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Abstract

The criterion of strength for anisotropic brittle media by Gol'denblat and Kopnov is
adopted in this paper. The invariants of stress tensor for the strength function having the
transversely isotropic symmetry are used to formulate a criterion of strength for the AGOT
graphite materials. In the realization of the efficiency of the quadratic strength criteria
proposed previously, a cubic strength criterion is proposed in this paper. The criterion
contain more disposable coefficients which accommodate necessary physical properties. The
strength for an AGOT graphite is tested by uniaxial and biaxial stress. The experimental
data are used to validate the improved strength-criterion. This shows that the theoretical
and experimental in results are close agreement.

1. Introduction

Fracture criteria and constitutive relations valid in the inelastic range bring a much
greater degree of realism to the analysis and design of machines and structures than purely
elastically responsive relations. VYet despite the many structural components that will fail
by excessive plastic deformation in a moderate strain range, avoidance of failure by frac-
ture is the greatest engineering challenge in particular for brittle 1ike materials. Thus,
for the purpose of material characterization and design, rational simple strength criteria
for structural materials and composites are essential. As pointed out by Tsai and Wu [1],
most of the criteria proposed do not include, or are limited in their ability to include,
the anisotropic properties of materials, the difference of tensile and compressive strength,
and the mutual effects of stress components. The actual strength criterion is some closed
hypersurface in stress space, which signifies that the strength of materials is finite. An
infinite failure stress is used as a convenient idealization. In order to remove such
limitations, Gol'denblat and Kopnov [2] proposed a strength tensor criterion specially
adapted for glass-reinforced plastics and verified its validity by experiment. Assuming the
existence of a strength function which is expressible as a polynomial function of stress
invariants, the first writer [3] proposed a quadratic strength tensor criterion for graphite
(grade AGOT) and verified this experimentally. This graphite is a transversely isotropic
brittle material which exhibits the Bauschinger effect and the property of compressibility.
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The result of the proposed quadratic strength function shows that the predictions seem to
match the test data approximately. In this paper, an improved strength criterion. which
includes the cubic terms of stress invariants, is proposed.

2, Development of Strength Criteria

Consider a strength function

(Uij) =0 (])

which is required to be invariant under a group of transformations of coordinate {t },
characterizing the material anisotropy, i.e.,

F(°ij) = F(°ij) (2)
where 01J = tir tjs Tpg
Therefore, any strength function is expressible as a polynomial function in the
invariant quantities as

F(Ij(i)) =0 (3)

where Ij(i) denotes the invariant quantity in the i-th degree and the j-th element. (A1l

the practical yield criteria for metals and the failure criteria for brittle materials can
easily be recognized as special cases of the general form of Eq. (3).) Invariant quantities
for each system of anisotropic materials had been obtained by Huang [4].

The invariants for a transversely isotropic material, with the group of coordinate
transformations {t;;: I, and R [X; + iX, = e7'%(x; + ix,), X3 = x5 | for all values of al},
are

(1),
Ij P 035 07 o,
(2), _2 2
Ij oo + 05 » 010y - 062
Ij(3): {det[o_il} or 2040506 - 01042 = 02052 (4)

where the contracted notation is used, i.e.,

(0795 095 9335 0235 913> 012) = (o7, 0y, 935 s O ).

For anisotropic brittle materials, the failure mechanisms or the failure modes may be
classified as tensile (compressive) ruptures and shear yieldings, which can be identified by
the observation of failure planes. It is of interest to note that the invariant groups
given in Eq. (4) determine the failure modes of the transversely isotropic materials. The
Ij are the maximum or minimum axial and transverse normal stresses, which result the
tensile {compressive) rupture. The I.(Z) are the square of the maximum axial and transverse
shear stresses which determine the planes of yield failure. The cubic-term I (3) is the
cubic power of stress under the combined stress state, which determines the or1entat1on of
failure planes. With Eq. (4) the cubic strength function F can be written as the following
form,
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o 2 2 2
{F1(°1 * o) * F3°3} B {F11(°1 +0p7) + Faqo3” + 2Fp5lo5(0) + )]

+

2, 2 2\ 3
2Fyp010p + Feglog” * o5") + 2(Fyy - Fyp) o5 } ¥ {F333°3

+

3 2 2
Fraplog + 0p)" + Fyyglog + 05)" o5 + Fyga(oq + op)og

+

Fayelloyop - °62)°3] y F355[("42 N "52)"3:I

+

Fraglloy + o) (oy0p = 0?1 + Fygel(a + ap)o,” + o571

+ Fageldet(o)1}Y =1 (5)
where Fi’ Fij’ and Fijk are the components of strength tensors, o, (i=1, 2, ..., 6) is the
matrix for of the stress components, and o, B, and y are material parameters.

For the plane stress problems in (x], x3), Eq. (5) yields:
a 2 2 2\ 8 3
(Fyog + Fao3)" + (Fyyoq” + Fygo3” + 2Fy30q03 + Fgog™)™ + (Fypq0y

+ Foonoas + F

33393 * F1131°93 * F13307037 * Faggog0q” + Frggoyog)® = 1 (6)
The function given in Eq. (5) or Eq. (6) is invariant under transformation of coordinates.
With « = 8 = 1, the cubic terms in Eq. (6) are deleted, and the quadratic strength criterion
given by Tsai and Wu [1] is obtained. Also, by imposing conditions of incompressibility,
Eq. (6) can be reduced to the form of the yield criterion proposed by Hill [5] for
transversely isotropic material, such as sheet metals.

The strength criteria, proposed in Ref [3], are quadratic in stress. It should be
emphasized that the choice of quadratic forms is based on curve fitting considerations and
not on physical reasoning, for convenience and simplicity. It is unfortunate that the
yielding plane occurring at a point in a continuous medium is not a priori identified, and
will occur on the plane on which the maximum shearing stress results. The quadratic
approximation of strength tensor theory does not permit to determination of the orientations
of the failure planes. Third-order approximations contain more disposable coefficients, are
therefore more flexible and improve on the curve fitting. Since the strength function F of
Eq. (1) must be a convex function [6], the components of strength tensors Fis Fij and Fijk
cannot be arbitrary. They are subjected to a set of inequality constraints. Let 93 and

Oij' be two distance stress states in a stress space. Then, their combination

.ij=eo1.j+('l-e)c1-j' s, 0<ex<

must remain in the space and satisfy the inequality
F((-Lij) <e F(Oij) + (1-¢) F(o'i;j')

The convexity condition for the third-order approximation is very complicated and is
not considered in the paper. In this paper the cubic terms 013 and 033 are judiciously
discarded, and the proposed cubic form of the strength function in the principal stress
space is
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z z N
- ysagganl Wipse; g A F 10 (7)
where the strength coefficients F13, F133 and F”3 characterize the interactions of the

principal normal stresses o and og. Certainly these coefficients can be determined only by
experimental multiaxial stress tests.

3.  Experiments

The multi-axial testing of the brittle AGOT Graphite is made, and has been conducted by
the writer at KSU for studying on the material properties of the AGOT Graphite. The Uni-
axial Compression stress-strain curves for the parallel and transverse directions have been
tested and the partial results are shown in Ref. [7]. The experimental work is directed
toward, but not limited to, the biaxial stress states [8]. The biaxial stress state tests
have been carried out by varying different radial loading paths using the large size, hollow
cylinders subject to an axial Toad and either an external or internal hydrostatic pressure,

In specimen fabrication, the surface finishing of specimen and the contact pressure
between the grinding tool and the workpiece must be properly controlled and selected for
avoiding the machining damage on the surface of specimen, According to the Industrial
Graphite Handbook [9], surface finishing of 63 and 250 micro inches can be achieved at
cutting depths of 0.0005" to 0.005" with cutting speeds of 1,000 ft/min.

The strength test results are summarized in the Fig. 1 with the data points.

4,  Numerical Example

In order to verify the proposed improved strength criterion, the experimental results
obtained for the grade AGOT graphite are used. Unlike the quadratic strength criteria, the
explicit analytical solutions of strength coefficients cannot be obtained for the cubic
strength criterion Eq. (7). The least square curve fitting method is used to obtain the

optimum values of Fi’ Fij and Fijk' The results are summarized in the Table 1.

5.  Concluding Remarks

From the invariants of the stress tensor, a strength function F(Gij) in the form of a
polynomial function for anisotropic brittle materials can be easily established. The
components of strength tensors are determined experimentally from basic strength data.
The proposed cubic strength criterion and the test data are plotted in Fig. 1, For com-
parison, two quadratic strength criteria [3] are also included in the figure. It can been
seen that results using the proposed cubic strength criterion fits the data points more
closely in all states of stress than the results of the quadratic criteria. Such a result
is expected, because the higher-order approximations contain more disposable parameters.
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Table 1. Strength Coefficients for

Modified Quadratic Quadratic Curve Cubic Curve

PSI Curve (A) (B) (C)
F 5.433 x 107% 5.433 x 107 4.464 x 107%
Fs 3.509 x 107% 3.509 x 107 2.5 x 107
Flq 1.221 x 1077 1.221 x 1077 1.116 x 1077
Fa3 9.234 x 1078 9.234 x 1078 6.944 x 1078
Fla -1.534 x 1078 -1.006 x 1078 -8.59 x 1077
_FH3 ------------ 1.728 x 10712
Flgg =~ === seded 41,722 x 10712
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Improved Strength Function (Cubic Form).
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