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ABSTRACT 

All the forces in the real world act dynamically on structures. Since dynamic loads are extremely difficult to handle in 

analysis and design, static loads are usually utilized with dynamic factors. Static loads are especially exploited well in 

structural optimization where many analyses are carried out. However, the dynamic factors are not determined logically. 

Therefore, structural engineers often come up with unreliable solutions. An analytical method based on modal analysis is 

proposed for the transformation of dynamic loads into equivalent static loads (ESLs). The ESLs are calculated to generate an 

identical displacement field with that from dynamic loads at a certain time. The process is derived and evaluated 

mathematically by using the modal analysis. Since the exact solution is extremely expensive, some approximation methods 

are proposed. Error analyses have been conducted for the approximation methods. Standard examples for structural design 

are selected and solved by the proposed method. Applications of the method to structural optimization are discussed. 

INTRODUCTION 

In the general design of structures, the structures are analyzed by stress analysis. Currently, the finite element method 

(FEM) seems to be one of the best choices for computational analysis [1,2]. The external forces are given to the finite 

element analysis as input. In most cases, static analysis is carried out to calculate the status for failure since it is easy to 

handle. However, dynamic forces are imposed in the real physics. That is, real forces act dynamically. Transient analysis 

shows real and precise phenomena of structures under dynamic loads. Some researchers have been trying to use transient 

analysis in the optimization process, which is a popular method for the automatic design of structures [2-5]. However, 

transient analysis is extremely complicated and expensive [6,7]. Therefore, static loads are generally utilized in the 

optimization process. Structural optimization seems to succeed for static loads with dynamic factors [8]. The dynamic factors 

are being determined by ad hoc processes. 

Generally, a static load with a dynamic factor is made in the same direction of the dynamic load. A structure vibrates 

under a dynamic load. Failure conditions can happen when the structure is deformed in the opposite direction of the dynamic 

load. Therefore, the analysis by a static load with a dynamic factor may not cover all the failure conditions. Instead, some 

parts of a structure can be designed in the wrong way. Also, the dynamic factors are not determined in a legitimate manner. A 

dynamic load is transformed to an ESL set. The ESL set is made to generate the identical displacement field with the one 

from the dynamic load at an arbitrary time [9-11]. The displacement field under the dynamic load can be expressed by the 

modal analysis in the vibration theory. If the displacement field of the dynamic load is replaced by that of a static load set, a 

simultaneous equation is constructed with the unknowns for the static loads. The solution of the equation is the ESL set. The 

transformation is derived mathematically. The exact solution exists. Since the exact solution is difficult to use and extremely 

expensive, an approximation method is derived for engineering applications. The relationship between the two methods is 

discussed. Numerical tests are conducted for standard examples. The application of the developed method is discussed in the 

context of structural optimization. 

TRANSFORMATION OF DYNAMIC LOADS INTO EQUIVALENT STATIC LOADS 

Using the vibration theory with the finite element method, the dynamic behavior of a structure is expressed by the 



following differential equations" 

M d  + K d  - f - {0 . - .0  f~. . . f i+,_~0. . .0} T (1) 

where M is the mass matrix, K is the stiffness matrix, f is the vector of  external dynamic loads, d is the vector of dynamic 

displacements, and 1 is the number of nonzero components of the dynamic load vector. Vector z is defined as follows" 

d = Qz (2) 

where Q = [1.t /1 l tI  2 l t l  3 " "  ud N ] and ~u i =  { Ul i  U2i U3i " ' "  UNi }T. The matrix Q is a modal matrix and ~pi is the i-th 

eigenvector. Substituting Eq. (2) into Eq. (1), Eq. (1) is decoupled as follows" 

+ D z  - Q T f  (3) 

where D is the diagonal matrix whose i-th diagonal component is the square of  i-th natural frequency co ~. The dynamic 

displacement of  the p-th degree of  freedom (DOF) at an arbitrary time ta is defined as: 

N 
dp (ta)  -- Z U p j Z j ( t a )  

j=l 
(4) 

where N is the total DOF. The above process is called transient analysis. Generally, in transient analysis, the summation of  

Eq. (4) is carried out up to n which is smaller than N. The static analysis with FEM formulation is expressed as: 

K x = s  (5) 

where x is the vector of static displacements and s is the vector of  external static loads. An ESL set, which generates the same 

displacement field as that of  the dynamic loads at an arbitrary time ta, is expressed as" 

s = Kd(ta) (6) 

Eq. (6) may look trivial, and it may not be advantageous since it needs an expensive transient analysis. However, it shows 

that an ESL set exists for a dynamic load at an arbitrary time. 

Exact Method 

The ESL vector s in Eq. (6) can be obtained in another manner. Using the same process of  Eqs. (2) and (3), Eq. (5) is 

modified as follows" 

Dy = QTs (7) 

where x = Qy is defined. Therefore, each component of  y is" 

1 N 
Yk -- - - 7  ( Z  UjkSj ) (k - l , . . . ,  N )  (8) 

(Ok j=l 



If Xp = dp(ta) (p = 1, '",N), then the two fields from the dynamic and the static load sets are identical. Therefore, the following 

equations are obtained: 

N 1 N 
d p ( t a ) -  Xp - ~--'--25-(~--' UpkUjkSj)(p - -1 , . . . ,N)  

k--~ T - i ' =  (Ok " 
(9) 

Eq. (9) is a system of linear simultaneous equations which have N variables of s. The load vector s of Eqs. (6) and (9) 

are identical. Eq. (6) requires a transient analysis which might be very expensive. Eq. (9) also needs a modal analysis and a 

lot of calculations. Therefore, although Eqs. (6) and (9) give an exact ESL set, an approximation method is needed. 

Approximation Method 
Since Eqs. (6) and (9) can be extremely large, the external static force vector s is approximated as follows: 

s=  [0 "" 0 si, "'" si,+r_~ 0 "" 0] T (10) 

The indices of nonzero components in s can be made arbitrarily. In engineering sense, the nonzero components can be 

imposed on the important places where the dynamic loads act. Eq. (9) is divided into two sets of equations as follows: 

N 1 i'+l'-I 
d p ( t  a ) - Xp - Z - ~ 2 (  Z Upk UjkSj)  ( P  -- 1,.-. , l ' )  

k=l k j=i' 

N 1 i'+/'-I 
d p ( t a )  ~ Xp - Z - , 5 - (  Z MpkUjkSj ) ( p  -- It -1" l , - - - , N )  

k=l (Ok j=i' 

(11) 

(12) 

Eq. (11) is a system of linear simultaneous equations wi th / 'var iab les  for sj Therefore, vector s is determined from Eq. (11) 

and dp(ta) (p > l ' )  is approximated in Eq. (12). As l '  becomes larger, the number of approximated displacements is reduced. 

If a static load set is calculated by solving Eq. (11) directly to make the same displacement field as that from the 

dynamic load set, it can be awkward in an engineering sense. That is, the magnitude of the loads can be extremely large in 

order to satisfy all the conditions at many nodes. This phenomenon will be explained later through examples. Therefore, the 

equations are modified to inequality equations as follows: 

1 i'+/'~l 
dp(ta) _< Xp -- _---~( UpkUjkSj)  (p - 1,- .- ,h) 

k=l (Ok j=i' 
when dp is positive (11 a) 

1 i'+l'~l 
dp( t , )  >__ Xp - ~2k2 ( UpkUjkSj)  ( p  -- l," . . g h )  

k=l j=i' 
when dp is negative (11 b) 

1 i'+i'21 
dp(t~) ~ Xp - __-25-( UpkUjkSj)  (p - h + 1 , . . . ,N)  

k=l (-Ok j=i' 
(12a) 

Eqs. (11 a- 1 lb) mean the magnitudes of displacements made by an ESL set should be greater than those from a dynamic 

load. A structure having N DOFs has N natural frequencies. In general, high natural frequencies made little effect on the 

displacements of the structure. Therefore, calculating up to n terms include only first n natural frequencies are considered. 

The selection of n is very important. The number of p in Eqs. (11 a-1 lb) need not be equal to l '  in Eq. (11). In Eq. (11), the 

number of the nodes where an ESL set is applied should be equal to the number of the nodes where the same displacements 



are needed. However, the condition does not have to be satisfied in Eqs. (1 l a-1 l b). Instead, the number of p is h, a 

sufficiently large number to represent all crucial DOFs. In that case, the ESL set can be calculated in minimum which 

satisfies the inequality constraints. Therefore, an optimization problem to calculate the ESL set is defined with Eqs. (11 a-1 l b) 

as follows: 

Finds i (i = 1,. . . , l ' )  

To minimize the square sum of s i 

subjecttoldpl<__[Xpl (p= 1,...,h) 
(13) 

Selecting the cost function as a square sum of s~ has an advantage to find the smallest load. The constraints are inequality 

equations in Eqs. (1 la-11 b). The ESL set evaluated in this optimization formulation makes a displacement field which covers 

the one from the dynamic load at a critical time. Therefore, the suggested method can be utilized in the design process with 

the aspects of safe design. 

When the exact method is utilized, the ESL set generates the same displacement field. However, it requires a transient 

analysis or a lot of  calculations. When the approximation method is used, tremendous cost can be saved and it has various 

advantages in engineering aspects. Selection of n depends on the application. Instead of  the complicated transient analysis, 

only the following processes are needed: 

(a) 
(b) 
(c) 
(d) 
(e) 

modal analysis up to n (n is much less than N) terms 

finding critical times [12] 

calculating the maximum displacements at critical times 

finding the ESL set s ( / 'variables) in the formulation in Eq. (13) 

static analysis with the calculated ESL set 

The purpose of  processes (b-c) is to use a modal analysis result without conducting transient analysis. It reduces 

calculation time drastically. However, it is also possible to find the maximum displacements from the transient analysis. 

Using the multiple critical times can overcome the difficulties of  using a static load for a dynamic load. As mentioned 

earlier, the load for the opposite direction from the given load should be considered. They can be considered by a critical time 

for the opposite direction. Therefore, the vibrational behavior can be covered by multiple static load sets. That is, a multiple 

set of  ESLs can be made from a single dynamic load. So far, engineering judgment is utilized to determine the critical times 

and the crucial nodes. The optimization to find the ESL set in Eq. (13) is conducted by an optimization software IDESIGN 

[13]. 

A P P L I C A T I O N  OF THE M E T H O D  

124-Member Plane Truss Example 
The geometry of  a 124-member plane truss is shown in Fig. 1. This structure has 49 joints and 94 degree of freedom. 

The modulus of  elasticity E, the density, and the cross-sectional area are 207GPa, 7850kg/m 3, and 0.645×10-4m 2, 

respectively. The dynamic load shown in Fig. 1 acts in a positive x-direction at nodes 1, 6, 15, 20, 29, 34, 43, and in a 

negative y-direction at nodes 1, 2, 3, 4, 5. When the dynamic load of  a half sine function is applied to the structure, it vibrates 

on the left and right side. The displacements of the nodes where the load is imposed are illustrated in Fig. 2 and 3. The times 

when the displacements have extreme value are 0.001 sec and 0.002 sec. The results are shown in Table 1. The static analysis 

under each ESL set is conducted by the commercial software ANSYS [ 14]. The ESLs in the x-direction have the largest value 

at node 1 and the smallest value at node 43, since the upper nodes have more effect than the lower nodes. The structure 

moves up and down due to the loads in the y-direction. This behavior is added to the motion in the x-direction. The left and 

right side of the structure moves up and down in turn. Thus, the ESLs in the y-direction have different signs at nodes 1 and 5. 

This example shows that a dynamic load can transform multiple ESL sets. The number of ESL sets is the same as that of  



selected critical times. Multiple static load sets should be considered so that a static load can represent the effect of a dynamic 

load on the structure. 

1 Bay 2 Story Frame Example 

The geometry of the structure and the loading conditions are shown in Fig. 4. The modulus of elasticity E, the density, 

the cross-sectional area and the sectional area are 207GPa, 7850kg/m 3, 0.03m 2, and 0.0068m 3, respectively. A half sine 

function load acts in the x-direction at nodes 2 and 3 as a concentrated load, and in the y-direction over each story as a 

distributed load. Two dominant critical times are selected among the multiple critical times when the displacements have 

extreme values. They are when the structure moves to the end in the x-direction. The times are 0.074 sec and 0.138 sec. Two 

approximated ESLs are generated for the first critical time of 0.074 sec. CASE 1 is for the loads which act in all the DOFs, 

and CASE 2 is for the loads which act in DOFs where the dynamic loads act. For the second critical time, only CASE 2 is 

calculated. The constraints are selected as total DOFs of 18. The distributed loads in the y-direction are converted to the 

concentrated loads at each nodes. The displacements at each critical times, the calculated ESLs, and the displacements under 

the ESLs are shown in Table 2. For the first critical time, the sum of the static loads of CASE 1 in the x-direction is similar to 

that of CASE 2. The y-directional components of CASE 1 and 2 have similar value at each nodes. The second critical time is 

calculated as the time when the minimum x-directional displacement happens. The extreme y-direction displacement does not 

happen at the second critical time. So, the static loads of CASE 2 about the second critical time have opposite value in the x- 

direction and small value in the y-direction compared to CASE 1 and 2 about the first critical time. The displacements under 

each ESL set cover the displacements at critical times. 

Discussion on the Application of the Method in Optimization 
The ESL can reduce considerable calculations and cost in stress analysis. However, it can be even more useful in 

structural optimization than stress analysis. Structural optimization under dynamic load seems to be quite difficult. The 

dynamic response optimization of rigid body systems have been studied. However, it is a very small system relative to the 

structural system, although the result was not quite successful. On the other hand, structural optimization under the static load 

is widely accepted. Using the developed theory here, it is expected that dynamic response optimization can be accomplished 

for structures. As explained earlier, a dynamic load can be transformed to multiple sets of static loads. The multiple loads can 

be handled by a multiple loading condition in optimization. It is noted that the ESLs depend on design variables which can be 

sectional properties and shapes. Thus, they can be changed in an optimization iteration and can be changed even in an 

iteration of an algorithm which uses a line search. Therefore, sensitivity analyses are needed in each iteration and much 

evaluation of the static loads are also needed. It is well known that those calculations are very expensive. This difficulty can 

be overcome by assuming the static loads to be constant in an iteration. The authors are doing numerical experimentation for 

dynamic structural optimization with the above methods. 

CONCLUSION 

A method is proposed for the transformation of a real dynamic load into an ESL set to make the same displacement field 

at an arbitrary time. An exact and an approximation methods are derived. The characteristics and relationship between them 

are discussed. The numerical tests for the approximation method are conducted. The approximation method shows very 

excellent results in selected standard examples. The determination of the number of nodes where the ESLs are imposed, is 

important since it is a index of approximation. The proposed method has been developed based on the fact that ESLs make a 

similar displacement field to that from a dynamic load. The stress results are not considered. In the preliminary study, the 

stresses by the ESLs are similar to those of the dynamic load at critical times when the maximum displacement happens. 

However, these stresses may not be the maximum stresses because there is a time lag between when the maximum 

displacement happens and when the maximum stress happens. Therefore the ESL set which satisfies the displacement field 

may not satisfy the stress field. This stress problem should be studied in the future as well as the optimization applications 

commented before. 
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Table 1 The results for 124 bar truss example (Newton, cm) 
For the First Critical Time 0.001 sec For the Second Critical Time 0.002 sec 

DOFs Nodes 

UX 1 
6 
15 
20 
29 
34 
43 

UY 1 
2 
3 
4 
5 

At the Displacement Equivalent 
under the Static Load 1 

Critical Time Static Load 1 (/=/'=p=12) 

22.7 22.9 8615 
20.4 20.5 7667 
18.1 18.1 6804 
15.6 15.6 6092 
13.3 13.3 5580 
10.7 10.8 4597 
8.5 8.5 3952 
7.2 7.4 1647 
3.5 3.6 53 

-0.2 -0.2 -2221 
-3.8 -3.8 -2879 
-7.6 -7.6 -3645 

At the Displacement Equivalent 
under the Static Load 2 

Critical Time Static Load 2 (l=l'=p=12) 

-22.6 -22.7 -8077 
-20.3 -20.4 -7498 
-18.0 -18.0 -6880 
-15.6 -15.6 -6266 
-13.3 -13.3 -5861 
-10.8 -10.8 -4993 

-8.6 -8.6 -4708 
-7.6 -7.7 -2879 
-3.9 -3.9 -1949 
-0.3 -0.3 - 1304 
3.3 3.3 365 
7.0 7.1 1744 
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T a b l e  2 

DOFs Nodes 

2 
3 

UX 4 
5 
6 
7 
2 
3 

UY 4 
5 
6 
7 
2 
3 

ROTZ 4 
5 
6 
7 

T h e  resu l t s  for  1 bay  2 s tory  e x a m p l e  (kN,  c m )  

For the First Critical time 0.074sec 

At the Displacement Displacement Static Static 
of CASE 1 of CASE 2 Load of Load of 

Critical Time 
(/'=p=l 8 ) (/'=8, p=l 8 ) CASE 1 CASE 2 

2.733 3.502 3.518 176.7 627.1 
5.512 6.355 6.360 145.2 317.8 
5.481 6.327 6.350 106.4 0 
5.446 6.294 6.287 66.2 0 
2.753 3.531 3.526 209.6 0 
2.771 3.551 3.533 241.1 0 

-0.267 -0.267 -0.267 -831.1 -822.5 
-0.411 -0.419 -0.422 -836.7 -841.7 
-3.279 -3.706 -3.711 -2798.0 -2806.5 
-0.503 -0.508 -0.508 -781.2 -772 7 
-2.078 -2.073 -2.073 -2116.7 -2115.4 
-0.335 -0.335 -0.335 -786.5 -791.5 

For the Second Critical time 0.138sec 

-2.423 -2.530 -188.5 
-4.856 -5.382 -414.0 
-4.856 -5.372 0 
-4.849 -5.362 0 
-2.418 -2.522 0 
-2.413 -2.515 0 
-0.010 -0.023 7.5 
-0.025 -0.043 2.9 
-0.318 -0.318 -208.8 
0.053 0.058 21.3 
0.582 0.582 539.1 
0.051 0.051 24.8 

0 . 6 5 4  x 10 -2 0.654 x 10 .2 0 
0.996x 10 .3 0.204 x 10 .2 0 

-0.108x10 .2 -0.139x10 .2 0 
0.413 x 10 .2 0.451 x 10 .2 0 

-0.225 x 10 .2 -0.240 x 10 .2 0 
0.302 x 10 .2 0.378 x 10 .2 0 

D i s p l a c e m e n t  and  load  uni ts  o f  ro t a t ion  D O F  are  r ad i an  and  k N . c m ,  r e s p e c t i v e l y .  

-0.867x10 .2 -0.867x10 .2 -0.867x10 -2 -15.3 0 

-0.121x10 -~ -0.121x10 ~ -0.121×10 ~ -75.0 0 
0.124x 10 .2 0.125x 10 .2 0.125 x 10 .2 -3.5 0 
0.625 x 10 .2 0.622 x 10 .2 0.622 x 10 .2 92.7 0 
0.252 x 10 .2 0.294 x 10 .2 0.294x 10 .2 3.7 0 

-0.206x10 .2 -0.375x10 .2 -0.375x10 .2 3.5 0 

At the Displacement Static 
of CASE 2 Load of 

Critical Time 
(/'=8, p=l 8 ) CASE 2 
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