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SUMMARY

The paper presents a unified description of ductile and brittle rupture phenomena in struc-
tural components under tensile loading with particular emphasis on creep rupture.

The close connection between ductile instantaneous rupture and ductile creep rupture, first
observed by R.L. Carlson (J. Mech. Eng. Sci. 7(1965), 228-229) has been found by H. Broberg
(J. Appl. Mech. 41(1974), 809-811) to have a direct counterpart for brittle failure. The damage
concept due to Kachanov and Rabotnov has been extended to describe also instantaneous brit-
tle failure under monotonically increasing load as well as brittle failure under repeated loading.

The damage law is stated in the form

dw/dt = ¢’ (s)-ds/dt + f{5)

where w denotes damage and s the net stress, defined as load per unit undamaged cross sec-
tional area. In absence of g'(s) this law coincides with the one proposed by Kachanov and Ra-
botnov.

The paper describes this extended damage law and discusses its potentialities and limita-
tions.

Two structural elements are analyzed in detail: 1) the uniform tensile bar subject to a Heav-
iside history of tensile force and superimposed such loadings, i.e. staircase histories, and 2) the
thinwalled spherical pressure vessel subject to a Heaviside history of internal pressure.

For both these structures the conditions for instantaneous as well as delayed rupture are
analysed. It is shown that a state of mechanical instability will be reached at a certain load or
after a certain time. The cases of purely ductile rupture and purely brittle fracture are identified
as two limiting cases of this general instability phenomenon.

The Kachanov-Rabotnov damage law implies that a structural component will fail in ten-
sion only when it has reached a state of complete damage, i.e. zero load carrying capacity. The
extended law predicts failure at an earlier stage of the deterioration process and is therefore
more compatible with experimental observation. Further experimental support is offered by
predictions for staircase loading histories, both step-up and step-down type. The presented
damage theory here predicts strain histories which are in closer agreement with test data than
predictions based on other phenomenological theories.
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1. Introduction

The phenomena of creep deformation and creep rupture have been known for
a long time, both to metallurgists and designers. Increasing demands on new
materials for severe high temperature applications have led to alloys which
are ever more creep resistant. A common tend in this development is towards
stronger but also more brittle materials. Hence creep deformation is becoming
of less concern to designers, while creep rupture becomes all the more impor-
tant. This paper discusses some engineering aspects of creep rupture.

The basic physical mechanisms causing creep deformation and creep
rupture are becoming increasingly well understood. Phenomena on the micro-
scopic and sub microscopic levels have been indentified, which are relevant
to the observed macroscopic behaviour. By tradition, but also for more
compelling reasons, most of these basic studies of the creep phenomenon
relate to cases of uniaxial stress, constant in time.

In many, if not most, engineering applications neither of these two
conditions is fulfilled. Multiaxial stress fields prevail, except for rare
cases of bars in pure push, pull or bending. Even if loads are constant in
time, relaxation phenomena will cause stresses to vary.

Hence a designer needs to generalize knowledge relating to time indepen-
dent and uniaxial stresses, to cases of time dependent and multiaxial stresses.
In so doing he must rely largely on analogies with similar situations relating
to elastic or plastic behaviour. The complexity arising for all but non
trivial stress fields must be balanced by simplifying assumptions, or other-
wise no design calculations would be feasible. The difficulties are not pri-
marily mathematical, but rather mechanical in nature. What the designer needs
is a workable mechanical model, which describes certain essential creep
properties hut leaves out the rest. Once such a model has been developed, its
application to design tasks will only be a matter of applying known principles
of structural mechanics and of performing numerical calculations.

The main part of this paper deals with basic properties of a unified

mechanical model for creep deformation and creep rupture.

2. Ductile rupture mechanism
In a standard creep rupture test a uniaxial specimen is subjected to a

¢onstant load P, and the time t, to rupture is recorded. With AO denoting the

R
¢ross sectional area before load application, the quantity

G, = P/A0 (1)

0
will be denoted the nominal stress. Results of creep rupture tests are usually
presented in log oo—log tR diagrams, and a typical appearance is as shown by
Fig. 1. Commonly the rupture behaviour is predominantly ductile at higher
stresses and brittle at lowef stresses.

An engineering theory describing ductile creep rupture in a tensile bar
in terms of creep deformation parameters was proposed by Hoff [1]. He assumed

a creep law in the form
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de/dt = I (o) (2)
where e denotes the logarithmic or natural strain
e = 1ln L/L0 (3)

and o denotes the true stress

g = P/A (4)
Here L0 and L denote the initial and current lengths of the bar, and A de-
notes its current cross sectional area. If no volume changes take place
during creep deformation, i.e. AL=AOLO, eg:s (1), (3) and (4) yield

0 =0, exp e (5)

This relation holds independent of the mechanical properties of the bar mate-
rial, i.e. independent of the form of the function F(og).
Taking F(¢) as a power function

F(o) = Bo" (6)

Hoff [1] combined eq:s (2) and (5) to find the stress history o(t) in the bar
under constant load P. The stress increases at an accelerating rate, and

do/dt+», implying rupture, when t»tR, where

tp = l/(nBcg) (7)

This relation between the ductile creep rupture time tR and the nominal
stress 0y corresponds to a straight line with slope 1/n in the diagram of
Fig., 1.

Improving on this analysis Odgvist [2] added a term to eq. (2) corre-

sponding to an instantaneous strain response

e = G(o) (8)
resulting in the extended creep law
de/dt = (d/dt) G(o) + F(o) (9)

With a loading history according to Fig. 2 then follows for the phase 0-1
from eg:s (5) and (8)
do Lo

dog = Toma oy (1)

and for the phase 1-2 from eqg:s (5) and (9)
do F (o)

dt = I/0-G' (o)
Hence ductile rupture will occur during load application (do/doo+m) or during

(11)

subsequent creep phase (do/dt+«) when 0+0p, where

l/oR - G'(GR) =0 (12)

The resulting relation between 00 and 0 is shown in Fig. 3. The true rupture
stress ORe given by eq. (12), is a constant, same for all loading histories
oo(t).

This close connection between ductile instantaneous rupture and ductile
creep rupture was observed by Carlson [3], who proposed to denote ductile
creep rupture as "creep-induced tensile instability". In the next paragraph
a similar unified description of brittle instantaneous rupture and brittle



L 4/8
creep rupture will be shown

3. Brittle rupture mechanism

In order to describe brittle creep rupture in mechanical terms Kachanov
[4] and Rabotnov [5] introduced the concepts of damage and net stress. The
following .redefinitions were proposed by Broberg [6].

Continuing creep deformation causes a progressing deterieration of the
material, resulting eventually in accelerating deformation. This deterioration
can conveniently be expressed in terms of a decreasing load carrying area or

net area An' For incompressible deformation eq. (3) defines strain as
e = 1ln AO/A (13)

In analogy to this Broberg (6] defines damage as
w = 1ln A/An (14)

Likewise, in analogy to eq. (4), the net stress is defined as
s = P/A (15)

From eg:s (1), (13)-(15) follows
s = 0, exp (e+w) (16)

which is an extension of (5) to include also the effect of damage. It is valid
independent of the mechanical properties of the bar material.

Using a slightly different definition of damage Kachanov [4] proposed a
law of the form

dw/dt = f(s) (17)
as the governing equation for damage creation. Neglecting creep strain al=

together and taking f(s) as a power function

£(s) = cs’ (18)
he derived an expression for the brittle creep rupture time, which corresponds
to a straight line with slope 1/v in the diagram of Fig. 1.

In analogy to the extension made by Odgvist [2], Broberg [6] added a

corresponding term

w = g(s) (19)
to eq. (17), resulting in the extended damage law

dw/dt = (d/dt) g{s) + f(s} (20)
Replacing o by s the creep law eq. (9) was restated as

de/dt = (d/dt) G(s) + F(s) (21)

Eq:s (16), (20) and (21) completely define the histories of strain e(t)
and damage w(t) resulting from any prescribed loading history co(t).

With the loading history given in Fig. 2 there follows for phase 0-1

ds _ 1/00 (22)
dco 1/s-G"(s)-d' (s

and for phase 1-2
ds (23)

dt
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These expressions are analogies to eq:s (10) and (11). They imply that
rupture, of a mixed ductile and brittle nature, will occur during load appli-
cation (ds/d00+w) or during a subsequent creep phase (ds/dt+) when S*Sp,
where

l/sR - G'(SR) - g'(sg) =0 (24)
The resulting relation between 9 and s is shown in Fig. 4. The net rupture

stress s given by eq. (24), is a constant, same for all loading histories

’
co(t). I? no damage occurs, i.e. w=0, the relations of the preceding para-
graph are regained. If g'(s) is a non decreasing function, it follows from
eq:s (12) and (24) that SR<Ops implying also that rupture occurs at a smaller
strain in the case of deteriorating material. The strain history predicted by
this unified theory contains a terminating phase of tertiary creep, which is
in agreement with most creep test results.

If no strain occurs, i.e. €30, relations describing purely brittle
rupture result. With G(s)=Z0 and g(s)=0 eq:s (22) and (23) become

ds l/UO

doy = 1/s-g' () (23)

ds _ f(s)

dt ~ 1/s-g'(s)
in complete similarity with eq:s (10) and (11) respectively. Hence brittle

(26)

creep rupture may be termed "damage-induced tensile instability" to mark its
close resemblance to ductile creep rupture. The mixed instability modes pre-
dicted by eq:s (22) and (23) respectively include the purely ductile and

purely brittle modes as limiting cases.

4. Rupture under time variable load

It is of interest to study the predictions of time to rupture given by
eq:s (22) and (23) for various loading histories. To simplify the discussion
the effects of instantaneous strain and damage will be neglected, i.e.
G(s)=0, g(s)=0. Then eq. (22) yields

ds/do0 = s/o0 (27)

for instantaneous load changes. If a constant load P is applied instantaneous-

ly, corresponding to a nominal stress o, eg. (27) yields the initial net

stress s(0)=00. The net rupture stress,oaccording to eq. (24) is sg=®. Hence
eq. (23) yields the corresponding rupture time
©
= S (29)
%0

To each load P eq. (29) relates a rupture time ERf 1f P=P(t) then, formally,
tR=tR(t). The corresponding rupture time is denoted t;. It is of interest,
then, to calculate the magnitude of the integral
*
tR
J = [ dt/t, t (30)
0 R
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Such an analysis was performed by Hult [7T for purely ductile deformation,

j.e. with f(s)Z0. Following the same procedure, assuming the forms (6) and
(18) for F(s) and f(s) respectively, we find for the loading histories of
Fig. 5a and b

step up step down
B=0 or C=0 or vFn J=1 J=1
B#0 and C#0 and v#n J < 1 J > 1

Since ‘B0 and C#0 and v#n for most alloys of engineering interest, the life
fraction rule J=1, postulated by Robinson [8], is usually not fulfilled. The
prediction J<1 for step up loading, and J>1 for step down loading, is in
full agreement with experimental results by Marriott & Penny [o].

5. Rupture under multiaxial stresses

General studies of conditions for ductile instability under multiaxial
stresses have been made by Storédkers [10] and others. Early applications to
ductile creep rupture in pressure vessels are due to Rimrott [11]. Generali-
zations of the original Kachanov [4] and Rabotnov {5] damage models to multi-
axial stress states have been considered by Hayhurst and Leckie [12] and
Leckie and Hayhurst [13]. Here a similar generalization of the damage model
in the previous two paragraphs will be discussed.

The following assumptions are made:

1) A net stress tensor is defined in analogy to the scalar net stress in
the uniaxial case. According to eq:s (5) and (16)

s =0 exp w (31)

In analogy to this the following relation is postulated between the components

of the net stress tensor sij and the true stress tensor Uij

sij = Uij exp w (32)
Hence damage is here assumed to be isotropic, which is in certain disagree-
ment with experimental observation, but which simplifies the modelling to a

very large eXtent.

2) A scalar governing equation for damage creation is postulated, which
degenerates to eq. (20) for uniaxial stress. With an effective net stress s
defined by

Sg = Og ©Xp O (33)

where Oe is an effective true stress, the damage law is assumed as

dw/dt = (d/d4t) g(se)t+ f(se) (34)

3) A creep law is postulated, which degenerates to eg. (21) for uniaxial
stress, and which satisfies the standard requirements of incompressibility

and isotropy. With gi'

i denoting the true stress deviator, and hence

sij = oij exp w (35)
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denoting the net stress deviator, the creep law is assumed as

deij/dt = (3/2)(se)dEij/dt + (3/2)F(se)3ij/se ' (36)

The definition of the effective stress Og in terms of the components of
oij may be chosen to fit experimental results, cf. Hayhurst [14]. For a thin-~
walled spherical pressure vessel, which will be studied here, the distinction
between Onax’ %e (Mises) and I (Tresca) disappears. The creep law (36) may
then be stated and used in its scalar form

dee/dt = (d/dt) G(se) + F(se) (37)

Denoting the radius and wall thickness by R and h respectively, the nominal
hoop stress is c¢0=p30/2h0 with p denoting the internal pressure. Incompressi-
bility requires R%h0=R2h and hence

o5 = PR/2h = 0, (R/R))> = 940 xp 3e, (38)

with e¢s=1n R/R0 denoting the natural hoop strain. From eq:s (31) and (38)
follows, cf. eq. (16)

S¢ = T40 ©XP (36¢ + ) (39)
For the sphere we have 0e=o¢ and €e=2€¢ and hence

Sy = 0¢0 exp (3€e/2 + w) (40)
This combines with eqg:s (34) and (37) to give the differential equation

(dse/dt)(l/se - 3G'/2 - g') - 3F/2 - £ = (1/p) dp/dt (41)
with the rupture criterion

l/seR - 3G'(seR)/2 - g‘(seR) =0 (42)
If no instantaneous effects are present, i.e. G=0 and g=0, then SeR=®/ and

© dse
t, = S (43)
R 0¢0 seL3F(se)/2+f(se)J

Comparison with eq. (29) shows that the purely brittle rupture time (F=0) is
given by the same form as for uniaxial tension, whereas the purely ductile
rupture time (£20) is shorter by a factor 2/3. Further studies of these
results are under way.
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Fig. 1 Creep rupture curve and predictions for purely ductile (Hoff)
and purely brittle (Kachanov) rupture.

p

tp t

Fig. 2. Instantaneous application of constant load.

%

Fig. 3. Real stress o during instantaneous load application (0-1) and
during creep at constant load (1-2).
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Fig. 4. Net stress s during instantaneous load application (0-1) and during

creep at constant load (1-2).

S, S{:e.p up q, s-l-.ep down

(@) (b)

Fig. 5. Step up (a) and step down (b) loading programmes





