
ABSTRACT 

MAHAJAN, HERAMB PRAKASH. Issues with Progressive Degradation Modeling of 
Reinforced Concrete members. (Under the direction of Dr. Tasnim Hassan.) 
 

Reinforced concrete (RC) structures are common in earthquake prone regions and may 

sustain various degree of damages under any earthquake. Northridge (1994) and Kobe (1995) 

earthquakes are examples that RC structures may sustain significant damages during 

earthquakes. Subsequent to these earthquakes, seismic design methods have been improved 

primarily by the performance based design methodology, but RC structures still can sustain 

various degree of damages based on the limit states considered in the design. These limit states 

were primarily established based on the limited seismic experimental data and simplified 

analysis. However, experimental data also demonstrated that these limit states can be 

influenced by member geometry and loading type. Hence, precise estimation of limit states of 

a RC structural member will require a robust 3D finite element simulation model which has 

the capability to simulate progressive damage accumulation in RC members. With such a 

simulation model, in addition to improving design methodology, repair needs of damaged RC 

structures can be determined and thereby seismic resiliency of RC structures can be enhanced.  

The fiber analysis technique, which is widely used for analysis of RC members, is 

dependent on empirical equations and uniaxial concrete constitutive models. The fiber analysis 

technique is unable to capture the multiaxial stress responses of concrete and rebar steel, and 

consequently fails to simulate the progressive accumulation of damages in concrete and steel, 

and consequently fails to simulate the failure mechanisms of RC members induced by the 

concrete strength degradation and crushing, and longitudinal rebar buckling and rupture. 

Hence, this study made efforts to perform 3D finite element analyses using the ANSYS, 



ABAQUS and ATENA software packages and evaluated their multiaxial concrete constitutive 

models by comparing the simulated responses against the experimental responses.  

The outcomes of this study demonstrates that the concrete constitutive models in 

ANSYS are not capable of simulating the RC member experimental responses. It is also 

pointed out that the concrete constitutive models in OPENSEES are primarily uniaxial, hence 

OPENSEES in its current state can’t simulate multiaxial stress-strain responses. The concrete 

constitutive models in ABAQUS and ATENA are found to simulate reasonably the monotonic 

compressive responses of concrete cylinders, concrete filled steel tubes and RC columns. 

These two software packages can also simulate the RC column responses under lateral 

monotonic loading, but faced with divergence issues in simulating high ductility responses. 

The concrete smeared cracking model in ABAQUS cannot consider confining pressure, hence 

is not evaluated in this study. Concrete model in ATENA considers concrete cracking 

numerically but fails to converge under lateral loading early in the analysis. A modified 

smeared cracking model in literature has demonstrated better performance than the ATENA 

model, but simulations only up to intermediate ductility levels are demonstrated. In this study, 

physical concrete cracks are included in the analysis with ABAQUS to demonstrate the 

significance of concrete cracks in the simulation of RC member responses. These results 

demonstrate that the development of an advanced concrete constitutive model and numerical 

techniques to consider physical concrete cracking in RC member analysis is essential for 

enhancing seismic resilience of RC structures. 
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1 Introduction 

1.1 Background 

Reinforced concrete (RC) structures are common in earthquake prone areas. These RC 

structures experiences various degrees of damages when subjected to earthquake. An extensive 

experimental study on RC columns under simulated seismic loading demonstrated such 

damages through crushing of concrete, rebar buckling and rebar rupture [1]. Earlier 

earthquakes, such as Northridge in 1994 of magnitude 6.7, Kobe in 1995 of magnitude 6.9, 

triggered significant damages to reinforced concrete structures including bridge columns and 

building frames, including collapse of many structures [2]. After these earthquakes, 

improvement in the design codes were made to sustain similar type of damages. Recent 

earthquake in Illapel, Chile 2015 of magnitude 8.3, structural damages were limited to cracking 

and spalling of concrete [3]. Even after significant improvement of design codes for earthquake 

resilience, damage is observed in RC structure [4].  

Typical design procedure for designing of structures for earthquake loading is force 

based design. This design procedure assumes initial properties of structure, such as stiffness; 

to calculate forces. Once forces are known, structure is designed for calculated forces and 

displacements are checked for acceptance of design. When structure experiences damage due 

to earthquake, initial properties are no longer valid due to accumulated damages. Some 

recommendations are given in the code to consider this damage into account in determining 

more realistic properties of structural members, but the strength and stiffness are assumed to 

be independent [5], which is not realistic. In order to consider ductility of structure, force 

reduction factors are applied in force based design. These force reduction factors indirectly 
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indicates the available ductility capacity of structure. For standard buildings with equal floor 

height and spacing of columns, these force reduction factors estimates good response of 

structure but for irregular structures, behavior prediction is difficult [5]. Force based design 

technique doesn’t consider cyclic behavior of structure [5] which is critical in determining 

damping of structure or absorbed hysteretic energy. This absorption of energy under cyclic 

loading gradually accumulate damage in structure [1]. Due to lack of consideration of 

hysteretic behavior, prediction of realist damages in structure is difficult. Due to problems 

associated with force based design, performance based design technique is introduced [1, 5, 

6]. According to performance based design, damage evaluation of the structures are performed 

against specific limit states of the structure [1, 5, 6]. These limit states are defined either at 

global level such as story drift or at elemental level such as strains at cross sections of beams 

and columns. Once these limit states are specified for the structure which are determined by 

consideration of actual damage in structural members, seismic performance of a structure is 

determined by comparing against these limit states.  

In performance based design, there are 5 limit states in RC structures, Cracking, 

Yielding, Service, Damage control and Collapse [5] as showed in Fig. 1 with respect to a 

monotonic lateral response of a column developed by Goodnight [1]. Cracking limit state 

indicates the cracking of concrete under tension, yielding indicates yielding of longitudinal 

rebars, service limit state indicates crushing of cover concrete and opening of concrete cracks 

for which service of the structures is not interrupted [5]. The service limit states indicates if 

this limit is exceeded repair of structure is needed but don’t impose any safety concerns [6]. 

Exceeding damage control limit state indicates structure needs replacement. Exceeding the 

damage limit state generally indicates core concrete crushing, rebar buckling and rupture of 
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rebar [5]. Consequently, damage control limit state is considered as critical limit state [6], [4]. 

Collapse limit state can be reached by rupture of rebar(s) in many critical load carrying 

members, consequently significant strength loss and subsequent collapse of structure may 

occur.  

In Fig. 1, it is observed that cracking and yielding limit states, the first two limit states, 

occurred at small displacements. The 3rd service limit state involving crushing of concrete 

cover needed small nonlinear deformation, usually around twice the yield deformation ( ) as 

shown in Fig. 1. At damage control limit (4th limit state), core concrete crushing occurs around 

ductility level of 16. As stated earlier, exceeding damage control limit state usually requires 

replacement of structures. Ultimately, the collapse limit state at very large ductility is defined 

by longitudinal rebar rupture causing failure of structure by collapse.  

 

Fig. 1. Performance limit states of a reinforced concrete column under monotonic lateral loading (Data from 
Goodnight [1])  
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These five limit states of RC columns under simulated seismic loading are shown in 

Fig. 2, where it is observed that the cracking of concrete, yielding of longitudinal rebars and 

service limit states still occurs at small displacements or ductility levels similar to those under 

monotonic loading shown in Fig. 1. Damage control limit state under seismic loading is 

controlled by longitudinal rebar buckling and occurred around ductility level 8. Collapse limit 

state occurred, when pre-buckled longitudinal rebar suddenly rupture during ductility level 10 

cycle. Damage control and collapse limit states under monotonic loading occurs at much larger 

ductility levels compared to those under seismic loading (compare Fig. 1 and 2).  These 

differences indicate RC member may behave differently under different load history primarily 

because of the damage accumulation mechanism. Under cyclic loading, each cycle induce 

damage to the RC column in the form of concrete cracking, concrete crushing, rebar buckling, 

etc. Accumulation of these damages lead to progressive degradation of stiffness along with 

reduction in load carrying capacity and eventual failure or collapse of RC members.  
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Fig. 2. Performance Limit states of reinforced concrete column under cyclic lateral loading (Data from Goodnight [1]) 
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[12] showed that, bar buckling is dependent on history of the loading. Due to this load history 

dependence, prediction of the longitudinal bar buckling is a challenging task. Goodnight [1] 

demonstrated that after the longitudinal rebar buckled significantly under simulated seismic 

loading, the buckled rebars may rupture suddenly during load reversal. After bar rupture, 

significant loss in strength is observed [1], [11]. As earthquake loading is arbitrary in nature, 

analytical prediction of the progressive failure mechanisms of RC members are essential in 

order to determine their performances or limit states. Because of the complexity involved in 

developing RC member performance simulation tools, none of the widely used structural 

analysis packages are yet to be able to simulate the 3D seismic responses of RC members. 

There is no literature that demonstrated analytical analysis to simulate progressive damage 

accumulation towards simulation of the transverse rebar failure, core concrete crushing, 

longitudinal rebar buckling and longitudinal rebar rupture of RC members. Analytical 

capability to predict limit states of RC members can be helpful in improving design codes, 

determining repair needs and developing seismic performance enhancement techniques. 

1.1.2 Analysis and modeling techniques 

In order to predict limit states and progressive failure mechanisms of RC members, 

robust analysis tool is required [13] in order to predict the global response of RC members 

along with progressive damage accumulation in the plastic hinge region. For prediction of limit 

states of RC members, there are two common analysis techniques which are available in 

literature. First analysis technique is fiber section analysis, where structural member is 

discretized into several cross sections across the length of the member [13]. These cross 

sections are defined with linear fiber elements which connects the adjacent sections. This 
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method primarily considers axial stress-strain responses, hence uniaxial constitutive material 

models of concrete and steel are used for predicting structural responses. Fiber modeling 

method is computationally efficient and simple to use, and because of uniaxial stress-strain 

modeling, parameter determination is also simple. On the other hand, the second analysis 

technique available in literature is the finite element (FE) analysis technique which is 

significantly more complex and time consuming than the fiber modeling technique. Due to 

associated complexity in FE analysis, this method is criticized as nonviable option for the 

analysis and design verification of RC members [5]. Recent study [4], [14], [15], however, 

demonstrated the importance and potential of the FE analysis technique for prediction of 

seismic response along with the limit state estimation of RC members. FE analysis technique 

is mathematically robust, versatile and it is based on material responses and physical 

characteristics of the RC member. The concrete and rebar can be modeled without sacrificing 

their 3D geometric and physical characteristics. Actual loading conditions on the concrete core 

and rebars can be simulated in accurately predicting the damage accumulation and resulting 

failure mechanisms. That is why multiaxial material models of concrete and steel are 

considered in the FE analysis in order to account for accurate material responses and 

interactions between concrete and rebars [14]. 

Limitations of the fiber modeling technique for RC column response prediction 

especially for simulation of the plastic hinge region has been demonstrated by Feng et al. [12], 

Moharammi and Koutromanos [15], Priestley et al. [5]. One of limitations is assumption of 

cracked cross section considered to be plane in fiber analysis whereas in experiments 

conducted by Scott et al. [8], distortion of the cross section is demonstrated. Due to this 

assumption, interaction of shear and moment cannot be accounted which leads to inaccurate 
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response prediction in plastic hinge region. In addition, fiber analysis technique can’t simulate 

shear deformations due to which special non-fiber elements has to be considered in analysis to 

predict shear deformations [5]. Interaction between transverse rebar and confined concrete 

cannot be considered. Consequently, unconfined strength and confined strength for concrete 

has to be manually defined in the analysis [5]. Due to lack of interaction of steel and concrete, 

simulation of local interaction behavior such as transverse rebar fracture, effect associated with 

dilation of concrete on longitudinal rebar buckling is not possible by using the fiber analysis 

technique [4], [12].  

In finite element analysis, interaction between transverse rebar, longitudinal rebar and 

concrete can be modeled accurately, consequently simulation of actual reinforced concrete 

member responses and thereby limit states under seismic loading can be simulated. Due to this 

interaction, concrete confining stresses can be simulated considering the strengths of concrete 

and steel. This type of nonlinear analysis technique can be used for retrofitting of existing 

buildings and to evaluate performance of new design procedure especially when a design 

procedure doesn’t comply with standard design code [13]. Study by Babazadeh et al. [14] have 

shown the successful prediction of intermediate damage limit states of RC members  such as 

spalling and crushing of concrete by implementing the FE analysis technique. Moreover, in 

structural regions such as beam-column joints where multiaxial stresses in steel and concrete 

are prominent, finite element analysis is the only means to capture various essential responses, 

especially the hysteretic responses [15]. Consequently, FE analysis technique is a promising 

analysis technique for the prediction of the limit states and failure mechanisms of RC member. 

There are many challenges associated with this techniques. For example, complex geometry 

modeling, concrete and steel material model development, validation and calibration, 
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modeling interactions between steel and concrete, etc. To overcome challenges involved in 3D 

stress-strain analysis of RC members, clear goal and objectives are necessary for adoption of 

such nonlinear analysis technique [13]. Assumptions associated in this technique are at the 

constitutive material model level, but not at the member geometry and physical behavior level. 

Due to this reason constitutive material models are one of the important aspect in 3D FE 

analysis technique. 

1.1.3 Constitutive models for concrete and steel 

For concrete material, there are several uniaxial constitutive models available in 

literature such as Popovics [16], Mander et al. [17], Belarbi and Hsu [18], Chang and Mander 

[19]. Use of these models will require equations for determining confined stresses. These 

models consider the effect of transverse steel in to account by parametric adjustment of 

equations of uniaxial response of material [15]. Some of these models [17], [19] are 

implemented in fiber analysis technique. On the other hand, many multiaxial constitutive 

models to simulate the 3D behavior of concrete have been proposed. William and Warnke [20] 

and Hsieh et al. [21] models are two of the pioneering  concrete constitutive models, which 

can represent the tri-axial failure surface of concrete. William and Warnke [20] model gives 

good agreement with experimental data in compression meridian and tension meridian [22]. 

Main objective for developing this model was to establish yield surface in multiaxial stress 

space primarily for failure analysis [15]. Lubliner et al. [23], Lee and Fenves [24], Nguyen and 

Korsunsky [25] proposed concrete damage model which considers degradation of strength and 

stiffness of concrete induced by cracking and crushing. Model proposed by Cervenka and 

Papanikolaou [26] consider coupling of plasticity and fracture mechanics to simulate the 
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cracking and post cracking behavior of reinforced concrete. All the multiaxial concrete models 

are mainly used to simulate the monotonic response [15]. Evaluation and validation of these 

models under cyclic loading are lacking in literature. Moharrami and Koutromanos [15] 

recently proposed smeared cracking model in order to simulate the influence of cracked 

concrete on RC member cyclic response.  

For steel material, available uniaxial constitutive models are Ramberg and Osgood 

[27], Menegotto and Pinto [28], Filippou et al. [29], Dodd and Restrepo-Posada [30], Dhakal 

and Maekawa [31] which can only be used in fiber modeling. Other available models like 

Armstrong and Fedrick [32], Mroz [33], Chaboche [34] are multiaxial constitutive models 

which can simulate response of steel rebar under axial and shear loading more accurately. 

Multi-surface model can capture very good responses of materials in RC members under 

monotonic load, due to which this model was implemented for prediction of steel response in 

RC structure in the study by Babazadeh et al. [14]. Armstrong and Frederick [32] model is a 

nonlinear kinematic hardening model and can predict monotonic as well as cyclic response of 

the steel reasonably. One of the most advanced model for steel is Chaboche [34], which is 

basically an extension of Armstrong and Frederick model. The Chaboche model can represent 

multiaxial material response under both monotonic and cyclic loading quite well [35]. 

Some of the above constitutive models are available in FE analysis software packages, 

such as ANAYS, ABAQUS, ATENA etc. In ANSYS, available concrete model is William and 

Warnke model [20]. This model gives good estimation of confined strength of concrete but 

fails to predict the stress-strain response of concrete as elastic perfectly plastic stress-strain 

relationship is used in this model. Due to this reason, this model is not considered in this study. 

In ABAQUS, Lee and Fenves model [24] is used for prediction of concrete behavior. This 
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constitutive model have capability to simulate confined strength of concrete with stress-strain 

response along with degradation of stiffness of concrete under cyclic loading. Due to this 

reason, this model is considered for this study. Available smeared cracking model in ABAQUS 

fails to capture the multiaxial response of concrete, hence smeared cracking model is not 

considered in this study. In ATENA, model by Cervenka and Papanikolaou [26] is used for 

concrete model. This model gives good estimation of confined strength of concrete along with 

stress-strain response. Because of these reasons, this model is considered for this study. For 

material modeling simulation of steel in ABAQUS, multilinear model, model with advanced 

nonlinear hardening rule by Chaboche [34] are available. In ATENA, available constitutive 

models for steel materials are multilinear model for multiaxial modeling and Pinto model [28] 

for uniaxial modeling. This study made effort towards evaluating constitutive models for steel 

and concrete which are considered above in simulation of progressive degradation mechanism 

in RC member under seismic loading. 

1.2 Scope and Organization 

As discussed earlier, damage prediction or RC members is an important tool in 

performance based design. In order to predict the seismic response of RC members and 

progressive damage accumulation towards failure, robust analysis techniques involving 

advanced constitutive model along with physical and geometric characteristic of RC members 

are essential. Due to this fact, constitutive models has to be validated using 3D FE analysis of 

RC members subjected to simulated seismic loading. This study validate several multiaxial 

and robust constitutive models of concrete and steel which are available in widely used FE 



12 
 

software packages and are suitable for 3D stress-strain response analysis and damage 

accumulation studies.  

Study is presented through four chapters. Chapter 1 is the current Introduction chapter. 

Chapter 2 presents existing constitutive models of concrete and steel, along with their 

validation against material level tests or RC member tests prescribing monotonic compressive 

loading. Detailed discussions are made on the application and limitation of the models. In 

verification of models, FE validation considered concrete material monotonic compressive 

responses under active and passive confinement.  

In Chapter 3, constitutive models are then validated against RC members subjected to 

lateral cyclic loading in the presence of steady compressive loading. In this chapter, limitations 

of the existing models in predicting RC member seismic responses are presented.  

Finally in Chapter 4, discussions and conclusion from this study are presented along 

with necessary future work in this field. 
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2 Concrete modeling for monotonic axial compressive loading 

As discussed in early chapter, 3D finite element analysis can be used effectively for 

prediction of progressive damage accumulation in the structures under seismic loading. In 

order to identify suitable material models to be used in finite element analysis, available 

material models in the finite element software packages need to be validated against 

experimental responses.   

Two types of concrete constitutive models are available in literature. The first type is the 

uniaxial material model which considers uniaxial loading only. The second type is the 

multiaxial material model developed for analysis of 3D stresses and strains. 

The uniaxial constitutive models of concrete available in literature are Popovics [1], 

Mander et al. [2], Belarbi and Hsu [3], Chang and Mander [4], Legeron and Paultre [5], 

D’Amato et al. [6]. These models, except [1], considers the confinement effect on the 

compressive stress-strain response through empirical equations.  

The multiaxial constitutive material models of concrete available in the literature are 

William and Wranke [7], Hsieh et al. [8], Lubliner et al. [9], Lee and Fenves [10], Nguyen and 

Korsunsky [11], Cervenka and Papanikolaou [12], Moharrami and Koutromanos [13]. Some 

of the early proposed models such as William and Wranke [7], Hsieh et al. [8] deals with 

determination of the failure surface for concrete under multiaxial loading. In these models, 

stress-strain relationship were idealized as elastic-perfectly plastic and consequently these 

models can’t be used for predicting the strength degradation of concrete subsequent to ultimate 

strength. The William and Wranke model [7] is available in ANSYS [14] software package. 

The other types of model such as, extended Drucker-Prager and extended Drucker-Prager Cap 
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model [15] is available in ANSYS and are used for nonhomogeneous materials such as rock, 

soils. These model can be adjusted to predict the responses of concrete. In ABAQUS [16], Lee 

and Fenves model [10] is available for concrete plasticity response simulation. In ATENA 

[17], Cervenka and Papanikolaou [12] model is available for concrete of plasticity response 

simulation. Due to availability of these models in the commercial finite element software 

packages, these are investigation in this study in simulation concrete responses. 

Three different types of experimental data are collected for this study. The first set 

includes concrete cylinder under active confinement, where concrete cylinder subjected to 

active hydraulic pressure and monotonic compressive loading. The second set of experiments 

includes the concrete filled steel tube under monotonic compression loading resulting in 

passive confinement of concrete. The third set of experiments considered are the reinforced 

concrete column subjected to monotonic compressive loading resulting in discrete passive 

confinement of concrete. All these experiments which are used for the validation of the 

constitutive models are briefly discussed in the following section.  
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2.1 Experimental data used for concrete constitutive model validation 

2.1.1 Concrete cylinder experimental data 

 
In the pioneering experimental study by Richart et al. [18], concrete cylinders were 

subjected to active (steady) hydraulic pressure ‘p’ and subsequently the monotonically 

increasing compressive force ‘F’ as showed in Fig. 1a. A set of experimented responses under 

several confinement pressure ‘p’ are plotted in the Fig. 1b. Compressive strength of the 

unconfined concrete was 25.23 MPa and under confinement pressure 3.79 to 28.19 MPa the 

compressive strength and ductility of concrete gradually increases as shown in Fig. 1b. 

Significant changes in the stress-strain response of concrete are observed with increase in 

confining pressure. Such stress-strain responses of concrete under various levels of confining 

pressure has to be simulated accurately by concrete constitutive model in order to simulate the 

limit states of RC members.  

 

 

Fig. 1. Concrete cylinder experiments by Richart et al. [18] (a) Cylinder under active hydraulic pressure ‘p’ and 
monotonic increasing axial compressive force ‘F’ (b) Compressive stress-strain relationship under various level of 

active pressure 
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2.1.2 Concrete filled steel tube experimental data 

 
Experiments were conducted on concrete filled steel tube (CFST) by Schneider [19] 

under monotonic compressive loading. Several specimens were tested with circular, 

rectangular and square cross sections. For concrete model validation study, two experiments 

with circular cross sections which are listed in Table 1 were considered. 

 

Table 1. Experiments considered for simulation of concrete filled steel tubes 

Experiment 
number 

Unconfined 
Strength of 

concrete 
(MPa) 

Yield point of 
steel 

(MPa) 

Thickness of 
steel tube 

(mm) 

Diameter of 
steel tube 

(mm) 

C1 28.18 285 3  140.8 

C2 23.8 313 6.5  141.4 

 

Compressive force-displacement responses from these two experiments are plotted in 

Fig. 2, where it is observed that the increase in thickness of the steel tube increases the 

confining pressure, resulting in increase in the confined strength of the CFST column.  

 

Fig. 2. Experimental Responses of concrete filled steel tubes (Data from Schneider [19]) 
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2.1.3 Reinforced concrete column under monotonic compressive loading 

 
Data from reinforce concrete column experiments conducted by Bing et al. [20] under 

monotonic compressive loading are considered for concrete material model validation. The 

specimens with transverse reinforcement steel having yield strength of 445 and 1318 MPa, and 

concrete strength varying from 52 to 82.5 MPa are considered. Longitudinal rebars used in the 

RC columns were same, six 12 mm diameter bars were used. The longitudinal rebar yield 

strength was 443 MPa. Diameter and length of the RC columns were 240 mm and 720 mm 

respectively. A total of 40 specimens have tested by Bing et al. [20] but for model verification 

purpose, 8 specimens were selected with 4 specimens have normal strength steel and other 4 

specimens have ultra-high strength steel as transverse reinforcement as shown in Table 2. 

These columns were selected in such a way that they have different strengths of concrete and 

transverse rebar steel, and with two different spacing of the transverse rebar. This selection is 

made in order to validate concrete model against wider range of confining stress and different 

unconfined concrete strength. 

Table 2. Details of experimental specimens 

Specimen  
ccf   

(MPa) 

Fy of transverse 
rebar (MPa) 

Spacing of transverse 
rebar (mm) 

Dia.  of transverse 
steel (mm) 

6A  63.0 445 35 6.0 

6B  72.3 445 35 6.0 

9A 63.0 445 50 6.0 

9B 72.3 445 50 6.0 

4HB1  52.0 1318 35 6.4 

4HC  82.5 1318 35 6.4 

6HB  52.0 1318 50 6.4 

6HC  82.5 1318 50 6.4 
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Through these experiments, Bing et al. [20] investigated the behavior and failure mechanism 

of RC column at higher ductility, including the influence of transverse rebar strength on RC 

column. Bing et al. [20] demonstrated that failure mechanism consist of longitudinal rebar 

buckling and transverse rebar fracture coupled with shear failure of RC column. Results of the 

experiments under consideration are shown in Fig. 3, where red color curves indicate 

experiments with higher strength concrete. Fig. 3 also demonstrates that the ultra-high strength 

steel increases the strength and ductility of RC column under monotonic compression.  

(a) 
 

(b)  
 

(c)  (d)  
Fig. 3. Experimental response of RC column under monotonic axial compression (data from Bing et al. [20])  

(a) Specimens 6A and 6B, (b) Specimens 9A and 9B, (c) Specimens 4HB1 and 4HC, (d) Specimens 6HB and 6HC, pmax 
is the confining pressure calculated by Mander model [2] 
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2.2 Concrete constitutive models 

2.2.1 Uniaxial models 

In uniaxial concrete models, Popovics [1], Mander et al. [2], Belarbi and Hsu [3], 

Chang and Mander [4], Legeron and Paultre [5], D’Amato et al. [6] are available in literature. 

Among these models, Mander model [2] is widely used hence, it is evaluated in this study. 

Mander Model 

Mander model [2] was developed to predict the compressive stress-strain response of 

RC columns. This model considers the geometric and material parameters of the RC column 

to determine the column strength. Geometric and material parameters included are, 

1. Spacing of transverse rebar 

2. Diameter of transverse rebar 

3. Yield strength of transverse rebar 

4. Unconfined strength of concrete 

5. Diameter of core concrete column 

First the passive confining stress in a column developed by transverse rebar is 

determined, followed by determination of the confined stress-strain response of the concrete 

column. In order to determine ultimate compressive strength, multiaxial Willam and Wranke 

[7] model was used. Mander model is developed on the basis of conservation of energy. 

Additional ductility of the confined concrete is assumed to be contributed by the energy stored 

in transverse reinforcement. In this model, the ultimate strength of confined concrete in a 

column is calculated by, 
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݂′௖௖ ൌ ݂′௖௢ ൤െ1.254 ൅ 2.254ට1 െ
଻.ଽସ௙ᇲ೗	

௙ᇲ೎೚	
െ 2

௙ᇲ೗	

௙ᇲ೎೚	
൨     ( 1 ) 

Where,	݂′௖௢ is unconfined strength of concrete and ݂′௟ is confining stress in the concrete.  

For circular columns, confining stress	݂′௟, is determined by,  

݂ᇱ௟ ൌ
ଵ

ଶ
݇௘ߩ௦ ௬݂௛         ( 2 ) 

Where, ݇௘ is effective confinement ratio, which is given by, 

݇௘ ൌ
൬ଵି ೞᇲ

మ೏ೞ
൰
మ

ଵିఘ೎೎
   …for hoops      ( 3 ) 

݇௘ ൌ
ଵି ೞᇲ

మ೏ೞ

ଵିఘ೎೎
   …for spirals      ( 4 ) 

s' = clear spacing of transverse reinforcement as shown in Fig. 4a 

ds = diameter of column after subtracting the clear cover, i.e. diameter of core concrete as 

shown in Fig. 4a 

fyh = yield stress of transverse hoop steel considering elastic perfectly plastic model 

  ௖௖ = ratio of area of longitudinal steel area to confined core concreteߩ

  ௦ = ratio of volume of transverse steel to confined core concreteߩ

For rectangular columns, confinement in x and y direction are different which are given by, 

݂ᇱ௟௫ ൌ
ଵ

ଶ
݇௘ߩ௫ ௬݂௛   and    ݂ᇱ௟௬ ൌ

ଵ

ଶ
݇௘ߩ௬ ௬݂௛ ( 5 ) 

From these two different confining pressure, either average confining pressure is utilized as 

݂′௟ in eq. (1) or interaction diagram suggested by Mander et al. [2] are used to calculate the 

total confining pressure ݂′௟. Effective confinement ratio ݇௘ for rectangular columns is, 
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where,  ܾ௖ = the breadth of the confined concrete core as shown in Fig. 4b 

  ݀௖ = the depth of the confined concrete core as shown in Fig. 4b 

  s = spacing of the transverse rebar 

  s' = clear spacing of transverse reinforcement  

 w' = clear transverse spacing between adjacent longitudinal rebar 

 

 

 
Fig. 4. Confined core of RC (a) Circular column, (b) Rectangular column 
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Fig. 4 Continued. Confined core of RC (a) Circular column, (b) Rectangular column 
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where ߝ௖௖ is the strain at which confined concrete achieves its ultimate compressive strength 

which is given by, 
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 ௖ isܧ , ௖ߝ ௖௢ is strain at unconfined concrete strength,  ௖݂ is stress at any given strain valueߝ

elastic modulus and ܧ௦௘௖ is secant modulus at ultimate strength which is given by ܧ௦௘௖ ൌ
௙ᇲ೎೎	

ఌ೎೎
.  

Mander et al. [21] performed a set of experiments to validate the Mander model [2]. In 

these experiments, reinforced concrete columns were subjected to monotonic compressive load 

till failure. Range of strength of concrete utilized in the experiments was 24 MPa to 32 MPa. 

Yield strength of the transverse steel was 340 MPa. The concrete confining pressure developed 

by the transverse rebar were in the range 0.85 to 4.18 MPa.  

Work done by Legeron and Paultre [5] have shown that Mander model over predicts 

the ultimate strength of confined concrete when high-strength concrete is used with high-

strength steel as transverse reinforcement. Study by Legeron and Paultre [5] didn’t presented 

the stress-strain response of confined concrete, due to which experiments done by Bing et al. 

[20] is considered in this study for validation of the Mander model [2].  

Comparison of the simulation by Mander model [2] against experimental responses of 

RC columns are presented in Fig. 5. In this comparison one experiment have transverse rebar 

with yield strength 445 MPa (Fig. 5a) and another with yield stress 1318 MPa (Fig. 5b). It is 

observed that the Mander model [2] well predicted the response of RC column with normal 

strength transverse rebar (Fig. 5a) where, as significantly over predicts the response of the RC 

column with ultra-high strength transverse rebar (Fig. 5b). Hence, Mander model gives good 

prediction of RC column under pure compression for low level of confining pressures, but at 

relatively higher level of confining pressure Mander model over predicts the response.  
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Fig. 5. Performance of Mander model [2] against experimental RC column reference with transverse steel of yield 
stress (a) 445 MPa (normal strength steel) to yield maximum confining pressure of 1.94 MPa and (b) 1318 MPa (ultra-

high strength steel) to yield maximum confining pressure of 6.58 MPa 
 

The Mander model [2] is easy to implement, numerically efficient but because of its 

uniaxial nature, lacks the capability to describe the multiaxial stress state in RC columns. 

Hence, Mander model can’t be used for prediction of the limit states and failure mechanism 

under seismic loading, especially the longitudinal rebar buckling.  

OPENSEES models  

In OPENSEES, there are several uniaxial concrete constitutive models are available 

such as Popovics model [1], Mander model [2], Chang and Mander [4], Belarbi and Hsu [3], 

etc. One of the advanced model by Chang and Mander [4] is widely used which can simulate 

cyclic uniaxial stress-strain response of concrete. This model considers the Mander model [2] 

to determine the confined strength of concrete from geometry of the RC column. Then this 

confined strength is used for determination of cyclic response of RC column. Simulation of 

this model are promising when compared against experimental cyclic stress-strain response of 
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plane concrete cylinders as well as RC columns [4]. But this model lacks the ability to predict 

the multiaxial effect of concrete which is essential in damage accumulation in RC members. 

Along with this fact, simulation of failure mechanism caused due to accumulation of damage 

such as core concrete crushing, transverse rebar failure and longitudinal rebar buckling is not 

possible with uniaxial models. When this model is implemented in OPENSEES, shear forces 

and shear deformations are neglected which causes incorrect predictions of response of RC 

column. Hence, uniaxial models such as Mander model [2], Chang and Mander [4] can be used 

to determine the force-displacement response or stress-strain response of RC members but 

these models fails to simulate the detailed failure mechanism occurring in RC members. As 

this study is focused on the prediction of accumulation of damage and failure mechanism 

occurring in RC members, OPENSEES software is not used for the simulation of cyclic 

responses of RC members. 

2.2.2 Multiaxial models based on plasticity  

 Multiaxial constitutive modeling of concrete and relevant basic concepts are discussed 

in this section. Consider the Fig. 6a, where stress point P is shown in Haigh-Westergaard stress 

space such that stress axes indicate the principal stress directions. Axis having direction cosines 

as ቀ ଵ

√ଷ
, ଵ
√ଷ
, ଵ
√ଷ
ቁ  is considered as hydrostatic axis which is I1 axis (Fig. 6a) and plane 

perpendicular to this axis is known as ߨ-plane. Yield surface is defined as the surface in stress 

space outside of which stresses induce irreversible plastic strains. For metals, cross section of 

the von-Mises yield surface in ߨ-plane is circular on shape but concrete material have complex 

shape on ߨ-plane as shown in Fig. 6b. 
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 Fig. 6b indicates the view from ߨ-plane where arrows indicate the compression stress 

and red dotted line indicates the tensile meridian. In this case, the meridians are separated by 

600 angle. Experiments done by Kupfer et al. [22], shown that failure limit for concrete on 

tension meridian is different from compressive meridian. Due to this reason, some of the early 

study on concrete constitutive modeling was performed to capture the failure surfaces in 

multiaxial stress space [7], [8]. Following discussion presents failure surfaces proposed by 

different studies.  

(a)  
 

 
(b)  

 
 

Fig. 6. Basics definitions (a) Stress Invariants (b) Tension and compression meridians in ࣊ -plane 
 

One parameter Model – Rankine 

This model considers the most basic failure criterion [23]. In this model, failure of 

concrete is considered as brittle failure in tension which is maximum tensile stress criterion. 

The equation of the fracture surface in terms of principal stress terms is given by, 
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These failure surfaces are referred as failure cutoff surface or tension cutoff. These equations 

suggest whenever stress along a principal direction satisfy the failure condition, brittle failure 

of the material occurs. Same equation in deviator stress space can be given by [23], 

 1 2 2 1, J , 2 3 J cos 3 ' 0tf I I f           ( 12 ) 

In this equation, the only parameter required is ݂′௧ , which is fracture stress of concrete in 

tension. This criterion is often combined with other models to represent the brittle nature of 

concrete in tension. As discussed earlier, this model just considers the failure surface of 

concrete by cracking, hence this model can’t be used for simulation of RC member responses. 

Two Parameter models 

As one parameter model is not enough to represent the multiaxial responses, two 

parameter models, such as, Mohr-Coulomb, Drucker-Prager model were introduced. These 

models can capture the failure surface of the pressure sensitive materials such as soils, rocks, 

concrete but don’t have the capacity to predict the concrete stress-strain response. Following 

discussion give a brief introduction of these multiaxial failure surface models. 

1. Mohr-Coulomb model 

The two parameters needed for this model are cohesion 'c' and internal frictional angle ' '. 

Once these parameters are known following equations can be used to determine the concrete 

failure surface. 

 
   

1 3

1 sin 1 sin
1

2 cos 2 cosc c

 
 

 
 

         ( 13 ) 
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Though, this model is essentially used for soils and rocks, it can be calibrated for concrete 

rupture simulation. There are some limitations of this model such as over prediction of the 

response in tension, constant failure surface in tension and compression meridian, linear 

dependency of strength over hydrostatic pressure.  

2. Drucker-Prager model 

In the Drucker-Prager model [24], two parameters under consideration are ߙ and k. Yield 

surface equation is given by, 

 1 2 1 2, 0f I J I J k           ( 14 ) 

This model is the extension of the von-Mises criterion for pressure dependent materials to 

pressure (hydrostatic stress) dependent material such as concrete, rock and soil. The 

dependency of the hydrostatic pressure is considered into account through the model 

parameters ߙ and k. This model have some similar limitation as Mohr-Coulomb’s model such 

as over prediction of tensile strength and similar failure in tension and compression meridian. 

Due to this reason, some modifications were proposed such as Extended Drucker-Prager Model 

and Extended Drucker-Prager Cap model. 

1. In Extended Drucker-Prager model available in ANSYS [14], yielding of the material 

in tension is governed by either hyperbolic function or power law. One function has to 

be selected which gives best fit for experimental data. These function are given as, 

ܨ ൌ 	ඥܾଶ ൅ ଶܬ ൅ ଵܫߙ െ ݇ ൌ 0 Hyperbolic    ( 15 ) 

ܨ ൌ 	 ൫ඥܬଶ൯
௕
൅ ଵܫߙ െ ݇ ൌ 0  Power law    ( 16 ) 
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Where, b is the parameter characterizing the shape of the yield function. This parameter 

gives control over the yielding in tensile region so as to reduce the effective tensile 

strength. 

2. In Extended Drucker-Prager Cap model [15], failure equation is controlled by the value 

of I1. If I1 is positive then failure is in tension region. Failure in this region is governed 

by failure cap called as tension cap. This tension cap is defined as, 

     

2

1
1 0 1

0

, 1
0,t Y

t s

I
Y I H I

R Y



 

    
 

     ( 17 ) 

When I1 is lesser than K0, then failure is governed by compaction cap which is given 

as, 

     

2

1 0
1 0 0 0 1

0 0

, , 1
,t Y

t s

I K
Y I K H K I

R Y K



 

     
 

    ( 18 ) 

The region between K0 < I1 < 0 is governed by shear function where failure is governed 

by shear failure and its equation is, 

  1
1 0 0 1,

Y I Y
SY I Ae I            ( 19 ) 

where, A, ߙ௒,  ,௒ are material parameters which controls the shape of failure surfaceߚ

  .଴ is cohesion related material constant and H is step functionߪ

Failure plane in ߨ-plane is controlled by, 

   1 1
, 1 sin 3 1 sin 3

2
   


 

     
 

     ( 20 ) 
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where,   1 3
2 3 3 2

2

3 31
, sin

3 2

J
J J

J
   

    
 

 and ߖ is ratio of tri-axial extension strength to 

compression strength. This value ranges from 1 to 0.778. At 1 = ߖ, failure surface 

resembles von-Mises criterion. 

As stated earlier, the extended Drucker-Prager Cap model can be used for concrete response 

simulations, for which the unconfined concrete was fitted by multilinear model. 

Stress-strain responses simulated by the Extended Drucker-Prager Cap model [15] is 

compared to the Mander model [2] simulations in Fig. 7. It is observed from Fig. 7 that strength 

degradation after reaching the ultimate strength is not simulated by the Extended Drucker-

Prager Cap model (EDPC). In addition, this model can’t simulate degradation of stiffness due 

to which this model was not considered in this study. 

 
 
Fig. 7.Comparison of Stress-strain response for different confining stress from Extended Drucker-Prager Cap model 

(EDPC) [15] and Standalone Mander [2] model response. 
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William and Warnke [7] 

This is a 5 parameter model. These parameters are the uniaxial compressive strength 

݂ᇱ௖, uniaxial tensile strength݂ᇱ௧, biaxial compressive strength, confined biaxial compression 

strength on compression meridian, confined biaxial compression strength such that stress point 

lies on tension meridian. The William and Warnke [7] surface can be given by: 

2
0 1 1 2 1m a a r a r             ( 21 ) 

2
0 1 2 2 2m b b r b r             ( 22 ) 

where, ߪ௠ ൌ ଵܫ 3⁄ , ri is stress components normal to the hydrostatic axis along the tension and 

compression meridian, ܽ௜  and ܾ௜  are the material constants. As both meridians intersect 

hydrostatic axis at the same point, ܽ଴ ൌ ܾ଴, hence total parameters became 5 which can be 

determined by strengths mentioned above. 

Equation of the stress point normal to the hydrostatic axis is given by, 

 
     

   

1
22 2 2 2 2 2

2 2 1 2 1 2 2 1 1 1 2

22 2 2
2 1 2 1

2 cos 2 4 cos 5 4

4 cos 2

r r r r r r r r r r r
r

r r r r

 




       
  

  ( 23 ) 

where, 

     
1 2 3

1
2 2 2 2

1 2 2 3 3 1

2
cos

2

  
     

 


      

 

Failure surface is given by, 

   
1 1

1
2

a a

cu cu

f
f r f

 


           ( 24 ) 

where, ௖݂௨ is ultimate uniaxial compressive strength of concrete and 

 1 2 3

1

3a       and      
1

22 2 2

1 2 2 3 3 1

1

15
a                
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In Fig. 8a, failure surfaces are plotted at compressive and tensile meridian for 

comparison. In this figure, compressive stresses are considered as negative. As stress intensity 

decreases (compressive loading), hydrostatic pressure I1 decreases and failure stress increases. 

This increase in strength at higher I1 captures the ‘confining effect’ of the concrete. In order to 

control the shape of the failure surface, parameters has to be adjusted such that, 0.5 ൏ ௥భ
௥మ
൑1. 

If this ratio is half, then failure surface is triangular and for value of one, it resembles the von-

Mises surface in ߨ-plane (Fig. 8b). Five parameter model is good to capture the failure surface 

closely. This model is available in ANSYS software for concrete material. 

 
(a) 

 

 
 
 

 
 
 

(b) 
Fig. 8. William and Warnke failure surface (a) Comparison of tension meridian and compressive meridian over I1 v/s 

ඥࡶ૛ (b) Shape of failure surface in ࣊  plane 
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The main drawback of this model is assumption of elastic-perfectly plastic stress-strain 

relationship due to which this model can’t be used to simulate the hardening and softening 

response of concrete. Hence, this model is not used in this study.  

Lubliner model [9] 

This model considers concrete as frictional material with cohesion such that isotropic 

hardening of the concrete is considered in form of evolution of cohesion which depends on 

plastic damage variable. Damage accumulated in the material leads to vanishing of cohesion 

which indicates the softening of concrete.  

Total strains are decomposed in elastic and plastic strains which is given by, 

1e p pD                ( 25 ) 

Yield surface: 

Yield surface is a function of second invariant of stress deviator (J2) and first invariant (I1) of 

total stress as shown in Eq. (26). Due to this reason, surface in total stress space is a complex 

shape in ߨ-plane, at ܫଵ → െ∞  the yield surface shape is circular and at ܫଵ → 0  , the shape 

tends to get triangular [9].  

  2 1 max max

1
3

1
F J I     


      

     ( 26 ) 

Where, ߙ, ,ߚ  ,are the parameters which are determined as follows ߛ

 
 

/ 1

2 / 1
bo co

bo co

f f

f f






         ( 27 ) 

 ௕݂௢, ௖݂௢ is biaxial and uniaxial strength of the concrete.  
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   1 1bo

co

f

f
  

 
    

 
        ( 28 ) 

 3 1

2 1










          ( 29 ) 

 
 

2

2

TM

CM

J

J
            ( 30 ) 

 1
max 1 23 2 3I J     TM        ( 31 ) 

 1
max 1 23 3I J     CM        ( 32 ) 

TM and CM indicates tension meridian and compression meridian.  

 
Definition of plastic damage variable 

Consider the uniaxial stress-strain curve for concrete under compression. From this stress-

strain curve, stress-plastic strain curve is determined and area under the curve is considered as 

gc. Damage parameter of concrete in compression zone is given as,  

0

1 p
p

c

d
g


             ( 33 ) 

In a similar way, by considering concrete uniaxial stress-strain curve for tension loading, 

damage parameter in tension is defined as, 

0

1 p
p

t

d
g


             ( 34 ) 
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gt is areas under uniaxial tensile stress-plastic strain curve. These equations can be applied to 

any stress-strain curve and damage parameter can be determined for that specific curve.  

Eq. (33) in rate form is given as, 

 1 p
c t

c

f
g

  


           ( 35 ) 

In this model, uniaxial stress-strain curve was considered which is given by, 

     0 1 exp exp 2p pf a b a b               ( 36 ) 

where, ଴݂ is stress at which no damage is observed in concrete. This function is defined to 

capture experimental observation, where level of zero stress is achieved asymptotically. In this 

equation, ‘a’ and ‘b’ are the model parameters. Parameter ‘a’ is determined by using following 

equation.  

     2
2 1 2m o m o m oa f f f f f f          ( 37 ) 

where, ௠݂ is the maximum stress achieved and ଴݂ is the initial stress at zero plastic strain as 

shown in Fig. 9. If a > 1 then it represents ascending branch of the curve which is initial 

hardening else is it softening. Because of this parameter, same set of equations can be used for 

compressive and tensile stress-strain input. Fig. 9 represents the uniaxial compressive stress-

strain equation used in this model. 
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(a) (b)  
 

Fig. 9. Stress-strain equation used by Lubliner et al. (a) Parameter a < 1 (uniaxial tensile stress-strain response),  
(b) Parameter a > 1 (uniaxial compressive stress-strain response) 

 
Relation of damage parameter and cohesion 

Rate equations for damage parameters and cohesion are assumed to be in form as follows, 

 , , ph c   


          ( 38 ) 

 , ,c k c  
 

          ( 39 ) 

Cohesion in concrete and damage parameter is related in such a way that ܿ → 0 as ߢ → 1. For 

general compression and tension stress-strain dependency, cohesion and damage parameter 

dependency is given as follows, 

 
     

   1
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t c
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k f f

f f

 
   

 
 

  
 

     ( 40 ) 

where  
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From eq. (39) and (40), after rearranging terms, cohesion is determined as follows. 

    1
exp ln

r

co t to c co c tc f f f f f f f dr
          ( 41 ) 

where, ௖݂௢ is uniaxial compressive strength of concrete and ௧݂௢ is uniaxial tensile strength. 

Flow rule: 

p G 


  



          ( 42 ) 

Where, ߣሶ is plastic loading factor and 
డீ

డఙ
  is normal to the plastic potential surface G. Plastic 

potential surface is given by,  

1
2

sin sin
sin cos

3 3

I
G J

      
 

      ( 43 ) 

where, Ψ is angle of dilatancy  

Tangent elastic-plastic stiffness operator with H as plastic modulus is given as, 

T

ep
T

G F
D D

D D
F G

H D

 

 

   
      

     

        ( 44 ) 

Degradation of modulus 

In this model, it is assumed that D depends on the degradation variables. Simplest form 

of elastic degradation in initial stiffness D0 based on single variable d is given by, 

ܦ ൌ ሺ1 െ ݀ሻܦ଴         ( 45 ) 

This equation gives the dependency of the undamaged property to that of damaged property of 

material. Due to single damage variable, the stiffness D can be replaced by ሺ1 െ ݀ሻܦ଴ to 

consider induced damage. So, damaged state of any stress can be given as ߪ ൌ ሺ1 െ ݀ሻߪ଴. This 

is applicable for both, tension and compression stress. But due to lack of dependency between 
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the tension and compression stress, two different damage parameters has to be considered for 

tension and compression. 

From here on in all equations, D depends on the degradation variables. For stress and strain 

dependency, following equation is considered. 

p
e pC C  

 

           ( 46 ) 

where, Ce, Cp are linear and nonlinear operator respectively which is given as, 

1 2
0 1 0 2

1 2

k k
1 1

T T
eC D I s

d d

      
   

  
 

     ( 47 ) 

1
p i j

i

C D D D I             ( 48 ) 

where, s is stress deviator, ߪ଴ is mean normal stress, ݇ଵ ൌ ,ܫ଴ߪ ݇ଶ ൌ  From monotonic radial .ݏ

loading, ߶ଵ and ߶ଶ can be calculated for any function which represents dependency of moduli 

with corresponding strain. 

Consistency condition is given as,  

T
F

c


     
          ( 49 ) 

From Eq. (38), (39), (35) and (46),  

T T

e p

F F G
C H C 

  

                   
      ( 50 ) 

where H is plastic modulus which is given as, 

G
H kh







          ( 51 ) 
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and  
e

p

F
C

F G
H C




 







 


 

        ( 52 ) 

Elastic-plastic tangent stiffness is defined as,  

e p

G
C C  



  
 


         ( 53 ) 

One major drawback of this model is the definition of damage ratio in tension and 

damage ratio is compression and that means there is no dependency between tension and 

compression damage ratios. It indicates that damage occurred in tension have no influence on 

damage in compression. This leads to inconsistency in uniaxial response. In the experiments, 

at higher level of strains, higher strength in concrete is observed when concrete is subjected to 

confining pressures. This model fails to model the higher stresses at higher level of strains in 

multiaxial stress condition. Due to these reasons, this model is not used for the simulation of 

cyclic response of RC column. 

Lee-Fenves Model [10] 

Lee-Fenves proposed modification of Lubliner model to capture the degradation in 

concrete under cyclic load. Total strain is decomposed in elastic and plastic strains, same as 

Lubliner model (eq. (25)). Effective stress   in undamaged material is givens as follows. 

0 : ( )pE             ( 54 ) 

where, E0 is undamaged elastic stiffness. When damage parameter D is considered for 

determination of stress intensity in damaged material, damage stress can be rewritten as, 

  01 : ( )pD E             ( 55 ) 
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Where, dependency of stresses in damaged material and damage parameters is given by 

 1 D   . 

In this model, evolution of the damage parameter is defined such that it accounts coupling of 

tension and compression damage parameter. This model is available in ABAQUS. According 

to Lubliner model, consideration of damage ratios is as follows, 

   1t t t t tf D f       and    1c c c c cf D f         ( 56 ) 

Subscript t and c indicates tension and compression, respectively.  

Lee and Fenves model proposed total degradation D as,  

  ( ) 1 1 1t cD D D D            ( 57 ) 

and uniaxial responses are given by, 

 1t tf D f           ( 58 ) 

 1c cf D f           ( 59 ) 

For the plasticity part of the model, this model is extension of the Lubliner model where 

isotropic hardening is changed to cohesion based kinematic hardening and damage parameters 

is introduced in the yield criterion.  

  2 1 max

1
, 3 ( ) ( )

1 cF J I C      

     

    ( 60 ) 

Cc is the compression cohesion, Ct is tensile cohesion and ߙ parameter is defined in the same 

way as in Lubliner’s model [9] eq. (27). But the parameter ߚ is defined in different way, which 

is given by, 
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   ( )
1 1

( )
c

t

C

C

  


            ( 61 ) 

Flow rule is given by p G 





  where G is plastic potential function which is given by,  

2 12 pG J I           ( 62 ) 

where, ߙ௣ is parameter considered to provide proper dilatancy in material. Other calculations 

involved in determination of damage in compression and damage in tension are similar to 

Lubliner et al. model [9].  

When concrete material subjected to cyclic loading, there is opening and closing of cracks in 

the material. Once cracks are closed, recovery of stiffness of cracked concrete is observed. In 

order to capture this effect, stiffness recovery term is defined. This term considers elastic 

stiffness recovery when loading is from tensile to compressive state. Degradation parameter is 

defined as, 

    , 1 1 ( ) 1 ( ) ( )c tD D s D               ( 63 ) 

Calculation of damage ratios in compression and tension is calculated by following equation, 

where   indicates either compression (c) or tension (t). 

1 exp( d )pD              ( 64 ) 

 .തሻ is the parameters which controls stiffness recovery, which is given as followsߪሺݏ

 0 0 ˆ( ) 1 ( )s s s r             ( 65 ) 

Total stress including stiffness recovering term is given by, 

    01 ( ) 1 ( ) ( ) : p
c tD s D E               ( 66 ) 
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One of the major drawback of this model is lack of consideration of effects of ductility in 

concrete. Concrete cylinder subjected to confining pressure shows higher strength at higher 

strain level [18]. This model can predict ultimate strength of confined concrete correctly but 

early degradation of strength is observed, hence this model fails to capture the higher strength 

of concrete at higher strain level. Another drawback of this model is lack of consideration of 

cracking of concrete. Although, crack opening and closing is captured by stiffness recovery 

terms, it works only for very small tensile strain. For larger strain range, this model fails to 

capture the response of experiment. Hence, simulation of cracked concrete in tension is not 

possible with this model. 

Cervenka and Papanikolaou Model [12] 

This model considers the fracture mechanics approach which is coupled with plasticity 

formulations [12]. In this approach cracking of the concrete is considered numerically 

(smeared cracking) to account its influence on the response of concrete. This model is available 

in the software ATENA. 

The strain decomposition in this model considers, strain due to cracking as follows,  

e p f
ij ij ij ij               ( 67 ) 

where, ߝ௜௝
௙  is the strain considered for modeling cracking of concrete. 

New stress state in computed by, 

 1n n p f
ij ij ijkl kl kl klE                 ( 68 ) 

To simulate behavior of concrete cracking, Rankine failure criterion is used.  

௜ܨ
௙ ൌ ᇱ௧௜௝ߪ െ ݂ᇱ௧௜ ൑ 0         ( 69 ) 
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where, ߪᇱ௧௜௝ is trial stress and ݂ᇱ௧௜ is tensile strength of concrete in direction ‘i’. If this equation 

is satisfied at any point, then concrete is cracked and for calculation of cracking strain, it is 

assumed that stress state satisfy the following equation. 

' ' ' ' ' 0f t t f
i ii t i ii iikl kl t iF f E f                ( 70 ) 

For fracturing strain increment is determined by, 

'
f

f k
ij ik

ij

F  



    


        ( 71 ) 

From substitution of ' f
ij  value in Eq. (65) we get, 

 max' '' '
tt
kk t kkk t k

kkkk kkkk

f Wf

E E




          ( 72 ) 

Where,  max ˆ ' f
k t kkW L      

ˆ ' f
kk  is total cracking strain which indicates the maximal fracturing strain reached during 

loading and ' f
kl  is current cracking strain. Current cracking strain is computed from following 

equation, 

  1
' ' 'f cr
kl ijkl ijkl klmn mnE E E 


          ( 73 ) 

Where cr
ijklE  , is determined by cr f

ij ijkl klE    . 

For first mode of cracking, crack stiffness is given by  

 max'
'

ˆ '
t kcr

iiii f
ii

f W
E


   (where repeated indices do not indicate summation.)    ( 74 ) 

and for second and third mode of cracking,  

 ' min ,cr cr cr
ijij F iiii jjjjE s E E  (where repeated indices do not indicate summation.)  ( 75 ) 
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Fs  is shear factor coefficient which defines the relationship between shear and normal crack 

stiffness. In order to calculate shear strength of cracked concrete, Modified Compression Field 

Theory is used.  

0.18 '
24

0.31
16

c
ij

g

f
w

a

 




 , i j         ( 76 ) 

ga  in above equation is maximum aggregate size and w  is maximum crack width. 

For determination of plastic strains in Eq. (63), following equation is used. 

 
 p t

ijp
ij

ij

G 
 




  


         ( 77 ) 

where, G is plastic potential function which is given by, 

  1 2

1
2

3
p

ijG I J           ( 78 ) 

If 0 > ߚ, material is under compaction, if 0 < ߚ then material is dilating. If 0 = ߚ, then it indicts 

the volume of material under consideration is constant. 

For concrete crushing simulation, following failure surface is used. 

 
2
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' 6 ' 3 '

p
P

c c c

F m r e c
f f f
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  

      
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    ( 79 ) 

Where,
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3
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This failure surface is defined in Heigh-Westergaard coordinates 	ሺߦ, ,ߩ ሻߠ ,݂ᇱ௖  and ݂ᇱ௧  are 

strength of concrete in compression and tension. Parameter e governs the roundness of the 

failure surface such that 0.5 > e > 1. For e = 1, failure surface resembles to von-Mises surface 

with complete circular surface and for e = 0.5, failure surface have sharp corners. This 

parameters resembles the ratio of 
௥భ
௥మ

 in William Wranke model [7].  

Hardening and softening is controlled by parameter C which is evolving parameter. 

  2

'

'

p
c eq

c

f
c

f

 
 
 
 

          ( 80 ) 

௘௤ߝ
௣  is equivalent plastic strain and ݂ᇱ௖൫ߝ௘௤

௣ ൯ is hardening law which is given by, 

 
2

1
p

c eq
co c co

c

f f f
 




 
      

 
       ( 81 ) 

This law is based on uniaxial compressive test. Hardening behavior is dependent on strains 

while softening behavior is dependent on displacement. 

Due to consideration of crack in the form of cracking strain, there is no residual plastic 

tensile strain in concrete. As concrete is cracked, strains in the material after cracking is 

considered numerically. Due to these reasons, this model prediction up to ultimate strength of 

concrete is good along with stress-strain response predictions [12]. This model is validated for 

columns under axial compression and under flexural load [12].  But in the validation study 

done by Cervenka and Papanikolaou [12], applied displacement on the beam was small as 

compared to the displacement considered in the earthquakes. Hence, this model needs further 

verification for large displacements. In addition, this model needs to be extended beyond 
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ultimate strength of the cracked concrete, where compressive strength of concrete is dependent 

on cracks in all other direction.  

Various attributes of the concrete constitutive models available in the finite element 

software ANSYS, ABAQUS, ATENA and OPENSEES are presented in Table 3. As stated 

earlier, present constitutive models in ANSYS are Willam and Wranke model [7] and Extended 

Drucker-Prager Cap (EDPC) model [15] which fails to simulate softening of concrete. For 

bond model of steel and concrete, cohesion and friction bond models are available. ANSYS 

software was not considered in this study because of weakness of the concrete constitutive 

model. In ABAQUS, Lee and Fenves model [10] and smeared cracking model are available 

for concrete response simulation. Smeared cracking model prediction for confinement effect 

is not in agreement with experimental data due to which this model was not considered for 

simulation of RC member. Available steel-concrete bond model in ABAQUS is elastic 

perfectly plastic friction model. ATENA incorporated Cervenka and Papanikolaou [12] 

concrete constitutive plasticity model coupled with fracture mechanics which considers the tri-

axial behavior of concrete as well as cracking of concrete into account. But this constitutive 

model is not numerically stable under large lateral deformation which is demonstrated in next 

chapter. However, this model works nicely for simulating response of RC column under 

monotonic axial compressive loading. OPENSEES software have concrete constitutive model 

by Chang and Mander [4], which can simulate confinement effect with consideration of crack 

opening and closing mechanism. This model also includes the degradation of stiffness of RC 

member. But as discussed earlier, these models lacks the ability to simulate the local interaction 

behavior of RC member such as lateral pressure on longitudinal rebar which is required for the 

simulation of longitudinal rebar buckling. Hence, this model is not considered in this study. 
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Table 3. Available concrete constitutive models in various software 
 

SOFTWARE ANSYS ABAQUS ATENA OPENSEES 

Concrete-steel bond 
relationship 

 

Cohesion, Friction 
(Multilinear)  

Friction ( Elastic-plastic) 
  

Bond model 
 

Bond model [25] 

Concrete constitutive 
Models 

 

Willam-
Wranke 

[7] 

Elastic-
perfectly 
plastic  

EDPC 
model   
[15] 

Multilinear 

Lee and 
Fenves 

[10] 

Multilinear 

Smeared 
cracking 

[16] 

Multilinear  

Cervenka-
Papanikolaou 

[12] 

Exponential 
hardening 

Chang and Mander     
[4] 

Non-linear  

Softening NO NO YES YES YES YES 

Confinement effect YES YES YES NO YES YES 

Cyclic stiffness 
degradation 

NO NO YES NO NO YES 

Crack opening-closing 
mechanism 

NO NO NO YES YES YES 

Numerical stability under 
large lateral loading 

--- --- YES --- NO --- 

Ability to predict the 
multiaxial behavior of 

material 

YES YES YES YES YES NO 
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2.3 Steel constitutive models 

RC member analysis with ABAQUS, ANSYS, ATENA and OPENSEES can consider 

different types of steel constitutive models. In a study performed by Babazadeh et al. [26] with 

ABAQYS software, steel constitutive model used was multilinear isotropic hardening. They 

simulated monotonic lateral response of the RC bridge column. As monotonic response was 

simulated, isotropic hardening behavior assumption of steel material was a good assumption, 

however the same analysis model may not be applicable to seismic analysis because of 

different material of response evolution. A recent study on RC column simulation by 

Moharammi and Koutromanos [13] considered uniaxial steel model originally developed by 

Dodd and Restrepo-Posada [27]. This model considers only one dimensional stress-strain 

relationship. Consequently, combined action of shear and axial stresses in the steel rebar, under 

earthquake loading can be simulated. 

Multilinear stress-strain fit of steel rebar is most widely used because of its simplicity 

of parameter determination. However, this model parameters are determined using monotonic 

responses, response under cyclic loading can’t be simulated correctly.  

Yield criterion in this model is given by von-Mises,  

     
1

2

0

3
0

2
f s a s a                

      ( 82 ) 

Kinematic hardening is given as, 

2 shG            ( 83 ) 

where, G is shear modulus. 

2
sh plC

d d
G

           ( 84 ) 
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and 
2

3
T

T

EE
C

E E



 is the plastic modulus of the current linear segment.   

E is Young’s Modulus and ET is tangent modulus of the current linear segment. 

For multilinear model, determined by series of ( ௞,  ௞), ݇ = 1, 2 … N, back stress evolution 

is defined in such a way that, effective stress-effective plastic strain curve is multilinear as per 

give stress-strain input. Behavior of the material is weighted for each linear segment where 

each weight is given by following equation.      

Plastic strain for each linear segment is calculated by, 

1

N
pl pl

i i
i

d wd 


          ( 85 ) 

where, N is total number of linear segment and iw is given by, 
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k i
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E E
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






 




         ( 86 ) 

Chaboche model [28] and Armstrong-Fedrick model [29] are available in ANSYS and 

ABAQUS. In Armstrong-Fedrick model, one nonlinear back stress term is considered whereas 

in Chaboche model, back stress is decomposed into 2 to 4 back stress terms. The reason behind 

consideration of multiple back stresses is to capture the nonlinear behavior of steel. Apart from 

the back stress formulation, rest of the equations are same for these two models. von-Mises 

yield function is used in these models which is given in eq.(80) Other equations used are, 

Flow rule (rate independent):  

1p f f
d d

H
 

 
 

 
  
 

        ( 87 ) 
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Back stress 

2

3
pda Cd adp  

  
    Armstrong Fedrick Model  ( 88 ) 

1 1

2

3

m m
p

i i i i
i i

da da C d a dp 
 

     
 

   
  Chaboche Model (m = 2 to 4) ( 89 ) 

where, pdp d          ( 90 ) 

In Fig. 10, simulation by Chaboche model and Armstrong-Fedrick models are compared 

against a hysteretic loop experimental response of grade 60 steel. 

  
Fig. 10. Comparison of the experimental response and model simulations, (a) Armstrong-Frederick (A-F) [29],  

(b) Chaboche [28] 
 

In ABAQUS, Chaboche model can be used for 2D and 3D elements. But Chaboche 

model can’t be used for beam element. Beam elements are supported by the uniaxial Johnson-

Cook [30] plasticity model, bilinear and multilinear model. From these models, multilinear and 

Johnson-Cook [30] are isotropic hardening model and bilinear model is kinematic hardening. 

‐800

‐400

0

400

800

‐0.01 0 0.01

A
xi
al
 s
tr
es
s 
(M

p
a)

Plastic strain

Expt.

A‐F
‐800

‐400

0

400

800

‐0.01 0 0.01

A
xi
al
 s
tr
es
s 
(M

p
a)

Plastic strain

Expt.

Chaboche

Grade 60 steel Grade 60 steel (a) (b) 



54 
 

Hence, bilinear kinematic hardening model is used as rebar in the lateral cyclic loading RC 

column simulations. RC columns were modeled using the beam element for evaluation of 

constitutive models. . 

It is noted that once the concrete constitutive models are established for RC column 

seismic analysis, improved constitutive models, like Chaboche [28], will improve RC column 

degradation analysis. 

Steel models available in OPENSEES  

 In OPENSEES, some of the available steel models are Ramberg-Osgood [31] 

Menegotto and Pinto [32], Dodd and Restrepo-Posada [27], Dhakal and Maekawa [33], etc. 

Ramberg-Osgood [31] and Menegotto and Pinto model [32] uses nonlinear equation with 

isotropic hardening to determine the uniaxial stress-strain response of steel. Dodd and 

Restrepo-Posada model [27] is coupled with Dhakal and Maekawa model [33] to predict the 

uniaxial stress-strain response of buckled rebars. Buckling under consideration is dependent 

on the aspect ratio of rebar, hence Dhakal and Maekawa model [33] has to be calibrated for 

specific case of longitudinal rebar buckling. This model fails to consider the interaction of 

concrete and steel rebar such as lateral pressure excreted by the concrete on longitudinal rebar 

which is one of the important aspects in buckling. Hence, constitutive models for steel material 

has to be calibrated separately. When RC column is subjected to earthquakes, rebars 

experiences axial as well as shear stresses. Due to lack of consideration of multiaxial behavior 

in model, shear stresses are neglected in the simulation. Because of all the limitations 

associated with these models, uniaxial models are excluded from the study. 
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2.4 Validation of the constitutive models 

For the validation of the Lee and Fenves model [10] available in ABAQUS, input of 

unconfined stress-strain curve of concrete is needed to be defined. Stress-strain relationship 

considered by Lee and Fenves model is as given in eq. (36) which is known as Barcelona model 

[34]. Stress-strain curve of this model is presented in Fig. 11. In Barcelona model, parameter 

‘a’ and ‘b’ are constant values. Parameter ‘a’ can be calculated by using eq. (37) which controls 

the ultimate strength of unconfined concrete and parameter ‘b’ controls the shape of stress-

strain curve. As parameter ‘b’ is not an evolving parameter, once this parameter is fixed for 

given unconfined stress-strain curve, eq.(36) fails to capture the ductility of confined concrete. 

For unconfined concrete, Barcelona model is representative of the experimental response but 

for confined concrete, this model suggest early degradation of strength because of lack of 

evolution of parameter ‘b’. Experiment conducted by Richart [18] on concrete cylinders 

subjected to active confining pressures suggest slower degradation of strength at higher strains. 

Due to this limitation associated with Barcelona model, Popovics model [1] is utilized where 

control over negative stiffness is possible as presented in Fig. 11. Hence, in order to control 

negative stiffness of concrete in the softening range, Popovics model [1] was utilized to 

obtained unconfined stress-strain curve for concrete. The stress-strain relation in Popovics 

model is given by, 

 0
0 01 /

n

n
f f

n


  


 

        ( 91 ) 

where, ଴݂ is unconfined strength of concrete and corresponding strain ߝ଴ with ‘n’ as material 

parameter.  
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Fig. 11. Comparison of Lee and Fenves and Popovics model for uniaxial monotonic stress-strain relationship 
 

Value for parameter ‘n’ used as 1.75, instead of the suggested value by Popovics [1] to control 

the negative stiffness of the concrete in softening. By using this model, stress-strain curve of 

unconfined concrete is obtained (Fig. 11) and then this curve is used as input stress-strain for 

Lee and Fenves model [10] in ABAQUS. The three linear segment tensile stress-strain curve 

is assumed as shown in Fig. 12. Elastic modulus of concrete in all simulations are calculated 

using,  

௖ܧ ൌ 5000ඥ݂′௖         ( 92 ) 

where, ݂′௖ is unconfined strength of concrete,  

Poisson’s ratio is considered as 0.2. For parameters of Lee and Fenves model, dilation angle 

were considered as 35. Biaxial to uniaxial compression ratio as 1.18 and invariant stress ratio 

as 0.69, flow potential eccentricity as 0.1 and viscosity parameter as 0. Lee and Fenves [10], 

gave recommendation for the stiffness damage parameters, but these stiffness degradation 

parameters don’t alter the behavior of monotonic response. Due to this reason stiffness 

recovery factor for tension and compression are considered as 1 in monotonic simulations. 
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Fig. 12. Assumed tensile stress-strain relationship 
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2.4.1 Simulation of concrete cylinder under monotonic compressive loading with active 

confinement 

The concrete constitutive models are first validated against the experimental data of 

Richart [18]. As stated earlier, Richart [18] conducted a set of experiments on concrete cylinder 

subjected to active confinement pressure and monotonic compressive loading. In order to 

simulate the responses of concrete under active confinement using the finite element analysis, 

cube element is modeled as showed in Fig. 13 where active confinement pressure (p) was 

applied on the sides of the cube and it is axially loaded by stress ߪ. 

    

 

 

 

 

 

 

 

 

 

Fig. 13. Modling consideration of concrete for material level 
 

Results obtained by using Lee and Fenves model [10] with stress-strain input from 

Popovics Model [1] are presented in Fig. 14a, where dotted line indicates the experimental 

responses and solid line indicates the simulated responses. Lee and Fenves [10] with Popovics 

model [1] prediction for ultimate strength is close to the experimental observation, but 
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prediction of the stress-strain curve is not in agreement with experimental stress-strain curve. 

Strengths at higher strains are under predicted by this model for most confining pressures 

except at p = 28.19 MPa which is very large compared to most practical confining pressure in 

RC columns. Results obtained from the smeared cracking model in ABAQUS is plotted Fig. 

14b. Stress-strain curves and ultimate strength predictions by this model is significantly under 

predicted. Due to this reasons, smeared cracking model in ABAQUS was not considered for 

RC column response simulations in this study. One point should be noted that available 

smeared cracking models in literature such as model from Moharammi and Koutromanos [13] 

improved the model so as to capture the confining effect along with other behavioral aspects 

of RC column such as stiffness degradation. These models are not implemented in any of the 

existing FE software and goal of this study to evaluate constitutive models available in the 

software under consideration. Cervenka and Papanikolaou model [12] considers smeared 

cracking of concrete by using fracturing strain. Although at material level, simulation by this 

model are not representative of experimental data but this model shows good simulation when 

used to simulation structural responses [12]. Hence, this model is considered for verification 

purposes and utilized to simulate RC column responses.  

Mander model [2] is compared against the experimental results which are presented in 

Fig. 14c. For low level of confining pressures, ultimate strength predictions and stress-strain 

responses simulations by Mander model are in well agreement with an experimental data. But 

for higher level of confining pressures, ultimate strength and stress values are significantly 

under predicted by Mander model.  
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(a) 
 

(b) 
 

(c) (d) 
Fig. 14 Continued. Comparison of experimental and simulated responses (a) Lee and Fenves model [10] (b) Smeared 
cracking model (c) Mander model [2] (d) Cervenka and Papanikolaou model [12], p indicates applied active pressure 

on concrete 
 

In order to address the issue of under prediction of strength of confined concrete at 

larger strains, new method is introduced. This method uses Mander model [2] to determine the 

confined stress-strain curves. Then, the response is normalized with confined strength of the 

concrete. Once normalized stress-strain curve is determined, this stress values are multiplied 
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by unconfined strength of concrete which is needed to be simulated in given experiment. This 

response is used as input for ABAQUS for unconfined stress-strain curve.   

 

 

(a)  
(b) 

 
Fig. 15. Normalized Mander (a) Flow chart for normalized mander technique (b) Representation of the steps in the 

preocesse normalized mander 
 

For example, consider case with unconfined strength (݂′௖) as 25.23 MPa and with 

active confinement pressure (݂′௟) as 3.79 MPa. Then from Mander model [2], confined stress-

strain response of the concrete can be determined which is given in Fig. 15b–curve 1. 

Computed confined strength of concrete by using Mander model [2] is 45 MPa. This curve is 

normalized to the unconfined stress-strain curve of concrete by dividing all the stress values 

by 45 and then multiply by 25.23 to get normalized unconfined stress-strain curve which is 

showed in Fig. 15b–curve 2. By using this technique, normalized stress-strain curve is obtained 

and it is used as input in finite element software along with Lee and Fenves model [10] to 
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capture the high strength at higher level of ductility. So for validation purpose, normalized 

Mander model was utilized with Lee and Fenves model and results are showed in Fig. 16. 

 
 
Fig. 16. Normalized Mander model comparison against experimental response, p indicates applied active pressure on 

concrete  
 

Simulation by using normalized Mander model is presented in Fig. 16, where one can 

observe that prediction of ultimate strength is acceptable when compared against experimental 

data. Issue of early degradation of strength at higher level of ductility in Lee and Fenves with 

Popovics model was prevented by this model. However, stress-strain response prediction at 

higher confining pressure and lower range of strains is consistently over predicted by this 

model. Stress-strain response of the confined concrete at high confining range is over 

predicted.  

As shown earlier, smeared cracking model significantly under predict the confined 

strength of concrete hence, this model is not used for simulation of RC column. Simulation of 

ultimate strength by Lee and Fenves model [10] with Popovics model [1] and Lee and Fenves 
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model [10] with normalized Mander model is in well agreement with experimental strengths 

hence these models are used for the RC column simulation.   

 

2.4.2 Simulation of concrete filled steel tubes 

 
In this section, Mander, LFP (Lee and Fenves with Popovics) and LFNM (Lee and 

Fenves with normalized Mander) will be validated against the experimental responses by 

Schneider [19]. In this experiment, the passive pressure is uniformly distributed throughout the 

specimen. For the material modeling of concrete, Lee and Fenves model [10] was used along 

with Popovics model [1] and Normalized Mander model. As discussed in earlier discussion, 

Popovics model [1] and Normalized Mander model was used to define stress-strain curve of 

unconfined concrete which is given as input for Lee and Fenves model [10] in FE software, 

ABAQUS. For steel material, bilinear model with isotropic hardening was utilized. In this case, 

multilinear model or Chaboche model [28] can be used but these models need additional 

experimental data for calibration.  
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(a)  

 
 

(b)  

 
Fig. 17. Concrete filled steel tubes simulation (a) Schematic representation (b) Geometry for simulation with meshing in 

finite element software 
 

In modeling of concrete filled steel tubes, axisymmetric case was considered where 

steel and concrete are modeled with axisymmetric explicit elements (CAX8R). In order to 

simulate contact between steel tube and concrete core, surface contact with hard normal contact 

along with penalty friction with coefficient of friction as 0.3 is defined. To prevent overclosure 

error, meshing of steel and concrete is done in such a way that steel and concrete are connected 

by node to node [16]. 

Results obtained from the simulations were compared to the experimental responses in 

Fig. 18. This figure shows that for concrete filled steel tubes, Mander model over predicts the 

responses. Simulation with Lee-Fenves [10] with Popovics model [1] gives good estimation of 

the response as compared to standalone Mander model. As Mander model do not consider 

energy dissipation due to cracking in to account, predictions from this model are not 

representative to the experimental response beyond initial response. Lee and Fenves model 
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[10] with normalized Mander over predicts the response but this over prediction is acceptable 

as compared to Mander model [2] over prediction of response.  

(a) (b)  
Fig. 18. Concrete filled steel tubes simulation, (a) and (b) for experimental specimen C1, (c) and (d) for experimental 

specimen C2 where LFP: Lee and Fenves model with Popovics model LFNM: Lee and Fenves model with normalized 
Mander 
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2.4.3 Simulation of reinforced concrete column under monotonic compressive loading 

 
Reinforced concrete column subjected to monotonic compressive loading is simulated 

for validation of the constitutive models. In this case, concrete is subjected to discrete passive 

confinement, where individual transverse steel reinforcement impose discrete confining 

pressure [21].  

For modeling convenience, transverse rebar is considered as rectangular having equal 

cross section area as circular rebar and same projected depth of the circular rebar diameter as 

showed in Fig. 19a.  

(a) Transverse bar profile for modeling 
 
 
 

Area of rebar, 2

4rebarA d


  

Area of rectangle rectA bd  

Hence, 
4

b d


  

 

 
(b) Column model in ABAQUS 

 

Fig. 19. Modeling aspects for reinforced concrete column 
 

Same depth of the rebar was considered to maintain the equivalent confining stress, as 

confining pressure depends on the spacing of the transverse rebar as well as the projected 

Original  

d  

b 

Concrete 

Transverse rebar 

Longitudinal rebar 

Original Profile  Assumed  

Strain gage length 
L = 300mm 



67 
 

height of the rebar on concrete core. This rectangular rebar does not sacrifice any physical 

characteristics because governing parameters for transverse rebar which influences confining 

stress are cross sectional area and the projected depth of the transverse steel. This assumption 

is made, to get larger contact area between longitudinal steel and transverse steel. With this 

assumption, modeling and numerical issues with single point contact between longitudinal 

rebar and transverse rebar can be eliminated. In order to prevent complex meshing in the 

concrete, cover concrete was not modeled.  

Modeling of contact area between transverse steel and longitudinal steel can be 

obtained by two different ways. In case A (Fig. 20b), small portion from transverse rebar was 

removed so as to get larger contact area instead of single contact point between transverse steel 

and longitudinal steel. In case B (Fig. 20c), small portion of the longitudinal steel is removed 

such that large surface area is in contact between transverse steel and longitudinal steel.  

For case A, cross section area of the transverse rebar is rectangular and the distance of 

insertion of longitudinal rebar is 0.2 mm (dc). Due to which area of the modified transverse 

rebar fA , can be calculated as, 

  20.2 4.52 6 27.12fA b d mm      

24.72 6 28.32originalA mm    

From this calculation, % reduction in area of transverse rebar was 4.2%.  
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(a) 

 

 

 

Fig. 20. (a) Representative figure of reinforced concrete with plane of symmetry (b) Case A: modification of transverse 
rebar, (c)  Case B: modification of longitudinal rebar, schematic representation of contact development in transverse 

rebar and longitudinal rebar 
 

finalA  

 
Fig. 21. Schematic representation of longitudinal rebar for modeling purpose 
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For case B, to determine the % removal of area from longitudinal rebar, following calculations 

were done. 

Length of the removal = LR =0.2mm 

final rebar rA A A   

2

360r triangleA r A
    

Where,  = 300, r = 6mm 

  1
2 tan

2 2triangle R RA r L r L
         

 = 9.0138 mm2 

 2
9.01

30
386 0.41097

360rA     mm2 

From calculation we get, 

Total area = 113.0973 mm2 

Final area = Afinal = 113.0973-0.411=112.6863 mm2 

% Area reduction = 0.3% 

This longitudinal rebar modeling assumption is justified as original cross section of the 

rebar is not exactly circular so area variation of 0.3% does not changes any physical 

characteristics of the column. Also, this small reduction of the area acts as initial imperfection 

in simulation of buckling. In case A, % of reduction of area is higher than that of case B. Hence, 

case B was considered for simulations.  

For the simulation purposes, half symmetry of the column is utilized. In this case, actual 

angle of symmetry is 300. But buckling of longitudinal rebar may not be along the plane of 

symmetry, hence least angle of symmetry is 600. But for ease of modeling and meshing 
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purposes, half symmetry is utilized as shown in Fig. 20a. As stated earlier, cover concrete was 

neglected as this concrete gets crushed in early stages of loading as shown by Mander et al. 

[21], which indicates the cover concrete doesn’t play a major role in RC column response. 

Concrete outside of longitudinal rebar was neglected (Fig. 22b) due to complex geometry, 

meshing and numerical divergence issues associated with extreme distortion of elements. 

Elements used for concrete and steel are C3D8R, which are 3D-8 nodded explicit linear 

elements. Contact elements with area to area contact were defined between steel to concrete 

and steel to steel, such that hard contact for normal direction and frictional contact with 

coefficient of friction of 0.5 is considered. Convergence studies are done to determine mesh 

density required for analysis. To prevent overclosure error, meshing is done such that elements 

of concrete and longitudinal steel share same location for nodes in cross section of the RC 

member [16]. Along the longitudinal direction of RC specimen, different mesh sizes were 

utilized for longitudinal rebar and concrete core. Finer mesh is used in longitudinal and 

transverse rebar to account for buckling and necking respectively.  

     

(a) Cross sectional side view 
 

 

 

(b) Top view 

Fig. 22. Detailing of the geometric shapes (a) cross section side view of the RC column for detailing of the concrete in 
between transverse rebar (b) Top view showing removal of concrete outside of longitudinal rebar 

Transverse rebar 

Concrete 

Longitudinal rebar 



71 
 

 
Displacement is prescribed at top of the specimen and rigid boundary condition was 

defined for the support condition. As shown in Fig. 19b, strains are determined within gauge 

length of 300 mm at mid-height of specimen as per experimental setup.  

Simulations of the concrete stress-strain responses for normal strength transverse steel 

rebar are shown in Fig. 23. Confining pressure calculated by using Mander model [2] are 3 and 

1.95 MPa for (6A, 6B) and (9A, 9B) respectively. When Lee and Fenves model [10] was used 

along with Popovics model [1], prediction are good for normal strength transverse steel which 

is shown in Fig. 23a, c, e, g. Lee and Fenves model with normalized Mander predictions are 

similar as compared to the Lee and Fenves model with Popovics model for normal strength 

transverse steel case. Mander model predictions for ultimate strength and stress-strain curve 

are in well agreement with experimental data. Cervenka and Papanikolaou model [12] 

prediction (Fig. 23b, d, f, h) are comparatively better even for 6B and 9B cases as well, where 

early softening is predicted as per experimental results. 

Comparison of the model prediction against experimental response for ultra-high 

strength steel transverse reinforcement is shown Fig. 24. Confining pressure calculated by 

using Mander model [2] are 10.13 and 8.58 MPa for (4HB1, 4HC) and (6HB, 6HC) 

respectively. Mander model consistently over predict the ultimate strength of the section as 

well as the complete stress-strain response of column at these higher level of confining 

pressures (Fig. 24b, d, f, h). Reason behind this over prediction is assumption of yielding of 

the steel at the point where confined strength is highest [2]. This assumption is result of the 

consideration of strain energy stored in transverse steel is equivalent to strain energy caused 

dilation in concrete. This assumption holds good for the steel with relatively lower yield stress 
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but for high strength steel, core concrete of the column achieve ultimate strength before 

yielding of steel occurs as observed in experiments [20]. This is due to the fact that, strain 

energy required to cause yielding in high strength steel is higher than energy required to cause 

crushing of the core concrete. Due to this reason, Mander model consistently over predict the 

strength. Same as Mander model [2], Lee and Fenves model [10] coupled with normalized 

Mander consistently over predict the ultimate strength and response of column (Fig. 24a, c, e, 

g) but earlier elastic predictions in all the cases are better as compared to all other models. Lee 

and Fenves [10] coupled with Popovics model [1] gives good estimation till ultimate strength 

of the specimen (Fig. 24a, c, e, g). Stress prediction by this model in softening region in under 

predicted when compared to experimental data. Cervenka and Papanikolaou model [12] 

predictions of strength and stress-strain response are relatively better as compared to other 

models (Fig. 24b, d, f, h) but degradation of strength after reaching ultimate strength in 

descending branch of stress-strain curve is not simulated well. 

  



73 
 

 

(a) 
 

(b) 
 

(c) 
 

(d) 
 

 

Fig. 23. Results of specimen with normal strength transverse steel  
LFP: Lee-Fenves with Popovics model, LFNM: Lee-Fenves-Normalized Mander model, CP: Cervenka and 

Papanikolaou model  
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(e) 
 

(f) 
 

(g) (h) 
 

Fig.  23 Continued. Results of specimen with normal strength transverse steel  
LFP: Lee-Fenves with Popovics model, LFNM: Lee-Fenves-Normalized Mander model, CP: Cervenka and 

Papanikolaou model  
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(a) 
 

(b) 
 

(c) 
 

(d) 
 

Fig. 24.  Results of specimen with ultra-high strength transverse steel 
LFP: Lee-Fenves with Popovics model, LFNM: Lee-Fenves-Normalized Mander model, CP: Cervenka and 

Papanikolaou model 
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(e) 
 

 
(f) 

 

(g) 
 

(h) 
 

Fig. 24 Continued. Results of specimen with ultra-high strength transverse steel 
LFP: Lee-Fenves with Popovics model, LFNM: Lee-Fenves-Normalized Mander model, CP: Cervenka and 

Papanikolaou model 
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Comparison of the stress-strain responses of concrete at different locations in the cross 

section of RC column specimen ‘6A’ is shown in Fig. 25. For this comparison, Lee and Fenves 

model [10] with Popovics model [1] is utilized. This comparison is made at the cross section 

equidistant from the transverse rebar which is the weakest cross section in RC column. In this 

comparison (Fig. 25a), ‘location 1’ indicates concrete on external surface which is not 

confined. ‘Location 2’ is the region at midway from the external surface to the core and 

‘Location 3’ is the innermost region of concrete which have highest level of confinement. 

Stress-strain responses of concrete at all these locations are shown in Fig. 25b. Due to absence 

of confinement, ultimate stress at ‘location 1’ is same as unconfined strength of concrete which 

is 63 MPa. Whereas at the ‘location 3’, increased strength and ductility is observed. At the 

‘location 4’ which is adjacent to longitudinal rebar, observed response are different than 

Mander model simulation. Lateral pressure prediction at this location is critical for prediction 

of buckling of the longitudinal rebars where lateral pressure on longitudinal rebars by concrete 

plays important role in buckling prediction. Interaction of longitudinal rebar with confining 

pressure from concrete is simulated by using 3D FE analysis. 

For comparison purposes, simulation of stress-strain responses by Mander model [2] 

for given RC column (6A) is presented in Fig. 25b. This simulation indicates the uniaxial 

stress-strain response of the concrete. This uniaxial behavior of concrete constitutive model is 

considered in OPENSEES software. Due to lack of consideration of multiaxial effect of 

concrete, simulation of different confining pressure at different location (Fig. 25) is not 

possible by using uniaxial concrete models such as Mander model [2], Belarbi and Hsu [3], 

Chang and Mander [4], etc. 
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(a) (b) 
 

Fig. 25. (a) Location at which stress-strain responses are plotted (b) Stress-strain responses of different location in the 
RC column Comparison of stress-strain response of concrete at different locations 

 
 

As mentioned earlier, in longitudinal rebar buckling mechanism, lateral pressure 

exerted by concrete on longitudinal rebar is an important factor. Uniaxial model fails to capture 

the effect of confining pressure on longitudinal rebars. Due to this reason, simulation of 

longitudinal rebar buckling is difficult by using uniaxial models. Along with this fact, uniaxial 

model don’t consider multiaxial behavior of concrete, hence fails to simulate the interaction of 

concrete core, longitudinal rebar and transverse rebar. Failure mechanism observed in the 

experiment as shown in Fig. 26a, will not be possible to simulate by using uniaxial concrete 

constitutive model. This is one of the drawback of the uniaxial concrete constitutive models. 

Demonstration of longitudinal rebar buckling obtained in the simulation is presented in 

Fig. 26. This longitudinal rebar buckling in the simulation is observed as per experimental 

observation. In the experiment, observed failure mechanism was fracture of the transverse 

rebar which was followed by buckling of the longitudinal rebar. Simulations suggested similar 
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mechanism which is shown in the Fig. 26c, where gray color represents the tensile stress and 

other color indicates compressive stress. This buckling is occurring across two spacing length 

of the transverse rebar. The necking of the transverse rebar explains the reason of buckling in 

the longitudinal rebar [20], [35]. This type of failure mechanism can’t be simulated by using 

uniaxial analysis technique. Due to lack of physical modeling of rebars and lack of interaction 

of concrete and longitudinal rebar, simulation of failure mechanisms, such as, buckling of 

longitudinal rebar is not possible by using uniaxial analysis. On the other hand, 3D FE analysis 

using a multiaxial constitutive model of concrete would be able to simulate failure mechanism 

of RC member reasonably.Along with bar buckling, experiments demonstrated damage in the 

core concrete due to crushing of the concrete [20]. In simulation, concrete crushing was not 

modeled. Strength degradation was captured along with dilation of the concrete which can be 

observed in Fig. 26b.  

 
 

(a) Experimental observation 

                     

 
(b) Simulation 

 

 
 

(c) Bar buckling 

Fig. 26. Visual comparison of simulation with experimental observation 
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2.5 Summary 

This chapter validated performance of available concrete constitutive models against 

the experimental responses of concrete cylinders with active confining pressure, concrete filled 

steel tubes (CFST), RC column subjected to monotonic compression. William and Warnke 

model [7] fails to predict the nonlinear stress-strain response hence it was not used for this 

study. Available smeared cracking model in ABAQUS lack the ability to consider multiaxial 

behavior of concrete due to which this model is not used for simulation purposes.  

Lee and Fenves model [10] with Popovics model [1], under predict the strength of 

confined concrete at higher strains, when concrete is subjected to active confining pressure. In 

order to overcome this issue, normalized Mander model is introduced which can be used with 

Lee and Fenves model [10]. For active confining pressures, response simulations obtained by 

Lee and Fenves [10] with normalized Mander are better as compared to Lee and Fenves [10] 

with Popovics model [1].  

These models are validated against passive confining pressure by simulating CFST. 

Response predictions by Lee and Fenves model with Popovics model are representative of 

experimental response. Mander model [2] is used for simulation of CFST where significant 

over prediction of response is observed. For RC column subject to compressive load, 

simulations by Lee and Fenves model [10] with Popovics model [1] are in well agreement with 

experimental response. Lee and Fenves model [10] with normalized Mander for normal 

strength transverse steel are reasonably well but over prediction of stress-strain response is 

observed in ultra-high strength transverse steel. Ultimate strength predictions for all columns 

under consideration are simulated well by Cervenka and Papanikolaou model [12]. Simulation 
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of stress-strain responses of columns by this model are representative of the experimental 

stress-strain responses.  

This study confirmed the ability of multiaxial constitutive models to capture the 

response of RC column along with failure mechanism such as longitudinal rebar buckling 

occurring in RC column when subjected to monotonic compression load. Uniaxial concrete 

constitutive models such as Mander model [2] also can simulate the response of RC column 

but fails to predict the failure mechanism due to lack of consideration of multiaxial behavior 

of concrete. Hence, uniaxial constitutive models cannot be used to predict the failure 

mechanism of RC column. 
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3 Concrete modeling for lateral loading on RC columns 

In early chapter, concrete constitutive models are verified for response simulations of 

RC columns under compressive loading. Same concrete constitutive models are considered in 

this chapter for the validation of response simulation of RC columns under lateral loading. For 

this validation, lateral monotonic and simulated seismic loading are considered.  

In ASCE 41, monotonic force-displacement responses are considered as envelope 

curve to predict the cyclic force-displacement responses. This consideration works only for 

standardized set of loading protocols such as ‘3-cycle’ load history with increasing amplitude 

[1]. Normally earthquake ground motions are randomly distributed, hence standardized 

loading protocol is not representative of earthquake ground motion. Responses and 

accumulated damage in RC members are usually dependent on load history [2] due to which 

curve obtained from monotonic loading can’t be used as ‘backbone’ for designing RC members 

for earthquake loading [1]. As accumulation of damage is different for different set of loading, 

failure mechanism occurred due to damage accumulation is dependent on load history. Because 

of this reason, cyclic lateral loading has to be simulated in order to determine the response of 

RC member for specific cyclic load. 

For validation, three different RC column experiments are considered from the 

literature in this chapter. Two of the experiments considered the circular cross section of RC 

columns and one experiment on square cross section column. Details of these experiments are 

discussed in the following.  
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3.1 RC column experiments used for concrete constitutive model validation 

3.1.1 Circular RC column 

Experiment on reinforced concrete column conducted by Goodnight [1] under lateral 

loading is considered in this study for concrete constitutive model verification. In these 

experiments, circular columns were subjected to axial force and lateral load. Applied axial load 

was held constant throughout the experiment, while lateral load prescribed on the RC column 

was either monotonic or simulated seismic loading. One monotonic and one cyclic experiments 

are considered for constitutive material model validation as discussed below.  

Column under consideration have diameter of 610 mm with L/D ratio as 4. Total 

number of longitudinal rebar used in the column are 16 with 19mm diameter (#6 bar) each and 

yield strength as 470 MPa. Diameter of transverse rebar is 9.5mm (#3 bar) at spacing of 50mm 

with yield strength of 510 MPa. Unconfined concrete strength and axial load ratio used for 

monotonic and cyclic load history experiments are shown in Table 1. These two experiments 

are considered in such a way that except strength of concrete and axial load ratio, all other 

parameter such as geometry of the columns is identical. Difference between concrete strength 

and axial load ratio is not significantly different due to which direct comparison of these 

experiments can be done.  

Table 1. Experimental details for circular RC columns 

Load history Monotonic Cyclic 

Unconfined concrete strength 51 MPa (7.4 ksi) 47 MPa (6.81 ksi) 

Axial load ratio (% of	ܲ/݂′௖ܣ௚) 5.1 5.5 
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Fig. 1 Experimental response of circular RC column subjected to monotonic load (data from Goodnight [1]) 
 

 
 

Fig. 2 Experimental response of circular RC column subjected to cyclic load (data from Goodnight [1]) 
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In both experiments, detailed observation of the failure mechanism with accumulated 

damage is documented by Goodnight [1]. In Fig. 1, monotonic lateral response of RC column 

is presented, where along with limit states, displacement ductility attained by RC column is 

documented. In Fig. 2, hysteretic loops obtained under lateral simulated seismic loading on RC 

column are plotted. In this experiment, standard triple cyclic lateral load with increasing 

amplitude was applied on the top of the RC column. Detailed study on the failure mechanism 

of RC column along with limit states is presented by Goodnight [1], including the core concrete 

crushing, longitudinal rebar buckling and transverse rebar fracture (Fig. 2).  

In the experiment under monotonic loading, displacement ductility achieved at damage 

control limit state of structure is 16 (Fig. 1). But under simulated seismic loading, damage 

control limit state is achieved at ductility level 8 (Fig. 2). Damage control limit state in 

monotonic load case was reached by core concrete crushing whereas in cyclic load case 

longitudinal rebar buckling was observed. Longitudinal rebar failure, which is considered as 

collapse limit state, was reached in cyclic load much earlier as compared to monotonic load 

experiment. This difference suggest that monotonic lateral loading envelope can’t be used for 

prediction of cyclic response of RC structure, primarily because RC structural response is 

dependent on the applied load history. In other words, accumulation of damage leading to 

failure of RC members under cyclic load is different than accumulation of damage under 

monotonic load.  
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3.1.2 Square RC column 

Experiment conducted by Atalay [3] on square RC column is also considered for 

verification of concrete constitutive model. In these study, experiments were conducted with 

different spacing of transverse rebar, strength of concrete and yield stress of longitudinal rebar. 

One experiment is considered for validation of concrete constitutive model. The column 

considered has a width of 300mm and length 2L of 3350 mm. Unconfined strength of concrete 

is 29.4 MPa. Yield strengths of transverse rebar and longitudinal rebar are 392 and 429 MPa. 

Total number of longitudinal rebar are 4 (one at each corner) and transverse rebar have 50 mm 

spacing with clear cover of 32mm. Axial force (F) of 533.76 kN was applied on the top of 

column followed by cyclic load as shown in Fig. 3a. Observed response of this experiment is 

shown in Fig. 3b.  

(a) 
 

 
 

(b) 
 

Fig. 3. (a) Geometry of square column tested by Atalay [3] and (b) Lateral force-displacement response of square RC 
column subjected to cyclic loading (data from Atalay [3]) 
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3.2 Finite element modeling and response simulation of circular RC column 

specimens under monotonic loading 

In this simulation, consideration of 3D elements for modeling of all longitudinal rebar 

and transverse rebar led to enormous number of nodes which lead to excessive computational 

time. In order to minimize time required for computation without sacrificing physical aspects 

of modeling, longitudinal rebar and transverse rebar were modeled as beam elements (B31) 

and concrete as 3D elements (C3D8R). This type of modeling technique with reinforcing steel 

modeled as beam elements was implemented by Babazadeh et al. [4] for prediction of 

intermediate damage limit states of RC column where large set of experimental data was 

compared against simulated limit states. In this study, intermediate damage limit states was 

successfully predicted by considering reinforcements as beam elements. Due to this reason, 

similar modeling approach is used for simulation of RC column. Perfect bond between 

concrete and steel reinforcements is assumed. Core concrete is meshed in such a way that 

height of the elements is equal to the spacing of the transverse rebar and two elements are 

modeled within adjacent longitudinal rebar as shown in Fig. 4. Cover concrete is neglected 

while modeling RC column.  
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(a)  

        

          
 
 
 
 

(b) 
 

 
Fig. 4. Finite element mesh of the RC column, (a) with foundation (b) without foundation with fixed base 
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Fig. 5 Experimental and simulated responses of RC column under lateral loading by LFNM: Lee and Fenves model [5] 
with normalized Mander and CP: Cervenka and Papanikolaou [6] 

 
 

In Fig. 5, RC column with foundation gives good estimation of ultimate force as well 

as force-displacement relationship but due to numerical convergence issues at the junction of 

foundation and RC column this analysis fails to simulate higher ductility response. RC column 

without foundation can simulate higher ductility level responses, but simulation over predicted 

strength as shown in Fig. 5. Cervenka and Papanikolaou model [6] yielded good prediction of 
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3.3 Simulation of RC column response under simulated seismic loading 

Two different experiments are considered as stated earlier. One experiment on circular 

column by Goodnight [1] and another experiment on square column by Atalay [3].  

Cyclic load experiment by Goodnight [1] is simulated by using same geometric 

modeling and Lee and Fenves [5] with normalized Mander model for concrete material and 

bilinear kinematic hardening model for steel material. As discussed in earlier chapter, 

advanced constitutive material model for steel such as Chaboche Model [7] is available in 

ABAQUS, but this model is not supported by beam elements due to which bilinear kinematic 

hardening rule is used in cyclic loading simulation. Cyclic load up to ductility 3 was prescribed 

on RC column as shown in Fig. 6a and results obtained are plotted in Fig. 6b.  

 
Fig. 6. (a) Applied cyclic load history (b) Comparison of simulation of cyclic load against experiment response at 

ductility level 3 (ࣆ૜) (data from Goodnight [1]) 
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for higher ductility levels, separate cycle at each ductility is prescribed on RC column and 

obtained simulation responses are presented in Fig. 7. 

 
(a) (b) (c) 

   
Fig. 7.  Hysteresis loop simulation at ductility level ࣆ, (a) 4,(b) 6, (c) 8 (data from Goodnight [1]) 

 
 In Fig. 7, lateral force simulations at end of load cycles are in agreement with 

experimental force values, but shape of the hysteretic loops simulated is not representative of 
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(a) 
 

(b)  
 

(c)  
 

(d)  

Fig. 8. Comparison of axial strain in longitudinal rebar obtained from simulations in solid line against experimental 
data in hollow circles 
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(e) (f)  
Fig. 8 Continued. Comparison of axial strain in longitudinal rebar obtained from simulations in solid line against 

experimental data in hollow circles 
 

All the simulations of strains in longitudinal rebar are acceptable when compared 

against the experimental data for first positive peak of the loading in all ductility levels (Fig. 8 

a, c, e). But for first negative peak of loading, residual tensile strain was observed in bar with 

compressive stress (black color curve) in all ductility levels which is indicated by violet color 

ellipse (Fig. 8b, d, f). The reason for this response is explained in the following.   

 Consider concrete cylinder as shown in Fig. 9a, where load is applied at top of the 
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Fig. 9 Consideration of crack in concrete (a) Modeling details, (b) Observed loading in uncracked cylinder,  
(c) Observed loading in cracked cylinder, (d) Comparison of responses of cracked and uncracked concrete cylinders 
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case where load is applied from S1 to S3. In this cycle, concrete is subjected to compression 

to tension and uncracked concrete cylinder undergoes large tensile strain. At point S2, strain 

in concrete is zero and stress state in cylinder is tensile stress. At point S3, cycle reaches peak 

tensile strain with tension stress. Now, when reloading is applied from S3 to S5, concrete stress 

shows sudden change from tension to compression. So from point S3 to S4, concrete cylinder 

have tensile strain but compressive stress in uncracked cylinder.  

But in cracked cylinder, when loading is applied from S1 to S2, concrete cylinder does 

not undergo tensile strain due to presence of crack, rather tensile load leads to ‘opening of 

crack’ in the cylinder. In actual behavior, cracks are not smooth due to which there will be 

small tensile stresses and strains involved [5] but they are not as large as values suggested by 

simulation. Consequently cracked cylinder resembles the actual behavior of the concrete as 

opposed to the cylinder with no crack.  

When simulation of reinforced concrete column is conducted for lateral cyclic loads 

without cracks, concrete under tension load undergoes tensile strain. As contact between steel 

and concrete was considered as perfect bond with no slip, longitudinal rebar undergoes same 

strain to maintain consistency. Due to this reason at the end of positive peak loading (Fig. 8b, 

d, f), there are residual tensile strains in longitudinal rebar which resembles to location S3 in 

Fig. 9d. When reloading is applied in opposite direction, these accumulated plastic strains 

undergo compression which gives tensile strain with compressive stress condition. This is the 

reason behind the tensile strain with compressive stress observed in Fig. 8b, d, f (violet ellipse). 

This study shows the significance of crack consideration for simulation of cyclic response of 

RC members.  
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Next, RC column was modeled by using Cervenka and Papanikolaou model [6] in 

ATENA, under cyclic load of ductility 1.5 which incorporated cracking in concrete 

numerically. Response obtained from the simulation are plotted in Fig. 10. For comparison 

purposes, simulation using the Lee and Fenves model [5] with normalized Mander is also 

plotted in Fig. 10. Lateral force prediction at the peak of the cycle by both models is in 

agreement with experimental force value. Response prediction of the Cervenka and 

Papanikolaou model [6] is promising as compared to the Lee and Fenves model. However, 

even at low ductility cycle, convergence issues were experienced due to distortion of cracked 

concrete elements in the plastic hinge region. Because of this convergence problem, Cervenka 

and Papanilolaou model [6] can’t be used for the response simulation of RC column under 

lateral load cycle of large ductility. 

 

Fig. 10. Comparison of LFNM and CP (ATENA) against experimental response of cyclic load of displacement ductility 
1.5 where LFNM: Lee and Fenves model [5] with normalized Mander and CP: Cervenka and Papanikolaou model [6] 
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for the response prediction of RC structure. Recent work from Moharrami and Koutromanos 

[8] proposed tri-axial constitutive model with smeared cracking to capture the cracking of 

concrete numerically. This study shows promising results for small ductility levels but as 

mentioned earlier, non-repairable damages such as core concrete crushing, transverse rebar 

failure and longitudinal rebar buckling is observed at higher ductility levels, this model has to 

be tested for large displacement ductility loading. Response prediction of smeared cracking 

model is not accurate when localized cracks are observed [8]. Also smeared cracking model 

for localized cracks may suffer stress locking effect and cause inaccurate results due to which 

discrete modeling of crack has to be coupled with continuum based model to represent the 

localized cracking [9].  

Due to the convergence issues experienced with the smeared crack concrete modeling, 

discrete cracking approach was used to simulate the influence of concrete cracking on RC 

column cyclic response. One crack was modeled till half the depth of the RC column in 

ABAQUS and cyclic response was simulated by using Lee and Fenves model with normalized 

Mander. This consideration of half crack lead to numerical issues at the tip of the crack. Then 

crack was considered throughout the depth of the circular RC column and simulation is 

obtained as shown in Fig. 11. Location of crack is assumed in between two transverse rebars 

at the most bottom region of plastic hinge as shown in Fig. 11a. Contact elements are defined 

with in the crack with coefficient of friction to represent the concrete aggregate interlock in 

compression zone of RC column. This crack is allowed to open under tension load. Bond 

between concrete and steel reinforcements are considered as perfect bond with no slip. Rest of 

the modeling aspects are same as earlier and simulation is obtained and plotted in Fig. 11b.  
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Fig. 11. (a) Modeling consideration of crack in RC column (b) Comparison of simulation with crack and without crack 
by using Lee and Fenves model with normalized Mander against experimental hysteretic response for ductility 1.5 

(Expt. data from Goodnight [1]) 
 

Just consideration of one crack shown the significant difference of shape of the 

hysteretic loop which suggest the importance of crack consideration in simulation of RC 
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the locations equidistant from transverse rebars as shown in Fig. 12. Multiple cracks are 

modeled along the height of column. 

 

 

Fig. 12. Modeling cracks in square RC column 
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into simulation of RC column subjected to lateral cyclic loading. 
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(a) 
 

(b) 
 

Fig. 13. Comparison of cracked and un-cracked RC column simulation (a) cycle of amplitude 40 mm (b) cycle of 
amplitude 50 mm, Red color solid line indicates simulation with no crack and black color solid line indicates simulation 

with cracking compared against experimental response in black dotted line 

3.4 Summary 

Available concrete constitutive models are validated for simulation of RC column 

under monotonic and cyclic lateral loading. Simulations by Cervenka and Papanikolaou model 

[6] presented numerical divergence at smaller ductility in lateral monotonic and cyclic loading 

hence this model cannot be used for response simulation and failure mechanism of RC 

columns. When Lee and Fenves model [5] is used for simulation of RC column under 

monotonic lateral loading, lateral force-displacement response prediction is in well agreement 

with experimental response till ductility 10 but for higher ductility, convergence issues were 

observed. For lateral cyclic loading, force prediction at the end of the ductility cycles are well 

simulated along with strains in longitudinal rebar at the end of first peak of loading. But shapes 

of simulated hysteretic responses are different as that of shapes of experimental hysteretic 

loops due to lack of crack modeling. Here, one point is noted that even without crack 
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simulation, strain prediction in longitudinal rebar at the end of first peaks are in well agreement 

with experimental values of strains in longitudinal rebar (Fig. 8a, c, e).  

In order to overcome issue of lack of crack consideration in modeling, physical cracks 

are simulated in the modeling of RC column. Introduction of physical crack improved the 

lateral force-displacement response of RC column. This study states the importance of the 

physical crack consideration in simulation of RC column subjected to lateral cyclic loading. 

Consideration of physical crack modeling works well for low ductility range of loading but for 

higher ductility loading, it yields numerical divergence. Hence, further study of the concrete 

constitutive models with contact element for simulation of higher ductility loading in RC 

column is required.  
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4 Conclusion  

 
When a RC structure is subjected to earthquake loading, various degree of damages are 

experienced. Accumulation of this damage may leads to failure of structures. As response of 

RC structure is depended on the characteristics of the load history [1], damage prediction of 

RC structure is a challenging task. For design, various types of damages are defined as limit 

states. Robust analysis technique is needed to predict the limit states for determination of 

performance and required repair [2]. After repair and retrofit, analysis of repaired member has 

to be performed to anticipate seismic performance. Present simplified analysis, such as, fiber 

modeling techniques lack the capability to predict limit states of RC member and failure 

mechanism especially longitudinal rebar buckling [3]. Due to this reason, 3D finite element 

analysis technique can be used for the prediction of RC responses, damage accumulation and 

limit states.  

Available multiaxial concrete constitutive models in finite element analysis software, 

such as ANSYS, ABAQUS and ATENA, are studied for concrete cylinder and RC specimen. 

In chapter 2, concrete constitutive models are validated against experimental data for 

monotonic axial compressive loading. This chapter presented simulation of responses of 

concrete cylinder under active confining pressure and passive confining pressure. For active 

confining pressure, Lee and Fenves model [4] along with Popovics model [5] gives good 

estimation of confined strength of concrete but stress predictions at higher level of strain is 

under predicted. In order to overcome this issue, a concept of normalized Mander model was 

developed and used with Lee and Fenves model [4] to improve, prediction of stresses at higher 
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level of strain. Both of these models are evaluated in simulation responses of concrete filled 

steel tubes and reinforced concrete columns under monotonic compressive loading.  

It is demonstrated that Lee and Fenves [4] and Cervenka and Papanikolau [6] concrete 

constitutive models gives good simulation of the compressive loading responses of monotonic 

axial compressive loading for concrete filled steel tubes and RC column. It is observed that 

Lee and Fenves model [4] with normalized Mander over predicts the response for high 

confining pressure. For the RC column responses with Mander model [7] predictions for low 

confining pressures is in well agreement with experimental responses but for high confining 

pressure over prediction is observed. Failure mechanism of the RC column under monotonic 

axial load such as longitudinal rebar buckling is predicted in the simulation. This is one of the 

advantage of using 3D FE analysis techniques using which detailed responses of the 

longitudinal rebar can be simulated. Buckling of longitudinal rebar can be simulated in pseudo 

way by adjusting constitutive material model as shown by Dhakal and Maekawa model [8]. 

But this technique fails to capture interaction between longitudinal rebar and concrete which 

is critical in simulation of longitudinal rebar buckling. Due to this reason, uniaxial model can 

capture the response of overall structure but simulation of local damages and failure 

mechanism is difficult which is essential for seismic performance evaluation, repairs and 

retrofits of structures for enhancing seismic resilience. 

 In chapter 3, concrete constitutive models are verified against experimental responses 

of RC columns subjected to lateral loading. Lee and Fenves model [4] with Popovics model 

[5] yielded numerical divergence in early stage of loading, due to which this model was not 

considered for RC column simulations. Lee and Fenves model [4] with normalized Mander 

can simulate the monotonic response of RC column till displacement ductility 10, but beyond 
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this ductility, numerical divergence was observed. Cervenka and Papanikolaou model [6] fails 

to simulate higher ductility also due to convergence issues indicated by concrete constitutive 

model. 

These concrete constitutive models were then used to simulate the cyclic responses of 

RC columns. Hysteretic loops obtained from the simulation have different shapes compared to 

experimental hysteretic loops. Lack of crack consideration into simulation caused prediction 

of higher reloading stiffness which led to different shape of hysteretic loops. As shown in 

chapter 2, smeared cracking model available in ABAQUS don’t consider confining effect into 

account due to which smeared cracking model was not used for the RC column simulations. 

Recently, a new smeared cracking concrete constitutive model is developed by Moharrami and 

Koutromanos [9] to simulate RC column responses under seismic loading. This model have 

shown successful simulation of cyclic response of RC member but for smaller displacement 

ductility loadings cycles only. Damage control limit states such as core concrete crushing, 

longitudinal rebar buckling happens at higher ductility loadings, this model is not sufficient for 

damage simulation. Numerical divergence by concrete smeared cracking model due to stress 

locking and thereby incorrect predictions has been demonstrated [10], [9]. Due to these 

reasons, physical crack is modeled in RC column with Lee and Fenves model [4] with 

normalized Mander model. This crack was defined with contact elements to consider effect of 

aggregate interlock in concrete under compression zone. Simulation by this consideration are 

promising for smaller displacement ductility. 

For steel constitutive model, as mentioned in chapter 2, Chaboche model [11] have 

better capability to capture the cyclic response of steel including accumulative plastic strains 

which is essential in prediction of rebar buckling. As this model is advanced enough to capture 
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the mechanism of longitudinal rebar buckling, further study on concrete constitutive modeling 

is required to capture the cyclic response of RC column. 

Existing uniaxial models available in the literature for concrete such as Mander model 

[7], Chang and Mander [12] and recently published model from Andriotis et al. [13] considers 

confining effect of concrete, cracking of concrete along with crack opening-closing 

mechanism, numerically. These models demonstrated good prediction of hysteretic curves of 

force-displacement responses of RC columns. Available uniaxial steel models such as Dodd 

and Restrepo-Posada [14] with modification by Dhakal and Maekawa [8] can simulate effect 

of buckling of longitudinal rebar on prediction of force-displacement response of RC member. 

But these models lack the ability to consider multiaxial stresses of RC members [9]. Hence 

detailed aspects of RC columns such as interaction between dilation of concrete core and 

longitudinal rebar which is essential in prediction of longitudinal rebar buckling, is not 

considered in uniaxial analysis [15]. As discussed in the Introduction chapter, longitudinal 

rebar buckling is damage control limit state which dependents on the load history [1] and the 

accumulated tensile strains in longitudinal rebars [3]. Exceeding the limit states under seismic 

loading dictates replacement of structure, due to which simulation of rebar buckling in RC 

structures is critical. Due to these limitations, uniaxial concrete model can’t be used for 

simulation of buckling of longitudinal rebars [15]. Hence, 3D FE analysis technique is required 

for simulation of failure mechanisms, such as, longitudinal rebar buckling. 

This study demonstrate that available multiaxial concrete constitutive models are 

unable to simulate the lateral monotonic and cyclic response of RC columns. Incorporating a 

physical cracks improves, the simulation of RC column response, but even this modeling 

technique yields numerical divergence for simulation of more than one cycle. Hence, 
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development of new concrete constitutive model is required in 3D analysis technique which 

can simulate physical crack in RC column along with cyclic response. 
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