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Much attention has been paid to the treatment of dependence in performing probabilistic risk
assessments (PRA). For instance, causal dependencies (e.g., common cause failures, cascade
failures, and intersystem dependencies) have been taken into account in PRAs beginning with
the Reactor Safety Study (USNRC, 1975). In addition, beginning in the early 1980s, attention
began to be paid to the issue of probabilistic dependence between the failure rates
(Apostolakis and Kaplan, 1981) or seismic fragilities (Kaplan, 1985) of similar components, and
the impact of such dependence on risk estimates. By now, it has been clearly demonstrated
that failure to take either causal or probabilistic dependence into account in PRAs can lead to
misleading results--typically, underestimates of the true risk.

However, there has been little attention to date on the effects of dependence in the area of
decision making. The objectives of this paper are (1) to illustrate the potential importance of
dependence in making decisions about risks, and (2) to present some ideas on how to com-
municate the effects of dependence to decision makers in a clear and easily comprehensible
manner.

Two particular types of decisions will be of particular concern. The first involves evaluations
of risk acceptability for a single technology that is in widespread use; e.g., at multiple facilities,
or by multiple people. The second type of decision involves comparisons of two or more alter-
native technologies; e.g., two alternative designs, or a base case and various possible risk
reduction strategies.

Evaluations of Risk Acceptability for a Single Technology

A state-of-the-art PRA today typically involves some statement about the magnitude of the
uncertainty that exists about the final result of the assessment. For example, in a risk assess-
ment of a nuclear power plant, the results would typically include a range (i.e., a probability
distribution) of possible core melt frequencies, rather than a single value. Similarly, in an
assessment of the risks associated with a toxic or carcinogenic chemical, the results would
typically include a range of possible dose/response values, rather than a point estimate.

However, such assessments are not likely to specify whether the uncertainty is associated pri-
marily with population variability (Kaplan, 1983), or, instead, is due to a general lack of know-
ledge about the technology being evaluated, in which case the risk levels borne by different
members of the population are likely to be highly correlated. This distinction can be partic-
ularly important for generic PRAs; e.g., risk analyses for a technology or an entire population
of facilities, rather than for a specmc facullty For example, if a generic PRA concludes that the
risk of core melt is between 10" and 104 per year for a particular type of nuclear power plant
it may make a big difference to know whether some plants have a core melt frequency of 104
and others a frequency of 105 , or whether the same (albeit uncertain) core melt frequency
applies to all plants of that type.
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If all plants in the population have the same (or highly correlated) core melt frequencies, then
a high risk at one plant cannot be canceled out by a low risk elsewhere, and the range of
possible societal consequences for all plants taken together will be much broader. Thus, for
example, the chance of having two or more core melt accidents over a period of several years
will be greater in the correlated case than if the core melt frequencies at different plants are
independent. In this case, if our societal utility function is nonlinear in the total nhumber of
accidents (e.g., if public opinion is more forgiving of the first accident than of subsequent
events), then the technology in question could be much more hazardous on a societal basis
than would be suggested by a simple multiple of the mean core melt frequency per plant-year.

Similarly, the backfit costs resulting from an accident will tend to be greater in the correlated
case than in the case of independence since the increased risk estimates resulting from the
accident will apply to a larger number of facilities. To see this, consider the different impacts
of an accident caused by a generic industrywide design flaw (correlated across all plants in
the population) versus an accident caused by a site-specific feature such as soil subsidence or
offsite flooding. An accident caused by a design flaw is likely to make us reconsider the safety
of all other facilities using the same design, and, hence, is likely to result in backfits or safety
improvements being required at all similar facilities for a large total societal cost. By contrast,
if it can be shown that the accident was caused by a feature that is truly site specific, and is
unlikely to occur at other plants, safety improvements will be needed at only a single plant for
a much lower total societal cost.

Much the same type of reasoning applies to the assessment of health effect risks; e.g.,
dose/response relationships for toxic chemicals. Here, the question is whether the assessed
uncertainties represent variability between the most and least susceptible people in the
exposed population, or, instead, are due to a general lack of knowledge about the hazards of
the substance being evaluated. If the uncertainties are due to a general lack of knowledge,
then the risk levels experienced by different members of the exposed population will tend to
be highly correlated, and all individuals in the population can be expected to experience
similar levels of risk. For instance, if the risk of the substance in question turns out to lie
toward the high end of its assessed range, then the total risk (i.e., to all exposed people) could
be extremely large. Since our societal utility function is almost certainly nonlinear in the total
number of fatalities, the substance in question in this case could entail much greater societal
risks than would be suggested by a simple multiple of the mean risk to a single individual.
This is very different from a situation in which a high risk to one individual (e.g., someone with
respiratory problems) is canceled out by a lower risk to other, less vulnerable, people, in
which case the magnitude of the total societal risk is well-represented by the risk to an
“average” individual.

Of course, most risk assessments will yield results that reflect a mixture of population vari-
ability and state-of-knowledge uncertainty. For instance, a PRA of a nuclear power plant will
typically include some highly plant-specific features and also some elements of uncertainty
(e.g., regarding degraded core phenomena) that would affect all plants in the population
equally. This poses a problem for analysts trying to communicate their results to decision
makers. On the one hand, a probability distribution may be misleading if important elements
of correlation are not communicated. On the other hand, decision makers are likely to be
perplexed by statements such as, "Sixty-five percent of the uncertainty is due to correlated
factors,” or “The correlation coefficient between the core melt frequencies of different plants in
this population is estimated to be 0.65.”

At present, perhaps the best approach is simply to explore with the decision maker any impor-
tant nonlinearities in his or her utility function; e.g., risk aversion with respect to large
numbers of fatalities, or an aversion to multiple accidents. Risk assessment results can then
be presented in terms of the most relevant attributes. For example, decision makers who are
risk averse with respect to multiple fatalities might wish to see distributions over the total
number of fatalities likely to result from a particular hazardous substance, instead of distrib-
utions over the level of risk to a randomly selected individual. Thus, the aim of the risk analyst
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should be to provide as much assistance as possible to the decision maker in processing the
results of the analysis. This is in contrast to the usual approach in risk analysis, in which
certain conventional figures of merit are used to describe the risks of hazardous technologies,
without much regard for the specific needs of decision makers in the situation at hand.

Comparisons of the Risks from Two or More Technologies

In some types of risk comparisons, the technologies being compared are so different that their
risks are unlikely to be correlated. For example, although the risks from nuclear power plants
and coal-burning power plants may both be quite uncertain, these uncertainties arise from
very different sources; e.g., lack of knowledge about safety system reliabilities at nuclear
power plants versus lack of knowledge about the health effects of sulfur dioxide emissions
from coal plants. In this case, the difference in risk from using one technology rather than
another can be determined simply by subtracting the two risk estimates, under the assumption
that they are independent.

In other cases, however, the designs or technologies being compared may be quite similar,
with only incremental differences between them; e.g., the use of more modern equipment to
perform the same function, the addition of an extra safety system, or the elimination of one
particular accident scenario through the correction of a design flaw. In this case, simple risk
comparisons such as the one shown in Figure 1 are subject to possible misinterpretation. For
instance, the comparison shown in Figure 1 suggests that Design B may not necessarily be
better than Design A, since Point B; represents a higher risk level than Point Ag. Simply sub-
tracting the two risk levels in this case would give a result similar to that shown in Figure 2.
According to that figure, there appears to be a significant chance that the desired risk
reduction associated with changing from Design A to Design B could actually turn out to be a
risk increase (as represented by the left-hand tail of the curve extending below zero).
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Figure 1. Comparison of the Risks of Two Alternative Designs
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Figure 2. Difference between the Risk Levels of Designs A and B (assuming they are inde-
pendent)

However, in some situations we may actually know for certain that Design B represents a
reduction in risk. For example, Design A may represent the risk posed by a particular plant
with a two-train auxiliary feedwater (AFW) system, while Design B represents the risk from the
same plant with a three-train AFW system. In this case, much of the uncertainty reflected in
Figure 1 is likely to stem from factors that are highly correlated between the two designs; e.g.,
uncertainty about initiating event frequencies, about the response of safety systems other than
the AFW system, or about containment response to a core melt. The risks of Designs A and B
in this case would clearly not be independent, and Figure 2 would therefore not be a valid
description of the difference in risk between the two technologies.

The comparison shown in Figure 1 would still be valid, of course, but it may give misleading
impressions to some decision makers. For example some decision makers may interpret
Figure 1 to imply that the benefit associated with Design B is highly uncertain. However, the
sitution depicted in this figure is equally consistent with, say, a guaranteed factor of 3 improve-
ment in a highly uncertain initial risk level. This would be the case, for instance, if high risk
for Design A (Point A;) always occurred in conjunction with high risk for Design B (Point B,),
and similarly for lower risk levels; e.g., Ag and B,

To avoid such possible misinierpretations, risk analysts may wish to present not only “before-
and-after” comparisons such as Figure 1, but also distributions for the actual magnitude of the
risk reduction associated with a particular design change. This risk reduction can be repre-
sented either by an arithmetic difference or by a ratio of the two risk levels. Which approach
is more appropriate in a particular context may depend on the type of safety improvement
being evaluated, and also on the form of the overall PRA model being used.

For example, if the design change in question results in the elimination (or reduction in fre-
quency) of one particular accident scenario, this might best be reflected by the arithmetic dif-
ference between the risk levels before and after instituting the improvement. An arithmetic
difference* will highlight the reduction in risk for the particular scenario affected by the

*Note that any uncertainty analysis must be performed for the entire quantity RISK, - RISKg,
or, equivalently, for the difference (4;— ,lj'). Simply subtracting the distributions for RISKp
and RISKp as if they were independent will not yield correct results, and, in particular, will
not remove the confounding effects of uncertainty about the 4; for i # j.
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improvement, while eliminating the uncertainty associated with those accident scenarios that
are unaffected by the improvement:

n n
RISKa — RISKg = ) 4= Y ¢ =4~

i=1 i=1

where.
A; = the frequency of scenario i in Design A.
A = the frequency of scenario i in Design B.
A; = A for all scenarios except scenario j.

By contrast, use of a ratio
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A >
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would tend to confound the reduction in risk for the scenario of interest with uncertainty about
the frequencies of other scenarios.

However, ratios may be more appropriate for other types of safety improvements, such as the
addition of an extra safety system; e.g., a second containment structure. In this case, the
overall risk of a particular scenario can be expected to decrease by a factor equal to the failure
probability of the new system. This will be reflected by the ratio” of the risk levels before and
after instituting the new safety system:

n

P
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where
P; = the failure probability of system i (i=1, ..., n).
P, 1 = the failure probability of the new safety system added in Design B.

In this situation, use of the arithmetic difference between the risk levels.

n+1 n
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*Here again, any uncertainty analysis must be performed for the overall ratio, or else for the
quantity 1/P,,4 in isolation. Simply taking the ratio of the distributions for RISK, and RISKg
as if they were independent will not yield correct results.
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would tend to confound the risk reduction resulting from the system of interest with uncertainty
about the failure probabilities of other safety systems.

Conclusions

Dependence can be important both in evaluations of risk acceptability for a single technology
that is in widespread use (e.g., at multiple facilities, or by multiple people) and in comparisons
of two or more alternative technologies; e.g., a base case and one or more possible risk
reduction strategies. The role of dependence in making decisions about risk has received
little attention to date, and is not always adequately understood, either by decision makers or
by risk analysts.

Some suggestions have been presented here for how to communicate the impacts of depend-
ence to decision makers. However, these ideas are only preliminary in nature. Further sug-
gestions along these lines would be more than welcome, and could serve to stimulate
discussion on this important topic.
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