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ABSTRACT

Life predictions in structures undergoing cyclic loads use the calculated stabilized
stress—strain loops, for which plastic flow is introduced through cyclic constitutive equations.
The paper deals with the description of strain history effects observed in some materials,
especially in the 316 Stainless steel. The main results of this study can be summarized as
follows :

- a special cyclic test with increasing and decreasing strain levels indicates a complex
cyclic hardening behaviour and some strain history effects at room temperature,

- a new internal variable keeping memory of the maximum plastic strain range is introdu-
ced, which gives a fairly good description of the observed effects,

= two modelizations are proposed for the 316L, on the basis of several non-linear
kinematic and isotropic internal variables associated to the strain memory variable,

- a practical identification procedure is discussed which leads to the determination
of the whole set of coefficients from one special cyclic test only,

- the proposed formulation, with the obtained coefficients, describes very well a lot of
test results, monotonic tension curve, cyclic hardening with stabilization, cyclic stress-
strain curve, persistent cyclic hardening after stabilization under a smaller strain range,
memory of the cyclic hardening under a prior higher strain range inducing larger stress ranges,
simulation of the incremental step tests and their dependancy on the maximum strain range,

- systematic application of the Neuber's rule for plane stress notched specimens
demonstrates the importance of the strain memory effect in order to correctly predict the
stabilized local stress-strain curves. Finite element calculations are possible for plane

strain or axisymmetric notched specimens and will be used to generalize the Neuber's rule.



I+ INTRODUCTION

With the present degree of refinement in computer techniques, stress and strain calculation
in structures is now a useful etep in order to improve the design, especially in the gas turbine
components or in the nuclear plant industries. When low Cycle Fatigue ox cyclic ratchetting have to be
predicted, an important need is the correct definition of the cyclic plastic flow rules ; in fact, more
sophisticated are the computer techniques, better has to be the macroscopic description of the material
behaviour, the results of the analysis beeing alwaye dependent on the inputs.

In several stainless steels a complex cyclic inelastic behaviour has been observed, showing
some unusual strain history effects. This study deals with the modelization of such complex phenomena on
the example of A316 L at room temperature.

In the past twenty years large improvements have been done in the description of material
straining with constitutive equations, including isotropic as well as kinematic hardening parameters
{1] [2] . The introduction of such internal variables can be justified through general thermodynamical
frameworks [3] [4] but, when identification of macroscopic processes is needed, we choose the following
strategy

- the simplest constitutive equations are used as long as they give a sufficiently good
description,

~when a poor modelization is observed (even with an optimized choice of coefficients) we
consider that a new macroscopic process is identified and look after new internal variables or new flow

equations with more degrees of freedom.

2. CLASSICAL FORMULATION

The most common internal variables, whose introduction is thermodynamically consistant,
are the isotropic and the kinematic omnes :

- the isotropic internal variable can be the cumulated plastic strain p (or the cumulated
plastic work) and is associated on a microscopic scale with the density of dislocations,

- the kinematic one is a tensorial variable associated with the strain incompatibilities

from one grain to another.

In the classical time independent plasticity, using the associated flow rule theory, one
postulates the existence of a yield surface in the stress space [1][3] : plastic flow takes place only
when the stress state stays on the surface. Usually the size R of the yield surface is associated with
the isotropic variable and its center is defined by an internal stress X (or friction stress) namely

the kinematic stress. Then the surface can be written :

f=J(@-x)-R(p) L0 m

J(@-X) denotes a distance in stress space : for example the Von Misescriterium corresponds to :

J@-0 = [F@-8):@-27 = \[F@)- KN~ Xy

where @’ and X’ are the stress and kinematic stress deviators.

(2)

The most common kinematic rule is the linear one due to Prager {5] : unfortunatly this rule
gives rise to a linear hardening [6] especially when the stabilized cycles are considered [7] . General-
isations like the Mroz's model [2] imply piecewise stress strain curves and some specific properties
(such as the Masing rule) which are not always exhibited by the material.

A practical way to describe a non-linear kinematic hardening, giving rise to a correct
modelization of cyclic loops, consists in introducing an evanescent memory of the plastic strain path
as initially proposed by Armstrong and Frederick [8] and recently developed by Marquis [9] for an
aluminium alloy and an austenitic stainless steel. This non-linear kinematic effect appears in the
internal stress equation :

k=clab-xp) 3)
where the First term corresponds to the Prager's linear rule and the second one to the evanescent
strain memory, the cumulated plastic length beeing defined for example by : P ="§-ir:d}

A very good continuous description of cyclic loading of materials obeying to a combination
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of isotropic and kinematic rules can beobtained under the following generalization :
. ko
X={_—_X“ Xk=ck(§ak4_x P) 4)
R = ;R“ Rk = b, (Bk—R")P )

subjected to the initial conditions : Xkoy =0 Rk(o) = Rk P(o) = 6)

In that case the plastic strain rate follows by the classical normality hypothesis :

b=pi =3P =B Pm @

where the plastic multiplier P isobtainedby the conditions relating to occurence of plastic flow only

bt p  EEW
Z;Ck(ak"gxk:ﬂ'l)'*;bk(Bk-Rk)

The function H is defined by H(¥)= 1 if ¥= O,Hm- 0 if #(0 and we states : <u>: M HMW) .

Under tension-compression loading the denominator of eq. (8) represents the actual plastic

(8)

tangent modulus : thusg, identification of constants Ok, Cy , bk ,B‘, can be done from a number of hysteresis
loops. One important advantage of this formulation lies in the explicit integrability in the one-

dimensional case :

Xe= vay + (KE-v ) exp(- V(& 6,) Ri= By + (RE- By)exp(-vhi(6-5,) (9
for each half cycle where the initial conditions are £r=6r. , xko X':. , RI‘= R‘; and with V= Sign (C',.) .

Under this particular case the yield function can be written from (1)

{=|g-xX|-R (10)
Let us consider now the conditions for ecyclic stabilization : this is possible only when
a sufficient plastic strain cumulation (P —» 00 ) leads to the saturated values for the isotropic
variables ; and when the kinematic ones are alternating, that is (Note)
RS = By Xk = - o Th(§ ) an
w here Afrdenotes the stabilized plastic strain range. We recognizes here that stabilized cyclic stress-

strain loops are independent of the prior loading path : this is an usual property for most of the clas-
sical plastic flow theories.

Note that a similar formulation, with one non-linear kinematic stress gives a very good

modelization of the high temperature cyclic viscoplastic behaviour [_IO] .

3. CYCLIC STRAINING ON 316L AT ROOM TEMPERATURE

At low temperature, when viscoplastic phenomena are neglected, the material characteriza-
tion is generally done in tension-compression under two atates : the initial one for which the monotonic
tension curve gives an indication on the hardening and the stabilized conditions after cyclic hardening
(or softening). In this last case the usual tests are periodic and allow to the cyclic hardening curve,
with one result by specimen (see figure 3).

In order to limit the necessary number of specimens, several special cyclic loadings can
be defined DZ] such as the increasing strain level test or the incremental testing method 3
unfortunately this last one leads to different cyclic hardening curves (depending on maximum strain range),
especially for the considered steel 03] . In this study the first type has been choosen and allows to
a vapid identification of the plastic behaviour (see figure 1) : one test only gives indications on the
monotonic hardening (until 1% for example), on the cyclic hardening (number of cycles to reach stabiliza-
tion and stabilized stress—strain loops) for several increasing strain levels. Moreover this unique
test shows also two effects which cannot be described by the classical isotropic and kinematic variables
Note : cyclic stabilization without ratchetting leads always to zero mean stress conditions, which is in

good accordance with the generally observed results under cyclic straining [l I]
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I - after eyclic hardening and loop stabilization under small amplitudes, the stabilization
for a larger cyclic strain range needs always ten cycles or more (fig. la) : although the behaviour was
already stabilized, more hardening can be observed under the larger strain ranges.

2 ~ after a large cyclic straining a swaller strain range shows an history effect : the
stabilized loop corresponds to a much higher stress range than in usual cycling without prior straining
(see fig. Ib). Moreover this stress range seems independent of the mean strain as long as the strain
path is contained in the prior largest one.

Several other tests (constant strain range A€ = 0,6%, but varying mean strain) indicate
that the hardening essentially depends on the largest plastic strain range. This is also confirmed by the

incremental step tests which show hardening curves depending on the maximum strain range (figure 4).

4. A NEW INTERNAL VARIABLE DESCRIBING THE STRAIN HISTORY EFFLCT

In the classical formulation the only variable allowing to cyclic hardeniug descriplion is
the cumulated plastic strain P (isotropic variable) because of its irreversibility within each cycle.
Consequently the first cyclic stabilization implies saturation of the response to this cyclic strain
accumulation : after that stage no more hardening can be described, the only evolution phenomena beeing
induced by the reversed kinematic hardening variable. Moreover this last type of internal variable always
gives stabilized stress-strain loops independent on the initial conditions.

These two remarks, associated with observations reported above, allow us to conclude on
the need of a new internal variable, keeping memory of the previous largest plastic strain range. This
can be done by the concept of a new index function F defined by an hypersphere in the plastic strain

space. For example we can choose :

F= I((fp‘"@() - 7 = (c[,,-(p():(&,,—@() (12)
and suppose that evolution of the internal variables ¢ and q is only possible if F=0. The width gof

the surface F gives the memory of the largest plastic strain range by the following equations :

. - % * . .

X = é-}ﬂ77 (d%- ”7 ) 07 q:: 1— 7 '4(F7 f) (13)
where 1*is the unit normal to the hypersphere at point ﬂ}: ’ (&} GK;//J:Ci}

The restriction F=F=0 for evolution of this hypersphere leads to the determination of
coefficient '9 : ‘7 = h: nh* (14)
which corresponds Lo the scalar product of unit normals to the yield surface and to the strain memory
surface (Note). Under tensile compressive loading we have 7=I, and one can see that q represents the
half maximum plastic strain range.

Now, introduction of this memory in the cyclic constitutive eq. (4) to (8) is possible,
by a dependency between the coefficient By of eq. (5) and 9. For the sake of simpliciiLy, limiting to

two isotropic variables, we can suppose the following equations :
X= 5 X* = ¢ (4ad - xp) (15
k
R=R+ f(* Fi = L) ((2" Fa) fi Fi*':: —-L;f fz* fj (16)
ZM(A-Q) 4 = py HIF)(R-Q) P a7

Finally the plastic strain memory appears only through the presence of tlie index function
F, which evolution is given by (13). The variable represents the actual asymptotic value for the
isotropic hardening R (under periodic cycling) and keeps memory of the largest strain range because on
its irreversibility. The second isotropic variable R"can be added in order to describe a prehardened
initial state, The initial conditions for the internal variables can be choosen as :

* *
X50) = ol(0) = qo)=0 Qlo)=Q, R(o)=R, R')=R; (18)

Note : a negative normal product corresponds to an unloading in the sense of this new index function

(F < 0 ). Evolution of the memory is possible only if W1 : M* > o.
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Application to the 316L stainless steel is considered under two cases : modelization with
two kinematic variables only (X] and XZ) and one isotropic (R®= 0) which needs nine coefficients and a
better modelization with three kinematic and two isotropic variables using thirteen coefficients.

In order to obtain the best choice of coefficients in each case, automatic identification
procedures could be used but we discuss here on a manual technique taking advantage of some possible
disconnections. The only test necessary to completely determine the model is the increasing level test
showed on figure |I.

= We use firstly the five stabilized loops, for which one can suppose that R # Q= Q,
A beeing constant within each loop i. The measured difference between the maximum stress and the

current one can be associated with the calculated response from eq. (9) to (11) :

O~ = ; o, [Th (cc 4%:) (1 + expl-i &) + exp (L q)—{] (19

For the model 2 three kinematic variables are used (k= |, 2, 3) but we can associate the
first with the very small strains giving rise to a smooth elastoplastic transitionand choose arbitrarily
A4 = 50 MPa and Cy= 1200, In the model | this small strain kinematic variable is deleted which explain

the sharp transition (see fig. 3 or 5),

Similarly the third variable can be associated mainly with the large strains and choosen to give a good
fit of relation (19) when the second one is saturated, that is in the large strain area of * 2,5 and
*37 stabilized loops : (3= 450 MPa,(s= 4. The intermediate kinematic effect is then easily determined
from the relation (19) : = 140 MPa, (3 = 140,

— The second step consists in determining the values Q; associated with each loops : this
is now given by the difference between measured J and calculated X . This measurements are identified
with the response of eq. (17) with initial conditions (18) :

Q= A + (Qo—A) eXP("‘/“AEf) (20)
which leads to the choice : A = 485 MPa, M= 30, @,= 110 MPa,

— The third step concerns the rapidity of hardening stabilization in each cyclic loading :
the coefficient b in eq. (16) is easily obtained from the difference between the successive measured
maximum stresses and their stabilized values : b = 8,

- In the last step we determine the values Rg= 150 MPa,R:= 70 MPa,b*= 140, which give a
good fit of the monotonic tension curve (each other coefficients beeing already fixed).

The nine coefficients of the model | have been determined following the same procedure :

di= 180 MPa, (y= 280, 0= 150 MPa,Cp= 15, = 14, A= 685 MPa,Q,= 135 MPa, b = 5,R,= 180 MPa. Let us exanmine

now the possibilities of the proposed constitutive equations on the basisof the two determined models ;:

- By comparison with experimental loops of figure 1, figure 2 shows a very good simulation
of the five level test with the model l. Successive loops as well as the stabilized ones are correctly
predicted ; furthermore the * 1% and ¥ 1,57 calculations after * 3% prior cycling give similar results
as the experimental ones : the stabilized stress ranges are much more higher than in normal conditions,

- A general comparison can be made on the figure 3 between experimental stress-strain
curves and the calculated ones by the two models. The monotonic as well as the stabilized cyclic curves

[lh][lS]shows a fairly good correlation with the model 2, Also the cyclic curves after prior straining
to * 3% or £ 2,57 are predicted, but in each case stabilized stress ranges are overestimated : this is
due to a slight partial evanescence of the strain memory, evanescence which is neglected in the present
formulation,

~ Predictions by rhe model | are slightly less good, especially for the monotonic curve
(one coefficient only was identified from this curve :R,), but the essential differences of the three
kind of curves are reproduced,

= An interesting prediction is made in the case of incremental step tests on a similar
material (316 in place of 316L). Figure 4 shows the good correlations (model 2), for the difference with

the normal cyclic curve as well the dependency to the maximum strain range [IBJ [14],
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- Let us remark on figure 3 and 4 that for small strains the cyclic curve lies under the

monotonic one, which implies a small softening effect in that case, especially under stress control.

5. APPLICATION TO STRESS CONCENTRATION PROBLEMS

The observed strain memory effect and the corresponding proposed constitutive equations
can influence the results of structural analysis under plastic flow. Illustration is piven here for the
stress concentration problems under plane stress conditions : in such cases the Neuber's rule gives a
sufficiently good approximation of local stress  and strain £ in each cycle [Iﬂ [Iﬁ] by

(0-G)(6-€) = K¢ (F= Tn ) /E @
where Jyis the nominal applied stress, K¢ the elastic stress concentration factor, £ the Young's modulus
and @,, &, , Ty, are the respective initial values for the half-cycle.

A simplified procedure has been studied which define the strain memory value within the
first cycle only (the subsequent ones are contained in the first strain range) : the first loading
follows the monotonic curve on figure 5 with the value b = 5 ; the first compressive reversal is also
calculated with this value but the stabilization is accelerated in the next two cycles by using b = 1000.
Simulation of this procedure under the Neuber rule shows no difference with the normal calculations
(b = 5) in the case of reversed loading. However the difference is larger for the repeated loading
(see curve | and dashed curve) because on the progressive mean stress relaxation, which increases
slightly the maximum strain (see figure 5b).

An interesting remark concerns the effect of strain memory when comparing the predictions
(A) with the classical ones by the normal stabilized cyclic curve [IBJ : especially in the repeated
loading case, one observes large differences (figure 5a), which underline well the importance of Laking

into account the strain memory behaviour in the plastic flow structural anmalysis.

Several ways can be proposed to generalize Neuber's rule to cases where the highest local
stress is not uniaxial (for example plane strain or axisymmetric notched specimens). With the aim of
defining and validating the best generalization, the proposed constitutive equations have been introduced
in the finite element program developed by Ecole Polytechnique DﬁJ and applied to notched axisymmetric
bars loadedin tension-compression. In such cases the iterative scheme works satisfactorily under plastic
flow with internal strain memory.

As an example, figure 6 shows the finite element idealization : 195 superelements, each
of them made of 4 triangular elements (3 nodes) with central node elimination, giving rise to 838 degrees
of freedom. Some calculated plastic zones (plastic strain above IO_A) are indicated : because of the
reversed loading, small differences only exists between the monotonic and cyclic zones. Five successive
calculated half cycles inthe notchtip are indicated on figure 7 in the Uz , szz diagram. Such calcula-
tions are made with the coefficients of model | excepted a value b = 25 in order Lo accelerate the
stabilization : another procedure is under study taking into account the first cycle with b =5
a larger value beeing used in the few next cycles.

This part of the study is still under way : the finite element calculations will be system—
atically applied to notched plane strain or axisymmetric specimens in order to validate a generalization

of Neuber's rule under monotonic as well as cyclic conditions.

6. CONCLUSION

The main objective of this work was to develop Mechanical constitutive equations taking
into account several complex phenomena induced by cyclic loading in several stainless steels. As
summarized in the abstract, the proposed formulation gives a fairly good description of the 316L cyclic

behaviour including the observed strain memory effect.

Some secondary effects have been neglected in this study : l-a slight evanescence of the
strain memory which induces smaller stabilized stress ranges (after larger straining) than predicted by
this theory : as well the classical formulation gives a lower bound for the stress raunge, the present
one leads to an vpper bound. 2-a possible anisotropy of the stabilized cyclic hardening as observed for

example in vef., 1l for aonealed OFHC copper : such a behaviour could be described by introduction of
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anisotropy coefficients in the strain memory index function and in the yield function.

Let us underline that the proposed constitutive equations could be applied to many other
materials, showing cyclic hardening as well softening, with or without strain memory effect. 13 practical
use of these equations could be developed because on their explicit integrability under several
proportional loading conditions ¢ stress control, strain control, stress concentration problems with
Neuber's rule. Similar formulations could also be proposed for the high temperature viscoplastic case,

including possibility of time recovery as in LlO] .

REFERENCES

[I] RICE, J.R., "On the structure of stress-strain relations for time dependent plastic deformation in
metals", J, Appl. Mech., n°® 37, 728-737 (1970).

[2] MROZ, Z., "On the description of anisotropic work hardening", J. Mech, Ph. Solids, Vol. 15, n® 3 (1967)

D] SIDOROFF, F., "On the formulation of plasticity and viscoplasticity with internal variables",
Arch. of Mechanics, 27, n° 5-6, 807-819 (1975).

[4] cumaBoche, J.L., »
avec_endommagement", Thése Paris VI, Publ. ONERA n° 1978-3.

[5] PRAGER, W. "The theory of Plasticity : a survey of recent achievements", James Clayton Lecture,

Proc. of the Inst, of Mech. Engineers (London), Vol. 169, p. 41-50 (1955).

[6] EISENBERG, M., PHILIPS, A,,"On non-linear kinematic hardening”, Acta Mechanica, Vol. 5, p. 1-13 (1968),

P] CHABOCHE, J.L.,"Sur 1'utilisation des variables d'état internme pour la description du comportement
viscoplastique et de la rupture par endommagement", Symp. Franco-Polonais de Rhéologie et Mécanique,
Cracovie (1977).

@] ARMSTRONG, P.J., FREDERICK, C.O., "A mathematical representation of the multiaxial Bauschinger ef-
fect", CEGB report n® RD/B/N731 (1966).

[o] mARQUIS, D., "Etude thgoriaue et vérification axnArimentale d' mdsl  da - s
thése Paris VI (to be published).

EO] CHABOCHE, J.L., "Viscoplastic constitutive equations for the description of cyclic and anisotropic

behavior of metals”, Bull, Ac. Polonaise des Sciences, Série Sc. et Techniques, Vol. 25, 33-42 (1975).

Dl] LAMBA, H.S., SIDEBOTTOM, O.M., "Cyclic plasticity for nonproportional paths", parts 1 and 2,
. *
J. of Eng. Materials and Technology, Vol. 100, 96-111 (1978).

D2] LANDGRAF, R.W., "The resistance of metals to cyclic deformation', ASTM STP 467, p. 3-36 (i1970).

D3] LIEURADE, H.P., "Comportement mécanidue et métallureiaue des aciers dans le domaine de la fa-

tigue oligocyclique - Thése
Univ, de Metz (1978).

D4] TAUPIN, P,, "Etude du cumul de 1'endommagement en fatiesue oligocycliaue sur un acier austéni-
tique Z3 CND 17-12", Thése, Univ, Tech. de Compi&gne (1978)

DS] PINEAU, A., PETREQUIN, P., "La fatigue plastique oligocyclique", Ecole d'Eté sur la Fatique,
Sherbrooke (Québec), 10-19 juillet 1978,

[ld NGUYEN, Q.S., "On the elastic plastic initial-boundary value problem and ite numerical

integration", Int. J, Num. Meth. Eng., Vol. Il, p. 817-832 (1977).

D7] NEUBER, H., "Theory of stress concentration for shear strained prismatical bodies with arbitrary

non-linear stress—strain law", J. of Applied Mechanics, ASME, Vol. 28, p. 544-550 (1961).

DS] TOPPER, T.H., WETZEL, R.M., MORROW, J.D., Neuber's rule applied to fatigue of notched specimens,
J. of Materials Vol. 4, n° | (1969)

L 11/3



a(MPa)

Fig. 1 — Cyclic straining on the 316 L at room temperature. a) increasing level test, b) cycling after * 3% prior strain.

o(MPa)

_600

Fig. 2 — Modelization of the cyclic tension-compression of 316 L {model 2} : a) increasing level test, b) cycling sfter
+ 3%.
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Fig. 3 — Measured and calculated monotonic and cyclic tension curves.
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Fig. 4 — Prediction of the incremental step tests on 316 L.
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Fig. 5 — Predictions of local behaviour in plane stress by the Neuber rule (model 1) : a) cyclic stress strain curves,
b) successive cycles under repeated loading.
K t= 4
4t| Monotonic
plastic
5t zones
02 (MPa)
SUPERELEMENT
Fig. 6 — Finite element idealization and calculated monotonic- Fig. 7 — Calculated local stress strain loops (K ¢ = 6, * 4 tons)
plastic zones for axisy tric hed specii {Kt =4). with the model 1 (b = 25).
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