COOLDOWN AND WARMUP THERMAL ANALYSIS OF THE MIRROR FUSION TEST FACILITY (MFTF) SUPERCONDUCTING MAGNET

R. F. O'NEILL, R. E. TATRO
General Dynamics/Convair, Mail Zone 22-6960, P.O. Box 80847, San Diego, California 92138, U.S.A.

SUMMARY

General Dynamics Convair Division has performed a series of detailed cooldown and warmup thermal analyses to support the design of the Lawrence Livermore Laboratory (LLL), Mirror Fusion Test Facility (MFTF) magnet system. The analyses were conducted under LLL Contract 9815603. All analysis objectives were achieved, including definition of a cooldown and warmup operating schedule which can 1) effect complete cooldown and warmup within three to five days (an LLL requirement), 2) yield acceptable levels of thermally-induced stresses resulting from transverse and longitudinal structural temperature differentials, and 3) yield acceptable stress levels with or without flow imbalances in separate sections of the magnet. The analyses were executed through the National Magnetic Fusion Energy Computer Center (NMFEC) at LLL.

Cooldown and warmup studies were initiated with the formulation of a detailed, multi-node analysis model of the magnet assuming vertical alignment of the magnet Z-axis. The analysis model conveniently exploited thermal symmetry, in that helium entry and exit locations were always at the major and/or minor radii of each magnet. The model permitted thermal simulation of any section of the total assembly by simple redirection of the helium through-flow nodal arrangement.

Reorientation of the MFTF fusion chamber from the vertical to the horizontal position necessitated an interim redesign of the analysis model. The interim model consisted of two sections containing 629 nodes and 1,280 nodes, respectively. It included simulations of the external case stiffeners and the intercool structure, and realistically modeled the thermal asymmetry resulting from repositioning of the helium entry and exit locations to the lowest and highest points on each magnet.

Additional case stiffener modifications were simulated in a final version of the cooldown and warmup model. The model was resolved into an arrangement in which regions identified as "Large Model 1" and "Large Model 2" comprised the 1,280-node section of the interim model. In order to provide temperature boundary conditions for the large analysis models, and to permit multiple analyses yielding total system cooldown time, the exacting multi-node simulations in each section of the large models were condensed and assembled into a 44-node small model representing the entire magnet. The small macro-model was then employed in a series of cooldown analyses with flow rates from 51 g/s to 340 g/s.

Large model transverse temperature differentials resulted in acceptable stress levels for flow rates approaching 180 g/s, with a total cooldown time of only 45 hr. However, longitudinal temperature differentials obtained with the small model established the limiting thermal stress levels. Temperature distributions corresponding to the 119 g/s flow rate and the 85 g/s flow rate were imposed on separate legs of a single magnet, and yielded acceptable stress levels. A nominal total flow rate of 100 g/s was recommended, for which the predicted cooldown duration is 98 ± 10 hr.

The MFTF magnet cooldown and warmup thermal analysis models were geometrically similar to, and complemented, the corresponding structural analysis models. These studies have demonstrated the importance of relatively complex thermal-analytical modeling to achieve the necessary definition of transient temperature distributions in large magnet structures.

1. INTRODUCTION
The Lawrence Livermore Laboratory (LLL) Mirror Fusion Test Facility (MFTF), scheduled for completion in July 1981, has the physics goals of 1) investigating the behavior of known instabilities in plasmas approaching the dimensions of a mirror fusion reactor, and 2) attempted confirmation of the plasma scaling laws up to \(nT = 10^{12} \text{ cm}^{-3} \cdot \text{s} \). The MFTF has the largest (approximately 318,000 kg) superconducting magnet in the world. The yin-yang pair has an average major radius of 2.5 m, spaced to give a length between plasma mirrors of 3.6 m and a mirror ratio of 2:1. The central field is 2T, corresponding to a peak field of 7.68T at the superconductor. The magnet is suspended in a horizontal, cylindrically configured vacuum vessel capable of sustaining a base pressure of \(10^{-8} \text{Torr} \).
Cooldown of the magnet to its operating temperature of 4.5K is achieved by cryogenic helium through-flow, and a similar flow of warm helium is employed for warmup of the magnet. The General Dynamics Convair Division performed detailed thermal analyses of the cooldown and warmup processes to: 1) assess the sensitivity of cooldown and warmup duration to helium flow rate and supply temperature schedule, 2) support definition of refrigeration requirements in terms of recommended helium flow rates and supply temperatures, and resultant return helium temperatures, and 3) provide detailed definition of structural temperature distributions sustained during the cooldown and warmup transients.

The latter objective is of interest in this paper. It will be seen that the magnet thermal analysis model complements the structural analysis model in terms of node spatial distribution, permitting direct employment of the thermal analysis output data as structural analysis input. This motive was a major determinant of thermal model node density, as were the geometric and thermodynamic complexities of the magnet.

2. THE MFTF MAGNET CONFIGURATION

The magnet is shown in perspective in Figure 1, where the yin-yang assembly is pictured prior to installation of form-fitted LN₂ shielding which enshrouds the entire structure, and local H₂O shields which intercept neutral beam impingement and plasmas heat flux. The LN₂ and H₂O shields do not significantly influence magnet cooldown. A typical section of the assembled magnet is shown in Figure 2. The conductor windings are enclosed in a 316 stainless steel jacket, and separated from the jacket by G-11 epoxy insulation on all four sides. The 304 LN stainless steel case is the major structural component of the magnet. Its basic wall thickness is 7.62 cm, except for 12.7-cm inboard sections near the minor radius of each coil. Following weld closure of the jacket and case, the jacket is rigidly potted in place, as shown in Figure 2. Potting material is injected between the jacket and a 260 brass shim bladder, forcing it against the case surfaces. The latter contact is limited to 0.95-cm deep, 5.0-cm diameter dimples which comprise one-half of the total interior surface of the case. Void regions between the dimples serve a dual function: they accommodate helium through-flow for cooldown and warmup of the structure, and they comprise a portion of the separately pumped guard vacuum. The remaining portion of the guard vacuum is provided with interior flow baffles which do not impede post-cooldown pumping of the guard vacuum. However, like the brass shim bladder, they facilitate efficient convective scrubbing of the case by the flowing helium.

Placement of the external case stiffeners is shown in Figures 1 and 2. As shown in Figure 1, the yin-yang pair is separated by intercoil structure at four locations, connecting the major radii of each coil to the opposing coil minor radius coil extensor structure. While the conductor jacket is of constant cross section at all magnet locations, the outboard guard vacuum varies in size, being smaller near the minor radii (as shown in Figure 3) and larger near the major radii.

Cooldown and warmup gaseous helium enters the magnet at the bottom of each coil, as does liquid helium during steady state operation. All fluids exit at the highest location on each coil. Separate flow branches are incorporated for the conductor region and the guard vacuum, respectively, because the guard vacuum must be evacuated following cooldown. Gaseous (and liquid) helium flows uniformly through interstices in the liberally-ventilated conductor windings and interlayer/interturn insulation.

3. THE THERMAL ANALYSIS MODEL

3.1 Nodal Arrangement. The basic node pattern employed in the detailed (large) analysis models is shown in Figure 3, in which correspondence of the thermal and structural analysis models is apparent. The Figure 3 section is typical of the arrangement in each of 11 groups, extending from the major radius of a single coil to the minor radius. Note the additional external stiffening nodes at the juncture of groups 1 through 4. Not shown in Figure 3 are the intercoil structure modeling details. The latter was accomplished by additional box-like node groups. The node density reflected in the Figure 3 section is an approximate minimum for adequately assessing transverse temperature differentials in the magnet structure.

The nodal arrangement shown in Figure 3 does not comprise an entire analysis model. Rather, it simply describes a recurring pattern employed variously in thermal models discussed in succeeding paragraphs. Moreover, it will be seen that that definition of longitudinal structural temperature differentials and cooldown/warmup durations were best served by formulation of a small macro-model of the entire magnet (small only in terms of node quantity). The macro-model structural and flow nodes were each thermally equivalent to the sum of all corresponding structural and flow nodes of a single group, eleven of which are shown in Figure 3. Multiple parallel inter-node longitudinal resistances were also collapsed to form macro-model internode resistances.

It will be noted in comparing Figures 2 and 3 that each conductor node represents a region containing multiple turns of conductor. Accurate representation of conductor node effective thermophysical, thermodynamic, and transport properties necessitated prior computations based on the repeating pattern of conductor geometry shown in Figure 4. Results included conductor node (Figure 3) effective mass, cross-sectional flow area, convective heat transfer surface area, and temperature-dependent values of specific heat and anisotropic conductivity.
3.2 Thermal Model Basic Formulations. The Convair Thermal Analyzer computer program was employed in performing the analyses of this study. The Thermal Analyzer is a versatile, general-purpose heat conduction computer program for use with the Control Data Corporation (CDC) CYBER 70 series computer. It is capable of either explicit or implicit solution of node temperature values. It contains a broad range of built-in analytical correlations, permitting convenient numerical simulation of relatively massive applications, as represented by the MFTF magnet cooldown and warmup analyses. A brief description of the thermal analyzer modeling correlations employed in the analyses will serve to clarify discussion of the thermal models.

Figure 5 summarizes the basic analytical devices employed throughout the simulations. The five block-type nodes, elemental lumped-parameter rectangular parallelepipeds of dimensions x, y, and z, are characteristic of the structure nodes of Figure 3. Zero-mass, interface nodes can be employed at the junction, or on the surface of block nodes. Figure 5 resistances \(R_{B1} \) and \(R_{B2} \) show the formulation of block-to-block and block-to-interface linkages, respectively. Flow nodes, linked in the flow direction by pseudo-resistances, \(R_f \), honor the quasi-steady flow equation presented in Figure 5. The latter feature is accommodated by a complex numerical formulation which is fundamentally different from the conduction equation. Its development exceeds the scope of this paper. Flow nodes are linked to surface nodes by convective resistances, \(R_c \), which are internally formulated and continuously re-evaluated on the basis of temperature-dependent thermo-physical fluid properties contained in Thermal Analyzer permanent storage. Steady flow simulations can be directed to multiple parallel branches, as shown in Figure 6, and can be subsequently merged as the particular application might demand.

3.3 Helium Flow Distribution and Schedules. The MFTF magnet cooldown and warmup through-flow was modeled in terms of two basic flow sources (supplying the conductor and the guard vacuum), each of which was branched to parallel successions of flow nodes. Local flow rates contacting each convectively cooled or heated node were apportioned based on ratios of local to total cross-sectional flow area. Conductor node convective linkages were based on a laminar flow Nusselt number of 4.0, an effective hydraulic diameter of 0.131 cm, and a surface area per conductor of 8.17 cm²/cm (each conductor node contains 348 turns). Guard vacuum flow passages of 0.95 cm nominal depth cover 50% of the case inner surface, and a Nusselt number of 4.0 was again assumed.

A range of helium total flow rates and supply temperature schedules was investigated, as shown in Table I. Preliminary analyses assumed supply temperature to be controlled on the basis of a measured case temperature at the upstream minor radius of one coil, noted in Table I as \(T_C \). As will be seen, longitudinal temperature gradients subsequently dictated employment of a stepwise schedule of supply temperature management, also shown in Table I.

Guard vacuum cooldown and warmup helium flow enter and pass through the coil extension structure prior to entering the guard vacuum, and approximately 60% of the latter flow is diverted through the intercoil structure. Because the coil extension and intercoil structures do not contain baffles for efficient convective scrubbing of the surfaces, the interior of the structures comprises a series of relatively large plenums. Convective heat transfer at the plenum surfaces was therefore computed (continuously, a program subroutine) on the basis of a turbulent flow Grashof-Prandtl correlation:

\[
Nu = 0.13 \left(GrPr \right)^{1/2},
\]

(1)

3.4 Preliminary and Interim Analysis Models. Employing appropriate combinations of the foregoing methods, the cooldown and warmup analysis numerical model was initially formulated to model the magnet assembly in its prior orientation, with vertical alignment of the z-axis. The latter orientation permitted realistic thermal simulation by means of a quarter-symmetric model containing 738 nodes (Figure 7). Because helium entered and exited the magnet at the major and minor radii, as shown in Figure 5, a single 738-node model could be employed to analyze the complete magnet assembly, requiring only simple redirection of the helium flow nodes.

Reorientation of the magnet assembly necessitated relocation of the helium entry and exit ports, and eliminated the convenient thermal symmetry of the original orientation. It therefore became necessary to modify the cooldown and warmup analysis model to the Figure 7 Interim configuration, in which two analysis models were required to assess the transverse temperature differentials in the thermally-asymmetric assembly. The Figure 7 interim models, containing 629 nodes and 1,280 nodes, respectively, required complicated imposition of boundary condition and initial condition temperatures, as well as a significantly increased run time on the MNFECC computer system due to the sheer size of the model.
3.5 Final Configuration of the Analysis Model. Following an increase in the number of case-stiffening structural members, and to permit execution of multiple cooldown runs over a range of flow rates, two major modifications were incorporated in the modeling scheme. The 1,280-node model of Figure 3 was resolved into two separate models, shown in Figure 8 as “Large Model 1” and “Large Model 2.” Also, as previously noted, the detailed node-resistor arrays of the large models were analytically collapsed into equivalent mass nodes and flow nodes. The entire magnet was thus modeled with 44 mass nodes. The so-called “Small Model” (Figure 9) permitted economical execution of repeated runs to assess cooldown/warmup sensitivity to flow rate and supply temperature. It also yielded boundary condition temperatures for imposition in the large model studies. The analysis models and their respective functions can thus be summarized as follows:

<table>
<thead>
<tr>
<th>Analysis Model</th>
<th>Analysis Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Models 1 and 2</td>
<td>Transverse Gradients</td>
</tr>
<tr>
<td>Small Model</td>
<td>Longitudinal Gradients</td>
</tr>
<tr>
<td>Small Model</td>
<td>Cooldown/Warmup Time</td>
</tr>
</tbody>
</table>

4. THERMAL RESPONSE DATA

4.1 Data Overview. Execution of repeated large model and small model computer runs covering the Table 1 flow schedules yielded a massive quantity of analysis data. Of particular interest to this paper are pertinent trends and correlations of resulting structural temperature differentials and cooldown/warmup durations. Data presentation will therefore be limited to representative temperature excursion plots which, together, demonstrate pertinent trends. The data include large and small model thermal response to the maximum flow rate of Table 1 cooldown schedule (1), and to the final recommended flow rates with Table 1 cooldown and warmup schedules (2).

4.2 Large Model Analysis Data. As expected, the most severe transverse case temperature gradients were induced as a result of the external stiffeners, which do not have the benefit of direct convective heat transfer. This effect is typified in the large model temperature distribution transients of Figure 10, in which the data corresponds to the Figure 3 node group number 6 location. The external stiffener is seen to lag the remaining structure during cooldown, and the effect is clearly intensified with increasing flow rate.

4.3 Small Model Analysis Data. Figure 11 shows the longitudinal temperature profiles at successive intervals during cooldown with flow schedules (1) and (2) of Table I. The severe longitudinal differentials caused by cooldown schedule (1) were found to be only weak functions of flow rate, but were strongly affected by the schedule of helium supply temperature management. The latter effect dictated adoption of cooldown schedule (2), in which a stepwise decreasing supply temperature is employed. Warmup temperature profiles for a constant 150 g/s flow rate and the Table 1 warmup (2) supply temperature schedule are shown in Figure 12.

5. TEMPERATURE DIFFERENTIALS AND COOLDOWN DURATIONS

Cooldown duration is presented in Figure 13 as a function of flowrate. Maximum allowable stresses induced by transverse temperature differentials were encountered with cooldown schedule (1) and 180 g/s flow at 300K return temperature. The resulting cooldown duration of only 45 hr (Figure 13) was deemed unnecessarily rapid. Moreover, resulting stresses induced by longitudinal gradients proved to be excessive, necessitating stepwise supply temperature management, as noted above. Table I cooldown schedule (2) with 100 g/s total flow rate was therefore recommended to ensure comfortable levels of thermally-induced stresses, with an acceptable cooldown duration of 98 hr.

Longitudinal temperature differentials for total flow rates of 85 g/s and 119 g/s were imposed on separate legs of a single magnet to evaluate thermally-induced stresses resulting from such a cooldown flow asymmetry. The latter condition represents a severe imbalance, in which helium mass flow in one leg would be 40% greater than that of the other leg. Resulting stresses proved to be mild. It was therefore concluded that a nominal cooldown flow rate of 100 g/s with the stepwise supply temperature management of Table I would yield a cooldown duration of 98 ± 10 hr, and that a severe flow asymmetry of 29 g/s and 21 g/s in opposing legs of a single magnet [(29 - 21) x 2 = 100] would not yield unacceptable stresses.

It may be noted that warmup of the magnet with the Table I schedule (2) supply temperatures and 100 g/s total flow is markedly slower than the corresponding cooldown, and total warmup duration is 177 hr. The latter effect is apparently related to the high heat capacity of the magnet at later stages of warmup, coupled with simultaneously reduced convective heating temperature potential. A total flow of 150 g/s results in cooldown and warmup time to 129 hr. The flow asymmetry logic of the preceding paragraph would have similar application to a warmup situation.

6. CONCLUSIONS

1. Detailed thermal analyses of the MFTF superconducting magnet have been conducted. The analyses have yielded a broad range of magnet cooldown and warmup transient thermal response data, permitting successful definition of preferred cooldown and warmup operating procedures, consistent with acceptable levels of thermally-induced stresses.
2. The MFTF magnet structural configuration has been detailed in this paper. The physical and thermodynamic mechanism of cooldown and warmup by means of helium throughflow has been described and quantified.

3. Thermal-analytical modeling methods have been presented as they were employed in the analyses, including computer simulation calculations. The analysis models are representative of the level of detail required to support structural analyses of large magnet structures.

4. Cooldown analyses employing the Figure 8 (large) model have yielded detailed temperature excursion and transverse temperature differential data. Transverse thermal stresses are acceptable to a maximum flow rate of 180 g/s. However, limiting thermal stresses are caused by longitudinal temperature differentials obtained in analyses employing the Figure 9 (small) thermal model. The latter analyses show that cooldown of the magnet to 4.5K can easily be achieved within the 3- to 5-day goal cited by LLI. A gradually-decreasing or stepwise-decreasing helium supply temperature schedule must be employed to avoid excessive thermal stresses.

5. Total flowrates of 100 g/s for cooldown and 150 g/s for warmup, and the following supply temperature management schedule, are recommended for the MFTF magnet system.

<table>
<thead>
<tr>
<th>Cooldown/Warmup Time (hr)</th>
<th>Cooldown Helium Supply Temperature (K)</th>
<th>Warmup Helium Supply Temperature (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 18</td>
<td>225</td>
<td>75</td>
</tr>
<tr>
<td>18 to 36</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>36 to 54</td>
<td>75</td>
<td>225</td>
</tr>
<tr>
<td>> 54</td>
<td>4.5</td>
<td>300</td>
</tr>
</tbody>
</table>

6. Predicted cooldown duration for 100 g/s total flow at the above supply temperature schedule is 98 ± 10 hr. Predicted warmup duration for 150 g/s total flow at the above temperature schedule is 129 ± 15 hr.

7. Severe flow rate asymmetry in opposing legs of a single magnet (nominal plus 16% versus nominal minus 16%) will not pose a thermal stress problem, but will only yield cooldown/warmup time dispersions in the respective legs.

Table 1. MFTF magnet cooldown and warmup analysis flow rates and supply temperatures.

<table>
<thead>
<tr>
<th>Flow Conditions</th>
<th>Total Helium Flow</th>
<th>Supply Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooldown (1)</td>
<td>100 to 240 g/s at 200K/RT</td>
<td>4.5K x T, 100K</td>
</tr>
<tr>
<td></td>
<td>120 g/s at 4.5K in 100K RT</td>
<td></td>
</tr>
<tr>
<td>Cooldown (2)</td>
<td>55 to 115 g/s, constant</td>
<td>125K, 0 to 10 hr</td>
</tr>
<tr>
<td></td>
<td>100K, 10 to 30 hr</td>
<td>100K, 30 to 54 hr</td>
</tr>
<tr>
<td></td>
<td>4.5K, 54 hr</td>
<td>4.5K, 54 hr</td>
</tr>
<tr>
<td>Warmup (1)</td>
<td>136 to 340 g/s, constant</td>
<td>300K, constant</td>
</tr>
<tr>
<td>Warmup (2)</td>
<td>55 to 150 g/s, constant</td>
<td>175K, 0 to 10 hr</td>
</tr>
<tr>
<td></td>
<td>150K, 10 to 30 hr</td>
<td>150K, 30 to 54 hr</td>
</tr>
<tr>
<td></td>
<td>225K, 54 hr</td>
<td>225K, 54 hr</td>
</tr>
</tbody>
</table>

* Helium storage temperature.
† Control sensor temperature.

Figure 1. The MFTF superconducting magnet.
Figure 6. MFTF magnet cooldown and warmup through-flow, showing analysis model simulation.

Figure 7. MFTF magnet cooldown and warmup preliminary and interim analysis models.

Figure 8. MFTF magnet cooldown and warmup analysis large models, final configuration.

Figure 9. MFTF magnet cooldown and warmup analysis small model.
Figure 10. MFTF magnet cooldown analysis large model temperature excursions.

Figure 11. MFTF magnet cooldown analysis small model temperature profiles, lower leg.

Figure 12. MFTF magnet warmup analysis small model temperature profiles, lower leg.

Figure 13. MFTF magnet cooldown duration vs flow rate.