IMPROVED STRESS-INTENSITY FACTORS FOR SEMI-ELLIPtical SURFACE CRACKS IN FINITE-THICKNESS PLATES

I. S. RAJU, J. C. NEWMAN, Jr.
NASA Langley Research Center, Hampton, Virginia 23665, U.S.A.

SUMMARY

Surface cracks are the most common flaws in aircraft and pressure vessel components. Accurate stress analyses of these cracks are needed to predict crack-growth rates and fracture strengths of these structures. Because the configurations and boundary conditions are very complex, exact solutions are not available. Therefore, most investigators have used approximate methods. For a semi-elliptical surface crack in a finite-thickness plate subjected to tension Kobayashi, Smith and Sorensen used the alternating method and Kalhiresan used the finite-element method. For a deep semi-elliptical surface crack subjected to tension the stress-intensity factors obtained by these investigators, disagreed by 50 to 100 percent. Thus, these investigators have obtained three totally different solutions to the same problem. The reasons for these discrepancies are not completely understood.

The purpose of this paper is to present accurate stress-intensity factors for shallow and deep semi-elliptical surface cracks in plates using a three-dimensional finite-element analysis. To verify the accuracy of the solutions, convergence was studied by varying the degrees of freedom in the finite-element models. These models were composed of singular elements around the crack front and isoparametric elements elsewhere. Mode I elastic stress-intensity factors were calculated by using a nodal force method. To establish the validity of the present method, two problems: (1) a circular (penny-shaped) crack and (2) an elliptical crack buried in a very large body subjected to tension were analyzed. The results obtained from the present method for these crack shapes were within 1 percent of the exact solutions obtained from the literature.

The present method was used to analyze a semi-elliptical surface crack in a plate subjected to tension. The configuration had a crack depth-to-surface crack half length ratio of 0.2 and crack depth-to-plate thickness ratio of 0.8. Convergence of the stress-intensity factors was studied using five different finite-element models. The degrees of freedom associated with these models ranged from 1500 to 6900. The 6900 degrees of freedom model was more than twice that used by Kalhiresan. Rapid convergence of the solution was demonstrated because the two finest models gave stress-intensity factors within 1 percent of each other. The results from Smith and Sorensen were 10 to 25 percent lower than the present results.

Convergence studies for semi-circular and other semi-elliptical surface cracks are also included in the paper. Further, two important observations were made while modeling the crack fronts. One was that the nodes closest to the crack front in the finite-element mesh should lie on a line normal to the crack front and the other was that the mesh should conform to an elliptical coordinate system with smoothly varying element sizes. These observations are elaborated on in the paper.
1. Introduction

Surface cracks are among the more common flaws in aircraft and pressure vessel components. Accurate stress analyses of these surface-cracked components are needed for reliable prediction of their crack-growth rates and fracture strengths. Exact solutions to these difficult problems are not available; therefore, approximate methods must be used. For a semi-elliptical surface crack in a finite-thickness plate subjected to tension (Figure 1), Browning and Smith [1], Kobayashi [2], and Smith and Sorensen [3] used the alternating method and Kauthesan [4] used the finite-element method to obtain the stress-intensity factor variations along the crack front for various crack shapes. For a deep semi-elliptical surface crack (with \(a/t = 0.8 \) and \(a/c = 0.2 \)) subjected to tension, the stress-intensity factors obtained by Smith and Sorensen [3], Kobayashi [2], and Kauthesan [4] disagreed by 50 to 100 percent. The reasons for these discrepancies are not well understood.

This paper presents stress-intensity factors for shallow and deep semi-elliptical surface cracks in plates subjected to uniform tension. To test the validity of the present analysis, two crack configurations, both embedded in a large body subjected to uniform tension, were analyzed: (1) a circular (penny-shaped) crack and (2) an elliptical crack. These results are compared with exact solutions from the literature [5]. To verify the accuracy of the solutions for surface cracks in finite-thickness plates, convergence was studied by varying, from 1500 to 6900, the number of degrees of freedom in the finite-element models. The 6900 degrees of freedom used here were more than twice the largest number used previously [4]. These models were composed of singular elements around the crack front and isoparametric (linear strain) elements elsewhere. Mode I elastic stress-intensity factors were calculated by using a nodal force method.

The computations reported herein were conducted on a unique computer called the STAR-100 at the NASA Langley Research Center.

2. Symbols

\begin{align*}
\text{a} & \quad \text{depth of surface crack} \\
\text{b} & \quad \text{half-width of cracked plate} \\
\text{c} & \quad \text{half-length of surface crack} \\
\text{E} & \quad \text{Young's modulus of elasticity} \\
\text{F} & \quad \text{stress-intensity boundary-correction factor} \\
\text{h} & \quad \text{half-length of cracked plate} \\
\text{K} & \quad \text{stress-intensity factor (Mode I)} \\
\text{Q} & \quad \text{shape factor for an elliptical crack} \\
\text{S} & \quad \text{applied uniform stress} \\
\text{t} & \quad \text{plate thickness} \\
\text{x,y,z} & \quad \text{Cartesian coordinates} \\
\text{v} & \quad \text{Poisson's ratio} \\
\phi & \quad \text{parametric angle of the ellipse}
\end{align*}
3. Three-dimensional Analysis

Several attempts [6-8] have been made to develop special three-dimensional finite-elements that account for the stress and strain singularities caused by a crack. These elements have assumed displacement or stress distributions that simulate the square-root singularity of the stresses and strains at the crack front. Such three-dimensional singularity elements [9] were also used herein for the analysis of finite-thickness plates containing embedded elliptical or semi-elliptical surface cracks (see, for example, Figure 1).

3.1 Finite-element Idealization

Two types of elements (isoparametric and singular) [9] were used in combination to model elastic bodies with embedded elliptical cracks or semi-elliptical surface cracks. Figure 2 shows a typical finite-element model for an embedded circular crack in a large body (h/a = b/a = 5). This model idealizes one eighth of the body. Various numbers of wedges were used to form the desired configuration. Figure 2(a) shows a typical model with eight wedges. Each wedge is composed of elements that are identical in pattern to that shown in the $\phi = \text{constant}$ plane. The arrangement of the elements around the crack front is shown in Figure 2(b). The isoparametric (linear strain) elements (denoted as I) were used everywhere except near the crack front. Around the crack front each wedge contained eight "singularity" elements (S) in the shape of pentahedrons. The "singularity" elements had square-root terms in their assumed displacement distribution and, therefore, produced a singular stress field at the crack front. Details of the formulation of these types of elements are given in Reference 9.

The finite-element model for the embedded elliptical or semi-elliptical surface crack was obtained from the finite-element model for the circular crack by using an elliptic transformation. This transformation was needed because the stress-intensity factors must be evaluated from either crack-opening displacements or nodal forces along the normals to the crack front. If (x, y, z) are the Cartesian coordinates of a node in the circular-crack model and (x', y', z') are the coordinates of that same node in the elliptical-crack model, then the transformation is given by

$$ x' = x\sqrt{1 + \frac{a^2 - c^2}{x^2 + z^2}} $$

$$ y' = y $$

$$ z' = z $$

for x and z not at the origin. Figure 3 shows how circular arcs and radial lines in the x, z plane of the circular-crack model are transformed into ellipses and hyperbolas, respectively, in the x', z' plane of the elliptical-crack model using equations (1). Because equations (1) are not valid at the origin, a circle of very small radius, $a/1000$, was used near the origin in the circular crack model. The small circle maps onto an extremely narrow
ellipse in the x', z' plane. The use of the small circle avoids ill-shaped elements near the origin in the elliptical-crack model. Figure 4 shows a typical finite-element model of a finite plate containing an elliptical crack. The transformation reduced the b/c ratio; therefore, in order to maintain $b/c \geq 4$, additional elements were added along the x'-axis to eliminate the influence of plate width.

3.2 Stress-intensity Factor

The stress-intensity factor is a measure of the magnitude of the stresses near the crack front. Under general loading, the stress-intensity factor depends on three basic modes of deformation (tension and in- and out-of-plane shear). But here only tension loading was considered and, therefore, only Mode I deformations occurred. The Mode I stress-intensity factor, K, at any point along an elliptical or semi-elliptical crack in a finite plate is taken to be

$$K = S \sqrt{\frac{a}{Q}} F \left(\frac{a}{t}, \frac{a}{2c}, \phi \right)$$

(2)

where S is the applied stress, a is the crack depth, Q is the shape factor for an ellipse and is given by the square of the complete elliptic integral of the second kind [5]. The boundary-correction factor, $F \left(\frac{a}{t}, \frac{a}{2c}, \phi \right)$, is a function of crack depth, crack length, plate thickness and the parametric angle of the ellipse. The present paper gives values for F as a function of a/t and ϕ for $a/c = 0.2$ and 1.0. The a/t values ranged from 0.2 to 0.8.

The stress-intensity factors from the finite-element models of embedded elliptical and semi-elliptical surface cracks were obtained by using a nodal force method, details of which are given in Reference 9. In this method, the nodal forces normal to the crack plane and ahead of the crack front are used to evaluate the stress-intensity factor. In contrast to the crack-opening displacement method [6], this method requires no prior assumption of either plane stress or plane strain. For a surface crack in a finite plate, the state of stress varies from plane strain in the interior of the plate to plane stress at the surface. Thus, the crack-opening displacement method could yield erroneous stress-intensity factors.

4. Results and Discussion

In the following sections a circular (penny-shaped) crack and an elliptical crack completely embedded in a large body subjected to uniform tension were analyzed using the finite-element method. The calculated stress-intensity factors for these crack configurations are compared with the exact solutions to verify the validity of the present finite-element method.

For a semi-circular and semi-elliptical surface crack in a finite-thickness plate, convergence of the stress-intensity factors was studied while the number of degrees of freedom in the finite-element models ranged from about 1500 to 6900. The stress-intensity factor variations along the crack front for semi-circular ($a/c = 1$) and semi-elliptical ($a/c = 0.2$)
surface cracks were obtained as functions of a/t with $h/c = b/c \geq 4$. Whenever possible, these stress-intensity factors are compared with results from the literature.

4.1 Exact Solutions

In this section a comparison is made between the stress-intensity factors calculated from the finite-element analysis and from the exact solution [5] for an embedded circular (penny shaped) crack ($a/c = 1$) and an embedded elliptical crack ($a/c = 0.2$) in an infinite body. In the finite-element model, h and b were taken to be large enough that the free boundary would have a negligible effect on stress intensity. The boundary correction on stress intensity for a circular crack in a cylinder of radius b with $b/a = 5$ is about one percent [10]. Therefore, to simulate a large body the finite-element model was assigned the dimensions $h/a = b/a = 5$, along with 3078 degrees of freedom. The calculated stress-intensity factors along the crack front from the circular crack model were about 0.4 percent below the exact solution.

The embedded elliptical crack ($a/c = 0.2$) model, with $h/c = b/c = 4$ and $t/a = 5$, had 3348 degrees of freedom. The influence of finite boundaries on stress intensity was estimated to be about one percent. The finite-element analysis gave stress-intensity factors along the crack front generally within one percent of the exact solution, except in the region of sharpest curvature of the ellipse, where the calculated values were about three percent higher than the exact solution. Further refinement in the mesh size in this area gave more accurate stress-intensity factors.

Because the present method yielded stress-intensity factors for completely embedded circular and elliptical cracks within 0.4 to 3 percent of the exact solutions, the method was considered suitable for analyses of more complex configurations, provided that enough degrees of freedom were used to obtain good convergence.

4.2 Approximate Solutions

To verify that the finite-element meshes used for the circular and elliptical crack models were sufficient to analyze cracked plates with free boundaries, through-the-thickness cracks with crack length-to-width ratios ranging from 0.2 to 0.8 were analyzed under plane strain assumptions. The meshes used here were exactly the same as those which occur on the $\phi = \pi/2$ plane of the circular and elliptical crack models. These meshes were then used to model the center-crack tension specimen. For crack length-to-width ratios (c/b) ranging from 0.2 to 0.6, the finite-element results were within 1.3 percent of the approximate solutions given in Reference 10. For $c/b = 0.8$, the finite-element result was 2 percent below the solution given in Reference 10. These results indicate that the mesh pattern along any plane has enough degrees of freedom to account for the influence of free boundaries on the stress-intensity factor.
4.3 Convergence
In the previous section the mesh pattern along any $\phi = \text{constant}$ plane was found to be sufficient to account for the influence of free boundaries even for very deep cracks. In this section, the mesh pattern in the angular direction, ϕ, is studied. Figures 5 and 6 show the results of a convergence study on the stress-intensity factors for a semi-circular surface crack and a semi-elliptical surface crack, respectively, in a finite-thickness plate. The larger numbers of degrees of freedom are associated with smaller wedges in the ϕ-direction and a more accurate representation of the crack shape.

For the semi-circular crack (Figure 5), $h/a = b/a = 5$ and $a/t = 0.8$. This configuration was chosen because the close proximity of the back surface to the crack front was expected to cause difficulty in achieving convergence. The number of degrees of freedom ranged from 1500 to 6195. The two finest models (4317 and 6195 degrees of freedom) gave stress-intensity factors within about one percent of each other. Therefore, the model with 4317 degrees of freedom was used subsequently to obtain stress-intensity factors as a function of a/t.

Figure 6 shows the convergence study for a semi-elliptical surface crack ($a/c = 0.2$). The h/c and b/c ratios were equal to 4 and, again, a/t was chosen as 0.8. The number of degrees of freedom ranged from 1692 to 6867. The model with 4797 degrees of freedom gave results within about 1 percent of those from the finest model. Therefore, the model with 4797 degrees of freedom was used subsequently to obtain stress-intensity factors and crack-opening displacements as a function of a/t.

4.4 Semi-circular Surface Crack in a Finite-thickness Plate
Figure 7 shows the stress-intensity factors for a semi-circular surface crack in a finite-thickness plate as a function of the parametric angle, ϕ, and the crack depth-to-plate thickness ratio, a/t. Near the intersection of the crack and the free surface, the stress-intensity factor increases more rapidly with a/t than at the deepest point ($\phi = \pi/2$). For each value of a/t, the stress-intensity factor calculated from the model with 4317 degrees of freedom is largest at the free surface ($\phi = 0$).

For a semi-circular surface crack with $a/t = 0.55$, the stress-intensity factors calculated by Browning and Smith [1], who used the alternating method, were about 1 to 3 percent below the present results for various values of ϕ.

4.5 Semi-elliptical Surface Crack in a Finite-thickness Plate
Figure 8 shows the stress-intensity factors for a semi-elliptical surface crack ($a/c = 0.2$) in a finite-thickness plate as a function of the parametric angle, ϕ, and the crack depth-to-plate thickness ratio, a/t. For each value of a/t, the maximum stress-intensity factor occurs at the deepest point ($\phi = \pi/2$). Also, the maximum stress-intensity factor is larger for larger values of a/t.
Figures 9 and 10 show stress-intensity factors obtained by several investigators for a semi-elliptical surface crack in a finite-thickness plate. Figure 9 shows the results for a surface crack with $a/c = 0.2$ and $a/t = 0.8$. Smith and Sorensen [3] and Kobayashi [2] used the alternating method and Kathiresan [4] used the finite-element method to obtain stress-intensity factor variations along the crack front. These three solutions disagree by as much as 50 to 100 percent. The reasons for these discrepancies are not well understood. The present results, shown as solid symbols, are considerably higher than the previous solutions [2-4]. The results from Smith and Sorensen [3] are generally closer to the present results, though 10 to 25 percent lower.

Figure 10 shows a comparison of the maximum stress-intensity factors obtained by several investigators for a semi-elliptical surface crack as a function of a/t. The maximum stress-intensity factors occurred at $\phi = \pi/2$. The present results are shown as solid symbols. The open symbols show the results from Smith and Sorensen [3], Kobayashi [2, 11] and Rice and Levy [12]. The results from Rice and Levy, obtained from a line-spring model, are about 3.5 percent below the present results over an a/t range from 0.2 to 0.6. For $a/t > 0.6$, the Rice-Levy solution shows a reduction in stress intensity. The dash-dot curve shows the results of an approximate equation proposed by Newman [13] for a wide range of a/c and a/t ratios.

Newman’s equation is within ± 5 percent of the present results over an a/t range from 0.2 to 0.8. Newman’s equation gives a good engineering estimate for the maximum stress-intensity factor.

5. Concluding Remarks

A three-dimensional finite-element elastic stress analysis was used to calculate stress-intensity factor variations along the crack front for completely embedded elliptical cracks in large bodies and for semi-elliptical surface cracks (crack depth-to-crack length ratios were 0.2 and 1.0) in finite-thickness plates. Three-dimensional singularity elements were used at the crack front. A nodal force method which requires no prior assumption of either plane stress or plane strain was used to evaluate the stress-intensity factors along the crack front.

Completely embedded circular and elliptical cracks were analyzed to verify the accuracy of the finite-element analysis. The stress-intensity factors for these cracks were generally about 0.4 to 1 percent below the exact solutions. However, for the elliptical crack the calculated stress-intensity factors in the region of sharpest curvature of the ellipse were about 3 percent higher than the exact solution. The numbers of degrees of freedom in the embedded crack models were about 3000. A convergence study on stress-intensity factors for semi-elliptical surface cracks in finite-thickness plates showed that convergence was achieved for both the semi-circular and the semi-elliptical surface crack with about 4500 degrees of freedom.
For the semi-circular surface crack the maximum stress-intensity factor occurred at the intersection of the crack with the free surface. On the other hand, for the semi-elliptical surface crack (crack depth-to-crack half length ratio of 0.2), the maximum stress-intensity factor occurred at the deepest point. For both the semi-circular and semi-elliptical surface crack the stress-intensity factors were larger for larger values of crack depth-to-plate thickness ratio.

For the semi-circular surface crack, the stress-intensity factors calculated by Browning and Smith [1] using the alternating method, agreed generally within about 3 percent with the present results. However, for semi-elliptical surface cracks (crack depth-to-plate thickness ratio of 0.2) Smith and Sorensen [3] using the alternating method gave stress-intensity factors in considerable disagreement (10 to 25 percent) with the present results. For semi-elliptical surface cracks the results from Rice and Levy [12] for crack depth-to-plate thickness ratios less than or equal to 0.6 and an approximate equation proposed by Newman [13] were in good agreement with the present results.

The stress-intensity factors obtained herein should be useful in correlating fatigue crack-growth rates as well as fracture toughness calculations for the surface-crack configurations considered.

References

Fig. 1.- Surface crack in a plate subjected to tension.

Fig. 2.- Finite-element idealization for an embedded circular (penny-shaped) crack.
Fig. 3.- Circle to ellipse transformation.

(a) Circular crack. (b) Elliptic crack.

Fig. 4.- Finite-element idealization for a semi-elliptical surface crack.

(a) Specimen model. (b) Element pattern on $y' = 0$ plane.
Fig. 5.- Convergence of stress-intensity factors for a deep semi-circular surface crack ($Q = \pi^2/4$).

Fig. 6.- Convergence of stress-intensity factors for a deep semi-elliptical surface crack ($Q = 1.104$; $a/t = 0.8$; $a/c = 0.2$).
Fig. 7. - Distribution of stress-intensity factors along crack front for a semi-circular surface crack \(Q = \pi^2/4 \).

Fig. 8. - Distribution of stress-intensity factors along crack front for a semi-elliptical surface crack \(Q = 1.104; \ a/c = 0.2 \).
Fig. 9. - Comparison of stress-intensity factors for a deep semi-elliptical surface crack ($Q = 1.104$; $a/t = 0.8$; $a/c = 0.2$).

Fig. 10. - Comparison of the maximum stress-intensity factor for a semi-elliptical surface crack as a function of a/t ($\phi = \pi/2$; $Q = 1.104$; $a/c = 0.2$).