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SUMMARY

A method of formulating material models for viscoelastic analysis using the finite
element method is presented. The method, named consistent linearization, includes the

influence of creep in the materiel stiffness in a theoreticelly idesl manner.

A common approach for solving creep problems is the initial strain method, in which the
stiffness matrix is elastic and the eoffect of creep is included only in the unknown force
term. More rapid convergence can be achieved and longer time steps can be employed by
including the effect of creep in the stiffness matriz, In some previous works creep has
been considered approximately. Errors in the approximation have been corrected by
equilibrinm diteration, using stresses compnted with a more acenrate integration. Im this
paper, additional improvement is achieved by formulating the stiffneses and the stress
consistently. This not only ensnres an optimom convergence rate, but it avoids the cost of
unnecessarily accurate stress computations in cases for which the solntion error is

dominated by the global time discretization.

In the consistent linearization method the tangent material stiffness is defined as the
partial derivative (or Jacobian matrix) of the end-of-step stress with respect to the strain
increment applied over a constant time interval., The materinl stiffness is calculated using
a numerical dintegration scheme which is identicnl to that used for calculating the end-of-
step stress. VWhen the stress and the stiffness are consistent, the equilibrium iteration
becomes a pure Newton's method. A linear viscoelastic materianl is treated as troly linear,
and in this case the time dintegration can be performed withont equilibrinm iteration, The

same approach can be used to linearize a nonlinear material,

This method has been applied to the limear viscoelastic amalysis of graphite snbject to
irradiation, Previously, wunsing the initiasl strain method, short time steps had been
Tequired to avoid a numerical imstability associnted with the rapid transient creep. Using
the consistent linearization method a factor of 15 redunction in computer time was achieved

for the same accuracy.
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1. Introduction

This work was motivated by the need to calculete stresses ip the graphite fumel element
{Fig, 1) of a High Temperature Gas Cooled Reactor. Graphite onder irradiastion may be
treated ns o linear viscoclastic material and idealized with the Maxwell-Eelvin model [1]
shown in Fig. 2. Owing to the geometrical complexity and time dependence of the problem,
computational efficiency has been a matter of great interest [2].

Most well-known finite element codes hove evolved to use the same basic computational
algorithm, known as the tangent stiffness method with equilibrium iteration [3, .4, 5].
Within this framework, numerous algorithms have been developed for defining the nodel point
stiffness and calculating the element stress, from which the eguilibrium error vector is
determined, The approach tanken here is to define the stiffness and the stress consistently.
This, we believe, leads to an optimum rate of convergence of the equilibrium iteration.

To solve large problems efficiently, GA Technologies recontly developed a fimite
element program named TWOD, TWOD employs higher order isoparametric elements, efficiemt
dota processing, and a genernl purpose material model interface {[6]. The solution driver
assumes o piecewise linear strain path, and it employs flexible procedures for matrixz
npdates nnd egmil ibrium iteration, The material interface permits the constitutive law to
be linesrized arbitrorily by the mnser and the stress to be computed by 2 user—defined
integration procedure, ]

In the first attempt to use TWOD for a graphite amanlysis, the imitial strain method was
employed. The stiffness matrix was elastic, and the creep strains were concidered as
contributions to force (for prediction) or the stresz for eguilibrium iteration, The
stresses were calculated from the total strain increments nsing a one—step, explicit, fourth
order Rﬁnge Kutta method, This attompt feiled when it hes observed that the ezplicit
integration introduced a numerical instability. The critical time step was severely
restrictive, increasing the number of time steps required from aroond 36 (needed for
sccurncy) to around 800 (needed for stobility). Similar results have been observed and
dingnosed by Cormeau [7].

A number of improved solution algorithms for nonlinear materials have been desribed in
the literanture. In [8] and [9] the influence of nonlinearity is included in the stiffness
matriz through a technigne based on a forward difference, filrst order Taylor serles, Imn
[10] and [11] implicit stiffness matrices are derived by introducing_scnlar integration
parameters, similar in concept to the Wilson € or Crank—Nicholson methods. None of these
spproaches considers in detezil the intimante relastionship that exists between the stiffmness
and the stress.

To obtain more insight into the numericel instability, & one—dimensional version of the
equilibriom iteration algorithm was studied, This study, summarized below, demonstrated
that there 1s o preferred defimition of the material stiffness based on the true Jacobian
matrizx of the end—of-step equilibrium eguations, It alsc disclosed that a rapid rate of
convergence is anchieved whon the stiffmess matrix and the &trese are calculated using
ezactly the same integration procedure.

This method, termed consistent linearization, is illostrated herein for a linear
viscoelastic model of graphite, With this method, & lipear viscoelastic material is treated
es trunly linear, i.e., eguilibriom iteration is unnecessary. Nonlinear moterials can be

linearized similarly, using eguilibrium iteration to correct for nonmlinearity.
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2. One—Dimensgional Study

The finite elemont stiffness method is essentially a proceduvre for mapping between a
local constitutive law, considered at the element integration point level, and the global
stiffness equations, which combine the local influences. Each step of the equilibrimm
iteration consists of an alternation between local and global calculations, If ome were to
study this process in detail, the algebra womld be complicated by the mapping relatiomships.
This is avoided here by considering a one—dimensionnl problem consisting of o bar with mnit
area and unit length. For this case the local and global guantities are scalars and are
identical.

Assmume that the externally applied stress is given as a function of time; on,{t), The
object is to calculate the intermal stress, o(t), arnd strain, g{t). The equilibrium equation

for the finite element problem is given by the well-known relationship [5],

f I'.B]T {o(t)) av - [F{t)1} = {0} ’ (1}
v

which redunces in this example to the trivial eguation,

a({t) - oa(t) = 0, (2)

One may ignore the fact that o(t) is known thromgh Eg. (2) and proceed to compute o(t) using
the equilibriom iteration method.

At the start of each time intexrval the stress and strain are known. It is ossumed that
the unknown strain increment, Az, is applied linenrly over the time interval At, The end of

step stress, o, is obteined by integratirg the comstitutive law, giving

o = h{Ae, At) . (3)

In view of Eq. {3), the equilibrium condition at the end of the step may be writteu as

f(At) = o(Ae) — o, = 0. (4)

Here f is the unbalanced force (stress) camnsed by a failure to satisfy equilibrium.

The unknown strain increment, Az, is calculated by applyiug Newton's method to find the
root of the functionm f. The algorithm is begun by making a first guess for the strain
increment, either as zero or by oxtrapolation from previous strain rates, Then, for a

typical iteration i, the next guess for the strain increment is given by

Ao, = Ae, +Be, (5)
where
—f(Aei)
Bsi = - {6)
Bf(Aui)
dAe
Observe that
8 - ¥ . o, n
Ao Az
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where

dh{Ae ,At)
dAc

D = As = Aey (8)

At = given .

For o viscoolastic material, D is the creep stiffness, representing the perturbation of
the end-of—step stress that isg incurred through a perturbation of the incremental straim.

Now consider that the stress ueed to determine the unbelanced force f may be computed
approximately as a®{Ae;) by nmmerical intogration of the constitutive law. Also, consider
that the material stiffness D may be approximated as D say, using values from & previous
time step or perhaps even tho elastic stiffness,

With these approzimations, Egs. (4), (6}, and (7) moy be combimed to give

Sei = (de— ca(Aa))i . ("

o

To evaluate the comvergence characteristics of this iteration, two successive iterates

are examined., From (5} and (9) one obtains

- gt
u*(Aei + Bni) o (Aei)

(10}

S =

be |,
i .

" °
Moy o1 -2 (11)
Bg. D
1
where
&
pe = 20%lAe) | L 4. (12)
dAe :
At = given .

D® is the Jacobian of the incremental, numerically integrated constitutive law. According

to Bq. (11) the convergence raote is o maximum when

o
fl
1~

{13)

This is the cruxz of the consistent linearization methed,

Although consistent linearizetion emsures rapid convergence of the equilibrium itera-—
tion, it does mnot guarantee accuracy or stability of the forwerd marching process. This is
governed by characteristics of the time integration itself. The benefit of wueing the
consistont linearization method is that unnecessary iterations to compensate for inoconsis-
tencies in the material stiffness are oliminated, so the efficiemecy of the solution is

governsd solely by the choioce of the integration algorithm and the length of the time step.
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3. Calculation of the Matexrial Stiffness

A straightforward way to calcnlate the material stiffmess D® is to integrate along o
trial strain path and to perturb the strain path one component at o time, reo—integrating to
determine the stress perturbation. Each perturbation gives o column of the Jacobianm matriz,

i.e.,

do¥ oc¥ (e + 5e.) — of {e)
e = .t J : . (14)
J aaj : e

J
For nonlinear materials this method hasz one shortcoming in that the size of the perturbation
required to obtain both numerical significance and accuracy is unknown,

A better procedure in some cases is to perturb the constitutive law algebraically, The
result is a linearized system of equations hoving a constant Jacobian such that the size of
the perturbation is irrelevant. For a linear viscoolastic material, these two approaches

are essentially the same.

4, Implomentation for a Linear Viscoelastic Material

In the following, the consistent linearization method is implomented for the
Maxzwell-Eelvin model shown in Fig, 2, All lower case letters mre vectors, with stress ¢ and
strain g hoving length 6. TUpper case letters are matrices, e.g., 6 x 6.

The equations for the four strain compoments of the model are:

Elastic Y o, {15}
5 _ 8

Steady Creep e” =M o, (16)

Transient Creep ;_éT = HT (g - ETeT). (17)

Thermal/Irradiation ze = se(t) (given}, (18)

where the dot (+) means difforentation with respect to fast mneutron fluence, Eqs. (15)

{18) are coupled by

e = eE + cs + el C ¢ . (19)

With a suitable combination of the above, one obtains & system of 12 first order,

ordinary differential equetions,

{z} = - [A) {z} + (b} , (20)

where
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and

of + wT)EE - a'ET
[A] = {21)
o B WIgT

To integrate the system, LEq. (20), a variant of the Crank-Nicholson implicit method is
used, This scheme was chosen because the critical time step was tooc restrictive with an
explicit methed, Therefore, either an explicit integration with many substeps or amn
implicit integration wonld have beon required to handle long time steps. Both were tried
and, as will be shown below, the implicit method was more efficient.

The integration algorithm is described by
Ax = [{1 - 0)(—A1 z+ bl) + 9(~A2 =, bz)] At, (22}

where the subscripts 1 and 2 refer to the start and end of the step. Given that by = by =

constant and xg = xy + Ax, Eq. (22) can be written as

{I+0 At Ap] Ax = {-[(1 - 8)A1 + 8A7] x1 + b} At . (23)

To reduce the number of material property calculations, LEq. (23} is simplified by evaluating

the matrix A only at time tq + & At. Call this matrix Ag. Thea (23) reduces to

[I+ 6 At Ag]l Ax = (-Ag x1 + b) ALt ., (24)

After its assembly, the matrix [I + © At Ag) is factored using the Cholesky method, and the
matrix fectors are stored for future operations.
To find the stresses at the end of the step, the system (24) is solved for Ax, and the

stresses are calculated by

. E,E
o, = o + I Ae . (25)

The materjal stiffmess is calculated by a perturbation of Eq. (24)., Sinoe Ag and xq

are constant but Ar end b may vary, the perturbed system is

[I + 6 At Agl 6Ax = b At (26)

If Eq. {26) is solved six times (j = 1 to 6), perturbing ome strain componment each

time, such that

Bi. {Eroneker delta)
sy, = , (27)
J At

the resuiting stress increment,

bo, = b GAz? \ C(28)



is column j of the material stiffness matrix, In practice, we simplified these operations
as much as possible taking advantage at the structure of the material property matrices.

This reduces the 12 x 12 problem to ome & x 6 problem for the axial strains amd three 2 x 2
probleoms for the shear strains. Furthermore, by taking adventage of material symmetry, the
number of solutions was reduced to two 6 x 6 and two 2 £ 2. The details are omitted for the

sake of brevity.

5. Efficiency Comparison — Conclusions
The relative efficiency of different algorithms depends on a number of factors, such as

the size of the problem, the constitutive law, the loading conditions, and the error
tolerance, The example described here is not meant to give conclusions of pgeneral validity
but rather to show how, in this particular case, an improved algorithm was needed to solve
the problem.

The example described here is taken from the study of an irradiation specimen of
relatively simple geomestry. The finite e¢lement mesh, shown in Fig. 3, has 16 $~node
elements and 71 nodes. The time history of nine time steps is one quarter of the complete
irradiation history. In additiom, this was & coupled thermomechanical analysis requiring
about four iterations between the thermal and the stress anslysis, Thus, the computer times
described below should be multiplied by 16 to obtain the time for each case studied., Alsa,
several analyses were performed of complete cross sections having six times the number of
elements, By extrapolating the rum times in the first two columns of Table 1, it was
concluded that the initial strain meothod was not feasible for this study. Similar
conclusions also apply to the full-sized fuel block (Fig., 1).

Table 1 shows a run time comparison for four different algorithms that were tried. The
cage in the first column, the initiel strain method with one~step Bunge Eutta, would have
required around 200 time steps to remain below the stability limit. For these short steps,
only two iterations per step were required, In the next ocolumn, initigl strain with sub—
steps, only nine time steps wore needed for solution accuracy. However, with the initial
strain method, about six iterations per step were needed to compensate for the inmaccurate
stiffness. The third column shows the first case with the consistent linearization method,
The number of iterations is reduced by nearly a factor of four (note that the matrix is not
updated in each time step). The cost, however, is only a factor of two better than the
previous case becanse of the additiomal stress computations required to calculate the
stiffness, Finelly, the most favorable case was the consistent linearization with Crank—
Nicholson integration., This reduced the cost of the element dats processing by a factor of
four, The total improvement ratio achieved in this sequence of changes is 889/58 = 15.3.

An additional improvement of about a factor of two can be realized for s linear
viscoelastic mnterinl by calculating the stiffness looking ahead. By this method,
iteration is avoided. However, since this procedure roquires stiffness updates at every
time step, it was not considerod for permanent mse in the TWOD code.

It is concluded that the consistont linearization method has been an effective
algorithm for improving the efficiency of these viscoalastic calculations, Similar benefits
are to be expected for nonlinear creep problems, particularly those now solved with the
initial strain method. Continmed stndy of this approach and o direct comparison with other

algorithms in the literature ezppear to be warranted.
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TABLE 1
COMPARISON OF FOUR SOLUTION ALGORITHMS

Stiffness Matriz ) Elastic Elastic Congigtent Consistent
Integration Type R-E R-K R-E C-N
Integration Substeps? No ' Yes Yes No
Number of Time Steps 200 9 9

Number of Matriz Updates 5 5 5

Total Nuomber of Iterationms 400 69 21 19

Time of Matrix Factoring(s) 3.1 3.1 3.1 3.1
Time of Back Substitutions 60. 11.8 3.4 3.0
Time of Element Datas Processing 800. 262, 96.2 25.9
Other Time 26,0 28,5 26.4 26.0
Total Running Time{s)} 889.1 305. 129. 58,
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