Development and Synthesis of a Native Freshwater Mussel Toxicity Database

By

Rebecca Bryan

Submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Master of Environmental Assessment

Raleigh, NC

2016

Approved by advisory committee:

Dr. Catherine LePrevost
Dr. W. Gregory Cope
Dr. Linda Taylor

December 1, 2016
ACKNOWLEDGMENTS

The author would like to thank Drs. Catherine LePrevost (NCSU), Greg Cope (NCSU), and Tom Augspurger (US Fish and Wildlife Service) for their support and expertise during the development and completion of this project. In addition, the advisement and assistance from Dr. Linda Taylor and Sarah Slover in the successful completion of this degree is appreciated.
ABSTRACT

BRYAN, REBECCA. MASTER OF ENVIRONMENTAL ASSESSMENT. DEVELOPMENT AND SYNTHESIS OF A NATIVE FRESHWATER MUSSEL TOXICITY DATABASE

A database of native freshwater mussel toxicity test results was developed based on a literature search and review of 125 published articles and other available data. The database includes quantitative results from toxicity studies published from 1991 to 2014. The number of data results compiled in the database for metals were 10 for mercury, 22 for lead, 138 for zinc, 169 for cadmium, and 199 for copper. An extended analysis of the copper data indicates that there were 99 acute LC$_{50}$/EC$_{50}$ results conducted according to American Society of Testing and Materials (ASTM) toxicity testing guideline recommendations (E2455-06; reapproved 2013), with 62 acute 24-hour glochidia (larvae) test results and 37 acute 96-hour juvenile mussel results. The number of data results compiled in the database for pesticides were 2 for glyphosate, 3 for diazinon, 8 for chlorpyrifos, 9 for permethrin, 13 for 2,4-D and pentachlorophenol, 15 for carbaryl, 26 for atrazine, and 35 for nonylphenol. The test results observed for acute glochidia and juvenile tests with copper were variable between different freshwater mussel species, indicating more than one freshwater mussel species should be used in laboratory toxicity testing to provide dependable toxicity data based on different habitat requirements. However, restricting the number of species recommended for toxicity test types will provide more reproducible laboratory data for comparisons and effect determinations. For continued expansion of the database, toxicity results from tests with the emerging contaminants of major ions, pharmaceuticals, and chemicals from pollution events in freshwater need additional representation. Additional quantitative database endpoints that follow ASTM guidelines are needed for the current database toxicants and additional chemicals of concern. The toxicity test results in the database provide guidance on freshwater mussel toxicants based on survival and effects so that appropriate water quality criteria and standards can be derived in the future.
TABLE OF CONTENTS

ACKNOWLEDGMENTS...2

ABSTRACT..3

INTRODUCTION...5

MATERIALS AND METHODS.. 5
 Description of Literature Search ... 5
 Database Development Method ... 6
 Data Included in Database ... 6
 Exclusion criteria ...8

RESULTS.. 8
 Database Development Results ... 8
 Database Analysis .. 11
 Metals .. 11
 Copper Analysis ... 12
 Pesticides ... 13

DISCUSSION... 14

REFERENCES.. 16

TABLES
 Table 1: List of Freshwater Mussel Species in Database .. 7
 Table 2. ASTM Acceptability Requirements for Database ... 8
 Table 3: Database References .. 9
 Table 4: Freshwater Mussel Toxicity Database Totals .. 11
 Table 5: Summary Results for Acute Freshwater Mussel Toxicity Laboratory Tests with Copper 13

FIGURES
 Figure 1: Chemicals Presented in Database by Type ... 10
 Figure 2: Number of Database Results by Chemical Type ... 10
 Figure 3: Number of References for Metals .. 12
 Figure 4: Number of Database Results per Metal ... 12
 Figure 5: Number of References for Pesticides ... 14
 Figure 6: Number of Database Results per Pesticide .. 14
TABLE OF CONTENTS, continued

APPENDICES

APPENDIX A: Literature Search References for Freshwater Mussel Toxicity........ 17
APPENDIX B: Database Template with Data Entry Options............................ 31
INTRODUCTION

The North American freshwater mussel (superfamily Unionidae) populations are in decline and are threatened by various factors, including decreased habitat quality due to pollution (Augspurger et al. 2007, Cope et al. 2008, Williams et al. 1993). More than 70% of the 300 native unionid species are listed as endangered, threatened, or of special concern (Augspurger 2003, Cope 2007, Williams et al. 1993, Williams and Neves 1995). The study of anthropogenic pollution sources and the resulting chemical contaminants are important for the protection and conservation of native freshwater mussel species. Based on toxicological data published in the early 1990’s, early life stages of freshwater mussels are among the most sensitive aquatic organisms when exposed to various toxicants, including metals (Keller and Zam, 1991; Jacobson et al. 1993), chlorine (Goudreau et al. 1993), and ammonia (Goudreau et al. 1993). Early published toxicity studies conducted with a subset of organic solvents and pesticides indicated freshwater mussels were relatively tolerant to some chemical contaminants (Augspurger 2003; Keller 1993; Keller and Ruessler 1997).

An accurate and updated database of mussel toxicity results from laboratory tests of specific pollutants is critical to the risk analysis and protection of freshwater mussels. The amount of reliable quantitative data from toxicity tests with freshwater mussels has increased over time since the approval of the American Society of Testing and Materials (ASTM) guideline “Standard Guide for Conducting Laboratory Toxicity Tests with Freshwater Mussels” in 2006 (E2455- 06; reapproved 2013; https://www.astm.org/Standards/E2455.htm). This guideline provides methods for acute and chronic laboratory studies with freshwater mussels, but there are currently no United States Environmental Protection Agency (EPA) Office of Chemical Safety and Pollution Prevention (OCSPP) FIFRA (Fungicide, Insecticide Rodenticide Act) guidelines for the review or submission of freshwater mussel toxicity data for pesticide registration. Prior to 2006, data captured from published literature and other sources included variable amounts of useful quantitative toxicity data, in which some, but not all, aspects of the ASTM guideline requirements were met in published articles. Using ASTM method E2455-06 as the standard, additional reliable toxicological information is available from more recent tests conducted with early life stages of freshwater mussels to a variety of toxicants, including ammonia, chlorine, major ions, and pesticides (Cope 2007; Bringolf et al. 2007; Farag and Harper 2014; Fritts et al. 2014; Harper 2014; Wang et al. 2007a, 2007 b, and 2010).

The purpose of this project was to conduct an extensive literature search for published journal articles containing any available freshwater mussel toxicity data, to develop a database from these articles that includes reported laboratory methods and quantitative toxicity test results, and to synthesize and summarize the findings.

MATERIALS AND METHODS

Description of Literature Search: Articles and source materials dated from 1974 to 2016 were included in the literature search references and/or used in the associated database. The literature search of published freshwater mussel toxicity studies was conducted from various reliable sources. Initially, the North Carolina State University libraries (http://www.lib.ncsu.edu/) and
Google Scholar (http://scholar.google.com/) web search engines were used to locate, download, and evaluate articles for database criteria. The search terms and keywords utilized were combinations of the following: freshwater mussels, freshwater mollusks, Unionidae, acute toxicity, chronic toxicity, ecotoxicology, LC$_{50}$ values, and NOEC values. Toxicity data were collected from downloaded articles, as well as from Dr. W. Gregory Cope’s office files of published articles stored at North Carolina State University (Raleigh, NC) and from digital files supplied by Dr. Tom Augspurger from his research at U.S. Fish and Wildlife Service (Raleigh, NC). For most recent available freshwater mussel literature, the “2015 Freshwater Mollusk Bibliography” written by Kevin S. Cummings from Illinois Natural History Survey (Champaign, IL) was searched from the Unionoida subject heading list for articles containing toxicity data (Cummings K. 2016. http://molluskconservation.org/PUBLICATIONS/ELLIPSARIA/EllipsariaJune2016.pdf). A total of 125 freshwater mussel toxicity references were reviewed in the literature search portion of this project and are presented in Appendix A.

Database Development Method: The publications and sources containing quantitative toxicity data for freshwater mussels were included in the database and were dated from 1991 to 2014. A template for the database had been created and maintained at U.S. Fish and Wildlife Service, Raleigh Ecological Services Field Office using Microsoft® Excel® spreadsheets, and initially included tests with chlorine, cadmium, copper, mercury, and zinc. The template had not been updated in recent years. This template database was compiled from the published peer-reviewed literature, university theses and dissertations, and other gray literature. For the database developed for this project, additional chemicals were added to the existing spreadsheets based on the current literature search results, and the database design with all information collected for each toxicity test result is presented in Appendix B.

Data Included in Database: The database includes the chemical name and purity of the test chemical (if reported). The test species name is reported in the database and 25 different Unionidae freshwater mussel species of the almost 300 North American species were used in the toxicity tests (see Table 1). The test method information collected included life stages of glochidia or juvenile, age in days, transformation type of in vivo or in vitro for juvenile tests, study type (acute, chronic, or other), and test duration in hours (or days if chronic), and water type (i.e., ASTM reconstituted hard water).
Table 1: List of Freshwater Mussel Species in Database

<table>
<thead>
<tr>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actinonaias ligamentia</td>
</tr>
<tr>
<td>Actinonaias pectorosa</td>
</tr>
<tr>
<td>Andonta cygnea zelliensis L.</td>
</tr>
<tr>
<td>Anodonta grandis</td>
</tr>
<tr>
<td>Epioblasma capsaeformis</td>
</tr>
<tr>
<td>Elliptio complanata</td>
</tr>
<tr>
<td>Lampsilis cardium</td>
</tr>
<tr>
<td>Lampsilis fasciola</td>
</tr>
<tr>
<td>Lampsilis rafinesqueana</td>
</tr>
<tr>
<td>Lampsilis siliquoidea</td>
</tr>
<tr>
<td>Lampsilis straminea</td>
</tr>
<tr>
<td>Lampsilis teres</td>
</tr>
<tr>
<td>Lasmingona costata</td>
</tr>
<tr>
<td>Leptodea fragilis</td>
</tr>
<tr>
<td>Ligumia subrostrata</td>
</tr>
<tr>
<td>Medionidus conradicus</td>
</tr>
<tr>
<td>Megalonaias nervosa</td>
</tr>
<tr>
<td>Potamilus purpuratus</td>
</tr>
<tr>
<td>Ptychobranchus fasciolaris</td>
</tr>
<tr>
<td>Ptychobranchus occidentalis</td>
</tr>
<tr>
<td>Utterbackia imbecillis</td>
</tr>
<tr>
<td>Villosa ebulosi</td>
</tr>
<tr>
<td>Villosa nebulosa</td>
</tr>
<tr>
<td>Villosa iris</td>
</tr>
</tbody>
</table>

Based on available data provided in journal articles, the parameters added to the template database spreadsheets included chemical purity (%); the laboratory environmental endpoints of temperature (°C), hardness (mg/L), pH, and alkalinity (mg/L) of test water; and determination if the test generally followed current ASTM guidelines for acute or chronic toxicity tests (see Table 2). Some of the database toxicity tests conducted prior to the 2006 ASTM guideline met most of the acceptability requirements based on reported test data, and were, therefore, considered acceptable. The “ASTM followed” database column was reported as “Yes” based on recommendations of test durations, age at study start, and control survival. The environmental conditions of laboratory test water based on ASTM were optional requirements for the database and reported if provided in published articles.
Table 2. ASTM Acceptability Requirements for Database

<table>
<thead>
<tr>
<th>For acute toxicity tests with glochidia isolated from adult mussels:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Test duration of 24 hours recommended</td>
</tr>
<tr>
<td>• Age <24 hours old at study start (viability ≥80%, ≥90% preferred)</td>
</tr>
<tr>
<td>• Control survival average at end of test ≥90% (and >90% for 24 hours after test)</td>
</tr>
<tr>
<td>• Optional (if provided): Hardness, alkalinity, pH in dilution water should not vary by more than ±10% during exposure</td>
</tr>
<tr>
<td>• Optional (if provided): Temperatures of individual chambers within 1°C; concurrent temperatures between chambers within 2°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>For acute or chronic toxicity tests with juvenile freshwater mussels:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Acute test duration of 96 hours recommended, chronic test durations of 10-28 days</td>
</tr>
<tr>
<td>• In vivo transformation</td>
</tr>
<tr>
<td>• Control survival average at end of 96-hour test ≥90% (and >90% for 24 hours after 96-hour test); control survival average at end of 10- or 28-day test ≥80%</td>
</tr>
<tr>
<td>• Optional (if provided): Hardness, alkalinity, pH in dilution water should not vary by more than ±10% during exposure</td>
</tr>
<tr>
<td>• Optional (if provided): Temperatures of individual chambers within 1°C; concurrent temperatures between chambers within 2°C</td>
</tr>
</tbody>
</table>

The toxicity test results included in the database were control survival (%); observation endpoint of survival, length, or other-genotoxicity; and the results endpoints of median lethal or median effective (LC₅₀ or EC₅₀) concentration, no observed effect concentration (NOEC), lowest observed effect concentration (LOEC), inhibition concentrations (IC₁₀, IC₂₀, or IC₂₅), chronic value (ChV), or species mean acute value (SMAV). There is one quantitative result endpoint for each database row entry, and one toxicity test could have multiple rows based on number of reported results.

Exclusion criteria: All articles were reviewed during the literature search, but not all were included in database. Reasons for exclusion were the quantitative acute or chronic result endpoints were not reported (only qualitative data), no original data were presented (review article), data were duplicated results from another article, and QA/QC of reported data was inadequate. Freshwater mussel toxicity studies conducted with boron (Soucek et al. 2011; US EPA 2010), perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) (Hazelton et al. 2012), polycyclic aromatic hydrocarbons (PAHs) (Prochazka et al. 2012; Wang 2013), pharmaceuticals (Bringolf et al. 2012; Gilroy et al. 2014; Hazelton et al. 2013 and 2014), pesticides (Boogaard et al. 2011; parts of Bringolf et al. 2007a, 2007b and 2007c; Köprücü et al. 2008), and herbicides specifically (Archambault et al. 2014) were found during the literature search of articles published after the approval of the 2006 ASTM guidelines, but were excluded from the database for one or more of the above-mentioned reasons.

RESULTS

Database Development Results:
A total of 30 published references dated from 1991 to 2014 were used in the development of the freshwater mussel toxicity database (see Table 3).
There were 18 total chemicals included in the database (see Table 4): the toxicants of ammonia and chlorine (1993-2007); the metals of cadmium, copper, lead, mercury, and zinc (1991-2010); the major ions of sodium bicarbonate and sodium chloride (2014); and the pesticides 2,4-D, atrazine, carbaryl, chlorpyrifos, diazinon, glyphosate, nonylphenol, pentachlorophenol (PCP), and permethrin (1993-2007) (see Figure 1). Most database references contained data associated with multiple chemicals and multiple toxicity studies (acute and/or chronic) with different freshwater mussel species. Based on all 18 chemicals reviewed, a total of 824 toxicity endpoints were compiled in the database. These results correspond to totals of 157 endpoints for toxicants, 538 endpoints for metals, 5 endpoints for ions, and 124 endpoints for pesticides (see Figure 2).
Figure 1: Chemicals Presented in Database by Type

Figure 2: Number of Database Results by Chemical Type
Table 4: Freshwater Mussel Toxicity Database Totals

<table>
<thead>
<tr>
<th>Assigned Chemical Number</th>
<th>Chemical Name</th>
<th>No. of References</th>
<th>Years of References</th>
<th>Number of Endpoints</th>
<th>Number of References Published after 2006 ASTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ammonia</td>
<td>2</td>
<td>2007</td>
<td>42</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Chlorine</td>
<td>6</td>
<td>1993-2007</td>
<td>115</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Cadmium</td>
<td>8</td>
<td>1991-2010</td>
<td>169</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Copper</td>
<td>15</td>
<td>1991-2010</td>
<td>199</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Lead</td>
<td>1</td>
<td>2010</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Mercury</td>
<td>3</td>
<td>1991-2005</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Zinc</td>
<td>7</td>
<td>1991-2010</td>
<td>138</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Sodium bicarbonate</td>
<td>2</td>
<td>2014</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>Sodium chloride</td>
<td>1</td>
<td>2014</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>2,4-D</td>
<td>1</td>
<td>2003</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>Atrazine</td>
<td>4</td>
<td>1993-2007</td>
<td>26</td>
<td>2 (duplicate acute results)</td>
</tr>
<tr>
<td>12</td>
<td>Carbaryl</td>
<td>2</td>
<td>2004</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>Chlorpyrifos</td>
<td>1</td>
<td>2007</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>Diazinon</td>
<td>1</td>
<td>2004</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>Glyphosate</td>
<td>1</td>
<td>2004</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>Nonylphenol</td>
<td>2</td>
<td>2001-2005</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>Pentachlorphenol (PCP)</td>
<td>1</td>
<td>2003</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>Permethrin</td>
<td>1</td>
<td>2003</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

1 Each data row corresponds to a toxicity test result value of LC₅₀, NOEC or other.

Database Analysis: The seven articles published after the 2006 ASTM guidance was developed include Bringolf et al. 2007, Farag and Harper 2014, Fritts et al. 2014, Harper 2014, and Wang et al. 2007a, 2007 b, and 2010. These studies refer to the ASTM guidelines and contain acute and/or chronic toxicity test results with various freshwater mussel species.

Metals: For the five metal contaminants included in the database, results were based on 1 lead reference, 3 mercury references, 7 zinc references, 8 cadmium references, and 15 copper references (see Figure 3, Table 3). Two of these articles were published after 2006, and provided acute (Wang at al. 2007a) and chronic (Wang at al. 2007b) toxicity results from ASTM laboratory tests with copper. The chronic studies with juvenile freshwater mussels in the Wang at al. 2007b article were used to develop the ASTM standards for this study type. The Wang et al. 2010 article provided acute and chronic test results with cadmium, copper, lead, and zinc using laboratory tests according to ASTM guidance, with copper as the reference toxicant for the
acute studies. Overall, the number of toxicity test results complied in the database by metal included 10 for mercury, 22 for lead, 138 for zinc, 169 for cadmium, and 199 for copper (see Figure 4).

Copper Analysis: The toxicity test results compiled for copper have the most entered database results with 99 acute test results conducted according to ASTM guideline recommendations (see Table 2). The LC$_{50}$/EC$_{50}$ results are reported from 62 acute 24-hour glochidia tests and 37 acute 96-hour juvenile tests, allowing for comparisons between study types and freshwater mussel species (see Table 5). For acute 24-hour glochidia tests with copper, the LC$_{50}$/EC$_{50}$ survival results were highly variable among the 11 species types and within the same species in tests with different environmental conditions; usually differences in water hardness or alkalinity were observed in the database. The acute 96-hour juvenile tests with copper were conducted using 5 different
freshwater mussel species, and the variability in test results appears less than in the acute glochidia tests included in the database.

Intra- and inter-laboratory variability of acute toxicity results with glochidia and juvenile unionid mussels was assessed in a recent (2016) article by Raimondo et al. In their article, increased inter-laboratory variability in glochidia acute tests was reported compared to juvenile acute tests. The intra-laboratory variability for EC$_{50}$ values averaged about 2-fold for both life stages, but the inter-laboratory variability averaged 3.6-fold for juvenile mussels and 6.3-fold for glochidia. The glochidia and juvenile EC$_{50}$ values were within a factor of 2 of each other for 50% of paired records among chemicals assessed. The juveniles were more sensitive than glochidia by more than 2-fold for 33% of the comparisons made between life stages.

Table 5: Summary Results for Acute Freshwater Mussel Toxicity Laboratory Tests with Copper

<table>
<thead>
<tr>
<th>Species</th>
<th>n</th>
<th>LC${50}$/EC${50}$ values (µg/L)</th>
<th>Range</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute 24-hour glochidia tests:</td>
<td></td>
<td>Range</td>
<td>Mean</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actinonaias ligamentia</td>
<td>4</td>
<td>35-66</td>
<td>53.3</td>
<td>13.3</td>
<td></td>
</tr>
<tr>
<td>Actinonaias pectorosa</td>
<td>5</td>
<td>23.1-132</td>
<td>71.4</td>
<td>42.9</td>
<td></td>
</tr>
<tr>
<td>Lampsis cardium</td>
<td>1</td>
<td>210</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Lampsis fasciola</td>
<td>3</td>
<td>26-48</td>
<td>40.0</td>
<td>12.2</td>
<td></td>
</tr>
<tr>
<td>Lampsis siliquoidea</td>
<td>15</td>
<td>27-130</td>
<td>42.1</td>
<td>25.6</td>
<td></td>
</tr>
<tr>
<td>Leptodea fragilis</td>
<td>2</td>
<td>50-90</td>
<td>70.0</td>
<td>28.3</td>
<td></td>
</tr>
<tr>
<td>Ligumia subrostrata</td>
<td>1</td>
<td>150</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Medionidus conradicus</td>
<td>6</td>
<td>37-81</td>
<td>52.3</td>
<td>18.2</td>
<td></td>
</tr>
<tr>
<td>Megalonaias nervosa</td>
<td>2</td>
<td>180</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Pyganodon grandis</td>
<td>2</td>
<td>46-347</td>
<td>196.5</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Utterbackia imbecillis</td>
<td>8</td>
<td>22-520</td>
<td>93.7</td>
<td>172.8</td>
<td></td>
</tr>
<tr>
<td>Acute 96-hour juvenile tests:</td>
<td></td>
<td>Range</td>
<td>Mean</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lampsis rafinesqueana</td>
<td>1</td>
<td>23</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Lampsis siliquoidea</td>
<td>13</td>
<td>18-41</td>
<td>23.8</td>
<td>7.3</td>
<td></td>
</tr>
<tr>
<td>Lasmigona subvirdis</td>
<td>3</td>
<td>52.05-92.99</td>
<td>69.89</td>
<td>20.97</td>
<td></td>
</tr>
<tr>
<td>Utterbackia imbecillis</td>
<td>20</td>
<td>22-111</td>
<td>48.1</td>
<td>23.2</td>
<td></td>
</tr>
</tbody>
</table>

n=number of results (references) per species
NA=Not applicable; ≤2 test results

Pesticides: Toxicity test results for the nine pesticides included in the database were based on: one reference for 2,4-D, chlorpyrifos, diazinon, glyphosate, pentachlorophenol (PCP), and permethrin; two references for carbaryl and nonylphenol; and four references for atrazine (see **Figure 5, Table 3**). The Milam 2005 reference is an example of a single article with multiple chemicals tested (i.e., 2,4-D, carbaryl, 4-nonylphenol, PCP, and permethrin). One of these articles was published after 2006, and provided acute and chronic toxicity results from ASTM laboratory tests with atrazine and chlorpyrifos (Bringolf et al. 2007c). There were two articles that provided duplicate data for atrazine acute tests (Bringolf et al. 2007a and 2007c). The number of data results compiled in the database by pesticide included 2 for glyphosate, 3 for diazinon, 8 for chlorpyrifos, 9 for
permethrin, 13 for 2,4-D and PCP, 15 for carbaryl, 26 for atrazine, and 35 for nonylphenol (see Figure 6).

DISCUSSION

The freshwater mussel toxicity studies identified through a literature search were included in a database that contains quantitative endpoints that will assist in future risk assessment analysis.
and/or regulatory decisions. Currently, the database includes the toxicants of ammonia and chlorine; the metals of cadmium copper, lead, mercury, and zinc; the major ions of sodium bicarbonate and sodium chloride; and the pesticides 2,4-D, atrazine, carbaryl, chlorpyrifos, diazinon, glyphosate, nonylphenol, PCP, and permethrin. The toxicity data collected in the database includes published articles and sources from the gray literature dating from 1991 to 2014. The ASTM guidelines (E2455-06; reapproved 2013) were first published starting in 2006, and provided useful guidance in the conduct of laboratory toxicity tests with freshwater mussels. The more recently published articles reference the ASTM guideline and provide more dependable results for analysis.

For metals, data results compiled in the database are most numerous for copper (199). An extended analysis of copper data indicates that nearly half represent acute LC$_{50}$/EC$_{50}$ results conducted according to ASTM guideline recommendations, with 62 acute 24-hour glochidia test results and 37 acute 96-hour juvenile results. Based on the variable acute test results for copper among species in the database, the use of more than one freshwater mussel species in laboratory toxicity testing is important in determining impacts to mussels with different habitat and life history requirements. However, restricting the number of species recommended for test types will provide more reproducible laboratory data for comparisons and effect determinations. According to Raimondo et al. (2016), glochidia and juvenile mussel acute tests should be performed on a chemical-by-chemical basis, and the commonly tested mussel species of $L.$ siliquoidea, $U.$ imbecillis, and $V.$ iris adequately represented mussel sensitivity in the absence of a diverse mussel toxicity dataset. However, toxicity testing with additional mussel species is needed to improve the application of safety factors. The safety factors of 2 to 5 might be applied to data for commonly tested mussel species for protective levels inclusive of inter-species and inter-laboratory variation (Raimondo et al. 2016).

For pesticides, the data results compiled in the database are most numerous for atrazine (26) and nonylphenol (35). In general, fewer pesticide toxicity test references were found in the literature search, and fewer test results for pesticide toxicity in freshwater mussels were available in comparison to metals. However, the database included more individual pesticide chemicals (9) than metals (5).

For continued expansion of the database, toxicity results from tests with the emerging contaminants of major ions, pharmaceuticals, and chemicals from pollution events in freshwater need additional representation. The toxicity tests should follow ASTM guidelines, and quantitative results are needed for both the current database toxicants and additional chemicals of concern. Other recommendations for expansion of this freshwater mussel toxicity database include the following: quality control and quality assurance of all data by qualified experts in this field; addition of web links to publicly available journal articles and abstracts; making the database public with searchable data fields such as chemical, endpoints, and species; additional computer programming functions and statistical analysis of data; and annual updates based on new published toxicity articles and any new testing guideline requirements. In the future, this database could be provided as on-line toxicity information to natural resource professionals involved in freshwater mussel conservation.
REFERENCES: (see Appendix A for complete list of database and literature search references).
APPENDIX A: Literature Search References for Freshwater Mussel Toxicity

<table>
<thead>
<tr>
<th>Reference Number</th>
<th>Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Besser JM, Brumbaugh WG, Kemble NE, Ivey CD, Kunz JL, Ingersoll CG, Rudel D. 2011. Toxicity of nickel-spiked freshwater sediments to benthic invertebrates-spiking methodology, species sensitivity, and nickel bioavailability, prepared in cooperation with the Nickel</td>
</tr>
</tbody>
</table>
APPENDIX A: Literature Search References for Freshwater Mussel Toxicity

<table>
<thead>
<tr>
<th>Reference Number</th>
<th>Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Besser JM, Ingersoll CG, Brumbaugh WG, Kemble NE, May TW, Wang N, MacDonald DD, Roberts AD. 2015. Toxicity of sediments from lead zinc mining areas to juvenile freshwater mussels (Lampsilis siliquoidea), compared to standard test organisms. Environ Toxicol Chem Accepted Article. DOI: 10.1002/etc.2849</td>
</tr>
<tr>
<td>15</td>
<td>Boogaard MA, Rivera JE. 2011. Acute toxicity of two lampricides, 3-trifluoromethyl-4-nitrophenol (TFM) and a TFM:1% niclosamide mixture, to sea lamprey, three species of unionids, haliplid water beetles, and American eel. Great Lakes Fish Comm Tech Rep 70.</td>
</tr>
</tbody>
</table>
APPENDIX A: Literature Search References for Freshwater Mussel Toxicity

<table>
<thead>
<tr>
<th>Reference Number</th>
<th>Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Cherry DS, Valenti TW, Currie RJ, Neves RJ, Jones JW, Mair RA, Kane CM. 2005b. Chlorine toxicity to early life stages of freshwater mussels, Final Report. USGS Scientific Support Partnership Project ID 01-R5-09. Virginia Polytechnic Institute and State University, Biology Department and Department of Fisheries and Wildlife Science</td>
</tr>
<tr>
<td>Reference Number</td>
<td>Citations</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Reference Number</td>
<td>Citations</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>41</td>
<td>Gilroy EAM, Klinck JS, Campbell SD, McInnis R, Gillis PL, de Solla SR. 2014. Toxicity and bioconcentration of the pharmaceuticals moxifloxacin, rosuvastatin, and drospirenone to the unionid mussel Lampsilis siliquoidea. Science of the Total Environment 487:537-544. DOI: 10.1016/j.scitotenv.2014.03.051</td>
</tr>
</tbody>
</table>
APPENDIX A: Literature Search References for Freshwater Mussel Toxicity

<table>
<thead>
<tr>
<th>Reference Number</th>
<th>Citations</th>
</tr>
</thead>
</table>
APPENDIX A: Literature Search References for Freshwater Mussel Toxicity

<table>
<thead>
<tr>
<th>Reference Number</th>
<th>Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Number</td>
<td>Citations</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>68</td>
<td>Kováts N, Abdel-Hameid NA, Kovács K, Paulovits G. 2010. Sensitivity of three unionid glochidia to elevated levels of copper, zinc and lead. Knowledge and Management of Aquatic Ecosystems 399, 04:1-7. DOI: 10.1051/kmae/2010028</td>
</tr>
<tr>
<td>72</td>
<td>Leonard JA, Cope WG, Barnhart MC, Bringolf RB. 2014. Metabolomic, behavioral, and reproductive effects of the synthetic estrogen 17α-ethinylestradiol on the unionid mussel Lampsilis fasciola. Aquatic Toxicology 150:103-116. DOI: 10.1016/j.aquatox.2014.03.004</td>
</tr>
</tbody>
</table>
APPENDIX A: Literature Search References for Freshwater Mussel Toxicity

<table>
<thead>
<tr>
<th>Reference Number</th>
<th>Citations</th>
</tr>
</thead>
</table>
APPENDIX A: Literature Search References for Freshwater Mussel Toxicity

<table>
<thead>
<tr>
<th>Reference Number</th>
<th>Citations</th>
</tr>
</thead>
</table>
APPENDIX A: Literature Search References for Freshwater Mussel Toxicity

<table>
<thead>
<tr>
<th>Reference Number</th>
<th>Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>Soucek DJ. 2006. Effects of water quality on acute and chronic toxicity of sulfate to freshwater bivalves, Ceriodaphnia dubia, and Hyaella azteca. U.S. Environmental Protection Agency Grant # CP96543701-0 (submitted to US EPA, Region 5, Water Division, Chicago, IL).</td>
</tr>
<tr>
<td>103</td>
<td>USEPA. 2001. 2001 Update of ambient water quality criteria for cadmium. EPA-822-R-01-001. Office of Water, Washington, DC. (Table 1 has data from Keller for juvenile mussels)</td>
</tr>
<tr>
<td>Reference Number</td>
<td>Citations</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>110</td>
<td>Wade DC. 1990. Screening toxicity evaluation of Wheeler reservoir sediments using juvenile freshwater mussels (Anodonta imbecillis Say) exposed to sediment interstitial water. Tennessee Valley Authority, Water Resources Division, Aquatic Research Laboratory. TVA/WR/AB--90/13</td>
</tr>
</tbody>
</table>
APPENDIX A: Literature Search References for Freshwater Mussel Toxicity

<table>
<thead>
<tr>
<th>Reference Number</th>
<th>Citations</th>
</tr>
</thead>
</table>
APPENDIX A: Literature Search References for Freshwater Mussel Toxicity

<table>
<thead>
<tr>
<th>Reference Number</th>
<th>Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td>Wang N, Ingersoll CG, Kunz JL, Brumbaugh WG, Kane CM. 2013. Toxicity of sediments potentially contaminated by coal mining and natural gas extraction to Unionid mussels and commonly tested benthic invertebrates. Environ Toxicol Chem 32:207-221. DOI: 10.1002/etc.2032</td>
</tr>
</tbody>
</table>
APPENDIX B: Database Template with Data Entry Options

<table>
<thead>
<tr>
<th>Chemical name, purity (%)</th>
<th>Species name</th>
<th>Life Stage</th>
<th>Age (d)</th>
<th>Transformation</th>
<th>Study Type</th>
<th>Test Duration (h)</th>
<th>Control survival (%)</th>
<th>Temp. (°C)</th>
<th>Water type</th>
<th>Water hardness (mg/L)</th>
<th>Water pH</th>
<th>Water Alkalinity (mg/L)</th>
<th>Observation Endpoint</th>
<th>Results Endpoint</th>
<th>Conc (mg/L)</th>
<th>Additional Info</th>
<th>ASTM Guideline Followed</th>
<th>Reference</th>
</tr>
</thead>
</table>

For juvenile tests:

- Acute, chronic or other:
 - Value
- Type
 - Value
- Temp. (°C): Value
- Water hardness (mg/L): Value
- Water pH: Value
- Water Alkalinity (mg/L): Value
- Observation Endpoint:
 - Value
- Results Endpoint:
 - Value
- Conc (mg/L):
 - Value
- Additional Info:
 - Value
- ASTM Guideline Followed:
 - Yes or No
- Reference:
 - Name, date