
ABSTRACT

WANG, ZHAOHUI. A Robin Robin Domain Decomposition Method for a Stokes-Darcy System
with a Locally Modified Mesh. (Under the direction of Dr. Zhilin Li.)

The coupled system of Stokes-Darcy arises in many applications of mathematical model-

ing, such as petroleum extraction, ground/underground water conduits and karst aquifers.

In this system, the fluid flow is modeled by the Stokes equations, while the porous media

flow is modeled by the Darcy’s law. However, one challenge we encountered in this problem

is obtaining accurate and efficient numerical solutions.

In this dissertation, we first propose a new numerical method for solving this coupled

system. The method is based on a Robin-Robin domain decomposition method with a lo-

cally modified Cartesian mesh. The Robin-Robin domain decomposition method (Robin-

Robin DDM) provides a way to solve this system numerically. One key step is to convert

the coupled equations into separate ones. Next, for a complicated geometric structure, it

is expensive and difficult to build a body fitted mesh which is required by Robin-Robin

DDM. Thus the method of locally modified mesh addresses this issue and provides simplic-

ity in building a mesh and efficiency in reducing computational cost. Moreover, two types

of interface conditions are considered and numerically tested.

Another numerical method we proposed is based on an augmented variable method.

This method accurately computes the gradient near the boundary or the interface. It is

tested on a Poisson equation with a circular interface. Our result shows that an improved

accuracy of the gradient is obtained in comparison with standard approaches.
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Chapter 1

Introduction

.

1.1 Interface Problems

1.1.1 Background of Interface Problems

Interface problems constitute a major component of mathematical modeling and arise in

a wide range of applications in science and engineering. For example, the process of fluid

flow between soil and surface (see Figure 1.1 as an illustration of the domain and the

interface), the development simulation of crystal growth and moving fronts, heat conduc-

tion in materials with different conductivities, or bubble motion between fluid and air, see

[60] for more applications and discussions. These applications can be modeled by partial

differential equations (PDEs) with an interface separating the whole domain into several

subdomains. The coefficiens in these PDEs are usually discontinuous across the interface.

In many cases even the PDEs are different in each subdomain. As a result, the model be-
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comes much more complex and difficult to solve. Standard numerical methods constantly

have a poor performance in terms of accuracy and efficiency due to their assumptions of

smoothness in solutions and coefficients. Moreover, the proof of existence, uniqueness and

stability of solutions in interface problems is considered to be more challenging. In view of

these difficulties, we worked on developing numerical algorithms to specifically solve in-

terface problems with the aim to improve accuracy and efficiency of the solutions. In other

words, this is the theme of the dissertation.

Figure 1.1: A simulation of fluid flow between soil (outside) and surface (inside) separated
by the circular interface.
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1.1.2 PDEs with Interfaces

A Poisson Equation with an Interface

Consider a Poisson equation on a bounded domain Ω ∈ Rd where d is the dimension of the

domain.

∇ · (β(x)∇u(x)) = f (x), x ∈ Rd , (1.1)

together with the jump conditions across the interface Γ ,

[u]Γ =ω(s),
�

β
∂ u
∂ n

�

Γ

= ν(s), (1.2)

along with a determined boundary condition on ∂Ω, where Γ ∈ C2 is a smooth interface

separating Ω+ and Ω−. ω(s) ∈ C2 and ν(s) ∈ C1 are the two functions defined along the

interface Γ . n is the outward normal direction following the right hand side rule. The in-

terface Γ is usually represented by the level set function φ(x) at zero. Therefore the two

domains are denoted by Ω− = {x ∈ Ω : φ(x)< 0} and Ω+ = {x ∈ Ω : φ(x)> 0}. See Figure

1.2 as an example. The coefficient β(x) can have a finite discontinuity across the interface

Γ , for example,

β(x) =











β−(x) if x ∈ Ω−,

β+(x) if x ∈ Ω+,
(1.3)

where the jump in β is

[β]Γ = lim
x→Γ ,x∈Ω+

β(x)− lim
x→Γ ,x∈Ω−

β(x). (1.4)
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Figure 1.2: A Sketch of rectangular domain Ω = Ω+ ∪Ω−with an ellipse interface Γ . The
cefficients β(x , y) have a finite jump across the interface Γ .

The jump conditions along the interface are defined as

[u]Γ = u+(X(s))− u−(X(s)) =ω(s), (1.5)

�

β
∂ u
∂ n

�

Γ

= β+(X(s))
∂ u+(X(s))
∂ n

− β−(X(s))
∂ u−(X(s))
∂ n

= ν(s), (1.6)

where X(s) is a point on Γ and Γ is parameterized by s.

In the case ω(s) = 0, the problem can be written as

∇ · (β(x)∇u(x)) = f (x) +

∫

Γ

ν(X(s))δ(x−X(s))ds, x ∈ Rd . (1.7)
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The Stokes Equations with Interfaces

Stokes flow, also called creeping flow, simulates the situation where the fluid velocity is

slow and viscosity is large [46]. Stokes equations are represented as











−µ4u+∇p = f,

∇ · u= 0,
(1.8)

where u is fluid velocity, p is the kinematic pressure, µ is fluid viscosity. f is the body force.

Now we consider f(X, t) is a source strengh of the force defined only on the interface.

Similar to the previous case, the interface problem becomes











−µ4u+∇p = f+
∫

Γ
f(X(s, t))δ(x−X(s, t))ds,

∇ · u= 0.
(1.9)

1.2 Literature Review

1.2.1 Finite Difference Methods and Finite Element Methods

The partial differential equations (PDEs) we have discussed so far are challenging to solve

analytically. In certain situations, the analytical solutions are impossible to obtain. There-

fore numerical estimates are highly desired. Finite difference methods provide us with a

way to solve differential equations numerically. The 1D case of FD was first developed by L.

Euler (1707-1783) and extended by C. Runge (1856-1927) to 2D. The invention of modern

computer enlarged the scope of computing and accelerated the development of FD meth-

ods. The foundation of FD methods is Taylor expansion, through which the approximation

of derivatives and error analysis can be established. By discretizing the differential equa-

5



tions, a large linear system of equations is built and solved. For more details of FD method,

see [51]. A Cartesian mesh is often used in the discretization process of FD method. It

is trivial to generate the mesh and the index of grid points is easy to follow and locate.

Moreover, there are many well tested packages based on a Cartesian mesh. Those packages

are highly optimized in terms of computation time. Besides, they provide numerical solu-

tions with minimal efforts, such as Poisson solver Fishpack [1] and the level set method

library (LSMLIB) [22]. One disadvantage of FD method is the difficulty to implement for

complicated geometries.

Finite element method (FEM) is first proposed by R. Courant in 1943 and became pop-

ular in the 1960s. Compared with FD method, FEM provides better solutions for problems

with complicated geometries. Furthermore, it has relatively weaker requirements on regu-

larity. However, one disadvantage of this method is that the mesh generation process can

be time consuming. There are many FEM packages available, such as Matlab PDE Tool-Box

and Freefem++ [36].

1.2.2 The Stokes Equations

The Stokes equations, also called the Stokes flow or creeping flow, are a type of fluid flow

with low advective effects and high viscous effects [46]. In other words, the Reynolds num-

ber is low and less than 1. Stokes equations describe a number of physical scenarios, such as

weather evolvement, ocean movement, water flow within a pipe, even the design of planes.

Moreover, the Stokes equations are a linearization of the Navier-Stokes equations. A few

highly optimized solvers are available [54, 91, 48, 32]. We will discuss the formulation of

the Stokes equations in the following chapter.
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1.2.3 The Darcy’s Law

Darcy’s law, also called Newton’s second law, was first proposed by Henry Darcy from the

derivation of the Navier-Stokes equations [23]. It models the fluid flow through porous

medium, such as the flow in aquifers and conduits, water penetrating into sand bed. This

system laid the foundation for hydrogeology and is widely used by mathematicians, physi-

cists and geologists [31, 47]. We will introduce this system with more details in the next

chapter.

1.2.4 The Stokes-Darcy System

The coupled system of Stokes equations and the Darcy’s law arises in many applications

of mathematical modeling. For example, this system models the physical process of flows

across interfaces between soil and surface, petroleum extraction in vuggy porous medium,

heat transfer between fibrous insulation and surface flow in Karst aquifers. Moreover, it has

been widely applied in biology and medical science, such as the blood motion in human

lungs, solid tumors and vessels, personalized medicine and bio-medicine. In this system, the

fluid flow is described by the Stokes equations, while the porous medium flow is modeled

by the Darcy’s law. Although individually, the equations for the Stokes-Darcy flows are

straightforward and well established, when these two PDE systems are coupled across an

interface, there are challenges. The interface conditions between these two systems are

the key part. Several conditions have been proposed [74, 82, 6]. In this dissertation, we

consider the well accepted Beavers-Joseph-Saffman (BJS) [74, 82, 44] interface conditions

and Beavers-Joseph(BJ) interface conditions. For this dissertation, we investigate both the

two types conditions.

Consider the coupled Stokes-Darcy system on a bounded domain Ωp ∪ Ω f ∈ Rd . The

7



motion of the fluid in Ω f is modeled by the Stokes equations

−Ï · T(u f , p f ) = f, (1.10)

Ï · u f = 0, (1.11)

where u f is the fluid velocity, p f is the kinematic pressure, and f is the body force. T(u f , p f ) =

2νD(u f )− p f I is the stress tensor and D(u f ) =
1
2(Ïu f +ÏT u f ) is the strain rate tensor. Ï

and Ï· represent gradient operator and divergence operator respectively. The parameter

ν > 0 in the stress tensor is the kinematic viscosity of the fluid.

In the porous media region Ωp, the fluid motion is modeled by Darcy’s law

up = −KÏφp, (1.12)

Ï · up = 0, (1.13)

where up is the fluid velocity, K is the hydraulic conductivity tensor, and φp is the hydraulic

head.

On Γ = Ω f ∩ Ωp, let n f denote the unit outward normal vector from Ω f at Γ and np

denote outward normal vector from Ωp at Γ . τ j ( j = 1, ..., d − 1) represents unit tangential

vectors on Γ following right hand rule. See Figure 1.3 as an example of the domain. Along

the interface Γ , if we assume the nondimensional porosity of the Darcy region is 1, we have

the mass conservation condition across Γ :

u f · n f = −up · np. (1.14)

8



Figure 1.3: Sketch of a free flow region Ω f , a porous media region Ωp, and the interface
Γ , the normal direction n f and tangential direction τ j, as well as boundary ∂Ω.

The second interface condition is the balance of normal stress across Γ :

−n f · (T(u f , p f ) · n f ) = gφp, (1.15)

where g is the acceleration parameter. As the fluid is viscous, a condition for tangential

fluid velocity is needed [49]. A simple assumption is free slippage along Γ , τ j · u f = 0.

But in [6], it is shown that boundary condition agrees with experimental evidence when

slip of velocity is proportional to shear stress along Γ . This leads to the full Beavers-Joseph

interface condition:

τ j · (u f − up) =

q

k̃ j

να1
(−τ j · (T(u f , p f ) · n f )), (1.16)

where k̃ j = τ j · νK · τ j, and α1 is some constant. It turns out that the term τ j · up is much

smaller compared with other terms [6]. In this way we can get the simplified BJS interface

condition [82, 44] which is derived from a statistical approach:

−τ j · (T(u f , p f ) · n f ) = ατ j · u f . (1.17)
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These interface conditions ensure the continuity of velocity and stress in the normal direc-

tion across the interface, but the pressure can be discontinuous [30].

1.2.5 Numerical Methods for Interface Problems

The coupled Stokes-Darcy System is a type of interface problem. It consists of two indepen-

dent equation systems, i.e., the Stokes equations and the Darcy’s law. The two equations are

combined by interfaces. In comparison, the Poisson interface problem we discussed above

consists of a single equation with a parameter discontinuity across the interface. Next, we

review numerical methods which have been applied to solve both these two types of inter-

face problem.

Numerical Methods for Interface Problems with a Single System

First, Immersed boundary (IB) method is first introduced by Peskin [76, 77, 78, 73] to

solve interface problems. The idea of immersed boundary (IB) method is to decompose a

singular source to nearby grid points by using discrete delta functions. This method lacks

accuracy in the infinity norm.

Secondly, the immersed interface method (IIM). It was first introduced in 1994 by Z. Li

and R. LeVeque [52, 57] for interface problems such as elliptic equations with singular

source terms and discontinuous coefficients. IIM not only provides desired order of ac-

curacy, but also minimizes the computational cost. Reserch results have shown that IIM

provides second order accuracy in L∞ norm which is an improvement compared with IB

method [5, 40, 59]. A number of interface problems have been solved by IIM, such as inter-

face problems with parabolic equation [55], Stokes equations [53, 61, 63], Navier-Stokes

equatiosn [42, 62]. For moving interface problems [56], Hele-Shaw problems [38], crystal
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growth [87], three dimensional problems [24, 90], inverse interface problems [41], electro

migration of voids [66], interfacial flows [95], and adaptive mesh refinement for interface

problems [65, 64]. We refer readers to [60] for more details.

In spite of the methods we reviewed above, there are other types of methods specifically

designed to incorporate with interface problems. The harmonic averaging for discontinu-

ous coefficients method can be used to approximate the jump condition by an integral

[7, 85, 88]. This method is capable to provide second order accuracy in the infinity norm

in 1D case. But in higher dimensions, the calculation of the integral becomes nontrivial.

Integral equations based on finite difference method is applied to elliptic interface prob-

lems [70, 71, 72]. In this method, jump conditions are approximated from the integral

equation. This method shows a second order accuracy in the infinity norm in the case of

homogeneous source terms. However, for nonhomogeneous source terms, it becomes more

complex and nontrivial.

The ghost fluid method (GFM) is developed for elliptic interface problems [67, 68]. It

follows the idea of IIM and builds finite difference scheme the same way as IIM. However,

the way it deals with the jump conditions introduces extra error into the scheme. As a result,

GFM presents a first order accuracy in the infinity norm.

Numerical Methods for Interface Problems with a Coupled System

For the coupled Stokes-Darcy system, a number of numerical methods have been developed

and trimmed to provide solutions to this coupled system, such as the method of Lagrange

multiplier [35, 50], finite element method [3, 16, 19, 45, 81], domain decomposition

method [21, 25, 26, 27, 28, 29, 30, 43, 92], DG(discontinuous Galerkin method [34, 80],

boundary integral method[89], augmented variable method[58] and two grid method[75].
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On the other hand, a number of methods have been constructed for different type of fluid

dynamic models, such as Stokes-Brinkman interaction[2, 4, 9, 10, 11, 69, 79, 83, 94, 96].

Those listed methods provide invaluable ideas and tremendous insights for our research.

For the domain decomposition method which has been well studied by other researchers.

The method based on Dirichlet-Neumann type boundary condition is discussed in [29], but

it is shown that the method is sensitive to the choice of the kinematic viscosity ν and the hy-

draulic conductivity tensor K [30]. The Robin-Robin type domain decomposition method is

proposed in [30, 21, 15]. In [30], the Robin-Robin domain decomposition method has been

applied to a simplified BJS interface condition. In [21], the parallel Robin-Robin domain de-

composition method is carried out for the BJS interface condition and convergence analysis

is presented. In [15], the system with BJ interface condition is analyzed, and both parallel

and serial domain decomposition methods are constructed. However, for some complicated

domain structures, the mesh generation process might be expensive.

Another similar coupled system of interest is the Stokes-Brinkman interaction. Sev-

eral methods are developed, such as unified stabilized finite element method [4, 10, 11],

Galerkin finite element method [9] and non-conforming finite element method [83, 94, 96].

1.3 Review on Mesh Generation Strategy and Locally Mod-

ified Meshes

A key step of applying FEM is to generate a mesh upon which the discretization process

can be carried out. One advantage of FEM over FDM is its ability to deal with complex

structures and curvatures, see 1.4 as an example.

12



Figure 1.4: A mesh example with complex curvatures and boundaries

The mesh generation process in FEM consists of node and element generation. During

the procedure of node generation, many automatic techniques can be used [33, 18, 84].

For example, in the Cavendish method, nodes are first distributed along the boundary with

regular intervals. The interior nodes are generated to evenly divide the area into a number

of zones. In a zone, the grid of gauge di is calculated. If a new node fells into this zone

and di is great than the current one, the node is rejected. Otherwise, the node is accepted.

The next step is element generation process, during which the whole area is covered with

elements and no overlap is permitted. The triangulation that maximizes the sum of the

smallest angles is constructed to avoid flat elements which may yield poor accuracy. For

more details, see [37].

To handle the interface problems directly, we usually use body fitted meshes along with

finite element methods. Locally modified mesh method, as one type of body fitted mesh, is

a numerical method that disturbs the nodes along the interface. The coefficient matrix is

only altered locally [8, 93] by taking advantages of Cartesian meshes. We will discuss this
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method further in details in the following chapters.

1.4 Motivations and Outlines

In this dissertation, we focus on solving interface problems, especially the case of the cou-

pled system of Stokes and Darcy equations. One challenge of solving this coupled system is

that the two governing PDEs are different in each subdomain, it becomes difficult to solve

the system as a whole with desired accuracy. Another challenge is that the mesh generation

process is time consuming. To overcome those two challenges, Robin-Robin DDM with a

locally modified mesh is investigated. The second motivation is that the gradient of the

solution we interested in is constantly one order lower than itself. To address this issue, an

augmented variable approach based on finite element method is applied.

In Chapter 2, we focus on the coupled system of Stokes equations and the Darcy’s law

with BJS interface conditions and BJ interface conditions. A Robin-Robin domain decom-

position method is applied to numerically solve this problem and an iterative algorithm

is designed to obtain the desired order of accuracy. In order to apply Robin-Robin DDM, a

body fitted mesh is required to transfer iterative information between the two models along

the interface. In this chapter, we introduce the locally modified mesh method, list the steps

to generate the mesh near the interface, select the points to build triangles, and determine

regular points and irregular points. Additionally, Robin-Robin DDM with a locally modified

mesh and an unstructured mesh are compared.

In Chapter 3, we propose a method to accurately compute the gradient across the inter-

face. Augmented variables are introduced within a small tube near the interface. We show

that the accuracy is improved within a Poisson interface problem using this method.

In Chapter 4, we conclude this dissertation by summarizing the ideas and highlights in
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our research and point out the potential future directions.
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Chapter 2

Robin-Robin Domain Decomposition

Method for a Stokes-Darcy System with

BJS and BJ interface conditions using a

Locally Modified Mesh

.

16



2.1 Robin-Robin DDM with BJS Interface Conditions

2.1.1 Weak Formulation

In this section, we demonstrate the Robin-Robin DDM [30, 21, 15]. First assume φp and u f

are 0 on the boundary ∂Ω and define the following functional spaces

H f = {v f ∈ (H1(Ω f ))
d |v f = 0 on ∂Ω f \Γ }, (2.1)

Q = L2(Ω f ), (2.2)

Hp = {ψp ∈ H1(Ωp)|ψp = 0 on ∂Ωp\Γ }. (2.3)

The following bilinear forms are defined as

a f (u f ,v f ) = 2ν(D(u f ),D(v f )) on Ω f , (2.4)

ap(φp,ψp) = (KÏφp,Ïψp) on Ωp, (2.5)

b f (v f , p f ) = −(Ï · v f , p f ) on Ω f . (2.6)

From [30, 21, 15], the weak formulation of the coupled system becomes: finding (u f , p f )

∈ H f ×Q, φp ∈ Hp such that

a f (u f ,v f ) + b f (v f , p f ) + gap(φp,ψp) + 〈gφp,v f · n f 〉

−〈gu f · n f ,ψp〉+α〈Pτu f ,Pτv f 〉= (f,v f ) ∀v f ∈ H f ,ψp ∈ Hp, (2.7)

b f (u f , q f ) = 0 ∀q f ∈Q, (2.8)
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where (·, ·) denotes L2 inner product, 〈·, ·〉 denotes L2 inner product along the interface Γ ,

and

Pτuf =
d−1
∑

j=1

(u f ·τ j)τ j, (2.9)

where Pτ denotes projection onto tangential space following right hand rule. v f , q f andψp

are the corresponding test functions.

2.1.2 Robin-Robin DDM with BJS Interface Conditions

Next, we will introduce the Robin-Robin domain decomposition method which is con-

structed by imposing Robin boundary conditions for the coupled Stokes-Darcy system on

the interface. Because Stokes system and Darcy system are well studied and efficient nu-

merical algorithms are thoroughly tested, in light of this, domain decomposition method

is utilized to decompose the whole system in order to solve each one individually. We put

tildes above some variables to distinguish them from previous notations.

First, let’s consider the Robin boundary condition for the Stokes system

n f · (T(ũ f , p̃ f ) · n f ) + γ f ũ f · n f = η f on Γ , (2.10)

where γ f > 0 is a constant, η f is a function evaluated on Γ . With the boundary condition

on Γ , the weak formulation of the Stokes equations becomes: finding (ũ f , p̃ f ) ∈ H f ×Q,

η f ∈ L2(Γ ) such that

a f (ũ f ,v f ) + b f (v f , p̃ f ) + γ f 〈ũ f · n f ,v f · n f 〉

+α〈Pτũ f ,Pτv f 〉= (f,v f ) + 〈η f ,v f · n f 〉 ∀v f ∈ H f , (2.11)

b f (ũ f , q f ) = 0 ∀q f ∈Q. (2.12)
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Next consider the Robin boundary condition for Darcy’s law

γpKÏφ̃p · np + gφ̃p = ηp on Γ , (2.13)

where γp > 0 is a constant and ηp is a function defined similar to η f unless on Ωp. The

weak formulation of Darcy’s law becomes: finding φ̃p ∈ Hp, ηp ∈ L2(Γ ) such that

γpap(φ̃p,ψp) + 〈gφ̃p,ψp〉= 〈ηp,ψp〉 ∀ψp ∈ Hp. (2.14)

We combine these weak formulations together. If η f and ηp are given, there exists a unique

solution (ũ f , p̃ f ) ∈ H f ×Q, φ̃p ∈ Hp such that

a f (ũ f ,v f ) + b f (v f , p̃ f ) + γ f 〈ũ f · n f ,v f · n f 〉+ γpap(φ̃p,ψp) + 〈gφ̃p,ψp〉

+α〈Pτũ f ,Pτv f 〉= (f,v f ) + 〈η f ,v f · n f 〉+ 〈ηp,ψp〉 ∀v f ∈ H f ,∀ψp ∈ Hp, (2.15)

b f (ũ f , q f ) = 0 ∀q f ∈Q. (2.16)

Finally, to determine appropriate values of functions η f and ηp, we refer back to equations

(2.38), (2.39), which are the weak formulations of the Stokes-Darcy system with BJS in-

terface condition. Equations (2.38), (2.39) and (2.15), (2.16) are consistent, i.e., u f = ũ f ,

p f = p̃ f and φp = φ̃p. By subtracting (2.38), (2.39) and (2.15), (2.16), we can get the

following equation

γ f 〈u f · n f ,v f · n f 〉+ γpap(φp,ψp) + 〈gφp,ψp〉 − gap(φp,ψp)− 〈gφp,v f · n f 〉

= 〈η f ,v f · n f 〉+ 〈ηp,ψp〉 ∀v f ∈ H f ,∀ψp ∈ Hp.
(2.17)
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We obtain

〈η f − γ f u f · n f + gφp,v f · n f 〉 = 0 ∀v f ∈ H f , (2.18)

〈ηp − gφp,ψp〉 − (γp − g)ap(φp,ψp) = 0 ∀ψp ∈ Hp. (2.19)

Note that ηp and η f satisfy

η f = γ f u f · n f − gφp, (2.20)

ηp = γ′pu f · n f + gφp, (2.21)

where γ′p = γp − g. We can simply evaluate γ′p as γp without loss of generality and we

deduce

η f = γ f u f · n f − gφp, (2.22)

ηp = γpu f · n f + gφp. (2.23)

Therefore, we have the following algorithm of Robin-Robin domain decomposition method

[30, 21, 15]:

Step 1: For k = 1, 2, ... , solve the Stokes system (2.11),(2.12) and the Darcy system (2.14)

separately, i.e., finding (uk
f , pk

f ) ∈ H f ×Q, φk
p ∈ Hp such that

a f (u
k
f ,v f ) + b f (v f , pk

f ) + γ f 〈uk
f · n f ,v f · n f 〉+α〈Pτuk

f ,Pτv f 〉 (2.24)

= (f,v f ) + 〈ηk
f ,v f · n f 〉 ∀v f ∈ H f ,

b f (u
k
f , q f ) = 0 ∀q f ∈Q, (2.25)

γpap(φ
k
p ,ψp) + 〈gφk

p ,ψp〉= 〈ηk
p,ψp〉 ∀ψp ∈ Hp. (2.26)
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Step 2: η f and ηp are updated at each loop as

ηk+1
f =

γ f

γp
ηk

p +

�

−1−
γ f

γp

�

gφk
p , (2.27)

ηk+1
p = −ηk

f + (γ f + γp)u
k
f · n f . (2.28)

Initial values of ηp and η f are chosen arbitrarily. Conditions (2.27), (2.28) are neces-

sary for the convergence of this algorithm. The algorithm stops when the changes in

u f , p f and φp are small enough, i.e., ‖uk
f −uk−1

f ‖l2+‖pk
f − pk−1

f ‖l2+‖φk
p−φ

k−1
p ‖l2 ≤ ε

where ε= 10−5. Convergence analysis of this algorithm can be found in [30, 21, 15].

We refer readers to that elegant proof.

2.2 Robin-Robin DDM with BJ interface conditions

In the previous section, we investigated the Stokes-Darcy system with BJS interface con-

dition. In this section, we focus on the same system but coupled with BJ interface condi-

tion. There are several differences between BJS and BJ interface conditions. First, the well-

posedness of the whole Stokes-Darcy Structure with BJS interface condition is established

and proved. This system is more deeply investigated into by scientists and researchers com-

pared with the BJ system. However, the well posedness of BJ interface condition is recently

demonstrated. It is shown that BJ system is well posed if a certain parameter is small enough

[21, 17, 20, 39]. We introduce this parameter and formulation in the following discussion.

Secondly, BJS interface conditions fail to fully account for the properties of the porous me-

dia flow. For example, the model of Karst aquifers is not representable by Stokes-Darcy

Structure Interaction with BJS interface conditions, while BJ interface conditions are more

physically relevant and provide better accuracy.

21



Along the interface Γ , let’s define three interface conditions:

u f · n f = −up · np. (2.29)

The second interface condition is the balance of normal stress across Γ

−n f · (T(u f , p f ) · n f ) = g(φp − z). (2.30)

Finally, the so called Beavers-Joseph (BJ) interface condition

−τ j · (T(u f , p f ) · n f ) =
αν
p

d
p

trace(Π)
τ j · (u f − up), (2.31)

where n f denote the unit outward normal vector from Ω f at Γ and np denote outward

normal vector from Ωp at Γ . τ j ( j = 1, ..., d − 1) represents unit tangential vectors on Γ

following right hand rule. Π= Kν
g is some constant matrix. α is exchange coefficient, when

this quantity is sufficiently small and K is isotropic, the well posedness of this coupled

Stokes-Darcy system can be shown.

2.2.1 Weak Formulation

We assume φp and u f are 0 on the boundary ∂Ω and define the following functional spaces

H f = {v f ∈ (H1(Ω f ))
d |v f = 0 on ∂Ω f \Γ }, (2.32)

Q = L2(Ω f ), (2.33)

Hp = {ψp ∈ H1(Ωp)|ψp = 0 on ∂Ωp\Γ }. (2.34)
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The following bilinear forms are defined as

a f (u f ,v f ) = 2ν(D(u f ),D(v f )) on Ω f , (2.35)

ap(φp,ψp) = (KÏφp,Ïψp) on Ωp, (2.36)

b f (v f , p f ) = −(Ï · v f , p f ) on Ω f . (2.37)

From [30, 21, 15], the weak formulation of the coupled system becomes: finding (u f , p f )

∈ H f ×Q, φp ∈ Hp such that

a f (u f ,v f ) + b f (v f , p f ) + ap(φp,ψp) + 〈gφp,v f · n f 〉

−〈u f · n f ,ψp〉 +
αν
p

d
p

trace(Π)
〈Pτ(u f +KÏφp),Pτv f 〉

= (f f ,v f ) + (fp,ψp) + 〈gz,v f · n f 〉 ∀v f ∈ H f ,ψp ∈ Hp, (2.38)

b f (u f , q f ) = 0 ∀q f ∈Q, (2.39)

where (·, ·) denotes L2 inner product, 〈·, ·〉 denotes L2 inner product along the interface Γ ,

again

Pτuf =
d−1
∑

j=1

(u f ·τ j)τ j. (2.40)

2.2.2 Robin-Robin DDM with BJ interface conditions

Next, we define the Robin-Robin domain decomposition method by imposing Robin bound-

ary conditions for the coupled Stokes-Darcy system along the interface. Tildes are added

on certain variables to distinguish them from previous notations.
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First, let’s consider the Robin boundary condition for the Stokes system

n f · (T(ũ f , p̃ f ) · n f ) + γ f ũ f · n f = η f on Γ , (2.41)

Pτ(T(ũ f , p̃ f ) · n f )−
αν
p

d
p

trace(Π)
Pτũ f = η f τ on Γ (2.42)

where γ f > 0 is a constant, η f and η f τ are functions evaluated on Γ . With this Robin

boundary condition defined on Γ , the weak formulation for the Stokes equations becomes:

finding (ũ f , p̃ f ) ∈ H f ×Q, η f , η f τ ∈ L2(Γ ) such that

a f (ũ f ,v f ) + b f (v f , p̃ f ) + γ f 〈ũ f · n f ,v f · n f 〉+
αν
p

d
p

trace(Π)
〈Pτũ f ,Pτv f 〉

= (f,v f ) + 〈η f ,v f · n f 〉 − 〈η f τ,Pτv f 〉 ∀v f ∈ H f , (2.43)

b f (ũ f , q f ) = 0 ∀q f ∈Q. (2.44)

Next consider the Robin boundary condition for Darcy’s law

γpKÏφ̃p · np + gφ̃p = ηp on Γ , (2.45)

where γp > 0 is a constant and ηp is a function defined similar to η f unless on Ωp. The

weak formulation of Darcy’s law becomes: finding φ̃p ∈ Hp, ηp ∈ L2(Γ ) such that

γpap(φ̃p,ψp) + 〈gφ̃p,ψp〉= 〈ηp,ψp〉+ γp( fp,ψp) ∀ψp ∈ Hp. (2.46)

Again, we combine these weak formulations together in two one large equation system. If

η f , η f τ and ηp are given, there exists a unique solution (ũ f , p̃ f ) ∈ H f ×Q, φ̃p ∈ Hp such
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that

a f (ũ f ,v f ) + b f (v f , p̃ f ) + γ f 〈ũ f · n f ,v f · n f 〉

+
αν
p

d
p

trace(Π)
〈Pτũ f ,Pτv f 〉 + γpap(φ̃p,ψp) + 〈gφ̃p,ψp〉

= (f,v f ) + 〈η f ,v f · n f 〉 − 〈η f τ,Pτv f 〉

+〈ηp,ψp〉 + γp( fp,ψp) ∀v f ∈ H f ,ψp ∈ Hp, (2.47)

b f (ũ f , q f ) = 0 ∀q f ∈Q. (2.48)

Finally, to determine appropriate values of functions η f , η f τ and ηp, we refer back to

equations (2.38), (2.39), which are the weak formulations of the Stokes-Darcy system with

BJ interface condition. Equations (2.38), (2.39) and (2.47), (2.48) are consistent, i.e., u f =

ũ f , p f = p̃ f and φp = φ̃p. By subtracting (2.38), (2.39) and (2.47), (2.48), we can get the

following equation

〈ηp − γpu f · n f − gφp,ψp〉 (2.49)

+ 〈η f − γ f u f · n f + gφp − gz,v f · n f 〉

+ 〈η f τ −
αν
p

d
p

trace(Π)
Pτ(KÏφp),Pτv f 〉= 0 ∀v f ∈ H f ,ψp ∈ Hp.

As equation (2.50) is valid for arbitrary test functions ψp, v f , we first choose v f such that

v f · n f = 0 and Pτv f = 0, therefore we could have the following condition

〈ηp − γpu f · n f − gφp,ψp〉= 0. (2.50)

Because ψp is arbitrary and the Stokes- Darcy system is well-posed and therefore unique,
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we could have

ηp = γpu f · n f + gφp. (2.51)

Similarly, by letting ψp = 0 and Pτv f = 0, we have

η f = γ f u f · n f − gφp + gz. (2.52)

By letting v f · n f = 0 and Pτv f = 0, we have

η f τ =
αν
p

d
p

trace(Π)
Pτ(KÏφp). (2.53)

In summary, Stokes-Darcy system with BJ interface condition and Stokes-Darcy system with

Robin-Robin boundary condition are compatible if and only if the following compatibility

condition hold

ηp = γpu f · n f + gφp, (2.54)

η f = γ f u f · n f − gφp + gz,

η f τ =
αν
p

d
p

trace(Π)
Pτ(KÏφp).

The necessity can be validated by the above argument. For sufficiency, sustituting equations

2.54 back into (2.38), (2.39), which obviously solve the coupled equation system. In light of

the well-posedness of the system under the condition α is small enough and K is isotropic.

As the solution is unique, the sufficient condition is proved. In other words, u f = ũ f , p f =

p̃ f and φp = φ̃p. We can solve the latter one, which is Robin-Robin Stokes-Darcy system

instead.
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In this way, we have the following algorithm of Robin-Robin domain decomposition

method [30, 21, 15]:

Step 1: For k = 1, 2, ... , solve the Stokes system (2.43),(2.44) and the Darcy system (2.46)

separately, i.e., finding (uk
f , pk

f ) ∈ H f ×Q, φk
p ∈ Hp such that

a f (u
k
f ,v f ) + b f (v f , pk

f ) + γ f 〈uk
f · n f ,v f · n f 〉

+
αν
p

d
p

trace(Π)
〈Pτuk

f ,Pτv f 〉

= (f,v f ) + 〈ηk
f ,v f · n f 〉 (2.55)

− 〈ηk
f τ,Pτv f 〉 ∀v f ∈ H f ,

b f (u
k

f , q f ) = 0 ∀q f ∈Q, (2.56)

γpap(φ
k
p ,ψp) + 〈gφk

p ,ψp〉 = 〈ηk
p,ψp〉+ γp( fp,ψp) ∀ψp ∈ Hp. (2.57)

Step 2: η f , η f τ and ηp are updated at each loop as

ηk+1
f =

γ f

γp
ηk

p +

�

−1−
γ f

γp

�

gφk
p + gz, (2.58)

ηk+1
f τ =

αν
p

d
p

trace(Π)
Pτ(KÏφk

p), (2.59)

ηk+1
p = −ηk

f + (γ f + γp)u
k
f · n f + gz. (2.60)

Initial values of η f , η f τ and ηp are chosen arbitrarily. Conditions (2.58), (2.59),

(2.60) are necessary for the convergence of this algorithm. The algorithm stops when

the changes in u f , p f and φp are small enough, i.e., ‖uk
f − uk−1

f ‖l2 + ‖pk
f − pk−1

f ‖l2 +

‖φk
p −φ

k−1
p ‖l2 ≤ ε where ε= 10−5.
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2.3 Local Modified Cartesian Meshes

In this section, we explain how to get a locally modified Cartesian mesh from a uniform

Cartesian mesh. The idea of this method is to perturb the triangulations while keeping the

number of nodal points unchanged. The procedure is easy to follow and is shown below:

Step 1: Generate a Cartesian grid. For simplicity, in this paper, we consider a rectangular grid

and take the step size the same in both x and y direction, Figure 2.1 shows mesh

generated by unstructured method.

Step 2: Locate the intersection of the interface and the grid line. Figure 2.2 shows the grid

lines and the location of the interface. If the intersection lies between [x i − h/2, x i +

h/2]×[yi−h/2, yi+h/2], we call the point [x i, yi] an irregular point. Otherwise, we

call it a regular point.

Step 3: For each irregular point, replace it with an intersection point as a new nodal point.

If there is more than one intersection point, the one with smallest distance to the

irregular point will be taken. In Figure 2.3, the grid point P is an irregular point

because the intersection point is within the small dashed rectangle. P1 and P2 are

the intersection points. As the the distance d(P, P1) < d(P, P2), we take P1 as a new

nodal point as demonstrated in Figure 2.4.

Step 4: Use the modified nodal points to build triangulations and form a body fitted mesh.

It has been proven in [8] that if the interface Γ ∈ C 2, the accuracy of the approximation

of the interface Γ is O(h2). Figure 2.6 is an example of the locally modified mesh in which

the interface is a circle. We can see that only the points around the circular interface are

altered and the total number of nodal points remain unchanged.
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Figure 2.1: An example of Cartesian grid mesh.
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Figure 2.2: Sketch of the grid lines and the interface without mesh modifications.
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P1

P2P

Figure 2.3: An example of an irregular point and the interface. P1 and P2 are the two
points of the intersection between interface Γ and grid lines within the small dashed square
[x i−h/2, x i+h/2]× [yi−h/2, yi+h/2] of irregular point P. The area on the left of Γ is Ω f ,
on the right is Ωp.

P1

Figure 2.4: An example of a modified point. Point P is replaced by point P1 and the total
number of nodal points remains unchanged.
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Figure 2.5: A triangulation based on the modified grid points.

Figure 2.6: A locally modified mesh example where step number n=32 (32 points on each
side of the square)in both x and y direction. The triangulations are built using the modified
nodal points.
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2.4 Numerical Examples for BJS Interface Conditions

In this section we present two numerical examples of the coupled nondimensional Stokes-

Darcy system with a circular interface. Consider a case inR2. LetΩ f be a unit circle centered

at (0, 0) with radius 1. Ωp is the square of [−2,2] × [−2,2] outside the unit circle. See

Figure 2.7 as an illustration. The unstructured mesh is shown in Figure 2.8 while the locally

modified mesh is constructed and is shown is Figure 2.6. For simplicity, choose ν= 1, g = 1,

K= I, α= 1. An analytic solution of (2.38), (2.39) is given by

u1 = y(x2 + y2 − 3), u2 = −x(x2 + y2 − 3), p f = x2 + y2, (2.61)

f1 = −8y + 2x , f2 = 8x + 2y, φp = 1.

The boundary conditions on ∂Ω are determined accordingly. These analytic solutions sat-

isfy the Stokes-Darcy system with circular interface as well as the BJS interface condition.

For the finite element approximation, the Taylor-Hood element pair is used for the Stokes

equations which is quadratic in velocity and linear in pressure. A linear finite element space

is used for Darcy’s law. The dimension of finite element space of the coupled Stokes-Darcy

system is consistent on the interface.
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Figure 2.7: A computational example with circular interface Γ .

Figure 2.8: An unstructured mesh example where step number n=32 in both x and y
direction.

As discussed in [30, 21, 15], we choose γ f = 3γp for convergence of the algorithm.

In Table 2.1, the H1 norm error of velocity u f , and the L2 norm error of u f , p f and φp

are reported. Table 2.3 shows the error report based on locally modified mesh method. We

compare the two methods (Table 2.15) for a locally modified mesh of 2048 elements and
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an unstructured mesh of 2100 elements (260 Stokes, 1840 Darcy). The two methods have

comparable error. Therefore the method of locally modified mesh is not only free of mesh

generation, but also provides comparable accuracy. Table 2.16 compares convergence order

as the slope of the log-log plots of error against grid fineness n. As usual, the H1 norm error

of u f is approximately one order less than the L2 norm error of u f . Figure 2.9 shows the

velocity computed using the locally modified mesh for the example (3.15).

We now provide a more realistic example. In Figure 2.10, a simulation of the Stokes-

Darcy interaction is shown by assuming the fluid velocity on the boundary is (0,−1). The

parameter values ν, g, K and α are set the same as in the previous example. The overall

flow is downwards with faster flow in the Stokes region due to the coupling at the interface,

corresponding to flow in a void in a porous medium such as soil. Moreover, a grid refinement

analysis is conducted to test the convergence order of this method. Different step number

n are compared with a fine grid n = 160. Because we are not comparing our results with

a much finer grid, the covergence order is not 2 for a first order method, or 4 for a second

order method. In this case

‖u40
f − u160

f ‖l2

‖u80
f − u160

f ‖l2

≈
4q − 1
2q − 1

. (2.62)

For q = 1, the ratio becomes 3, while for q = 2, the ratio becomes 5 where q is the order

of convergence. In Table 2.7, 2.8, 2.9 and 2.10, we can see the two methods roughly have

the same order of ratio. As a result, the unstructured mesh method and locally modified

mesh method provide comparable accuracy. See[55] for more details on mesh refinement

analysis.
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Table 2.1: An error report of unstructured mesh method with various step numbers.

Step number n L2 error of u f H1 error of u f L2 error of p f L2 error of φp Iterations

16 7.83e-2 2.02e-1 5.34e-2 1.61e-2 30

32 2.02e-2 8.29e-2 2.09e-2 8.02e-3 30

64 5.01e-3 5.02e-2 4.11e-3 3.84e-3 31

128 1.28e-3 3.53e-2 2.41e-3 2.02e-3 31

Table 2.2: An error report of unstructured mesh method with another set of step numbers.

Step number n L2 error of u f H1 error of u f L2 error of p f L2 error of φp Iterations

20 5.11e-2 1.45e-1 4.31e-2 1.26e-2 30

40 1.29e-2 6.80e-2 1.31e-2 6.20e-3 30

80 3.25e-3 4.34e-2 3.08e-3 3.11e-3 31

160 8.2e-4 2.20e-2 1.21e-3 1.56e-3 31

Table 2.3: An error report of locally modified mesh method with various step numbers.

Step number n L2 error of u f H1 error of u f L2 error of p f L2 error of φp Iterations

16 3.74e-2 1.14e-1 4.21e-2 1.07e-2 29

32 1.18e-2 6.36e-2 1.20e-2 6.36e-3 29

64 2.50e-3 4.11e-2 3.40e-3 2.94e-3 30

128 6.70e-4 2.90e-2 2.01e-3 1.71e-3 30
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Table 2.4: An error report of locally modified mesh method with another set of step num-
bers.

Step number n L2 error of u f H1 error of u f L2 error of p f L2 error of φp Iterations

20 2.73e-2 9.71e-2 2.71e-2 1.06e-2 29

40 6.90e-3 5.40e-2 7.61e-3 5.26e-3 29

80 1.75e-3 3.74e-2 2.91e-3 2.57e-3 30

160 4.41e-4 1.90e-2 7.92e-4 1.29e-3 30

Table 2.5: A comparison of the two methods based on a similar number of triangulations.

Method Elements L2 error of u f H1 error of u f L2 error of p f L2 error of φp

unstructured mesh 2100 1.43e-2 7.11e-2 5.74e-3 6.70e-3

locally modified mesh 2048 1.18e-2 6.36e-2 1.20e-3 6.36e-3

Table 2.6: A comparison of the convergence order of unstructured mesh and locally mod-
ified mesh.

Unstructured mesh Locally modified mesh

Quantity Norm Slope R2 Slope R2

u f L2 1.98 0.99 1.97 0.99

u f H1 0.83 0.96 0.67 0.98

p f L2 1.67 0.97 1.44 0.96

φp L2 1.01 0.99 0.94 0.99
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Figure 2.9: A plot of the fluid velocity in the coupled Stokes-Darcy system for the example
(3.15). As Φp=1, the fluid velocity in porous media region Ωp, in this case, outside the unit
circle, is 0.
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Figure 2.10: A simulation of the Stokes-Darcy interaction with parameters ν = 1, g = 1,
K= I and α= 1. The fluid of Darcy’s law moves downwards and interacts with the fluid of
Stokes equations.
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Table 2.7: An error report for a grid refinement analysis of unstructured mesh method in
u f .

Step number n ‖uN
f − u160

f ‖l2 r1 ‖uN
f − u160

f ‖h1
r2 Iterations

20 1.64e-2 1.31e-2 28

40 2.41e-3 6.31 4.11e-2 2.94 28

80 4.79e-4 5.03 1.59e-2 2.58 26

Table 2.8: An error report for a grid refinement analysis of unstructured mesh method in
p f and φp.

Step number n ‖pN
f − p160

f ‖l2 r3 ‖φN
p −φ

160
p ‖l2 r4 Iterations

20 1.52e-2 1.21e-1 28

40 2.78e-2 5.94 4.34e-2 2.79 28

80 5.21e-3 5.32 1.73e-2 2.51 26

Table 2.9: An error report for a grid refinement analysis of locally modified mesh method
in u f .

Step number n ‖uN
f − u160

f ‖l2 r5 ‖uN
f − u160

f ‖h1
r6 Iterations

20 4.33e-2 1.87e-1 28

40 6.62e-3 6.54 6.19e-2 3.02 28

80 1.24e-3 5.34 2.23e-2 2.77 26
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Table 2.10: An error report for a grid refinement analysis of locally modified mesh method
in p f and φp.

Step number n ‖pN
f − p160

f ‖l2 r7 ‖φN
p −φ

160
p ‖l2 r8 Iterations

20 3.13e-2 1.12e-1 28

40 5.42e-3 5.77 3.61e-2 3.10 28

80 1.01e-3 5.40 1.29e-2 2.81 26

2.5 Numerical Examples for BJ Interface Conditions

In this section we disciss some numerical experiments of the coupled nondimensional

Stokes-Darcy system with BJ interface conditions. We consider a case in R2. Let Ω f be

a unit circle centered at (0,0) with radius 1. Ωp is an ellipse of [−3, 3] × [−2,2] outside

the unit circle. See Figure 2.11 as an example. Computations using unstructured mesh and

locally modified mesh are compared and discussed. For simplicity, choose ν = 1, g = 1,

z= 1, K= I, α= 1, d = 2, trace(Π) = 2. An analytic solution the system is given by

u1 = y(x2 + y2 − 3), u2 = −x(x2 + y2 − 3), p f = x2 + y2 + 1, (2.63)

f1 = −8y + 2x , f2 = 8x + 2y, φp = 2.

The boundary conditions on ∂Ωp are determined accordingly. The system is defined on

an ellipse interface. For the finite element approximation, the Taylor-Hood element pair is

used for the Stokes equations, which is quadratic in velocity and linear in pressure. A linear

finite element space is prescribed for the Darcy’s law. The dimension of finite element space

of the coupled Stokes-Darcy system is consistent on the interface.
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Figure 2.11: A computational example with circular interface Γ .
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Figure 2.12: An unstructured mesh example where step number n=32 on both interior
and exterior boundary.
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Figure 2.13: A locally modified mesh example where step number n=32 on both interior
and exterior boundary.

We choose γp = 3γ f for convergence of the algorithm. Both unstructured mesh and

locally modified mesh are constructed, see Figure 2.12, 2.13 as examples. In those two

figures, we take 32 steps in both x and y direction. For 2.13, we can easily see only the

points near the ellipse interface is changed while other points stay the same. This method

reduces the time cost of the mesh generation process as discussed in last chapter. The CPU

time of unstructured mesh generation is 0.14s compared with 0.05s of locally modified

mesh.

In Table 2.11, the H1 norm error of velocity u f , and the L2 norm error of u f , p f and φp

are reported. Table 2.13 shows the error report based on locally modified mesh method. We

compare the two methods (Table 2.15) for a locally modified mesh of 2048 elements and

an unstructured mesh of 2100 elements (260 Stokes, 1840 Darcy). The two methods again

have comparable error. Table 2.16 compares convergence order as the slope of the log-log
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plots of error against grid fineness n. As usual, the H1 norm error of u f is approximately

one order lower than the L2 norm error of u f .

Moreover, we consider another test problem. For the same two meshes, we assume the

fluid velocity on the boundary for the Darcy’s law to be (x2, y2). The parameter values ν, g,

K and α are set the same as in the previous example. Again, we test this problem with grid

refinement analysis discussed in the previous section. In Table 2.17, 2.18, 2.19 and 2.20, we

can see the two methods roughly have the same order of ratio. As a result, the unstructured

mesh method and locally modified mesh method provide comparable accuracy.

Table 2.11: An error report of unstructured mesh method with various step numbers.

Step number n L2 error of u f H1 error of u f L2 error of p f L2 error of φp Iterations

16 7.41e-2 2.35e-1 5.48e-2 1.48e-2 30

32 1.82e-2 8.01e-2 1.89e-2 7.5e-3 30

64 4.80e-3 4.84e-2 4.02e-3 3.75e-3 30

128 1.21e-3 2.53e-2 2.21e-3 1.90e-3 30

Table 2.12: An error report of unstructured mesh method with another set of step num-
bers.

Step number n L2 error of u f H1 error of u f L2 error of p f L2 error of φp Iterations

20 4.99e-2 1.38e-1 4.18e-2 1.18e-2 30

40 1.24e-2 6.87e-2 1.27e-2 6.01e-3 30

80 3.11e-3 3.86e-2 3.12e-3 3.08e-3 30

160 7.90e-4 1.99e-2 1.03e-3 1.51e-3 30
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Table 2.13: An error report of locally modified mesh method with various step numbers.

Step number n L2 error of u f H1 error of u f L2 error of p f L2 error of φp Iterations

16 3.52e-2 1.08e-1 4.11e-2 1.12e-2 30

32 1.08e-2 6.12e-2 1.10e-2 6.16e-3 30

64 2.49e-3 3.96e-2 3.21e-3 2.65e-3 29

128 6.40e-4 2.70e-2 1.89e-3 1.61e-3 29

Table 2.14: An error report of locally modified mesh method with another set of step
numbers.

Step number n L2 error of u f H1 error of u f L2 error of p f L2 error of φp Iterations

20 2.53e-2 9.42e-2 2.68e-2 1.08e-2 30

40 6.81e-3 5.30e-2 7.49e-3 5.10e-3 30

80 1.70e-3 3.54e-2 2.71e-3 2.60e-3 29

160 4.30e-4 1.78e-2 9.31e-4 1.30e-3 29

Table 2.15: A comparison of the two methods based on a similar number of triangulations.

Method Elements L2 error of u f H1 error of u f L2 error of p f L2 error of φp

unstructured mesh 2100 1.38e-2 7.01e-2 5.50e-3 6.56e-3

locally modified mesh 2048 1.01e-2 6.12e-2 1.01e-3 6.13e-3
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Table 2.16: A comparison of the convergence order of unstructured mesh and locally mod-
ified mesh.

Unstructured mesh Locally modified mesh

Quantity Norm Slope R2 Slope R2

u f L2 1.98 0.98 1.98 0.99

u f H1 0.83 0.96 0.78 0.98

p f L2 1.70 0.97 1.52 0.96

φp L2 1.01 0.99 0.98 0.99

Table 2.17: An error report for a grid refinement analysis of unstructured mesh method
in u f .

Step number n ‖uN
f − u160

f ‖l2 r1 ‖uN
f − u160

f ‖h1
r2 Iterations

20 2.89e-2 1.78e-2 26

40 4.91e-3 5.89 6.18e-2 2.88 26

80 9.56-4 5.13 2.39e-2 2.59 24

Table 2.18: An error report for a grid refinement analysis of unstructured mesh method
in p f and φp.

Step number n ‖pN
f − p160

f ‖l2 r3 ‖φN
p −φ

160
p ‖l2 r4 Iterations

20 1.72e-2 1.56e-1 26

40 2.92e-3 5.90 4.86e-2 3.21 26

80 5.94e-4 4.91 1.75e-2 2.77 24
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Table 2.19: An error report for a grid refinement analysis of locally modified mesh method
in u f .

Step number n ‖uN
f − u160

f ‖l2 r5 ‖uN
f − u160

f ‖h1
r6 Iterations

20 7.88e-2 3.42e-1 26

40 1.29e-2 6.11 1.28e-1 2.67 26

80 2.48e-3 5.21 5.21e-2 2.46 24

Table 2.20: An error report for a grid refinement analysis of locally modified mesh method
in p f and φp.

Step number n ‖pN
f − p160

f ‖l2 r7 ‖φN
p −φ

160
p ‖l2 r8 Iterations

20 3.21e-2 1.24e-1 26

40 6.21e-3 5.17 4.86e-2 2.55 26

80 1.30e-3 4.77 2.10e-2 2.32 24

2.6 Conclusions

We discussed the Stokes-Darcy system. A set of analytic solutions is constructed for the cou-

pled system with a circular interface. The methods of locally modified mesh and unstruc-

tured mesh are compared and the Robin-Robin domain decomposition with locally modified

mesh provides comparable accuracy and convergence order to that with an unstructured

mesh. For the Stokes-Darcy system with complex domain structures, the Robin-Robin do-

main decomposition method based on a locally modified mesh might be more efficient then

a potentially costly unstructured mesh.
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Chapter 3

An Accurate Gradient Computation

Method

.

3.1 Background

As we can see in the previous chapters, the error estimate of a variable’s gradient is usually

one order lower than the variable itself. In some scenarios, an accurately computed gradi-

ent is more desirable. In [12, 13, 14, 86], the finite element method is applied to Stokes

equations where the equations are transformed to a pseudostress-velocity formulation. In

this chapter, our objective is to introduce a new numerical method based on an augmented

varable approach which provides better gradient accuracy near the boundary or the inter-

face. The method is tested on a Poisson equation with a circular domain. In our result, an

improved accuracy of gradient is obtained near the boundary/interface and an enlarged

rectangular system is constructed.
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3.2 Formulation

Define a Poisson equation on a circular domain. For simplification, let’s consider a case in

R2. Let Ω1 be a unit circle centered at (0,0) with radius 1. Let Γ be an interface inside

the unit circle. Between the interface and the boundary, we have a small tube, denote this

region as Ω2. See Figure 3.1 as an illustration.

Ω
1

Ω
2

Γ

∂Ω

Figure 3.1: Sketch of domains Ω1, Ω2, the interface Γ , as well as boundary ∂Ω.

On the whole domain Ω1, a Poisson equation is defined with jump conditions in the

coefficient β

−Ï · (βÏu) = f . (3.1)

On the tube shaped domain Ω2, a Poisson equation with augmented variables v, which are

48



the gradient of u are defined

−β+Ïu = v, (3.2)

Ï · v = f . (3.3)

β(x) =











β− if x ∈ Ω1,

β+ if x ∈ Ω2,
(3.4)

where β− and β+ are some constants.

Next we derive the weak form. Assume w and u are 0 on the boundary ∂Ω and define

the following functional spaces

H1 = {w ∈ (H1(Ω1))
d |w= 0 on ∂Ω}, (3.5)

Q = L2(Ω2), (3.6)

H2 = {k ∈ (H1(Ω2))
d |k= 0 on ∂Ω}. (3.7)

To obtain the weak form, multiply test function w on both sides of the equaiton (3.1),

integrate over the whole domain Ω1 and integrate by part, we get

(βÏu,Ïw) = ( f , w) on Ω1. (3.8)

For the first equation (3.2) in the augmented system, multiply test function k on both sides,

integrate over the domain Ω2, we have

−(β+Ïu,k) = (v,k) on Ω2. (3.9)
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For the second equation, multiply test function q ∈ Q on both sides, integrate over the

domain Ω2, we have

(Ï · v, q) = ( f , q) on Ω2. (3.10)

In summary, we defined the following weak forms

(βÏu,Ïw) = ( f , w) on Ω1, (3.11)

−(β+Ïu,k) = (v,k) on Ω2, (3.12)

(Ï · v, q) = ( f , q) on Ω2. (3.13)

Therefore, the Poisson system is augmented on the outer domain Ω2 along with the original

system on the whole domain Ω1.

3.3 Numerical Examples

In this section, we present some numerical examples of this augmented Poisson system.

Consider a case in R2. Let Ω1 be a unit circle centered at (0, 0) with radius 1. The interface

Γ is set to be x2+ y2 = 0.9. Ω2 is a tube shaped region of the unit circle. Two finite element

spaces are built up. The first one is based on the whole circular domainΩ1, while the second

one is built on the domain Ω2. Unstructured meshes are generated for this example. See

figure 3.2 as an illustration.
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Figure 3.2: An unstructured mesh example where 50 steps are taken for the boundary ∂Ω,
30 steps are taken for the interface Γ .

Consider a set of analytic solution

β+ = 1, β− = 100, u= sin(x) cos(y), (3.14)

v= (v1, v2), v1 = − cos(x) cos(y), v2= sin(x) sin(y).

The boundary conditions on ∂Ω are determined accordingly. For the finite element approx-

imation, we used piecewise linear for both u and v. The nodal points are consistent for

the two finite element spaces. Routinely, our approach to a Poisson equation is to simply

solve the equation (3.11). The new augmented method enlarged the system by (3.12) and

(3.13). In terms of the stiffness matrix, an additional n1 number of rows are added to the

stiffness matrix where n1 is the number of element in the domain Ω2. An additional n2

number of columns are added to the stiffness matrix where n2 is the number of extra un-

knowns v1 and v2. As a result, the stiffness matrix becomes a rectangular matrix instead

of a square matrix. If we only consider the elements in domain Ω2, the dimension of the
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stiffness matrix is a 4n1 × 3n1. We used singular value decomposition (SVD) to solve this

large rectangular system. In Table 3.1, the L2 norm error of u, v and the H1 norm error of

u are reported. The step number m1 is the number of steps we take along the boundary

∂Ω. The step number m2 is the number of steps we take along the interface Γ . To make it

consistence, the ratio of m1
m2

is fixed to 2.

Table 3.1: An error report of augmented system with various step numbers.

Step number m1 L2 error of u H1 error of u L2 error of v

8 9.96e-3 5.67e-1 5.67e-1

16 2.48e-3 1.75e-1 1.75e-1

32 7.77e-4 4.14e-2 4.14e-2

64 1.81e-4 1.04e-2 1.04e-2

128 4.71e-5 5.95e-3 5.95e-3

256 1.15e-5 1.54e-3 1.54e-3

512 2.92e-6 3.80e-4 3.80e-4

In Table 3.2, a comparison of the convergence order of routinely approach and aug-

mented approach is presented. We can see the new approach provides better accuracy for

the gradient computation.

52



Table 3.2: A comparison of the convergence order.

Quantity Norm Slope of original approach Slope of new method

u L2 1.98 1.94

u H1 1.03 1.72

v L2 1.03 1.72

A comparison of the convergence order for various location of the interface is shown in

Table 3.3. The first column means the location of the interface, i.e., x2 + y2 equals to the

cell value. We can see the location of the interface has low impact on solution accuracy.

Moreover, for the last row, where x2 + y2 = 0. We defined the augmented variables in

the whole domain. Originally, we can only have first order accuracy in v. In this case, the

accuracy of gradient computation is improved by about 70 percent.

Table 3.3: A comparison of the convergence order for various location of the interface.

Interface Slope of new method for L2 norm of u Slope of new method for H1 norm of u

0.9 1.94 1.72

0.99 1.94 1.70

0 1.93 1.70

Next, consider another set of test problem

β+ = 1, β− = 10, u= x2 y2, (3.15)

v= (v1, v2), v1 = −2x y2, v2= −2x2 y.
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We perform the similar discussion. In Table 3.4, we can see the error report.

Table 3.4: An error report of augmented system with various step numbers.

Step number m1 L2 error of u H1 error of u L2 error of v

8 7.48e-3 4.21e-1 4.21e-1

16 1.91e-3 1.10e-1 1.10e-1

32 4.71e-4 2.81e-2 2.81e-2

64 1.21e-4 1.01e-2 1.01e-2

128 3.21e-5 4.74e-3 4.74e-3

256 7.76e-6 1.54e-3 1.54e-3

512 1.98e-6 4.77e-4 4.77e-4

In Table 3.5, a comparison of the convergence order of routinely approach and aug-

mented approach is presented. We can see the new approach provides better accuracy for

the gradient computation.

Table 3.5: A comparison of the convergence order.

Quantity Norm Slope of original approach Slope of new method

u L2 1.96 1.95

u H1 1.01 1.74

v L2 1.01 1.74

A comparison of the convergence order for various location of the interface is shown in
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Table 3.6.

Table 3.6: A comparison of the convergence order for various location of the interface.

Interface Slope of new method for L2 norm of u Slope of new method for H1 norm of u

0.9 1.94 1.74

0.99 1.94 1.71

0 1.93 1.71

3.4 Conclusions

In this chapter we introduced an augmented variable approach for accurate gradient com-

putation near the boundary or the interface. Augmented variables, i.e., the gradient, is

introduced on a small tube near the interface. This method is tested on a Poisson equation

with a circular domain and a small tube. Our result showed an increased level of accuracy

in gradient for nearly 70 percent. One tradeoff is that the stiffness matrix is transformed to

an enlarged rectangular matrix with additional rows and columns. As a result, the compu-

tational cost is increased. Moreover, the location of the interface has small impact on the

accuracy of gradient computation.
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Chapter 4

Conclusions and Future Directions

.

In this dissertation, we focused on numerical methods and algorithms that apply to

interface problems. Robin-Robin domain decomposition method was used to solve the cou-

pled Stokes-Darcy system, while different interface conditions were investigated, such as BJ

and BJS interface conditions. Additionally, numerical algorithms were analyzed and tested.

To overcome the difficulties in mesh generation process, our method is coupled with the

locally modified mesh method, which provides a solution to finite element discretization.

Moreover, our method presents comparable accuracy and better efficiency in terms of mesh

generation cost. Thus for large interface system such as Stokes-Darcy coupling, the problem

can be solved with less requirements on computational memories and power. Furthermore,

we introduced a new numerical method to accurately compute the gradient near the inter-

face.

We summarize our contributions as below:

The first aspect is the accuracy. In our studies, finite element method was applied ex-

tensively to numerically solve a well-defined interface problem. For the coupled system
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of Stokes-Darcy, Robin-Robin domain decomposition method with locally modified mesh

method was constructed with second order accuracy, which meets researchers’ expecta-

tion. This system was decoupled into each subdomain and solved separately. Morevoer, We

showed this method provides a way where Stokes and Darcy systems can communicate

and exchange information along the interface according to the algorithm. The locally mod-

ified mesh method was shown to provide comparable accuracy with unstructured mesh

method. Finally, the accurate gradient computation method also illustrated an improved

level of accuracy by introducing augmented variables.

The second focus is on the efficiency. To reduce the time cost of the mesh generation

process, locally modified mesh method was proposed in our research. The CPU time to gen-

erate an unstructured mesh was 0.14s compared with 0.05s of a locally modified mesh for a

32 by 32 mesh. To generate a 1024 by 1024 mesh, the CPU time of unstructured mesh was

8.65s compared with 0.56s of a locally modified mesh. For a complicated mesh generation

problem, our method showed a significantly improvement on efficiency. In chapter 4, we

demonstrated an augmented variable method to accurately compute the gradient along the

boundary or the interface. Our result showed that there was a tradeoff between efficiency

and accuracy. This method sacrificed some efficiency to obtain a higher level of accuracy by

enlarging the stiffness matrix. Moreover, the stiffness matrix became a rectangular matrix

which increases the challenges in solving it.

Thirdly, we designed algorithms. In this dissertation, different algorithms, such as do-

main decomposition algorithm and locally modified algorithm were built. Those methods

were easy to follow and can be conveniently applied to other problems, such as systemx

other than Stokes-Darcy interaction, PDEs with complicated interface and domain struc-

ture. Besides, those algorithms have been theoretically proved with elegant mathematical

tools and thoughts which provides valuable ideas for future implementations.
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In the end, we have identified several areas of future research goals from our results in

this thesis.

First, for the accurate gradient computation method, we can design and test on different

finite element spaces to check if a second order accuracy on the gradient can be obtained.

Moreover, a theoretical proof of the convergence of this new method is highly desired.

Second, it is interesting to extend the locally modified mesh method to 3D. The mesh

generation process of a 3D problem is even more complicated and time consuming. Using

locally modified mesh method, we might potentially reduce the time cost significantly. More

importantly, we always get a body fitted mesh which originally might be more difficult for

3D problems.
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