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SUMMARY

As a part of the HDR program, methods for coupled fluid/structural dynamics are being devel-
oped. On the fluid side the 2D finite difference code YAQUI has been modified and adapted to de-
scribe the fluid dynamics in the downcomer of PWR’s. On the structural side for determination of
the dynamic core barrel response the code CYLDY?2 has been developed. In this code the core barrel
is treated as a thin cylindrical shell fixed at the upper end and ring stiffened at the lower end. The
mass of the lower end ring also simulates a part of the core mass. Both models have been successfully
tested. Coupling has been achieved for a simplified structural model proving the correctness of the
coupling procedure.

YAQUIR is a significantly modified version of the code YAQUI originally developed at LASL.
A finite difference scheme is used to solve the fluid dynamics equations for mass, momentum and
energy transport on a two-dimensional grid. For analysis of the blowdown the downcomer has been
represented by two different grids: one consisting of rectangular meshes and one of so-called **pot-
ential meshes”, in which the orthogonal grid lines follow the expected lines of liquid flow. Both mod-
els show the axial and azimuthal wave propagation and the pressure transients when approaching the
quasistationary flow.

The structural model CYLDY2 is based on Fliigge’s shell equations and uses variational principles.
The solution is a superposition of steady-state and transient eigenfunctions. Results indicate that for
the relatively thin-walled core barrel of the HDR-experiments in most cases the local deformations
are somewhat higher than the global deformation (beam mode). In comparison to well known mul-
tipurpose codes which were also used, the code CYLDY?2 yields very detailed results but requires only
small computer effort, which is essential for coupling with the fluid dynamics. These advantages are
due to the orthogonality of the eigenfunctions which leads to several uncoupled equation systems
instead of one large system.

The coupling of YAQUIR and CYLDY?2 is performed by imbedding the structural model in the
fluid model. Fluid velocitjes are parallel to the fluid/structure interface. The structure desplacements
define the time and space dependent thickness of the two-dimensional fluid layer (23-dimensional
model). The general procedure for integration over one time step from #; to ¢, is as follows:

Phase 1; Determine fluid accelerations using the ¢, pressure field; determine structural acceleration using
the ¢, pressure field; integrate fluid and structure velocities from ¢; to #;.

Phase 2: Iterate pressures and fluid and structural velocities until continuity equation is satisfied
for the pressure field at #,.

Phase 3: Use iterated velocities to integrate displacements in the structural model.

While coupling of the complete CYLDY2 model with YAQUIR is still underway, results have
been obtained with a simple axisymmetric structural model. For an axisymmetric test case three forms
of pressure fluctuations have been observed: 1) radial oscillations dominated by the local compres-
sibility of the water, 2) axial compression/expansion waves in the water considerably different from
those obtained for a rigid barrel, 3) bulk axial water oscillations dominated by the global compres-
sibility of the core barrel.
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1. Introduction

In the HDR (a former test reactor which was in operation only for a short time) large scale
experiments simulating main inlet pipe ruptures of a PWR (socalled blowdown) will be per-
formed. These testswill be used to verify both state of the art codes for analysis of blow-
down fluid dynamics and the structural response of vessel internals as well as newly devel-
oped best estimate codes which take into account the effect that even small deformations

of the reactor structure have a significant influence upon the pressure field. The HDR
experiments and the accompanying theoretical program is more fully explained in another
paper of this conference [_]_7. In this paper, a code is described for coupled fluid struc-
ture analysis. The fluid dynamics part of the code is based on YAQUI / 2/, the structural

dynamics part on CYLDY2 as explained below.

2. Modification of YAQUI for Fluid Calculations
YAQUI has originally been developed at LASL / 2_/. The code description / 3 / was used to
program a REGENT subsystem YAQUIR. REGENT [-&_7 is a PL/! based software system which
especially supports development and use of large application programs. As one of its wain
characteristics it provides powerful support for program and data management and a flexible
"problem oriented language" for input.
After the first successful test calculations with YAQUIR significant improvements have been
achieved in the areas of
- equation of state formulation

any algorithmic form of the function p = p(p;e) can be used
- boundary condition

curved boundaries are now implemented. For outflow and inflow regions an arbitrary state

may be set for the fluid just outside the control volume
~ plot output representation.
With YAQUIR the twodimensional pressure field in the downcomer of the HDR has been analysed.
In YAQUIR the mass, momentum and energy equations are integrated in a spatial finite dif-
ference net over time in three phases for each time step. In phase ! a Lagrangian model is
used to predict velocities, energies and demsities for the advanced time; in phase 2 the
pressure is iterated so as to satisfy the implicit form of the continuity equation; the
momentum equation is also treated implicitly except for the convective terms. In phase 3
the Lagrangian model is convected to a Eulerian model on the basis of time advanced veloc-—
ities and pressures.
Since the geometry underlying the YAQUI code is twodimensional, the complete fluid system
consisting of the blowdown nozzle, the downcomer, the lower plenum, the region inside the
core barrel and the upper plenum, cannot be represented altogether. However, since two-
dimensional effects will be dominant in the downcomer, only this region has been modelled
with YAQUIR. The downcomer has been unwrapped in order to fit into the 2D representation.
This is possible, because no significant centrifugal accelerations are expected. Because

of symmetry only a 180° section of the downcomer is used.
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The basic models used for the finite difference mesh are shown in fig. 1. Fig. la shows a
rectangular arrangement of the grid points while the grid in fig. 1b is derived from poten-—
tial flow theory / 5_7. Fig. 2 shows the integrated force exerted on the core barrel in
the direction of the nozzle for a rectangular and a potential flow mesh. The difference is
most likely due to the few large mesh cells (in the upper left cornmer of fig. 1b) of the
potential flow mesh, which induce a tilting of pressure waves in almost the same order of
magnitude as the physical process investigated. Thus we conclude that the potential mesh
overpredicts the barrel load. More results obtained with YAQUIR are presented in another
paper of this conference [_ ]_7. Comparison of YAQUIR results with results of other codes
and with shallow water simulation experiments has demonstrated the applicability of the

code to the phenomena under investigation.

3. Structural Dynamics Code CYLDY2

3.1 Mathematical Model

The behaviour of the core barrel under transient loading is simulated by the code CYLDY2.
This program represents a semi-analytical approach for determination of the dynamic response
of a circular cylindrical shell, which is clamped at the upper edge and stiffemed by a rigid
circular ring at the lower end. This means that the lower edge can undergo rigid

body movements but no deformations are allowed. Spatial load distributions, and the

shell deformationms, are symmetrical with respect to a plane which is defined by the axis of
the shell and the blowdown nozzle. The load variation with time has been approximated by a
step-type sequence of time — independent loadings. Thus the problem is essentially reduced

to the analysis of the shell under a single load step with arbitrary initial conditioms.

For solution it is assumed that the displacements may be described by the following ex-

pressions containing products of modal shape functions:

M N
u (x,0,t) = I z Amn(t) Fén(x)~cos nb
m= n=o
M N
v (x,6,£) = ] [ B (&) F_(x):sin nd (1)
m= n=o
M N
w (x,0,t) = z z Cmn(t)- an(x)-cos n6

m=] n=o

Here u, v and w are the displacements in axial, azimuthal and radial direction, respectively,
x is the axial shell coordinate (0 < x < d), © is the azimuthal coordinate (0 < 6 < 2m), t
denotes the time.

The azimuthal shape functions cos n® and sin n@ are obvious because of the period 21 in 6-
direction and due to the symmetry mentioned above. The axial shape functions an(x) and
Fén(x) (the second being the derivative of the first with respect to x) must be chosen in
accordance with the kinematic boundary conditions at the upper and lower edge. These may be

characterized as follows:

rigid clamping for all modes at x = O (upper edge);

free end conditions for the azimuthal mode n = 1 at x = d (lower edge);
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-  rigid clamping for azimuthal modes with n # | at x = d.
In CYLDY2 these boundary conditions are satisfied by establishing the shape functions
an(x) in accordance with the deflection curves due to free vibrations of simple beams
clamped at one end, and free or clamped at the other end. Thus an(x) generally reads
an(x) = cosh oL ¥ T cos o x < A (sinh 0¥~ sin amnx) (2)

where the '"characteristic numbers" o and a settle the end conditions at x = d.

The "modal amplitudes" Amn(t), an(t) and Cmn(t) (eq. (1)) are evaluated in the following
way. Using the strain-displacement relations for thin circular cylindrical shells derived
by Fliigge Z- 6_7, the strain energy and the kinetic energy of the shell are expressed in
terms of the displacements u, v and w. Substituting u, v, w by eq. (1) and applying
Hamilton's principle yields Lagrange's equations of motions for the free vibration of the
shell as well as a system of linear equations for the static response of the shell due to
the time independent loading. As far as the free vibration problem is concerned, a similar
approach was done by Sharma and Johns [_7 _7.

Due to the well known orthogonality of the trigonometric functions the azimuthal modes n
can be treated strictly separated. But also the axial shape functions are found to be
orthogonal. Thus the big eigenvalue problem as well as the big system for the static re-
sponse of the whole shell is split up into small systems for each mode m,n. Only for the
free vibrations in the azimuthal mode n=1, all axial modes m must be treated together due
to the coupling by the end ring which has a finite amount of inertia. This separation of
the large equation systems into several uncoupled systems represents one of the major
advantages of CYLDY2, because it reduces considerably the computer efforts in comparison
to well known multipurpose codes which were also used during preparation of the HDR-

experiments.

Finally the static response and the free vibrations are superimposed. Hereby the amplitudes
of the latter are determined in such a way that the initial conditions for the displace-
ments u, v, and w and for their derivatives with respect to time, ut, vt and wt, are satis-

fied at the beginning of the considered time step.

A detailed description of the mathematical model on which CYLDY2 is based, is given by
Ludwig and Krieg / 8 _/.

3.2 First results from CYLDY2

CYLDY2 was tested successfully using simple load distributions in space. Here, in fig. 3
the response of the HDR-core barrel due to blowdown loading, as expected by fluid dynamic
calculations to be typical for 4 msec after blowdown initiation, is shown.

Due to the high rotational inertia of the lower part of the barrel, the bottom of the core
barrel moves first remarkably away from the blowdown nozzle and returns to its initial

position after about 5 msec,
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4, Fluid Structure Coupling

The combination of YAQUIR and CYLDY2 to a coupled code requires modifications to both. First
let us consider the fluid model. An important variable which must be added to the model, is
the height of the fluid region at each grid point (corresponding to the local downcomer
width). Since this height and its time derivative is the only quantity dealing with the
third dimension in the modified YAQUIR model, we call it 2 1/2-dimensional rather than
threedimensional. We assume that one wall of the fluid region (at height = 0) is fixed
while the other can move. It was found that by proper interpretation of the radius which was
included in the original YAQUI version for cylindrical geometry, almost no changes are
required. The mass conservation equation shall be used to illustrate this. The original

equation reads (slightly simplified):

fd—égi"ldF+f(pR)UHds=o (3)
F S

Here F is the area of a single mesh and S is its periphery.

If we just replace the node radius R by the node height H, we obtain the corresponding

equation for the 2 1/2-dimensional model. The same technique applies to energy and momen-

tum conservation except for the following modifications:

a) in the momentum equation a term f p.grad H.dF must be added to account for the tilting
of the movable wall, F

b) in the energy equation a term f pH-ﬁ~dF must be added to account for the mechanical

work of the wall movement,

Thus the modifications in phase 1 of the YAQUI integration method were simple. Some more

work was needed for the pressure iteration in phase 2.

In a Newton-Raphson iteration the advanced time pressures for all mesh cells are iterated

according to

) [

Y26t (ye by o BE By L 0"y s p0 e 27
Ax Ay H ap St H

This equation is identical to the original equation in [—3_7 except for the terms

ma 5 W
H 3p

=] e

The first term is related to the fluid model alone; it adds the third dimension to the
divergence term D. The second term, however, is related to the structural model; the change

in local wall acceleration due to local pressure changes is the meaning of this term.

Whether the iteration according to eq. (4) converges generally, is an open point at this
time. A mathematical proof appears toq"complicated. Hence, a heuristic approach was taken,
As a "worst" case one can assume all sgi = const. This is the case for the socalled vessel
model described below. Since convergence was good for this case, no convergence problems

are expected in other practical applicatioms.
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Finally phase 3 of the YAQUI integration scheme must be considered. No modifications were
needed besides the exchange of H for R to obtain the 2 1/2-dimensional model from the
eylindrical model. The whole program obtained by the above described modification of YAQUIR
is called STRUYA.

Let us now consider the structural model. The intention of the development of STRUYA was to
provide the capability of coupling many different structural models with the fluid model.
Thus, the following list of requirements describes a class of structural models which can

be coupled to STRUYA. The structural model mus

- be based on linear theory (this restriction is to be removed in more advanced versions)

- compute end of timestep values of deformation and its time derivative for a field of con-
stant pressure loads during the timestep

- compute changes of these results due to small changes in the pressure field

- deliver values of H and H to STRUYA .

- deliver a vector of local influence factors %% to STRUYA.

Thus STRUYA provides the capability to couple a great number of structural models. However,

two modifications to this structural models are still necessary:

- modification of the structural mass

- modification of the pressure load.

Both these modifications stem from the fact that for structural computations one assumes
that the pressure load is given for the structural surface. This is not the case for STRUYA
coupled models. On one side of the structure the average pressure in the fluid mesh is
given. On the reverse side another fluid may or may not be present. If there is fluid on
the reverse side (as is true for the core barrel) the pressure field here will depend on
the wall movement. The following approach is taken to solve this problem. We consider a
control volume as shown in fig. 4 to derive a momentum equation in the z-direction. If the

gradient of H is small, we may neglect the effect of momentum transport and obtain:
d . g 2
Se Qi+ [ padz) - [Tpg” TF - (p -~ pg") * £(0) = 0 )
dt % H R

Here H is the particular value ‘of z where we expect the local pressure to be equal to the
average pressure, which is computed by the fluid model,pR' is the pressure immediately on
the reverse side. f(o) is the effect of the stresses in the structure. We find ﬁ; if we

assume that p is constant over H and the velocity w varies linearly over z:

g (6

V3

T

On the reverse side let us assume an acoustic model:

pp' =g * g G H @
Here, PR is the pressure which would exist there if the wall did not move. Remember, that

in YAQUIR the momentum equation is treated implicitly. Hence, we can write finally for
eq. (5)
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e - (M - oy - Gy "0+ ™ (o) = 0 @)

!
(u + 7 PH + ppCp dt)

If we compose this equation with the case of a structure in vacuum (p = O; PR = 0), we see

that for coupling of a structural model to STRUYA

- the shell density must be increased to account for one third of the liquid layer and
the acoustic damping on the reverse side and
- the pressure difference across the wall must be modified according to the acoustic

behaviour.

As an additional simplification, because CYLDY2 requires constant shell density, the added

mass é pH is assumed to be independent of the space coordinates.

5. First Results of Fluid-Structure Coupling

In order to test the method described in chapter 4 for the coupling of STRUYA and
different structural models, two simple one degree of freedom models for the core barrel
were established. The '"vessel' model assumes that the whole core barrel can expand and
contract radially only inan uniform manner. The 'beam'" model assumes that the barrel be-
haves like a rigid lever supported at the top by a rotational spring. While these models
have no physical significance, they are useful in demonstrating the effect of a coupled
solution as composed to an uncoupled fluid dynamics analysis followed by a calculation of

the structural response.

With the vessel model a hypothetical axisymmetric blowdown was simulated by assuming that
the pressure at the lower end of the downcomer is suddenly reduced. Fig.5a shows the devia-
tion XS of the downcomer width from the initial value and its acceleration X$. During the
first five milliseconds we notice a rapidly damped vibration at about 510 cps. This cor-—
responds to a pure radial vessel vibration against the stiffness of the compressible water.
No significant axial water movement occurs in this time period. The subsequent behaviour

is characterized by the superposition of two vibrations. With a little simplification these
can be explained as follows. In a longterm vibration (20 cps) the almost incompressible
water moves up and down as the vessel contracts and expands. In addition, an axial pressure
wave travels through the water (typical frequency 120 cps). This frequency is 4.5 times

the frequency expected for axial acoustic waves in the water with a rigid wall. The in-
creased wave speed is due to the fact that a pressure reduction at the lower end via a
constant barrel expansion over the whole length induces a pressure rise at the top (see
fig.5b). This additional pressure gradient leads to faster accelerations. Similar, far
reaching influences (which are physically unrealistic) must be expected for all structural
models using a superposition of global shape functions, if the number of modes used is not

sufficient.

With the beam model a HDR blowdown test has been simulated. Fig. 6 shows the computed move—
ment of the lower end of the core barrel for both the coupled and uncoupled structural
model. Although the model is rather crude in a way that it will overemphasize the coupling

effect, the reduction in amplitude and the frequency decrease are at least plausible.
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Coupling of CYLDY2 with STRUYA is underway. By the end of January 1977 only the phase 2

part of the structural model was yet missing.
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. List of Symbols

sound velocity

length of the cylinder

o a 0

two-dimensional divergence of the velocity field
specific internal energy

area of a fluid mesh

height of a fluid mesh at a grid point

average height of a fluid mesh

normal vector on S

pressure

local velocity in a mesh in direction z

radius

periphery of a fluid mesh

time

el v ®a ©v Bz = o

fluid velocity vector
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u,v,w local displacements in axial, azimuthal and radial direction of the cylinder
ut,vt,wt derivative of u,v,w versus time
X,0,2 axial, azimuthal and radial coordinates of the cylinder
Ax, Ay average sizes of a single mesh
X8 radial displacement of the ''vessel” model
u mass per unit area of cylindrical shell

density
npi density at time step n in mesh i
® overrelaxation factor
subscript R reverse side of the cylinder
Fig. la: Rectangular grid used for modelling Fig. Ib: Potential flow grid used for

of the unwrapped downcomer modelling of the unwrapped downcomer

r106n1P P
—R
0
-2
Fig. 2: Integrated force of the blowdown pressure reduction on the core

barrel for rectangular grid (R) and potential flow grid (P)
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Fig. 3a: Core barrel response to a steptype
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4 msec after start of blowdown) according to
uncoupled YAQUIR-CYLDY2 calculations. Snapshot Fig. 5b: Pressure at the top of the
at times O, 1, 3 and 5 msec and static solution downcomer for the case shown in fig.
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Fig. 3b: Displacements of point A of Fig. 6: Displacement of the lower core
fig. 3a versus time in axial (u) barrel end computed with STRUYA and an

and radial (w) direction uncoupled and a coupled "beam" model.



