2mp 
m = l  

m

+2i C ( - J2,+, (ks) cos (2m + 1)pIm=o 

m 

+2 C ( - l)nJ2,(kr) cos 2n4 
n = l  

m 

-2i C ( -l)nJ2,+,(kr) cos (2n + 1)4I , (A 4) 
n=o 

where, using the generating function for the Bessel function Jn(Abramowitz & 
Stegun 1964),we have expanded plane waves in cylindrical waves. Substitution of 
(A 4) into (A 3) then leads to 

Comparing (A 5) with (A 1)gives 

which is sometimes a convenient alternative to (A 2). 
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APPENDIX B. SOME U S E F U L  I D E N T I T I E S  

Here we shall prove the following relations for the triangle with sides of length 
r, S, and t :  m(:I2 cos 24 = (:)2T,(cos $1 = c (n+ 1) 

n=o 
m(iT sin 29 = (i)lV2(cos$) = C (n+ 1) 

n=O 

Here 4 and 8 are the angles opposite the sides of length r and t, respectively; 
x = cos8, Tn(x) = cosn8 is the Chebyshev polynomial of the first kind, and 
Vn(x)= sinn6 is a polynomial related to the Chebyshev polynomial Un(x) of the 
second kind defined below. 

The Chebyshev polynomial of the second kind is defined through the generating 
function 

Differentiating (B 3) with respect to x gives 

where the prime denotes the first derivative. Now 

cos 24 = 1-2(r/t)2 sin2 6 (B 5 )  

and hence m n(;I c (;)cos2$ = [un(x)- (1-x2) u;+l(x)~ 
n=o 

which is one of the relations we set out to prove. The second line of (B 6) follows 
from recurrence relations for Chebyshev polynomials (Abramowitz & Stegun 
1964). 

The use of the identity 

(r/t)2 sin 2$ = 2(r/t)4(X -s/r) d ( 1 -  x2) (B 7)  

in conjunction with (B4) yields 

where (B 9) 

This proves (B 2). Again, the second line of (B 8) follows from recursion 
relations. 
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Note added in proof (26 January 1988). Durand & Ungar have very recently 
written a paper (to be published in the International Journal of Numerical 
Methods in Engineering in which they use a computer simulation procedure to 
exactly, within numerical error, determine the effective conductivity, for the same 
equilibrium cylinder model studied here, for a = 50 a t  three volume-fraction 
values, 4, = 0.2,0.4 and 0.6. The fourth-order lower bound (2.9), computed in this 
study, predicts conductivities which are virtually identical to the ones obtained by 
Durand & Ungar. This supports our comments that bounds (which are relatively 
inexpensive to compute) can be used to accurately estimate cr,, even when the 
phase properties widely differ. Moreover, this strongly indicates that the use of the 
superposition approximation (4.1) to calculate (3.39) does not lead to significant 
errors in the microstructural parameter c,. 


