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ABSTRACT 
 

In this paper a simplified linear method for evaluating building structures under pressurization of high-energy line 
break (HELB) is presented.  The method numerically calculates the dynamic load factors using spread-sheet software.  
Typically, a dynamic load factor (DLF) value of 2.0 was traditionally used for evaluating a structure under an impulse load.  
This paper shows that some irregular pressure-time histories may produce a DLF that is greater than 2.0.  Calculating the 
fundamental frequency of a structural component often lowers the DLF thus reducing the applied maximum equivalent 
pressure. 
 
INTRODUCTION 
 

Design Basis Specifications for most nuclear power plants require that rooms or compartments that are affected by 
the post-accident pressure of HELB be designed and constructed to minimize or resist this pressure.  Some rooms contain 
blowout panels that restrict the potential internal compartment over-pressure due to pipe rupture.  An evaluation of the 
various structural components in any given room is required for the pressure transient that is exerted in that room.  Recently, 
some utilities have re-evaluated this loading due to revised predicted failure pressure of the blowout panels, increased 
pressure due to power uprate, or new steam generator installation. 

Class 1 Structures are required to resist effects of jet impingement (if any), flooding, and sub-compartment 
pressurization.  Jet impingement is not part of the scope of this paper.  Flooding takes more time for the water to reach its 
maximum height; i.e., is a slowly applied load.  Hence, flooding can be considered as a static load and can be evaluated 
simply.  This paper uses linear analysis techniques to determine the capacities of the various structural components and 
evaluate them against the internal pressurization loading resulting from a HELB.   

Compartment pressurization is considered an impulse load since it is a transient (time varying) load determined by 
an external source and is relatively insensitive to the structural response.  The pressure-time history is calculated using 
thermal-hydraulics system simulation software and is not part of the scope of this paper.  A given room may have several 
volumes.  Each volume may be subjected to a pressure-time history that is different than an adjacent volume.   

 
METHODOLOGY 
 

In general the pressure-time history curve is irregular.  Several methods can be used in this dynamic analysis. A 
finite element dynamic analysis may be used to compute the response of the generally non-linear pressure-time history at any 
volume.  Modeling every structural component and performing a dynamic finite element analysis can be very time 
consuming and expensive.   

Calculating a dynamic load factor (DLF) for each of the time history curves is much simpler.  The DLF concept is a 
well known method[1] in which a factor (DLF) is calculated and represents the ratio of the peak dynamic response, PDyn, of a 
single degree of freedom (SDOF) structure to the static response, Pstat, to the maximum pressure-time history.   
 

PDyn = (DLF) Pstat (1) 
 

The DLF, also known as dynamic magnification factor, depends on the frequency of the SDOF.  Since deflections, 
internal forces, and stresses in an elastic system are all proportional, one can write 
 

DLF = xm / xs (2) 
where: 

xs  = static deflection or, in other words, the displacement produced in the system when the peak load is 
applied statically 

xm  = maximum dynamic deflection 
  

SMiRT 19, Toronto, August 2007 Transactions, Paper # J03/3



 2

Reference [1] shows DLF versus td/T for a number of simple force time history inputs, see Fig 1.  The impulse 
length ratio, also known as duration ratio, is the ratio of the impulse duration to the natural period of the structure, or td/T.  It 
is important to note that, for an impulse of short duration, a large part of the applied load is resisted by the inertia of the 
structure and the stresses produced are much smaller than those due to the longer duration loading.  For the most prevalent 
load cases, namely, the isosceles triangular load and the rectangular load forcing function, the maximum values of DLF are 
1.52 and 2.0, respectively [1].  This immediately indicates that all maximum displacements, forces, and stresses due to the 
dynamic load are twice the value that would be obtained from a static analysis for the maximum load, Pstat. 
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Fig. 1  Maximum Response of SDOF (undamped) Subjected to Rectangular and Triangular Forcing Functions 
 

Hence, the dynamic analysis is transformed into a static analysis by applying the maximum load multiplied by the 
DLF associated with the fundamental frequency of the structure.  Here, there is an assumption that the structure is behaving 
essentially as a SDOF structure.  For our case, in which a pressure is applied on walls and slabs, the predominant behavior is 
the fundamental mode response.  It is common to use a DLF of 2 to represent the maximum response for a predominantly 
triangular pulse loading.  However, as will be seen later, DLF’s higher than 2 are possible.  In the design of structures 
subjected to impulse loads, the first peak of response is usually the only cycle of response that is of interest since the 
maximum resistance and deflection is attained in that cycle.  In general, damping has little effect on this first peak.  However, 
structural damping has some effect on the subsequent response of the structure. 

One way to find the DLF for an arbitrary force-time history curve is by analyzing a number of SDOF systems each 
having a different frequency and plotting the maximum response against the frequency for each SDOF system.  This may be 
an iterative process since it is not known at what frequency the maximum response will occur or more SDOF systems may be 
analyzed at closer frequencies in order to capture the maximum response.  This paper uses a numerical method to compute 
the response of an irregular forcing function.   

Reference [2] provides one of the methods that uses piecewise-linear interpolation of the forcing function within a 
time step Δt.  The resulting equations for the response (displacement and velocity) at the end of time step j are: 
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where:
 
Fj  = Force at time step j 
k  = stiffness 
Δ  = Designates change in a quantity during 

the time step 
ωn =  Natural frequency of the SDOF system 

in radians/sec 

•
x  = velocity 
x = displacement 
ωd =  Natural frequency of damped SDOF system 

in radians/sec 
 =  ωn SQRT (1-ξ2) 
ξ  =  damping ratio 

 
For our purposes, the initial conditions at time = 0.0 

0.0x    and   0.0 x  ==
•

 (5) 
 
If the maximum displacement, x, from all time steps is xm and the static displacement is xs (which is equal to the 

peak force divided by k), then the DLF = xm/xs. 
In order to calculate the DLF for a specific reinforced concrete component (e.g., slab), it is necessary to find the 

stiffness of the component.  Since the stiffness calculation is complicated by the fact that the moment of inertia of the cross 
section changes continually as cracking progresses, it has been recommended (References [4] and [5]) that the average 
moment of inertia, Ia, be used, [4] and [5]. 

 
Ia = (Ig+Ic)/2 (6) 

where:
Ig  = 1/12 b tc

3 = the gross moment of inertia 
Ic = Fbd3 = the cracked moment of inertia 
b  = the width of the element (for slabs, b is 

taken as unit width) 
 

tc  = total (gross) thickness  
d  = distance from the extreme compression fiber to 

centroid of tension reinforcement. 
F  = Coefficient given in Fig. (2) (from [4] and [5]) 
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Fig. 2  Coefficient for Moment of Inertia of Cracked For Sections with Tension Reinforcement only 
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For one-way members, the reinforcement ratio, ρ, used to obtain the factor F should be an average of the tension 
steel at the supports and midspan.  Similarly, the effective depth, d, used to compute the cracked moment of inertia is the 
average of the effective depth at the mid span and the supports.  

For two-way members, the above is repeated in the length and width directions to obtain the cracked moment of 
inertia ICL and ICW, respectively.  The combined effective cracked moment of inertia for the slab is then calculated by 
considering the aspect ratio of the slab, [4]: 
 

WL
WILI

I CWCL
c +

+
=  (7) 

where:
ICL  = cracked moment of inertia in the 

plane along the length direction 
L  = span length 

ICW  = cracked moment of inertia in the 
plane along the width direction 

W  = span width 
 
The equivalent thickness can then be calculated  

3 a
e b

I12
t =  (8) 

Use te and the distributed dead load mass (including equipment weight) to find the natural frequency of the 
component. 
 
MATERIAL BEHAVIOR 
 

Material properties (e.g., yield strength) are subject to statistical and dynamic variation.  Statistical variations are 
defined as the difference between the minimum code specified value and the higher actual value, which ranges between 10-
25 percent for the yield strength of steel and 10 to 30 percent for the compressive strength of concrete, [5]. 

The dynamic variation is due to the increase in strain rate and increases the yield stress of steel and compressive 
strength of concrete. These increases must be accounted for to conservatively predict reaction or pass-through loads from a 
structural element affected by impulse load.  It is common to take credit for the dynamic strength increase, but not the 
statistical increase, in designing the affected element itself. 

Reference [5] provides recommended values of dynamic increase factors (DIF) for use in design.  Reference [6] 
gives the limits on DIF’s for concrete and reinforcing steel.  Material properties considered in determining resistance to 
impulse loads are found by multiplying the static values by the appropriate DIF. 

 
IMPLEMENTATION 
 

The method described in the previous section lends itself to be programmed using spreadsheet software. Table 1 
shows the application of this method for an isosceles triangular forcing function.  Figure 3 shows a plot of the loading 
function and the displacement response time history as well as the DLF plot for the same triangular forcing function.  Note 
that the maximum displacement occurs after the maximum peak loading.  The DLF curve agrees with that reported in 
Reference [1] and also shown in Figure 1.  These results are for essentially undamped (Damping = 0.01percent) SDOF 
system. 
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Table 1.  Solving for DLF for a Triangular Forcing Function 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

A B C D E F G H I J K L M N O
pi 3.141593 k = 0.5 k = 1 k = 2 k = 3.73 k = 5
damping= 0.001 m = 1 m = 1 m = 1 m = 1 m = 1
td = 3.141593 wn = 0.707107 wn = 1 wn = 1.414214 wn = 1.931321 wn = 2.236068

T = 8.885766 T = 6.283185 T = 4.442883 T = 3.25331 T = 2.809926
wd = 0.707106 wd = 0.999999 wd = 1.414213 wd = 1.93132 wd = 2.236067

F t1 t DF Dt x xdot x xdot x xdot x xdot x xdot
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.2 0.1 0.314159 0.2 0.314159 0.003281 0.031282 0.003273 0.031152 0.003257 0.030893 0.003229 0.030452 0.003209 0.030131
0.4 0.2 0.628319 0.2 0.314159 0.026055 0.123574 0.025796 0.121533 0.025288 0.117541 0.024433 0.110893 0.023824 0.10621
0.6 0.3 0.942478 0.2 0.314159 0.086846 0.272312 0.084924 0.262262 0.081209 0.243077 0.075156 0.212565 0.070994 0.192173
0.8 0.4 1.256637 0.2 0.314159 0.202305 0.470165 0.19442 0.439535 0.179545 0.383103 0.156394 0.299169 0.14129 0.24733

1 0.5 1.570796 0.2 0.314159 0.386389 0.707388 0.363107 0.635984 0.320581 0.510429 0.258258 0.339827 0.220342 0.245624
0.8 0.6 1.884956 -0.2 0.314159 0.643113 0.909745 0.587467 0.770067 0.489801 0.538569 0.357053 0.259184 0.283243 0.127681
0.6 0.7 2.199115 -0.2 0.314159 0.946738 1.004751 0.832483 0.766413 0.641441 0.400381 0.40486 0.025281 0.287737 -0.110761
0.4 0.8 2.513274 -0.2 0.314159 1.262672 0.987787 1.054594 0.625466 0.726678 0.122831 0.365556 -0.278248 0.212851 -0.356706
0.2 0.9 2.827433 -0.2 0.314159 1.555731 0.859737 1.212508 0.361104 0.709619 -0.240088 0.234139 -0.543032 0.075206 -0.493765

0 1 3.141593 -0.2 0.314159 1.791873 0.626941 1.271242 -0.000725 0.57426 -0.617867 0.038477 -0.674651 -0.078908 -0.457237
0 1.1 3.455752 0 0.314159 1.943149 0.332165 1.208812 -0.393401 0.330823 -0.906278 -0.167448 -0.595858 -0.192261 -0.23452
0 1.2 3.769911 0 0.314159 1.998881 0.0212 1.028132 -0.747334 0.023397 -1.018543 -0.313384 -0.304581 -0.21448 0.098856
0 1.3 4.08407 0 0.314159 1.956375 -0.290668 0.746956 -1.027913 -0.288297 -0.933029 -0.347339 0.095007 -0.135179 0.384987
0 1.4 4.39823 0 0.314159 1.817761 -0.588116 0.392862 -1.207728 -0.543762 -0.666509 -0.257335 0.460215 0.007975 0.488546
0 1.5 4.712389 0 0.314159 1.589895 -0.856535 0.000547 -1.269247 -0.693466 -0.270869 -0.075632 0.660792 0.147155 0.360787
0 1.6 5.026548 0 0.314159 1.284011 -1.08275 -0.391576 -1.206523 -0.70845 0.17699 0.132833 0.625379 0.216507 0.062488
0 1.7 5.340708 0 0.314159 0.915174 -1.255664 -0.745134 -1.025773 -0.585924 0.5901 0.293655 0.366897 0.183314 -0.26496
0 1.8 5.654867 0 0.314159 0.501534 -1.366804 -1.025554 -0.744758 -0.34979 0.888317 0.349517 -0.022167 0.063426 -0.466574
0 1.9 5.969026 0 0.314159 0.063435 -1.410738 -1.205441 -0.391041 -0.045979 1.013865 0.280616 -0.402851 -0.086306 -0.447128
0 2 6.283185 0 0.314159 -0.377586 -1.385336 -1.267255 0.00072 0.266486 0.942529 0.111685 -0.639351 -0.194989 -0.216136
0 2.2 6.911504 0 0.628319 -1.182643 -1.134986 -1.024908 0.744988 0.684919 0.300767 -0.270639 -0.42458 -0.127534 0.394007
0 2.4 7.539822 0 0.628319 -1.757458 -0.66458 -0.391632 1.203939 0.596927 -0.561914 -0.300501 0.341162 0.152395 0.345428
0 2.6 8.168141 0 0.628319 -1.990674 -0.065609 0.390346 1.202739 0.068375 -1.008198 0.060033 0.661909 0.177418 -0.279019
0 2.8 8.796459 0 0.628319 -1.837333 0.545562 1.022336 0.742424 -0.50972 -0.709328 0.341716 0.122119 -0.093475 -0.436448

1 Max (x) 1.998881 Max (x) 1.271242 Max (x) 0.726678 Max (x) 0.40486 Max (x) 0.287737
Static defl. 2 Static defl. 1 Static defl. 0.5 Static defl. 0.268097 Static defl. 0.2
DLF = 0.99944 1.271242 1.453355 1.510126 1.438683
td/T = 0.353553 0.5 0.707107 0.965661 1.118034  

 
The same methodology and essentially the same spreadsheet were used to obtain the DLF for the pressure-time 

histories at different volumes/compartments that are subjected to HELB.  For these cases, however, the appropriate damping 
ratios are used for reinforced concrete and steel structures.  The pressures can also be considered as a force applied on a unit 
area.  The typical pressure-time history curve has its highest magnitude of the pressure occurring within the first 1.0 sec.  
Hence, the time histories from time equal 0.0 to 1.0 second were used in the DLF spread sheets.  The frequency (i.e., the 
stiffness and mass) are varied to obtain the associated DLF.  It should be noted that the response at a time step is calculated at 
the end of that time step, i.e., the potential exists that the maximum response may occur at the middle of the time step and 
may be missed.  This numerical error may occur if the time step is relatively large or at sudden changes of the input pressure-
time history.  However, the time step of the pressure-time history is sufficiently small; and by inspecting the resulting 
displacement-time history plots, no sudden variation or change is shown.  Hence, this numerical error is not present.  On the 
other hand, the peak response is sensitive to the frequency of the SDOF system.  So the stiffness or the mass are manually 
selected in the spread-sheet to be near the peak frequency in order to ensure the maximum DLF is captured.  

Typical pressure-time history transients and the DLF curves are shown on Figures 4 to 7.  As expected the amplitude 
of the response for low natural frequency is higher than that for higher frequency.  Note that in some cases the peak response 
may occur at the second cycle of vibration as shown in Figure 4.  Figure 4 also shows a double peak for the DLF curve.  The 
second peak occurs at around 13Hz, which is close to a typical fundamental frequency of a concrete slab.  Figure 5 shows a 
maximum DLF greater than 2.0.  This is due to the successive application of the two peaks in the forcing function that 
amplify the response.   

The two peaks in the DLF curve that are present in Figure 4 are combined to form one large plateau that extends 
between approximately 3 to 14 Hz as shown in the example of Figure 6.  Figure 7 on the other hand show distinct three peaks 
in the DLF curve.  From these examples, it is recognized that the shape of the forcing function and the fundamental 
frequency of the structure plays a major role in defining the DLF and thus the maximum load that the structure is subjected 
to. 
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Fig. 4 Results showing DLF less than 2 
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Fig. 5 Results showing DLF greater than 2 
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Fig. 6 Results showing DLF with a Plateau at Approximately 1.6 
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Fig. 7 Results showing Three Peaks in the DLF Curve 
 
EVALUATION PROCESS 
 

The DLF curves are generated for each pressure-time history associated with a specific volume.  Given the natural 
frequency of a component subjected to a pressure associated with a particular volume, the DLF can be obtained from the 
curve for that volume.  The DLF is multiplied by the maximum pressure of this volume to obtain the maximum equivalent 
static pressure to be used in evaluating the component.  The evaluation determines whether the maximum allowable pressure 
(capacity) that the component can withstand bounds the pressure-time histories, including the DLF.  

The first step in determining the HELB pressure capacity of a slab or wall is to determine the ultimate bending 
moment capacity of that concrete component (ΦMn).  Note that the contribution of compression steel to the moment capacity 
is conservatively ignored.  This moment capacity is multiplied by a DIF due to the rapid application of the HELB pressure 
load. 

In most cases, the slabs and walls were designed as one-way members.  Because of this, the pressure capacity of the 
components could be determined using traditional beam equations (e.g. simply supported beam, fixed-fixed beam, cantilever 
and propped cantilever beams) and solving for the uniform load. 

The slab loading is a factored load that includes the self weight of the slab.  The live load such as equipment load are 
considered part of the dead load.  For the slabs (floors) at the bottom of the volume under consideration, the HELB pressure 
is pushing down on the slab; so the self weight load acts in the same direction and reduces the allowable HELB pressure load.  
However, for slabs (ceilings) at the top of the volume under consideration, the HELB pressure will push up on the slab.  
Thus, the weight of the slab will increase the pressure capacity of the slab.  In this case the load factor associated with the 
dead and live load is taken as 1.0.  For the case of the concrete walls, self weight will not have any effect.  The load factors to 
be used for the HELB pressure load and the dead load (e.g., concrete slab weight) depends on the licensing commitment of 
the plant.  However, it may be argued that since the pressure-time histories are determined by extensive thermal hydraulics 
simulation software, there is less uncertainty in the pressure values.  Hence, accidental pressure load factor may be reduced 
provided license documents are updated with the approval of the regulators. 

In general, evaluations of reinforced concrete slabs and walls show that shear capacity does not control.  The 
bending capacity for a unit width of a reinforced concrete slab is calculated as follows: 

DIF
'c2(0.85)f

AsFydAsFybendΦΦMn ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=  (9) 

where: 
Φ  =  capacity reduction factor 
Mn  = nominal bending strength 
Φ Mn  = design flexural strength 
Φbend  = 0.9 
As = area of tension reinforcement within the width 
Fy  = Minimum yield stress of tension reinforcement 
fc’  = concrete compressive strength 
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Compute failure load for a simply supported beam in which the dead and live loads acting in the same direction of 
the pressure, 

design2u w)
L

ΦMn(8w −=  (10) 

And for dead and live load acting opposite to the pressure: 

design2u w
L

ΦMn8w +⎟
⎠
⎞

⎜
⎝
⎛=  (11) 

where: 
L  = span of the simply supported beam 
wu = ultimate load for the slab 
wdesign  =  design load for the slab = LFDL (Dead Load + Live Load) 
LFDL  = load factor for dead load 

 
The allowable unfactored pressure, Pall, can then be computed by dividing by the load factor of accidental pressure, 

LFp 

p

u
all LF

w
P =  (12) 

The allowable pressure, Pall, is the capacity of the reinforced concrete slab.  For a steel structure, using the allowable 
stress design method and DIF, the capacity (in units of pressure) of the structure under uniform pressure is calculated.  The 
structure is qualified if its capacity exceeds that of DLF multiplied by the Peak Pressure. 
 
SUMMARY AND CONCLUSIONS 
 

A detailed linear method is presented to evaluate building structures under HELB pressurization loads.  Maximum 
dynamic load factors of 2.0 or less are typical however in some cases higher than 2.0 may be found for certain force-time 
histories and at relatively low frequencies.  Calculating the fundamental frequency of a structural component often lowers the 
DLF thus reducing the applied maximum equivalent pressure.  For evaluation of ceiling slabs, the dead load and live load act 
opposite to the pressure and thus a load factor of 1.0 is used.  Accidental pressure load factor may be reduced to account for 
the added certainty of the load definition if calculated using thermal-hydraulics simulation software. 
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