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Abstract

A non-dimensional parameter, having a critical value of unity, has been introduced for
use when material deformations such as creep rates are defined as a function of the
equivalent shear stress. For power law creep, for example, its value depends on the creep
index n and 1t 1s then given by (n-1)/n. The variation of the stresses in a creeping
structure is substantially linear with this parameter, so long as 1its critical value is not
too closely approached. Use has been made of the above concepts to arrive at solutions to
creep problems for conditions which are sufficlently far removed from those critical
sltuations which may physically be related, in limit load terms, to the onset of

structural collapse.
1. Introduction

The stress distribution in a structure depends on the creep law relating the strain
rate to the effective stress and a parameter (MZ) has been introduced in which to express
this. For a non-linearly viscous material M? {is (n-1)/n; more generally, M? measures the
extent to which the material behaviour is non-linear (0 < M < l)and an expression for
determining M2 1s glven in the Appendix. Conditions at a point may be envisaged in terms
of the local value of M, or the latter at a point of reference. For power law creep these

two values are the same.

2, Asymptotic Stress Solutions

So long as conditions are sufficlently removed from those which make M = 1, the state
of stress may be envisaged as a serles in terms of powers of M2. For power law creep the

normalised value of the stress T = G/UN may thus be expressed i{f h is written for (n-1)/n:

(h) = ° + h 1% + 02 T ...,
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There is evidence to suggest that the effects of the higher derivatives of T with

respect to h are normally small and a useful approximation may be obtained as:

=1 +h 1! + 0(h)

A corresponding expression for the normalised strain rates S = s/eN is:

. .0 oI .I1
S(h) =S +h S +h?S + .... (2)

When envisaged as a Maclaurin series:
S(h) = S(0) + h S'(0) + 2 B2 §" (o) + ...
2!

.0 o1
It therefore follows that 8 and S etc may be derived from:

. 1/(1-h) . 1/(1-h)

S(h) =T , s'(h) = a (T )/dn,
and it is thus found that:

.0 o W1 I [ o

s =T, S =T + 7T 1log T,

which are equivalent to expressions derived by Calladine (1).

3. Calladine's Method

For boundary conditions which correspond, Calladine pointed out that the creep stress
distribution is identical to that for an analogous non-linear elastic material; S is then
o
construed In terms of the von Mises effective strain S. Since T is the solution for h =

o, it 1s the stress which would arise in a linearly elastic structure. Noting that the
gradient of T with respect to h when the lakter tends to zero 1s the same as dT/dn when n =
1, use may be made of Calladine's observations concerning the latter. These lead to
recognising SI(TI) as a linear elastic materlial relationship, with an initial strain at
each point as defined by S(i) = Tolog ™°. The implied lack of fit provides a source of
self straining. The self-equilibrating stresses so arilsing define TI (and hence the
stress re—distribution to the order of h) as the solution of a linear—elastic self-
straining problem. Calladine considered an analysis of that sort by no means trivial but
commensurately difficult thermo—elastic problems are now routinely solved by computer-alded
methods; the lack of fit which S(i) defines 1s one of shape rather than size however. For
uniaxial problems the relevant values of S and T are their modull; taking account of

correspondences between signs 1t Is then found that:

s° = 1°, st = 11 4+ s, s oo 1og|'r°|
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4. An Illustrative Example

Fig 1 shows a rectangular beam subjected to a moment M; at a distance y above the
neutral axis ¢° is My/I. Noting that T° 1s thus proportional to y, ky say, the equivalent
thermal strain is proportional to y log ky. The requirement for plane sections to remain
plane, together with the condition that the couple arising from the self-equilibrating
'thermal' stresses must be zero, enables the lakter to be found:

UI =-° (logly/Y] +1/3) vee % = My/I.

see fig 1. The maximum stress so obtained 1s such that:
o =
omax/c 1 =-h/3=(2n+ 1)/3n

It 15 the same expression as results from integrating the power law relationship see,
for example, Boyle and Spence(2). This problem is one for which the maximum stress does,
in fact, vary linearly with h, and hence with m = n—l, see fig 2. More generally, so long
as h 1s sufficlently far from the value unity (at which n » «, which is a singular case)
the errors are generally found to be acceptable and on the safe side, exceptionally the
streses belng underestimated by ~5% for 3<n<5. The corresponding strain rates may be

estimated from the specified power law relatlionship. Because of the non-linear nature of

the latter, the variation of & with h is non-linear - except for values of h which tend to

zero, so that n ~1.

5. Structural Deflections

Similar considerations apply to the rates of displacement at each point in a structure
as apply to the strain rates. It 1s only for values of h which tend to zero that accurate

solutions are obtainable from:
q=q°+hnq

Use may be made of skeletal or, more generally, reference stress concepts to arrive at
deflections q which are valid for a wider range of h or n values. For the illustrative
problem considered there is a point at which the stress remains independent of the value of
h (or n) according to the asymptotic stress solution. To the order of h, it 1s such that

cI = 0, see flg 1; the corresponding value of y is given by:

log y/Yl = ~1/3

This skeletal stress causes a creep rate which may be used to infer the corresponding

rate of curvature. Use may be made of reference stresses for the same purpose see, for

example, Anderson et al (3). For simple problems the skeletal stress is the reference
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stress. The latter may be defined by TR in:

q=£8 (Tp) (5)
for the deflection q in an equivalent non-linear elastlc problem. The dependence of TR on
h may be minimised through requiring, for TR(h), that TRI = Té (o) be zero. Equating
terms in:

@ +hgl + ..o= £(5° +nst g
wlith the above definitlon of the reference stress:

o () o o _
q fsp = £ T cee TY =T
=gt = gt! + T%20g17%°) ... Th=0
R R R R R
to the degree of accuracy implied. The reference stress so defined is such that:
_ I, 0

log T; = q /q
in which both q0 and qI are presumed known; this may also be used to deduce the
factor:

_ o
£=q/T, , &)
For the beam problem considered, for example, it 1s found from qo a Ko, qI = KI that:

o = (MY/I) exp (-1/3)
which is the same as the stress at the skeletal point. More generally, TR and f may be
derived from q0 and qI to deduce a solution for q from expression(5). It is thus found
for a rectangular beam problem that 1f € = Bclc’n_l, then:

¢ = F(n) (¥ L/ BM|M|n_l

This is of the same form as the exact solution, see for example Anderson et al (3).
The deflections are however over-estimated (by between 9 and 24% of the range 3< n <5),
slnce the reference stress solution predicts:

F(n) = (exp - 1/3)11_1

instead of: F(n) = (1 + 1/2a)™ (2/3)"
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6. Conclusions

Identified needs include requirements to refine and simplify current methods of
analysis. An important area, for nuclear power plant operating at elevated temperatures,
is concerned with creep and related non-linear deformations. The latter have been
envisaged as a function of a parameter M2 = (n-1)/n for power law creep. This has been
used as a basis for solutions to a degree of accuracy which, Iin most cases, is higher than
the variability commonly found among the relevant materials data. The objective has been
towards reducing dependence on over-restrictive 'elastic design routes' on the one hand

without giving rise to difficult inelastic analyses as an alternative.
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8. Appendix - Definition of the parameter M

The rate of energy dissipation per unit volume W, for a shear strain rate y and a non-
linear viscosity p (which may be expressed either in terms of y or the shear stress t =

uy)is such that: dW = pydy

This is analogous in form to an expression used in the analysis of compressible flows
= the so—called Bernoulli equation for which —-dp = pudu. The density p in the latter case
may be expressed, either as a function of the velocity u, or of the mass flow per unit area
in m = pu. For such problems 1t is meaningful to introduce a Mach number = u/a, in which a
is the velocity of sound, namely /(dp/dp). Equivalent parameters for non—linear creep

are:

Ao oWy
dp du

and M = y/a, which may thus be expressed, since Tt = py, as:
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Fig 2 - MAXIMUM BENDING STRESS FOR A RECTANGULAR SECTION
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