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Abstract.

This paper provides a new technique aided to reduce degrees of freedom (DOF)
in linear mechanical systems when dynamic behaviour is studied.DOF are chosen to be
nodal displacements in sense of Finite Element Me thod (FEM) and are derived into
'master' and 'slave'.'Slave' displacements are eliminated but their contribution
in matrix transfer function is included in implicit form.Since integral transform
ie used to perform elimination the accuracy of mathematical description is not vio-
lated.As a product of reduction the order of derivatives in govering equations ri-
ses.A modified Gauss algorithm to achieve 'condensed' description is employed.Some
computational advantages over other techniques are discussed.

{.Introduction.

FEM is currently in use in engineering applications nowadays.In particular,
one may use FEM to determine the dynamic response of idealized structures of nuclean
power plant.In order to give more detail description of the structure a large num-—
ber of nodal displacements are required.The system of govering equations become
large and the computer storage may be exeeded.On the other hand, computational time
rises significantly.

Widespread manner to reduce DOF is so called 'static condensation' technique.
Nodal displacements are divided into 'master' and 'slave','Master' DOF are predomi-
nant and the 'slave' DOF are not so typical and important for analysis.They are
eliminated from govering equations of the motion under the assumption that the iner
tial effects of the masses lumped in 'slave' DOIF are neglected according to ZIENKI-
EWICZ[1].That leads to changes in the natural spectrum and they are more signifi-
cant in high frequencies,High frequencies modes are truncated and response contains
only contribution of low tones.

Nuclear power plant equipments are subjected to high frequency excitations and
keeping natural spectrum of the structure without changes is important for dynamic
perturbation analysis.

Following the basic assumplion of the 'static condensation' technique is sho-
uld be noted that this technique is not recommended to be applied when 'slave' DOF
contain large masses lumped.For instance, if the motion of the reactor basement

should be described by 'slave' DOF neglecting of the mass will lead to incre—
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dible results.

The ohjective of this paper is to develop the 'dynamical condens
gue which has the following features: at first - the natural spectrum of the struc-
ture is kept unchanged after elimination so a wide range of perturbed frequencies
are adopted and second - inertial effects in 'slave' DOF are not neglected and
limitation of the masses is avoided.As a first step of the algorithm proposed is
transforming govering equations of motion which have been obtained using time de-
rivatives by the integral transform.As a product of this transform an algebraic SyS=
tem of equations may be obtained and used as a starting one.Blimination of the un~
known displacements is attended by rising of the order of time derivatives.This
strategy may be performed over all structure or over all separate parts of the stru
cture ~ substructures.Since no inertial effects have been neglected the elimination
will not cause the loss of accuracy and natural spectrum of the structure will rema
in without changes.Comparing the spectrum of the starting structure and the spect-
rum of the 'condensed' structure both will coinside comple tely.

To perform the elimination of the 'slave' DOF mentioned above a modified
Gauss algorithm is employed.I{ is quite similar to the well known Gauss equation
solver but coefficients are polinimials.

2.Dynamic Condensation Technique.

Let's consider a system of 'n' linear differential egquations with constant
coefficients, which are used to describe dynamical behaviour of a linear mechanical
system with 'n' DOF: . )

MY +CY+KY=F (1)
When the initial conditions are chosen to be Y(0)=Y(0)=0 after Laplage transform
over left and right sides of (1) equations of motion become:

A®.X(P) = F(p) (2)
where A(p) may be realized as a dynamical stiffness matrix, which is mass~,damping-
and static stiffness dependent:

AP =P'M +P.C+K (3)

Suppose we have to eliminate '1' components of the vector x(p).Let's denote
by Xﬂp), A p) and.g(p) vector of unknown transformed displacements,dynamical stiff-
ness matrix and vector of exlernal loads of order 'n' respectivly.We denote by z(p)
K(p) and T(p) their corresponding matrices order (n-1) in 'condensed' structure

after elimination:

AP).YP) = B (4)
where the new dynamical stiffness matbrix K(p) has an order N higher than 2 with
respect to 'p' and may be written in the fprm: N

j— _ _ s — i \ S
AP)=A, +PA +PIA+PIA + .+ PNA, = L FA (5)

For our further consideration we shall accept substructure approach wellknown
from Iii.We assume that the structure is composed of substructures and 'master' DOF
are chosen only to connect two or more adjacent substructures.Then we denote by\/?ﬂ
the forces acting on substructure 'f' in it's 'master' DOF and which represent £;e
interaction between adjaccent substructures according to the First Newton's low.Tt

is clear that the assemblage will not contain Vf(p) and after summation Vf(p) have
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to vanish Z:Vf(p) 0.Following (2) and (4) equations for dynamical equilibrim of
'condensed' substructure 'f' may be written in the form: & (p)Yf(p)_Ff(p)+Vf(p)
Forces V (p) are, in general unknown, but they are acting only on 'master' DOF and
after assemblying they would similary to V(p) be balanced at any 'master' DOF.The
global system of govering equations of the 'condensed' structure is obtained after

summation over substructures:

ZF\F(m.?‘(P) = ZE% +.>1.}YF<P> (6)
where: £ _ N .
5 Afe) - Z(EPAD) = E(ZA) - 2R A - AP &)

and N = max(N ), f= 1 2y000

3.Numerical example.

The following example is invoked to ilustrate elimination algorithm.let's
consider a simple cantilever composed of four pure sear elements as shown in Fig.1.

For the sake of simplicity C = 0, and matrices M , K, F are respectively:

1001 1-10 0 1
M=lo100 s K=t 2-10 5,E=_4xc‘ (8)

0010 o -4 2 -1 1

oot 0 -4 2 i
The transformed system has the form:

P2y -1 O 0O |[vi® 1
-4 PA2 -4 O |]|Ya® 1] 4
o -1 Pa2 -4 |{wu@® [ = "4 A )
0 o -4 ph2 || YW 1

We apply elimination strategy over all structure to eliminate YZ(P) and Y4(p).After

that we obtain:
P3P -1 Y@ i3

: Xo(®
-1 PAe4phe | [ Yal® Paaf @ (10)

Using substructure description we have to eliminate midle DOF.Y2(p) and Y4(p).1ni-

tial description of the both substructures is:

P2+i -1 0 Y{?J
1 VAP
Fap 4 ‘ ’ e I X9 “ (11)
-1 P2 - 2= d AR @+ 0 b = w7t
Y, (P AL L B Y | w7 . 0
-4 %FF+1 YalpP) ‘42_. Val?}

Elimination algorithm over (11) leads to:
Plaphe -1 NP [ . 0 .
\ =- XgP) + ; [optadvd] Paele- (3P e2lx P + (12)
2 2
-1 4P 2p% | P -é-Pz+2 (Fr2).V; P {_(Pz+2).V3(P)}

We note that after assemblying the govering equations for all structure we obtain
again (10).From viewpoint of the core used substructure technique is more efficient,
It is easy to determine transfer function for Y1(p) from equation (10) if Y3(p)
would be eliminated:

Wiy a2 P® +7p" + 15 +10
AN Xe(P P® +7p6 1 A5P4 4+ 1OP2+ 1 (13)
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4.,Blimination of 'slave' DOF,

Some different appreaches %o ach e ayailable.Ba=
sing on equation (2) a flow - chart has been prepared to provide the relations be=
tween Lapla?e transforms of Y using graph theory approach.BElimination strategy may
be performed by structural transformation ISHTEV[Z].Meisson‘s formulae and Fadeev's
algorithm KWAKERWAAK, SIVAN[i]are useful for computer aided elimination technique
proposed here,

An algorithm has been prepared by the autors is based on the Gauss linear equ
ations solver.Coefficient operations are changed by polinomial operations.In order
to avoid remainders polinomial ratious are not used.The highes order of 'p' has
been controlled not to induce high order of derivatives in the time domain.

S.Besulis and discussions.

The technique mentioned above is a convinient one when mathematical descrip-
tion should be done witout losses of accuracy.Consider a system with 'n' DOF.When
"'n-1' DOF should be eliminated, the total number of the coefficients in the corres-
ponding single differential equation does not exeed 4n ,When a classical form of
FEM is used by the description (1) the number of coefficients will be of order 'nj'
To emphasize this advantage of the 'dynamical condensation' more unknown displace-
ments should be involved.

The computational time required to determine the response along the 'master'
DOF can essentially be reduced.That can be ilustrated by frequency domain integra-
tion.Note, that the computional time is dependent stronger on the number of equa-
tions than on the oxder of derivatives.This approach has been used in reference
ISH1BY, PHILIPOV, BOJILOV[4], and it includes spectrum determination of the input
signal Xg(ju)), solving of the system (4) for every values of W and back Tourier
transform to obtain 'master' displacements.

Fig.4 shows the relationship between time required to solve the problem and
number of DOF.Computer PDP 11 34 was used to demonstrate numerical examples.Line 2
shows the time consumed to compute 1 000 values of response of all displacements
without elimination.Line 1 shows the time required to compute 1 000 values of one
response when 'n-1' displacements are eliminated,Dotted line 3 represents the time
consumed using 'dynamic condensation' technique multiplied by number of DOF.One
may observe from I'ig.4 that 'dynamic condensation' technique is more efficient when
number of DOF is significant.Also even if 'dynamical condensation' is not indispen-
sable it's better to eliminate 'n-l1' DOT' than to determine all 'n' - responses si-
mul taneously.

vWhen linear modelling in frequency domain is applied, the frequency transfer
function is used to evaluate the natural spectrum of the structure.Fig.5 shows the
frequency transfer functions in logaritmic scale.It could be seen that line 1
which corresponds to the 'condensed' and initial system also contains all four na-
tural frequencies.To compare with line 1 are shown results after 'static condensa-
tion' technique respectively =~ line 2 (two DOF are eliminated) and 1ine 3 (three
DOF are eliminated).Bvidently the diference between line 3 and line 1 will grow in

general as it would be expected.The shifting between line 3 and 1 is more signifi-
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cant than between lines 1 and 2.I%t 1s also seen that after 'dynamical condensation'’

the transfer function is not violated and it's kept equal to the initial one.
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