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1 INTRODUCTION

We consider in this paper the deformation of inelastic circular plates subjected to axisym-
metric loading. It is assumed that the material of the plate deforms elasto—viscoplastically.
Further, it is presupposed that the total strains remain small throughout the entire deforma-
tion process. However, the deflections and strains are physically nonlinear and history de-
pendent. We assume that the viscoplastic part of the deformation is governed by a constitu-
tive model with internal state variables (e.g. Anand 1985, Hart 1976, Miller 1976a, 1976b,
Walker 1981).

A comprehensive study of inelastically deformed square and triangular plates using a bound-
ary element formulation is based on Kirchhoff's plate theory and Hart's inelastic model
(Morjarja and Mukherjee 1980). However, only pure loading of the plates is considered. Hold
times or unloading are not included. Further an explicit time integration algorithm is used
(Kumar et al. 1977) which is only conditionally stable. Therefore, one equation of Hart's
model had to be replaced by the so called viscoplastic limit (Kumar and Mukherjee 1977). In
this paper a circular disk loaded axisymmetricall is considered. A numerical example is
based on Hart's constitutive model without using this viscoplastic approximation.

2 ANALYSIS
The following basic assumptions for the underlying constitutive model are introduced. The

total strain rate tensor can be decomposed additively into a purely elastic and into an inelas-
tic part.

€.. = Ee + fn (1)

For the inelastic strain rate tensor exist evolution equations of the form
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Here 0, are the components of the stress tensor, q}((ll‘) is a set of suitably selected but other-

wise unspecified state variables and T is the absolute temperature. It is generally accepted
that the inelastic deformation is incompressible and therefore

.n
€k = 0 (3)
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It is further stipulated that the internal state variables obey evolution equations

1K) = () (n)

qij_qij Ukl’qkl’T | (4)
It can be shown that the constitutive models cited in section 1 fit into the mathematical
frame of equations (1) to (4). It is further assumed that information on the values of the
inelastic strains and of the state variables at time t = 0 is available. The loading history
from the unloaded state begins at t = 0.

We assume a circular plate of uniform thickness h. We introduce a cylindrical coordinate
system with radius r and axial coordinate z. We presuppose that the plate thickness h is
small in comparison to the radial extensions of the plate (thin plate theory). Further, the
load is assumed as axisymmetric.

The total radial and azimuthal strains €y and €,, € principal strains and the same conclu-

sion holds for the respective stresses. We denote the axial deflection of the plate by w. We
suppose that the assumptions of the classical Kirchhoff plate theory are valid. Then we can
apply the following kinematic relations (Timoshenko and Woinowsky—Krieger 1959)

o =l (5)
IT Er—?-

_ z dw
‘op= T T dr (6)

Due to the thin plate assumption (¢ = 0), a state of plane stress can be presupposed. Then

Hooke's law takes the form

g
2z
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Here E denotes Young's modulus and v Poisson's ratio.

We introduce the plate bending moments

h/2
Mrr = f—h/2 0,,2dz 9)
h/2
Mgaga = f—h/.‘z a¢¢zdz (10)
Combining equations (9), (10), (5), (6), (7) and (8) yields
M, =-D [3—?21 +f g—r—] - f_ygfhlijz (eIrlr +v eg(p)zdz (11)

and
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Here D denotes the plate bending stiffness

EhS

— (13)
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We assume that the plate is loaded by an axisymmetric line force Q(r) and take the follow-
ing equation of equilibrium (Timoshenko and Woinowsky—Krieger 1959)

err 1
T"‘-I_-(Mrr—M(p(p)-l‘Q(r):O (14)

We further assume that the plate is loaded by an axisymmetric surface load p(r). Then the
shearing force Q(r) is given by

Q) = 1 J. ’ p(p)pdp (15)

T.
1

Next, the expressions (11) and (12) are inserted into equ.(14).

3 2
g__‘:’sv.+ld_v2!_l2d_w=9_@+@_gg.@ (16)
dr r dr r° dr D r dr

Here the inelastic functions f(r) and g(r) are defined as

3 h/2
f(r): = L%ir'/l f o (eg So—e?f) zdz 17)

h/2
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. s zdz (18)
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If the inelastic functions f(r) and g(r) are set equal to zero, the governing equation of the
classical Kirchhoff theory is recovered from equ.(16).

The general solution of the linear differential equation (16) takes the following form

w(r) = w(r) + wp(r) + w,(r) (19)

Here w_(r) is the general solution of the homogeneous part of equ.(16).

- 2 r
wo(r) = A+ Ay r® + Agln N (20)

A}, A, and A, are integration constants to be determined from the boundary conditions. A
particular solution wp(r) can easily be derived as
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A particular solution w (r) can be found by the method of variation of parameters in analo-
gy to the problem of an melastlcally deformed cylindrical shell (Kollmann and Mukherjee

1984). For the inelastic plate the following particular solution can be derived

w (1) = F;(r) + Fy(2) 2+ Fq(r) lni—o

The functions F, (r), F,(r) and F,(r) are given as

Fi() =~ 1 Ur [(1—21n%f(ﬂ)—4g(p) ln{f—o] pdp

; 0
(r)r (1 —2ln + g(r)r (1 —2In f) }

Fo(r) =i U Mdp g(r)+g(r)]

Fo(r) = — & { f [0+ 2800 | sto 2 () + 22y ]

where

(22)

(24)

(25)

(26)

In this paper we adjust our solution only to one set of boundary conditions. We assume an

annular plate with clamped outer and free inner boundary. Then the following boundary

conditions have to be met

w(r,) =0
dw _
ar|, =0
0
Mrr(ri) =0

These boundary conditions yield the following integration constants
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3 TIME INTEGRATION AND CONSTITUTIVE MODEL

Equation (19) in combination with eqns.(21), (22), (23), (24, (25), (30), (31) and (32) is the
formal solution of a genuinely nonlinear boundary value problem. The nonlinearity stems
from the functions f(r) and g(r) which depend on the accumulated inelastic strains due to
eqns.(17) and (18). The evolution eqns.(2) and (3) constitute, in combination with suitably
prescribed initial values, an initial value problem. Therefore, an initial-boundary—value
problem has to be solved. It proves useful to include all physical nonlinearities into an
"extended" initial value problem (Kumar and Mukherjee 1977). For this purpose eqns.(7),
(8), (16), (17) and (18) are differentiated formally with respect to time. Then the general

solution (19) depends on the pressure rate p and the inelastic strain rates ¢, _and 'e:(p.
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We apply the following general solution strate%y for the inelastic initial-boundary—value
problem (Mukherjee 1982). Given the loading history p(t), the first step is the calculation of
the purely elastic solution at zero time. The stresses at zero time (together with the internal
state variables if any) are used in the inelastic constitutive equations to compute the initial
nonelastic strain rates and the rates of the internal state variables. Then the initial time
derivatives of the displacement and the stresses can be computed from the differentiated
eqns.(19), (7) and (8?. Next, these derivatives and the rates of the inelastic strains and
internal state variables are used to obtain the relevant integrated variables throughout the
plate after a small time increment At. This process is continued until the time histories of
all relevant variables are determined throughout the plate as functions of position and time.
The ;iara.meter integrals in eqns.(23), (24) and (25) are evaluated numerically by the trape-
zoidal rule.

The time integration has to be performed numerically due to the nonlinearity of the consti-
tutive model. Explicit time integration schemes (Banthia and Mukherjee 1985) are simple to
implement. But they suffer from the drawback that they are only conditionally stable. For
the p)resent work an implicit time integration algorithm is applied (Cordts and Kollmann
1986).

In this study viscoplastic deformation of the plate is described by Hart's constitutive model.
Since this model has been presented repeatedly in the literature (e.g. Hart 1976, Mukherjee
1982, Kollmann 1987) it is omitted here for the sake of brevity. In our work we assumed a
plate of stainless steel 304 at a homogeneous temperature of 4000 C. The material para-
meters for Hart's model have been reported elsewhere (Mukherjee 1982, Kollmann 1987). We
assumed that the initial values of all inelastic strains are zero and that the plate has a homo-
geneous initial hardness of ¢* = 117.26 MPa.

4 RESULTS AND DISCUSSION

We consider a circular plate with 0.25 m outer radius, 0.05 m inner radius and 0.013 m
thickness. The pressure p increases linearly with time in 0.2 s from zero to the maximal
pressure of 1.014 MPa. Next a hold time of 10 s is added. Finally, the solution is traced
under zero pressure until a total elapsed time of 15.0 s. This loading history is depicted
schematically in Fig. 1.

Fig. 1 shows the distribution of the deflection w over the radius s for different times. For
comparison the purely elastic solution under maximal pressure is also plotted (which for the
sake of brevity will be called the "elastic" solution in the sequel). It can be seen clearly that
at the end of the loading time (t = 0.2 s) the deflection of the inelastic plate at the inner
radius is more then twice of the elastic one. Further it can be observed that substantial
viscoplastic flow occurs under constant load (compare curves for t = 0.2 and t = 10.2 s).
Analogously viscoplastic deformation continues between t = 10.4 s and t = 15.0 s where the
plate is completely unloaded. The deflection of the unloaded plate is at t = 15.0 s still larger
than the elastic one.

Fig. 2 shows the radial dependence of the hoop stress at a height of z = —6.06 mm for differ-
ent times in comparison with the elastic solution. The hoop stress takes its maximal value
for all times at the inner edge of the plate. Remarkably the maximal elastic stress is larger
then the corresponding viscoplastic stress (t = 0.2). During the hold time a redistribution of
the stresses can be noticed. Finally, the residual stress in the completely unloaded plate

(t = 15.0 s) is plotted. In Fig. 3 the distribution of the hoop stress over the plate thickness
at the inner edge (r = 50 mm) is presented. Again for comparison the elastic solution is de-
picted. The nonlinear effects and the redistribution of the stress field due to viscoplastic
effects are distinct. Also the residual stress field at t = 15.0 s is depicted. It has to be em-
phasized that the residual stress field is obtained as a part of the solution by tracing the
loading history until the plate is unloaded. No yield criterion nor a loading—unloading condi-
tion has to be considered in Harts model.
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5 CONCLUSIONS

A semianalytic solution has been derived for the analysis of viscoplastic circular plates under
axisymmetric loading. For the general solution it is assumed that the total strain rate tensor
can be decomposed additively into an elastic and an inelastic part. The inelastic deformation
is governed by a set of evolution equations using internal state variables. For a numerical
example Hart's constitutive model is used. From the computations the dominating influence
of the viscoplastic effects over the elastic ones can be clearly seen. We feel that our results
can be used as a benchmark for viscoplastic finite element computations.
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Figure 1: Radial distribution of deflection for different times
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Figure 2: Radial distribution of hoop stress at z = — 6.06 mm for different times
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Figure 3: Distribution of hoop stress over the plate thicknesses at bore of the plate
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