
ABSTRACT

AYYILDIZ AKOĞLU, TÜLAY . Certifying solutions to polynomial systems overQ. (Under the direction
of Dr. Agnes Szanto and Dr. Jonathan Hauenstein.)

This dissertation is concerned with certifying that a given point is near an exact root of a polyno-

mial system with rational coefficients.

In Chapter 1, we provide prerequisite background material from algebraic geometry, number

theory and matrix theory. Most importantly we introduce the problem of certification and its classical

solution with α-theory on well-constrained systems.

In Chapter 2, we establish a method to certify approximate solutions of an overdetermined

system with rational coefficients.The difficulty lies in the fact that consistency of overdetermined

systems is not a continuous property. Our certification is based on hybrid symbolic-numeric meth-

ods to compute an exact rational univariate representation (RUR) of a component of the input

system from approximate roots. For overdetermined polynomial systems with simple roots, we

compute an initial RUR from approximate roots. The accuracy of the RUR is increased via Newton

iterations until the exact RUR is found, which we certify using exact arithmetic. Since the RUR is

well-constrained, we can use it to certify the given approximate roots using α-theory. We prove

that our algorithms have complexity that are polynomial in the input plus the output size upon

successful convergence, and we use worst case upper bounds for termination when our iteration

does not converge to an exact RUR.

In Chapter 3, we focus on certifying isolated singular roots. We use a determinantal form of the

isosingular deflation, which adds new polynomials to the original system without introducing new

variables. The resulting polynomial system is overdetermined, but the roots are now simple, thereby

reducing the problem to the overdetermined case.

Finally, in Chapter 4 we propose a method to certify approximate real solutions of polynomial

systems using the signature of Hermite matrices. We use approximate roots to construct the Hermite

matrices, then rationalize the entries with a preset bound on denominators. Once we ensure that

the rationalized Hermite matrices in fact correspond to the given system, one can use the Hermite’s

theorem to certify a real approximate solutions of the given polynomial system.
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CHAPTER

1

PRELIMINARIES

1.1 Algebraic geometry background

We start with presenting some basic and fundamental subjects in algebraic geometry. We will mostly

follow the notation in [18], [19] and [32].

1.1.1 Ideals and Varieties

Notation 1.1.1. For the n-tuple α= (α1, . . . ,αn ) ∈Nn and a collection of n indeterminate {x1, . . . , xn},
the product xα = xα1

1 · · · x
αn
n is called a monomial. The total degree, often simply referred to as degree,

is the sum of the exponents deg(xα) :=
∑n

i=1αi .

A polynomial is a finite linear combination of monomials f :=
∑

α fαxα. The degree of a polynomial

is the maximum degree of its monomials.

LetK denote a field andK[x1, . . . , xn ] the polynomials in x1, . . . , xn with coefficients inK.

Definition 1.1.2. Let f := ( f1, . . . , fN ) be a list of polynomials inK[x1, . . . , xn ] . If N = n, the polynomial

system f is called a well-constrained system. If N > n, then it is called an overdetermined system.

Definition 1.1.3. Let K̄ be an algebraically closed field and f := ( f1, . . . , fN ) be a list of polynomials in

K[x1, . . . , xn ], I := 〈 f1, . . . , fN 〉 the ideal generated by f inK[x1, . . . , xn ]. The set of all common solutions

1



1.1. ALGEBRAIC GEOMETRY BACKGROUND CHAPTER 1. PRELIMINARIES

of f1, . . . , fN is called (affine) variety defined by f1, . . . , fN , and it is denoted by

V( f1, . . . , fN ) := {ξ = (ξ1, . . . ,ξn ) ∈ k n : fi (ξ) = 0 i = 1, . . . , N }

Definition 1.1.4. Let V ⊂Kn , the ideal of V is defined

I(V ) := { f ∈K[x1, . . . , xn ] : f (a1, . . . , an ) = 0 for all (a1, . . . , an ) ∈V }.

Let I , J be ideals inK[x1, . . . , xn ], and V , W be varieties inKn . Then the inclusion relation is

V ⊂W ⇒ I(W )⊂ I(V ) and I ⊂ J ⇒V(J )⊂V(I ). (1.1)

Definition 1.1.5. Let V , V1, V2 be varieties in Kn . V is reducible if we can write it as a union of a

closed proper subsets

V =V1 ∪V2, V1, V2 (V .

V is irreducible, if not reducible, i.e. if whenever V =V1 ∪V2, then either V1 =V or V2 =V .

Now we will show that every variety can be written as a union of irreducible components.

Theorem 1.1.6 ([32, Theorem 6.4]). Let V be a variety inKn , it can be written as

V =V1 ∪V2 ∪ · · · ∪Vk , k ∈N,

as a finite union of irreducible variety. This presentation is unique up to permutation provided it is

redundant, i.e., Vi 6⊂Vj for any i 6= j .

Proof. (Existence) If V be irreducible, then k = 1. Now assume V is reducible, then there are V1 and

V ′1 such that V =V1 ∪V ′1 , V1, V ′1 (V . Then either V1 and V ′1 are irreducible or, after reordering we

can write V1 =V2 ∪V ′2 , V2, V ′2 (V1. This process can terminate with an expression of V as a union

of irreducibles, such that V ) V1 ) V2 . . . , or equivalently there is an infinite ascending sequence

of ideals, I (V )( I (V1)( I (V2) . . . by (1.1). However, this contradicts ascending chain condition for

ideals (see [32], Proposition 2.24).

(Uniqueness) Suppose there are two different representations

V =V1 ∪V2 ∪ · · · ∪Vk1
and V =V ′1 ∪V ′2 ∪ · · · ∪V ′k2

, k1, k2 ∈N

with any i 6= j , Vi 6⊂ Vj and V ′i 6⊂ V ′j . We have Vj = Vj ∩V = ∪k2
i=1(Vj ∩V ′i ), then Vj ⊂ V ′i for some i .

Similarly, V ′i ⊂Vm for some m . The irredundancy assumption implies that j =m . Thus we obtain

2



1.1. ALGEBRAIC GEOMETRY BACKGROUND CHAPTER 1. PRELIMINARIES

Vj ⊂V ′i ⊂Vj , so the sets are equal.

Definition 1.1.7. The radical of an ideal I is the set of f , such that there exist m ∈N+ such that f m

is in I . The radical of an ideal I is denoted as
p

I . An ideal I is a radical ideal if I =
p

I .

Lemma 1.1.8. Let V be a variety. Then I(V ) is a radical ideal.

Proof. Assume that f m ∈ I(V ) for some integer m ≥ 1. Let ξ ∈ V , then ( f (ξ))m = 0, that implies

f (ξ) = 0. Since ξ is an arbitrary element, we have f ∈ I(V ).

Definition 1.1.9. The quotient algebra in K[x1, . . . , xn ]/I consists of all cosets [ f ] := f + I = { f +
q : q ∈ I } for f ∈K[x1, . . . , xn ].

Definition 1.1.10. An ideal I ⊂K[x1, . . . , xn ] is a zero-dimensional ideal if K[x1, . . . , xn ]/I is finite

dimensional overK.

We continue with a very important result relating to the number of points in V(I )and dimK[x1, . . . , xn ]/I .

First, we need the following lemma.

Lemma 1.1.11. Let V = {ξ1, . . . ,ξd } be a finite set in an algebraically closed field k n . There exist

polynomials L i ∈K[x1, . . . , xn ], i = 1, . . . , d , such that

L i (ξ j ) =







1 if i = j ,

0 if i 6= j .
(1.2)

Proof. Let V = {ξ1, . . . ,ξd }, where ξ j = (ξ j 1, . . . ,ξ j n ) ∈ k n . we will construct a Lagrange basis

{L1, . . . , Ld } for V satisfying (1.2). We start with L1, let ti be a coordinate index where ξ1,ti
6= ξi ,ti

,

then we define L1 as

L1(x1, . . . , xn ) :=
n
∏

i=2

xti
−ξ1,ti

ξi ,ti
−ξ1,ti

. (1.3)

Notice that, L1(ξ1) = 1 and L2(ξ1) = · · · = Ld (ξ1) = 0. Thus (1.2) holds for L j (ξ1). The polynomials

L2, . . . , Ld can be defined similarly, and they will have the desired property.

Theorem 1.1.12. Let I be a zero-dimensional ideal. Then |V(I )| ≤ dimK[x1, . . . , xn ]/I . Moreover, if I

is radical, equality occurs.

Proof. Let {L1, . . . , Ld } for V(I ) be a Lagrange basis as defined in the proof of Lemma (1.1.11). Con-

sider [L1], . . . , [Ld ] ∈K[x1, . . . , xn ]/I , and suppose there exists a1, . . . , ad ∈ k such that

a1[L1] + · · ·+ad [Ld ] = [0],

3
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the definition of quotient algebra implies that a1L1+ · · ·+ad Ld ∈I . Then we can write

a1L1(ξ j ) + · · ·+ad Ld (ξ j ) = 0 for all j = 1, . . . , d .

By (1.2), a j = 0 for all j = 1, . . . , d . Therefore [L1], . . . , [Ld ] are linearly independent inK[x1, . . . , xn ]/I .

It means dimK[x1, . . . , xn ]/I is at least d . This completes the first part of the theorem.

Now assume that I is radical and [ f ] ∈K[x1, . . . , xn ]/I for a polynomial f ∈K[x1, . . . , xn ]. Let g :=

c1L1 + · · ·+ cd Ld ∈ K[x1, . . . , xn ], where ci := f (ξi ) ∈ k for all i = 1, . . . , d . Then [g ] is spanned by

[L1], . . . , [Ld ] and for all i = 1, . . . , d , g (ξi ) = f (ξi ), which implies g − f ∈ I (V). Since I is radical, we

have I = I (V ), thus [ f ] = [g ]. This completes the proof.

1.1.2 Univariate Representations

Consider a polynomial system f= ( f1, . . . , fN ) ∈Q[x1, . . . , xn ], and assume that the idealI := 〈 f1, . . . , fN 〉
is radical and zero dimensional. In this section we will show that, under these assumptions, we can

compute an equivalent system, so-called representation, using only univariate polynomials.

Definition 1.1.13. A polynomial u ∈ C[x1, . . . , xn ] separates V (I ), if for all z , z ′ ∈ V (I ), z 6= z ′⇒
u (z ) 6= u (z ′).

The following [74, Lemma 2.1] guarantees the existence of such elements.

Lemma 1.1.14. Let V be a finite set in Cn with |V |= d , the finite set of linear forms

T = {ui = x1+ i x2+ · · ·+ i n−1 xn , i = 0, 1, . . . , (n −1)d (d −1)/2}

contains at least one element that separates V .

Proof. Let z and z ′ be two distinct points in V , such that ui (z ) = z1+ i z2+ · · ·+ i n−1zn and ui (z ′) =

z ′1 + i z ′2 + · · ·+ i n−1z ′n . The polynomial
∑n

j=1(z j − z ′j )T
j−1 is not equal to zero since z and z ′ are

distinct, and it has at most n − 1 distinct roots. Then {u0, . . . , un−1} has at least one element uk

such that uk (z ) 6= uk (z ′). Since the number of distinct pairs of points in V is d (d −1)/2, the set of

polynomials
�

x1+ i x2+ · · ·+ i n−1 xn : i ∈N, 0≤ i ≤ (n −1)d (d −1)/2
	

contains at least one element

that separates V .

Definition 1.1.15. A polynomial u ∈T is called a primitive element of V (I ), if it separates V (I ).

4
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We will define two representations of f= ( f1, . . . , fN ) ∈Q[x1, . . . , xn ], Polynomial Univariate Rep-

resentation (PUR) and Rational Univariate Representation (RUR), also called Shape Lemma Rep-

resentation and Kronecker representation, respectively (see [77]). The history of these notions go

back to [53] or possibly even earlier, with modern references, for example, in [40, 3, 74] (see [30] for

a detailed historical survey). While RUR can be defined for roots with multiplicities, here we will

only consider the case of simple roots.

Definition 1.1.16. Let f = ( f1, . . . , fN ) ∈ Q[x1, . . . , xn ] for some N ≥ n, and assume that the ideal

I := 〈 f1, . . . , fN 〉 is radical and zero dimensional. Let

δ := dimCQ[x1, . . . , xn ]/I = |V (I )|.

Let (λ1, . . . ,λn ) ∈Qn and define a primitive element as constructed in Lemma (1.1.14)

u (x1, . . . , xn ) :=λ1 x1+ · · ·+λn xn

and let q , v1, . . . , vn ∈C[T ] be univariate polynomials in a new variable T over C. We call

(u , q , v1, . . . , vn ) (1.4)

the Polynomial Univariate Representation (PUR) of a component of V (I ) if it satisfies the following

properties:

(1) q is a monic square-free polynomial of degree d ≤δ,

(2) v1, . . . , vn are all degree at most d −1 and satisfy

λ1v1(T ) + · · ·+λn vn (T ) = T ,

(3) for all i = 1, . . . , N we have

fi (v1(T ), . . . , vn (T ))≡ 0 mod q (T ).

If, in addition, u , q , v1, . . . , vn ∈Q(T ) then we say that they form a PUR for a ratiopnal component of

V (I ).
For a polynomial p (T ), we let p (T )mod q (T ) be the polynomial of degree less than d = deg q in the

5
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conjugacy class of p with respect to q . Using the notation above, consider the polynomials

ri (T ) := vi (T )q
′(T ) mod q (T ) i = 1, . . . n ,

where q ′(t ) = d q (T )/d T . We call the polynomials

(u , q , r1, . . . , rn ) (1.5)

the Rational Univariate Representation (RUR) of a component of V (I ).

Versions of the following proposition appear in the literature (c.f. [74]), but we include a proof

for completeness as appeared in [2].

Proposition 1.1.17. Let f and I be as in Definition (1.1.16).

1. Let V := {ξ1, . . . ,ξd } ⊆V (I )⊂Cn , and denoteξi = (ξi ,1, . . . ,ξi ,n ) for i = 1, . . . , d . Fix (λ1, . . .λn ) ∈
Qn such that for u :=λ1 x1+ · · ·+λn xn

u (ξi ) 6= u (ξ j ) i 6= j ∈ {1, . . . , d }. (1.6)

Define

q (T ) :=
d
∏

i=1

(T −u (ξi )) ∈C[T ], (1.7)

and for each j = 1, . . . , n

v j (T ) :=
d
∑

i=1

ξi , j

∏

k 6=i (T −u (ξk ))
∏

k 6=i (u (ξi )−u (ξk ))
∈C[T ], j = 1, . . . , n . (1.8)

Furthermore, let

r j (T ) :=
d
∑

i=1

ξi , j

∏

k 6=i

(T −u (ξk )) ∈C[T ], j = 1, . . . , n . (1.9)

Then (u , q , v1, . . . , vn ) satisfies the 3 properties of a PUR for the component V of V (I ), and

(u , q , r1, . . . , rn ) is the corresponding RUR.

2. Conversely, assume that (u =λ1 x1+ · · ·+λn xn , q , v1, . . . , vn ) satisfy the 3 properties of a PUR in

Definition (1.1.16). Then there exists V := {ξ1, . . . ,ξd } ⊆ V (I ) of cardinality d := deg(q ) such

that u satisfies (1.6), q satisfies (1.7) and v j satisfies (1.8) for j = 1, . . . , n.

6
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Proof. To see the first claim, notice that q in (1.7) is monic, has degree d ≤δ, and has no multiple

roots by (1.6), thus we get the first property of a PUR.

For the second property, notice that v j in (1.8) is the unique Lagrange interpolant of degree ≤ d −1

satisfying v j (u (ξi )) = ξi , j for i = 1, . . . , d . Thus at T = u (ξi ) for i = 1, . . . , d we have that

λ1v1(u (ξi ))+ · · ·+λn vn (u (ξi )) =λ1ξi ,1+ · · ·+λnξi ,n = u (ξi ).

Using that deg(vi )≤ d −1, the uniqueness of the Lagrange interpolation gives the second property

of Definition (1.1.16).

For the third property, take again T = u (ξi ) for i = 1, . . . , d , and notice that, since ξi ∈V (I ),

ft (v1(u (ξi )), . . . , vn (u (ξi )) = ft (ξi ,1, . . . ,ξi ,n ) = 0.

The Chinese remainder theorem gives the third property of Definition 1.1.16.

Finally, at T = u (ξi ) for i = 1, . . . , d we have

r j (u (ξi )) = ξi , j

∏

k 6=i

(u (ξi )−u (ξk )) =
�

q ′(T )v j (T ) mod q (T )
�

T=u (ξi )

Since both r j (T ) and q ′(T )v j (T )mod q (T ) are degree at most d − 1, the uniqueness of Lagrange

interpolation proves that they are equal. Thus (u , q , r1, . . . , rn ) is the corresponding RUR of V .

To prove the converse, assume that (u =λ1 x1+ · · ·+λn xn , q , v1, . . . , vn ) satisfy the 3 properties of

a PUR in Definition (1.1.16). There exists α1, . . . ,αd ∈C, all distinct, such that

q =
d
∏

i=1

(T −αi ).

Define for i = 1, . . . , d

ξi := (v1(αi ), . . . , vn (αi )) ∈Cn .

Then by the third property of the RUR we have ft (ξi ) = 0 for all t = 1, . . . , m and i = 1, . . . , d , thus

V := {ξ1, . . . ,ξd } ⊆V (I ). Finally, from the second property we have

u (ξi ) =λ1v1(αi ) + · · ·+λn vn (αi ) =αi ,

which gives that u (ξi ) 6= u (ξ j ) and ξi 6= ξ j for i 6= j .

7
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Remark 1.1.18. Note that, in the literature, a PUR is usually also required to satisfy

〈q (T ), x1− v1(T ), . . . , xn − vn (T )〉= 〈I , T − (λ1 x1+ · · ·+λn xn )〉.

while our definition only guarantees⊇. Thus, the common roots of the ideal on the left correspond to a

component of the common roots of I . That is the reason for the name PUR and RUR of a component

of V (I ).

1.2 Certifying solutions of well-constrained polynomial systems

1.2.1 Homotopy method

Homotopy continuation methods [7, 80] uses symbolic-numeric algorithms to solve polynomial

systems. A family of systems, a so-called homotopy, define solution paths, which are followed

using path tracking algorithms, e.g., predictor-corrector methods. Even though the homotopy

is constructed symbolically, the heart of the algorithm, path tracking algorithms, are numerical

algorithms.

The General idea is to start with known solutions of a known start system and then track those

solutions as we deform the start system into the system that we wish to solve. This method takes a

system g(x ) = 0, whose solutions are known, and using a homotopy, e.g.,

H (x , t ) = (1− t )f(x ) + t g(x ).

While t runs from 1 to 0, if paths x(t ) are defined “nicely” by the homotopy H (x , t ), we end at the

solutions of f(x ) at t = 0.

1.2.2 The Problem of Certification

Polynomial systems can be solved reliably using numerical homotopy methods, there are various

implementations such as PHCPack [85], HOM4PS [17], and Bertini [6]. Numerical methods return

numerical approximations to solutions, and all the mentioned implementations validate the so-

lutions heuristically, usually checking Newton iterations at each iteration. Therefore, the output,

the approximate solutions of polynomial systems are not certified. Even though the approximate

solutions work well in practice, these cannot be used in some applications, specifically in pure

mathematics.

The goal is to certify that there is a solution z near an exact root ξ (i.e., if z is in the open ball

B (ξ,ε) := {x : ‖x −ξ‖<ε} for some small ε> 0) of the given system.

8



1.2. CERTIFICATION IN WELL-CONSTRAINED SYSTEMS CHAPTER 1. PRELIMINARIES

1.2.3 Newton Method

Let f := ( f1, . . . , fn ) be a system of n polynomials in C[x1, . . . , xn ], with common zeros V(f) := {ξ ∈
Cn : fi (ξ) = 0 i = 1, . . . , n}. Let Jf(z ) be the Jacobian matrix of the system f at z ∈ Cn . Then the

Newton iteration is the map Nf :Cn →Cn defined by

Nf(z ) = z − Jf(z )
−1f(z )

as long as Jf(z )−1 exists. For k = 0, 1, . . . , the k -th Newton iteration is

z (k+1) :=Nf(z
(k )) =N k

f (z )

with initial guess z (0) := z .

Definition 1.2.1. Let f := ( f1, . . . , fn ) be a system of polynomials in C[x1, . . . , xn ]. A point z ∈ Cn is

an approximate solution to f with the associated solution ξ ∈ V (f) if, for every k ∈ N the Newton

iteration z (k ) satisfies

‖z (k )−ξ‖ ≤
�

1

2

�2k−1

‖z −ξ‖ (1.10)

where ‖.‖ is the usual hermitian norm on C, i.e., ‖z‖= ‖(z1, . . . , zn )‖= (|z1|2+ · · ·+ |zn |2)1/2.

Then we say the sequence {Nf(z (k )) : k ∈N} converges quadratically to ξ.

Assumption 1.2.2. We assume that the Jacobian matrix of the given system f := ( f1, . . . , fn ) ∈C[x1, . . . , xn ]

is nonsingular at all z (i ) for i = 0, 1, . . ..

Definition 1.2.3. A point z ∈C is a fixed point of f, if Nf(z ) = z .

Remark 1.2.4. Notice that if Jf(z )−1f(z ) = 0 then by the definition of Newton iteration, z is a fixed

point. Jf(z )−1f(z ) = 0 implies that f(z ) = 0, by Assumption 1.2.2. When f is a well-constrained system,

fixed points are roots. However it may not be true if f is an overdetermined system, we will explain it

elaborately in Chapter 2.

1.2.4 α-theory and certification

We start with some theorems to introduce a criteria for a point z ∈ C to be an approximate zero

of f. Then introduce a classical solution of certification problem on well-constrained polynomial

systems using so-calledα-theory as explained in [12] and [37]. First, we need to define some auxiliary

quantities.

9
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Definition 1.2.5. Given a well-constrained polynomial system f= ( f1, . . . , fn ) ∈C[x1, . . . , xn ], z ∈Cn ,

and k ∈N then

α(f, z ) =β (f, z )γ(f, z ) (1.11)

where

β (f, z ) = ‖Jf(z )
−1f(z )‖ and (1.12)

γ(f, z ) = sup
k≥2











Jf(z )−1 J (k )f (z )

k !











1/k−1

. (1.13)

By our Assumption (1.2.2), β is a well defined quantity. As stated in [37], in (1.13), the k -th

derivative J k
f (x) to f is the symmetric tensor whose components are the partial derivatives of f of

order k . It is a linear map from the k-fold symmetric power S kCn of Cn to Cn . The norm in (1.13) is

the operator norm of Jf(x)−1 J k
f (x) : S kCn 7→Cn , defined with respect to the norm on S kCn that is

dual to the standard unitarily invariant norm on homogeneous polynomials,











∑

ν=k

aνx ν











2

:=
∑

|ν|=k

|aν|2/
�

k

n

�

where ν = (ν1, . . . ,νn ) is an exponent vector of nonnegative integers with x ν = (x ν1 . . . x νn ), |ν | =
ν1+ · · ·+νn and

�k
n

�

= k !/ν1! . . .νn ! is the multinomial coefficient.

Remark 1.2.6. There is a simple polynomial that plays an important role for the rest of this section

ψ(u ) = 2u 2−4u +1. (1.14)

These facts will help us to obtain some estimates,

(a) u
ψ(u ) < 1 for 0≤ u ≤ 5−

p
17

4 using the quadratic formula,

(b) 3−
p

7
2 is the first positive solution of u

ψ(u ) =
1
2 ,

(c) ψ(u )< 1 for u < 1−
p

2
2 .

Now we can begin introducing the main theorems behind the idea of α-theory. The first one

gives a relation between an approximate and its associate solutions of a system f := ( f1, . . . , fn ) of

polynomials in C[x1, . . . , xn ].
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Theorem 1.2.7. Suppose that f(ξ) = 0 and Jf(z )−1 exists. If

‖z −ξ‖ ≤
3−
p

7

2γ(f,ξ)

then z is an approximate zero of f with associated zero ξ.

For the proof of this theorem, we need the following proposition. The detailed proof of this

proposition can be found in [12, Chapter 8].

Proposition 1.2.8. Let f= ( f1, . . . , fn ) ∈C[x1, . . . , xn ], ξ ∈V (f), z ∈Cn and u = ‖z −ξ‖γ(f,ξ). Suppose

u < 5−
p

17
4 . Then

(a) ‖Nf(z )−ξ‖ <
γ(f,ξ)‖z−ξ‖2

ψ(u ) = u‖z−ξ‖
ψ(u ) .

(b) ‖N (k )
f (z )−ξ‖ ≤

�

u
ψ(u )

�2k−1
‖z −ξ‖ for all k ≥ 0.

Proof of Theorem 1.2.7. As stated in 1.2.6(b), 3−
p

7
2 is the first positive solution of u

ψ(u ) =
1
2 . If u <

3−
p

7
2 , then u

ψ(u ) <
1
2 . By (1.10) and 1.2.8(b), if ‖z −ξ‖γ(f,ξ)≤ 3−

p
7

2 , then z is an approximate zero of f

with associated zero ξ.

In 1986, Smale [79] introduced the main theorem of α-theory, which provides a certificate that

a given point is an approximate solution to f. The proof of this theorem requires some preceding

definition and theorems. These theorems will be presented without their proofs to avoid giving

additional preliminary propositions and definitions.

Definition 1.2.9. Suppose that X is a complete metric space (i.e., every Cauchy sequence in X con-

verges in X ). A mapφ : X → X satisfying d (φ(x ),φ(y ))≤ c d (x , y ) for all x , y ∈ X , with c < 1 is called

a contraction map with a contraction constant c.

Theorem 1.2.10. If

r <
1−

p
2

2

γ(f, z )
,

then

(a) for all z1 ∈Cn with ‖z1− z‖< r ,

‖ ∂ Nf(z1)
∂ z1

‖ ≤ 2(α(f,z )+u
ψ(u )2 , u = r γ(f, z ) andψ as in (1.14).

(b) Nf(B (r, z ))⊂B (r ′, Nf(z )), where r ′ = 2(α(f,z )+u )
ψ(u )2 r

11
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Corollary 1.2.11. if u < 1− (
p

2/2), c = (2(α(f, z ) + u )/ψ(u )2 < 1 and α(f, z ) + c u ≤ u, then Nf is a

contraction map of the ballB (u/(γ(f, z )), z ) into itself with contraction constant c . Hence there is a

unique root ξ of f inB (u/(γ(f, z )), z ) and all z ′ ∈B (u/(γ(f, z )), z ) converge to ξ under iteration of Nf.

Corollary (1.2.11) provides a criterion in terms ofα andγ for convergence of the Newton iterations

by a contraction map in a neighborhood of a point z . Finally, we can state the α-Theory theorem

after the following.

Theorem 1.2.12 (Robust α-Theory). There are positive real numbers α0 and u0 such that:

if α(f, z )<α0, then there is a root ξ of f such that

B
�

u0

γ(f, z )
, z
�

⊂B
�

3−
p

7

2γ(f,ξ)
,ξ

�

and Nf mapsB (u0/γ(f, z ), z ) intoB (u0/γ(f,ξ),ξ)with contraction constant less then or equal to 1/2.

Now we can represent the main theorem behind α-Theory,

Theorem 1.2.13 (α-Theory). Given a well constrained polynomial system f= ( f1, . . . , fn ) ∈C[x1, . . . , xn ],

and an initial guess z ∈Cn . There is a computable constant α0 such that If α(f, z )<α0, then z is an

approximate zero of f. Additionally, ‖z −ξ‖ ≤ 2β ( f , x )where ξ ∈V (f) is the associated solution to x.

The proof of Theorem 1.2.13 follows the Theorems 1.2.7 and 1.2.12.

In [12], one of the best value of the constant α0 is given as 13−3
p

17
4 ≈ 0.157671. An improvement

by Wang and Han to 3−2
p

2≈ 0.171573 is reported in [87].

For a well constrained polynomial system f = ( f1, . . . , fn ) ∈ C[x1, . . . , xn ], and an initial guess

x ∈ Cn , we can compute the constant α(f,x), if (1.11) is satisfied then we can state that x is a

certified approximation solution to f.

In [37], Sotille and Hauenstein showed that one can get an efficient and practical root certification

algorithm using α-theory for well-constrained polynomial systems. They implemented the idea on

their software package alphaCertified in 2011.

1.3 Singularity and multiplicity

The main sources we use here are [7] and [38]. First we need to introduce some basic definitions.

Consider a polynomial system f= ( f1, . . . , fN ) ∈K[x1, . . . , xn ], and assume that the idealI := 〈 f1, . . . , fN 〉
is zero dimensional.

12
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Definition 1.3.1. A solution z ∈Kn is said to be isolated if there is an open ballB (z ,ε) around z for

some ε > 0 such that the only solution inB is z . A solution z is called nonsingular if the Jacobian

matrix of f at z is full rank. Otherwise z is called a singular solution.

Definition 1.3.2. (Univariate case) Let f ∈K[x ], a univariate polynomial with f (ξ) = 0. Then the

multiplicity of ξ is m if

f (ξ) = f ′(ξ) = · · ·= f (m−1)(ξ) = 0 and f (m )(ξ) 6= 0.

The multiplicity of ξwith respect to f is denoted by µ( f ,ξ).

(Multivariate case) Let f ∈K[x1, . . . , xn ]with N ≥ n. The multiplicity of ξwith respect to f is defined

as

µ(f,ξ) := dimOξ/〈f〉,

where Oξ is the ring of convergent power series centered at ξ and 〈f〉 is the ideal in Oξ.

(Multiplicity of an irreducible component) Let f ∈ K[x1, . . . , xn ] and V ′ ⊂ V (I ) be an irreducible

component of dimension m. Then the multiplicity of V ′ with respect to f is

µ(f, V ′) :=µ({f, L1, . . . , Lm},ξ),

where L1, . . . , Lm are general linear polynomials on k n and ξ is any point contained in the finite set

V ′ ∩V (L1, . . . , Lm ).

The univariate and multivariate cases agree on the multivariate definition. We demonstrate that

with the following example.

Example 1.3.3. Consider f (x ) = x 2(x−1), whereµ( f , 0) = 2 andµ( f , 1) = 1. Forξ= 0, it has convergent

power series expansion centered at ξ = 0, since (x − 1) is nonzero at ξ. This implies Oξ/〈 f 〉 is two

dimensional with a basis {1+ 〈 f 〉, x + 〈 f 〉}. Conversely, first two terms in Taylor expansion vanish at

zero, i.e., f (0) = f ′(0) = 0.

The following definition will provide a base to construct so-called isosingular deflation in Chapter

3.

Definition 1.3.4. Consider the ideal I generated by the polynomials f of the original system which

has an isolated solution at z ∗. We call an idealJ a deflation of I at z ∗ ifJ ⊃I ,J 6=K[x1, . . . , xn ]

and 1≤µ(J , z ∗)<µ(I , z ∗).
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1.4 Rational Number Reconstruction

Now we will describe how to reconstruct the rational numbers that have bounded denominators

and indistinguishable from a given floating point number. In this section we will mainly follow the

notation of [73] and [78].

Definition 1.4.1. Let a ∈R, a finite continued fraction is an expression of the form

a = a0+
1

a1+
1

...+

...

an−1+
1

an

where a0, a1, . . . , an are all integers with a1, . . . , an positive. We use the notation [a0;a1, . . . , an ] to

present continued fraction. Here, writing the remainders using the following recurrence relation

r0 := a and rn := 1/(rn−1−an−1) f o r n = 1, 2, . . .

gives the formula

an := brn c for n = 0, 1, 2, . . .

where b·c is the floor function.

Definition 1.4.2. Let a be an irrational number, then an infinite continued fraction can be defined

as [a0; a1, . . . ]where a0, a1, . . . are all integers with a1, . . . positive.

Definition 1.4.3. Let a0, a1, . . . , an be all integers with a1, . . . , an positive. Let the sequences p0, p1, . . . , pn

and q0, q1, . . . , qn be define recursively by

p0 = a0 q0 = 1

p1 = a0a1+1 q1 = a1

and

pk = ak pk−1+pk−2 qk = ak qk−1+qk−2

14
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for k = 2, 3, . . . , n . Then the k -th convergent Ck = [a0; a1, . . . , ak ] is

Ck = pk/qk

Lemma 1.4.4. Let Ck = pk/qk be the k -th convergent of the continued fraction [a0; a1, . . . , an ]where

k = 1, . . . , n and pk and qk defined as (1.4.3), then

pk qk−1−pk−1qk = (−1)k−1 (1.15)

Proof. We will use induction to proof this lemma.

For k = 1, using Definition (1.4.3) we have

p1q0−p0q1 = (a0a1+1) ·1−a0a1 = 1.

Now assume that (1.15) is hold for k ∈Z and k = 1, . . . , n −1.

pk qk−1−pk−1qk = (−1)k−1.

Then,

pk+1qk −pk qk+1 = (ak+1pk +pk−1qk )−pk (ak+1qk +qk−1)

= pk−1qk −pk qk−1

= (−1)k .

shows us, (1.15) is true for k +1. This completes the proof.

Remark 1.4.5. Let Ck = pk/qk be the k -th convergent of a continued fraction, pk and qk are relatively

prime, since gcd(pk , qk ) has to divide (−1)k−1 in (1.15).

The k -th convergent, Ck = pk/qk of the irrational number a , is a rational approximation to a .

For example, the continued fraction of π is [3;7,15,1,292,1,1,1,2,1, . . . ]. Then C1 = 3, C2 = 22/7,

C3 = 333/106 and C4 = 355/113 are rational approximations ofπ. Depending on the desired accuracy

and denominator bounds, we can find an appropriate approximation of a given number.

We give the following lemma without proof since its proof is long and not related to any of the

concepts we use in this section. However it will be used to prove the following theorem.
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Lemma 1.4.6. Let Ck be the k−th convergent of the finite continued fraction [a0; a1, . . . , an ]. Then

C1 >C3 >C5 > . . . and C0 <C2 <C4 < . . . ,

and every odd numbered convergent C2i+1 is greater than every even numbered convergent C2i , for

i = 0, 1, 2, . . . .

The following two theorems show how a convergent as a rational approximation of an irrational

number and bounds on the denominator are related.

Theorem 1.4.7. ([73]) Let a be an irrational number and let pi /qi , i = 1, 2, . . . be the convergents of

the infinite continued fraction of a . If r /s is a rational number, r, s are integers with s > 0, and if k is

a positive integer such that

|s a − r |< |qk a −pk | then s ≥ qk+1.

Proof. Assume that |s a − r |< |a qk −pk | and 1≤ s < qk+1. Consider the equations,

pk x +pk+1 y = r (1.16)

qk x +qk+1 y = s . (1.17)

When we eliminate x , we have (pk+1qk −pk qk+1)y = r qk − s pk . Similarly, when we eliminate y , we

have (pk qk+1−pk+1qk )x = r qk+1− s pk+1. Then by lemma (1.4.4).

y = (−1)k (r qk − s pk ) and x = (−1)k (s pk+1− r qk+1)

(i) First, notice that x and y are non zero.

If x = 0, then s pk+1 = r qk+1, since pk+1 and qk+1 are relatively prime by lemma (1.4.5), qk+1

must divide s, that implies qk+1 ≤ s , which contradicts our assumption.

If y = 0, then by (1.16) r = pk x and s = qk x , substitute these values in |s a − r |= |x ||qk a −pk | ≥
|qk a −pk | since |x | ≥ 1, which contradicts our assumption.

(ii) Suppose that y < 0, by (1.16), qk x = s − qk+1 y and assumption s ≤ qk+1, then qk x > 0 and

qk > 0 gives us x > 0.

(iii) Suppose that y > 0, by our assumption, s < qk+1, then s < qk+1 ≤ qk+1 y . By (1.16), qk x =

s −qk+1 y < 0, so x < 0.
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We showed that nonzero x and y has opposite signs. By theorem (1.4.6), either pk/qk < a <

pk+1/qk+1 or pk+1/qk+1 < a < pk/qk . In either case, qk a −pk and qk+1a −pk+1 have opposite signs.

Using equations (1.16)

|s a − r |< |(qk x +qk+1 y )a − (pk x +pk+1 y )|

< |(x (qk −a pk ) + y (qk+1a −pk+1)|

we see that x (qk a −pk ) and y (qk+1a −pk+1) have the same sign since qk a −pk and qk+1a −pk+1 has

opposite signs. Thus

|s a − r |< |x ||qk −a pk |+ |y ||qk+1a −pk+1|

≤ |x ||qk −a pk |

≤ |qk −a pk |

since |x | ≥ 1. This contradiction completes the proof.

Theorem 1.4.8. Let a be an irrational number and if r /s is a rational number, r, s are integers with

s > 0 such that

|a − r /s |< 1/(2s 2)

then r /s is a convergent of the continued fraction expansion of a .

Proof. Assume that r /s is not a convergent of the continued fraction expansion of a . By Theorem

(1.4.7), we have

|qk a −pk | ≤ |s a − r |= s |a − r /s |< 1/(2s )

since there are convergents pk/qk and pk+1/qk+1 such that qk ≤ s < qk+1.

Then we have

|a −pk/qk |< 1/(2s qk )

by dividing both sides by qk . We know that r /s is not equal to pk/qk , therefore s pk −r qk is a nonzero
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integer, thus |s pk − r qk | ≥ 1. Using this inequality

1

s qk
≤
|s pk − r qk |

s qk

=

�

�

�

�

pk

qk
−

r

s

�

�

�

�

<

�

�

�

�

a −
pk

qk

�

�

�

�

+
�

�

�a −
r

s

�

�

� (triangle inequality)

≤
1

2s qk
+

1

2s 2

≤
1

2s 2

Hence, we have qk > s , which is a contradiction.

The following classical result implies that if a number is sufficiently close to a rational number

with small denominator, then we can find this latter rational number in polynomial time (c.f. [78,

Corrolary 6.3a] or [86, Theorem 5.26]).

Theorem 1.4.9 ([78, 86]). There exists a polynomial time algorithm which, for a given rational number

a and a natural number B tests if there exists a pair of integers (r, s )with 1≤ s ≤ B and

|a − r /s |<
1

2B 2
,

and if so, finds this unique pair of integers.

Proof. First, assume that r /s and r ′/s ′ are two different rational numbers, such that 1 ≤ s ≤ B ,

1≤ s ′ ≤ B and |a − r /s |< 1/(2B 2), |a − r ′/s ′|< 1/(2B 2). Then

1

B 2
≤

1

s s ′

≤
|r s ′− r ′s |

s s ′
(since r, r ′, s , s ′ are all integers )

=

�

�

�

�

r

s
−

r ′

s ′

�

�

�

�

<
�

�

�a −
r

s

�

�

�+

�

�

�

�

a −
r ′

s ′

�

�

�

�

(triangle inequality)

<
1

2B 2
+

1

2B 2
=

1

B 2

contradicting the assumption.
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Suppose r /s exists,
�

�

�a −
r

s

�

�

�<
1

2B 2
≤

1

2s 2
(1.18)

Now as long as s ≤ B , it suffices to compute the convergents of a , and to test if any of them satisfies

(1.18).

Later in this dissertation (see Subsection 2.2.4, Theorem 2.2.7) we give a complexity analysis of

rational number reconstruction based on [27].

Remark 1.4.10. Notice that Theorem (1.4.9) does not guarantee existence of the the pair (r, s )with

the given properties, only uniqueness.

1.5 Some matrix theory

In this part we cover some matrix theory material to provide background for the so-called Hermite

method. That method is presented in Chapter 4.

The main sources used here are [63] and [8]. We start with special matrices that are used in the

related chapter.

Definition 1.5.1. A square complex matrix A is Hermitian matrix (or self-adjoint matrix) if its

complex entries that is equal to its own conjugate transpose. It is denoted by

A = AT = A∗.

Definition 1.5.2. A n ×n square matrix H with the following structure is called a Hankel matrix,

H =

























h0 h1 h2 . . . . . . hn−1

h1 h2
...

h2
...

... h2n−4

... h2n−4 h2n−3

hn−1 . . . . . . h2n−4 h2n−3 h2n−2

























.

The (i , j )−th entry of H is defined by

[H ]i , j = [H ]i+1, j−1 = hi+ j−2.
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Theorem 1.5.3. Every eigenvalue of a real symmetric matrix is real.

Proof: Let A be a real symmetric matrix, then A is Hermitian matrix, since A∗ = AT = A = A.

Let λ be an eigenvalue and v be the corresponding eigenvector. Then

Av =λv

multiply both sides with v ∗,

v ∗Av = v ∗λv =λv ∗v.

Then

λ=
v ∗Av

v ∗v
.

Using the definition of Hermitian matrix, (v ∗Av )∗ = v ∗Av , then α∗ = α implies α ∈ R. Similarly,

(v ∗v )∗ = v ∗(v ∗)∗ = v ∗v , implies v ∗v ∈R. Since a ratio of two real numbers is a real number, λ ∈R.

Diagonalization of matrices will arise in the further parts of this work. We give some definitions

and criterion on diagonalization of special kind of matrices.

Definition 1.5.4. A square matrix A is diagonalizable if it is similar to a diagonal matrix D , i.e.,

there exists a nonsingular matrix P such that

P −1AP =D .

Moreover, n ×n A is diagonalizable if and only if A has n linearly independent eigenvectors,

which form the columns of P , in this case diagonals of D are the eigenvalues of A [63].

Definition 1.5.5. Square matrices A and B are simultaneously diagonalizable if there exists a non-

singular matrix P such that

P −1AP =DA and P −1B P =DB

where DA and DB are diagonal matrices.

The following theorem will be very handy in Chapter 4.

Theorem 1.5.6 (7.2.16 [63]). Matrices A and B are simultaneously diagonalizable if and only if

AB = B A.

We can generalize the previous theorem as follows:

Theorem 1.5.7. Let A1, . . . , An be diagonalizable matrices, they are simultaneously diagonalizable if

and only if they commute pairwise.
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The Vandermonde matrix is a special matrix which is used broadly in different areas of mathe-

matics. We define it on bases for univariate and multivariate monomials. Note that sometimes its

transpose is defined as the Vandermonde matrix.

Definition 1.5.8. Let ξ1, . . .ξm be elements in a fieldK. A m ×k Vandermonde matrix of ξ1, . . . ,ξm

with respect to the standard monomial basis B = {1, x , . . . , x k−1} is defined as follows

V =VB (ξ1, . . . ,ξm ) =













1 ξ1 . . . ξk−1
1

1 ξ2 . . . ξk−1
2

...
...

...
...

1 ξm . . . ξk−1
m













.

Definition 1.5.9. Let ξ1, . . .ξm be elements in a fieldKn . Fix a monomial basisB = {xα1 , . . . , xαD}.
Then multivariate Vandermonde matrix ofξ1, . . .ξm with respect to the basisB is defined by [V ]i , j :=

(ξi)αj ,i.e.,

V =VB (ξ1, . . . ,ξm ) =













ξα1
1 ξα2

1 . . . ξαD
1

ξα1
2 ξα2

2 . . . ξαD
2

...
...

...
...

ξα1
m ξα2

m . . . ξαD
m













where (ξi)αj = (ξi 1)αi1 . . . (ξi n )αin .

Definition 1.5.10. Let p = x m + pm−1 x m−1 + · · ·+ p1 x + p0 be a monic univariate polynomial, its

companion matrix is the m ×m matrix defined as

Cp =

















0 1 . . . 0

0 0 . . . 0
...

...
...

...

0 0 . . . 1

−p0 −p1 . . . −pm−1

















.

Note that sometimes its transpose is defined as the companion matrix. We list some companion

matrix properties collated from [63], [8] and [13]:

• The eigenvalues of Cp are equal to the roots of p .
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• Let p has m distinct roots ξ1, . . . ,ξm then the companion matrix of p can be diagonalized as

V −1Cp V =D

with [D ]i ,i = ξi for i = 1, . . . , k and V is the Vandermonde matrix VB (ξ1, . . . ,ξm )with respect

to the standard monomial basis B = {1, x , . . . , x m−1}.

• Let p has m distinct roots ξ1, . . . ,ξm then

T r (Cp )
s =

m
∑

i=1

ξs
i .

Definition 1.5.11. Let f= ( f1, . . . , fN ) ∈K[x1, . . . , xn ] and letI :=< f1, . . . , fN >, if p ∈K[x1, . . . , xn ]/I ,

define a linear map

Mp :K[x1, . . . , xn ]/I 7→K[x1, . . . , xn ]/I

as the multiplication map of f such that

Mp (q ) = q p mod I

for q ∈K[x1, . . . , xn ]/I .

The multiplication map has the following properties, see [19, Section 2.4]:

• The matrix of the multiplication map Mp = 0 when p ∈I .

• Mp = p (M )

• Mp1+p2
=Mp1

+Mp2
and Mp1·p2

=Mp1
·Mp2

• Mp1
Mp2

=Mp2
Mp1

Remark 1.5.12. Let Mx be the multiplication matrix of x with respect to the standard basis

B = {1, x , . . . , x k−1}. Explicitly,

Mx :K[x ]/< f > 7→K[x ]/< f > such that Mx (p ) = p x

where f = x k + fk−1 x k−1+ . . .+ f1 x + f0. Then Mx has a companion matrix structure. Its columns

correspond to the basis B and rows correspond to x B = {x , x 2, . . . , x k }:
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Mx =

















1 x . . . x k−1

x 0 1 . . . 0

x 2 0 0 . . . 0
...

...
...

...
...

x k−1 0 0 . . . 1

x k − f0 − f1 . . . − fk−1

















.

[19, Section 2.4] includes a theorem that proves the essential role of the matrix of a multiplication

map (usually called multiplication matrix) in root finding.

Theorem 1.5.13 ([19]). Let I be zero dimensional, p ∈C[x1, . . . , xn ], and hp be the minimal polyno-

mial of multiplication matrix Mp . Then for λ ∈C, the following are equivalent:

• λ is a root of the equation hp (x ) = 0,

• λ is an eigenvalue of the matrix Mp ,

• λ is a value of the function p on V (I ).

However Theorem 1.5.13 does not reveal how to find those roots. The following theorem describes

a procedure to compute the coordinates of the roots. That can be found in [82].

Theorem 1.5.14. Let k be an algebraically closed field with characteristic zero and let I be a zero

dimensional ideal inK[x1, . . . , xn ]. Let

V (I ) = {ξi = (ξi 1 . . .ξi n ) ∈Kn : i = 1, . . . , D }

and assume that D = dim K[x1, . . . , xn ]/I ,i.e., I does not have multiple roots.

Fix a monomial basis

N = {xα1 , . . . , xαD}.

Then the multiplication matrices M are simultaneously diagonalizable such that

V −1 M f V =Df

where V = VN (ξ) is the Vandermonde matrix and Df is a diagonal matrix with [D ]i ,i = f (ξi ) for

i = 1, . . . , D .

Moreover, we can find the j -th coordinates of the roots by diagonalizing Mx j
to get

[Dx j
]i ,i = ξ j i .
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The following consequence of the Stickelberger’s theorem ([74] and [5]) provides an important

property of the trace of a multiplication matrix.

Theorem 1.5.15. Let I ⊂K[x1, . . . , xn ] be a zero dimensional ideal. Then for all p ∈K[x1, . . . , xn ]

trace of the linear (multiplication) map Mp has the property

T r (Mp ) =
∑

ξ∈VC(I )

µ(ξ)p (ξ)

where µ(ξ) is the multiplicity of ξ.

We define one more very well known object. Using Newton identities, one can find powers sums

of roots of a polynomial without any knowledge of the roots as shown in the following theorem.

Definition 1.5.16. The i -th Newton sum of the polynomial f is

pk :=
∑

ξ∈V ( f )

µ(ξ)ξk ,

where µ(ξ) is the multiplicity of ξ.

Theorem 1.5.17. Let z1, . . . , zk be roots of f (x ) = x k − fk−1 x k−1+ · · ·+ f1 x + f0, define the power series

pk =
k
∑

i=1

z k
i ,

and the elementary symmetric polynomials are

e0 = 1,

e1 = z1+ z2+ · · ·+ zk ,

e2 =
∑

1≤i< j≤k zi z j ,

ek = z1z2 · · ·zk ,

en = 0, for n > k .

Then the Newton Identities for all n ≥ 1 defined by

nen =
n
∑

i=1

(−1)i−1en−i pi .
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Then one can find the k -th Newton power sum

pk =
k−1
∑

i=k−n

(−1)k−1+i ek−i pi ,

for all k > n ≥ 1.

The Following definition and theorem are adopted from [5].

Definition 1.5.18. A quadratic form with coefficients inK is defined by

Q (a1, . . . , an ) :=
n
∑

i , j=1

mi , j ai a j

with M = [mi , j ] a symmetric matrix for i , j = 1, . . . , n. If a = (a1, . . . , an ), then Q (a ) = a t M a .

Theorem 1.5.19 (Sylvester’s law of inertia). Let Q be a quadratic form as defined above,

(i) A quadratic form Q (a ) of dimension n has always a diagonal expression.

(ii) IfK is ordered, the difference between the number of positive coefficients and the number of positive

coefficients in a diagonal expression of Q (a ) is a well defined quantity.

1.6 Real Root Counting

There are very well-known methods to count real roots of univariate polynomials. Descartes’s rule

of signs, and Sturm’s Theorem are two classical results we briefly describe in this section.

Descartes’s rule of signs is a technique for determining an upper bound on the number of real

roots of a polynomial. It is not a complete criterion, because it does not provide the exact number

of positive or negative roots. The rule is applied by counting the number of sign changes in the

sequence of the polynomial’s coefficients. If a coefficient is zero, that term is simply omitted from

the sequence.

Definition 1.6.1 (Descartes’s rule of signs). Let f (x ) = fn x n + · · ·+ f1 x + f0 ∈R[x ]with nonzero fn

and f0. Let v be the number of sign change in the sequence ( f0, f1, . . . , fn ). Let p be the number of

positive real roots of f counted with multiplicity, then

there exists m ∈Z≥0 such that p = v −2m .

Moreover, if we replace f (x ) by f (−x ) in Descartes’s rule then we get a bound on the number of

negative real roots of f .
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Sturm’s Theorem expresses the number of distinct real roots of a polynomial in an interval in

terms of the number of changes of signs of the values of the Sturm’s sequence at the bounds of the

interval. Applied to the interval of all the real numbers, it gives the total number of real roots of the

polynomial.

The fundamental theorem of algebra already gives the all number of complex roots, counted

with multiplicity. Sturm’s theorem counts the number of distinct real roots and locates them in

intervals.

Definition 1.6.2. Let f (x ) be a univariate real polynomial. Let f0(x ) := f (x ) and f1(x ) := f ′(x ), then

the Sturm Sequence of f is defined by

f0(x ) = q1(x ) f1(x )− f2(x )

f1(x ) = q2(x ) f2(x )− f3(x )
...

fn−2(x ) = qn−1(x ) fn−1(x )− fn (x ).

If f has no multiple roots then fn is a nonzero constant and the Sturm sequence is

( f0(x ), f1(x ), . . . , fn ).

Theorem 1.6.3. [Sturm’s Theorem]Assume f (x ) ∈R[x ] has no multiple roots, and f (a ) 6= 0, f (b ) 6= 0

for a , b ∈R. Then the number of real roots of f in [a , b ] is equal to

v (a )− v (b )

where v (c ) is the number of sign variation in the Sturm’s sequence at c , i.e., ( f0(c ), . . . , fn ) for any

c ∈R.

Generalized version of the Sturm’s Theorem uses slightly different Sturm sequence with an

auxiliary function thus we can omit the no multiple roots assumption.

Theorem 1.6.4. [Generalized Sturm’s Theorem] Assume f (x ), g (x ) ∈ R[x ] and a , b ∈ R such that

a < b . Let ( f , f ′g , f2, . . . , fn ) be the Sturm’s sequence and v (c ) be the number of sign variation in

( f0(c ), . . . , fn ) for any c ∈R. Then

v (a )− v (b ) = #{c ∈ [a , b ] | f (c ) = 0 and g (c )> 0}−#{c ∈ [a , b ] | f (c ) = 0 and g (c )< 0} (1.19)

not counting multiplicity.
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CHAPTER

2

CERTIFYING SOLUTIONS TO

OVERDETERMINED POLYNOMIAL

SYSTEMS OVERQ

2.1 Introduction

2.1.1 Related Work

As we showed in Subsection 1.2.4, α-theory can be used to get efficient root certification algorithm

for well-constrained polynomial systems.

For an overdetermined polynomial system f := ( f1, . . . , fN ) in C[x1, . . . , xn ] with N > n , Dedieu

and Shub [24] studied the overdetermined Newton method (also called Gauss-Newton method

when N>n) whose iterates are defined by

Nf(z ) := z − Jf(z )
†f(z )

where Jf(z )† is the Moore-Penrose pseudoinverse of Jf(z ) ([63], Section 5.12), to determine conditions
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that guarantee quadratic convergence.

Definition 2.1.1. Let f be a polynomial system, then Jf is a continuous operator from Cn to CN .

If Jf is one-to-one with closed image (i.e., Jf(z )−1 : i m (Jf)→ Cn is continuous), the Moore-Penrose

pseudoinverse of Jf(z ) is defined by

J †
f = (J

∗
f Jf)

−1 J ∗f ,

and if Jf is onto, the Moore-Penrose pseudoinverse of Jf(z ) is defined by

J †
f = J ∗f (Jf J ∗f )

−1

where J ∗f is the conjugate transpose of Jf.

For well-constrained case (with nonsingular Jacobian matrix), as mentioned in Remark 1.2.4,

fixed points correspond to roots of f. For overdetermined f, when Newton iterates converges to

z ∈C, Jf(z )†f(z ) = 0. Then f (z ) is not necessarily equals zero but z is a critical point of ‖f(z )‖2.

If our Jf is onto then the main and well-known properties of Newton methods are

(i) fixed points correspond to roots of f,

(ii) convergence to fixed points is quadratic.

When derivatives in Jf are one-to-one, Newton method may have fixed points which are not

roots. Also convergence to these fixed points may fail to be quadratic.

Since the fixed points of Nf may not be solutions to the overdetermined polynomial system f,

α-theory approach cannot distinguish whether a point is a root or a local minimum. Thus it cannot

certify solutions to overdetermined polynomial systems. The following example illustrates that.

Example 2.1.2. Consider

f(x ) =

�

x

x 2+a

�

where a ∈R.

x = 0 is a stationary point of

‖f(x )‖2 = x 2+ (x 2+a )2 = x 4+ (2a +1)x 2+a 2,

i.e., ‖f(x )‖2 attains its minimum at 0. If a = 0, x = 0 is a root of f. If a 6= 0, then f(x ) 6= 0. Newton iterate

of f is

Nf(x ) = x −
�

1
1+4x 2

2x
1+4x 2

�

�

x

x 2+a

�

= x −
2x 3+ (2a +1)x

1+4x 2
,
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clearly x = 0 is a fixed point since Nf(0) = 0. However when |a | ≥ 1/2, x = 0 is not a fixed attractive

point.

In [37], Hauenstein and Sottile give a heuristic approach to certify solutions to overdetermined

systems. They take two or more randomized square subsystem of the given overdetermined system

f, then use α-theory as described in Subsection 1.2.4, and compare solutions. They also remark that

for their work to give an algorithm, we would need a general bound for the minimum of a positive

polynomial on a disk. However they note that all known bounds are too small to be practical.

A closer look at the literature on lower bounds for the minimum of positive polynomials over

the roots of zero-dimensional rational polynomial systems reveals that they all reduce the problem

to the univariate case and use univariate root separation bounds (see, for example, [15, 43, 14, 44]).

This led to the idea of directly using an exact univariate representation for the certification of the

input system instead of using universal lower bounds that are often very pessimistic.

In principle, one can compute such a univariate representation using purely algebraic tech-

niques, for example, by solving large linear systems corresponding to resultant or subresultant

matrices (see, for example, [81]). However, this purely symbolic method would again lead to worst

case complexity bounds. Instead, we propose a hybrid symbolic-numeric approach, using the ap-

proximate roots of the system, as well as exact univariate polynomial arithmetic overQ. We expect

that our method will make the certification of roots of overdetermined systems practical for cases

when the universal lower bounds are too pessimistic, or when the actual size of our univariate

representation is significantly smaller than in the worst case.

There is an extended body of literature on using interval arithmetic and optimization methods to

certify the existence or non-existence of the solutions of well-constrained systems with guaranteed

accuracy, e.g., [51, 65, 76, 89, 49, 67]. Techniques to certify each step of path tracking in homotopy

continuation for well-constrained systems using α-theory are presented in [9, 10, 33, 34]. Recently,

a certification method of real roots of positive-dimensional systems was studied in [90].

Related to the certification problems under consideration is the problem of finding certified

sum of squares (SOS) decompositions of rational polynomials. In [71, 72, 46, 47], they turn SOS

decompositions given with approximate (floating point) coefficients into rational ones, assuming

that the feasible domain of the corresponding semidefinite feasibility problem has nonempty interior.

In [64], they adapt these techniques to the degenerate case, however they also require a feasible

solution with rational coordinates to exists. The certification of more general polynomial, semi-

algebraic and transcendental optimization problems were considered in [61]. In [25], they compute

rational points in semi-algebraic sets and give a method to decide if a polynomial can be expressed

as a SOS of rational polynomials. Note that we can straightforwardly translate the certification of
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approximate roots of overdetermined polynomial systems into polynomial optimization problems

over compact convex sets (using a ball around the approximate root), however, we cannot guarantee

a rational feasible solution. Instead, we propose to construct the rational univariate representation

of several irrational roots that form a rational component of the input system.

The idea of reconstructing exact algebraic or geometric objects from approximations is not new,

it includes the computation of the minimal polynomials of approximate algebraic numbers (see for

instance [56, 45, 48, 26, 16]), and the computation of a Gröbner basis or geometric representation of

algebraic sets (see for example [83, 88, 29, 39, 16, 30, 77, 4, 7]). One of the main difference between our

approach and some of the iterative techniques computing a geometric representation that are listed

above, is that they use non-Archimedian metric, while here we use the usual Archimedean absolute

value of complex numbers. Even though these methods are analogous, they are not equivalent, as

shown in [36]. The second difference is the use of lattice basis reduction or interpolation techniques.

In [16, 7], they use the algorithm from [48] for the construction of the minimal polynomial of a given

approximate algebraic number. However, the algorithm in [48] requires an upper bound for the

height of the algebraic number, and this bound is used in the construction of the lattice that they

apply LLL lattice basis reduction [56]. To get such bound a priori, we would need to use universal

bounds for the height. In order to get an incremental algorithm with early termination for the case

when the output size is small, one can modify the algorithm in [48] to be incremental, but that

would require multiple application of the lattice basis reduction algorithm. Alternatively, one can

apply the PSLQ algorithm as in [26], which is incremental and does not require an a priori height

bound. The main point of the approach in this paper is that we assume to know all approximate

roots of a rational component. In this case, we can compute the exact RUR much more efficiently,

and in parallel, as it is proved in this paper and in [36]. So instead of multiple calls for lattice basis

reduction, we propose a cheaper interpolation based lifting and checking technique.

Related literature on certification of singular zeros of polynomial systems include [50, 75, 62,

59, 60]. However, these approaches differ from ours in the sense that they certify singular roots of

some small perturbation of the input polynomial system while we certify singular roots of an exact

polynomial system with rational coefficients. Recently, the exact certification of the multiplicity

structure of isolated singular roots was considered in [35].

Moreover, in a very recent work [84] [Sec. 9.8] authors suggest a similar approach to ours, using

numerical approximations to reconstruct an exact polynomial system. The main difference is that

we provide complexity bounds on this reconstruction.

30



2.1. INTRODUCTION CHAPTER 2. OVERDETERMINED CASE

2.1.2 Outline of Our Approach

Consider an overdetermined system f= ( f1, . . . , fN ) ∈Q[x1, . . . , xn ] for some N > n , and assume that

the ideal I := 〈 f1, . . . , fN 〉 is radical and zero dimensional. Under these assumptions, the Rational

Univariate Representation (RUR) for V (I ) exists ( see Subsection 1.1.2 ), as well as for any component

of V (I ) over the rationals. Since the polynomials in the RUR have also rational coefficients, we can

hope to compute them exactly, unlike the possibly irrational coordinates of the common roots of

V (I ). With the exact RUR, which is a well-constrained system of polynomials, we can use α-theory

as in Subsection 1.2.4 to certify that a given point is an approximate root for the RUR, and thus for

our original system f. Our symbolic-numeric method to compute a RUR for V (I ) or for a rational

component of V (I ) consists of the following steps:

Initialization

(i) Compute approximations of all isolated roots to a given accuracy of a random well-

constrained set of linear combinations of the polynomials f1, . . . , fN using homotopy

continuation (see Subsection 1.2.1);

(ii) Among the approximate roots computed in Step (i), choose the candidates which could

be approximations to roots in V (I ) or a rational component of V (I ) – for this step, we

can only give heuristics on how to proceed;

(iii) Chose a separating linear form (primitive element) for the approximate roots chosen in

Step (ii);
Iteration

1. Construct numerically an approximate RUR from the approximate roots chosen in Step

(ii) using formulas expressing the RUR in terms of the roots;

2. Using rational number reconstruction (see Section 1.4), find the unique RUR with ra-

tional coefficients of bounded denominators that is within a given distance from the

approximate RUR computed in Step 1;

3. Check whether the computed exact polynomials form a proper RUR for a component of

V (I ), using exact arithmetic overQ. If yes, terminate, and return the exact RUR;

4. If the answer is no, then either

(a) if the size of the coefficients in the RUR computed in Step 3 exceed a preset bound,

terminate and return failure. Otherwise:

(b) apply one step of Newton’s iteration to increase the precision of the approximate

roots and continue from Step 1 of the Iteration.
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Now, we define heights of polynomials overQ in a way that we can utilize symbolic algorithms

over Z to get bounds (see [42]where it is called projective height).

Definition 2.1.3. Let p (T ) = T d +ad−1T d−1+ · · ·+a0 ∈Q[T ] where each ai = ni /zi for ni ∈ Z and

zi ∈N. Let P (T ) ∈Z[T ] be any integer polynomial that is an integer multiple of p (T ), for example we

can choose

P (T ) = bd T d + bd−1T d−1+ · · ·+ b0 :=

�

d−1
∏

i=0

zi

�

p (T ) ∈Z[T ].

Then the height of p is defined as

H (p ) =H (P ) =
max{|bi | : i = 0, . . . , d }

gcd(bi : i = 0, . . . , d )

which is clearly independent of the representation of p (T ) in Z[T ]. Note that if we assume that

gcd(ni , zi ) = 1 for all i = 0, . . . , d −1 then

H (p ) =max
i
{|ni | , lcm j (z j )} ≥max

i
{|ni |, zi }, (2.1)

as in [21], so we can use the height to bound the magnitude of the numerators and denominators

appearing in the coefficients of our polynomials.

We also define the logarithmic height of p as

h (p ) := log H (p ).

The height and logarithmic height of a rational number a ∈Q is defined to be H (T −a ) and h (T −a ),

respectively.

In Subsection 2.2.3, we prove the following complexity bounds for the iteration part of the above

symbolic-numeric algorithm:

• it either terminates successfully returning an exact RUR of a rational component V ⊂V (I )
after at most

O (log log(H ∗E0))

itarations, where H ∗ is the maximal height of the polynomials in the output and E0 is an upper

bound on the Euclidean distance of the initial approximate RUR and the exact RUR;

• or terminates with failure, in which case the iteration converged to some polynomials which

either did not have rational coefficients or did not form a proper RUR. In this case, we need at
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most

O
�

n log(D ) + log(nhδ) + log log(E0nd )
�

iterations to conclude that our iteration would not have converged to an exact RUR of a

rational component of V (I ). Here, h and D are the maximum of the logarithmic heights

and degrees of the polynomials in f, respectively, δ is the number of points in V (I ), d is the

number of points in the rational component V ⊂V (I )we compute, and E0 is as above;

• the k -th iteration has bit complexity polynomial in the input size, but exponential in k (see

Theorem 2.2.7 for the exact statement). Using the above bounds for the number of iterations,

this implies that once we computed the initial root approximations, the iteration part of our

algorithm is polynomial in the input plus the output size upon success, or to detect failure, its

complexity is comparable to worst case complexity bounds in the literature.

2.2 The Certification Algorithm

2.2.1 Initialization

The iterative method we use is locally convergent, so we need an initial RUR that is sufficiently

close to the exact one in order to have convergence. In this subsection, we discuss the algorithm

that we propose to find a good initial approximate RUR that we can use as the starting point for

our iteration. Using α-theory, we can guarantee that our iteration will be convergent (see below in

Subsection 2.2.2.1). However, the RUR that we converge to may not have rational coefficients, or

may not be a “proper" RUR satisfying the conditions of Definition 1.1.16, in which case we cannot

use it as certificate. In Steps (ii) and (iii) below we give a heuristic method to find an initial RUR that

would converge to a proper RUR with rational coefficients.

More precisely, to compute an initial RUR for a rational component of I we propose the follow-

ing:

(i) Homotopy method on a well-constrained subsystem. Let f= ( f1, . . . , fN ) ∈Q[x1, . . . , xn ] for some

N > n be the defining equations of I which is assumed to be zero dimensional and radical.

As in [37][Section 3], for any linear map R :QN →Qn , which we will also consider as a matrix

R ∈Qn×N , we define the well-constrained n ×n system R (f) :=R ◦ f. For almost all choices of

R ∈Qn×N , the ideal generated by R (f) is zero dimensional and radical. We fix such an R ∈Qn×N

and throughout this paper we use the notation

F = (F1, . . . , Fn ) :=R (f). (2.2)

33



2.2. THE CERTIFICATION ALGORITHM CHAPTER 2. OVERDETERMINED CASE

In this step, we assume that by using numerical homotopy algorithms (as mentioned in Sub-

section 1.2.1), we have computed approximate roots for each root in V (F ), i.e., local Newton’s

method with respect to F is quadratically convergent starting from these approximate roots

(see Subsection 1.2.4 on how to certify approximate roots of well-constrained systems). Using

α-theory for F , we can estimate the distance from each of these approximate roots to the

exact ones. Denote an upper bound for these distances by ε0.

(ii) Candidates for roots of a component of V (I ). To find the subset of approximate roots to V (F )

that approximates the roots in V (I ), or a rational component of V (I ) containing the root we

want to certify, we propose several methods.

The first one is to choose the roots that has residuals for all fi for i = 1, . . . , N up to a given

tolerance t . The tolerance t can be chosen based on ε0 defined above in Step (i ), and the

height and degree of each of the polynomials in f.

Another approach could incorporate the ideas in [37, Section 3] to exclude the roots that are

not approximations of V (I ) by comparing the approximate roots of R (f) to the approximate

roots of an other random square subsystem R ′(f) for some R ′ ∈Qn×N .

Finally, if we know that V (I ) or a rational component of V (I ) has small cardinality, then we

can check all subsets of the roots computed in Step (i ) that have that cardinality as candidates

for the common roots of a component of I .

Denote the cardinality of the roots selected in this step by d .

(iii) Primitive element In this step, we choose a random rational linear form u =λ1 x1+ · · ·+λn xn

from the finite set

T =
�

x1+ i x2+ · · ·+ i n−1 xn : i ∈N, 0≤ i ≤ (n −1)d (d −1)/2
	

(see Lemma 1.1.14), and check if it separates the approximate roots chosen in Step (ii). After

scaling, we will assume that

||u ||∞ =max(|λ1|, . . . , |λn |)≤ 1. (2.3)

2.2.2 Iteration

2.2.2.1 Increasing the Precision of the RUR using Local Newton Iteration

In Step 1 of the Iteration part of our algorithm, we compute a RUR for the d approximate roots using

(1.7) and (1.9). In this section, we discuss the sensitivity of this step to the perturbation of the roots.
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More precisely, we give an upper bound for the distance of the approximate RUR after k iterations

from the exact one.

Let F = (F1, . . . , Fn ) be as in (2.2). Let {ξ(0)1 , . . . ,ξ(0)d } ⊂ C
n be the the d approximate roots we

identified in Step (i i ) of Subsection 2.2.1, and let {ξ∗1, . . . ,ξ∗d } ⊂C
n be the corresponding exact roots

in V (F ). For each i = 1, . . . , d and k ≥ 0 we define the (k +1)-th Newton iterate by

ξ(k+1)
i := ξ(k )i − JF (ξ

(k )
i )
−1F (ξ(k )i ),

where JF (ξ
(k )
i ) is the n ×n Jacobian matrix of F evaluated at z(k )i , which we assume to be invertible.

Then, using our assumption in Step (i ) of Subsection 2.2.1, namely that for all i = 1, . . . , d ,

‖ξ(0)i −ξ
∗
i ‖2 ≤ ε0,

and that the Newton iteration is quadratically convergent from each ξ(0)i to ξ∗i , by Definition 1.10 we

get that

‖ξ(k )i −ξ
∗
i ‖2 ≤ ε0

�

1

2

�2k−1

.

Next, we analyze the possible loss of precision when applying (1.7) and (1.9) in the computation

of the approximate RUR. Note that to get the error bounds below, we assume that there is no roundoff

error in our computations, only the approximation error from the roots.

Proposition 2.2.1. Using the above notation, denote by (u , q (k ), r (k )1 , . . . , r (k )n ) the approximate RUR

corresponding to {ξ(k )1 , . . . ,ξ(k )d }, and suppose that (u , q ∗, r ∗1 , . . . , r ∗n ) is the exact RUR corresponding to

{ξ∗1, . . . ,ξ∗d }. Assume that ||u ||∞ ≤ 1. Then for all i = 0, . . . , d −1, j = 1, . . . , n we have

|coeffT i (q (k )−q ∗)|, |coeffT i (r (k )j − r ∗j )|< d (2e )d /2C d−1ε0

�

1

2

�2k−1

, (2.4)

where C =max{C (k ), C ∗} such that

|ξ(k )i , j | ≤C (k ), |ξ∗i , j | ≤C ∗, for all i = 0, . . . , d , j = 1, . . . , n . (2.5)

Proof. Using the formula in (1.7), coefficients of q (k )(T ) and q ∗(T ) are polynomials in the coordinates

of {ξ(k )1 , . . . ,ξ(k )d } and {ξ∗1, . . . ,ξ∗d } respectively. coeffT i (q (k )) and coeffT i (q (k )) have at most
� d
b d2 c
�

terms,

each has at most (d − i ) product and each with coefficients ≤ 1 in absolute value.
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Let C (k ) :=max{|ξ(k )i , j |}, and C ∗ :=max{|ξ∗i , j |}, and using (2.3),

|coeffT i (q (k )−q ∗)|<
�

d

bd2 c

�

((C (k ))d−i − (C ∗)d−i ).

Using that for real numbers x and y , x n− y n < (x − y )n y n−1 when 0< x < y for any natural number

n , and
�d

t

�

≤
�

d e
t

�t
, with e the natural base, we obtain

|coeffT i (q (k )−q ∗)|<
�

d e

bd /2c

�bd /2c
(C (k )−C ∗)(d − i )C d−i−1.

Now by Definition 1.10, and
�

d e
bd /2c

�bd /2c
< (2e )d /2, we get the error bound for the coefficients in the

RUR is as claimed

|coeffT i (q (k )−q ∗)|< (2e )d /2ε0

�

1

2

�2k−1

d C d−1, (2.6)

for all i = 0, . . . , d .

Similarly, using the formula (1.9) for j = 1, . . . , n , r j (T ) =
∑d

i=1ξi , j

∏

m 6=i (T − u (ξm )) the coef-

ficients of r (k )j (T ) and r ∗j (T ) are polynomials in the coordinates of {ξ(k )1 , . . . ,ξ(k )d } and {ξ∗1, . . . ,ξ∗d }
respectively. First consider

∏

m 6=i (T −u (ξm )) part which is very similar to q (T ), with degree d −1

instead of d with coefficients ≤ 1 in absolute value. Then using the equations and definitions of

C (k ), C ∗ and C above we get

|coeffT i (r (k )j − r ∗j )|< d (C (k )−C ∗)

�

d −1

bd−1
2 c

�

((C (k ))d−1−i − (C ∗)d−1−i )

<

�

d e

bd /2c

�bd /2c
(C (k )−C ∗)d C d−i−1.

Therefore, the right hand side of (2.6) is an upper bound of |coeffT i (r (k )j − r ∗j )| for all j = 1, . . . , n

and i = 0, . . . , d .

Remark 2.2.2. Since C , d and ε0 are constant throughout the iteration, we see that the error in the

coefficients in the RUR converges to zero as k →∞.

2.2.2.2 Rational Number Reconstruction

In this subsection, we show how to find the exact RUR of a rational component of V (I ) once

we computed a sufficiently close approximation of it. The main idea is that we can reconstruct

the unique rational numbers that have bounded denominators and indistinguishable from the
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coefficients of the polynomials in our approximate RUR within their accuracy estimates. Then, we

can use purely symbolic methods to check whether the RUR with the bounded rational coefficients

is an exact RUR for a component of V (I ).
Since the coordinates of the approximate roots are given as floating point complex numbers,

we can consider them as Gaussian rational inQ(i ), and the same is true for the coefficients of the

approximate RUR computed from these roots in Subsection 2.2.2.1. However, since the exact RUR

has rational coefficients, we will neglect the imaginary part of the coefficients of the approximate

RUR. Therefore, we will assume that the coefficients of the approximate RUR are in Q, given as

floating point numbers.

In Theorem 1.4.9, to compute the pair (r, s ) ∈Z2 for each coefficient appearing in the approximate

RUR computed in the previous subsections, we use the bound B ∈N such that 1
2B 2
∼= E , where E

denotes our estimate of the accuracy of our approximate RUR from (2.4). Thus, we can define

B :=
�

(2E )−1/2
�

. (2.7)

For efficient computation of the rational number reconstruction, we can use continued fractions

as described in Section 1.4.

Remark 2.2.3. Theorem 1.4.9 does not guarantee the existence of the pair (r, s )with the given proper-

ties, only uniqueness. In case the rational number reconstruction algorithm for some coefficient c

returns that there is no rational number within distance E with denominators at most B , we will

need to improve the precision E (which will increase the bound B on the denominator). This is done

by applying further local Newton steps on our approximates. As described in Theorem 2.2.5 below, if

the bound B we obtained this way is larger than an a priori bound, we terminate our iteration and

conclude that it did not converge to a RUR of a rational component.

2.2.3 Termination

One key task is to decide whether to terminate our iterations or increase the accuracy of the approx-

imate RUR as described in Sections 2.2.2.1.

Let (u , q , r1, . . . , rn ) be the rational polynomials with bounded denominators as computed in

Subsection 2.2.2.2. In this step, we will symbolically check the 3 properties of Definition 1.1.16 that

defines a PUR of a component of V (I ). Note that since we are given a RUR not a PUR, we will use

that

v j =
r j

q ′
mod q j = 1, . . . , n .
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We can either compute 1/q ′ mod q if it exists, or equivalently we can check the polynomial equalities

gcd(q , q ′) = 1,

λ1r1+ · · ·λn rn ≡ T q ′ mod q , (2.8)

numer
�

ft

�

r1
q ′ , . . . , rn

q ′

��

≡ 0 mod q t = 1, . . . , N .

The latter is more efficient if deg ft < d = deg q . Since the coefficients of the polynomials during

this computation grow in size, we will use a small primes modular approach as in [27][Section 6.7],

which can be efficiently parallelized.

If (u , q , r1, . . . , rn ) does not satisfy some of the properties in (2.8), then either the accuracy of our

approximate RUR was insufficient to define the exact RUR in Subsection 2.2.2.2, or the iteration does

not converge to a RUR of a rational component of V (I ). To decide which case we are in, we will use

a priori upper bounds on the heights of the coefficients of a RUR of a rational component of V (I ).
Below, we review some of the known upper bounds that we can use in our estimates. The best

known upper bounds for the logarithmic heights of the polynomials in the RUR of V (I ) are as

follows.

First, we give a bound for the logarithmic bound of the primitive element u =λ1 x1+ · · ·+λn xn

using Definition 2.1.3 and Lemma 1.1.14 :

h (λi ) = h (T −λi ) for all i = 1, . . . , n .

= log(i n−1)

< (n −1) log((n −1)d (d −1)/2)

< (n −1) log(nd 2)

< 2(n −1) log(nd )

Thus we can state that

max (h (λ1), . . . , h (λn ))≤ 2(n −1) log(nd ).

Assume that the input polynomials f1, . . . , fN have degree at most D and logarithmic height at

most h . To use the bound in [21], which assumes that x1 is a primitive element, we take

( f1, . . . , fN ,λ1 x1+ · · ·+λn xn −T )
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as our input, with a logarithmic height upper bound

h ′ := 2(n −1) log(nd ) +h .

Then, just as in [21], using an arithmetic Bézout theorem in [52][Cor. 2.10] and [21][Thm. 1], the

logarithmic heights of the polynomials q , r1, . . . , rn in a RUR of V (I ) are bounded by

h (q ), h (ri )≤ (nh ′+ (2n +3) log(n +1))D n +5 log(n +3)nD

= [n (2(n −1) log(nd ) +h ) + (2n +3) log(n +1)]D n +5 log(n +3)nD

= [2n (n −1)(log(n ) + log(d ))+nh + (2n +3) log(n +1)]D n +5 log(n +3)nD

< [nh +2n (n −1) log(d ) + (2n 2+5n +3) log(n +3)]D n

< [nh +2d n 2+ (2n 2+5n +3) log(n +3)]D n

< [nh +4n 2l o g (nd )]D n for n > 3.

Finally, for i = 1, . . . n and n > 3 we obtained

h (q ), h (ri )≤ (nh +4n 2l o g (nd ))D n (2.9)

See also similar bounds for the logarithmic height of the polynomials in the RUR in [28, 77].

To get a bound for the height of the polynomials in a RUR for a rational component of V (I ), first

notice that if (u , q , r1, . . . , rn ) is a RUR of V (I ) and (u , q̃ , r̃1, . . . , r̃n ) is a RUR of a rational component

of V (I ) then

q̃ | q and r̃i = (ri mod q̃ ) i = 1, . . . , n .

Here the division is in Q[T ], but after multiplying with least common denominators, it can be

considered in Z[T ]without changing the heights of the polynomials. We use Gelfand’s inequality

for the height of a polynomial divisor of an integer polynomial [42][Prop. B.7.3] (other bounds can

also be used, a survey of the known bounds of factors in Z[x ] be found in [1]). For P,Q ∈Z[T ] such

that P is a divisor of Q , we have

H (P )≤ e deg(Q )H (Q ) or equivalently h (P )≤ deg(Q ) +h (Q ),

thus h (q̃ )≤δ+h (q ). Furthermore, at the k -th step of division with remainder of ri by q̃ gives that

coefficients of h (r̃i ) has degree k −1 in coefficients of q̃ and degree 1 in coefficients of ri , and the

39



2.2. THE CERTIFICATION ALGORITHM CHAPTER 2. OVERDETERMINED CASE

division algorithm has total of (δ−1)− (d −1) =δ−d steps. Thus we get the following bound

h (r̃i )≤ h (ri ) + (δ−d )h (q̃ ) + (δ−d ).

Substituting h (q̃ )≤δ+h (q ) gives

h (r̃i )≤ h (ri ) + (δ−d )(δ+h (q ))+ (δ−d )

≤max(h (q ), h (ri )) +max(h (q ), h (ri ))(δ−d ) +δ(δ−d ) + (δ−d )

≤max(h (q ), h (ri ))(δ−d +1) + (δ−d )(δ+1)

≤max(h (q ), h (ri ))(δ−d +1) +δ2+δ(1−d )−d

≤δ2 max(h (q ), h (ri )) since d ≥ 1.

This, combined with (2.9), gives the following upper bound for the logarithmic heights of the

polynomials in an exact RUR q̃ (T ), r̃1(T ), . . . , r̃n (T ) of a rational component of V (I ):

h (q̃ ), h (r̃i )≤ (nh +4n 2l o g (nd ))δ2D n i = 1, . . . n . (2.10)

Once we have an a priori bound for the heights of the polynomials in an exact RUR of a rational

component of V (I ), we can use (2.1) and check if the bound B for the denominators used in

the rational number reconstruction in Subsection 2.2.2.2 exceeds the a priori bound from (2.10).

If that is the case, we conclude that the iteration did not converge to an exact RUR of a rational

component of V (I ) and terminate our algorithm. Otherwise, continue to increase the accuracy of

our approximation.

We summarize this subsection in the following theorems:

Theorem 2.2.4. Let I be as above. Assume that u , q ∗, r ∗1 , . . . , r ∗n is an exact RUR of a rational compo-

nent of V (I ). Define the maximum height

H ∗ :=ma x {H (q ∗), H (r ∗1 ), . . . , H (r ∗n )}.

Assume that an approximate RUR, u , q , r1, . . . , rn , satisfies

‖q (T )−q ∗(T )‖2,‖ri (T )− r ∗i (T )‖2 ≤ E <
1

2(H ∗)2
i = 1, . . . , n , (2.11)

for some E > 0, and let q̂ , r̂1, . . . , r̂n obtained via rational number reconstruction on the coefficients of
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q , r1, . . . , rn using bound B := d(2E )−1/2e>H ∗. Then

q̂ = q ∗, r̂1 = r ∗1 , . . . , r̂n = r ∗n .

Proof. Note that the coefficients of q ∗, r ∗1 , . . . , r ∗n have denominator at most H ∗ < B by (2.1). Since

the 2-norm gives an upper bound for the infinity norm, by our assumptions, all coefficients of

q ∗, r ∗1 , . . . , r ∗n are at most distance E from the corresponding coefficient of q , r1, . . . , rn . By Theo-

rem 1.4.9, for each coefficient of q , r1, . . . , rn , there is at most one rational number with denominator

bounded by B =
�

(2E )−1/2
�

>H ∗ within the distance of

1

2B 2
=

1

2
�

(2E )−1/2
�2 ≤

1

2
�

(2E )−1/2
�2 = E .

Therefore the rational reconstruction must be equal to the exact RUR.

The next theorem considers the converse statement.

Theorem 2.2.5. Let f ∈ Q[x1, . . . , xn ]N be as above and assume that h and D are the maximum

logarithmic height and degree of the polynomials in f, respectively. Also, let δ be the number of the

common roots of f inCn . Assume that we have an upper bound E for the accuracy of our approximate

RUR q , r1, . . . , rn from (2.4), and denote d := deg(q ). Let B := d(2E )−1/2e and assume that

log(B )≥ (nh +4n 2l o g (nd ))δ2D n .

Let q̂ , r̂1, . . . , r̂n be obtained via rational number reconstruction from the coefficients of q , r1, . . . , rn

using the bound B for the denominators. If any of the 3 properties in (2.8) are not satisfied, then there

is no exact RUR of a rational component of V (I )with primitive element u within the distance of E

from u , q , r1, . . . , rn .

Proof. If there was an exact RUR of a rational component of V (I ) within E from q , r1, . . . , rn , the

logarithmic heights of its coefficients would be bounded by (nh+4n 2l o g (nd ))δ2D n as in (2.10). The

rational number reconstruction algorithm would have found this exact RUR, which is a contradiction.

2.2.4 Complexity

Next, we give asymptotic bounds for the number of iterations needed in the “best case" and in the

“worst case".
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Theorem 2.2.6. Let f ∈Q[x1, . . . , xn ]N and I = 〈f〉 be zero dimensional and radical.

1. Assume that u , q ∗, r ∗1 , . . . , r ∗n is an exact RUR for a rational component of V (I ) and assume that

u , q (0), r (0)1 , . . . , r (0)n is an initial approximate RUR which quadratically converges to q ∗, r ∗1 , . . . , r ∗n
using local Newton iteration as in Subsection 2.2.2.1. Then the number of iterations needed to

find q ∗r ∗1 , . . . , r ∗n is asymptotically bounded by

O (log log(H ∗E0))

where d = deg(q ), H ∗ =ma x {H (q ∗), H (r ∗1 ), . . . , H (r ∗n )} is the height of the output, and E0 :=

d (2e )d /2C d−1ε0 is the upper bound for the distance of the initial RUR from the exact RUR given

in (2.4) for k = 0.

2. Assume that q (0), r (0)1 , . . . , r (0)n is an initial approximate RUR which quadratically converges to the

polynomials q ∗, r ∗1 , . . . , r ∗n , but these polynomials do not form a RUR for a rational component

of V (I ), i.e., either they have irrational coefficients, or they do not satisfy the properties in (2.8).

In this case, we need

O
�

n log(D ) + log(nhδ) + log log(E0nd )
�

iterations to conclude that our iteration did not converge to an exact RUR of a rational compo-

nent of V (I ). Here, h and D are the maximum of the logarithmic heights and degrees of the

polynomials in f, respectively, δ is the number of roots in V (I ), and d , E0 are as above.

Proof. 1. By Theorem 2.2.4, to successfully terminate the algorithm with the exact RUR we need to

achieve accuracy of ≤ 1
2(H ∗)2 . Thus, using (2.4) with E0 := d (2e )d /2C d−1ε0, we need that

E0

�

1

2

�2k−1

≤
1

2(H ∗)2
,

or equivalently

k ≥ log2 log2(4E0(H
∗)2)

which is satisfied if

k ≥ c1 log2 log2(E0H ∗)

for some constant c1 ≤ 2.

2. By Theorem 2.2.5, to terminate the algorithm we need to have

log(B )≥ (4n 2 log(nd ) +nh )δ2D n ,
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where B =
l

E0

�

1
2

�2k−1
m−1/2

with E0 = d (2e )d /2C d−1ε0 as in (2.4). Thus we need that

−
1

2
log(E0) +

2k −1

2
log(2)≥ (4n 2 log(nd ) +nh )δ2D n

(2k −1)
log(2)

2
≥ (4n 2 log(nd ) +nh )δ2D n +

1

2
log(E0)

Here we use the inequality of arithmetic and geometric means, which is

x + y

2
≥
p

x y ⇒ log(x + y )≥ log(2) +
log(x ) + log(y )

2
.

Now we go back to our inequality,

2k −1≥ log2(e )[(8n 2 log(nd ) +2nh )δ2D n + log(E0)]

k ≥ log(log2(e )[(8n 2 log(nd ) +2nh )δ2D n + log(E0)]+1)

k ≥ log2(e )[log(2) +1+
1

4
log log(E0

p

nd ) +
n

4
log D +

1

8
log(n 3hδ4)]

k ≥ 1+
log2(e )

4
(log log(E0

p

nd ) +n log D + log(δ2
p

n 3h ))

This is satisfied if

k ≥ 2 log2(e )
�

n log(D ) + log(nhδ) + log log(E0nd )
�

+1.

Finally we give an asymptotic bound for the computational time of the k -th iteration in the

binary model.

Theorem 2.2.7. Let f= ( f1, . . . , fN ) ∈Q[x1, . . . , xn ] and I as above, and assume that polynomials in f

has degrees at most D and logarithmic height at most h. Assume further that the maximal lengths of

the arithmetic straightline programs overQ evaluating any of the polynomials in f is bounded by A.

Let ε0 be the maximal distance of the initial approximations of the roots computed by the homotopy

method in Step (i ). Let d be the number of roots of the component of V (I ) selected in Step (i i ), and

C be an upper bound for the absolute values of the coordinates of the roots in the component of

V (I ) as in (2.5). Then, for each k ≥ 0, the number of bit operations that the k-th iteration takes is

asymptotically bounded by

Õ
�

22k nd log2(1/ε0) +2k N D 2d 3h A log(d C /ε0) +2k d n 2Ah log(1/ε0)
�

,
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where Õ is the usual soft-O notation that ignores logarithmic factors.

Proof. We consider each step which is summarized in the introduction:

1. Construct numerically an approximate RUR for the approximate roots using formula (1.7)

and (1.9). Let

Lk := (2k −1) log2

�

1

ε0

�

be the length of the floating point numbers in iteration k , using all correct digits of the

coordinates of roots. Since the coefficients of u are rational and thus exact, we can assume

that we turn them into floating point numbers of length Lk . Here, we assume that addition and

multiplication of floating point numbers of length L takesO (L ) binary operations. Complexity:

Evaluation the formulas in (1.7) and (1.9) requires

O
�

M (d ) log(d )Lk

�

(2.12)

binary operations, using for example the [27][Algorithm 10.3], where M (d ) denotes the arith-

metic complexity of the multiplication of two degree d polynomials. Note that M (d ) ∈ Õ (d )
(c.f. [27]).

2. Rational number reconstruction for each coefficients of the RUR. Complexity: The cost esti-

mate that we use is from [27] for the Euclidean Algorithm in Z, which gives the asymptotic

bound for each rational number reconstruction to be O
�

log2(B )
�

, and we have d (n +1) coeffi-

cients to reconstruct.

Here by Proposition 2.2.1, an upper bound for the absolute values of the coefficients is

E0

�

1
2

�2k−1
. Then by (2.7), we obtain B = 1

q

2E0(
1
2 )2

k −1
. Thus B = 22k −2p

d (2e )d /2C d−1ε0
is an upper

bound for the absolute values of the denominators of the coefficients. log B is approximately

2k log(1/pε0), which implies (log B )2 ≤ 22k log2(1/ε0). Since we have total of d (n + 1) coeffi-

cients, this gives a term

O (22k nd log2(1/ε0)) (2.13)

in the overall complexity.

We also need an upper bound for the logarithmic height ĥ of the polynomials in the RUR that

we compute in this step. We have

ĥ ∈O (2k d log(
d C

ε0
)), (2.14)
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since d (2e )d /2C d is a bound for the absolute value of the coefficients of the polynomials in

(1.7) and (1.9), which gives a bound for the numerators, and B d ≤ 2d (2k−2)(1/ε0)d /2 is a bound

for the common denominator of the coefficients. Then the logarithmic height is less than

log(d (2e )d /2C d 2d (2k−2)(1/ε)−d /2), which implies the asymptotic bound (2.14).

3. Check whether the computed exact polynomials form a proper RUR for a component of V (I ),
using exact arithmetic overQ. This involves the following steps:

• Check if gcd(q , q ′) = 1: We can use the fast gcd algorithm in [27][Chap. 11] in complexity

Õ (d 2+d (h + ĥ )) (c.f. [27][Cor. 11.14]).

• Check if λ1r1+ · · ·+λn rn ≡ T q ′ mod q ; the complexity dominated by the other checks.

• Check if fi (r1/q
′, . . . , rn/q

′) ≡ 0 mod q for i = 1, . . . , N . Here we give a bound for evalu-

ating the numerators of fi (r1/q
′, . . . , rn/q

′), which have degrees at most D (d − 1) and

logarithmic heights at most D hĥ A, and then reduce them modulo q . This can be done

in complexity Õ (N d 2D 2hĥ A), using again the bounds in [27][Cor. 11.14].

Substituting (2.14) gives bounds d 2 + d h + 2k d 2 log(C d
ε0
) and N D 2d h2k d 2 log(C d

ε0
)A. Total

checking process is dominated by

Õ (2k N D 2d 3h A log(
C d

ε0
)). (2.15)

4. One Newton iteration on each of the d approximate roots. Complexity: O (d n 2Ah Lk ) bit

operation. As we substitute Lk , we have

O (2k d n 2A log(1/ε0)). (2.16)

Finally, we note that the asymptotic bound given in the claim of the theorem dominates the bounds

given in each steps. That total asymptotic bound is

Õ
�

22k nd log2(1/ε0) +2k N D 2d 3h A log(C d /ε0) +2k d n 2A log(1/ε0)
�

.

2.3 An illustrative example

We illustrate our approach described in this chapter on a simple example. Maple code used for the

example can be obtained from www.math.ncsu.edu/~aszanto/code.html.
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To demonstrate the approach, consider the polynomial system

f(x1, x2, x3) =











x 2
1 + x 2

2 −1

8x1−16x 2
2 +17

x1− x 2
2 − x3−1

64x1 x2+16x2











.

It is easy to verify that f has two regular roots. A randomization of f consists of 3 quadratics which

has 4 regular solutions, two of which can be shown to not correspond to roots of f using Subsection

2.2.1, part (ii). We start with the following numerical approximations for the d = 2 points of interest:

z1 = (−0.250, 0.968,−2.188) and z2 = (−0.250,−0.968,−2.188)

with error bound ε = 0.002. From these numerical approximations, we see that we can take the

primitive element to be u = x2.

Using exact arithmetic, the initial RUR corresponding to this setup is

q (T ) = T 2−14641/15625,

r1(T ) = 121/250,

r2(T ) = 15/8,

r3(T ) =−35T /8.

At k = 1, with denominator bound B = 16 and error tolerance ε, we obtain

q (T ) = T 2−15/16,

r1(T ) =−T /2,

r2(T ) = 15/8,

r3(T ) =−35T /8.

Since

gcd(q , q ′) = 1,

r2 ≡ T q ′ mod q (T )

numer
�

f
�

r1

q ′
,

r2

q ′
,

r3

q ′

��

=











−15(16T 2−15)

15(16T 2−15)

−15(16T 2−15)

0











≡ 0 mod q (T )
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we have proven that f has (at least) 2 roots which form a rational component. The corresponding

well-constrained system from this RUR is







x1+1/4

x 2
2 −15/16

x3+35/16






.

47



CHAPTER

3

CERTIFYING SOLUTIONS TO SINGULAR

POLYNOMIAL SYSTEMS OVERQ

3.1 Introduction

3.1.1 Related Work

Consider a polynomial system f= ( f1, . . . , fN ) ∈ k [x1, . . . , xn ], and assume that the idealI := 〈 f1, . . . , fN 〉
is zero dimensional. Let n =N , (k +1)-th Newton iterate of f be

zk+1 := zk − Jf(zk )
−1f(zk )

with an initial guess z0. Recall from Subsection 1.3 that a solution z ∗ of f is singular if the Jacobian

matrix is singular at z ∗, i.e., det J f (z ∗) = 0 or rank Jf(z∗)<N. The quadratic convergence property of

Newton’s Method does not hold for singular solutions. The rate of convergence is linear since the

ratios

‖zk+1− z ∗‖/‖zk − z ∗‖
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tend to the limit µ(f, z ∗)/(µ(f, z ∗)+1) for k = 0,1, . . . where µ(f, z ∗) is the multiplicity of z ∗ as a root

of f. Moreover, it is usually difficult to obtain the singular solution as the same accuracy as a usual

nonsingular solution (e.g., [23, 31]).

For example, let f (x ) = x 2, then Newton’s method converges to the origin linearly. The following

classical example demonstrates a worse local behavior of Newton Method for singular systems:

Example 3.1.1. [31] Let

f(x , y ) =

�

29
16 x 3−2x y

y − x 2

�

,

only solution of f is the origin. However, repeated application of Newton’s method to the system f

diverges starting at any point off of the line x = 0 other than the origin.

If the given polynomial system f has singular roots, we cannot guarantee neither the quadratic

convergence of Newton’s Method nor obtaining a desired accuracy within a reasonable number of

Newton iterations. Therefore α-theory (see Subsection 1.2.4) cannot be used to certify its solutions.

Deflation is a method to deal with non-reduced solution sets, means regularizing irreducible

components of multiplicity greater than 1. Since Newton’s method is only reliable on reduced so-

lution sets, deflation is an important tool for certification purposes. The main idea of deflation

for an isolated singular solution was introduced in [69, 68], which is basically differentiating the

multiplicity away. In [57] and [55] symbolic and numerical algorithms presented for an isolated

point that they showed terminated.

Before defining deflation processes, we need to introduce some basic notations and definitions.

Consider a given system g= (g1, . . . , gN ) ∈Q[x1, . . . , xn ] and a root z in V (g ).

Let d be the dimension of the null space of the Jacobian matrix of g evaluated at z and it is

denoted by

d = dnull(g, z) := dim null Jg(z).

Let

`=

�

n

n −d +1

�

·
�

N

n −d +1

�

and {σ1, . . . ,σ`} be the index set of all (n −d + 1)× (n −d + 1) submatrices of an N ×n matrix. If

d =max{0, n −N }, then ` = 0 in which case we know that z is a smooth point on an irreducible

solution component of dimension d .

Definition 3.1.2. LetD be the deflation operator such that

D(g, z ) := (gdet, zdet)
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where zdet = z and

gdet =













g

det Jσ1
g

...

det Jσ`g













,

the matrix Jσg is the submatrix of the Jacobian J g indexed byσ.

Notice that gdet consists of polynomials in Q[x1, . . . , xn ]. The construction guarantees that

V(〈gdet〉) ⊂ V(〈g〉), since there is no new variable in g but only new polynomials. Since the defla-

tion operatorD will be repeatedly applied, we write

Dk (g, z ) :=D(Dk−1(g, z ))

to mean k successive iterations withD0(g, z ) := (g, z ).

Definition 3.1.3. The deflation sequence of g at z is the sequence {dk (g, z )}∞k=0 where

dk (g, z ) := dnull(Dk(g, z)) for k≥ 0.

The dimension of the null space cannot increase since we add more polynomials to g. Hence, the

deflation sequence is a nonincreasing sequence of integers greater than or equal 0. Then the deflation

sequence must reach its limit after finitely many iterations. The following theorem, guarantees the

termination of deflation.

That is, there are integers d∞(g, z )≥ 0 and s ≥ 0 so that dt (g, z ) = d∞(g, z ) for all t ≥ s . When z

is isolated, s is bounded above by the depth as well as multiplicity [22, 38, 57]. The limit d∞(g, z ) is

called the isosingular local dimension of z with respect to g. The isosingular points are those for

which their isosingular local dimension is zero so that, after finitely many iterations, isosingular

deflation has regularized the root, i.e., constructed a polynomial system for which the point is a

regular root. Clearly, such a system must consist of at least n polynomials, but will typically be

overdetermined.

Now we will illustrate the idea of isosingular deflation with a very basic example from [7], Section

13.2.

Example 3.1.4. Let f (x , y , z ) = x 2+ y 2+ z 2 , then ξ= (0,0,0) is a root with multiplicity µ( f ,ξ) = 2.

We will deflate f at the origin ξ using isosingular deflation. J f (x , y , z ) = [2x 2y 2z ] and J f (ξ) is the
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zero matrix, thus we add three 1×1 minors of J f (x , y , z ) to our given system f .

g(x , y , z ) =











x 2+ y 2+ z 2

2x

2y

2z











We have ξ= (0, 0, 0), and µ(g,ξ) = 1, so it is nonsingular with respect to g.

Now let us find its deflation sequence, d0(f,ξ) = dim null(D0(f,ξ)) = dim null(g,ξ) = 3 and d1(f,ξ) =

d2(f,ξ) = · · · = 0. Thus the deflation sequence of the origin is 3,0,0, . . . . That implies we deflate the

given polynomial only after one isosingular deflation iteration, since it reaches its limit at the second

deflation.

3.1.2 Our Approach

We consider the problem of certifying isolated singular roots of a rational polynomial system. Due

the behavior of Newton’s method near singular roots, standard techniques in α-theory can not

be applied to certify such roots even if the polynomial system is well-constrained. The key tool to

handle such multiple roots is called deflation (see Subsection 1.3). Deflation techniques “regularize”

the system thereby creating a new polynomial system which has a simple root corresponding to

the multiple root of the original system [69, 68, 22, 57, 58, 38]. In this work, we will focus on using a

determinantal form of the isosingular deflation [38], in which one simply adds new polynomials to

the original system without introducing new variables. The new polynomials are constructed based

on exact information that one can obtain from a numerical approximation of the multiple root. In

particular, if the original system had rational coefficients, the new polynomials which remove the

multiplicity also have rational coefficients. Thus, using this technique, we have reduced the given

system to the case of an overdetermined system over Q in the original set of variables that has a

simple root.

As summarized in Section 1.3 we will use isosingular deflation to certify isolated singular roots

of a rational polynomial system. The problem will be reduced to the case of certifying simple roots

to overdetermined systems, which was discussed in Chapter 2. Due to this reduction, we can extend

this approach to all points which can be regularized by isosingular deflation, called isosingular

points. Since every isolated multiple root is an isosingular point, this method applies to multiple

roots. However, isosingular points need not be isolated as it will be demonstrated in the following

example by the origin with respect to the Whitney umbrella x 2− y 2z = 0.
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Example 3.1.5. As a demonstration, consider the Whitney umbrella defined by g(x , y , z ) = x 2− y 2z .

Following ([38, Example 5.12]), the deflation sequence for the origin is {3, 2, 0, 0, . . .} showing that the

origin is not isolated but is an isosingular point. In particular, it takes two iterations to construct

a polynomial system for which the origin is a regular root. Since Jg(0) is identically zero, the first

iteration appends all partial derivatives, say

g′(x , y , z ) =











g(x , y , z )

x

y z

y 2











.

Since J ′g(0) has rank 1, the original formulation ofDdet will append 18 2×2 minors of J ′g. However,

with our modification, we only need to add the 6 minors which arise by submatrices that, in this case,

include the unique nonzero element of J ′g(0). For this example, it is easy to verify that the ideal of the

resulting regularizing polynomial system is equal to 〈x , y , z 〉.

Since the resulting polynomial systems have rational coefficients, it immediately follows that

every point in a zero-dimensional rational component must have the same deflation sequence. This

can be used to partition the set of points under consideration into subsets and run the certification

procedure described in Chapter 2 independently on each subset.

The construction of the deflation sequence and the resulting regularized system is an exact

process that depends upon z . In our situation where z is only known approximately, we use the

numerical approximations to compute exact numbers, namely the nonnegative integers arising as

the dimensions of various linear subspaces which form the deflation sequence.

Remark 3.1.6. One drawback with the deflationD is the number of minors used in each iteration,

namely ` =
� n

n−d+1

�

·
� m

n−d+1

�

. Since the codimension of the set of m × n matrices of rank n − d is

c = d (m +d −n ), we will adjustDdet to use exactly c minors as follows. Since d = dnull(g, z), we can

select an invertible (n −d )× (n −d ) submatrix of Jg(z ). Rather than using all of {σ1, . . . ,σ`}, we only

use the c many which contain our selected invertible submatrix. In particular, with this setup, the

tangent space of these c many minors is equal to the tangent space of all `minors at z .

With this specialized construction, one now needs to be cautious that two points with the same

deflation sequence can fail to be regularized by the system constructed by the other. However, all

points in the same zero-dimensional rational component will still be regularized simultaneously. In

particular, by comparing ranks of various submatrices, one may be able to produce a finer partition

of the points under consideration before independently certifying each collection.
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3.2 Certification

Given f= ( f1, . . . , fN ) ∈Q[x1, . . . , xn ] and a subset V ⊂V (f) consisting of isosingular points, the process

for certification proceeds as follows.

1. Deflation sequences. Compute the deflation sequences for each of the points in V . If each point

is an isosingular point, then isosingular deflation will terminate and produce a regularized

system for each point. If one is not an isosingular point, one can apply the tests developed in

[38, Section 6] to determine that the sequence has stabilized with the point having a positive

isosingular local dimension. Remove all such points from V and partition the remaining

points based on their deflation sequences and common regularizing polynomial systems, say

V1, . . . , Vk .

2. Certify each Vi . Associated with each Vi is a polynomial system f(i ) having rational coefficients

that must be either well-constrained or overdetermined. If it is well-constrained, simply

apply standard α-theoretic techniques for certification. If overdetermined, use the approach

presented in Chapter 2 for certification.

Successfully completing the certification proves that the points under consideration are indeed

isosingular points of f, i.e., the isosingular local dimension is zero. However, as currently formulated,

this does not yield any information about the embedded dimension of the points in the original

system, e.g., deciding if the point is isolated or not. Furthermore, even if one knows that a given

point is isolated, this approach currently does not yield information about its multiplicity. The latter

problem was addressed in [35].

3.3 Examples

We illustrate our approach described in Chapter 2 and Chapter 3 on several examples. Maple code

used for these examples can be obtained from www.math.ncsu.edu/~aszanto/code.html.

3.3.1 An illustrative example

To demonstrate the approach, consider the polynomial system

g(x1, x2, x3) =







x 2
1 + x 2

2 −1

8x1−16x 2
2 +17

x1− x 2
2 − x3−1






.
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It is easy to verify that g has two roots of multiplicity 2. Thus, after appending det J g, we are interested

in the overdetermined polynomial system

f(x1, x2, x3) =

�

g(x1, x2, x3)

64x1 x2+16x2

�

which has two regular roots.

The rest of the example is the same as Example 2.3.

3.3.2 Caprasse System

A common benchmark system is the Caprasse system which is a well-constrained system with regular

and multiple roots. The system, presented below, has 24 regular roots and 8 roots of multiplicity

four [66].

g=











x 3
1 x3−4x 2

1 x2 x4−4x1 x 2
2 x3−2x 3

2 x4−4x 2
1 −4x1 x3+10x 2

2 +10x2 x4−2

x1 x 3
3 −4x1 x3 x 2

4 −4x2 x 2
3 x4−2x2 x 3

4 −4x1 x3+10x2 x4−4x 2
3 +10x 2

4 −2

2x1 x2 x4+ x 2
2 x3−2x1− x3

x1 x 2
4 +2x2 x3 x4− x1−2x3











.

Since the system is well-constrained, numerical approximations for the 24 regular roots can be

certified using standard α-theory. Here, we consider certifying the multiple roots. At each of these

multiple roots, Jg has rank 2 with the lower right 2×2 block having full rank. Thus, we consider the

system f constructed by appending the four 3×3 minors of Jg containing the lower right block to g.

From the numerical approximations of the 8 points zi that we computed using Bertini [6],
we see that u = x1− x2+2x3−2x4 is a primitive element. Starting the numerical approximations

correct to 10 digits, we obtain the following RUR after one Newton iteration:

q (T ) = 1/3(T 2+3)(3T 2+1)(T 2−12T +39)(T 2+12T +39)

r1(T ) = 6240+1568T 2− (6176/3)T 4+ (160/3)T 6

r2(T ) = 1560−3688T 2− (1256/3)T 4− (40/3)T 6

r3(T ) = −9984−13952T 2− (4096/3)T 4+ (128/3)T 6

r4(T ) = −1560+3688T 2+ (1256/3)T 4+ (40/3)T 6

This RUR shows that the 8 roots arise from 4 rational components, each of degree 2, with splitting

fieldQ[
p

3].

We also experimented with starting the computation using approximate roots that are less
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accurate. Our experiment indicated that we needed to start with points that were accurate to at least

6 digits to find the exact RUR in one iteration. Using the same u , if we started with approximate

roots that had 4, 3, or 2 correct digits, then we needed 2, 2, and 3 Newton iterations, respectively.

We note that as long as we are guaranteed that our initial numerical approximations are in the

basins of quadratic convergence, regardless of the number of correct digits in the initial data, we

will eventually reach an exact RUR. The initial accuracy only influences the number of additional

Newton iterations that is needed to reach the required accuracy that provides an exact RUR.

We also compared the sizes of a PUR and the above RUR for this example. With the same setup,

obtain the following exact PUR:

q (T ) = 1/3(T 2+3)(3T 2+1)(T 2−12T +39)(T 2+12T +39)

v1(T ) = −(1709/4874688)T 7+ (44779/2089152)T 5− (295969/696384)T 3− (3483881/1624896)T

v2(T ) = −(1529/4874688)T 7+ (42151/2089152)T 5− (299149/696384)T 3− (1861229/1624896)T

v3(T ) = (1619/4874688)T 7− (43465/2089152)T 5+ (297559/696384)T 3+ (3485003/1624896)T

v4(T ) = (1529/4874688)T 7− (42151/2089152)T 5+ (299149/696384)T 3+ (1861229/1624896)T .

Clearly, the modular division by q ′ significantly increases the size of the coefficients in the PUR,

compared to the RUR above.

3.3.3 Two cyclic systems

A common family of benchmark examples are the cyclic-n systems [11]. For n ≥ 2, the cyclic-n

system is

fn =

�
∑n

j=1

∏D
k=1 x j+k for D = 1, . . . , n −1

∏n
k=1 xk −1

�

where xn+` = x` for all `= 1, . . . , n .

Below, we demonstrate our approach on the instances n = 4 and n = 9.

For n = 4, the solutions of f4 = 0 lie on two irreducible curves, with 8 embedded points which are

isosingular points. We deflate these points simultaneously by appending the four 3×3 minors of Jf4

containing the first and last rows, and second and third columns. By using numerical approximations

computed byBertini, we see that we can use the primitive element u = x1+2x2− x3+3x4. Starting

the numerical approximations correct to 5 digits, this yields the following certified exact RUR after
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one Newton iteration:

q (T ) = (T −1)(T +1)(T −3)(T +3)(T 2+1)(T 2+9)

r1(T ) = 16(7T 4−27)

r2(T ) = 8(−13T 4−27)

r3(T ) = 16(−7T 4+27)

r4(T ) = 8(13T 4+27)

Now, for n = 9, we consider the overdetermined system

f(x ) =







f9(x )

x1− x4

x1− x7







motivated by Example 9 of [22, Section 7]. The solutions of this system provide witness points on

some of the dimension 2 components of the cyclic-9 system f9(x ).

The degree of the ideal generated by f is 162 with Bertini computing 54 regular points and 54

double points. The following uses the primitive element u = x1+2x2− x3+2x5+ x6− x8.

For the 54 regular points, we compute

q (T ) = (T 2+T −101)(T 4−T 3+102T 2+101T +10201)

(T 2+19T +79)(T 4−19T 3+282T 2−1501T +6241)

(T 2−17T +61)(T 4+17T 3+228T 2+1037T +3721)

(T 12−2356T 9+5057697T 6−1161599884T 3+243087455521)

(T 12−304T 9+1122717T 6+313211504T 3+1061520150601)

(T 12+1802T 9+3020223T 6+409019762T 3+51520374361),

and we do not display here ri (T ) for i = 1, . . . , 9 due to space. We obtained this result using 70 digit

floating-point arithmetic to help control the round-off errors of the computation with the rational

number reconstruction succeeding when the approximate roots were accurate to 14 digits. This

RUR computation proves that the overdetermined system f, has at least 54 regular roots which

decompose into 9 rational components: three each of degree 2, 4, and 12. Hence, this prove that

there are at least 54 cyclic-9 roots with x1 = x4 = x7.

For the 54 double points, by comparing ranks of 8×8 submatrices of Jf, we are able to partition

into 3 subsets of size 18. For each of these subsets, we added one polynomial arising from the

isosingular deflation to f. The results of the RUR computation produced the following polynomials

q (T ):
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q (T ) = (T 2−11T +19)(T 4+11T 3+102T 2+209T +361)

(T 12+704T 9+488757T 6+4828736T 3+47045881)

q (T ) = (T 2+13T +31)(T 4−13T 3+138T 2−403T +961)

(T 12−988T 9+946353T 6−29433508T 3+887503681)

q (T ) = (T 2+T −11)(T 4−T 3+12T 2+11T +121)

(T 12−34T 9+2487T 6+45254T 3+1771561).

Just as above, we do not list the corresponding polynomials ri (T ) due to space and the computations

used 70 digit floating-point arithmetic with the the rational number reconstruction succeeding

when the approximate roots were accurate to 14 digits. This RUR computation proves that f has at

least 54 singular roots which are isosingular points and decompose into 9 rational components:

three each of degree 2, 4, and 12. Hence, this prove that there are at least 54 singular cyclic-9 roots

with x1 = x4 = x7.

3.3.4 A family with clustered roots

We close with a family of overdetermined polynomial systems that have a cluster of roots near

the origin. As noted above, as long as we are given a numerical approximation in each quadratic

convergence basin of each root, the algorithm is insensitive to the distance between the roots, but

sensitive to the input and output sizes.

For example, for any nonzero M , we consider the system

fM =

















M x −1

3x y 2+8x 2 y +6x z 2−3y z 2+3y 2z +4x 3+4z 3−6x y z

10x z 2−6x 2 y − x y 2+6x 2z + y z 2+3y 2z −8x 3−10z 3+3x y z

4x y 2+4x 2 y −8x z 2+18x 2z +2y z 2−8x 3+4z 3−5x y z

4x y 2−9x 2 y +4x 2z −4y z 2+10x 3−8z 3+4x y z

















.

For generic M ∈C, a randomization of fM has 14 roots, but fM has only 5 roots. The 5 roots of fM

converge to the origin as |M | →∞. Thus, for large M , the 5 roots of fM are clustered around the

origin.

We consider 3 cases of M , namely M = 10, 103, 105, for which the five roots of fM are all contained

in a ball centered at the origin of radius 3.7/M . Using the primitive element u = y , we obtain the
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following polynomials q (T ) in an exact RUR for these choices of M :

M = 10 :

q (T ) = (9900000T 5−2062500T 4+279875T 3−180025T 2+12105T −2351)/9900000

M = 103 :

q (T ) = (99000000000000000T 5−206250000000000T 4+279875000000T 3−1800250000T 2

+ 1210500T −2351)/99000000000000000

M = 105 :

q (T ) = (990000000000000000000000000T 5−20625000000000000000000T 4

+ 279875000000000000T 3−18002500000000T 2+121050000T

− 2351)/990000000000000000000000000

In our computations, we needed the roots to be approximated to at least 15, 35, and 55 digits,

respectively, in order to obtain the RUR to certify the corresponding 5 roots of fM .
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CHAPTER

4

CERTIFYING REAL SOLUTIONS OF

POLYNOMIAL SYSTEMS

4.1 Introduction

Consider polynomial system f= ( f1, . . . , fN ) ∈K[x1, . . . , xn ]. If N = n approximate roots of the system

can be certified with α-theory as explained in Section 1.2. Let K = Q, and f be overdetermined,

i.e., N > n , assuming the ideal I := 〈 f1, . . . , fN 〉 is radical and zero dimensional, the system has a

well-constrained Rational Univariate Representation (RUR). In this case, the method introduced in

Chapter 2 can be used to certify solutions of f over rationals. If the given rational polynomial system is

singular, then one can use the isosingular deflation method given in Chapter 3 to regularize isolated

singular solutions. The deflated system is most likely an overdetermined system with additional

new polynomials. Therefore the method which is detailed in Chapter 2 can certify the approximate

solutions.

Alternatively using Hermite matrices, one can certify real roots of f within a neighborhood. The goal

of this chapter is to present the details of this method, both in the univariate and multivariate cases.

The definition of the fundamental terms used here can be found in Section 1.5. We mainly follow

the notation and approach from [19], [5] and [70].
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4.2 Hermite matrices

We begin with Hermite’s bilinear map and Hermite’s quadratic form, then we point how it is related

to real root locating.

Definition 4.2.1. The Hermite’s bilinear map :

Hg (I ): R[x1, . . . , xn ]/I →R

(p , q ) 7→ T r (Mp g q )

where I =< f1, . . . , fN > is a zero dimensional ideal with f = ( f1, . . . , fN ) and g are in R[x1, . . . , xn ].

Mp g q defines the multiplication map by p g q as in Definition 1.5.11.

If we fix a basis for the finite dimensional vector spaceR[x1, . . . , xn ]/I , the Hermite matrix is the

symmetric matrix corresponding to Hermite’s bilinear form with respect to this basis. Thus, We can

define a Hermite matrix as the following way. Note that by abuse of notation both the bilinear map

and its matrix denoted by Hg (I ).

Definition 4.2.2. Let f= ( f1, . . . , fN ), fi and g ∈R[x1, . . . , xn ] for all i = 1, . . . N , and I =< f1, . . . , fN >

be a zero dimensional ideal, andB = {xα1 , . . . , xαD }be a monomial basis (normal set) of R[x1, . . . , xn/I
then

[Hg (I )]i , j := T r (Mxαi g xα j )

where Mp is the multiplication matrix of p with respect to the basisB .

Observation 4.2.3. Let f = ( f1, . . . , fN ) and g be in R[x1, . . . , xn ] and I =< f1, . . . , fN > be a zero

dimensional ideal, then the Hermite matrix Hg (I ) is a real and symmetric matrix. Moreover, if f and

g are inQ[x1, . . . , xn ], then the Hermite matrix Hg (I ) is a symmetric matrix with rational entries. In

these cases, the eigenvalues of the Hermite matrix Hg (I ) are real by Theorem 1.5.3.

Let f= ( f1, . . . , fN ) ∈R[x1, . . . , xn ] andB = {xα1 , . . . , xαD } be a monomial basis forR[x1, . . . , xn ]/I
where I =< f1, . . . , fN >. Then Hermite Matrices can be expressed in terms of the Vandermonde

matrix with respect to basisB as follows:

Theorem 4.2.4. Let f = ( f1, . . . , fN ), g ∈ R[x1, . . . , xn ] and I =< f1, . . . , fN > be a zero dimensional

ideal. Let ξ1,ξ2, . . . ,ξm be the common roots of f such that ξi ∈ Cn , for i = 1. . . m (here each root

listed as many times as their multiplicity). Then the Hermite matrix of I with respect to g is

Hg (I ) :=V T G V (4.1)
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where V = VB (ξ1,ξ2, . . . ,ξm ) is the Vandermonde matrix of ξ1,ξ2, . . . ,ξm ∈ Cn with respect to a

monomial basisB and G is an m ×m diagonal matrix with [G ]i i = g (ξi ) for i = 1, . . . , m.

Proof. Let f= ( f1, . . . , fN ), g ∈R[x1, . . . , xn ] and I =< f1, . . . , fN > be a zero dimensional ideal. 4.2.2

defines the entries of the Hermite matrix Hg (I ) by

[Hg (I )]i , j = T r (Mxαi g xα j ), (4.2)

where Mp is the multiplication matrix of p with respect to the monomial basisB = {xα1 , . . . , xαD }.
Then we yield the following by Theorem 1.5.15,

[Hg (I )]i , j =
∑

ξ∈VC(I )
µ(ξ)ξαi g (ξ)ξα j , (4.3)

where µ(ξ) is the multiplicity of ξ. Now we can write the left hand side in a matrix form with the

Vandermonde matrix V =VB (ξ1,ξ2, . . . ,ξm ) of ξ1,ξ2, . . . ,ξm ∈VC(I )with respect to the monomial

basisB by

Hg (I ) :=V T G V ,

where G is an m ×m diagonal matrix with [G ]i i = g (ξi ) for i = 1, . . . , m .

Definition 4.2.5. Let A be a real and symmetric matrix, then the signature of A is

σ(A) := (#of positive eigenvalues)− (#of negative eigenvalues)

In 1856, Hermite [41] stated the following theorem in univariate case.

Theorem 4.2.6 (Hermite Theorem). Let f , g ∈R[x ],

σ(Hg ( f )) =N+−N−.

where N+ := #{ f ∈R | f (x ) = 0 and g (x )> 0} and N− := #{ f ∈R | f (x ) = 0 and g (x )< 0}

Proof. Define a quadratic form(see Definition1.5.18) associated to the symmetric matrix Hg ( f ),

a T Hg ( f )a :=
∑

ξ∈V ( f )

µ(ξ)g (ξ)(ak−1ξ
k−1+ . . .+a1ξ+a0)

2

where a (ξ) := (ak−1ξ
k−1+ . . .+a1ξ+a0) is a linear form, for all ξ ∈V ( f ). We can separate the sum of
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real and non-real roots of f as

a T Hg ( f )a =
∑

ξ∈R
µ(ξ)g (ξ)a (ξ)2+

∑

ξ,ξ∗∈C−R
µ(ξ)(g (ξ)a (ξ)2+ g (ξ)a (ξ∗)2). (4.4)

We can write µ(ξ)g (ξ) = (α(ξ) + i β (ξ))2 where α(ξ),β (ξ) ∈R. Then we have

a ′(ξ) =
k
∑

i=1

(α(ξ)R e (ξi )−β (ξ)I m (ξi ))ai , (4.5)

a ′′(ξ) =
k
∑

i=1

(α(ξ)I m (ξi ) +β (ξ)R e (ξi ))ai , (4.6)

such that

µ(ξ)(g (ξ)a (ξ)2+ g (ξ∗)a (ξ∗)2) = 2a ′(ξ)2−2a ′′(ξ)2.

Since linear forms in 4.4 associated to the real roots, a ′ and a ′′ are linearly independent, thus by

Sylvester’s law of inertia (Theorem 1.5.19),

σ(Hg ( f )) =σ

 

∑

ξ∈R
µ(ξ)g (ξ)a (ξ)2

!

with linearly independent linear forms a (ξ). We have

σ(Hg ( f )) =
∑

ξ∈R, f (ξ)=0

sign(g (ξ)).

More detailed proof and further readings can be found on [5].

The classical univariate Hermite theorem is generalized to the multivariate case by Pedersen,

Roy and Szpirglas [70], this theorem also proved in [5], [19]:

Theorem 4.2.7 (Multivariate Hermite Theorem). Let f = ( f1, . . . , fN ), fi ∈ R[x1, . . . , xn ] for all i =

1, . . . , N and g ∈ R[x1, . . . , xn ], with I =< f1, . . . , fN > is a zero dimensional ideal. Let Hg (I ) be the

Hermite matrix of I with respect to g , then

σ(Hg (I )) =N+−N−

where N+ := #{x ∈Rn | f(x ) = 0 and g (x )> 0} and N− := #{x ∈Rn | f(x ) = 0 and g (x )< 0}.

62



4.3. ROOT CERTIFICATION CHAPTER 4. HERMITE CERTIFICATION

Proof. Let u be a primitive element as Definition 1.1.15. The elements 1, u , . . . , u k−1 are linearly inde-

pendent in R[x1, . . . , xn ]/I . {1, u , . . . , u k } can be completed to a basis B = {ω1 = 1,ω2 = u , . . . ,ωk =

u k−1,ωk , . . . ,ωD } ofR[x1, . . . , xn ]/I . For any p ∈R[x1, . . . , xn ]/I , p = p1+p2ω2+ · · ·+pDωD . By the

definition of the Hermite bilinear map and the Stickelberger’s theorem (see Theorem 1.5.15 ),

[Hg (I )]i , j = T r (Mωi gω j
) =

∑

ξ∈VC(I )
µ(ξ)ωi (ξ)g (ξ)ω j (ξ) (4.7)

whereµ(ξ) be the multiplicity of ξ as a root of f. Then the same argument used in univariate Hermite

theorem (Theorem 4.2.6) applies. Since complex roots appear as conjugates, the trace is a real

number. The signature of Hermite matrix only require the summation of signs related to the real

roots.

Remark 4.2.8. Let f= ( f1, . . . , fN ), fi , g ∈R[x ] for all i = 1, . . . , N with a zero dimensional ideal I =<
f1, . . . , fN >. Consider a Hermite matrix Hg (I ) ( as in 4.2) where defined by univariate polynomials

f, g with all distinct roots ξ1, . . . ,ξk ∈C (i.e., we basically omit the multiplicities) of f.

• Let g (x ) = 1, then the entries of the Hermite matrix are

[H1(I )]i , j =
k
∑

l=1

ξ
i+ j−2
l , (4.8)

which is equal to the (i + j −2)-th Newton power sum (see 1.5.17).

• The Hermite matrix Hg (I ) is a real Hankel matrix.

Hg (I ) is a Hankel matrix since [Hg (I )]i , j = [Hg (I )]i+1, j−1. Hg (I ) is also a real matrix. First,

notice that g (ξ) = g (ξ) since (ξ)n = ξn and g (x ) ∈ R[x ]. For any real solution ξp , g (ξp ) will

remain real. For a complex solution ξp , its conjugate ξp will also be a solution. Since each entry

of the Hermite matrix requires addition of all roots, the sum of a conjugate pair

ξi+ j−2
p g (ξp ) + (ξp )

i+ j−2g (ξp ) = ξ
i+ j−2
p g (ξp ) + (ξ

i+ j−2
p )g (ξp )

is also real.

4.3 Root Certification

Let f = ( f1, . . . , fN ) ∈ R[x1, . . . , xn ] and I =< f1, . . . , fN > is a zero dimensional ideal. We are given

z ∗ ∈Rn , we would like to know if there is any exact root of f within the ε neighborhood of z ∗ ∈Rn . In
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order to answer this question we will use two auxiliary functions, those will allow us to use Hermite

matrices for certification of the given approximate solution. First auxiliary function we will use is

g (x ) = 1 for all x ∈R.

Proposition 4.3.1. Let f= ( f1, . . . , fN ) ∈R[x1, . . . , xn ], I =< f1, . . . , fN > and g (x ) = 1, then

σ(H1(I )) = #{z ∈R | f(z ) = 0}

whereσ(.) is the signature as defined in Definition 4.2.5.

Proof. By the Hermite theorem,σ(H1(I )) =N+−N−. N− = 0 since there is no z ∈R such that g (z )< 0.

We haveσ(H1(z1, . . . , zk )) = #{z ∈Rn | f(z ) = 0 and g (z )> 0}, since g (z ) is always positive for all z ∈R,

we can concludeσ(H1(I ) = #{z ∈Rn | f(z ) = 0}.

The second auxiliary function we will use is g (x ) = ||x − z ∗||22−ε
2, where z ∗ and ε are rational.

Notice that, if g (x ) ≥ 0 for any x ∈ VR(f), then ||x − z ∗||2 ≥ ε, which implies that there is no

x ∈ VR(f) withinBε(z ∗). Similarly, if g (x ) < 0 then there is at least one x ∈ VR(f) within the given

neighborhoodBε(z ∗).

Now we can introduce the certification theorem,

Theorem 4.3.2. Let f= ( f1, . . . , fN ), fi ∈R[x1, . . . , xn ] for all i = 1, . . . N , and I =< f1, . . . , fN > is a zero

dimensional ideal. Given an approximate root z ∗, distance ε ∈R.

Define g (x ) := ‖x − z ∗‖2
2−ε

2 then

σ(H1(I )) =σ(Hg (I ))

if and only if there is no real root withinBε(z ∗).

Proof. Let N := #{x ∈ R|f(x) = 0}. By the definitions, N ≥ N+ and N ≥ N−. By Proposition 4.3.1,

N =σ(H1(I )). Defining N0 := #{x ∈R|f(x) = 0 and g (x) = 0}, it can be seen that N =N−+N0+N+.

Now assume thatσ(H1(I )) =σ(Hg (I )), then by Hermite theorem we have

N =N+−N−.

Since N =N−+N0+N+ then, N−+N0+N+ =N+−N−. We obtain

2N−+N0 = 0.
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N− and N0 are both non-negative integer numbers. Sum of two non-negative integers is zero only

if they both equal zero. Therefore N− =N0 = 0, then we have {x ∈Rn | f(x) = 0 and g (x) ≤ 0} is an

empty set. This indicates for all x ∈ VR(f), g (x) > 0. The way we defined g (x) tells us, ‖x −ξ‖2 > ε

for all real common roots of f. Now one can conclude that there is no real common root of f within

Bε(ξ).

Or equivalently,

Ifσ(H1(I )) 6=σ(Hg (I )) then there is at least one real root within ε neighborhood of z ∗.

Thus, if we can compute the signatures of Hg (I ) and H1(I ), we can decide if there is an exact

root within a certain neighborhood of a given point. Now the question is, how we can use Hermite

matrices for certification purposes if we do not know the exact roots, only approximates.

4.4 Symbolic-Numeric computation of Hermite matrices

Now we introduce a method using Hermite matrices to certify approximate real solutions of polyno-

mial systems overQ. Both univariate and multivariate cases are covered in the following description

of our method.

Let f= ( f1, . . . , fN ) ∈Q[x1, . . . , xn ] be a system of polynomials and assume I =< f1, . . . , fN > is a

zero dimensional ideal. Let ξ1, . . . ,ξk ∈Cn be common distinct roots of f and let z1, . . . , zk ∈Cn be

approximations to ξ1, . . . ,ξk .

Now we define Hermite matrices with respect to a list of distinct points z1, z2, . . . , zk :

Definition 4.4.1. Let g ∈R[x1, . . . , xn ], then the Hermite matrix of g associated to the distinct points

z1, . . . , zk ∈Cn is

Hg (z1, . . . , zk ) :=V T G V (4.9)

where V = VB (z1, z2, . . . , zk ) is the k × k Vandermonde matrix of z1, z2, . . . , zk with respect to some

monomial basis (normal set)B for R[x1, . . . , xn ]/I (z1, . . . , zk ) and G is a k ×k diagonal matrix with

[G ] j j = g (z j ) for j = 1 . . . k . Next, we define

B+ =B +
⋃

i

xiB = {b , x1b , . . . , xn b | b ∈B} for i = 1, . . . , n . (4.10)
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Then the extended Hermite matrix associated to distinct points z1, . . . , zk ∈Cn is

H +
g (z1, . . . , zk ) :=V T G V (4.11)

where V =VB+ (z1, z2, . . . , zk ) and G is a k ×k diagonal matrix with [G ] j j = g (z j ) for j = 1 . . . k .

Note that, in univariate case we will use the following basis extension, let z1, . . . , zk be given

distinct points and consider standard monomial basisB = {1, x , . . . , x k−1}. Then one can construct

an extended Hermite matrix H +
g using the k ×k Vandermonde matrix of z1, . . . , zk with respect to

the basis extension

B+ = {1, x , . . . , x k }. (4.12)

We propose the following method to certify that the point z ∗ ∈Rn is an approximate root of f

within a distance ε :

Algorithm 1: Real Root Certification

Input f= ( f1, . . . , fN ) ∈Q[x1, . . . , xn ],

{z1, . . . , zk } a set of all approximate roots of f where zi ∈Cn for i = 1, . . . , k ,

z ∗ ∈Rn is the approximate solution we want to certify,

E an error bound on ‖zi −ξi ‖2,

ε is a distance.

Output True: means z ∗ ∈Rn is within ε distance from some exact root of f.

False: The certification failed.

1: Define the auxiliary function g (x ) := ‖x − z ∗‖2
2−ε

2.

2: Compute an extended Hermite matrix with respect to g (x ) = 1,

H +
1 ←H +

1 (z1, . . . , zk ).

3: Set Rationalize the entries of H +
1 using continued fractions and error bounds for the moments,

explained below.

4: Call Algorithm 3 with input f, g (x ), H +
1 (in the univariate case call Algorithm 2). If it returns H1

and Hg then it is certified that H1 =H1(ξ1, . . . ,ξk ) and Hg =Hg (ξ1, . . . ,ξk )where ξ1, . . . ,ξk are

the exact roots of f. if it returns Fail then return False.

5: Compute the signatures using Definition 4.2.5,

σ1←σ(H1),

σg ←σ(Hg ).
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6: By Theorem 4.3.2,

ifσ1 6=σg then return True,

else return False.

4.4.1 Explanation of the Algorithm

Step 1 First define the auxiliary function g (x ) := ‖x − z ∗‖2
2−ε

2. The sign of g provides some infor-

mation on the ε neighborhood of z ∗. Notice that if g (x )> 0, then ‖x − z ∗‖2 > εmeans there is

no x within the ε neighborhood of z ∗. Similarly if g (x )≤ 0, there is at least one x within the ε

neighborhood of z ∗. Note we can assume that the coordinates of z ∗ are given as floating point

numbers, so z ∗ ∈Qn , thus g is a rational polynomial.

Step 2 Compute the approximate extended Hermite matrix H +
1 (z1, . . . , zk ) (as in Definition 4.4.1)

using either univariate (see Subsection 4.5.1) or multivariate (see Subsection 4.5.2) basis

extensionB+ depending on the given system.

Step 3 Next, we rationalize each entry of the approximate Hermite matrix H +
1 using rational number

reconstruction (see Section 1.4).

The error bound we use is computed as follows. Assume that we want to reconstruct the

moment corresponding to xα for some monomial of degree |α|= d . Let E be an upper bound

for ‖zi −ξi ‖, given as part of the input, and let C be an upper bound for the coordinates of zi

for all i = 1, . . . , k . Then the error in the moment is bounded by

�

�

�

�

�

∑

i

(zαi −ξ
α
i )

�

�

�

�

�

≤ k E d C d−1,

using the same proof as in Proposition 2.2.1 Using this bound, we set

B :=
�

(2E d C d−1)−1/2
�

(4.13)

as the bound for the denominators in the rational number reconstruction algorithm.

Step 4 Since we use approximate roots, it is not always true that the rationalized Hermite matrix

actually correspond to the exact roots. Rational number reconstruction of entires may not

converge to the exact ones with the computed bounds. One can use the method described

in Section 4.5 and certify H1(ξ1,ξ2, . . . ,ξk ) and Hg (ξ1,ξ2, . . . ,ξk ) without any knowledge of

the exact roots. If the input system f is univariate use Algorithm 2, if it is multivariate use
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equivalent Algorithm 3. In case Algorithm 2 (or Algorithm 3) fails, then Algorithm 1 returns

false.

Step 5 Once the rational Hermite matrices are certified, Algorithm 2 or Algorithm 3 will return

H1(ξ1, . . . ,ξk ) and Hg (x i1, . . . ,ξk ). Then we can use Definition 4.2.5 to obtain the signatures.

One can investigate the number of sign changes in the characteristic polynomials of H1(ξ1, . . . ,ξk )

and Hg (ξ1, . . . ,ξk ) and yield the signatures using various root counting methods, see Section

1.6.

Step 6 Then one can simply use Theorem 4.3.2 and compare the signaturesσ(H1(ξ1, . . . ,ξk )) and

σ(Hg (ξ1, . . . ,ξk )). If the signatures are not equal then we conclude that there exists at least

one root within the ε neighborhood of z ∗. If not we conclude that our method failed to certify

the given approximate solution z ∗.

Remark 4.4.2. At the initialization of our algorithm we assume that we have approximation for

all the roots of f. Certifying that we have all distinct roots of I =< f > is a separate question that

we do not address in this thesis. One can use homotopy method to get all approximate solutions, as

explained in Subsection 2.2.1.

Also, note that Algorithm 1 can be used as long as the rootsξ1, ..,ξk ∈Cn form a rational component

of V (I ).

As stated at Step 3, the Hermite matrices are constructed using approximate roots and then

rational number reconstruction of each approximate entry. As it is stated in Section 1.4, rational

reconstruction may not exist, or depending on the denominator bound, it may not converge to the

right value. Therefore it is not always true that the rationalized Hermite matrix actually correspond

to the exact roots (see Section 1.4). In case we obtain a rational Hermite matrix, it is still needed to

be certified that it is actually corresponding to the exact roots.

4.5 Certification of Hermite matrices

In this section, we describe a method to certify a given Hermite matrix over rationals.

4.5.1 Univariate Case

Let f= ( f1, . . . , fN ) ∈Q[x ] be a system of univariate polynomials with distinct approximate solutions

z1, . . . , zk ∈C. Fix a basisB = {1, x , . . . , x k−1} and assume that the Vandermonde matrix of z1, . . . , zk
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with respect toB is nonsingular, which is guaranteed in the univariate case if zi 6= z j for all i , j =

1, . . . , k .

Let V be the Vandermonde matrix of z1, . . . , zk ∈ C with respect toB+ := {1, x , . . . , x k }. Then

the (k +1)× (k +1) extended Hermite matrix is H +
1 (z1, . . . , zk ) =V T G V , where G is a k ×k diagonal

matrix with [G ]i i = g (zi ) for i = 1 . . . k .

Algorithm 2: Univariate Hermite Matrix Certification

Input: f= ( f1, . . . , fN ) ∈Q[x ],
g (x ) = ‖x − z ∗‖2

2−ε
2 ∈Q[x ] ,

H +
1 ∈Q(k+1)×(k+1) extended Hermite matrix with respect toB+.

Output Return H1 and Hg , or Fail.

1: H1← k ×k submatrix of H +
1 , consisting the first k rows and the first k columns.

H k
1 ← k ×k submatrix of H +

1 , consists of the first k rows and the last k columns.

2: Check if H +
1 has Hankel structure and rank H1 = rank H+1 = k,

then M ←H −1
1 ·H k

1 .

3: Check if M has a companion shape and f (M ) = 0,

then p (x )← characteristic polynomial to the companion matrix M ,

check if it is square free, which certifies that M as the multiplication matrix of x ,

Mx ←M .

4: Using coefficients of p , yield Newton sums (see Remark 4.2.8) and check if each one matches

to the corresponding entry of H1, which certifies H1.

5: Once H1 and Mx are certified,

Hg ←H1 · g (Mx ).

6: Return H1 and Hg .

4.5.1.1 Explanation of Algorithm 2

At Step 2, ranks of H1 and H +
1 can be checked using exact arithmetic since they are rational matrices.

Then, by the construction of M, it has a companion matrix structure as defined in 1.5.10. If M has a

companion shape, next we check if its characteristic polynomial p is square free (i.e. gcd(p , p ′) = 1)
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and f (M ) = 0. If that is the case, M is similar to a diagonal matrix D with diagonal entries ξ1, . . . ,ξk ∈
Cwhich are the roots of f, more specifically

M =V −1DV

where V is the Vandermonde of ξ1, . . .ξk with respect to the basisB = {1, x , . . . , x k−1}. Since Mx

has companion matrix shape, the last column contains coefficients of its characteristic polynomial.

These coefficients are the elementary symmetric polynomials of the k common roots, those coeffi-

cients can be used to find power sums (i.e., Newton identities) as described in Definition 1.5.17.

Once we certify H1 and Mx , we can compute Hg by taking

Hg :=H1 · g (Mx )

which is H1 ·Mg = (V T V ) · (V −1G V ) =V T G V =Hg .

4.5.2 Multivariate Case

Now we show how to certify a Hermite matrix defined by multivariate polynomials.

Let z1, . . . , zk ∈Cn with zi = (zi ,1, . . . , zi ,n ) for i = 1, . . . , k be the distinct approximate solutions

of f = ( f1, . . . , fN ) ∈ Q[x1, . . . , xn ]. If zi ,1 6= z j ,1 for i 6= j , then B = {1, x1, . . . , x k−1
1 } is a basis for

R[x1, . . . , xn ]/I (z1, . . . , zk ). And we useB+ as described in (4.10). Then the corresponding Hermite

matrix can be written in the moment matrix form (e.g., see [54]) as

H +
1 = [yb ·b ′ ]b ,b ′∈B+ .

Algorithm 3: Multivariate Hermite Matrix Certification

Input: f= ( f1, . . . , fN ) ∈Q[x1, . . . , xn ],

g (x ) = ‖x − z ∗‖2
2−ε

2 ∈Q[x1, . . . , xn ],

H +
1 ∈Ql×l extended Hermite matrix with respect toB+, with some l .

Output: Return H1 and Hg , or Fail.

1: H1← [yb ·b ′ ]b ,b ′∈B which is the k ×k submatrix of H +
1 consisting the first k rows and columns.

H xs
1 ← k ×k submatrix of H +

1 with rows corresponding toB and columns corresponding to

xsB for s = 1, . . . , n .

2: Check if H +
1 has Hankel (or moment matrix) structure and rank H1 = rank H+1 = k,

then Ms ←H −1
1 ·H xs

1 for s = 1, . . . , n .
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3: Check M1 has a companion matrix structure,

then p ← characteristic polynomial polynomial to M1.

Check if gcd(p , p ′) = 1.

4: Check if {Mi , i = 1, . . . , n} commute pairwise and

fi (M1, M2, . . . , Mn ) = 0 for i = 1, . . . , N ,

then Mxi
←Mi for all i = 1, . . . , n .

5: Compute coefficients of p (x1), yield Newton sums (see Remark 4.2.8) and check that what we

get is equal to the corresponding entry of H1, which certifies H1.

6: Once H1 and Mi for all i = 1, . . . , n are certified,

Hg ←H1 · g (M1, . . . , Mn ).

7: Return H1 and Hg .

4.5.2.1 Explanation of Algorithm 3

At step 2, rank H1 = rank H +
1 = k can be checked by exact arithmetics. Then we verify that H1 and

H +
1 has the correct Hankel or moment matrix structure. Because of the Hankel structure of H x1

1 ,

M1 has a companion matrix structure, we the characteristic polynomial p (x ) ∈Q[x ]. We check p

is square free, i.e. gcd(p , p ′) = 1. Then if {Mi : i = 1, . . . n} are pairwise commuting, then they are

simultaneously diagonalizable. Then, {Mi : i = 1, . . . n} are certified if they vanish on the given

system, i.e., fi (M1, . . . , Mn ) = 0 for all i = 1, . . . , N .

The coefficients of p (x ) are the elementary symmetric polynomials of the k common roots

ξ1, . . . ,ξk ∈C, those coefficients can be used to find power sums of roots using Newton identities, as

described in Definition 1.5.17. H1 is certified if the power sums are equal to the corresponding entry

of H1.

Once we certify H1 and M1, we can compute Hg by taking

Hg :=H1 · g (M1, . . . , Mn )

which is H1 ·Mg = (V T V ) · (V −1G V ) =V T G V =Hg .
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4.6 Examples

4.6.1 A toy example

We start with an obvious example to illustrate the steps of our algorithms:

Consider f (x ) = 16x 4−10x 2+1, the exact roots of f are 1/
p

2,−1/
p

2,1/2
p

2,−1/2
p

2. Let say

we want to show that there is no root of f near zero. We set the distance ε= 1/10.

We can get the following approximate solutions using homotopy method on Maple:

z1 = 0.7071067810, z2 =−0.7071067810, z3 = 0.3535533905, z4 =−0.3535533905.

This solution has error bound E := 10−8.

Algorithm 1: Real Root Certification

Input: f (x ) = 16x 4−10x 2+1,

z1 = 0.7071067810, z2 =−0.7071067810, z3 = 0.3535533905, z4 =−0.3535533905,

z ∗ = 0

ε= 1/10.

Step 1: g (x ) := x 2− ( 1
10 )

2.

Step 2: First we need the Vandermonde matrix with respect to the following extension of the standard

monomial basisB+ := {1, x , x 2, x 3, x 4},

V :=VB+ (z1, z2, z3, z4) =

















1.0 0.7071067832 0.5000000028 0.3535533936 0.2500000028

1.0 −0.7071067832 0.5000000028 −0.3535533936 0.2500000028

1.0 0.353553390 0.1249999996 0.04419417360 0.01562499990

1.0 −0.3535533907 0.1250000001 −0.04419417386 0.01562500002

















Then by Definition 4.4.1, H +
1 (z1, z2, z3, z4) =V T V for g (x ) = 1

H +1 =



























4.0 −0.000000000700000002407108468 1.25000000529999999 −0.000000000260000000695814748 0.531250005520000013

−0.000000000700000002407108468 1.25000000535086242 −0.000000000264276704686761121 0.531250005587795671 −5.33639070432467832×10−11

1.25000000529999999 −0.000000000264276704686761121 0.531250005525000013 −5.45970881352109139×10−11 0.253906254185312541

−0.000000000260000000695814748 0.531250005587795671 −5.45970881352109139×10−11 0.253906254235507889 −9.36580088657656962×10−12

0.531250005520000013 −5.33639070432467832×10−11 0.253906254185312541 −9.36580088657656962×10−12 0.125488284047500037



























.

Step 3: Rationalize H +
1 using an upper bound B = 4083 on denominators as defined in 4.13 with

72



4.6. EXAMPLES CHAPTER 4. HERMITE CERTIFICATION

E = 10−8, C = and d = 4.

H +
1 =























4 0 5
4 0 17

32

0 5
4 0 17

32 0

5
4 0 17

32 0 65
256

0 17
32 0 65

256 0

17
32 0 65

256 0 257
2048























Step 4: Use Algorithm 2 to obtain H1, Hg (see below for details).

Step 5: Then we find characteristic polynomial of H1,

c1(λ) =λ
4−

1545λ3

256
+

60721λ2

8192
−

8235λ

8192
+

81

4096
,

c1(−λ) =λ4+
1545λ3

256
+

60721λ2

8192
+

8235λ

8192
+

81

4096
.

Then N+ = # sign change in c1(λ) is 4 and N− = # sign change in p (−λ) is 0, thus

σ1 :=σ(H1) = 4.

Characteristic polynomial of Hg

cg (λ) =λ
4−

21507λ3

10240
+

317737009λ2

327680000
−

152236287λ

6553600000
+

102880449

1638400000000

cg (−λ) =λ4+
21507λ3

10240
+

317737009λ2

327680000
+

152236287λ

6553600000
+

102880449

1638400000000
.

And N+ = # sign change in p (λ) is 4 and N− = # sign change in p (−λ) is 0, we obtain

σg :=σ(Hg ) = 4.

Step 6: Finally, by Theorem 4.3.2, there is no exact root near (within the distance 1/10) zero since

σ1 =σg .

Now we show how Algorithm 2 is used at Step 4.

Algorithm 2: Univariate Hermite Matrix Certification

Input: f (x ) = 16x 4−10x 2+1,
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g (x ) = x 2− ( 1
10 )

2,

H +
1 ∈Q5×5.

Step 1: We get the submatrices:

H1 =

















4 0 5
4 0

0 5
4 0 17

32

5
4 0 17

32 0

0 17
32 0 65

256

















, H x
1 =

















0 5
4 0 17

32

5
4 0 17

32 0

0 17
32 0 65

256

17
32 0 65

256 0

















Step 2: H +
1 has Hankel structure and rank H+1 = rank H1 = 4. Then

M =H −1
1 ·H x

1 =

















0 0 0 − 1
16

1 0 0 0

0 1 0 5
8

0 0 1 0

















.

Step 3: M has companion matrix structure and f (M ) = 0 then p (x ) := 5
8 x 2− 1

16 with gcd(p , p ′) = 1.

Therefore M is the multiplication matrix Mx .

Step 4: As defined in 1.5.17, and described in Remark 4.2.8, elementary symmetric functions: e0 =
5
8 , e1 = 0, e2 =− 1

16 , which yields

4
∑

i=1

ξ0
i = 4,

4
∑

i=1

ξi = 0,
4
∑

i=1

ξ2
i = 5/4,

4
∑

i=1

ξ3
i = 0,

4
∑

i=1

ξ4
i = 17/32,

4
∑

i=1

ξ5
i = 0,

4
∑

i=1

ξ6
i = 65/256.

Each entry matches the Newton sums, thus H1 is indeed the exact Hermite Matrix.

Step 5: H1 and Mx are certified, then

Hg =H1 · g (Mx ) =

















121
100 0 83

160 0

0 83
160 0 1591

6400

83
160 0 1591

6400 0

0 1591
6400 0 1259

10240

















.
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Step 5: Return H1 and Hg .

4.6.2 An illustrative example

A classical example f1 = f0(x1), f2 = x2 − x 2
1 , f3 = x3 − x 2

2 , . . . , fn = xn − x 2
n−1 can be used to show

usefulness of our method when f0(x1) has roots less than 1. In that case, the last coordinate of the

solutions will get exponentially small. If we set g = xn in our algorithm, then we can demonstrate

that there are no roots close to zero with last coordinate.

Let n = 4 and f0(x1) = 10x1
3−1, then consider the polynomial system f= ( f1, f2, f3, f4)with

f1 = 10x1
3−1,

f2 = x2− x 2
1 ,

f3 = x3− x 2
2 ,

f4 = x4− x 2
3 .

f1(x1) has 3 exact roots

ξ11 =
1

10
10(2/3),

ξ21 = −
1

20
10(2/3)+

i
p

3

20
10(2/3),

ξ31 = −
1

20
10(2/3)−

i
p

3

20
10(2/3).

The system f has the following 3 exact roots

ξ1 = (ξ11,ξ2
11,

1

10
ξ11,

1

100
ξ2

11),

ξ2 = (ξ21,ξ2
21,

1

10
ξ21,

1

100
ξ2

21),

ξ3 = (ξ31,ξ2
31,

1

10
ξ31,

1

100
ξ2

31).

Maple is used to obtain all the following computation:

Using homotopy method we obtain the approximate solutions z1, z2, z3 which are the approximate
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solutions associated to the exact solutions ξ1,ξ2,ξ3 of f with the error bound E = 10−10.

z1 = [0.4641588834, 0.2154434690, 0.4641588834e −1, 0.2154434691e −2],

z2 = [−0.2320794417+ i 0.4019733844,−0.01077217345− i 0.1865795172,

−0.2320794417e −1+ i 0.4019733844e −1,−0.1077217345e −2− i 0.1865795172e −2],

z3 = [−0.2320794414− i 0.4019733843,−0.1077217345+ i 0.1865795171,

−0.2320794414e −1− i 0.4019733843e −1,−0.1077217354e −2+ i 0.1865795169e −2].

We set g := x4 and use Algorithm 1:

Since the first coordinates of the solutions are distinct, we can set the monomial basisB := {1, x1, x 2
1 },

and construct the following extension ofB

B+ := {1, x1, x 2
1 , x 3

1 , x2, x2 x1, x2 x 2
1 , . . . , x4, x4 x1, x4 x 2

1 }.

We use this to compute the Vandermonde matrix V of z1, z2, z3 with respect toB+. Then we get

H +
1 using Definition 4.4.1. H +

1 is a 13×13 matrix that cannot be listed here. Next, we use the bound

B = 1118034 on denominators and rationalize the entries of H +
1 (see 2.2.2.2 and (4.13)). Algorithm 3

certifies H +
1 , (see below) and returns rational matrices, H1 and Hg as follows

H1 =











3 0 0

0 0 3/10

0 3/10 0











, Hg =











0 3
1000 0

3
1000 0 0

0 0 3
10000











.

The characteristic polynomial of H1 is

c1(λ) =−λ3−3λ2+
9λ

100
+

27

100
.

The number of sign change in c1(λ) is 2, that is corresponding to the number of positive eigenvalues
of H1. Similarly, the number of negative eigenvalues is and the number of sign change in c1(−λ),
which is 1. Thus, the signature σ1 is 1. Now we compute the signature of Hg . The characteristic
polynomial of Hg is

cg (λ) =λ
3−

3λ2

10000
−

9λ

1000000
+

27

10000000000
.

The number of sign change in cg (λ) is 2 and the number of sign change in cg (−λ), which is 1. Then,

the signatureσg is 1.
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Therefore, by the Theorem 4.3.2, σ1 = σg implies that there is no root close to zero with last

coordinate.

Next, we show how Algorithm 3 is used to certify approximate Hermite matrices. The input

matrix is a 13×13 rational matrix which has a Hankel matrix structure. We get its submatrices as

described in the algorithm:

H1 :=











3 0 0

0 0 3/10

0 3/10 0











, H x1
1 :=











0 0 3/10

0 3/10 0

3/10 0 0











,

H x2
1 :=











0 3/10 0

3/10 0 0

0 0 3
100











, H x3
1 :=











0 0 3
100

0 3
100 0

3
100 0 0











, H x4
1 :=











0 3
1000 0

3
1000 0 0

0 0 3
10000











.

H +
1 and H1 have rank 3. Next we compute the matrices Mi =H −1

1 ·H xi
1 for i = 1, 2, 3, 4.

M1 :=











0 0 1/10

1 0 0

0 1 0











, M2 :=











0 1/10 0

0 0 1/10

1 0 0











,

M3 :=











0 0 1
100

1/10 0 0

0 1/10 0











, M4 :=











0 1
1000 0

0 0 1
1000

1
100 0 0











.

We see that M1 has a companion matrix structure, and its characteristic polynomial p (x ) :=− 1
10

is square free. Since

fi (M1, M2, M3, M4) = 0, i = 1, 2, 3, 4

Mi are the multiplication matrices Mxi
for i = 1, 2, 3, 4. Now as it is shown in the previous example,

at Step 4 of Algorithm 2, the coefficients of the characteristic polynomial p (x ) = 0 · x 2+0 · x −1/10
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provides the following power sums without knowing the exact roots (see 1.5.17)

3
∑

i=1

ξ0
i 1 = 3,

3
∑

i=1

ξi 1 = 0,
3
∑

i=1

ξ2
i 1 = 0,

3
∑

i=1

ξ3
i 1 = 3/10,

3
∑

i=1

ξ
4

i 1 = 0.

Each entry of H1 matches to the corresponding power sum, which certifies H1.

Since H1 and the multiplication matrices are certified, we can obtain the matrix Hg with respect to

g = x4, therefore g (M1, M2, M3, M4) =M4.

Hg :=H1 · g (M1, M2, M3, M4) =H1 ·M4 =











0 3
1000 0

3
1000 0 0

0 0 3
10000











.

Thus, Algorithm 3 returns H1 and Hg .
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