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INTRODUCTION

Many engineering structures in nuclear reactors, thermal power stations,chemiéal
plants and aerospace vehicles are subjected to cyclic mechanica-thermal loading,
which is  the main cause of structural fatigue failure. Over the past twenty
years, designers and researchers have paid great attention to the research on
life prediction and elastoplastic analysis of structures under cyclic loading.

One of the key problems in elastoplastic analysis is to comstruct a reasonable
constitutive model for cyclic plasticity. Up to now,a great deal of experimental
and theoretical investigation on this subject have been carried out, and lots of
models have been proposed (Dafalias, 1976; Eisenberg, 1976; Mr6z,1976; Chaboche,
1977; Drucker, 1981; Valanis, 1983; Ohno, 1986). 1In practical application, the
criterion to evaluate whether a model is reasonable is that the model should
have the ability to predict accurately various characteristic behavior of mate—
rials, the material constants should be small in number and can be determined
conveniently,and the mathematical expression of the model should be sufficiently
simple so as to be incorperated easily into computer code and be implemented
effeciently. Based on this viewpoint, the authors have proposed a simple model
which has the same presentation as the mixed hardening theory (Lei, 1986). The
model has only five material constants, excluding those of elasticity, which can
be determined by a strain-controlled cycling test. Good agreement has been found
between theoretical prediction and experimental data under both strain-controlled
and stress—controlled cyclic loading (Lei, 1986; Wang, 1988). Another advantage
of this model is that an analytical integration method (Wang, 1985; 1987) may be
used instead of numerical approximation to determine stress and plastic strain
from deformation results after each iteration or loading increment. It improves
the accuracy and effeciency of structural analysis.

In the present paper, the constitutive equations are briefly outlined. Then, the

model is implemented in a finite element code to predict the response of cyclic

loaded structural components such as a double-edge-notched plate, a grooved bar .
and a nozzle in spherical shell. Numerical results are compared with those from

other theories and experiments.

CONSTITUTIVE EQUATIONS

Matels demonstrate complicated behavior under cyclic loading, e.g. cyclic har-—
dening, cyclic relaxation, and cyclic creep. In order to simulate these material
behavior by constitutive equations,it is necessary to develop a proper hardening
law. In other words, the task is to find a reasonable description of both the
expansion and the rate of translation of subsequent yield surfaces. Therefore,
the equations of the mixed kinematic-isotropic hardening theory may be applied
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as the fundamentals of the present theory.
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Equation (1) defines the yield surfaces in stress space. Sjij is the stess devia-
tor,Zij is the back stress tensor;pris the accumulated effective plastic strain
Bk is the radius of the yield surface.The associated flow rule (2) remains valid
when nonproportional effect is not too serious,while the Prager's kinematic har-
dening law(3) must be redefined to describe cyclic plasticity. From equation (1)
to (3) and the consistancy condition dF=0, we have
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where G is the shear modulus, EP = d 0 /dgP is the plastic modulus. We may obtain
the differential constitutive equations from equations (1) to (5).
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where %Skl is the elastic stiffness tensor. Equation (6) demonstrates that the
two parameters related to the description of cyclic plasticity are k and EP. the
determination of these two parameters is based on the understanding of material
behavior.

Determination of k

Experimental data from many alloys show that there is no explicit comnetion bet-
ween the size of initial yield surface and that of subsequent yield surfaces. It
concludes that the size of the yield surface may have a remarkble change at the
first loading reversal. In addition, there is evidence that the size of yield
surface at stable limit cycle depends upon the plastic strain amplitude, causing
the non-Masing behavior (Jhansale, 1973). Therefore, we have reason to assume
that

=P
k = k@P) = ks(g gR) + [ko- ks(agR)le™ * )

where J%ko andJ%ks are initial and stable radius of yield surfaces respectively.
h is a material constant. 4 EP is the plastic strain amplitude. For the sake of
simplicity, equation (7) may be specified as a discrete form:

k = ks(4 gP) + [ko- ks(JgR)Je™ " (8)

where ¢ is a material constant. n denote the number of cycle. Equation (8) means
that k will keep constant at each loading phase. Thus,equation (5) is reduced to
?: 2/3Ep because dk/dZTP= 0. The constitutive equations in form of purly kine-
matic hardening. ks (48P) is determined from the increasing level test. ks(‘gégu)
gives one possibility of describing the historcal effect of maximum strain range
¢1é}Lcnlthe subsequent response of materials. For materials having Masing's be-
havior, k may be considered as a constant for the duration of cyclic loading.

Determination of plastic tengent modulus

The most essential features of material behavior have been demonstrated in the
former papers (Lei, 1986; Wang, 1988).

(1) The characteristic of monotonic stress-strain curve is independent from that
of cyclic stress-—strain curve.

(2) Strain-controlled cycles always tend to converge to a stable hysteresis loop
after cyclicly hardening or softening. The stable loop wusually has zero mean
stress. Different hysteresis loops with different strain amplitudes may have the
same "Master Curve" (Ellin, 1985).

(3) Stress—controlled cycles may be considered as a particular form of strain-

N
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controlled cycles. Strain-controlled cycled are therefore considered as the es-
sential pattern of cyclic loading.

The key features of material behavior mentioned above is an important basis for
the determination of EP. Under monotonic loading,Ep may be determined from mono-
tonic stress-strain curve. Under cyclic loading,stress-strain curves at differet
loading phase may have a common expression:

T = E§ &%+ ve(ED) (9)
p_d0_.p _dg(gP)
E —@)—Eo +—E%.p—y (10)

where & and EP are effective stress and effective strain measured from the cur—
rent yield point.If there is no plastic strain at the last loading reversal,i.e.
the current loading is going from an elastic unloading, they should be measured
from the last yielding point. Y is a discrete memory paramenter. It remains con-
stant at each loading phase. In stable cycle,yY = 1. E; is the asymtotic slop of
cyclic stress-str§3? curve. The proposed form of g( gP) is:
=P £

g(é‘)——_p—angb (11)
where a and b are material constants determined from a stable hysteresis loop.
Expressions other than (9) to (11) may be applicable, for example, the Ramberg-
Osgood law.

Figure 1 illustrates how to determine Y. L and N represent the current and the
last unloading points. The strain range between L and N would uniquely determine
a stable hysteresis loop L'N',which is formulated by equations (8) and (9)(¥Y=1).
Starting from N,it is assumed that the subsequent loading would go through D and
pass across LL' at point F, so that

IF / IL" = Cy (12)

where Cy is a material constant describing the rate of cyclic stablization. It
is determined by the relation between stress peaks from expermental data of a
strain-controlled test.The stress value is determined by (12).The plastic strain
and stress ranges between D and F and the discrete paramenter ¥ all satisfy the
equation (9). Therefore, ¥ is determined.
y =0'DF—E€35F (13)
g(ebr)

Y does not change until the subsequent unloading at G. The next ) should be de-
termined in a similar way.

The simple expression of the model not only makes it easy to be implemented in a
computer program but also has its numerical advantage. At each loading increment
and iteration, analytical integration method may be applied to calculate plastic
strain and stress, with the help of equations (2) to (6), from the increment of
displacement and strain.When k obeys (8) or keeps constant during loading cycle,
the model remains the presentation of kinematic hardening law, and the results
from analytical integration is accurate. On the other hand, if k obeys (7), the
results from the analytical integration either in the extended form of kinematic
hardening (Wang, 1985) or in the form of mixed hardening (Wang, 1987) are suffi-
ciently accurate. Obviously, the analytical integration method is more efficient
and more accurate than the conventional numerical approximation.

NUMERICAL RESULTS OF FINITE ELEMENT ANALYSIS

Three structural components are considered here, a double-edge-notched plate,
which is the same as the one used by Watanabe and Atluri (1985), an axisymmetric
notched bar, which has been analyzed by Ohno and Satra (1987),and a axisymmetric
pressure vessel component.These components are subjected to repeated or reversed
loading.The material constants used for the nothed components correspond to 2024
aluminum (Lei, 1986; Wang, 1988), while those used for pressure vessel component
correspond to Grade 10, 20 and A3R mild steel ( Lei et al, 1988). The numerical
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simulation of the material behavior under uniaxial condition has been performed,
and the results have been confirmed to be valid (Lei, 1986; Wang, 1988).

Figure 2, Fig. 3 and Fig. 4 show the finite element models of the grooved bar,
the notched plate and the nozzle-shell component respectively.Numerical resuslts
of the notched components are shown in Fig. 5 to Fig. 8. They demonstrate that
the responses of the grooved bar are similar to that of the notched plate (see
also Wang, 1988). Under complete reversed or repeated loading, the stress—strain
responses at notch roots are similar to those reported by others (Watanabe,1985;
Chaboche ,1986;0hno,1987). Under partially reversed loading,the numerical results
(see Fig. 7 and Fig. 8) are similar to the experimental prediction presented by
Wetzel(1968), who apply the Neuber's law as unloading condition. Figure 9 shows
the principal stress—strain hysteresis loops at the point with maximum stress.
These results are also similar to those of notched componets.

CONCLUDING REMARKS

A constitutive model for cyclic plasticity has been outlined. The mathematical
expression of the model is almost as simple as that of the mixed kinematic-iso-
tropic hardening theory except that a simple hardening law in discrete form has
been introduced to describe the material behavior under cyclic loading. In many
situations, the model can be simplified further into a form of kinematic harde-
ning so that it has only five material constants which may be determined from
a strain-controlled test,and the analytical integration method can be applied to
improve the accuracy and efficiency of numerical analysis.

Numerical resultes of two notched components and a nozzle in sperical shell have

been compared to those from others.Although the results come from different cons-
titutive theories, i. e. the presented discrete theory, the continuous theory

(Chaboche, 1986), the two-surface theory (Ohno, 1987) and the endochronic theory

(Watanabe, 1985), they seem to have a similar descriptive ability. It concludes

that the presented model is more applicable because its mathematical form and

the procedure to determine material constants are simpler.

It is meaningful that the numerical results are similar in principle to those
from Wetzels experiment (1968). Further theoretical and experimental investiga-
tions are necessary for a further verification of the applicability of constitu-—
tive theories.A simplified method for structural analysis replacing the step-by-
step approach seems possible,and a further development of the present theory for
viscoplasticity is being undertaken.
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Fig. 1. The determination of y
L——SOmm——J

Fig. 3. Finite element model
of double—edge—potched plate
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Fig. 2. Finite element model of
axisymmetric notched bar

Fig. 4. Finite element model of
nozzle in spherical shell
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Fig. 5. Response of notched bar under Fig. 6. Response of notched bar under
reversed loading (80 MPa——— -80 MPa) repeated loading (120 MPa ———— O MPa)
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Fig. 7. Response of notched bar under Fig. 8. Response of notched plate
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Fig. 9. Response of nozzle-shell connecting under
repeated internal pressure (16 MPa——0)(point A)
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