
ABSTRACT

MADER, GREGORY CHARLES. Modeling Cerebral Autoregulation During Orthostatic Stress
in the Presence of Aging and Hypertension. (Under the direction of Mette Olufsen.)

Cerebral autoregulation refers to the brain’s control mechanisms responsible for main-

taining cerebral blood flow at an appropriate, approximately constant, level despite changes

in arterial blood pressure. Metabolic, myogenic, shear-dependent, and neurogenic influ-

ences work collectively to ensure adequate flow and necessary distribution of nutrients to

cerebral tissue. Cerebral autoregulation is typically studied from two perspectives. First,

static autoregulation defines the steady-state relationship between blood pressure and

blood flow, typically illustrated by the autoregulatory plateau curve. The second perspective

is dynamic cerebral autoregulation, which describes the transient response of blood flow ve-

locity to changes in arterial pressure. This study combines the two modeling methodologies

deriving a simple pulsatile nonlinear model that uses measured pressure values as an input

to quantitatively predict cerebral blood flow dynamics during postural change. The model

is motivated by the analysis of time-varying dynamics observed in the filtered and pulsatile

measurements of flow and pressure, indicating a nonlinear response. The present study

addresses data analysis, model development, and shows how structural and practical pa-

rameter identifiability methods can be used to demonstrate that the model displays correct

qualitative and quantitative behavior. Finally parameter estimation is used to show that the

model can accurately predict middle cerebral blood flow velocity measurements recorded

during postural change. Current methods do not detect a difference in the performance of

cerebral autoregulation due to aging or hypertension, despite the many cerebrovascular

changes that occur in each of those states. In this study, we show that by accounting for

pulsatility and nonlinearity, it is possible to devise a measure that can distinguish between



three patient groups: healthy young, healthy elderly, and hypertensive elderly. Results are

obtained by analyzing model dynamics and estimating patient specific model parameters

for each subject. In addition, nonlinear mixed effects analysis was used to test if all subjects

belong to the same population with equal population parameter values, or if the population

parameters vary among the three subgroups. Future work could entail using a detailed

theoretical autoregulation model as a tool for generating various static curves within the

model framework, eventually arriving at a clinically useful physiologically-based index for

cerebral autoregulation.
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CHAPTER

1

CEREBRAL AUTOREGULATION

1.1 Cerebral Circulation

Even though the human brain constitutes about two percent of total body weight, the

brain receives 15 percent of the resting cardiac output [Hal16]. Blood flow to the brain

is imperative for bodily function, and as a result, it is a highly vascularized organ. If the

flow of blood to the brain is completely stopped, unconsciousness will occur within five

to ten seconds. The blood flow of the human brain is supplied by four major arteries: two
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internal carotid arteries and two vertebral arteries. Each carotid artery contributes roughly

40% to the total cerebral perfusion. The two vertebral arteries merge to form the basilar

artery, which contributes approximately 20% to the total cerebral perfusion and intersects

with the two internal carotid arteries at the base of the brain to form the Circle of Willis

(CoW) [Hal11]. A complete CoW allows for the flow of blood to be maintained even if an

artery is blocked. However, only half of the human population has a complete CoW [KH98].

Blood is distributed from the CoW via the anterior cerebral arteries, middle cerebral arteries

(MCA), and the posterior cerebral arteries. The MCA supplies the cortical regions connected

with auditory, motor, somatosensory, and speech activities. Since the MCA is one of the

larger cerebral arteries and extends laterally from the Circle of Willis to the temporal bone,

it is the most accessible cerebral vessel for transcranial Doppler (TCD) ultrasound.

Figure 1.1 Penetrating Arterioles. Branching from the pial arterioles, a majority of cerebral au-
toregulation occurs in the penetrating arterioles. Adapted and reproduced with permission
from [Nis07]. Copyright (2007) National Academy of Sciences.
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The arteries extending from the Circle of Willis travel along the surface of the brain and

eventually give rise to pial arteries, which branch out into smaller vessels called penetrating

arteries and arterioles, shown in Figure 1.1. Pial arteries and arterioles comprise the sections

of the cerebrovascular bed directly under the control of regulatory mechanisms. Thus, a

vast majority of cerebral blood flow regulation occurs in these arterioles. These penetrating

vessels branch into intracerebral arterioles and capillaries, where nutrients and gases are

exchanged between the blood and tissues. The velocity of blood flow significantly decreases

as arteries branch to arterioles, but the flow is the slowest in the capillaries due to the

increased cross-sectional area. Similar to other parts of the body, the highest number of

capillaries exist where the metabolic needs are greatest. However, brain capillaries are

much less leaky than the capillaries in other areas of the body. The main reason for this

feature is that the cerebral capillaries have glial feet along all sides of the vessel. These

feet, which are projections from glial cells, provide protection against over-stretching of

the walls in the presence of high blood pressure. The regulation of cerebral blood flow is

achieved through the interaction between neurovascular coupling (global) and cerebral

autoregulation (local). Astrocytes are specialized cells that couple the neuronal activity

with the local regulatory mechanisms [Att10].

The structure of arterial blood vessels varies throughout the vascular bed. When com-

pared to the arterioles and capillaries, the arteries are much larger and thicker. Arterioles

range from 9 to 40 µm in diameter; where as, capillaries are the smallest vessels with a

diameter of approximately 7 µm. Arteries also have the most elastic walls, ensuring that

they can withstand the rapid flow of blood [Cam99]. Arterioles have many layers of smooth

muscle outside of the endothelium, which allows them to efficiently and rapidly regulate
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diameter. Capillaries are responsible for the exchange of nutrients and gases between the

blood and the tissue, and thus consist of only a small layer of endothelial cells.

1.2 Cerebral Blood Flow

Fluid flow through a vessel can be quantified by combining Ohm’s Law and mathematical

principles of pipe flow. The flow of blood through a vessel, denoted Q , is driven by a pressure

gradient (∆p ) and counteracted with a resistance (R ), yielding the equation

Q =
∆p

R
. (1.1)

The resistance of flow in a vessel is due to the friction between the particles in the fluid

(viscosity µ) and the friction between the blood and the vessel wall. Changes in the radius

of a vessel can have an immense effect on how much blood is able to flow through it.

Resistance in a vessel can be written as

R =
8µL

πr 4
, (1.2)

where the radius and length of the vessel are given by r and L , respectively. By plugging in

the expression for R into the previous equation, the law of Poiseuille flow can be obtained:

∆p =
8µLQ

πr 4
. (1.3)

Cerebral blood flow (CBF) and cerebral blood flow velocity (CBFV) can sometimes be

confused as interchangeable, but they are not. For blood traveling through a vessel, the

4



blood flow velocity is the distance traveled per unit of time, often expressed as cm/sec.

Conversely, the blood flow represents a volume moving per unit of time, typically having

units of cm3/min. Flow and velocity (V )within a vessel are related by the equation Q =V Ac

where Ac denotes the cross-sectional area of the vessel, given by the equation Ac = πr 2.

In other words, at constant vessel radius (r ), changes in flow (CBF) are proportionate

to changes in velocity (CBFV). When considering cerebral circulation, oftentimes it is

important to use the mean velocity because blood flowing in a vessel has a parabolic profile

under laminar flow conditions (Hagen-Poiseuille Flow).

1.3 Cerebral Autoregulation

Cerebral autoregulation is a collection of local mechanisms that aim to maintain constant

cerebral blood flow and oxygen supply amidst changes in arterial blood pressure. The

maintenance of flow is accomplished by changing cerebrovascular resistance through

vasoconstriction or vasodilation of arterioles and small arteries, induced by a change in

vascular smooth muscle cell (VSMC) tone. There are four mechanisms that contribute to

local regulation within the brain: the myogenic, metabolic, shear-dependent, and neuro-

genic responses. Each of these mechanisms are triggered by different stimuli that cause

diameter changes in cerebral arterial vessels.

1.3.1 Myogenic Response

The cerebral myogenic response, during which decreased intraluminal pressure causes

vasodilation, is key to maintaining constant cerebral blood flow (CBF) in response to varia-
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tions in systemic pressure and to providing a critical shield to protect brain capillaries and

blood-brain barrier. After detecting a change in pressure, mechanosensors in the smooth

muscle cells of the arterial wall trigger various physiological responses. Eventual constric-

tion or dilation of vascular smooth muscle is achieved to ensure that flow remains at its

baseline value. Figure 1.3 shows a slightly more detailed version of the myogenic response.

Figure 1.2 Cerebral Autoregulation Response. Following an abrupt change in arterial blood
pressure, the myogenic, metabolic, shear-dependent, and neurogenic responses are activated
and work collectively to cause a vasoconstriction or vasodilation in the cerebral vessels. This
flowchart represents a general summary the local autoregulatory responses within the brain.
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Once the change is detected by mechanosensors, there are three possible pathways for

the myogenic response to occur, ultimately resulting in vasodilation (assuming a decrease

in blood pressure). One signaling pathway is characterized by calcium ion induced con-

traction via myosin light chain kinase-catalyzed phosphorylation of myosin light chain

Figure 1.3 Myogenic Response. Triggered by a change in arteriolar pressure, mechanosensors
along the arterial wall initiate three possible pathways for myogenic regulation, ultimately achiev-
ing vasoconstriction or vasodilation. This general description of the myogenic response shows
what happens during increased pressure, eventually resulting in constriction of cerebral arteri-
oles.
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LC20 in response to membrane depolarization. A second pathway includes the calcium ion

sensitization of contraction elicited by Rho-associated kinase (ROCK)-mediated phosphory-

lation of myosin phosphotase target subunit 1(MYPT1) and inhibition of myosin light chain

phosphotase. The third possible pathway is the calcium ion sensitization of contraction

elicited by dynamic regulation of actin cytoskeleton mediated by protein kinase C and

ROCK. It is important to note that these pathways describe the induced vasoconstriction

due to an increase intraluminal CBP (as opposed to vasodilation) [WC13]. The myogenic

response is characterized by a time constant of 2.5-10 seconds [Pet11; Spr12]. Because of the

large mass of smooth muscle found within cerebral arteries, it is believed that this response

may be more developed in the brain than elsewhere in the body.

1.3.2 Metabolic Response

The metabolic response is comprised of all the chemical transformations that occur within

the red blood cells flowing through the lumen of arterioles. The chemical transformations

convert and use energy for the regulation of blood flow. The diameters of blood vessels

are controlled by balancing the cerebral metabolic demand blood supply to the brain

(see Figure 1.2). Numerous studies have discussed the existence and importance of several

chemicals that couple blood flow and metabolism, including hydrogen ions, potassium ions,

lactate, carbon dioxide, and oxygen. An increase in the concentrations of potassium ions or

hydrogen ions causes vasodilation. Lactate concentrations significantly elevate during a

reduction in arterial blood pressure, and lactic acid, which is the end product of glycolysis,

decreases pH. The effect of pH on blood flow appears to be a global effect linked with

chemoreceptors and thus is not considered an important facet of cerebral autoregulation.
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However, local changes in pH can modulate the vasomotor responses to other agents that

affect vessel caliber, such as norepinephrine. Cerebral arteries dilate in response to increases

in the partial pressure of arterial carbon dioxide (PaC O2
), and carbon dioxide reactivity is a

major player in dCA. It is believed that PaC O2
, pH and adenosine serve as coupling factors,

but the mechanisms involved cannot be fully explained [Aoi09; ZM97]. Adenosine has also

been proposed as a regulator of CBF and a modulator of synaptic transmission. Adenosine is

a purine nucleoside, potent vasodilator of cerebral pial vessels, and an important metabolic

factor in cerebral autoregulation. Cerebral adenosine concentrations are rapidly increased

within seconds of a change in cerebral perfusion pressure as well as with a reduction of

arterial blood pressure (hypotension) [Win85].

1.3.3 Shear-Stress Response

Shear-stress regulation is initiated by the endothelium producing nitric oxide in response to

an increased shear stress on the vessel wall and is caused by viscous friction of blood and the

vessel wall. The nitric oxide release is controlled by mechanoreceptors in the endothelium.

Nitric oxide is a potent vasodilator, which is released into the lumen and causes an increase

is vessel diameter and therefore an increased cerebral blood flow [Pet11]. A change in

transmural pressure elicits an altered state of the myosin and actin filaments, which can be

characterized by two biophysical pathways: the nitric oxide/endothelium-derived relaxing

factor (EDRF) and the endothelium-derived hyperpolarization factor (EDHF). Both of

these pathways are shown in Figure 1.4. Nitric oxide is a diffusible second messenger and

EDHF is triggered only when the other pathway is inhibited. A flowchart depicting the

role of endothelins is given in Figure 1.5. When binded to, ETA and ETB receptors can
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act as vasoconstrictors and vasodilators, respectively. However, the long-lasting effects of

endothelins imply that they are poorly suited for minute-to-minute CBF regulation [Pet11].

Cerebral arteries dilate in response to a decreased hydrodynamic shear stress. The shear

response is important to long-term cerebrovascular tone and vascular remodeling and is

Figure 1.4 Shear-Stress Response. In response to a decreased blood pressure, vasodilation of the
cerebral arterioles can be accomplished through the release of nitric oxide, a potent vasodilator,
via the endothelium-derived relaxation factor (EDRF) pathway. If EDRF pathway is inhibited,
vasodilation can occur via the endothelium-derived hyperpolarization factor (EDRF). In this
pathway, changes in stores of calcium ions cause a subsequent hyperpolarization of vascular
smooth muscle cells (VSMCs).

10



Figure 1.5 Shear-Stress Response. A change in flow through an artery is sensed by endothelial
cells, which can release endothelins. These endothelins can bind to ETA or ETB receptors to
cause vasoconstriction or vasodilation, respectively.

often coupled with the myogenic response.

1.3.4 Neurogenic Response

The fourth mechanism of cerebral autoregulation is the neurogenic response (see Fig-

ure 1.2). This response is described by the interactions between the intracranial nerves

and cerebral vessels. By increasing the activity of the nerves within and surrounding the

brain by stimulation, CBF is influenced by the response of the neurons. Unfortunately,

not much is known about the physiology and exact relationship between the intracranial

nerves and vessels. Little work has been done relating the vascular response to the stim-
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ulation of the nervous system in the brain because measuring the local neural behavior

is extremely difficult. The intracranial nervous system can be divided into two categories

based on the location of the nerves, the intrinsic and extrinsic nerves. The intrinsic nerves

are found on the interior of the brain and throughout the brain substance, which innervate

the cerebral vessels. The nerves surrounding the brain that feed into the pial vessels are

known as extrinsic nerves. The stimulation of these nerves influences CBF during CA.

The intrinsic nerves differ in their effect on cerebral blood flow based on their location

within in the brain matter. When stimulated, the neurons within these parts of the brain

can affect CBF. When the ganglia within the medulla, midbrain, forebrain, and cerebellum

are stimulated, the increase in neuronal activity causes an increase in CBF. However, an

increase in activity within the points leads to a decrease in CBF [EK02; Hal11]. The extrinsic

nerves have been shown to have a direct influence on CBF. The extrinsic system can be

divided among three pathways: the parasympathetic, sympathetic, and sensory pathways.

An increase in parasympathetic activity, the rest-and-digest response, causes an increase

in CBF. When the sympathetic neurons are stimulated, they cause a decrease in CBF. When

there is an increase in sensory activity, the nerves respond by increasing blood flow. Some

studies have shown these direct correlations, but the evidence is not completely conclusive

about the relationship between the neurovascular response involved with CA [EK02].

There is evidence suggesting that the sympathetic nervous innervation plays a per-

missive role in CA responses. Sympathetic nerve stimulation extends the upper limit of

autoregulation; where as, acute sympathectomy or inhibition of the effects of neuropeptide

Y shift the lower limit of autoregulation toward a lower blood pressure. The precise roles of

the autonomic nervous system on CA are still contended, but recent studies indicate a role
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for the autonomic system in CA and the need to study its effects more closely. In particular,

neural innervation of the human brain provides a mean by which cerebral vessel caliber

can be altered without changes in perfusion pressure, local metabolic needs, or arterial

blood gases [Goa04].

1.3.5 Cerebral Autoregulation and Aging

The human cardiovascular system experiences many age-related changes, including de-

creases in systemic artery compliance [Fle86] and increases in systolic ABP [Kan78]. Rat

studies have shown that cerebral arterioles have reduced distensibility and undergo atrophy

during aging [Haj90]. Additionally, aging leads to widening of cerebral arterial vessels [Kre99]

and is responsible for a decrease in both cerebral blood flow velocity (CBFV) and cere-

bral blood volume [Car00]. Gender differences in the elderly have been studied [Dee10],

concluding that elderly women have better vascular function than elderly men and that

women autoregulate better than men. Almost all elderly humans have a blockage of some

small cerebral arteries. Approximately ten percent of elderly people eventually have enough

blockage to cause a stroke [Hal16]. Since the most common type of stroke is blockage of

the middle cerebral artery, TCD measurements from the MCA are typically used for CA

assessment. Vessels are not only stiffer in aging, but also are bigger. It remains unclear

whether or not autoregulation is preserved in aging.

1.3.6 Cerebral Autoregulation and Disease

Autoregulation is an essential protective mechanism of the brain and plays an impor-

tant role in numerous physiological and pathological phenomena. Reductions in CA have
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been reported in various disease states, including hypertension [Eam03], severe head in-

jury [Czo96], ischemic stroke [Eam02], carotid artery disease [Rei08], obstructive sleep

apnea [Urb08], and Parkinson’s disease [Vok07]. In subjects with impaired CA, the brain

becomes excessively sensitive to fluctuations in blood pressure and complete autoreg-

ulation failure has been associated with higher rates of morbidity and mortality [Hu08].

Additionally, having an incomplete Circle of Willis may present more issues for individuals

with cerebrovascular disease.

Hypertension is a major risk factor for cerebrovascular diseases [Fuj95]. It causes en-

largement and remodeling of the cells in the vessel wall, which reduces the maximum

dilatation of cerebral arterioles. Increased vascular resistance in hypertension decreases

CBF in elderly hypertensives to the level observed in healthy young subjects [Str73]. This

increased resistance is a result of structural changes in the smaller resistance vessel, char-

acterized by narrowed arterioles with thickened walls [CY72]. These thickened arterioles

remain greatly constricted all the time to prevent transmission of the high pressure to the

capillaries [Hal16]. The presence of hypertension reduces the cerebrovascular response to

changes in the arterial partial pressure of CO2 [Mae94].

1.4 Static CA vs. Dynamic CA

In general, cerebral autoregulation can be separated into two distinct components: static

and dynamic. Static cerebral autoregulation (sCA) represents the steady-state relationship

between mean ABP and mean CBF, typically illustrated by the Lassen curve [Las59]. The

curve, shown in Figure 1.6, contains a plateau between 60 mmHg and 150 mmHg. The

plateau throughout this region indicates a constant CBF for changes in ABP, although the
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Figure 1.6 Cerebral Autoregulation. (a) The classical and theoretical steady-state relationship
between cerebral blood flow and arterial blood pressure. Typically referred to as the Lassen
Curve [Las59], the static relationship between ABP and CBFV has a plateau region between 50
and 150 mmHg. When the blood pressure is within this region, autoregulation remains intact.
Outside this region, CBF changes linearly with pressure [HP14]. (b) The transient response of
CBFV to a perturbation in ABP is studied through the concept of dynamic cerebral autoregula-
tion. Following a change in ABP, the autoregulatory mechanisms are triggered to return the CBFV
back to its baseline value.

curve does not necessarily have a slope of zero over the interval [Ros95; Urs95]. Evaluation

of sCA is conducted by quantifying the difference in cerebral blood flow before and after the

autoregulatory response to an alteration in blood pressure. If CBF remained approximately

constant, then CA is intact. Conversely, if the CBF changes significantly, then CA is said to

be impaired [Tie95].

A majority of the early studies on CA were performed on a static basis. Recent advances in

measurement instruments, e.g. transcranial Doppler ultrasonography (TCD), have allowed

for continuous monitoring of ABP and CBFV. The increased use of these measurements

has led to the distinction between sCA and dynamic cerebral autoregulation (dCA). Fol-

lowing an ABP perturbation under normal conditions, CBF returns to its original value

with a time constant of a few seconds. The transient process of how cerebral blood flow
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is regulated following fluctuations in arterial blood pressure is referred to as dCA. Repro-

ducibility and variability remain in the forefront of current studies in the assessment of dCA.

Reproducibility describes the variability between repeated measurements within a subject;

where as, variability refers to differences between subjects within a group of subjects [Elt14].

Improvements in this area are essential before its diagnostic value can be fully appreciated

and confidently assessed [Pan09]. When studying hemodynamic regulation, experimental

arterial blood pressure and cerebral blood flow velocity data can be collected through many

different techniques.

1.4.1 Measuring ABP and CBFV

When assessing cerebral autoregulation, it is imperative to obtain both ABP and CBFV

measurements. ABP data can be obtained invasively by the insertion of an arterial line,

where a needle is placed in an artery and connected to a pressure transducer. While this

method provides the most accurate pressure readings, there is a high risk associated with

these measurements and therefore they are typically only performed on intensive care

patients. The most common non-invasive technique for continuous measurement of ABP

is the Finapres, shown in Figure 1.7. This device is based on the vascular loading technique,

where a pressure is applied to a peripheral artery to maintain arterial blood volume constant

by matching this applied pressure to the arterial blood pressure. The resulting ABP provides

a continuous measurement with high temporal resolution. Since the Finapres device is

used on the finger, experimentalists assume that the peripheral ABP is the same in both

the brain and the finger. Peterson et al. [Pet14] found that both non-invasive and invasive

methods produce similar cerebral autoregulation metrics.
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Collection of CBFV data can be obtained through a number of techniques, with the

most common procedure being transcranial Doppler (TCD) ultrasonography [Pan98]. The

TCD technique utilizes the Doppler shift to estimate the velocity of red blood cells in

blood vessels [Aas82], typically in the middle cerebral artery. TCD allows for continuous

non-invasive measurements of CBFV with enough time resolution to analyze the dynamic

variability in the signal. TCD is used to record CBFV as a surrogate of CBF, and the conversion

from velocity (CBFV) to flow (CBF) assumes that the cross-sectional area remains constant

along the vessel, an issue that is eloquently described in [Gil03]. The strength and accuracy

of the CBFV signal is dependent on insonation angle, see Figure 1.7.

1.4.2 Assessing Autoregulation

When studying cerebral autoregulation, there are two types of experimental data used.

Some studies analyze CBFV response to induced changes in ABP; where as, other studies

assess the relationship between naturally occurring variability in the ABP and CBFV signals.

Changes in ABP can be obtained by several maneuvers, including sit-to-stand, head up tilt,

lower body negative pressure, Valsalva maneuver, and thigh cuff [Pan01]. Although these

experiments generate a rapid change in ABP, some human subjects cannot tolerate the

procedures. Since there is not a gold standard approach, many authors use the protocol of

their choice. Often the protocol chosen depends on the CA assessment method used [Cla16].

The sit-to-stand technique has become a widely-used procedure for inducing orthostatic

stress because it simulates an activity that humans encounter in their everyday life. Van

Beek et al. [Bee10] concluded that the sit-to-stand test gives an increase in coherence due

to increased power spectral density in both ABP and CBF. When compared to the thigh cuff
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Figure 1.7 Measuring ABP and CBFV. Autoregulation is typically studied by analyzing ABP and
CBFV signals. Left: ABP is commonly measured using the Finapres device. Reprinted with permis-
sion from [Mar12]. Right: Noninvasive measurements of CBFV in the middle cerebral artery can
be obtained using transcranial Doppler (TCD) ultrasonography. Adapted and reproduced with
permission from [Lu14].

procedure, Sorond et al. [Sor09] showed that there is greater tolerance for the sit-to-stand

test and smaller within-subject variability in autoregulation measures. In clinical settings,

naturally occurring ABP and CBFV time series are typically studied because it is more

pleasant for the patient [Pay16]. For example, it is uncommon to induce pressure changes

in intensive care patients that have suffered from stroke or traumatic head injury.

1.5 Open Questions

The underlying mechanisms that cause impairments in autoregulatory function are not

fully understood. Furthermore, the links and distinctions between local autoregulation and

global blood flow regulation (e.g. neurological, baroreflex, neurovascular coupling) are still

widely debated. The effects of gender on the effectiveness of cerebral autoregulation are

currently being studied. Understanding gender differences, if there are any, could be a great
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contribution to the field, especially when considering hormonal changes in women due to

pregnancy. Another open question relates to the concepts of sCA versus dCA. These topics

are very different in definition. When it comes to experimental protocol, it is important

to understand which one is being measured (if not both). Additionally, the shifting of the

theoretical CA curve in the presence of various disease states is not completely known. Lastly,

the need for a gold standard approach to assessing CA is of utmost importance [Cla16].

There continues to be variation in the clinical implementation of assessment techniques

for autoregulation. The lack of a standardization within field proves difficult for comparing

studies and arriving at consistent conclusions.

1.6 Outline

This study contributes to the field of cerebral autoregulation by combining modeling with

data analysis techniques. The main objective is to take on the open questions associated

with distinguishing between groups and investigating the role of pulsatility. We start by

reviewing current contributions to modeling cerebral autoregulation (in Chapter 2) and

techniques used to analyze the model developed here (in Chapter 3).

Chapters 4 and 5 (published and submitted papers) present a simple, nonlinear ordinary

differential equation model that is capable of predicting cerebral blood flow velocity as

a function of arterial blood pressure on a patient-specific basis. Initial qualitative testing

(Chapter 4) is included to show that our model captures the physiological assumptions

and definitions of cerebral autoregulation. Structural identifiability, practical identifiability,

sensitivity analysis, parameter estimation (Chapters 4 and 5), and nonlinear mixed effects

techniques (Chapter 5) are developed and used for model validation. Model results are
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focused on showing how our model contributes to the discussion of differentiating dynamic

autoregulatory responses in healthy young, healthy elderly, and hypertensive elderly human

subjects (Chapter 5). Specifically, we show that by including the nonlinearity of cerebral

autoregulation and some pulsatility from the input blood pressure, the model is able to

quantify differences in autoregulatory response due to aging and hypertension.

Possibilities for model extension are discussed (Chapter 6), with the intentions of incor-

porating physiological principles and addressing the theoretical shifts of the autoregulation

curve. Finally, a discussion is included in Chapter 7, addressing the advantages and disad-

vantages of the simple model analyzed here. Given its simplicity, the model has potential

to be incorporated in the prediction of an autoregulatory index, allowing for more nuanced

analysis in clinical settings. Since the model requires an input stimulus incorporating a

significant change in pressure, more work is needed to assess if it has potential to assess

cerebral autoregulation in patients with traumatic head injury, one of the most important

clinical applications. Finally, we discuss (based on results in Chapter 6) how more physi-

ological mechanisms can be accounted for, in particular associated with potential shifts

observed in the static cerebral autoregulatory curve.
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CHAPTER

2

CEREBRAL AUTOREGULATION

MODELING

As discussed in Chapter 1, cerebral autoregulation (CA) is typically studied using two per-

spectives: static and dynamic. Static CA refers to the net effect a change in ABP has on

CBF, represented by the static Lassen curve [Las59]. Dynamic CA refers to the time-varying

response to a perturbation in ABP. Numerous authors have tried to explain either static

or dynamic aspects of CA [Urs88a; Gil90; Tie95; UL97; Czo97; UL98; Zha98; Urs00; Olu00;
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LA02; Liu03; Ban05; Pay06; Spr12], resulting in two different modeling methodologies:

physiologically-based compartment models and black box methods. Physiologically-based

models and statistical black-box approaches are often focused on obtaining different ob-

jectives.

2.1 Lumped Compartmental Models

A common theme in lumped compartmental models is that they are inherently based

on the physiological mechanisms effecting the system. Some model parameters can be

known a priori through literature reviews and previous studies. Estimated parameter val-

ues from physiological models can often be extrapolated to real-world application. These

approaches range from simple models relating pressure and flow to complex models with

detailed descriptions of the CA pathways. The models are primarily developed to predict

qualitative features rather than to fit clinical data. Numerous physiologically-based ap-

proaches exist, and many of them hinge on the techniques and concepts used by Ursino

and his colleagues [Urs88a; UL97; UL98; Urs00].

2.1.1 Ursino & Colleagues

In 1988, Mauro Ursino first attempted to model whole brain circulation [Urs88a]. He used an

electrical equivalent circuit model of cerebral circulation and incorporated autoregulation

by assuming that arterial conductance is adjusted in response to changes in driving pressure

through a low-pass filter with gain and time constant. The model showed good agreement

with experimental simulations [Urs88b]. This formulation is the fundamental basis for all
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subsequent models of autoregulation proposed by Ursino and colleagues.

Figure 2.1 Ursino-Lodi Model (1997). Electrical analog of intracranial dynamics according to the
1997 Ursino and Lodi model. Cerebral blood flow (q ) enters the brain at a pressure approximately
equal to the systemic arterial pressure (Pa ), and then passes through the arterial-arteriolar and
venous cerebrovascular beds. Flow regulation is incorporated through the arterial compliance
capacity (Ca ). Adapted and reproduced with permission from [UL97].

In 1997, Mauro Ursino and Carlo Lodi developed a mathematical model of the interac-

tion between intracranial pressure (ICP) and cerebral hemodynamics. An electrical analog

of the intracranial dynamics of cerebral circulation associated with this model is shown

in Figure 2.1. The goal of the model was to present a drastically simplified model of ICP

dynamics useful for the study of patients with severe brain disease [UL97]. They believed

that certain physical phenomena could be described in a very simple way without de-

terioration in model performance. Two main simplifications were made. No distinction

was made between proximal and distal segments of the arterial-arteriolar cerebrovascular
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bed, meaning that only one arterial-arteriolar segment, extending from large intracranial

arteries down to cerebral capillaries, was included. Also, they assumed that the pressure at

the terminal points of the large cerebral veins was equal to ICP. This assumption is based

on the idea that the cerebrovascular beds behave as Starling resistors. In other words, CBF

only depends on the difference between arterial pressure and ICP and is independent of

the downstream venous sinus pressure.

The four CA mechanisms are lumped together into one term, describing the static CA

curve. The model was compared against steady-state clinical data. Ursino and Lodi were

able to predict patterns of pulsatile ICP changes and show how ICP responds to vasodilation

and vasoconstriction stimuli. Although they were able to obtain these clinical results, they

were forced to compromise between accuracy in the reproduction of the physiological

reality and simplicity. Overall, this model is simple, physiologically reliable, and usable in

neurosurgery intensive care units.

Since it is the foundation for a lot of models by other authors, let’s derive the 1997 model

by Ursino and Lodi. Throughout the development of the model, please reference Figure 2.1.

Recall that blood flow velocity can be expressed as a function of flow (q ) and cross-sectional

area (Ac ), given by v = q
Ac

. This stems from the relationship with electrical currents. Flow,

pressure, and compliance can be related to their electrical equivlances of current, voltage,

and capacitance, respectively. This parallel with electrical currents allows the use of Ohm’s

law to describe the flow q :

q =
pa −pc

Ra
=

arterial blood pressure− capillary blood pressure

arterial flow resistance
.

The difference between ABP and capillary blood pressure can be denoted ∆p and
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represents the pressure difference across a vessel. The pressure gradient can be defined as

∆p =
8µLq

πr 4
=

8(fluid viscosity)(vessel length)(flow)

π(inner radius)4 .

Assuming the volume of a single vessel (Va ) can be written as Lπr 2, then a new expres-

sion for the pressure change can be obtained.

∆p =

�

Lπr 2

Lπr 2

�

8µLq

πr 4
=

8µπL 3q

π2L 2r 4
=

8µπL 3q

(πL r 2)2
=

kR q

V 2
a

,

where kR is a constant parameter. Also, since ∆p = Ra q , arterial resistance (Ra ) can be

defined:

Ra q =
kr q

V 2
a

→Ra =
kR

V 2
a

.

By applying a volume balance equation for the capillaries, the volume of blood flow-

ing into the capillaries should be the approximate volume flowing out of the capillaries,

assuming that the volume of blood plasma absorbed by tissues is negligible:

q =
pa −pc

Ra
=

pc −pv

Rp v
.

By assuming that the venous pressure in the cerebral capillaries is equal to the intracra-

nial pressure (pv = pi c ), an expression for capillary pressure can be obtained:

pc =
pa Rp v +pi c Ra

Rp v +Ra
.

Now assume that the pressure-volume relationship of the cerebral arteries to be Va =
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Ca (pa −pi c ). In other words, stressed arterial volume is approximately equal to compliance.

Relating to the intracranial pressure-volume relation: pi c = pi c 0e kE Vi c , where Vi c is the

stressed intracranial volume, pi c 0 is the reference pressure at which Vi c = 0, and kE is the

intracranial elastance. The total intracranial volume (Vi c ) is composed of cerebrospinal fluid

volume (VC S F ), intracranial tissue volume (Vt i s s ), arterial blood volume (Va ), and venous

blood volume (Vv ). Vt i s s and Vv are constant with time. Thus,

Vi c (t ) =VC S F (t ) +Vt i s s +Va (t ) +Vv .

Using these equations, cerebral hemodynamics can be described with a single nonlinear

ODE for intracranial pressure (pi c ), given by

d pi c

d t
=

kE pi c

1+Ca kE pi c

�

Ca

d pa

d t
+

d Ca

d t
(pa −pi c ) +

pc −pi c

R f
−

pi c −pv s

R0

�

One assumption of note is that the rate of change in the CSF volume is equal to the differ-

ence between CSF formation and outflow. Constant model parameters are the elastance

coefficient (kE ), cerebrospinal fluid formation resistance (R f ), cerebrospinal fluid outflow

resistance (R0), and dural sinus pressure pv s . Model input consists of arterial blood pressure

(pa ) and the rate of change of arterial pressure ( d pa
d t ).

Ursino and Lodi envisioned that CBF is maintained by the regulation of vascular tone,

which is achieved by the control of arterial compliance (Ca ), given by the equation

d Ca

d t
=

1

τ
[−Ca +σ(x )].
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Here, τ represents a relaxation constant andσ denotes the autoregulatory control function,

given by

σ(G x ) =
(Ca n +

∆Ca
2 ) + (Ca n −

∆Ca
2 )e

G x
kσ

1+ e
G x
kσ

.

The saturation limits are described using∆Ca , kσ denotes the central slope of the static

autoregulation curve, and G represents the maximum autoregulatory gain. The model

output is cerebral blood flow velocity, and is a function of the computed radius of the

middle cerebral artery [UL97].

Figure 2.2 Ursino-Lodi Model (1998). Electrical analog of intracranial dynamics according to the
1998 Ursino and Lodi model. This is an extension of the previous approach by Ursino and Lodi
including CO2 reactivity in the pial arterial circulation. The model was used to analyze the nonlin-
ear interaction of CO2 reactivity with autoregulation. Reprinted with permission from [UL98].

One year after their initial paper, Ursino and Lodi further developed their model to show

the interaction among autoregulation, CO2 reactivity, and intracranial pressure [UL98]. To

do this, they decided to separate the microcirculation and macrocirculation. They con-

sidered the cerebrovascular bed to consist of four compartments (see Figure 2.2), each
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responding independently to changes in pressure. The aim of this study was to significantly

improve and extend the previous model to include the CO2 reactivity of cerebral vessels, its

nonlinear interaction with ICP and CA, and the description of the Transcranial Doppler

velocity signal. They hoped by developing this new model, that they would be able to

show that cerebral autoregulation and chemical metabolic regulation can be summarized

into a single theoretical setting. They also wanted to improve the interpretation of clinical

maneuvers concerning cerebrovascular control and ICP dynamics.

Model results showed the importance of the role of CO2 reactivity, and that one must

consider the different sizes of arterial vessels in the brain when modeling the CBF regulation

system. Although they did not consider the effects of the neurogenic response on CA, they

were able to specifically accomplish four main goals with the 1998 model. When holding

ICP constant, they were able to analyze CA, CO2 reactivity, and the interactions between CA

and CO2 reactivity. Lastly, they were able to analyze the effect of acute changes in CO2 on

ICP [UL98]. The plots of cerebral blood flow as a function of both arterial blood pressure and

partial pressure of carbon dioxide are validated against animal experimental data [Mac79;

Har79].

The original model from 1988 was used to model ICP dynamics in patients with acute

brain injury [Urs95]. Results from that study revealed that intracranial pressure is governed

by blood flow changes, cerebrospinal fluid dynamics, and changes in blood volume. The

two arterial compartment model [UL97]was simplified back into one arterial compartment

with feedback based on flow and arterial CO2 [Urs00].
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2.1.2 Similar models

The work of Ursino and his colleagues forms the basis for models created by other authors.

Olufsen et al. [Olu02] developed a lumped, three-element windkessel model for cerebral

blood flow regulation consisting of two resistors and a capacitor. The aim of the Olufsen

model was to better understand the cardiovascular response to hypotension, and found that

the initial increase in cerebrovascular resistance is responsible for the widening of the blood

flow pulse in young subjects. The model output, generated using time-varying parameters,

was validated using pulsatile CBFV data from the sit-stand manoeuvre [Lip00]. Czosnyka et

al. [Czo97] developed a model for bedside testing of cerebrovascular autoregulation which

was very similar to the model by Ursino and Lodi. The model by Banaji et al. [Ban05] is used

extensively. It uses the model form the 2000 study by Ursino et al. [Urs00], but replaces the

two feedback equations with a detailed model of the biochemical pathways.

Figure 2.3 Payne Model Schematic. This approach uses a lumped model to predict the response
of cerebral vasculature to changes in neural stimulation, arterial blood pressure, and arterial
CO2 concentration. Cerebral blood flow is controlled in an additive manner through these three
feedback mechanisms. Reprinted with permission from [Pay06].
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In 2006, Payne [Pay06] proposed a simple lumped model that included neural activity,

partial CO2 arterial pressure, and blood flow influence on compliance (see model schematic

in Figure 2.3. These influences were represented in the model by state equations and were

assumed to affect the compliance of the arterioles. The Payne model [Pay06] is very similar

to the in vivo prediction model [Urs00], but includes the contribution from neural activation

and is thus able to draw upon validation data from three physiological challenges. The

model can be thought of as two parts, the first contributing to the hemodynamics of the

blood vessel and the second pertaining to the autoregulatory mechanisms. Model analysis

shows a large correlation between brain autoregulation and neural activation processes.

The model exhibited the classic autoregulation curve and other qualitative characteristics

of cerebral blood flow. Payne found that incorporating a sigmoidal curve was useful in

getting cerebral autoregulatory characteristics because it provided limits to the extent that

cerebral autoregulation could influence the hemodynamic system.

Figure 2.4 Spronck Model Schematic. This is a lumped model of the posterior cerebral artery
and its distal venous and arteriolar beds. Blood flow regulation is exerted at the arteriolar level by
vascular smooth muscle and all four autoregulatory mechanisms are included. Reprinted with
permission from [Spr12].

In 2012, Spronck et al. [Spr12] created a lumped parameter model that demonstrates
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the mechanisms involved with cerebral autoregulation and neurovascular coupling. A

schematic of the model is provided in Figure 2.4. The change in CBF due to increased brain

activity is known as neurovascular coupling. Because the same mechanisms are involved

in both processes, this paper aims to model the mechanisms involved in order to study

the dynamical effects of cerebral autoregulation and neurovascular coupling on cerebral

blood flow as well as the influence of each mechanism involved. All four mechanisms of

cerebral autoregulation are considered: myogenic, shear stress, metabolic, and neurogenic

responses.

The model by Spronck et al. [Spr12] is of similar structure to the work of Ursino and

colleagues. It is composed of three compartments: the posterior cerebral artery (PCA), the

venous circulation, and the arteriolar circulation. The model is composed of a combination

of Ursino and Lodi’s model [UL98] and Payne’s model [Pay06]. The schematic for the model is

shown in Figure 2.4, which describes the interaction of the equations involved in the model.

The four mechanisms of CA are modeled by their regulatory state and regulatory action. The

entire model considers the simulation of nine state equations: three for the PCA, one for

venous circulation, one for arteriolar circulation, four for the regulatory mechanisms, and

one for the CO2 concentration. The first-order model is qualitatively compared to actual

patient data in order to determine the success of the model.

To imitate the qualitative behavior of the clinical data obtained, MATLAB simulations

were run in order to optimize the parameters and the fit quality was measured by the root

mean square error. Some parameters were kept constant based on previous models that

determined a significant value for each. In eleven subjects, five of the feedback gains and

time constants are fitted to data and the parameter values show consistency across the
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subject group. Model results concluded that the myogenic response plays a larger role in

regulating CBF when arterial blood pressure is fluctuated more than shear stress regulation.

The model shows that the metabolic response cannot be responsible for neurovascular

coupling solely. The relationship between the neurogenic and metabolic responses is

important because they directly influence one another (coupled). This model has the

advantage that the different feedback mechanisms are more explicitly included.

2.1.3 Other approaches

A myriad of autoregulatory studies exist, with some focusing on the detailed physiological

mechanisms of cerebral autoregulation and others attempting to simply describe the com-

plex mechanisms using a simple model. Kashif et al. [Kas12] used a model-based approach

to continuously estimate intracranial pressure from CBF velocity and ABP noninvasively. A

simplified model focusing on brain tissue, cerebral vasculature, and cerebrospinal fluid

was considered.

The study by David et al. [Dav09] develops a non-dimensional representation of both

myogenic and metabolic responses coupled with an asymmetric binary tree algorithm

simulating the cerebrovasculature structure. The end results of the two mechanisms given

in this paper are presented for an autoregulation algorithm of the cerebrovasculature

downstream of the efferent (conveying away from a central organ or section) arteries, such

as the middle cerebral artery.

The David et al. paper is believed to be the first model that includes a full arterial tree

algorithm shown in an autoregulation mechanism. The authors demonstrated the arterial

wall model and asymmetric binary tree model. The arterial wall model is adapted from the

32



Gonzalez-Ferrandez and Ermentrout (GFE) model to simulate the complete motion of the

arterial wall, known as the Maxwell unit. The GFE model utilizes differential equations to

simulate Ca2+ variations in smooth muscle via Ca2+ and Ca2+-dependent K+ ion channel

open probabilities. The arterial wall model consists of four equations with a power exponent,

for the relationship between parent and daughter vessels, and an asymmetry ratio. The

overall function for the asymmetric tree model is to imitate the vascular system from a

major artery, like the middle cerebral artery.

The authors were able to conclude that the myogenic response has a greater influence

on CA than the metabolic response from their analyses. Since this appears to be one of the

first models that utilizes the complete vascular tree, the authors state that the combination

of a CA model with a fully populated arterial tree remains relatively unexplored and more

work should be done with this concept [Dav09].

Works by Arciero et al. [Arc08; Car08] focus on the development of a theoretical segmen-

tal model of blood flow regulation. Although the models describe regulation in skeletal

muscle, they have recently been extended to retinal autoregulation [Arc13] and can be

applicable for modeling cerebral autoregulation. The possible extension of the work by

Arciero et al. to cerebral autoregulation will be explored further in Chapter 6.

2.2 Black Box Methods

The general idea behind the black box approaches is to provide a non-invasive assessment of

dynamic CA in the resting state. All of the techniques use spontaneous fluctuations in blood

pressure and cerebral blood flow velocity. Using spontaneous mean arterial blood pressure

fluctuations can be quite advantageous. Since no clinical maneuvers need to be performed,

33



these methods may be used in a wider range of patients, particularly those who are unstable

or unable to cooperate with or tolerate the challenges required to provoke a hemodynamic

response. Unlike the physiologically-based models above, black box approaches allow for

continuous, non-invasive monitoring of cerebrovascular function. The two most commonly

used black box methods for assessment of autoregulation are transfer function analysis

(TFA) and the autoregulatory index (ARI). The TFA [Zha98] results in a phase and gain

spectrum; where as, the ARI method [Tie95] describes the system response to a step-like

disturbance and is graded on a scale of 0 to 9. One problem with these approaches is that

spontaneous MABP fluctuations must be of sufficient amplitude in order to obtain reliable

estimates of the dCA parameters [Elt14].

Regardless of the method used for CA assessment, raw experimental data are prepro-

cessed. To obtain preprocessed data, pulsatile ABP and CBFV are low-pass filtered using

zero-phase 4th-order Butterworth filter, in both the forward and reverse directions, with

cutoff frequency of 20 Hz (see [Pan00]). Subsequently, the beginning and end of each car-

diac cycle are marked by the onset of the systole using ABP signal. The onsets are detected

using a windowed and weighted slope sum function and adaptive thresholding [Zon03].

The beat-to-beat average of ABP and CBFV are calculated for each detected cardiac cycle. A

first-order polynomial is then used to interpolate the resulting time series, which is followed

by downsampling at 10 Hz to produce signals with a uniform time base. Preprocessed ABP

and CBFV time series are used in the modeling approaches described below.
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2.2.1 Transfer Function Analysis

One tool for CA assessment is transfer function analysis (TFA), which was first conducted

by Giller [Gil90] and later applied to dynamic CA by Zhang et al. [Zha98]. The TFA method

aims to analyze the frequency domain relationship between oscillations in blood pressure

and cerebral blood flow velocity. This approach is based on the notion that CA minimizes

the effect of spontaneous pressure oscillations on the duration, magnitude, and frequency

in the velocity signal. The method of transfer function analysis has been used extensively

in the investigation of cardiovascular control, respiratory sinus arrhythmia, and renal

autoregulation [Sau91; Sau89; HR91]. Spectral analysis, which can be performed with the

fast Fourier transform (FFT), transforms time series of ABP and CBFV to the frequency

domain. Define Sx x ( f ) to be the autospectrum (power spectrum) of changes in the input

signal (ABP) and Sx y ( f ) to be the cross spectrum between the input and output (CBFV)

signals [Ain08]. The cross spectrum, also called the cross-spectral, is the Fourier transform

of the cross-correlation function, which is a measure used in signal processing describing

the similarity of two series as a function of the lag of one relative to the other [BP10]. The

transfer function between the two signals can then be calculated according to

H ( f ) =
Sx y ( f )

Sx x ( f )
. (2.1)

From the transfer function, the relative power (gain) and timing (phase) can be described

using the real (HR ( f )) and the imaginary (HI ( f )) parts of the complex transfer function:

gain:
�

�H ( f )
�

�=
Æ

|HR ( f )|2+ |HI ( f )|2
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Figure 2.5 Autoregulation Index. Cerebral Blood Flow Velocity (CBFV) for various ARI values
according to the arterial blood pressure step response input (left).

phase:φ( f ) = arctan
�

HI ( f )
HR ( f )

�

.

Calculation of the magnitude-squared coherence gives an estimate of the reliability of the

relationship between the two signals:

coherence: MSC( f ) =
|Sx y ( f )|2

Sx x ( f )Sy y ( f )
,

where Sy y ( f ) is the autospectrum of changes in CBFV. The coherence, which represents the

linear association between the fluctuations in blood pressure and cerebral blood flow, is

sometimes used as a measure of CA function. Impairment of CA is indicated by a coherence

of close to one.

2.2.2 Autoregulatory Index

The autoregulatory index (ARI) method uses preprocessed ABP data (dP ) as an input to the

Tiecks’ model [Tie95] to predict cerebral blood flow velocity. Even though this method is
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ARI T D K
0 2.00 0 0
1 2.00 1.60 0.20
2 2.00 1.50 0.40
3 2.00 1.15 0.60
4 2.00 0.9 0.8
5 1.90 0.75 0.90
6 1.60 0.65 0.94
7 1.20 0.55 0.96
8 0.87 0.52 0.97
9 0.65 0.50 0.98

Table 2.1 Autoregulatory Index. Corresponding values of T , D and K parameters for each ARI
value.

known for its uncertainty and lack of reproducibility, it has been the focus of many recent

studies [Cla16; Mah16]. Similar to several of the methods described above, this approach

uses beat-to-beat average BP as an input to predict CBFV. The input is typically normalized

according to the expression

dP =
P − P̄

P̄ −Pc r

, (2.2)

where Pc r = 12 mmHg is the critical closing pressure [Tie95].

There are both continuous and discrete formulations of the Tiecks method. Regardless

of the version used, for a prescribed input pressure stimulus, combinations of ten different

values of (T , D , K ) are used to generate ten models corresponding to various grades of

autoregulation ranging from 0 (absence of autoregulation) to 9 (strongest/fastest autoregu-

lation), see Figure 2.5 and Table 2.1. The associated ARI value is determined by finding the

minimal difference between the predicted (V̂ ) and measured CBFV (V ).

We will only consider the continuous formulation of the Tiecks model [Tie95]. This
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formulation estimates the CBFV using a second-order linear differential equation system

with input pressure dP and state variables x1 and x2.

d x1

d t
=

1

T
(−x2+dP ) (2.3)

d x2

d t
=

1

T
(x1−2D x2), (2.4)

where T and D are the time constant and damping factor parameters, respectively. The

predicted flow velocity (V̂ ) is calculated using the equation

V̂ =V (1+dP −K x2), (2.5)

where V is the mean velocity and K is a parameter reflecting autoregulatory gain. To solve

a system, appropriate initial conditions must be determined. Assuming that at rest, the

system is at steady state. Initial conditions can be determined from setting Equations (2.3)-

(2.4) equal to zero.
1

T
(−x2+dP ) = 0

1

T
(x1−2D x2) = 0.

The first ODE is zero when x2 is equal to the input pressure dP . The second ODE is zero

when x1 = 2D x2. Thus, to efficiently start the data-driven ARI method, initial conditions of

x2(0) = dP (0) and x1(0) = 2D dP (0) should be used.
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2.2.3 Other Approaches

Aside from TFA and ARI, other statistical black-box approaches exist. Autoregressive exoge-

nous (ARX) and autoregressive-moving average (ARMA) are extensions of the previously

discussed methods [LA02; Liu03]. The pulsatility index (PI) can be used to reflect cere-

brovascular resistance [Gos71]. This index is defined as the difference between systolic

and diastolic extremes of CBF velocity divided by the mean CBF velocity. Another tool that

is used is the rate of recovery (RoR), which is defined as the normalized changes in the

cerebrovascular resistance index per second during a decrease in blood pressure [Aas89].

This method has not yet been tested in an elderly population. Although most of the black

box methods can be used to analyze clinical data, they are rather limited in explaining

physiological mechanisms underlying CA.

2.3 Conclusion

While modeling autoregulation varies between phenomenological methods and conceptual

approaches, it is evident that research within the field of cerebral hemodynamics is ever-

growing. The brain is of high importance, since it influences and controls many of the

other systems within the human body. The model developed in Chapter 4 is an extension

of the Tiecks model [Tie95] to account for important features of cerebral autoregulation.

We aim to create a simple model (few parameters) capable of estimating cerebral blood

flow velocity given any pressure stimulus. Before discussing the model and the motivation

behind its development, let’s discuss a few methods that can be used for model validation

and analysis.
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CHAPTER

3

MATHEMATICAL METHODS

In Chapter 2, numerous methodologies for modeling cerebral autoregulation were de-

scribed. Despite the vast differences between the structures of the models, many of the

same mathematical tools can be used for model validation and analysis. This chapter

will introduce the analysis tools used to examine the model developed and presented in

Chapters 4 and 5, including identifiability analysis, sensitivity analysis, subset selection,

and parameter estimation. Throughout this chapter we use the previously developed ARI

model [Tie95] as an example for application of the techniques.
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3.1 Identifiability

Structural identifiability addresses the question of whether it is possible to uniquely infer

the model parameters given perfect and noise-free data. Practical identifiability establishes

if the model parameters can be determined uniquely given a specific (noisy) dataset. Thus,

if possible, structural identifiability should be considered before practical identifiability as

it is a necessary condition [Mia11; Mah14; MS14]. The importance of practical identifiability

stems from the fact that for many models, only some data is available. Thus even if the

model is structurally identifiable, it may only be possible to estimate a small subset of model

parameters [OO13]. If a model is unidentifiable, the parameters can take an infinite number

of values and still produce the same response. This can cause serious problems when

estimating parameters. Structural identifiability can also reveal identifiable combinations of

parameters, commonly referred to as correlated parameters. These combinations can cause

issues during parameter estimation, but reparameterization can be used to restructure the

model, creating an identifiable input-output equivalent to the original model.

Both analytical and numerical approaches can be used for identifiability analysis. Per-

haps the most effective analytical method for structural identifiability testing is the dif-

ferential algebra approach, which uses substitution and differentiation to eliminate all

variables in the model except for the observed output [Aud01]. Equations can be reduced

using Gröbner bases and characteristic sets to eliminate the unmeasured variables, even-

tually yielding input-output (I/O) equation(s). This equation relates the model input (e.g.

pressure) with the model output (e.g. flow). Using the coefficients of the I/O equation,

one can test model identifiability. Structural identifiability is determined by whether the
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corresponding coefficient map is one-to-one. If the I/O equation has a unique solution,

then it is one-to-one and the model is structurally identifiable in the variables. Simpler

forms for identifiable combinations and identifiable reparameterizations for the model

can also be obtained from the I/O equation. Structural identifiability analysis, which in-

cludes the calculation of the input-output equation for our model, is used in Chapter 4 (see

Equations (4.14)-(4.15)).

Another analytical approach is the Laplace transform method, which can only be used

on linear models. Consider the transfer function H (w ,θ ) associated with some linear model,

parametrized by θ , where θ belongs to an open subsetDT ⊂m , and consider the equation

H (w ,θ ) =H (w ,θ ∗) for almost all p , (3.1)

where θ ,θ ∗ ∈DT . Then, the model structure is said to be globally identifiable if (3.1) has a

unique solution inDT , locally identifiable if (3.1) has a finite number of solutions inDT , and

unidentifiabile if (3.1) has a infinite number of solutions inDT . Other analytical methods

for identifiability analysis include Taylor series and similarity transform.

Analytical methods sometimes have limited applicably and oftentimes can be slow.

To remedy, a variety of numerical approaches exist. One numerical approach uses the

Fisher Information Matrix (FIM), which is a Np ×Np matrix representing the amount of

information that the model output has about the model parameters p . The FIM can be
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calculated via the matrix product X T X , where X is the design matrix, given by

X =











∂ y (t1)
∂ p1

· · · ∂ y (t1)
∂ pn

...
...

...

∂ y (tm )
∂ p1

· · · ∂ y (tm )
∂ pn











.

When errors are normally distributed, the FIM is determined using X T W X , where W is a

weighting matrix. The rank of the FIM denotes the number of identifiable parameters and

parameter combinations. The FIM can be used to find blocks of related parameters and

subsequently how many parameters to fix during estimation. Structural identifiability can

often be detected by variances in the covariance matrix, which hinges on theory behind

the Cramer-Rao bound (FIM−1 ≤Cov(p )).

Another numerical method for identifiability analysis is profile likelihood [Rau09], which

focuses on exploring one parameter at a time by fixing it to a range of values and fitting the

rest of the model parameters. When analyzing the curvature of the profile likelihood, flat or

nearly flat regions indicate identifiability issues. By generating simulated perfect noise-free

data, structural identifiability can be tested. Other numerical methods for identifiability

analysis exist, including some Bayesian approaches [Ran02].

3.1.1 Example: ARI Model

Recall the ARI model system given in Equations (2.3)-(2.5). To check the structural iden-

tifiability of the model, we compute the I/O equation. Let p denote the ARI model input

(formerly dP ) and V̂ represent the model output. First, differentiate the output, Equa-
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tion (2.5) and replace d x2/d t with the expression in Equation (2.4) to get

d V̂

d t
= V̄

d p

d t
−

V̄ K

T
x1+

2D V̄ K

T
x2.

Solving Equation (2.5) for x2, substituting the result into the expression above, and rear-

ranging yields
d V̂

d t
= V̄

d p

d t
−

V̄ K

T
x1−

2D

T
V̂ +

2D

T
V̄ +

2D

T
V̄ P.

Differentiate to get

d 2V̂

d t 2
= V̄

d 2p

d t 2
−

V̄ K

T

d x1

d t
−

2D

T

d V̂

d t
+

2D

T
V̄

d p

d t
.

Next, replace d x2/d t with the expression in Equation (2.4), substitute in the expression for

x2, divide through by V̄ , and rearrange to get

d 2p

d t
+

2D

T

d p

d t
+

1−K

T 2
p =

d 2V̂

d t 2
+

2D

T

d V̂

d t
+

1

T 2

(V̂ − V̄ )
V̄

.

Lastly, multiply through by T 2, yielding the input/output equation

T 2 d 2p

d t
+2D T

d p

d t
+ (1−K )p = T 2 d 2V̂

d t 2
+2D T

d V̂

d t
+
(V̂ − V̄ )

V̄
.

The structural identifiability is determined by whether the coefficient map

φ(T , D , K ) =
�

T 2, 2D T , 1−K
�

(3.2)

is one-to-one. This has a unique solution and thus the ARI model is structurally identifiable.
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3.2 Sensitivity Analysis

To analyze the general ability of the model to fit the data, the sensitivity and practical

identifiability problem must be considered. Practical identifiability can be determined by

analysis of the sensitivity matrix. To define sensitivities, assume that the model can be

written as

d x

d t
= f (t , x ;θ ) ,

where t denotes time, x represents the state vector, and θ is the parameter vector. Also

assume that the output can be computed as

y = g (t , v ;θ ),

where g is an algebraic function dependent on time t , the states x , and the parameters θ .

The sensitivity of the model output (y ) to the model parameters can be estimated using

the sensitivity matrix, given by

S =
∂ y

∂ θ
.

Notice that the structure is equivalent to the design matrix previously defined. Each column

of the sensitivity matrix, denoted Si for i = 1, . . . , n where n is the total number of model

parameters is a time-varying vector that measures how sensitive the model output is to

a given parameter at a time t . Sensitivities can be determined analytically as solutions to

the sensitivity equations [VJ08], as well as by using finite differences [Pop09] or automatic
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differentiation [Ell08].

Given that model parameters do not have the same units, sensitivities cannot easily be

compared across the parameter space. To remedy this problem, relative sensitivities can be

calculated by scaling the sensitivity matrix S relative to the parameter and the time-varying

data. The relative sensitivity matrix is defined by

S̃ =
∂ y

∂ θ

θ

y
. (3.3)

For the purpose of parameter identification, it can be useful to rank the model parame-

ters according to their sensitivity. Insensitive parameters are typically difficult to identify.

Ranked sensitivities can be obtained by imposing a two-norm on each column of the

sensitivity matrix

S̄i = ||Si ||2 , (3.4)

or along each column of the relative sensitivity matrix

S̄i =
�

�

�

�S̃i

�

�

�

�

2
. (3.5)

These ranked sensitivities can be sorted from most to least sensitive, and are typically

scaled so that the most sensitive parameter has sensitivity equal to one. For model outputs

predicted numerically, parameters for which the ranked sensitivity Sθ i <
p

ξ, where ξ is the

tolerance of the ODE solver, are insensitive. In addition to being insensitive, parameters

may also be correlated [Tho09; Jac85; Dau08; Mia11]. Practical identifiability and sensitivity

analysis are used in Chapters 4 and 5.
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3.2.1 Example: ARI Model

Sensitivity analysis provides insight into how model output changes with respect to param-

eter values. Consider the ARI model [Tie95]. Sensitivity equations can be formulated to see

how parameters for autoregulatory gain (K ), damping factor (D ), and time constant (T )

can effect the model output. The sensitivities with respect to the model output are

∂ V̂

∂ T
=−K x2T

∂ V̂

∂ D
=−K x2D

∂ V̂

∂ K
=−K x2K − x2,

where x2T =
∂ x2
∂ T , x2D =

∂ x2
∂ D , and x2K =

∂ x2
∂ K . Absolute, relative, and ranked sensitivities can

be determined numerically by solving the following dynamical system of intermediate
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variables and their sensitivities,

d x1

d t
=

dP − x2

T
d x2

d t
=

x1−2D x2

T
∂ x1T

∂ t
=−

1

T 2
dP +

1

T 2
x2−

1

T
x2T

∂ x1D

∂ t
=−

1

T
x2D

∂ x1K

∂ t
=−

1

T
x2K

∂ x2T

∂ t
=−

1

T 2
x1+

1

T
x1T +

2D

T 2
x2−

2D

T
x2T

∂ x2D

∂ t
=

1

T
x1D −

2

T
x2−

2D

T
x2D

∂ x2K

∂ t
=

1

T
x1K −

2D

T
x2K (3.6)

where x1T =
∂ x1
∂ T , x1D =

∂ x1
∂ D , x1K =

∂ x1
∂ K , x2T =

∂ x2
∂ T , x2D =

∂ x2
∂ D , and x2K =

∂ x2
∂ K . Classical sensi-

tivites (see Figure 3.1(A)) and relative sensitivities (see Figure 3.1(B)) give insight to the

time-dependent importance of the parameters. Ranked sensitivities for the ARI model

are provided in Figure 3.1(C), from which the parameter representing the time constant

(T ) is the most sensitive parameter. All three sensitivities were calculated for the model

developed in this study, described in detail in Chapters 4 and 5.
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Figure 3.1 ARI Model Sensitivities. Plots of the classical (A) and ranked (B) sensitivities against
time show how sensitive the ARI model output is to a given parameter at a time t . For the pur-
pose of parameter identification, it can be useful to rank the model parameters according to their
sensitivity. When looking at the ranked sensitivities (C) for the ARI model, the time constant (T ) is
the most sensitive and the damping factor is the least sensitive.

3.3 Subset Selection

The structured correlation analysis method can be performed to explore possible pairwise

correlations among sensitive model parameters [OO13]. Using the sensitivity matrix S , the

correlation matrix c can be computed from the covariance matrix C = (S T S )−1 (assuming it

is not singular), as

ci , j =
Ci , j

Æ

Ci ,i C j , j

. (3.7)

The covariance matrix exists assuming the matrix product S T S is not singular, i.e. det(S T S ) 6=

0. The correlation matrix c is symmetric with
�

�ci , j

�

�≤ 1 and all
�

�ci ,i

�

�= 1. A parameter pair

(i , j ) is pairwise correlated when |ci , j |> ε for some threshold value ε. The criteria, i.e. the

choice value for ε, can be chosen by the researcher, where a value closer to 1 indicates a

stronger pairwise correlation.

Other methods for subset selection include the orthogonal method [Mia11], and using

49



singular value decomposition of the sensitivity matrix followed by QR factorization [Pop09].

Structured correlation analysis was performed on the model developed in this thesis (see

Chapters 4 and 5).

3.3.1 Example: ARI Model

Structured correlation analysis was performed on the ARI model, yielding the correlation

matrix

T D K




















T 1.00 −0.64 −0.58

D −0.64 1.00 0.77

K −0.58 0.77 1.00

Assuming a cutoff criteria of |ε|= 0.95, no parameters in the Tiecks model [Tie95] are pair-

wise correlated. Thus, parameters T , D , and K are estimable. The ε used here is consistent

with the criteria used in Chapters 4 and 5. This is not a set value and is oftentimes a matter

of choice, but parameters close to this value should be investigated more carefully.

3.4 Parameter Estimation

After addressing the identifiability of a model, estimates of identifiable model parameters

can be performed. Parameter estimation is a large field with lots of different optimization

methods that can be used. Additionally, parameter estimation is significantly easier to

perform successfully and efficiently with good nominal parameter values.
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3.4.1 Least Squares Optimization

Nonlinear least squares optimization is used to estimate parameters by minimizing the least

squares cost J =R T R , where R is a matrix of residuals describing the difference between

the model output and the observed data evaluated at times ti where the data are measured.

One method for least squares optimization is the Nelder-Mead simplex algorithm [NM65],

which can be implemented using the fminsearch command in Matlab. This algorithm min-

imizes the cost through direct search. A simplex, which is a triangle in h dimensions, is

generated using the initial guess for the h parameters. Nelder-Mead compares the values

of the function at the three vertices of the triangle, then eliminates and replaces the vertex

with the largest cost. This process is repeats and is eventually terminated once the cost at

the vertices converges to a single value.

Another optimization tool is the Levenberg-Marquardt method [Kel99], which is easily

implemented in Matlab using the nlinfit and newlsq_v2 scripts. This method combines

gradient descent and Gauss-Newton algorithms. The gradient descent method updates

the parameters in the direction of steepest descent, and then, assuming the least squares

function is locally quadratic, the Gauss-Newton method finds the minimum of the quadratic.

Parameter estimation is used in Chapters 4 (see Equation (4.20)) and 5 (see Equation (5.13))

to quantify patient-specific model parameters associated with the dynamic autoregulatory

response.
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3.4.2 Example: ARI Model

To identify the three ARI model parameters, parameter estimation was performed using the

Levenberg-Marquardt method. Figure 3.2 shows the ARI model output V̂ plotted against

the beat-to-beat CBFV data from a sample dataset [Lip00]. The fit was generated using the

optimal parameter values of T = 1.36, D = 0.46, and K = 0.43.
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Figure 3.2 Parameter Estimation. Estimated parameter values were obtained for the ARI model
using least squares optimization. Plots of the model output (red) and the averaged CBFV signal
(black) from a sample dataset.

52



3.4.3 Nonlinear Mixed Effects Modeling

Most parameter estimation techniques are used on mathematical models to describe intra-

subject variation. In order to analyze data from multiple subjects and extract valuable

information about inter-subject variation, one can use nonlinear mixed effects (NLME)

analysis. A mixed-effects model is one that includes both fixed effects and random effects.

NLME models are constructed using a statistical framework that incorporates fixed effects

for population parameters and random effects for the uncertainty associated with intra-

and inter-subject variability [DG95; Bon11]. NLME analysis is a two stage process, where

the first stage addresses intra-individual variability, and the second stage quantifies the

inter-individual variability.

Stage 1 describes assay errors and model errors, according to yi , j = g (xi , j ,φi ) + ei , j with

ei , j ∼ N (0,σ2). For some initial condition x (0) = x0, d x
d t = f (t , x , u ;φ). Stage 2 addresses

the uncertainty associated with inter-individual variability, φi = h (θ , Zi ,ηi ) using log-

normal parameter distributionφi = θ ·exp(ηi ), with ηi ∼N (0,Ω). Using the NLME method,

estimates of population parameters for random effects (Ω), random effects (σ2), and model

parameters (θ ) are obtained.

In the NLME analysis, the data are fitted to the same overall model as done in the

least squares optimization method. However, unlike least squares, the NLME method

gives insight into both intra- and inter-individual variation. The model parameters are

assumed to vary randomly around their population value (the population median) with

the associated variances quantifying the variability among subjects. A residual component

is introduced to describe the within-subject variation. Compared to taking the average of

the independently estimated individual parameter values, the NLME population estimate
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gives an improved estimate of the population parameters. Additionally, if not enough data

is available to estimate parameters for each subject, NLME modeling can help. The method

can borrow data from other subjects in the population to get a population mean, and then

parameters can be compared across populations with higher level of certainty [WZ06].

Nonlinear mixed effects modeling can be implemented in Matlab using the SimBiology

GUI. Another option is the specialized software package NONMEM. It was developed by

Lewis Sheiner and Stuart Beal and is commonly used in the analysis of pharmacokinetic

and pharmacodynamic data [Bea11].

This section introduces the concept of NLME analysis used in Chapter 5 to analyze our

model. It should be noted that NLME modeling included in Chapter 5 was performed by

collaborators Timmermann and Ottesen. Due to the complex model structure, the com-

mercial software NONMEM was used. The results using nonlinear mixed effects analysis

are presented in Chapter 5.

3.5 Statistical Considerations

In later chapters, statistical analysis via location testing will be used to differentiate between

subpopulations. Given data from two independent groups, location testing determines

if the means of the data are equal, using the null hypothesis H0 :µ1−µ2 = 0. Using a two-

sample t -test, the comparison of groups is performed by predicting p -values computed at

a prescribed confidence level α. The test statistic is calculated using

T =
µ1−µ2

SE
,
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where SE is the standard error, given by

√

√

√ s 2
1

N1
+

s 2
2

N2
.

Here, the s denote the sample variances and the N are the sample sizes. The two-tailed

p -value is given by

p = P (t1−α, DF < T ) +P (t1−α, DF > T ),

where the degrees of freedom (D F ) are determined using

(s 2
1 /N1+ s 2

2 /N2)2

(s 2
1 /N1)2

N1−1 +
(s 2

2 /N2)2

N2−1

.

To interpret, reject H0 if p < 0.05.
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CHAPTER

4

MODELING CEREBRAL BLOOD FLOW

VELOCITY DURING ORTHOSTATIC

STRESS

This chapter presents, develops, and analyzes our nonlinear cerebral autoregulation model.

We have chosen to include the entire text from our published paper, therefore some repeti-

tions may appear redefining the methods used for model analysis. To make all definitions
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clear, we have added comments to the text (in italics) to distinguish them from published

text. The manuscript was written in collaboration with Mahdi and Olufsen, who men-

tored Mader in model development and analysis and contributed to proof reading the

manuscript. As a first author, Mader was responsible for writing the text.

c© Annals of Biomedical Engineering (2014). DOI: 10.1007/s10439-014-1220-4.

4.1 Motivation

The brain accounts for only 2% of human body mass, yet approximately one-fifth of the

body’s blood supply goes to the brain. Cerebral autoregulation (CA) is a term used to de-

scribe the ability of the brain to regulate cerebral blood flow (CBF) over a wide range of

blood pressures. The system works by altering the local environment, keeping the flow

at homeostasis under changes in arterial blood pressure (ABP). The flow of blood to the

brain is modulated both by local and global mechanisms including myogenic, metabolic,

shear-dependent, and neurovascular regulation. These four regulatory responses act collec-

tively to maintain an approximately constant CBF and oxygen supply amidst ABP changes.

Myogenic regulation [Pet11] operates by changing electrical properties of stretch-activated

ion channels in arteriolar smooth muscle cells. Metabolic regulation [Pau90] refers to the

negative feedback system operating to balance metabolic demand with oxygen delivery.

This response is driven by the imbalance between cerebral metabolism (demand) and

oxygen delivery through CBF (supply) and acts by means of a vasoactive substance. Shear-

stress regulation [Spr12] responds to changes in wall stress imposed by changes in blood

pressure and is coupled with the myogenic response. This mechanism facilitates the en-
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dothelium producing nitric oxide due to the viscous friction of blood flow along the vessel

wall. Lastly, the neurogenic component of autoregulation describes the interaction between

intracranial nerves and cerebral vessels [HT14; Pet11]. While it has been established that

these four CA mechanisms operate on different time-scales [UL98; Pay06; Lan07; Bla08]

that are larger than a heart beat, the exact physiological mechanisms underlying observed

dynamics are still under debate.

Generally CA is studied from two perspectives: static and dynamic. Static CA refers to

the net effect a change in ABP has on CBF. It is typically illustrated by the CA curve, an

s-shaped curve (see Figure 4.3) showing the range of ABP (approximately 50-150 mmHg)

over which CBF is maintained [Las59]. Outside this range CBF change proportionally with

changes in ABP. Dynamic CA refers to the time-varying response to an ABP perturbation.

This is typically studied by analyzing adaptation following a step-increase in ABP. In clinical

studies, an ABP change is typically induced by subjecting the patient to either postural or

respiratory challenges such as head-up tilt, sit-to-stand, or CO2 rebreathing [Bee08].

In this study, we assess CA using data measured during postural change from sitting to

standing. Upon standing, in the upper body ABP drops due to gravitational pooling, while in

the lower extremities ABP increases. This leads to a decrease in cardiac output and therefore

a reduced flow to the brain. In response to this stimulus the autonomic and autoregulatory

systems are activated. Baroreflex regulation restores blood pressure by regulating heart

rate, cardiac contractility, and vascular tone, while CA responds via vasodilatation restoring

blood flow to the brain.

Simultaneous recordings of ABP and cerebral blood flow velocity (CBFV) allow re-

searchers to study dynamic adaptation. Figure 4.1 shows sample data from a sit-to-stand
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experiment. We note that a drop in ABP leads to an immediate drop in CBFV, which is

followed by a recovery, overshoot, and adaptation. This type of behavior resembles stress-

strain responses observed in viscoelastic materials [Fun93], including large arteries [VJ11].

This study develops a CA model that can predict both static and dynamic responses to

changes in ABP. For changes in ABP within the CA range, the model adapts to a baseline

value of CBFV, while outside the CA range changes in CBFV are proportional to ABP.

Numerous authors have tried to explain both static and dynamic aspects of CA. A va-

riety of physiologically-based models have been proposed [UL97; Urs00; Pay06; Spr12].

Ursino and Lodi used two-element [UL97] and three-element [UL98; Urs00]Windkessel

models to predict dynamic autoregulatory responses to changes in cerebral perfusion

pressure, arterial CO2 pressure, and arterial compliance. Payne [Pay06] proposed a lumped

parameter model that relates ABP, partial CO2 arterial pressure, and neural stimulation to

predict CBF and the change in hemoglobin. Spronck et al. [Spr12] developed a lumped

parameter model that predicts static CA regulation including all four autoregulatory mech-

anisms. A common theme in these physiological models is that they include numerous

parameters and were primarily developed to predict qualitative features rather than to fit

clinical data. The physiologically-based models can be contrasted with statistical black-

box approaches [Pan95; Czo96]. This group of methods includes the autoregulation index

(ARI) [Tie95], autoregressive-moving average (ARMA), autoregressive exogenous (ARX) [LA02;

Liu03], and transfer function analysis [Gil90; Pan96; Zha98]. Although most of these meth-

ods can be used to analyze clinical data, they are rather limited in explaining physiological

mechanisms underlying CA.

This study combines the two modeling methodologies deriving a simple nonlinear
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model that uses measured values of ABP as an input to quantitatively predict CBFV dy-

namics during postural change from sitting to standing. The model is motivated by the

analysis of time-varying dynamics observed in the filtered and pulsatile measurements

of ABP and CBFV. This analysis showed that CBFV responds nonlinearly to changes in

ABP. We found it important to develop a model that incorporates the CA curve in order to

distinguish between fluctuations in ABP. Perturbations of ABP within the CA range enable

CBFV to return to baseline, whereas perturbations outside this range causes CBFV to follow

changes in ABP. The objective of the present study is to derive a model motivated by physi-

ology while still keeping it as simple as possible. The latter is important since it facilitates

model-based analysis of large and patient-specific ABP/CBFV datasets by comparing the

estimated parameters. This type of analysis allows parameters to play the role of autoreg-

ulatory indices, which can be compared within and between groups of subjects. In this

study, the model is validated using ABP/CBFV data from a representative healthy young

and healthy elderly subject, but future studies aim at obtaining model parameters using

data from a larger cohort of subjects. More specifically, the present study addresses data

analysis, model development, and shows how stability analysis, as well as structural and

practical parameter identifiability methods can be used to demonstrate that the model

displays correct qualitative and quantitative behavior. Finally parameter estimation is used

to show that the model can fit CBFV measurements recorded during a postural change

from sitting to standing.
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4.2 Methods

4.2.1 Data

The sit-to-stand anonymized patient data analyzed in this paper were used with permission

from Dr. Lipsitz, Hebrew SeniorLife, Boston, MA. The Institutional Review Board at Hebrew

SeniorLife approved the study and all subjects provided written informed consent [Lip00].

Beat-to-beat arterial pressure was measured noninvasively in the middle cerebral artery

(MCA) using a photoplethysmographic Finapres monitor (Ohmeda Monitoring Systems,

Englewood, CO). The subject’s nondominant hand was supported by a sling at the level of

the right atrium to eliminate hydrostatic pressure effects. In order to minimize the effects

of respiration, subjects were required to breathe at a rate of 15 breaths per minute with the

assistance of tape-recorded cues. Test subjects also underwent Doppler ultrasonography by

a trained technician in order to measure the changes in blood flow velocity within the MCA

due to active postural changes. The 2 MHz probe of a portable Doppler system (MultiDop

X4, DWL-Transcranial Doppler Systems Inc., Sterling, VA) was strapped over the temporal

bone and locked in position with a Mueller-Moll probe fixation device to image the MCA.

The MCA blood flow velocity was identified according to the criteria of Aaslid [Aas89] and

recorded at a depth of approximately 50-65 mm. The blood flow velocity waveform, derived

from a Fourier analysis of the Doppler frequency signal and continuous pressure signal,

was digitized at 250 Hz and stored in the computer for later analysis.
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Figure 4.1 Trends in ABP/CBFV dynamics. Graphs show pulsatile and filtered ABP and CBFV
data for a healthy young (left column) and a healthy elderly (middle column) subject during the
sit-to-stand experiment. The black vertical lines mark the time at which the subjects stand.

4.2.2 Data Processing

To inspect the trends observed in the pulsatile ABP and CBFV data, a simple filtering

procedure was applied to both signals. We know there are several filtering approaches,

reference previous papers. We do not implement the integral in Equation (4.1), but rather

implement the ODE (see Equation (4.2)). Having the integral from−∞ to t gives nicer form

of differential equation. The filtered signals p̄a and V̄m c a are computed as weighted averages,

where the present value is weighted higher than the past, according to the expression

x̄ (t ) = β

∫ t

−∞
x (s )e −β (t−s )d s , (4.1)
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where x ∈ {p d
a , V d

m c a } is the pulsatile data and β (1/sec) represents the weighing parameter.

Alternatively, differentiating Equation (4.1) we obtain

d x̄

d t
= β (x − x̄ ). (4.2)

In this studyβ = 1 for both subjects. Filtering was done by solving the differential equation in

(4.2), corresponding to the integral in (4.1). This form of the integral is chosen to get a simple

form for (4.2), which can be justified since
∫ 0

−∞ is small. In this study all computations are

done with β = 1. As we discuss in Chapter 5, varying beta allows us to account for more or

less pulsatility in the model. A smaller value of β , gives rise to smoother data at the cost

of delaying arrival of peaks and troughs. Figure 4.1 shows the pulsatile and filtered ABP

and CBFV data for a healthy young and a healthy elderly subject. A zoom (before postural

change) of the data from the elderly subject is included to show inter-beat ABP and CBFV

dynamics. The black vertical lines indicate when the subjects undergo postural change

from sitting to standing, which causes pooling of blood in the legs. As a result, the ABP

in the upper body drops, while lower body ABP (not measured) increases. In response,

baroreflex, and autoregulation are activated, restoring ABP and CBFV to baseline levels.

The young subject displays a larger overshoot before recovery than the elderly one; and the

recovery time is longer in the elderly than in the young subject.

4.2.3 Model Formulation

The proposed model is partially based on the trends observed in the filtered ABP/CBFV

(input/output) data. The drop in ABP during a postural change from sitting to standing
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Figure 4.2 Mechanical analog used for predicting Vd y n . Schematic diagram depicting the me-
chanical analog model used for predicting the dynamic CA component Vd y n . The model includes
two viscoelastic Voigt body elements combined with a spring accounting for the elastic portion of
the response.

is a consequence of the blood volume redistribution triggered by gravitational forcing.

Without active control systems, ABP would remain low, leading to a reduced flow to the

brain. While the autonomic system is activated to restore blood pressure, CA maintains CBF

relatively constant. The latter is facilitated by vessel dilatation/constriction. To understand

how the body adapts to these changes, it is necessary to develop a dynamic model. The

data demonstrate that the recovery time (the elapsed time between the minimum CBFV

and the time at which CBFV returns to its baseline value) is longer in the elderly than in

the young individual. For the young subject the recovery time is approximately 12 seconds,

while it is 15 seconds for the elderly subject (see Figure 4.1). Conversely, the overshoot in

the CBFV dynamics is larger in the young than in the elderly subject. Unfortunately, from

the data used in this study it is not possible to determine what physical properties cause a

larger overshoot in the young subject.

As noted earlier, the relationship between ABP and CBFV closely resembles strain-stress

responses observed in viscoelastic-type materials [Flü75; Chr71; Mah14; VJ11], including
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overshoot, adaptation, and a phase shift. It is well-known that blood vessels exhibit vis-

coelastic properties [Fun93]. Moreover, cerebral arteries responsible for regulating CBF

contain collagen and the regulatory deformation is likely to be viscoelastic. The model

developed in this study is empirical and we do not have data at intermediate stages to

determine exactly what type of viscoelastic response is exhibited. In general, tissue shows a

continuous relaxation in response to stress [Fun93], yet our previous study [Mah13] revealed

that with two relaxation time-constants it is possible to fit the response to ABP changes.

Inspired by these studies, we chose to use the model depicted in Figure 4.2, which includes

two Voigt bodies connected with a spring. Further, we will show how the model’s parameters

can be related to features associated with the adaptation, recovery, and overshoot. It should

be noted that this study only accounts for the CA response due to changes in pressure.

The stimulus (see Figure 4.2) is denoted by fs , which represents either mean or pulsatile

ABP. Numerous studies (e.g. [BH85; HT14; WC13]) have attempted to predict the myogenic

contribution to CA as a function of ABP, yet it is still unclear if CA responds to changes

in mean or pulsatile pressure. To study the difference between these inputs, we consider

two cases. The first case uses pulsatile pressure obtained via interpolating the measured

ABP, i.e., fs = p d
a , and the second case explores the mean pressure stimulus predicted by

interpolating the filtered pressure fs = p̄a . To simplify notation in the remainder of this

manuscript, we write fs = p , where p ∈ {p d
a , p̄a }.

The dynamic component of CA described above, predicts the transient response of

CBFV to beat-to-beat fluctuations in ABP. Without any further model components CBFV

would adapt to zero rather than to the given baseline flow. Therefore, to account for both

dynamic adaptation and baseline flow, we assume that Vm c a , representing CBFV in the
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middle cerebral artery, is given by

Vm c a =Vb a s +Vd y n , (4.3)

where Vd y n models the transient character of the signal and Vb a s is the baseline value of

CBFV. The dynamic portion of CBFV is predicted by determining the strain-stress relation-

ship on each mechanical element in the model (see Figure 4.2). Let ε j andσ j for j = 0, 1, 2

be the strain and stress associated with the spring and the two Voigt bodies. Following the

diagram in Figure 4.2, we can write:

ε0 = fs − v1 σ0 = ka u t ( fs − v1)

ε1 = v1− v2 σ1 = k1(v1− v2) + b1

�

d v1

d t
−

d v2

d t

�

ε2 = v2 σ2 = k2v2+ b2

d v2

d t
.

(4.4)

To incorporate the CA curve into our model, the spring k2 is assumed to be a function of

ABP, i.e., k2 = k2(p ). Since the two Voigt bodies and a spring are connected in series, the

total stress equals to the stress on each element [Chr71], i.e.,σ0 =σ1 andσ0 =σ2, yielding

ka u t ( fs − v1) = k1(v1− v2) + b1

�

d v1

d t
−

d v2

d t

�

ka u t ( fs − v1) = k2v2+ b2

d v2

d t
.

(4.5)

By making the following substitutions

a =
ka u t

b1
, b =

ka u t

b2
, c =

k1

b1
, and d =

k2

b2
, (4.6)
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we obtain a simplified system of equations of the form

d v1

d t
=−(a + b + c )v1+ (c −d )v2+ (a + b ) fs

d v2

d t
=−b v1−d v2+ b fs ,

(4.7)

where a , b , and c are nonnegative parameters, while d includes the pressure-dependent

resistance, k2(p ), used to discriminate between pressure stimuli both within and outside

the CA range. Initial values for a , b , and c were chosen to ensure that the eigenvalues of

the system are negative, thereby ensuring adaptation to baseline flow. Finally, the dynamic

(transient) autoregulation component of the blood flow velocity within the MCA is given by

Vd y n =M ( fs − v1), (4.8)

where M ≈ 1, representing the amplification. It was noted that d (p )was modeled to distin-

guish between pressures within and outside the CA range.

Figure 4.3 shows a normalized pressure-flow data sets from rats [Har79; DP90] and

cats [Mac76; Mac79]; and a CA curve (solid line), which was modeled using a cubic polyno-

mial of the form

fa u t (p ) = (2.03×10−6)p 3− (6.02×10−4)p 2+ (5.94×10−2)p −1.95. (4.9)

It is known that the CA range is modulated in disease, e.g. hypertension [Ser01; Try13]. By
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Figure 4.3 CBF-Pressure Curve. Empirical fit of fa u t against normalized experimental CBF and
ABP data from rats [Har79; DP90] and cats [Mac76; Mac79]. These data suggests that CA range is
defined for ABP between approximately 50 and 150 mmHg.

incorporating the steady-state expression for v1 into Equation (4.8), we obtain

d (p ) =
b c fa u t

M c fs − (a + c ) fa u t
, (4.10)

ensuring that at the steady-state Vd y n = fa u t . Moreover, it should be noted that within the

autoregulatory range fa u t ≈ 0 and as a result d ≈ 0. The CA curve is determined a priori,

and therefore no parameters are added to the final model. Using the first steady portion

of the subject-specific data set (before standing) and denoted by V d
m c a , we compute the

baseline value of the CBFV as

Vb a s =
1

T

∫ T

0

V d
m c a d t , (4.11)

where T = 50 is the length of the considered interval (in seconds). The values of Vb a s for

the young and elderly subjects have been estimated to be 57.4 and 37.7 cm/s, respectively.
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By combining the dynamic Vd y n and the baseline Vb a s , the CBFV in the middle cerebral

artery is predicted using Equation (4.3). In summary, the proposed model uses ABP as an

input fs to predict CBFV during postural changes from sitting to standing.

4.2.4 Steady-State and Initial Conditions

The model is formulated as a system of two algebraic and ordinary differential equations in

v1 and v2. To solve this system, appropriate initial conditions must be determined by, e.g.

analyzing steady-state behavior within the model. We assume a constant input stimulus

f̄s = p̄ , where p̄ is the mean pressure over the “steady” portion of the data (e.g., during

sitting). Thus, the steady-state of Equation (4.7) is given by

v ∗1 =
f̄s (b c +a d )

b c + (a + c )d
, v ∗2 =

b c f̄s

b c + (a + c )d
, (4.12)

where d is evaluated at p = p̄ . From this we get Vm c a =Vb a s +M ( f̄s − v ∗1 ). It should be noted

that additional forcing is incorporated in d representing the pressure-dependent spring.

However, at rest (before postural change), perturbations in pressure are assumed to be

within the CA range. Given that the CA curve was normalized around zero during rest,

the input stimulus is fa u t = 0, which implies that v ∗1 = v ∗2 = f̄s . One consequence of this

assumption is that for simulations examining dynamics outside the CA range fs will no

longer be constant.
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4.2.5 Time Constants

Time-constants associated with the model Equation (4.7) were computed to further analyze

dynamics around the nominal values of the parameters a , b , and c . Since the eigenvalues

λ1, λ2 of the Jacobian associated with system (4.7), for a constant stimulus f̄s , are given by

λ1,2 =
1

2

�

−a − b − c −d ±
p

(a + b + c +d )2−4(b c + (a + c )d )
�

, (4.13)

where d is evaluated at p = p̄ , the time-constants of system of Equation (4.7) areτ1,2 = 1/λ1,2.

Recall that d (p ) is not a parameter but a pressure dependent function. We assume that CBFV

returns to its baseline value after approximately 20 s, in agreement with the sit-to-stand

data analyzed in this study (see Figure 4.1). To facilitate this adaptation, we impose the

condition for the steady-state (4.12) to be locally stable, i.e. we require that the eigenvalues

(4.13) be negative. This condition is used as a criterion for choosing the initial values (before

optimization) for the parameters a , b , and c . For this study it is assumed that a = 0.25,

b = 0.1, and c = 0.9. Moreover, assuming that CA operates on more than one time-scale, we

checked that optimized parameters generate two distinct time constants, |τ1| � |τ2|, which

reflect the fast and slow components of the CA dynamics.

4.2.6 Structural Identifiability

As a preliminary step for studying the model’s ability to fit measured data, we consider

the structural identifiability problem. It addresses the question of whether it is possible to

uniquely infer the model parameters given perfect and noise-free data. If possible, structural

identifiability should be considered be- fore the practical one. Recall that the practical

70



identifiability establishes if the model parameters can be determined uniquely given a

specific (noisy) dataset. Thus, structural identifiability is a necessary condition for practical

identifiability. If a model is unidentifiable, the parameters can take an infinite number of

values and still produce the same response [MS14].

We first consider the structural identifiability problem for the CA model given in Equa-

tions (4.3, 4.7-4.11), assuming that ABP is within the autoregulatory range, i.e. fa u t = 0 and

consequently d = 0, see Equation (4.10). Note that under this assumption, the system (4.3,

4.7-4.11) reduces to two linear differential equations. As discussed in [Mah14], the structural

identifiability of the model given by Equation (4.4) can be established by computing the

input/output equation. To check the structural identifiability of the model (4.3, 4.7-4.11),

we compute the input/output equation, that is, the equation relating p with Vm c a . First, we

differentiate Equation (4.3), and replace d v1/d t with the expression in Equation (4.7). Next

v1 is extracted from Equation (4.3) and substituted into the current expression in Equation

(4.14). Finally, differentiating the resulting expression, replacing d v2/d t with the equivalent

expression in (4.7), and collecting similar terms yields the following input/output equation

M
d 2p

d t 2
+M c

d p

d t
=

d 2Vm c a

d t 2
+ (a + b + c )

d Vm c a

d t
− b c (Vm c a +Vb a s ) . (4.14)

The structural identifiability is determined by whether the corresponding coefficient map

Φ(a , b , c , M ) = [M , M c , a + b + c , b c ] (4.15)

is one-to-one. It is straightforward to see that equation Φ(a , b , c , M ) =Φ(a ∗, b ∗, c ∗, M ∗) has

a unique solution, and thus the model is structurally identifiable in the variables a , b , c ,
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Figure 4.4 Sensitivity analysis. This figure shows the relative (time-varying) [left panel] and
ranked [right panel] sensitivities of the model parameters with respect to the model output,
CBFV.

and M .

The above analysis assumed that fa u t = 0, but this is not the case in general. However,

if fa u t is approximated by a piecewise linear functions, the model can be analyzed in

its entirety. For example, if we assume that fa u t = k p , for some suitable value of k , it

can be shown that the model given by Equations (4.3, 4.7-4.11) is structurally identifiable.

Unfortunately, it is rather tedious to check the property for the full nonlinear model (4.3, 4.7-

4.11), i.e. when fa u t is not necessarily assumed to be identically zero but given by Equation

(4.9). Thus, to analyze the ability of the general model to fit the data, the sensitivity and

practical identifiability problem is considered in the following section.
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4.2.7 Sensitivity and Practical Identifiability

Practical identifiability can be determined by considering the sensitivity matrix. To define

sensitivities, we assume that the model can be written as

d v

d t
= f (t , v ;θ )

h (t ;θ ) = g (t , v ;θ ),

where t denotes time, v represents the state vector [v1, v2], θ = [a , b , c , M ] is the parameter

vector, h (t ;θ ) =Vm c a is the model output, and g is an algebraic function. The model output

Vm c a defined in Equation (4.3) is computed as a function of the time t , the states v , and

the parameter vector θ . Each column of the sensitivity matrix,

S =
∂ Vm c a

∂ θ
(4.16)

is a time-varying vector that measures how sensitive the model output is to a given pa-

rameter at time t (for more details see [OO13]). Given that model parameters do not have

the same units, sensitivities cannot easily be compared across the parameter space. To

remedy this problem, the sensitivity matrix is often scaled relative to the parameter and

the time-varying data. The relative sensitivity matrix is defined by

S̃ =
∂ Vm c a

∂ θ

θ

Vm c a
. (4.17)
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As noted above, the sensitivities are functions of time for each parameter. For the purpose

of parameter identification, it is useful to be able to rank the parameters according to their

sensitivity. Insensitive parameters are typically not identifiable. Several measures can be

used to obtain ranked sensitivities, but in this study, they are predicted by imposing a

two-norm on each column of the sensitivity matrix

S̄i = ||Si ||2 . (4.18)

Plots of the relative (time-varying) and ranked sensitivities (scaled such that the most

sensitive parameter has sensitivity equal to one) for the model parameters are shown

in Figure 5.3. Note that M is the most sensitive model parameter, while a and c are the

least sensitive. For model outputs predicted numerically, parameters for which the ranked

sensitivity Sθ i <
p

ξ, where ξ is the tolerance of the ODE solver, are insensitive. For this

study, the ODEs were solved numerically using Matlab’s ODE solver “ode15s” with absolute

and relative error set at 1×10−8. Thus, according to the definition above, all parameters are

“sensitive”.

A correlation analysis was performed to explore possible pairwise correlations among

the sensitive model parameters [Mia11]. The correlation matrix c can be computed from

the covariance matrix C = (S T S )−1, as

ci , j =
Ci , j

Æ

Ci ,i C j , j

. (4.19)

The matrix c is symmetric with |ci , j | ≤ 1 and all |ci ,i | = 1. Here, we denote the parameter

pairs for which |ci , j |> 0.95 as correlated. By this definition, all the model parameters are
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Table 4.1 Parameter Estimation. Estimated model parameter values for the healthy young (Y)
and elderly (E) subjects.

Parameter Equation Description Value (Y) Value (E)
a (5.5) Voigt-body parameter 0.466 2.50
b (5.5) Voigt-body parameter 0.0100 0.280
c (5.5) Voigt-body parameter 0.290 2.71

M (5.8) Mathematical amplifier 1.20 1.00

practically identifiable.

4.2.8 Parameter Estimation

The model was fit to data minimizing the least squares error

J =
1

N

N
∑

i=1

�

V̄ d
m c a (ti )−Vm c a (ti ,θ )

V d
m c a (ti )

�2

, (4.20)

where V̄ d
m c a denotes the filtered CBFV data, and Vm c a is the model output. For each dataset,

the parameters were estimated (see Table 4.1) using the Levenberg-Marquardt method [Kel99]

with nominal values a = 0.25, b = 0.1, c = 0.9, and M = 1.

4.3 Results

4.3.1 Qualitative Results

The qualitative responses of the model, given by Equations (4.3, 4.7-4.11), to pressure

step-stimuli within and outside the CA range are presented in Figure 4.5. Input pressures

outside of the CA range are denoted by an “o”. The upper and the lower panels of the figure
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Figure 4.5 Qualitative responses. This figure presents four qualitative responses computed using
the ABP/CBFV model. Simulations were done by varying the input pressure (ABP) assuming:
a step increases (A), a step decreases (B), ABP drop followed by recovery (C), oscillating step
increases (D), oscillating step decreases (E), and an oscillating ABP drop followed by recovery (F).
Steps outside of the CA range are denoted by “o”.

show the filtered and the pulsatile response, respectively. Figures 4.5A and 4.5D show that a

step-increase in the input pressure p within the autoregulatory range (solid line) results in

an initial overshoot followed by adaptation to the same baseline value. On the other hand,

a step-increase in ABP outside the CA range (dotted line) results in Vm c a settling to a new,

higher steady-state value. This is a consequence of incorporating the CA curve into the

model. Similarly, the qualitative response of Vm c a to a pressure step-decrease results in

Vm c a settling at lower CBFV value. Motivated by the sit-to-stand experiment, Figures 4.5C

and 4.5F show the model’s response to a “dip” in ABP. Results for this stimulus show that

the model is able to predict the overshoot and baseline CBFV values recorded before the

sit-to-stand protocol. Given that in vivo blood pressure is always pulsatile, we tested that
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Figure 4.6 Quantitative responses. Estimated mean and pulsatile CBFV model output compared
to filtered and pulsatile CBFV data for a young subject and an elderly subject. The vertical black
line in each plot denotes the beginning of orthostatic stress.

the model could also reproduce correct behavior when responding to a pulsatile stimulus.

4.3.2 Quantitative Responses

Figure 4.6 shows the model output Vm c a , given by Equation (4.3), plotted against the pul-

satile and filtered ABP/CBFV data from the healthy young and elderly subjects. For both

subjects, the fits were generated using the optimal parameter values given in Table 1. The

rightmost column shows a zoom of the steady-state segment of the data and the model

response. Results obtained using the filtered ABP signal as an input show that the model

is able to fit the baseline, dip, overshoot, and adaptation for both the young and elderly

subjects. These three features are also captured in the model results computed using the
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pulsatile ABP data as a stimulus. Though it should be noted that for both the young and

the elderly subjects, the model does not fully predict the widening effect portrayed by the

data shortly following the transition from sitting to standing. Data for the young subject

showed larger overshoot following the ABP stimulus, while the recovery time was larger for

the elderly subjects. Both features can be seen in simulation results, in particular for the

study using filtered ABP as an input, it should be noted that the stimulus differs between

the healthy young and the healthy elderly. The comparison of estimated model parameters

shows clear differences. While the parameter M is of the same order of magnitude for both

subjects, the Voigt body parameters representing time-scales vary significantly between

the two subject types.

4.3.3 Discussion

This study developed a simple nonlinear model using ABP as an input to predict CBFV

and analyzed the model’s dynamics using both synthetic (pulsatile and nonpulsatile) and

experimental data from a heal- thy young and a healthy elderly subject. Results showed

that the model is able to capture the CBFV drop, overshoot, and recovery, including both

the more pronounced overshoot exhibited by the young subject and the longer time for

recovery exhibited by the elderly subject. The model has only four parameters and was

motivated by the viscoelastic-like response observed in the data recorded during postural

change from sitting to standing. Comparison of estimated model parameters showed that

the Voigt body parameters a , b , and c were significantly higher for the elderly subject,

while M was similar for both subjects. Given that simulations were performed using one

subject in each age group, statistical comparison of values is not feasible. Assuming that
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all other model parameters are held at their nominal values, increasing a or b results in a

smaller CBFV drop and overshoot, while increasing M produces a more pronounced drop

and overshoot. The model response is insensitive to changes in c (see Figure 5.3). Moreover,

increasing a results in a longer recovery time. The higher values of a and b in aging could

explain observed differences.

One noticeable discrepancy between the fits using pulsatile ABP as an input is that

for the young subject, the estimated pulsatile CBFV does not predict the pulse widening

observed immediately upon the postural change from sitting to standing. This widen-

ing is less pronounced in the elderly subject. This feature was captured in our previous,

physiologically-based model [Olu05], though it had more than 60 parameters compared

to the 4 parameters in the current approach. It is likely that there may be a feature of CA

that this model cannot quantify. For example, if the parameters associated with the change

in vessel compliance are not necessarily constant, then they could be determined as a

function of strain. More discussion about changes in vessel compliance with age can be

found in studies by Carey et al. [Car03] and Yam et al. [Yam05]. Moreover, it should be noted

that model simulations were performed using the same parameter set, independent of

the nature of the ABP input, i.e. the model was calibrated only to the filtered and not the

pulsatile response. We note that estimating parameters using the pulsatile ABP input signal

did not provide a better fit.

Although the model output did not fit all aspects of pulsatile CBFV dynamics, the

main features of this more complex signal were predicted well. Despite the numerous

physiologically-based models that have been developed (see e.g., [UL97; UL98; Urs00; Pay06;

Spr12]) to our knowledge this is the first ABP/CBFV model that allows both qualitative and
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quantitative prediction of both the average (filtered) and transient (dynamic) responses

associated with CA. The main aim of the present study was to model the transient part of

ABP/CBFV response. Although the measurements (e.g., the amplitude) of the CBFV depend

on the angle of insonation, and that it may vary between individuals, it is likely that it mainly

affects the scaling and not the dynamics of ABP/CBFV response.

Aside from model development, extensive model analysis was performed. To our knowl-

edge, no previous CA models have been analyzed whether or not estimated parameters

were identifiable. This question is particularly relevant if parameter values are used as phys-

ical biomarkers describing the differences both within and between groups of subjects. We

showed that the linear model (when fa u t = 0) is structurally and practically identifiable. For

the full nonlinear model (when fa u t 6= 0) it was not possible to show structural identifiability

analytically. If the CA curve is approximated by a piecewise linear function, identifiabil-

ity can be proven analytically. Regardless, subsequent sensitivity analysis showed that all

model parameters were sensitive and practically identifiable allowing estimation of all

model parameters. Given that the model has only four parameters, the optimizations were

relatively fast. For one dataset it took approximately 10 min using Matlab on a Macbook

Pro with a 2.3 GHz Intel Core i5 processor.

While its simplicity makes the model computationally feasible to work with, it may

be difficult to infer what specific physiological mechanisms were compromised. More-

over, this type of model is not yet able to predict the cause of disease, similar to many

statistical methods [Pan95; Czo96] and efforts aiming at computing various autoregulation

indices [Tie95; Pan03a; LA02; Liu03]. One way to improve the current approach could be

by incorporating some mechanisms present in physiologically-based models, at the same
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time keeping it computationally efficient. Several previous approaches could be used as a

point of departure for this effort including the works by Ursino et al. [UL97; Urs00], Arciero

et al. [Arc08], or Spronck et al. [Spr12], which quantify in detail the metabolic, myogenic,

shear-dependent, and neurogenic responses. The advantage of the latter models is that they

can be used to understand how each mechanism impacts the overall dynamics, a feature

not provided by our study. The disadvantage is the high number of parameters, which are

typically unidentifiable, making the model difficult to validate against experimental data.

4.4 Summary

In conclusion, the CA model developed in this study is able to predict both qualitative and

quantitative dynamics associated with ABP/CBFV response during a postural change from

sitting to standing. Qualitative features were analyzed by imposing step-changes and a “dip”

change in ABP within and outside the CA range. Quantitative responses were analyzed by

showing that the model can fit both filtered and pulsatile CBFV dynamics during a postural

change from sitting to standing, a feature that to our knowledge has not been tested in

previous modeling studies. Parameter estimation was used to show that the model could

be adapted to distinguish responses in a healthy young and healthy elderly subject. The

model provided very good agreement with the data (for the subjects shown). Finally, we

showed that the model exhibits an important nonlinearity related with the CA curve.
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CHAPTER

5

DYNAMIC CEREBRAL

AUTOREGULATION IN AGING AND

HYPERTENSION

Similar to Chapter 4, this chapter includes our second manuscript, currently in review.

This study was carried out in collaboration with Olufsen, who advised Mader on model

development and analysis, and Ottesen and Timmermann who conducted the nonlinear
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mixed effects studies.

c© Journal of Cerebral Blood Flow & Metabolism (2016).

5.1 Introduction

Cerebral autoregulation (CA) is the combination of local responses that work to maintain

adequate cerebral blood flow (CBF) despite changes in pressure. CA is typically studied from

two perspectives. Static cerebral autoregulation refers to the net effect that a steady-state

change in arterial blood pressure (ABP) has on CBF, generally portrayed using the Lassen

curve [Las59]. Dynamic cerebral autoregulation (dCA) describes the transient cerebral blood

flow response to alterations in ABP. The latter has been shown to be the more vulnerable

component to impairment in certain disease states [Tie95]. Since the elderly are more

prone to disease, it is important to study the effects that aging may have on autoregulatory

function.

The human cardiovascular system experiences many age-related changes, including

decreases in systemic artery compliance [Fle86] and increases in systolic ABP [Kan78]. Addi-

tionally, aging leads to widening of cerebral arterial vessels [Kre99] and is responsible for a

decrease in both cerebral blood flow velocity (CBFV) and cerebral blood flow volume [Car00;

Car03]. Gender differences in the elderly have been studied, concluding that elderly women

have better vascular function than elderly men and that women autoregulate better than

men [Dee10].

Hypertension is a major risk factor for cerebrovascular diseases [Fuj95]. Increased

vascular resistance in hypertension decreases CBF in elderly hypertensives to the level
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observed in healthy young subjects [Str73]. This increased resistance is a result of structural

changes in the smaller resistance vessel, characterized by narrowed arterioles with thick-

ened walls [CY72]. Moreover, the presence of hypertension reduces the cerebrovascular

response to changes in the arterial partial pressure of CO2 [Mae94].

Current studies cannot detect age-related changes and cannot consistently quantify the

effects of aging and hypertension on CA function. Regardless of the method by which CA is

assessed, authors have concluded that autoregulation is not compromised in the elderly.

Many approaches have been used, including the Mx index [Yam05], the autoregulatory

index (ARI) [Car00; Car03], rate of recovery [Sor05], and transfer function analysis [Bee08].

To our knowledge, the only study that has been able to identify age-related effects is that

by Vavilala et al. [Vav02], which found that there is a significantly lower CA response in

adolescents compared with adults. Investigators also have found that the CA response is

preserved in patients with controlled hypertension [Lip00; Fu05]. In addition, one study also

found normal CA before and after treatment of hypertension [Zha07]. Novak et al. [Nov04]

used the ARI during the Valsalva maneuver and found that there is no difference between

healthy and hypertensive middle-aged subjects. They concluded that a smaller phase

shift between CBF and ABP signals is an indication that autoregulation is less efficient

in hypertensive subjects. Yet, Eames et al. [Eam03] suggested that ARI is not impaired by

hypertension in both middle aged and older people. Finally, in a study comparing controlled

and uncontrolled hypertensives using transfer function analysis showed that dynamic CA

is maintained in both groups [Ser05].

We hypothesize that these studies have failed to capture differences between healthy

young, healthy elderly, and hypertensive elderly subjects for three reasons: A) The existing
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methods referenced above all assumed a linear relationship between ABP and CBFV [Cla16],

a major limitation since CA is widely assumed to be nonlinear [Pan99]; B) All of the previous

methods assessed CA using beat-to-beat averaged data; C) Most existing methods lack

consistency leading to frequent occurrence of misdetections [Pan03b; Elt14]. To overcome

these problems, the Cerebral Autoregulation Research Network (CARNet) argued for the

need of a better gold standard [Cla16].

In this study we show that by accounting for pulsatility and nonlinearity, it is possible

to devise a measure that can distinguish between three patient groups: healthy young,

healthy elderly, and hypertensive elderly. Results are obtained by expanding our previous

model [Mad14] and by analyzing the model dynamics within and between the three patient

groups. Results were obtained by estimating patient specific model parameters for each

subject, which were compared between each of the three groups using a two sample t-test.

In addition, nonlinear mixed effects analysis was used to test if all subjects belong to the

same population with equal population parameter values, or if the population parameters

vary among the three subgroups.

5.2 Materials and Methods

5.2.1 Experimental Methods

De-identified pressure and blood flow data from twenty-eight people were included in

this study. The data analyzed were obtained from Dr. Lipsitz at the Hebrew Rehabilitation

Center for Aged, Boston, MA. The Institutional Review Board at the Hebrew Rehabilitation

Center approved the study and all subjects provided written informed consent according
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to the Helsinki II declaration [Lip00]; readers interested in acquiring these data should

contact Dr. Lipsitz (email in Acknowledgement section). Two active sit-to-stand procedures

were performed on 10 healthy young (age 24±1), 10 healthy elderly (age 72±3), and 10

hypertensive elderly subjects (age 72±2), but data from one young and one elderly subject

were not included in our analysis since recordings from either trial were inadequate. This

study analyzed ABP and CBFV data from the first sit-to-stand protocol unless the signal

was too noisy or included negative or missing measurements. All subjects rested in the

sitting position for five minutes and then stood upright for one minute. Transient ABP

at the level of the heart and CBFV in the middle cerebral artery (MCA) were measured

noninvasively using a photoplethysmographic Finapres monitor (Ohmeda Monitoring

Systems, Englewood, CO) and a 2 MHz probe of a portable Doppler system (MultiDop X4,

DWL-Transcranial Doppler Systems Inc., Sterling, VA), respectively. ABP was measured

using the Finapres in the middle finger of the non-dominant hand, supported by a sling to

keep the hand at the level of the right atrium. The latter is needed to eliminate hydrostatic

pressure effects. In order to minimize the effects of respiration, subjects were required to

breathe at a rate of 15 breaths per minute with the assistance of tape-recorded cues. For

the hypertensive subgroup, antihypertensive medications were tapered over 1 to 2 weeks,

then withheld for at least 1 week before the experimental protocol was performed. This

study used the sit-to-stand protocol because it is well tolerated by elderly subjects and it

simulates a physiologic challenge that occurs in daily life capable of threatening cerebral

perfusions [Lip00]. A summary of the experimental data is given in Table 5.1.
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Table 5.1 Experimental Data. Data are presented as means ± standard deviations. Also provided
are the p -values comparing baseline ABP and CBFV in both the sitting and standing phases of
experimental protocol for each of the three subgroups. For example, the notation pY E denotes
the p -value associated with a t -test comparing the healthy young and elderly subgroups. Here, a
p -value of less than 0.05 is considered significant.

Y E H pY E pE H pY H

ABP: Sitting 93±10 85±10 116±11 0.064 < 0.001 < 0.001
ABP: Standing 94±11 85±9 114±10 0.068 < 0.001 0.001
CBFV: Sitting 44±19 36±11 32±11 0.248 0.527 0.106

CBFV: Standing 42±17 34±10 31±4 0.200 0.491 0.082

5.2.2 Data Preprocessing

Instead of using the raw signals, we filter the data to reduce signal noise. Most dCA methods,

e.g. [Tie95; Cla16], use beat-to-beat averages of ABP and CBFV for clinical assessment.

Here we consider the effects that preprocessing strategies can have on dCA, including

beat-to-beat averages and various levels (β ) of a previously used [Mad14; Olu06] smoothing

technique.

The methods produce the filtered ABP and CBFV signals x̄ ∈ {Pβ , Vβ} as weighted aver-

ages, according to the expression

x̄ =β

∫ t

−∞
x (s )e −β (t−s )d s , (5.1)

where x ∈ {P, V } is the pulsatile data. Differentiation of (5.1) yields

d x̄

d t
=β (x − x̄ ). (5.2)
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Figure 5.1 Experimental Setup and Data Overview. (a) Mechanical analog used for predicting
Vd y n . The schematic diagram shows the mechanical analog model used for predicting dynamic
autoregulation. The model includes two viscoelastic Voigt body elements combined with a spring
accounting for the elastic response. (b) Measured pulsatile (blue) and filtered (black) signals for
a representative experimental subject from each of the three subgroups. The filtered ABP and
CBFV signals are computed as moving averages from the beat-to-beat pulsatile data as described
in Equations (5.1)-(5.2). (c) Zoom view of changing pulsatility in the input ABP for the healthy
young dataset. Note, a large value of β allows for more pulsatility in the filtered data.
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The parameter β determines the history weight (1/sec). Figure 5.1(b) shows the pulsatile

and filtered ABP and CBFV signals for a representative dataset including a healthy young,

healthy elderly, and hypertensive elderly subject. In this figure, the black vertical line

indicates the onset of the postural change from sitting to standing. Smaller values of β lead

to reduced pulsatility and a delayed CBFV response in the preprocessed data; whereas,

greater values of β include more pulsatility in the signal, see Figure 5.1(c). Most results in

this study are generated using β = 1.

5.2.3 Mathematical Modeling

The model used to predict CBFV (Vm ) consists of two parts: the baseline (Vb a s ) and dynamic

(Vd y n ) components of CBFV, related as

Vm =Vd y n +Vb a s . (5.3)

The baseline CBFV (Vb a s ) is predicted using a patient-specific sigmoid function relating

the mean CBFV in the MCA while sitting (V p r e
β ) and the terminal mean velocity during

standing (V p o s t
β ), defined as

Vb a s =V p r e
β −

�

V p r e
β −V p o s t

β

�

�

t n

t n +k n

�

. (5.4)

The pre and post mean MCA velocity are predicted as

V i
β =

1

T

∫ t i
e

t i
s

Vβ (t )d t ,
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where V i ∈ {V p r e , V p o s t }, t i
s and t i

e denote the start and end time, marked by black boxes

on Figure 5.1(c). The steepness of sigmoid is given by n , and k denotes the time at which

the sigmoid has half its max value. Note this model assumes that V p r e
β <V p o s t

β .

Separating Vb a s in two parts is an extension of our previous study [Mad14], which

assumed that baseline velocity was the same before and after the sit-to-stand procedure.

While this was reasonable for the three representative subjects analyzed earlier it does not

hold in general.

Similar to our previous study [Mad14], the dynamic component of cerebral autoregula-

tion, i.e. dCA, is modeled using a mechanical system comprised of two viscoelastic Voigt

body elements combined in series with a spring, accounting for the elastic portion of the

response. Following the diagram in Figure 5.1(a), expressions for the strain across each

dashpot are given by

d v1

d t
=−(a + b + c )v1+ (c −d )v2+ (a + b ) fs

d v2

d t
=−b v1−d v2+ b fs ,

(5.5)

where a , b , c , and d are nonnegative parameters that include the viscoelastic elements:

a = ka u t
b1

, b = ka u t
b2

, c = k1
b1

, and d = k2(Pβ )
b2

. Parameters a and b describe the time course of

the autoregulatory recovery from the imposed pressure change. Parameters c and d relate

the stresses on each of the Voigt bodies. To account for the nonlinearity of CA [Pan99],

d is assumed to be pressure-dependent distinguishing between pressure stimuli within

and outside the CA range. On average, when the ABP is below 50 mmHg and above 150

mmHg [Las59], autoregulation is abolished and CBF passively follows the ABP changes.

The normalized CA curve shown in Figure 5.2(a) was modeled using a cubic function of the
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Figure 5.2 Static Autoregulation Curve (sCA). (a) Fit of fa u t against normalized experimental
CBF and ABP animal data [Mac76; Mac79; Har79; DP90], and (b) the fa u t -ABP prediction for data
analyzed in this study.

form

fa u t (Pβ ) = (2.03×10−6)P 3
β − (6.02×10−4)P 2

β + (5.94×10−2)Pβ −1.95. (5.6)
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To ensure that d exhibits threshold and saturation, we let

d (Pβ ) =
b c fa u t (Pβ )

M c fs − (a + c ) fa u t (Pβ )
. (5.7)

The CA curve fa u t is determined a priori before the model is fit to patient data. Note that

within the autoregulatory range fa u t = 0 and consequently d = 0. Finally, Vd y n is given by

Vd y n =M ( fs − v1), (5.8)

where M is a constant close to 1, representing an amplifier, adjusting the CBFV drop and

overshoot observed in response to the sit-to-stand challenge.

In summary, the model uses the filtered ABP, denoted Pβ (used to calculate fs ) to predict

filtered CBFV dynamics during a postural change from sitting to standing combining

the baseline Vb a s and dynamic Vd y n components of the CBFV. For each dataset model

parameters θ = [a , b , c , M , n , k ]were estimated to predict patient specific CBFV.

5.2.4 Model Analysis

5.2.4.1 Sensitivity Analysis

Sensitivity analysis and correlation analysis [OO13; Mia11]were conducted to determine

practical identifiability of model parameters. We assume that the model can be written as

d v

d t
= f (t , v ;θ )

h (t , v ;θ ) = g (t , v ;θ ),
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where t denotes time, v = [v1, v2] denotes the state vector, θ = [a , b , c , M , n , k ] is the pa-

rameter vector, h (t ;θ ) is the model output (Vm ) given by g (the algebraic expression in

Equation (5.8)). Given this formulation, the sensitivity matrix S can be written as

S =
∂ h

∂ θ
=
∂ Vm

∂ θ
, (5.9)

for this specific model where the model output is h = Vm . In the sensitivity matrix, each

column is a time-varying vector measuring how sensitive the model output is to a parameter

at a given time t [OO13]. To obtain sensitivities that are all the same unit, it is scaled relative

to the parameter and the transient data. The relative sensitivity matrix is given by

S̃ =
∂ Vm

∂ θ

θ

Vm
. (5.10)

Since insensitive parameters are difficult to identify, the parameters are ranked according

to their sensitivity. Ranked sensitivities are determined by imposing a two-norm on each

column of the sensitivity matrix

S̄i =
�

�

�

�S̃i

�

�

�

�

2
. (5.11)

5.2.4.2 Subset Selection

Subset selection was performed to explore possible pairwise correlations among the sensi-

tive model parameters [OO13; Mia11]. The correlation matrix c can be computed from the

covariance matrix C = (S T S )−1 (assuming it is not singular), as

ci , j =
Ci , j

Æ

Ci ,i C j , j

. (5.12)
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The matrix c is symmetric and upper triangular with
�

�ci , j

�

� ≤ 1 and all
�

�ci ,i

�

� = 1. For this

study, we denote parameter pairs for which
�

�ci , j

�

�> 0.95 as correlated.

5.2.4.3 Parameter Estimation

For each subject, using filtered ABF as an input, the model was fit to filtered CBFV data

using two distinct methods: nonlinear least squares and nonlinear mixed effects (NLME)

analysis. The four most sensitive model parameters were estimated assuming nominal

values a = 0.25, b = 0.1, M = 1, and k = 65.

5.2.4.4 Nonlinear least squares optimization

Nonlinear least squares optimization estimates parameters minimizing the least squares

cost J =R T R between the model output Vm and data Vβ , where R is the residual error given

by

R =
V̄β (ti )−Vm (ti ,θ )

V̄β
(5.13)

evaluated at times ti where the data are measured. Least squares optimization was per-

formed using the Levenberg-Marquardt method [Kel99].

5.2.4.5 Nonlinear Mixed Effects

NLME modeling embeds deterministic models of individuals, which are given by solutions

to the differential equations, into a statistical framework whereby inference for repeated

measurements from a population, extraction of knowledge, and assumptions on variation

in outcomes within and across individuals become formalized [Bon11]. Note, the average

of the least squares estimates do not account for variability across individuals.
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Statistical inferences are introduced focusing on the model parameters that underlie

the individual profiles and on how these vary across the population. In this study, NLME

analysis is used to test if the model parameters vary significantly between the three pre-

defined subgroups: healthy young, healthy elderly, and hypertensive elderly. Two models are

compared; a base model where all subjects are assumed to belong to the same population

with equal population parameter values, and a full model where the population parameters

values are allowed to vary among the three subgroups.

The statistical test is based on the change in the objective function value between

the base model and the full model. Since the two models are nested, the difference is

ξ2-distributed with the difference in number of parameters as degrees of freedom.

A priori, all model parameters to be estimated are assumed to be log-normally dis-

tributed. A proportional residual error model is chosen. The stability of the parameter

estimates is evaluated using the non-parametric bootstrap approach. For both the base and

the full model, 200 new data sets each with twenty eight subjects is generated by repeated

random sampling with replacement from the original data set and the model parameters

and associated relative standard errors of the parameter estimates will be estimated.

The NLME analysis of the data was conducted using the software program NONMEM

(version 7.2, ICON) with the GNU Fortran 95 compiler [Bea11]. The ADVAN13 subroutine

was used for integration of systems of nonlinear differential equations and the first order

conditional estimation method with interaction (FOCEI) was used for parameter estimation.

Data processing and diagnostic plots were performed using S+ (version 8.1, TIBCO Software

Inc.).
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5.2.4.6 Statistics

Comparison of estimations within and between the three known groups is done by analyzing

p -values computed using a two sample t -test with α= 0.05 confidence level. Let µY , µE ,

and µH represent the means of a parameter estimate from the healthy young, healthy

elderly, and hypertensive elderly subgroups. Location testing tests the null hypothesis that

the means from two independent samples are equal.

Table 5.2 Parameter Estimates. Least squares estimates of model parameters across the healthy
young (Y), healthy elderly (E), and hypertensive elderly (H) subgroups. Nonlinear mixed effects
estimates using full model with 12 fixed effect parameters (4 model parameters by 3 subgroups)
distinguishing the three subgroups. Nonlinear mixed effects estimates using base model with
four fixed effect parameters providing population (Pop) estimates. Model residual errors of the
full and base models are 5.1 and 5.4, respectively. Inter-individual variability (IIV) expressed as
coefficient of variation (CV%).

Least Squares NLME Full Model NLME Base Model
Parameter Y E H Y E H IIV Pop IIV

a 0.25 0.29 0.27 0.337 2.25 0.0694 165 0.242 128
b 0.30 0.45 0.61 0.313 0.647 0.773 61 0.429 59
M 0.78 0.68 0.49 0.888 1.28 0.566 28 0.807 37
k 72 79 80 69.9 83.7 79.5 12 70.5 15

5.3 Results

The hypertensive subjects have a significantly higher ABP (p < 0.001) in both the sitting

and standing stages of the experimental protocol when compared with the young and

elderly subgroups (see Table 5.1). No significant baseline CBFV differences amongst the
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Figure 5.3 Sensitivity analysis. Relative (time-varying (a)) and ranked (b) sensitivities of the
model parameters with respect to the model output.

three subgroups were observed.

To compare the steady-state ABP/CBFV relationships of the three subgroups along the

static CA curve, see Figure 5.2(b), a t -test was conducted at the α= 0.05 significance level.

The p -values of pY E = 0.043, pE H = 0.001, pH Y = 0.017 were obtained, indicating that the

differences between the resting ABP/CBFV amongst all three subgroups are of statistical
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Figure 5.4 Quantitative Results. Model output using least squares optimization against mean
CBFV data for representative subjects (top row). Nonlinear mixed effects estimates for individual
and group against mean CBFV data for representative subjects (middle row). The model output
using least squares optimization against parameter estimates using nonlinear mixed effects for
representative subjects (bottom row).

Table 5.3 Pulsatility. p -values comparing subgroups at various β values, where “BTB” denotes
beat-to-beat input. The p -values of statistical significance are indicated with ∗.

β a b M k
pY E pE H pH Y pY E pE H pH Y pY E pE H pH Y pY E pE H pH Y

BTB 0.536 0.903 0.279 0.312 0.380 0.059 0.353 0.488 0.041∗ 0.277 0.716 0.049∗

0.5 0.490 0.731 0.615 0.244 0.429 0.020∗ 0.369 0.069 0.003∗ 0.295 0.907 0.066
1.0 0.023∗ 0.239 0.331 0.193 0.217 0.006∗ 0.408 0.038∗ 0.005∗ 0.290 0.871 0.065
1.5 0.017∗ 0.152 0.391 0.153 0.193 0.001∗ 0.931 0.016∗ 0.003∗ 0.305 0.797 0.061
2.0 0.002∗ 0.121 0.369 0.098 0.211 0.001∗ 0.821 0.029∗ 0.003∗ 0.349 0.999 0.201
3.0 0.001∗ 0.211 0.234 0.076 0.211 0.001∗ 0.687 0.027∗ 0.003∗ 0.265 0.612 0.025∗
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significance.

Plots of the relative and ranked sensitivities for the model parameters are shown in

Figure 5.3. Given an integration tolerance of T O L = 10−6, parameters with a sensitivity

smaller than 10
p

T O L are insensitive [Pop09]. According to this measure n is insensitive,

so it was kept fixed at n = 30. For most subjects the second least sensitive parameter c was

pairwise correlated with a and was therefore also kept fixed (c = 2.5).

The estimated parameter values within each of the three subgroups using nonlinear

least squares optimization are provided in Table 5.2. The model output computed using

optimized parameters at the β = 1 level for representative healthy young, healthy elderly,

and hypertensive elderly subjects are shown in the top row in Figure 5.4. The p -values com-

paring the estimated parameter values across the three subgroups are listed in Table 5.3

(see β = 1 line). When comparing the healthy young and the hypertensive elderly sub-

jects, parameters b and M vary significantly. Parameter M is also of statistical significance

distinguishing between the healthy and hypertensive elderly subjects.

Furthermore, Table 5.2 lists the estimated population values for the four parameters

along with the inter-individual variability and residual error obtained using NLME analysis.

In the full model, each of the four population parameters are allowed to vary across the

three subgroups, leading to a model with 12 parameters. The middle row in Figure 5.4 shows

individual and population predictions against the mean CBFV data for the representative

subjects. Allowing the sub-groups to have separate population parameters for each of the

four model parameters resulted in a statistically significant improvement of the model. The

last row in Figure 5.4 compares the least squares and NLME individual predictions.

Finally, Table 5.3 shows the p -values comparing the subgroups for different values of β
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(shown on Figure 5.1(c)). Consistent significant differences between the three subgroups

are detected when more pulsatility is introduced in the ABP input (for β ≥ 1). This is done

by increasing the value of β when determining Pβ .

5.4 Discussion

Stable and optimal cerebral blood flow is imperative for normal brain function. Several

factors effect brain function, including age, hypertension, diabetes, and a range of other

disease states. All of these alter the brain structure and overall cerebral function, rapidly

increasing the risk of cognitive and physical impairment.

CA is typically assessed [Tie95; Zha98] from model based analysis of CBFV and arterial

BP. As discussed earlier, existing tests are not able to detect changes due to healthy aging.

This study presents a new model that is able to detect differences between three age groups

including healthy young and elderly, as well as hypertensive elderly.

Similar to observation by Yam et al. [Yam05], the group of young subjects (see Table 5.1)

did not display a significantly increased CBFV compared to the elderly and hypertensive

subgroups, as suggested by previous studies [Car00; Vav02; Ros03; Sor05]. This may be due

to a relatively small sample size, uncertainties in data collection, or it could be attributed to

the specific test analyzed. Yet as expected, the ABP was significantly higher in hypertensive

subjects than in the healthy subjects, but could not be distinguished between the healthy

young and elderly. However, by mapping mean resting BP (averaged over the sitting period)

measured during sitting onto the static CA curve, we were able to distinguish all three

patient groups (see Figure 5.2). The differentiation between the three groups were also

observed from analysis of dynamic model components as shown in Table 5.3 (see β = 1).
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Finally, we showed that it is essential to include some pulsatility to distinguish the

three subgroups. In particular note that group differences cannot be detected for β <

1 as shown in Table 5.3. This is particularly evident for parameter a , which cannot be

distinguished between the healthy young and elderly for β < 1. In summary, model analysis

presented here compared dynamic data from 28 subjects using a model extended from

previous studies [Mad14; Tie95]. Moving forward, the next step will be to interpret changes

to determine what model parameters best reflect CA pathophysiology.

In addition to extracting differences among groups, the model is able to accurately

estimate the filtered CBFV for all 28 subjects, see Figure 5.4. This figure shows that accurate

model fits can be obtained both using least squares optimization and NLME analysis. Using

NLME analysis we observe a high intra-group variability for model parameter a , which

indicates variability in the dynamic response.

The estimated parameters provide insight into what quantities are changed with ag-

ing and hypertension. The significantly smaller value for parameter M indicates a less

significant viscoelastic response after standing, dampening the CBFV drop and overshoot

following posture change to standing, a characteristic observed in the elderly hypertensive

subgroup when compared to all healthy subjects (both young and elderly). This finding

suggests that the dynamic CA response is different in the presence of hypertension and can

be characterized by the parameter M . In addition, the parameter a is higher in the healthy

elderly compared to the healthy young, while the parameter b is significantly larger in the

hypertensive elderly compared to the healthy young subjects. Parameter a is associated

with the stress sensed by the autoregulatory spring. A higher value of a indicates a decreased

CA response, resulting in a smaller CBFV drop and overshoot. The parameter b increased
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in aging and hypertension, and is associated with the autoregulatory recovery time (see

Figure 5.1(b)). The increase in this parameter suggests that it takes longer for the elderly

and hypertensive subjects to autoregulate.

Our findings conflict with earlier studies, which did not determine any CA change

with hypertension [Lip00; Eam03; Ser05; Fu05]. Many studies suggest that even though

aging leads to vasculature changes, altered CBF, endothelial dysfunction, and reduced

innervation density, the dynamic CA response is not compromised in the elderly. Although

we cannot say verbatim that CA is impaired in the elderly, analysis of dynamic model

parameters suggests that significant differences can be found between the groups. Even

though most of the parameter estimates within each group are similar (see Table 5.2), a

large inter-individual variability is detected for parameter a when using NLME analysis. To

gain more insight on this difference, we considered the effects of pulsatility.

The inclusion or exclusion of pulsatility in the preprocessed ABP data alters the re-

sults significantly. Pulsatility can be controlled by varying β in Equations (5.1)-(5.2) (see

Figure 5.1(c)). The results in our previous [Mad14] and current study (see Table 5.2) were

determined using β = 1. From Table 5.3, notice the small differences for low values of

β . These decreased values of β as well as the input data consisting of one data point per

heartbeat are similar to the common clinical methods used for CA assessment that only

explore beat-to-beat averages of experimental data. When minimal pulsatility is included

(β < 1), the only differences detected (see Table 5.3) are between the healthy young and

hypertensive elderly subgroups. The comparison of these two groups is not intuitive since

they differ in age and health. By increasing β , and therefore introducing more pulsatility,

the model consistently identifies significant differences in the dCA responses between
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the subgroups. The effect of aging can be quantified by comparing the healthy young and

elderly subgroups, and a difference in the dynamics is consistently detected through param-

eter a . The effects of hypertension on CA can be quantified by distinguishing between all

healthy subjects and the hypertensive elderly subjects, and a difference exists in parameter

M . These conclusions strengthen our findings using β = 1, and we argue that by ignoring

pulsatility in the input data, important information about the dynamics is discarded.

5.5 Summary

In conclusion, this study contributes to the ongoing discussion of the effects of aging and

hypertension on cerebral blood flow regulation. Since hypertension has been shown to

shift the limits of autoregulation toward higher levels of ABP to protect the brain against

hypertension [Pau90], one possible model enhancement could be to shift the static CA

curve ( fa u t ). The model is able to accurately estimate CBFV from ABP input in every subject.

More importantly, when incorporating some pulsatility in the input, the model is able to

differentiate between healthy young, healthy elderly, and hypertensive elderly subjects.

While the current formulation of the model is incapable of identifying impaired CA, the

ability of the model to distinguish between the three groups suggests that the dCA responses

are different and that a lot of information pertaining to dCA is lost when using only beat-

to-beat averages for ABP and CBFV. Results of this study contribute to understanding

what quantities may be impacted by aging and hypertension, but given high variability in

parameter estimates, we have a significant amount of misdetection, likely due to the high

inter-individual variability.
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CHAPTER

6

MATHEMATICAL PHYSIOLOGY OF THE

AUTOREGULATION CURVE

6.1 Introduction

While the current formulation of the model [Mad14; Mad16] is able to accurately describe

the dynamic response of cerebral autoregulation and predict the cerebral blood flow veloc-

ity, the incorporated static autoregulation curve is not formed using physiological princi-
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ples. By integrating the Arciero et al. static models for blood flow regulation [Arc08; Arc13]

into our model, valuable physiological insights can be obtained and the potential for a

physiologically-based index of cerebral autoregulation arises. The static cerebral autoregu-

lation is formulated using the polynomial function fa u t (Equation (5.6); also see Figure 6.7)

to represent the steady-state relationship between blood pressure and normalized cerebral

blood flow. However, this plateau curve, commonly referred to as the Lassen curve [Las59], is

believed to shift in the presence of various disease states. For chronic hypertensive subjects,

the curve is believed to be shifted to the right, likely because of medial hypertrophy and

vascular remodeling of the cerebral arteries and arterioles [Cip07]. As shown in Figure 6.2,

the curve shifts to lower pressures (left) in the presence of chronic hypotension [Ser01]. The

Lassen curve also is believed to shift up and left during pregnancy [Cip07], and complete

loss of autoregulation, meaning CBF changes linearly with pressure, is thought to occur

during eclampsia (see Figure 6.1). In acute head injury, the autoregulatory curve is shifted

to the right [Kin16]. The following sections will focus on the physiological considerations

behind the static cerebral autoregulation curve. The penultimate goal will be using the

Arciero model as a tool for generating various static curves within our model framework.

6.2 Arciero Model

Arciero et al. [Arc08] developed a theoretical model of metabolic blood flow regulation

for skeletal muscle in the skin. The model for metabolic blood flow regulation based on

oxygen saturation-dependent release of adenosine triphosphate (ATP) by red blood cells.

These red blood cells carry oxygen in the blood and act as oxygen sensors. Thus, they have

the ability to communicate metabolic demand. A segment model representing the seven
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Figure 6.1 Lassen Curves Under Various Conditions. The solid black line represents normal CBF
as a function of CPP. The solid red lines represents chronic hypertension (chronic HTN) in which
the autoregulatory curve is shifted to the higher pressures. The solid blue line represents a poten-
tial shift in the autoregulatory curve during normal pregnancy. The arrows point to pressures at
which breakthroughs occur, demonstrating a large, steep increased in CBF. The dashed blue line
demonstrates loss of autoregulation in which CBF changes linearly with pressure and is thought
to occur during eclampsia. Reproduced from [Cip07].

Figure 6.2 Lassen Curve Shifts. Theoretical shifts in cerebral autoregulation curve during chronic
exposure to hypotension (gray line) or hypertension (dotted line). Reproduced from [Ser01].
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branching vessel regions connected in series was used, where geometric and hemodynamic

parameters were uniquely defined for each segment (see Figure 6.3). Three equations were

developed to explain the effects of oxygen saturation, ATP concentration, and a conducted

response signal. Since red blood cells deliver oxygen to surrounding tissue and respond to

oxygen level by releasing ATP at a rate dependent on oxygen saturation level, the authors

concluded that ATP release from RBCs initiates a conducted response that travels upstream

and changes arteriolar diameter.

Figure 6.3 Vessel Network. Separations of representative segments used in theoretical model.
Reproduced with permission from [Arc08].

6.2.1 Oxygen Saturation

The model assumes that oxygen is delivered to the surrounding tissue by the upstream

vessels (A), large arterioles (LA), small arterioles (SA), and capillaries (C). Thus, no oxygen

exchange is assumed in the venous segments (SV, LV, and V). Since the decline in oxygen

flux must be equal to the rate of oxygen consumption (conservation of mass), an ODE for
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oxygen saturation (S (x )) can be derived

d

d x
[Q c0HD S (x )] = −πM0

�

r 2
t − r 2

v

�

, (6.1)

where M0 is the oxygen demand, c0 denotes the oxygen capacity of red blood cells, and HD

is the discharge hematocrit. The volumetric flow rate Q in an individual vessel i is given by

Qi =
τi D 3

i π

32µi
, (6.2)

where τi represents the shear stress in the wall of vessel i , Di is the diameter of vessel i ,

and µi denotes the viscosity in vessel i . Equation (6.1) can be solved for oxygen saturation,

yielding

S (x ) = S (x0) +
πM0

�

r 2
t − r 2

v

�

Q c0HD
(x0− x ). (6.3)

Using the solution to the ODE for oxygen saturation and the provided parameter values,

we were successfully able to predict the oxygen saturation reported by Arciero et al., see

Figure 6.4.

6.2.2 ATP Release

Red blood cells (RBCs) respond to oxygen levels by releasing ATP at a rate dependent on the

oxygen saturation level. To represent the release rate of ATP from RBCs, Arciero et al. [Arc08]

define the linear function

R [S (x )] =R0[1−R1S (x )],
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where R0 is the maximal rate of ATP release and R1 represents the effect of oxygen saturation

on ATP release. The rate of change in plasma ATP concentration is defined by the difference

between the rates of ATP release and ATP degradation. This rate of change is described by

Figure 6.4 Oxygen Saturation. Model predictions for oxygen saturation along flow segments for
three levels of exercise: M0 = 1 (rest), M0 = 8.28 (control; moderate exercise), and M0 = 20 (heavy
exercise). The changes in color indicate a change in vessel segment.
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an ODE that can be solved for ATP concentration, C (x ).

d

d x
[(1−HD )Q C (x )] =

π

4
D 2HT R0 (1−R1S (x ))−kdπD C (x )

...

Solution: C (x ) = α+β x + e γ(x0−x )
�

C0−α−β x0

�

(6.4)

where

α =
HT R0

4kd

�

Di (1−R1S (x0))−
(1−HD )R1πM0

�

r 2
t − r 2

v

�

πC0HD kd

�

β =
Di HT R0R1πM0

�

r 2
t − r 2

v

�

4Qi C0HD kd

γ =
kdπDi

(1−HD )Qi

Using this solution to the ODE and the given parameters (see Table 6.1), we were successfully

able to predict the ATP concentration reported by Arciero et al., see Figure 6.5.

6.2.3 Conducted Response Signal

The ATP release from RBCs initiates a conducted response that travels upstream and triggers

arteriolar vasodilation. The conducted response signal, SCR, was computed differently

than what was originally reported in the paper. Here, we integrate the ATP concentration at

each x position to the end of the large venules (xe nd ) using by the equation

SC R (x ) =

∫ xe nd

x

e
−(y−x )

L0 C (y )d y . (6.5)
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Figure 6.5 ATP Release. Model predictions for ATP concentration along flow pathway for three
levels of exercise: M0 = 1 (rest), M0 = 8.28 (control; moderate exercise), and M0 = 20 (heavy
exercise). The changes in color indicate a change in vessel segment.

At each point in the network, a signal is generated at the vessel wall in proportion to the

local concentration of ATP in the plasma. Metabolic control of the large arteriole and

small arteriole diameters occurs via SCR, assuming exponential decay of the signal in the

upstream direction. Using the values obtain for the ATP concentration at each point along

the vascular network along with Equation (6.5), we were successfully able to predict the

conducted response signal reported by Arciero et al., see Figure 6.6.

6.2.4 Activation & Diameter

When the pressure is altered within a vessel, it shows a rapid passive change in diameter

followed by an active smooth muscle contraction or dilation to a new equilibrium diameter.
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This behavior is represented by the ODE system below.

d Di

d t
=

1

τd

Dc

Tc
(Ti −Tt o t a l )

d Ai

d t
=

1

τa
(At o t a l −Ai ) ,

where At o t a l is smooth muscle activation, τd , represents the time constant for diameter

change, τa is the time constant for activation changes, and Dc and Tc are the control state

values of diameter and tension. This system is composed of two coupled ODES and various

algebraic equations, making it difficult to solve analytically. The total circumferential wall

Figure 6.6 Conducted Response. Model predictions for the conducted response signal along flow
pathway for three levels of exercise: M0 = 1 (rest), M0 = 8.28 (control; moderate exercise), and
M0 = 20 (heavy exercise).
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tension Tt o t a l is given by

Tt o t a l = Tp a s s +AT ma x
a c t . (6.6)

Here, Tp a s s represents the passive wall tension generated by the structural components of

the vessel wall, given by

Tp a s s =Cp a s s ·exp
�

C ′p a s s

�

D

D0
−1

��

, (6.7)

where Cp a s s and C ′p a s s are parameters representing passive tension strength and sensitivity.

D0 is the passive reference vessel diameter. The maximum degree of active wall tension

that can be generated in response to maximal constriction of the vascular smooth muscle

cells is represented by

T ma x
a c t =Ca c t ·exp



−

� D
D0
−C ′a c t

C ′′a c t

�2


 , (6.8)

where Ca c t , C
′

a c t , and C
′′

a c t are parameters describing the maximally active vascular smooth

muscle peak tension, length dependence, and tension range, respectively. Note that the

total tension is generated in the resistance vessels, e.g. the large and small arterioles [Arc13].

The vascular smooth muscle tone is described using the equation

A =
1

1+exp(−St o ne )
. (6.9)

The level of activation, which is a sigmoidal value between 0 and 1, depends on the stimulus

function St o ne . Various terms can be included in St o ne to account for one (or all) of the CA

mechanisms, contributing to the level of smooth muscle response. To include the myogenic,
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shear-dependent, and metabolic regulatory mechanisms, the stimulus function can be

constructed as

St o ne =Cm y o T −Cs he a rτ−Cme t a SC R +C
′′

t o ne . (6.10)

The coefficients Cm y o , Cs he a r , Cme t a , and C
′′

t o ne are parameters. Please consult Table 6.1

for a detailed description of all model parameters. For simplicity, let’s only include the

myogenic response to begin with. Thus, we will define the stimulus function as

St o ne =Cm y o T −C
′′

t o ne , (6.11)

where Cm y o is a parameter representing vascular smooth muscle activation tension sensitiv-

ity and C
′′

t o ne is a constant. Using the definitions of tension and activation, the ODE system

describes diameter changes in the vessel wall due to smooth muscle behavior. The key

link between tension and diameter comes from the Law of Laplace. Circumferential wall

tension (T ) is related to pressure and diameter by the Law of Laplace (T = P D
2 ), assuming

that vessel wall thickness is much less than vessel diameter.

6.2.5 Autoregulation Curve

The Lassen curve describing the static CA response can be found as a collection stable

equilibria. Equilibrium of differential systems can be found by setting the ODEs equal to

zero. In this example, we want to find equilibrium solutions by setting d D
d t = 0 and d A

d t = 0.

Notice that the steady-state values are independent of the values chosen for the time

constants τd and τa . The D -nullcline is the set of points where d D
d t = 0, and the A-nullcline

is the set of points where d A
d t = 0. The points of intersection between these two nullclines
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Parameter Description

M0 oxygen demand
S (0) initial oxygen concentration

c0 oxygen capacity of red blood cells
HD discharge hematocrit

Cp a s s passive tension strength
C ′p a s s passive tension sensitivity

Ca c t maximally active VSM peak tension
C ′a c t maximally active VSM length dependence
C ′′a c t maximally active VSM tension range
D0 passive reference vessel diameter
Di diameter of vessel i
kd rate of ATP degradation
R0 maximal rate of ATP release
R1 effect of saturation on ATP release
HT tube hematocrit
L0 length constant
τd time constant for diameter (1 sec)
τa time constant for activation (60 sec)
C0 initial ATP concentration in vessel
x0 initial position in vessel (0 cm)

xe nd downstream SC R position (2.57 cm)
τw a l l vessel wall shear stress
Cm y o VSM activation tension sensitivity

Cs he a r VSM activation shear stress sensitivity
Cme t a VSM activation conducted response sensitivity
C ′′t o ne VSM constant

Table 6.1 Arciero Model Parameters. Description and associated values for parameters used in
the Arciero et al. [Arc08] theoretical model.

are exactly the equilibrium points. First, let’s look at the nullcline for diameter.

d D

d t
=

2

PR E F

�

T −Tt o t a l

τd

�

= 0 when T = Tt o t a l .
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Figure 6.7 Static Autoregulation. Current function in the model [Mad14] to incorporate the static
CA curve, plotted against the same animal data from Figure 6.10

The nullclines for the diameter ODE occur when D = 0 and D = 198, when using a reference

pressure of 100 mmHg. Now let’s explore the nullcline for activation, including only the

myogenic regulatory response in the formulation for St o ne .

d A

d t
=
�

At o t a l −A

τa

�

= 0 when A = At o t a l .
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A = At o t a l

=
1

1+exp (−St o ne )

=
1

1+exp
�

−Cm y o T +C ′
t o ne

�

=
1

1+exp
�

−Cm y o
P D

2 +C ′
t o ne

� .

The nullclines for diameter and activation intersect at two points (see Figure 6.8). This

phase portrait was generated using pplane. Thus, there are two equilibria for the system.

One equilibria occurs at (D = 0, A = 0). This is a saddle point (unstable). However, since

both quantities are zero, this equilibrium point is of little interest physiologically. The

other equilibrium point occurs at (D = 198, A = 1). This point is a nodal sink (stable),

meaning that the eigenvalues are real, distinct, and negative. It is important to note that

this equilibrium point was found for a reference diameter value of D0 = 156µm, which is

the passive reference vessel diameter in the large arterioles [Arc08].

By solving the system to steady-state for various vessel reference diameters, we can

obtain the curve representing the static response of CA (see Figure 6.9). As you can see,

this doesn’t match the theoretical Lassen curve. However, from looking at Figure 6.10, you

will notice that by including the myogenic response alone, it is not possible to obtain

the plateau-like CA curve. In fact, in order to obtain the accurate plateau curve, all three

responses (myogenic, shear, and metabolic) must be active.
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6.3 Conclusion

Future work will extend our model to account for all mechanisms. This could be done

combining existing animal data (e.g. Virtual Physiological Rat Project) with dynamic data

used in the current study to add physiological meaning to the current autoregulatory curve

in the model [Mad14; Mad16], shown in black in Figure 6.7. Shifts of the static fa u t curve

are shown in Figure 6.11. Model output and associated error using the arithmetic shifts

of our static CA curve to estimate CBFV on a hypertensive elderly subject are given in

Figure 6.12(a) and Figure 6.12(b), respectively. By using the fa u t function shifted to the

right, a slightly better fit is obtained (green). Hypertension is said to shift the static CA

curve to the right. One possible way to incorporate metabolic control into the system

is through a conducted response signal, similar to what is found in [Arc08]. The central

idea behind conducted responses is that adenosine triphosphate (ATP) release from red

blood cells initiates a response that can travel upstream to trigger arteriolar vasodilation.

These remote responses occur via cell-to-cell communication along the vessel wall. This

idea is based on experimental results, showing that when ATP is applied intraluminally to

collecting venules the result is an increase in vessel diameter of upstream arterioles [Col98].

Metabolic control has been used for autoregulation in other parts of the body, including

the retina [Arc13]. In particular, the activation coefficients representing the myogenic

(Cm y o ), shear-dependent (Cs he a r ), and metabolic (Cme t a ) responses can be estimated using

experimental data. Additionally, a mechanism describing the effects of carbon dioxide can

be included since tissue levels of PC O 2 and pH have been shown to be significant factors in

retinal and brain autoregulation [Kon77; Pou08].
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x´ = (2/100)*(50*x-(1043*exp(8.3*(x/156-1))))
y´ = (1/60)*(1/(1+exp(10.11-0.01*50*x))-y)
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Figure 6.8 Phase Plane. Phase plane snapshot of the ODE system for diameter (horizontal axis)
and activation (vertical axis). The nullclines are plotted, and the intersection of these nullclines
denoted the equilibria of the system. There are two equilibrium points for this system.
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Figure 6.9 Passive Response. Relationship between blood pressure and blood flow (perfusion)
using the model accounting for smooth muscle (myogenic) response

Figure 6.10 Autoregulation Curve. Relationship between blood pressure and perfusion depicting
experimental animal data and the effects that combining the autoregulatory responses can have.
Using the myogenic response alone is not sufficient enough to observe the CA curve. Reproduced
with permission from [Car08].
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Figure 6.12 Model Output Using Shifts. Model output (a) and absolute error (b) using the arith-
metic shifts of our static CA curve to estimate CBFV on a hypertensive elderly subject. Note that
by using the fa u t function shifted to the right, a slightly better fit is obtained (green). Hyperten-
sion is said to shift the static CA curve to the right.
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CHAPTER

7

DISCUSSION

7.1 Summary

This study developed a nonlinear dynamic model predicting cerebral autoregulation in

three groups of subjects, including healthy young, healthy elderly, and hypertensive elderly.

The model uses filtered blood pressure to predict cerebral blood flow velocity. Sensitivity and

identifiability analysis were used to identify a set of parameters capable of being estimated

given the model and available data. This parameter subset was estimated for each subject
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and optimized values were compared within and between the three groups. Results showed

that, when accounting for some pulsatility, it is possible to distinguish the three groups.

To our knowledge, this is the first model of cerebral autoregulation using sensitivity and

identifiability analysis to determine the subset of parameters estimated, and the first that is

able to detect differences between all three patient groups. These results are novel and have

the potential to make an important contribution to the field of cerebral hemodynamics.

The ARI model defines an autoregulatory index based on estimated parameter values. A

similar approach could be used for the model studied here. Even though parameters cannot

be related to physiologically measured quantities, they still represent physical biomarkers

describing the differences both within and between groups of subjects.

The use of parameters and/or parameter combinations as biomarkers require that they

are identifiable. For this study we showed that the linear model (when fa u t = 0) is structurally

and practically identifiable. For the full nonlinear model (when fa u t 6= 0) it is not possible

to prove show structural identifiability analytically. If the CA curve is approximated by a

piecewise linear function, identifiability can be proven analytically. Regardless, subsequent

local sensitivity and identifiability analysis showed that parameters a , b , M , and k can be

estimated reliably given the model and the data.

7.2 Effects of Aging and Hypertension

Current methods for assessment of cerebral autoregulation, like the autoregulatory in-

dex [Tie95] and transfer function analysis [Zha98], have not found differences in autoregu-

lation in aging and hypertension. There are two differences between these models and the

one proposed here: A) we include some pulsatility in the filtered input pressure data, and
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B) our model combines the nonlinear static Lassen curve with the dynamic model.

More specifically we showed that differences due to aging can be quantified through

model parameter a . A larger value of the Voigt body parameter a indicates a longer adapta-

tion recovery time following decrease in pressure. Dynamic CBFV response differences are

observed in the presence of disease through model parameter M , indicating a decreased

overal viscoelastic response and a slower rate of recovery. These two parameters represent

possible biomarkers of the assessment and evaluation of CA.

Our results showed that without accounting for pulsatility, the three groups could not

be distinguished. In addition, the proposed model provided good estimates of cerebral

blood flow velocity for all human subjects. Blood pressure was used as an input for all

simulations. Most of the healthy control subjects had pressure values within the cerebral

autoregulatory range, while the normotensive elderly and hypertensive elderly patients

often had either low or high pressure outside the static range. More studies should be

carried out investigating the effect of shifting the static cerebral autoregulation curve as

discussed in Chapter 6. To test the nonlinearity versus pulsatility, the filter used in our

studies could be used within the linear ARI and TFA models.

The data analyzed in this study were all extracted from patients with intact cerebral

autoregulation. More studies are needed to test if our model is able to identify impaired CA.

One limitation of our model is that it requires an input signal accounting for variation in

pressure. Many patients with impaired cerebral autoregulation are in intensive care units,

where postural changes are difficult to impose. Thus, more studies are needed to test if

natural variation in blood pressure signals are adequate to analyze dynamics.

While its simplicity makes the model computationally feasible to work with, it may be
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difficult to infer what specific physiological mechanisms were compromised. Moreover, this

type of model is not yet able to predict the cause of disease. One way to improve the current

approach could be by incorporating some mechanisms present in physiologically-based

models, e.g. [Arc08], at the same time keeping it computationally efficient. The advantage

of the detailed physiologically-based models [UL97; UL98; Urs00; Pay06; Spr12] is that they

can be used to understand how each mechanism impacts the overall dynamics, a feature

not yet provided by our study. The disadvantage is the high number of parameters, which

are typically unidentifiable, making the model difficult to validate against experimental

data.

On the other hand, data driven models are simple and can easily be built in to clinical

devices. The TFA and ARI models are purely empirical; whereas, the model developed in this

study was constructed using mechanical principles governing the viscoelastic response of

arterioles. Blood vessels exhibit viscoelastic properties, and the cerebral arteries responsible

for regulating the flow of blood likely experience viscoelastic deformation [Fun93]. In our

study the static autoregulation curve was defined empirically, yet in Chapter 6 we discussed

how this sub-model could be expanding separating each of the four mechanisms (described

in Chapter 2) associated with cerebral autoregulation.

7.3 Conclusion

There have been various model-based approaches to assessing cerebral autoregulation, in-

cluding autoregulation index (ARI) [Tie95], autoregressive-moving average (ARMA) [Pan03a],

autoregressive exogenous (ARX) [LA02; Liu03], and transfer function analysis (TFA) [Gil90;

Pan96; Zha98]. Of these, the ARI is commonly used in the clinical applications to evaluate
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CA performance. As previously discussed, Tiecks et al. [Tie95] propose a set of equations

for cerebral blood flow velocity in response to a sudden drop in blood pressure from which

an ARI can be calculated. The mean velocity was approximated using a second-order linear

differential equation system. Our model for assessing CA is very similar [Mad14]. Both

approaches incorporate an approximation of mean velocity.

While our model can be used with pulsatile signals, the penultimate goal of our model

is to predict the dynamics of the mean cerebral blood flow velocity during some ortho-

static stress, not necessarily the pulsatile response. Both models are characterized by few

parameters. In the Tiecks model, the method is characterized by three parameters: T (time

constant), D (damping factor), and K (autoregulatory dynamic gain). By taking all three

parameters into account, an ARI is generated, ranging from 0 (no autoregulation) to 9 (best

autoregulation). Our model also has few parameters, consisting of four total estimated pa-

rameters. While we have yet to link the parameters to physiological relevance (see Chapter

6), they can be considered as indices in their own right, with each describing differences in

dynamic responses across the population. In our model, M might be the closest parameter

we have to a standalone index. Varying M results in the severity of drop, overshoot, and

recovery, which can mimic the responses found in this plot.

Both systems have two ODE states. In the Tiecks model, x1 and x2 represent the states,

which are equal to zero during the control state. Similarly, in our model, the states are

represented by v1 and v2. However, during the control state (steady state), our model is

equal to the static CA curve, which describes the relationship between normalized cerebral

blood flow velocity and arterial blood pressure. In the Tiecks model, the steady state is the

function dP (t ), which is simply the normalized change in mean arterial blood pressure
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obtained from filtering the pulsatile ABP signal. The main difference between the two

methods, in terms of structure, is that our approach is nonlinear; whereas, the Tiecks model

is a linear differential equation set. Our inclusion of nonlinearity was motivated by the

Lassen curve [Las59] and is justified by the physiological considerations or diameter dilation

and constriction across various pressures.

We consider our model to be based on a similar structure of the ARI model. Our extension

of the method can be used to gain more insight into the dynamics of the flow velocity, with

the possibility of being a tool for predicting CBFV response given an ABP stimulus and

knowing the disease state and/or age of the patient. One problem with the ARI method

and similar data-driven approaches is the variability of assessment predictions for a given

individual. The index provided for a subject can vary depending on which part of the

pressure signal being analyzed. A recent study by Mahdi et al. [Mah16] found improved

reproducibility of autoregulation indices when individuals are standing. We hope to address

this issue by providing a clinical approach to assessing CA on a patient-specific basis with

minimal variability.

To improve repeatability of the findings in this study, the model should be validated on

an independent dataset. Thus, we would be able to test whether the model can correctly

identify subjects in a new dataset. In particular, the model could be used on data for those

individuals known to have intact or compromised autoregulation. Model results using these

data can then be compared to existing methods, which so far have shown an insensitivity

to detect changes between the prescribed subgroups.

Since autoregulation is a nonlinear phenomenon [Las59], we believe that our model [Mad14;

Mad16] is advantageous over linear approaches. By incorporating some mathematical
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implementation for the metabolic, myogenic, and shear-dependent autoregulatory mecha-

nisms, model parameters would have more physiological meaning. More insight into how

to interpret the parameters and what the parameters mean in terms of autoregulation could

be obtained.

A new physiologically-based index for CA could be determined using the parameters or

a combination of the parameters. By incorporating nonlinearity, pulsatility, and physiology

within a mathematical framework, our model and its output might not endure the same

inconsistencies and irreproducibility of the ARI model.

128



BIBLIOGRAPHY

[Aas82] Aaslid, R et al. “Noninvasive transcranial Doppler ultrasound recording of flow
velocity in basal cerebral arteries”. J Neurosurg 57 (1982), pp. 769–774.

[Aas89] Aaslid, R et al. “Cerebral autoregulation dynamics in humans”. Stroke 282 (1989),
pp. 45–52.

[Ain08] Ainslie, P. et al. “Dynamic cerebral autoregulation and baroreflex sensitivity
during modest and severe step changes in arterial PCO2”. Brain Research 1230
(2008), pp. 115–124.

[Aoi09] Aoi, M. Nonlinear, Noninvasive Assessment of Patient-Specific Cerebral Autoreg-
ulation in Stroke Subjects. Ph.D. thesis. Raleigh: North Carolina State University,
2009.

[Arc13] Arciero, J et al. “Theoretical analysis of vascular regulatory mechanisms con-
tributing to retinal blood flow autoregulation”. Invest Ophthalmol Vis Sci 54
(2013), pp. 5584–5593.

[Arc08] Arciero, J. et al. “Theoretical model of metabolic blood flow regulation: roles of
ATP release by red blood cells and conducted responses”. Am J Physiol Heart
Circ Physiol (2008), H1562–H1571.

[Att10] Attwell, D et al. “Glial and neuronal control of brain blood flow”. Nature 468
(2010), pp. 232–243.

[Aud01] Audoly, S et al. “Global identifiability of nonlinear models of biological systems”.
IEEE Trans Biomed Eng 48 (2001), pp. 55–65.

[Ban05] Banaji, M et al. “A physiological model of cerebral blood flow control”. Math
Biosci 194 (2005), pp. 125–173.

[Bea11] Beal, S et al. NONMEM user guides (1989-2011. Ellicott City: Technical Report,
Icon Development Solutions, 2011.

[Bee08] Beek, A. van et al. “Cerebral autoregulation: an overview of current concepts
and methodology with special focus on the elderly”. J Cereb Blood Flow Metab
28 (2008), pp. 1071–1085.

[Bee10] Beek, A. van et al. “Dynamic cerebral autoregulation in the old using a repeated
sit-stand maneuver”. Ultrasound Med Biol 36 (2010), pp. 192–201.

129



[BP10] Bendat, J. & Piersol, A. Random data: analysis and measurement procedures.
4th. Hoboken, NJ: John Wiley & Sons, Inc, 2010.

[BH85] Bevan, J. & Hwa, J. “Myogenic tone and cerebral vascular autoregulation: the role
of a stretch-dependent mechanism”. Ann Biomed Eng 13 (1985), pp. 281–286.

[Bla08] Black, M. et al. “Importance of measuring the time course of flow-mediated
dilatation in humans”. Hypertension 51 (2008), pp. 203–210.

[Bon11] Bonate, P. Pharmacokinetic-pharmacodynamic modeling and simulation. New
York: Springer, 2011.

[Cam99] Campbell, N. et al. Biology. 5th. Benjamin/Cummings, 1999.

[Car00] Carey, B. et al. “Dynamic cerebral auto regulation is unaffected by aging”. Stroke
31 (2000), pp. 2895–2900.

[Car03] Carey, B. et al. “Effect of aging on dynamic cerebral autoregulation during head-
up tilt”. Stroke 34 (2003), pp. 1871–1875.

[Car08] Carlson, B. et al. “Theoretical model of blood flow autoregulation: roles of myo-
genic, shear-dependent, and metabolic responses”. Am J Physiol Heart Circ
Physiol (2008), H1572–H1579.

[Chr71] Christensen, R. M. Theory of viscoelasticity, an introduction. New York, London:
Academic Press, 1971.

[Cip07] Cipolla, M. “Cerebrovascular function in pregnancy and eclampsia”. Hyperten-
sion 50 (2007), pp. 14–24.

[Cla16] Classen, J. et al. “Transfer function analysis of dynamic cerebral autoregulation: a
white paper from the International Cerebral Autoregulation Research Network”.
J Cereb Blood Flow Metab 36 (2016), pp. 665–680.

[Col98] Collins, D. et al. “Conducted vascular responses: communication across the
capillary bed”. Microvasc Res 56 (1998), pp. 43–53.

[CY72] Cook, T. & Yates, P. “A histometric study of cerebral and renal arteries in nor-
motensive and chronic hypertensives”. J Pathol 108 (1972), pp. 129–135.

130



[Czo96] Czosnyka, M et al. “Monitoring of cerebral autoregulation in head-injured pa-
tients”. Stroke 27 (1996), pp. 1829–1834.

[Czo97] Czosnyka, M et al. “Contribution of mathematical modelling to the interpre-
tation of bedside tests of cerebrovascular autoregulation”. J Neurol Neurosurg
Psychiatry 63 (1997), pp. 721–731.

[Dau08] Daun, S et al. “An ensemble of models of the acute inflammatory response to
bacterial lipopolysaccharide in rats: results from parameter space reduction”. J
Theor Biol 253 (2008), pp. 843–853.

[Dav09] David, T et al. “Coupled autoregulation models in the cerebro-vasculature”. J
End Math 64 (2009), pp. 403–415.

[DG95] Davidian, M & Giltinian, D. Nonlinear models for repeated measurement data.
Chapman & Hall, 1995.

[Dee10] Deegan, B. et al. “The relationship between cardiac output and dynamic cerebral
autoregulation in humans”. J Appl Physiol 109 (2010), pp. 1424–1431.

[DP90] Dirnagl, U & Pulsinelli, W. “Autoregulation of cerebral blood flow in experimental
focal brain ischemia”. J Cereb Blood Flow Metab 10 (1990), pp. 327–336.

[Eam02] Eames, P. et al. “Dynamic cerebral autoregulation and beat to beat blood pres-
sure control are impaired in acute ischemic stroke”. J Neurology, Neurosurgery,
and Psychiatry 72 (2002), pp. 467–472.

[Eam03] Eames, P. et al. “Cerebral autoregulation indices are unimpaired by hypertension
in middle aged and older people”. Am J Hypert 16 (2003), pp. 746–753.

[EK02] Edvinsson, L & Krause, D. Cerebral blood flow and metabolism. 2nd. Philadel-
phia: Lippincott, Williams and Wilkins, 2002.

[Ell08] Ellwein, L. et al. “Sensitivity analysis and model assessment: mathematical
models for arterial blood flow and blood pressure”. J Cardiovasc Eng 8 (2008),
pp. 94–108.

[Elt14] Elting, J. et al. “Reproducibility and variability of dynamic cerebral autoregula-
tion during passive cyclic leg raising”. Med Eng Phys 36 (2014), pp. 585–591.

131



[Fle86] Fleg, J. “Alterations in cardiovascular structure and function with advancing
age”. Am J Cardiol 57 (1986), pp. 33–44.

[Flü75] Flügge, W. Viscoelasticity. New York: Springer Verlag, 1975.

[Fu05] Fu, C. et al. “Effects of different classes of antihypertensive drugs on cerebral
hemodynamics in elderly hypertensive patients”. Am J Hypertens 18 (2005),
pp. 1621–1625.

[Fuj95] Fujishima, M et al. “Cerebral blood flow and brain function in hypertension”.
Hypertens Res 18 (1995), pp. 111–117.

[Fun93] Fung, Y. Biomechanics: Mechanical Properties of Living Tissues. New York:
Springer Verlag, 1993.

[Gil90] Giller, C. “The frequency-dependent behavior of cerebral autoregulation”. Neu-
rosurgery 27 (1990), pp. 362–368.

[Gil03] Giller, C. “The emperor has no clothes: velocity, flow, and the use of TCD”. J
Neuroimag 13 (2003), pp. 97–98.

[Goa04] Goadsby, P. Chapter 36: Cerebral circulation - autonomic influences. Primer on
the Autonomic Nervous System. Elsevier Inc, 2004, pp. 144–146.

[Gos71] Gosling, R. et al. “The quantitative analysis of occlusive peripheral arterial dis-
ease by a non-intrusive ultrasonic technique”. Angiology 22 (1971), pp. 52–55.

[Haj90] Hajdu, M. et al. “Effects of aging on mechanics and composition of cerebral
arterioles in rats”. Circ Res 66 (1990), pp. 1747–1754.

[Hal11] Hall, J. Guyton and Hall textbook of medical physiology. 12th. Philadelphia, PA:
Saunders, Elsevier, 2011.

[Hal16] Hall, J. Guyton and Hall textbook of medical physiology. 13th. Philadelphia, PA:
Elsevier, 2016.

[HT14] Hamner, J. & Tan, C. “Relative contributions of sympathetic, cholinergic, and
myogenic mechanisms to cerebral auto regulation”. Stroke 45 (2014), pp. 1771–
1777.

132



[Har79] Harper, S. et al. “Arterial and microvascular contributions to cerebral cortical
autoregulation in rats”. Am J Physiol Heart Circ Physiol 246 (1979), H17–H24.

[HP14] Hawthorne, C & Piper, I. “Monitoring of intracranial pressure in patients with
traumatic brain injury”. Front Neurol 5 (2014), pp. 1–16.

[HR91] Holstein-Rathlou, N. et al. “Tubuloglomerular feedback dynamics and renal
blood flow autoregulation in rats”. Am J Physiol 260 (1991), F53–F68.

[Hu08] Hu, K et al. “Altered phase interactions between spontaneous blood pressure and
flow fluctuations in type 2 diabetes mellitus: nonlinear assessment of cerebral
autoregulation”. Phys A 387 (2008), pp. 2279–2292.

[Jac85] Jacquez, J. Compartmental analysis in biology and medicine. 2nd. Ann Arbor,
MI: Univ of Michigan Press, 1985.

[Kan78] Kannel, W. “Evaluation of cardiovascular risk in the elderly: the Framingham
Study”. Bull N Y Acad Med 54 (1978), pp. 573–591.

[Kas12] Kashif, F. et al. “Model-based noninvasive estimation of intracranial pressure
from cerebral blood flow velocity and arterial pressure”. Sci Transl Med 4 (2012),
129ra44.

[Kel99] Kelley, C. Iterative Methods for Optimization. Philadelphia, PA: SIAM, 1999.

[Kin16] Kinoshita, K. “Traumatic brain injury: pathophysiology for neurocritical care”. J
Intensive Care 4 (2016), pp. 1–10.

[Kon77] Kontos, H. et al. “Analysis of vasoactivity of local pH, PCO2 and bicarbonate on
pial vessels”. Stroke 1 (1977), pp. 358–360.

[KH98] Krabbe-Hartkamp, M. et al. “Circle of Willis: morphologic variation on three-
dimensional time-of-flight MR angiograms”. Radiology 201 (1998), pp. 103–
111.

[Kre99] Krejza, J et al. “Transcranial color Doppler sonography of basal cerebral arteries
in 182 healthy subjects: age and sex variability and normal reference values for
blood flow parameters”. AJR Am J Roentgenol 172 (1999), pp. 213–218.

[Lan07] Lanzarone, E et al. “Model of arterial tree and peripheral control for the study of
physiological and assisted circulation”. Med Eng Phys 29 (2007), pp. 542–555.

133



[Las59] Lassen, N. “Cerebral blood flow and oxygen consumption in man”. Physiol Rev
39 (1959), pp. 183–238.

[Lip00] Lipsitz, L. et al. “Dynamic regulation of middle cerebral artery blood flow velocity
in aging and hypertension”. Stroke 31 (2000), pp. 1897–1903.

[LA02] Liu, Y & Allen, R. “Analysis of dynamic cerebral autoregulation using an ARX
model based on arterial blood pressure and middle cerebral artery velocity
simulation”. Med Biol Eng Comput 40 (2002), pp. 600–605.

[Liu03] Liu, Y et al. “Dynamic cerebral autoregulation assessment using an ARX model:
comparative study using step response and phase shift analysis”. Med Eng Phys
25 (2003), pp. 647–653.

[Lu14] Lu, J et al. “Online transcranial Doppler ultrasonographic control of an onscreen
keyboard”. Front Hum Neurosci 8 (2014), pp. 1–11.

[Mac76] MacKenzie, E. et al. “Effects of acutely induced hypertension in cats on pial
arteriolar caliber, local cerebral blood flow, and the blood-brain barrier”. Circ
Res 39 (1976), pp. 33–41.

[Mac79] MacKenzie, E. et al. “Effects of hemorrhagic hypotension on the cerebral cir-
culation. I. Cerebral bood flow and pial arteriolar caliber”. Stroke 10 (1979),
pp. 711–718.

[Mad14] Mader, G. et al. “Modeling cerebral blood flow velocity during orthostatic stress”.
Ann Biomed Eng (2014).

[Mad16] Mader, G. et al. “Using modeling to identify changes in dynamic cerebral au-
toregulation in aging and hypertension (under review)”. J Cereb Blood Flow
Metab (2016).

[Mae94] Maeda, H et al. “Reactivity of cerebral blood flow to carbon dioxide in hyperten-
sive patients: evaluation by the transcranial Doppler method”. J Hypertens 12
(1994), pp. 191–197.

[Mah13] Mahdi, A et al. “Modeling the afferent dynamics of the baroreflex control system”.
PLoS Comput Biol 9 (2013), e10033384.

[Mah14] Mahdi, A et al. “Identifiability of viscoelastic mechanical systems”. PLoS ONE 9
(2014), e86411.

134



[Mah16] Mahdi, A et al. “Increased blood pressure variability upon standing up improves
reproducibility of cerebral autoregulation indices”. Preprint (2016).

[Mar12] Martina, J. et al. “Noninvasive continuous arterial blood pressure monitoring
with Nexfin”. Anesthesiology 116 (2012), pp. 1092–1103.

[MS14] Meshkat, N & Sullivant, S. “Identifiable reparametrizations of linear compart-
ment models”. J Symbolic Comput 63 (2014), pp. 46–67.

[Mia11] Miao, H et al. “On identifiability of nonlinear ODE models and applications in
viral dynamics”. SIAM Rev 53 (2011), pp. 3–39.

[NM65] Nelder, J. & Mead, R. “A simplex method for function minimization”. The Com-
puter Journal 7 (1965), pp. 308–313.

[Nis07] Nishimura, N et al. “Penetrating arterioles are a bottleneck in the perfusion of
neocortex”. Proc Natl Acad Sci U S A 104 (2007), pp. 365–370.

[Nov04] Novak, V et al. “Multimodal pressure-flow method to assess dynamics of cerebral
autoregulation in stroke and hypertension”. Biomed Eng Online 3 (2004), p. 39.

[OO13] Olufsen, M. & Ottesen, J. “A practical approach to parameter estimation applied
to model predicting heart rate regulation”. J Math Biol 67 (2013), pp. 39–68.

[Olu00] Olufsen, M. et al. “Dynamics of cerebral blood flow regulation explained using a
lumped parameter model”. Am J Physiol Regul Integr Comp Physiol 282 (2000),
R611–R622.

[Olu02] Olufsen, M. et al. “Dynamics of cerebral blood flow regulation explained using a
lumped parameter model”. Am J Physiol Regul Integr Comp Physiol 282 (2002),
R611–R622.

[Olu05] Olufsen, M. et al. “Blood pressure and blood flow variation during postural
change from sitting to standing: model development and validation”. J Appl
Physiol 6.99 (2005), pp. 1523–1537.

[Olu06] Olufsen, M. et al. “Modeling baroreflex regulation of heart rate during orthostatic
stress”. Am J Physiol Regul Integr Comp Physiol 291.5 (2006), R1355–R1368.

[Pan98] Panerai, R. “Assessment of cerebral pressure-autoregulation in humans - a
review of measurement methods”. Physiol Meas 19 (1998), pp. 305–338.

135



[Pan09] Panerai, R. “Transcranial Doppler for evaluation of cerebral autoregulation”.
Clin Auton Res 19 (2009), pp. 197–211.

[Pan95] Panerai, R. et al. “Cerebral autoregulation dynamics in premature newborns”.
Stroke 26 (1995), pp. 74–80.

[Pan96] Panerai, R. et al. “Analysis of cerebral blood flow autoregulation in neonates”.
IEEE Trans Biomed Eng 43 (1996), pp. 779–788.

[Pan99] Panerai, R. et al. “Linear and nonlinear analysis of human dynamic cerebral
autoregulation”. Am J Physiol Heart Circ 277 (1999), H1089–H1099.

[Pan00] Panerai, R. et al. “Multivariate dynamic analysis of cerebral blood flow regulation
in humans”. IEEE Trans Biomed Eng 47.3 (2000), pp. 419–423.

[Pan01] Panerai, R. et al. “Cerebral blood flow velocity response to induced and spon-
taneous sudden changes in arterial blood pressure”. Am J Physiol Heart Circ
Physiol 280 (2001), H2162–H2174.

[Pan03a] Panerai, R. et al. “Variability of time-domain indices of dynamic cerebral au-
toregulation”. Physiol Meas 24 (2003), pp. 367–381.

[Pan03b] Panerai, R. et al. “Variability of time-domain indices of dynamic cerebral au-
toregulation.” Physiol Meas 24 (2003), pp. 367–381.

[Pau90] Paulson, O. et al. “Cerebral autoregulation”. Cerebrovasc Brain Metab Rev 2
(1990), pp. 161–192.

[Pay06] Payne, S. “A model of the interaction between autoregulation and neural activa-
tion in the brain”. Math Biosci 204 (2006), pp. 260–281.

[Pay16] Payne, S. Cerebral autoregulation: control of blood flow in the brain. Switzerland:
Springer, 2016.

[Pet11] Peterson, E. et al. “Regulation of cerebral blood flow”. Int J Vasc Med 2011 (2011),
pp. 1–8.

[Pet14] Peterson, N. et al. “Comparison of non-invasive and invasive arterial blood
pressure measurement for assessment of dynamic cerebral autoregulation”.
Neurocrit Care 20 (2014), pp. 60–68.

136



[Pop09] Pope, S. et al. “Estimation and identification of parameters in a lumped cere-
brovascular model”. Math Biosci Eng 6.1 (2009), pp. 93–115.

[Pou08] Pournaras, C. et al. “Regulation of retinal blood flow in health and disease”. Prog
Retin Eye Res 27 (2008), pp. 284–330.
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