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SUMMARY

The paper is concerned with the description of a finite element method developed for the non-
linear transient response of coupled hydrodynamics-structures problems such as encountered in the
safety analysis of nuclear reactor components. The choice of the finite element methodology was
made by placing the emphasis on the structural response, the final goal of the analysis being to in-
vestigate the ability of the structure to maintain its integrity when subjected to transient loads trans-
mitted through the fluid.

Efficient finite element procedures are available for the transient dynamic analysis of solids ex-
hibiting both geometric and material nonlinearities. The particular procedure used here consists in for-
mulating the discrete equations of motion in terms of convected co-ordinates that rotate but do not
deform with the elements. Such a technique provides for an economic way of dealing with large-dis-
placement effects provided the strains can be assumed small. The internal resisting forces are eval-
uated directly in terms of convected stresses and a lumped-explicit scheme is used for time integration
of the equations of motion. Elastic-plastic material behaviour is accounted for and isotopic, kinematic
and overlay models are available for description of strain hardening. The main characteristics of the
structural elements employed are briefly outlined.

It is recognized that the most thoroughly studied techniques for solving compressible flow prob-
lems have been the various methods based on finite difference discretization. A survey of recent li-
terature, however, shows an increasing use of the finite element method as a discretization technique
for problems in fluid mechanics. It is our opinion that a global use of the finite element methodology
for solving coupled hydrodynamics structures problems allows for a simple computer program archi-
tecture, permits a straightforward treatment of fluid-solid interfaces and enables the use of arbitrarily
shaped elements for modelling both solid and fluid regions.

In this paper, the basic finite element equations for transient compressible fluid flow are presented
in a form that allows the elements to be moved with the fluid in normal Langrangian fashion, to
be held fixed in a Eulerian manner, or to be moved in some arbitrarily specified way. The co-existence
of Lagrangian and Eulerian regions within the finite element mesh will permit to handle greater dis-
tortions in the fluid motion than would be allowed by a purely Langrangian method, with more res-
olution than is afforded by a purely Eulerian method. To achieve a mixed formulation, the conser-
vation statements of mass, momentum and energy are expressed in integral form over a reference
volume whose surface may be moving with an arbitrarily prescribed velocity. Direct use can be made
of the integral forms of the mass and energy equations to adjust the element density and specific
internal energy. The Galerkin process is employed to formulate a variational statement associated with
the momentum equation. The difficulties associated with the presence of convective terms in the con-
servation equations are handled by expressing transports of mass, momentum and energy terms of
intermediate velocities derived at each cycle from the previous cycle velocities and accelerations.

The hydrodynamic elements presented are triangles, quadrilaterals with constant pressure and den-
sity. The finite element equations associated with these elements are described in the necessary detail.
Numerical results are presented based on purely Lagrangian, purely Eulerian and mixed formulations.
Simple problems with analytic solution are solved first to show the validity and accuracy of the pro-
posed mixed finite element formulation. Then, practical problems are illustrated in the field of fast
reactor safety analysis.
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1, Introduction

The licensing of nuclear reactors involves the study of hypothetical accidents in which
peak pressures, time scales and material properties may vary over a wide range. In this
context, there is a need for numerical techniques and complex computer codes to analyze
in the necessary detail the response of reactor components when subjected to anomalous
conditions,

In the framework of the nuclear safety programme carried out at JRC-Ispra, a finite
element code for fluid-structure interaction problems is under development with the aim
of investigating the response of containment structures and core subassemblies when sub-
jected to a wide variety of large, transient loads,

While efficient finite element procedures are available for the nonlinear transient res-
ponse of complex structural components, there has been only a limited use of the finite ele-
ment technique in the solution of transient hydrodynamic problems [1][ 2]. The present
paper is therefore particularly concerned with the basic methodology and numerical tech~
nique for the treatment of compressible fluid flow in the framework of a two-dimensional
hydrodynamic-structural code.

A finite element procedure of solving the time-dependent equations of motion for com-
pressible fluids is presented, which combines the best features of purely Lagrangian and
Eulerian approaches., The element nodes can, in fact, be moved with the fluid in normal
Lagrangian fashion, be held fixed in an Eulerian manner or be moved in some arbitrary way
to give a sort of continuous rezoning capability. The proposed finite element method is thus
conceptually similar to the Arbitrary Lagrangian Eulerian finite difference technique
ALE [3].

The hydrodynamic elements are triangles and/or quadrilaterals in which pressure, den-
sity and specific energies are assumed uniform, The presence of transport terms in the
conservation equations of mass, momentum and energy introduces, as usual, inaccuracies
and instabilities in the results, To overcome these difficulties, the transport effects are
calculated by means of a partial-donor cell technique combined with the use of intermediate
values of the velocities and specific energies.

The structural elements available in the code are rectilinear beams, conical shells and
constant strain triangles. The effects of large displacements and elasto-plastic material
behaviour are included.

In the final part of the paper, numerical results are presented and discussed for simple
problems. More realistic applications in the field of nuclear reactor safety will be avail-

able for presentation during the conference.

2. Basic Methodology

The specific procedures used in structural and hydrodynamic elements are discussed
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in the next two sections.
2.1 Structural Elements
Because of the two-dimensionality of the code, the analyses are restricted to axi-
symmetric containment structures or to a horizontal cross-section of a cluster of subassem-
blies. Rectilinear Euler-Bernoulli beam elements are employed to model the subassembly
walls. Conical shell elements and constant strain triangles are available for axisymmetric
containment structures,

In all these elements, geometrical nonlinearities caused by large rotations are treated
by formulating the equations of motion in terms of convected coordinates, which are coor-
dinates that rotate and translate with the elements., The detailed developments of the con-
vected coordinate procedure may be found in references [4][5]. In this procedure, the
relationships between strains and deformation displacements in the convected coordinate
system of each element are linear, provided the strains can be assumed small. The com-
plexity of nodal force computations is thus greatly reduced with respect to other treatments
of large displacement effects,

Elastic-plastic relations of the incremental type are used for material description in con-
nection with the Von Mises criterion of yielding, Both isotropic and kinematic hardening
models have been implemented in the computer code, Reference [6 ] gives the detailed de-
velopments of the incremental elasto-plastic constitutive laws.

The discrete equations of motion are expressed in the form

[ foref= {F¥ - {Fi} (1)
where [M] is the global mass matrix, {o"} lists the nodal components of acceleration,

{ FeXt} is the external load vector and {Fint} represents the internal resisting forces,
which are directly evaluated in terms of element stresses. The equations of motion are in-
tegrated in time by an explicit procedure combined with a diagonal form of the mass matrix,
A central difference technique is employed in which velocities and displacements are com-

puted by

{or(wran)} = {50} +Jael {67 ()} + {67 (s+at) } ]

{500} = {6 (0} + 80 ({50} + 2ot {57 (0] ] ©

The time step At must satisfy the computational stability condition, The sequence of calcu-
lations for structural elements is illustrated in the right part of Table I.

2.2 Hydrodynamic Elements

The basic equations are the conservation statements of mass, momentum and total
energy expressed with reference to a volume, V, whose surface, S, may be moving with
arbitrary velocity ;v'. The fluid is characterized by a density, p , a velocity, rd » an internal
specific energy, i, and a pressure, p, defined by the equation of state p = plp s i).

The rate of change of the total mass, M, momentum, Q, and total energy, E, contained
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within § at time t is given by [ 7]
aMm _d [ o
—_— = — dV = -
at at j p /.p(w u), dS (3a)
A
d -, = > =
t = d——/ /pg av [ grad p dV +fpu(w-u). ds (3B)
v v S
d - - =
Ef pe dV / pE.T dv fpu.dS +/ pe (w-u). dS (3¢)
v S
1
where e = 2 .9+ and g is a body acceleration (11ke grav1ty)

When W = 0, the equations (3) are Eulerian, when w = u the equations are Lagrangian, when
w ;4 U £ 0 a mixed formulation is achieved,

In a finite element solution, direct use could in principle be made of equations (3a) and
(3c) to update the density and the specific total energy. As shown below, great care must
nevertheless be taken in the evaluation of the transport terms to ensure accuracy and stabi-
lity of the numerical solution.

The Galerkin process is here employed to formulate a variational statement associated
with the momentum equation (3b), The fluid velocity in each element is approximated by

iunl
w = ) N ule) (4)
I
where NI(X.) are the shape functions expressed in terms of the coordinates at time t = 0 and
ui(Ie) are the velocity components at node I of element e, Assuming that the velocity # can be
expressed locally in the form of eq. (4), the application of the Galerkin method yields the
following equations at the element level:

i (1141 = PEo e el gr) o 4R (5)
In this equation, [m] © is the element mass matrix, In order to obtain the nodal velocities
by an explicit time integration, a diagonal mass matrix is used, defined by equally subdivi-
ding the element mags among its nodes. {P }e represents the nodal loads induced by the

element pressure field:
0 NI

P (%) av® (6)

i . 8%
.v. 1

{G} ® accounts for body acceleration _g.:

e
Gy -/e PN g,dV (7)
v

{ T} © is associated with the transport of momentum components: oN oN
I * I * 1

as® —
(N xJ tn Ny o 7 ep(NJui.T)LNJuxJ ox N5Y%say av®

T / pNI(N
s° v (®

i~
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Ineq. (8), 2% @2 and nan are the components of the outward normal on S°. Repeated
indices indicate a summation., Finally, {f} N represents externally applied loads eventually
acting on the element boundary,

The fluid domain is here represented by means of quadrilateral and/or triangular ele-
ments, A linear velocity variation is prescribed along the element sides and it is assumed
that coordinates, mesh velocity W and fluid velocity ¥ can be inte rpolated over the element
by the shape functions Nl. Referring to the typical case of a quadrilateral element with

nodes i, j, k, 1(fig. 1), the shape functions are given by [8 ]:

(9)
(1-g)1+m) ;

N, = (4E)(1-7) ; N, =l(1+e)(1+n>
i 4 j 4

1 1

4

k
where (E,7) are normalized coordinates which take values + 1 along the element sides,
Assuming a uniform pressure over the element, the internal resisting forces, eq. (6),
can easily be expressed in terms of the current coordinates of the nodes., For an axisymme-
tric quadrilateral element with nodes i, j, k, 1 ordered in anticlockwise order, we find at

node i with current coordinates r,, z.:
i' i

P ri+r, ri+rl

= 2[—12 '(zj—zi) s (zi-z2 )] (10a)
P_oRLnafy -

Pz =50 (rt rj) (1ob)

where p is the element pressure and r the radius of its centroid. Similar formulae are ob-
tained for a triangular element. For plane elements, the mean radii in eqs. (10) should be
replaced by unity.

The main difficulties in an Eulerian or mixed calculation are associated with the evalua-
tion of the transport terms in the conservation equations for mass, momentum and energy.
Usually, the calculations are divided into two steps within each time interval [9]. A first,
quasi-Lagrangian, step yields intermediate values of the velocities and specific total ener-
gies, which are then used in a second step to evaluate the transport effects. Here, it was
found possible to avoid the first step by evaluating the intermediate velocities by extrapola-

tion of the previous time step velocities:

farant = {un)} + 55 (o)} (11a)
{weran)} = {wio} +& {wio)} (11b)

The intermediate specific total energy 3 is then evaluated in each element by

3 =eft) - A—Q/ p(t)u as® (t2)
M(t

where M(t) is the element mass at time t and B(t) a weighted average of the pressures in the

elements on either side of boundary Se:
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- B o + ey, o)

(13)
MM ey + M)

B(t
By means of the intermediate quantities, egs, (11)(12), the transport terms in the mass,
momentum and energy equations can be calculated, For example, the mass transport across
side i-j of the quadrilateral element in fig. 1 is computed from eq. (3a) as

(# 2 g = -r1—+rL p_].'.l. 3 b ~

f p (%-u).ds = > > [(uri-wri +u

1=)

= ) ~ =~ ~ = B 14
v wrj)(zj zi) + (uzi Wt uzj wzj)(ri rj)] (14)
where Eij is a weighted average of the densities in the elements on either side of boundary

segment i-j:

P.. =%l:(l_aij)p(l)+(1+aij)p(2)] (15)

1)

The coefficient otij is proportional to the velocity flux through side i-j and evaluated as indi-
cated in reference [ 10],

Total energy transport, eq. (3c), is evaluated in the same way using the intermediate
specific total energies given in eq, (12).

The nodal loads eq.(8), accounting for transport of momentum components consist of a
surface term and a volume term. Us ng the shape functions, eq. (9), the surface term can
be evaluated by an lytical integration along the element sides. The inter ediate velocities
eq. (11), and the weighted density, eq. {15), are used in this calculation, The volume term
in expression (8) is evaluated using a 2x2 Gaussian quadrature formula.

For problems involving shock waves, it is necessary to add to the hydrostatic pressure
p an artificial viscous pressure q. As in the purely Lagrangian scheme [ 2], a quadratic
pseudoviscosity is employed, which is given by

q= -pCé d (v._ﬁ)

{ 0 ifv.d» 0 (16)

2 ifV.3<0

In this expression, d = element area/max(A r, Az) and CzQ is a numerical coefficient that in
our tests assumed values between 2 nd 5.

Once the global nodal loads in mo entum equation (5) have been obtained by assembly of
the element contri utions, the nodal omponents of fluid velocity can be ailvanced in time by

the central differe ce scheme:

fu(tra t)} = [M(t+dt)] - {[M(t)] {u(t)} +%E({F(t)} + {F(t+At)}>} (17)
where [M] is the global diagonal mass matrix and { F} the total nodal lo d vector. To en-

sure numerical stability the time step must satisfy the ondition [11]:

Area of element
lurIAz+qulAr+cD+4Area|V.al (18)
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where ¢ is the sound speed and D is max{p T, Az).
The sequence of calculations for purely Lagrangian, purely Eulerian and mixed hydro-

dynamic elements is illustrated in the left part of Table I,

3. Numerical Results

In this section we consider two examples designed to test the accuracy of the finite ele-
ment procedure described in the paper, More realistic applications in the field of nuclear
reactor safety will be available for presentation during the conference.

3.1 Shock Tube Problem

A simple but useful problem to test the arbitrary Lagrangian-Eulerian finite element
procedure for compressible fluid flow is a shock tube in which a long straight cylinder is
divided into two compartments by a central diaphragm,

On one side of the diaphragm there is a gas of density Py = 0,0581 gm/cm3 and internal
energy e, = 4.303 109 ergs/gm, while on the other side the gas has density P, = ;—pl at the
same energy. We assume Y -law gases with ¥ = 1,4,

Quadrilateral elements were employed with A z = 1 c¢m; the time step was At =2.5 10-6sec

and quadratic viscous pressure terms used with <:2 =2, 56 in eq. (16), Three numerical solu-

Q
tions were performed respectively based on a purely Lagrangian, a purely Eulerian and a
mixed description with w = %I}.’ in egs. (3).

Figs, 2 and 3 show the pressure and velocity profiles at time t = 750/).5ec for the purely
Lagrangian and purely Eulerian solutions, The comparison with the theoretical predictions
is excellent in both cases, the Lagrangian solution being slightly less accurate, The nume-
rical results obtained using the mixed description are not reported here; they were found to
be very similar to the Eulerian results,

3.2 Elasto-~plastic Shock Cylinder

As shown in fig, 4 this problem corresponds to a radial shock tube in which an elas-
to-plastic cylindrical diaphragm separates two y-law gases with y=1,4,

The elasto-plastic external envelope is submitted to a permanent pressure equal to the
initial pressure of the outer gas, Two plane strain solutions of this problem were performed
using 28 quadrilateral elements to model the two gases and 2 conical shell elements to re-
present the elasto-plastic walls. The first solution is based on a purely Lagrangian descrip-
tion, while the second is purely Eulerian, except for the fluid elements in contact with the
structural parts, These elements are forced to follow the adjacent structural elements,

Figs. 5 and 6 indicate that the two solutions give nearly identical velocity profiles along

the radius of the shock cylinder,

4, Conclusions

An arbitrary Lagrangian-Eulerian finite element procedure has been described for the

study of transient fluid-structure interaction problems. One of the major problems in the
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numerical analysis of the nonlinear transient response of fluid-structure configurations is
to avoid excessive computational time requirements.

In the present paper we have tried to combine several sources of computational improve-
ment, so that large scale problems can be solved at a reasonable cost.

An explicit integration scheme is used in combination with a lumped mass matrix, so
that the usual problems related to bandwidth or problem size are climinated. The use of a
convected coordinate procedure for dealing with large displacement effects in structural
elements considerably simplifies the computations of nodal forces, A constant pressure has
been assumed within each hydrodynamic element, so that only one evaluation of the equation
of state is required per element, Finally, the evaluation of transport effects in the conser-
vation statements of mass, momentum and energy is based on intermediate velocities and
specific energies which are obtained by straightforward extrapolation of the previous time
step results,

The test calculations presented indicate the accuracy and stability of the proposed calcu-

lational scheme,
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Table | : Flowchart of Computational procedure

initial conditions; t = 0

t=t+At

Update coordinates of moving hodes

Compute intermediate velocities U, W

at nodes of E, M elements

Compute intermediate tota! specific

energy e in E, M elements

Loop e = 1, n° elements

E+L+M

Update element mass (E + M only)
density
specific Internal energy
hydrostatic pressure
pseudoviscous pressure

Compute nodal loads due to transport
of momentum (E + M only) and to
internal pressures py q Add to total
forces.

Update element contribution to

global mass matrix (E + M only)

Compute nhodal' components of
acceleration and velocity

Compute { elt+ At)}
and stresses O (t +

Compute internd resisting forces l f }
in convected system; transform to
global system and add to total forces

= Eulerian
= Lagrangian
= Mixed

= Structural

w=zrm
|
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Fig., 1 : Typical quadrilateral hydrodynamic element.
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Fig. 2 : Pressure profiles at t = 750 usec for Lagrangian (+) and Eulerian (- )
caleulations of the shock tube problem, Solid lines are theoretical
predictions,
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Fig. 3 : Velocity profiles att = 750
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Fig, 4 : Elasto-plastic shock cylinder.
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sec for Lagrangian (+) and Eulerian (. ) calcu-
lations of the shock tube problem. Solid lines are theoretical predictions.
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Fig. 5: Velocity profiles for a Lagrangian calculation of the shock cylinder.
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Fig. 6 :

Velocity profiles for an Eulerian calculation of the shock cylinder,



