
ABSTRACT

SIDLE, GLENN DANIEL. Using Multi-Class Machine Learning Methods to Predict Major League
Baseball Pitches. (Under the direction of Hien Tran.)

As the field of machine learning and its applications grow, there is a need to expand the ability to

classify and predict beyond just being able to handle a binary problem. While the ability to predict a

yes or no answer is still valuable, in a world of increasing complexity, machine learning methods are

now employed in a multi-class problem setting more than ever.

Major League Baseball provides a rich and detailed data set with its PITCHf/x system that tracks

every baseball pitch thrown in every stadium in every game. Pitch prediction has been a topic of

previous research that has mostly focused on the binary split between fastballs and other pitch types.

We extend the binary problem to a multi-class one that involves up to seven unique pitch types.

The work done with baseball pitches can be used as a template to expand a wide variety of other

binary predictions into accommodating more than a simple two class approach. To accomplish the

multi-class prediction, we examine multiple machine learning methods to find the most efficient

and accurate algorithm.

In this dissertation, we first explore the results given by each of three different methods: Linear

Discriminant Analysis, Support Vector Machines, and bagged random forests of Classification Trees.

Our feature set is created from both categorical and continuous data, with features that can be taken

from the observation of a game used alongside synthetic features generated from historical data.

Using the same methods, we explore adaptive feature selection methods in a novel approach, using

Decision Directed Acyclic Graphs to allow for the use of binary techniques to reduce the feature set.

We then employ post processing methods to determine a measure of variable importance to find

what inputs are the most informative for our model. Finally, we implement the prediction method

in a live game environment, presenting the results of the different construction of the model and

discussing the difficulties associated with the time limitations.
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CHAPTER

1

INTRODUCTION

Major League Baseball (MLB) is a massive organization with close to 10 billion dollars in revenue in

2015 [10], and is only getting bigger. One of the biggest draws to a baseball game is scoring, and as

pitching skill has increased over the past few years, it has become more and more important for a

runner to get on base. Of the 31 teams that advanced to the postseason over the past three seasons,

25 of those teams ranked in the top half of the league in on-base-percentage (OBP), and 21 of those

were in the top ten teams in OBP [17]. OBP is a measure not only of a batter’s ability to get a hit, but

also draw a walk or, in rare cases, get an intentional walk, get hit by a pitch, or have a third strike

dropped. As statistical analysis has become more and more common in baseball, OBP is replacing

batting average as a true mark of a batter’s ability [31]. Being able to anticipate the next type of pitch

that will be thrown would help a batter decide to swing or not, given the tendency of some pitches

to result in balls or strikes.

While we employ machine learning in an effort to predict the type of pitch that will be thrown,

the initial classification of a pitch is a difficult problem alone. MLB Advanced Media (MLBAM)

employs a neural network algorithm that automates this task, and we consider seven unique pitch

types as classified by MLBAM.

In this work, we seek to provide an accurate prediction of what type of pitch will be thrown next.

Because each pitcher has a unique style of throwing and not every pitcher throws every type of
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pitch, we create individual models for each pitcher. Being able to predict from up to seven different

pitch types is not a trivial problem, however, as many machine learning methods were designed

originally for binary type prediction. Extending these methods from two classes to more involves

an exponential increase in complexity and computation time, as well as being susceptible to large

class imbalances. We measure our success not only in overall accuracy but also relative to the best

naive guess, as well as the ability of the method to beat the naive guess for the set of pitchers.

1.1 Prior Work

Much of the previous work has focused on a binary split between baseball pitches into the categories

of fastball and not fastball. In [23], Guttag et al., looked at 359 pitchers, training the model with data

from 2008 and testing with data from 2009 and comparing their models predictive accuracy against

a naive guess (which we will discuss in Chapter 4). They achieved an average accuracy of 70%, with

varying degrees of success depending on the pitcher’s initial naive guess and amount of available

data.

With feature selection, this binary prediction has achieved close to 80% accuracy [27], but has

many problems associated with it. There is no unifying definition of a "fastball." While two and four

seam fastballs are the most obvious members of the category, pitches such as sliders, sinkers, and

cutters can often be included as well, despite having very different appearances and behavior when

thrown. Our initial work involved using at least five different types of pitches, but we eventually

extended our prediction to incorporate seven pitch classes. Guttag et al., also modified the binary

approach to consider other types of pitches against the others, and in doing so addressed up to

six different types of pitches: fastballs, changeups, sliders, curveballs, split-finger fastballs, and

cutters [23] . To our knowledge no other binary approaches have been modified this way to consider

pitch types other than fastballs as the "positive" class.

Bock et al., [7] is the only publication in a scientific journal that has used a multi-class approach

to pitch prediction, predicting up to four unique pitch types. The authors of the paper employed a

one-versus-all (which we will discuss more in Chapter 3) support vector machine based method

using a linear and radial basis kernel functions. Using a data set of 402 pitchers from the 2011, 2012,

and 2013 seasons, they used the cross validation accuracy as a measure of predictability. Across

all pitchers, they report an average cross-validation accuracy of 74.5%. The authors then examine

the correlation between the predictability of the pitcher and some standard statistics, looking to

forecast pitcher success. They examined the ERA and FIP of each pitcher, eventually determining

there was "no significant relationship" between predictability and performance.

The true accuracy reported for blind prediction in [7]was listed as less than 61%, with the out
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of set sample taken only from a subset of pitchers who pitched in the 2013 World Series. Because

the focus of the paper was on using predictability to gauge long term pitcher performance, the out

of sample accuracy was only briefly mentioned. The authors used a range of 14 pitchers from the

World Series who faced as few as five batters and as many as 60, resulting in possibly skewed or

class imbalanced datasets. While this out of sample accuracy is a proof of concept, the number of

pitchers and size of the datasets used do not give a well-tested measure of the model’s ability to

predict pitches it hasn’t seen before.

Another multi-class prediction method was proposed in [53] where the author employed a

decision tree based method. This work again only examined four different pitch types and also

restricted the results to a proof of concept based on the prediction performance for two pitchers.

Woodward discusses the results for Justin Verlander and Clayton Kershaw, stating that overall

prediction for Verlander is 50%, well below the naive guess for Verlander. He does, however, examine

the performance of the decision tree classifier measured against totally random guessing. Our work

incorporates many of the ideas proposed in [7] and [53], but we extend the number of classes and

the research to optimize our methods in a much more thorough manner.

While multi-class machine learning methods have not been applied to the problem of pitch

prediction outside of [7] and [53], they have been implemented to predict or classify other types of

problems. Multi-class support vector machines are used on a number of standard datasets from the

UCI machine learning repository in [29] and [51]. Both [29] and [51] are comparison papers, giving

an overview of the different formulations of the multi-class support vector machine method, tested

on datasets with a minimum of four classes and a maximum of 17 classes.

In [25], the multi-class support vector machine is demonstrated on massively multi-class datasets,

i.e., classifying an image of a flower into one of roughly 20,000 types of flowers. While the support

vector machine models did not outperform the method the authors were introducing, it is an excel-

lent demonstration of the extendability of the support vector machine classification on datasets of

up to more than 96,000 classes.

As linear discriminant analysis is not the most common machine learning classification method,

even for binary problems, few multi-class journal articles have been published. A survey paper by Li

et al., [32] gives an overview of the method and its extension to multi-class classification, again using

many of the same benchmark datasets from the UCI repository as [29] and [51] as well as others.

In this paper, linear discriminant analysis is used on datasets ranging from three to one hundred

unique classes.

Finally, classification trees were again initially designed for binary classification but have been

extended into the multi-class domain. In [16], Dietterich et al., use the multi-class decision tree as a

baseline method for error correcting, applying the method to datasets ranging from six to 26 classes.
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Holmes et al., introduce alternating decision trees in [28], applying the classifier to binary datasets

as well as multi-class datasets also ranging from three to 26 classes. The successes in implementing

the different machine learning methods in previous works gives us a good starting point for the

pitch prediction problem, where we encounter pitchers with pitch classes ranging from two to seven

pitch types.

1.2 Overview and Contributions

In Chapter 2 of this work, we first detail the PITCHf/x system and the data we mined from the

repository provided by the MLB. We introduce a novel feature set, including not only observable

measurements or historical trends but a combination of the two, balancing the risk of uncertainty

and the extra information gained from the PITCHf/x system. Chapter 3 provides an overview of

the machine learning methods we use for prediction, our parameter optimization algorithm, and

an explanation of the committee approach, which has been very lightly used in previous work for

multi-class problems. We also introduce the use of the DIRECT method for parameter optimization

for the classifiers we use.

We present our results from each method in Chapter 4 and determine the best method based on

accuracy and efficiency, demonstrating better than state of the art results from all the methods exam-

ined. As well as presenting the overall results, we also show a breakdown by relievers versus starters

and compare our improvement against a naive guess to standard metrics of pitcher performance. In

Chapter 5 we detail the decision directed acyclic graph implementation of the multi-class methods.

We also employ feature selection in an innovative approach, using the unique architecture of the

directed graph implementation to use binary feature selection methods. In the same chapter we

also use post-processing methods to measure levels of variable importance and consider whether

the results match our expectations.

In Chapter 6, we discuss the implementation of the pitch prediction in a live, real-time game

environment, using open-source Python code. We also introduce the possible implementation of

the prediction method into an iOS compatible application for the iPad tablet. Finally, in Chapter 7,

we give conclusions and detail contributions from our work and discuss future improvements that

can be made.

4



CHAPTER

2

FEATURE SELECTION

Baseball is one of the most popular sports in the world and is played in countries around the globe.

Because of its unique method of gameplay, baseball is easily broken into discrete events. Each pitch

and its subsequent result can be observed and recorded in real time. The MLB is considered to be

the highest level of baseball in the world, and as such has some of the most advanced technology

available to measure and record different data about each game.

2.1 PITCHf/x

The PITCHf/x system was introduced in 2006 in all 30 MLB stadiums. Three tracking cameras are

used to track every pitch from the moment the pitcher releases it to the moment the ball crosses

the plate or is hit by the batter. The system records the speed, spin rate, break angle, break length,

and trajectory of the pitch among many other characteristics, and stores the data alongside other

game situational information such as runners on base, the time the pitch is delivered, and the

name of the batter [44]. Previous work in classifying pitches has used the pitch characteristics

in order to determine what type of pitch was thrown, similar to the MLBAM’s neural network

algorithm [5]. These classification approaches have the advantage of being able to take into account

these attributes of the pitch, but in order to predict the pitch the decision must be made before the
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pitcher releases the ball.

In order to download the data, we used the MAMP software stack. MAMP is an open-source

software that runs on Apple computers, its name coming from the operating system Mac OSX, the

web server Apache, the database management system MySQL, and the programming languages

PHP, Perl, and Python [33]. MAMP uses a structured query language (SQL) to scrape data off the

.xml pages found on gd2.mlb.com. This data was downloaded to a comma separated value (.csv) file

that can be opened in Excel. We used this structured data in MATLAB.

All PITCHf/x data is stored at gd2.mlb.com and available to the public. Figure 2.1 shows what an

example at-bat looks like from the .xml version of the data on the site itself (the data is from the last

at-bat from the 2016 World Series) with all the individual information provided for each pitch.

Figure 2.1: A sample at-bat screenshot from the gd2.mlb.com site.

We used data from the 2013, 2014, and 2015 regular seasons, which amounted to nearly 2.1

million total unique pitches. We included both starting pitchers, who throw just over 100 pitches

per start, making up to 30 or 35 starts per season as well as relievers and closers, who play in many

more games but throw fewer pitches per appearance [12]. We restricted our data set only to pitchers

who threw at least 500 pitches in both the 2014 and 2015 seasons, which left us with 287 total unique

pitchers, 150 starters and 137 relievers as designated by ESPN. Because each pitch that is thrown is

classified by MLBAM’s neural network method, each pitch is also assigned a confidence level, and

in order to ensure the fidelity of our data we restricted the data to pitches with a type confidence

level above 80%. The average size of the data set for each pitcher was 4,682 pitches, with the largest

10,343 pitches and the smallest 1,108 pitches.

The MLBAM neural network classifier has fifteen unique labels that it can assign a given pitch.

Based on prior knowledge of the types of pitches thrown, we combine some of them into a single

class of pitch, leaving seven unique pitch types that we consider in our training and testing sets.
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Table 2.1 shows the PITCHf/x label, the common name, and the label we use.

Table 2.1: The different types of pitches considered.

Class Number PITCHf/x Symbol Name Label
1 FA, FF, FT, FS, SF Fastball FF
2 FC Cutter CT
3 SI Sinker SI
4 SL Slider SL
5 CB, CU, KC, SC Curveball CU
6 CH Changeup CH
7 KN, EP Knuckleball KN

2.2 Training and Testing Sets

Most of the authors in previous literature split data into training and testing sets based on different

seasons. Our first split of data used all of 2013 and 2014 as the training set for each pitcher and all

of 2015 as the testing set. But, because pitchers change their behavior over time [6], we needed to

take that into account. During the offseason, pitchers will decide to work on or change pitch types

that they use, or develop entirely new pitch types and scrap old ones. To account for the possible

changes in pitcher behavior, we decided to include the first quarter of each pitcher’s 2015 season

as part of the training set, and use the remainder of the 2015 season as the testing set. Table 2.2

shows the properties of the training and testing sets as well as the amount of pitchers throwing the

respective number of pitches in our training and testing sets.

2.3 Input Features

To create a set of inputs, or feature set, for the pitch prediction methods, we first extracted infor-

mation about the game situation at the time the pitch is thrown, such as the players on base, the

time of day, and the inning. We also included information about prior events in the game, from the

previous pitch or the previous at bat. In doing so, we found 23 situational features for each pitch,

nearly all of which were categorical. Figure 2.2 shows the 17 unique location zones we divided the

plane that stretches across the front of home plate in order to determine a categorical measure of

pitch location.
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Table 2.2: Properties of the training and testing sets for individual pitchers.

Value Training Set Testing Set
Average Size 3,486 1,196

Maximum Size 8,005 2,524
Minimum Size 723 375

Pitch Types Thrown Pitchers (Training) Pitchers (Testing)
2 9 14
3 42 82
4 132 130
5 89 53
6 13 6
7 2 2

Despite having this information, we wanted to add more data into the feature set, and so we

generated features using the full data set, not just from a certain inning or game. We found the

pitcher’s historical tendencies over the past 5, 10, and 20 pitches per game, his historical tendency

over the entire data set, and his historical tendencies towards the specific batter he is facing, where

his tendency is the percent of each pitch type he has thrown. We also added the individual batter’s

Figure 2.2: The zones used to determine the location where the pitch crosses home plate.
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historical performance against each type of pitch. Because each pitcher threw a different number

of unique pitch types, not all the datasets are the same size. At the most, a pitcher could have 103

features associated with each pitch and at the minimum he could have 63. The average pitcher had

81 features. The groups of features are listed in Table 2.3.

2.3.1 Expert Feature Selection

As discussed in [26], the decision of what features to include as inputs in any machine learning

method will make or break the ability of the method to solve, classify, predict, or whatever else one

may want to do. Early in their paper [26], Guyon and Elisseeff present a "checklist" that one should

use in feature selection. If there are many features available, this selection may involve reducing the

number used as inputs (discussed later in Chapter 5), or if one feels there is not enough informative

features, the selection may involve the creation of new inputs, referred to as synthetic feature

generation. The first item on the checklist is "Do you have domain knowledge?" recommending that

if the answer is yes, then it is best to first construct a set of ad hoc features, which is exactly what we

did.

While the author is not a major league baseball player, he has developed significant domain

knowledge through extensive observation and reading of current literature and analysis to create

the synthetic features previously discussed. These features were picked in an effort to mitigate the

uncertainty caused by the nature of the PITCHf/x system and to gain the most benefit from the large

amount of historical data available.

The PITCHf/x system is a visual radar system that can identify many important features of a

pitch, giving input to the MLBAM neural network for pitch classification. While the system is very

accurate, there is still a level of uncertainty that comes with the features it measures. We address

the uncertainty involved in the pitch type classification by only including the pitches classified

with over 80% confidence, which also helps to reduce any uncertainty in the specific statistics of

each pitch. We employ features that are based on the PITCHf/x classification to use the historical

data available (such as each pitcher’s overall historical tendency), but we also use game situational

features that are independent of any computational classification.

Using the features numbered between 20 and 103 as shown in Table 2.3 allows us to employ

an extended data set that gives insight into historical performance and tendencies. Features 1

through 19, with the exception of the previous pitch type, however, are all observable features that

have little to no uncertainty associated with them at all. The combination of these different types

of features strikes a balance between ad hoc game knowledge, definite observable features, and

features that give deeper insight but at the cost of higher uncertainty.
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Table 2.3: Feature groups for each pitch. Numbers are given if the pitcher throws all seven pitch types.
Tendency refers to the percentage of each pitch type.

Number Feature Group Type of Variable
1 Inning Categorical
2 Top or Bottom Binary
3 Outs Categorical
4 Order Position Categorical
5 Total At-Bat Categorical
6 Score Spread Categorical
7 Time of Day Categorical
8 Batter Handedness Binary
9 Strikes Categorical

10 Balls Categorical
11-13 On Base Binary

14 Base Score Categorical
15 Previous At-Bat Result Categorical
16 Previous Pitch Result Categorical
17 Previous Pitch Type Categorical
18 Previous Pitch Location Categorical
19 Pitch Number Categorical

20-23 Previous Pitch Speed,
Break Angle, Break Length,

Break Height

Continuous

24-30 Previous 5 Pitch Tendency Continuous
31-37 Previous 10 Pitch Tendency Continuous
38-44 Previous 20 Pitch Tendency Continuous
45-52 Previous 5 Pitch Strike

Tendency
Continuous

53-60 Previous 10 Pitch Strike
Tendency

Continuous

61-68 Previous 20 Pitch Strike
Tendency

Continuous

69-75 Pitcher Historical Tendency Continuous
76-82 Pitcher Tendency vs. Batter Continuous
83-89 Batter Strike Tendency Continuous
90-96 Batter In-Play Tendency Continuous

97-103 Batter Ball Tendency Continuous
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2.4 Contributions

Prior to this work, feature selection was discussed in [7, 23, 53]. All three contain relatively similar

basic game situation information and all three include some sort of historical data analysis, but

each differ in the specific types of history they examine. In [7], the pitcher’s specific movements and

physical behavior associated with each pitch is used and in [53] and [23], the only historical data

that is included is focused solely on the batter at the plate for each pitch. Each of them look at a

short in-game window prior to the current pitch, but at most go four pitches back.

In our work, we also use similar game situation features, but also include somewhat intangible

ones such as the time of day, e.g., if a pitcher wants to use the setting sun or the night lights in an

effort to disguise a pitch. Our feature selection examines in-game windows of varying length, not

only looking at the type of each pitch but whether or not the pitches are strikes or not, giving insight

into whether a pitcher may feel that he is on a hot or cold streak with a particular pitch. Finally, the

inclusion of overall historical tendencies and successes of pitcher and batter is an effort to replicate

the information that both players may have about the other as the pitch is thrown. The combination

of observational and synthetic features gives deeper insight into the game situation and increases

the predictive accuracy.
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CHAPTER

3

METHODS

As noted in the title of [40], machine learning (ML) and its use in artificial intelligence (AI) has

gone through an explosive period of growth in the last few years. Machine learning methods are

used in many every day products and services that we use, from online product ordering giants

like Amazon to entertainment providers like Netflix, as well as in Google searches and Apple’s Siri,

a voice-activated assistant [50], and even medical diagnoses have been improved using machine

learning techniques [27]. Machine learning has begun to supplement standard statistical analysis in

many sports, being used to predict, not just analyze.

Machine learning methods are divided into two main different categories based on the avail-

ability of information about the data being worked with. Methods that deal with the problem of

classifying or clustering similar groups of unlabeled data together are called unsupervised learning

methods, while methods that use data with an associated label are supervised learning methods.

Supervised learning requires a priori information about the data, what class or label or value match

up with it. Supervised learning methods can be either classification methods or regression methods.

Classifiers output a discrete class assignment, while regression methods output a continuous value

along some interval. Supervised learning requires at the minimum a split in the data between

training and testing sets [47].

Unsupervised learning is a much more complex problem, in which unlabeled feature vectors are
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processed in an effort to find similarities between vectors and group them together. This is referred to

as clustering, where the goal is to accurately categorize the features given. Semi-supervised learning,

as the name would suggest, is a middle ground between the two, where some unlabeled data can

be given as part of the training set, clustering algorithms can be used to help group unclassified

observations in the training data in order to provide more information for the function applied to

the unlabeled testing set [47].

In this work, we examine three different supervised learning methods, specifically classification

methods: Linear Discriminant Analysis (LDA), Support Vector Machines (SVM), and Classification

Trees (CT).

3.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is an extension of Fisher’s linear discriminant. R.A. Fisher wrote

a paper in 1936 [21], detailing a new way to find the separation between two distinct classes of

observations, y0 and y1, given a feature set X̂ .

3.1.1 Fisher’s Linear Discriminant

To find Fisher’s linear discriminant, we first assume that each class y0 and y1 have respective mean-

covariance pairs (~µ0,Σ0) and (~µ1,Σ1). In order to find the separation between the two classes, we have

to find a projection hyperplane ~w , defining the linear combinations ~w · ~x with mean-covariance

pairs ( ~w · ~µi , ~w TΣi ~w ) for i = 0, 1. Fisher defined the separation between the classes with the formula

S =
σ2

between

σ2
within

=
( ~w · ~µ1− ~w · ~µ0)2

~w TΣ1 ~w + ~w TΣ0 ~w
=
( ~w · (~µ1− ~µ0))2

~w T (Σ0+Σ1) ~w
. (3.1)

We define the between class scatter matrix as SB = (~µ1− ~µ0)(~µ1− ~µ0)T , and the within class scatter

matrix as SW =Σ0+Σ1, so we can rewrite the objective function as

S =
~w SB ~w

T

~w T SW ~w
, (3.2)

and we can minimize S by taking the derivative with respect to ~w and setting it equal to zero

dS

d ~w
=
(2SB ~w ) ~w T SW ~w − (2SW ~w ) ~w T SB ~w

( ~w T SW ~w )2
= ~0. (3.3)
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To find the minimum, we solve

(SB ~w ) ~w
T SW ~w − (SW ~w ) ~w T SB ~w = ~0

(SB ~w ) ~w T SW ~w

~w T SW ~w
−
(SW ~w ) ~w T SB ~w

~w T SW ~w
= ~0

SB ~w −
(SW ~w ) ~w T SB ~w

~w T SW ~w
= ~0.

So for λ= ~w T SB ~w
~w T SW ~w , we find the generalized eigenvalue problem

SB ~w =λSW ~w , (3.4)

which can be rewritten as the standard eigenvalue problem

S−1
W SB ~w =λ ~w . (3.5)

For any vector ~x , we find that SB ~x points in the same direction as ~µ1− ~µ0, then

SB ~x = (~µ1− ~µ0)(~µ1− ~µ0)
T ~x =α(~µ1− ~µ0),

where α= (~µ1− ~µ0)T ~x . The solution to the eigenvalue problem is ~w =αS−1
W (~µ1− ~µ0) [49], and so the

maximum separation is found by

~w ∝ (Σ0+Σ1)
−1(~µ1− ~µ0), (3.6)

which is the optimal projection hyperplane for the separation of the two classes.

3.1.2 Binary Classificiation

Linear discriminant analysis is an extension of Fisher’s linear discriminant, that relies on the as-

sumption that both covariance matrices are the same, i.e., Σ = Σ0 = Σ1. Using this property in

equation (3.6) gives ~w ∝Σ−1(~µ1− ~µ0), and the assumption that the best separation would be the

hyperplane between the projections of the two means, ~w · ~µ0 and ~w · ~µ1, leads to the inequality

~w · ~x > c , (3.7)
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where

~w =Σ−1(~µ1− ~µ0), (3.8)

c =
1

2

�

~µT
1 Σ
−1 ~µ1− ~µT

0 Σ
−1 ~µ0

�

. (3.9)

The decision of which class an unknown observation ~x belongs in depends on whether or not

the inequality in (3.7) is satisfied or not, i.e., which side of the separation c the projection falls

on. Figure 3.1 shows a good and bad example of finding the projection hyperplane ~w for a binary

classification.

(a) (b)

Figure 3.1: Example of a bad (a) and good (b) hyperplanes found for LDA.

The classification of an unknown observation can also be written as

ŷ = arg min
y=0,1

1
∑

k=0

P̂ (k |~x )C (y |k ), (3.10)

where ŷ is the predicted class, P̂ (k |~x ) is the posterior probability of class k for observation ~x , and

C (y |k ) is the cost of misclassifying an observation [35].

LDA employs a regularization method with two parameters, γ and δ. γ is used to combat bias in

the eigenvalues of the covariance matrix Σ [46]. Let X be the data matrix and X̂ be the centered data
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(X̂ = X −µwhere µ is the mean of the data), then we define

D = diag(X̂ T X̂ ). (3.11)

We use γ to define the regularized covariance matrix Σ̂ as

Σ̂= (1−γ)Σ+γD . (3.12)

Letting ~µk be the mean vector for the observations in class k = 0, 1 and C be the correlation matrix

of X , then we define the regularized correlation matrix Ĉ as

Ĉ = (1−γ)C +γI , (3.13)

where I is the identity matrix. With D , Σ̂, and Ĉ defined, we rewrite the linear term found in

equation (3.7) as

(~x − ~µ)T Σ̂−1(µk − ~µ) =
�

(~x − ~µ)T D −1/2
� �

Ĉ −1D −1/2(~µk − ~µ)
�

. (3.14)

δ is used as a threshold dependent on the second term in square brackets. The Delta Predictor value

of each feature (discussed later in Chapter 5) is determined by
�

Ĉ −1D −1/2(µk −µ)
�

, and so δ is used

to eliminate features with a Delta Predictor for each class that is less than the parameter, i.e.,

�

Ĉ −1D −1/2(~µk − ~µ)
�

≤δ (3.15)

for all classes k [35].

3.1.3 Multi-Class Classification

To expand LDA classification from two classes to a multi-class problem, we consider N total classes,

each with a unique mean µi , but still with the same covariance Σ. Letting ~µ be the mean of the

means, we find the between class covariance by

Σb =
1

N

N
∑

i=1

(~µi − ~µ)(~µi − ~µ)T , (3.16)

and class separation is defined as

S =
~w TΣb ~w

~w TΣ ~w
. (3.17)
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We employ a "one-against-one" method of classification, which will be explained further in sec-

tion 3.2.4.

3.2 Support Vector Machines

Support Vector Machines (SVMs) are a linear classification tool designed for optimizing prediction

accuracy while avoiding overfitting on training data [47].

3.2.1 Linearly Separable Case

x2

1
|| ~w ||

H0

H1

x1

Figure 3.2: An example of a linearly separable binary problem with SVM.

SVMs were originally designed, like LDA, for binary classification and prediction. Any unknown

observation ~x belongs to one of two classes, y0 or y1, and so the SVM method finds a separation

hyperplane

g (x ) = ~w · ~x + b

between the two classes. Because this separation hyperplane is not necessarily unique, the goal is

to find the optimal hyperplane that maximizes the distance between the two classes. The decision

boundaries run through training data points on either side (the support vectors) of the respective

classes. Given a feature vector ~x ∈ X ∈RM×N and some weight vector ~w and a separating hyperplane
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H = ~w · ~x + b , classification is determined by the decision hyperplane

g (x ) =







~w · ~x + b ≥ 1 if ~x ∈ y1

~w · ~x + b ≤−1 if ~x ∈ y0

(3.18)

which, using the class indicator values y1 = 1 and y0 =−1, can also be written in combination as

yi ( ~w · ~x + b )≥ 1 for i = 0, 1. (3.19)

We define the hyperplanes H0 and H1

H0 : ~x · ~w + b =−1, (3.20)

H1 : ~x · ~w + b =+1 (3.21)

such that any points that lie along H0 or H1 are the defined support vectors. Since the distance

from origin to H0 is |−1−b |
|| ~w || and from the origin to H1 is |1−b |

|| ~w || , the distance between the two that we

are trying to maximize is 2
|| ~w || . Thus, in order to maximize the distance, we have to minimize || ~w ||.

Combining that with (3.18), the optimization problem is

min
1

2
|| ~w ||2, (3.22)

subject to yi ( ~w · ~x + b )≥ 1, for i = 1, . . . , N . (3.23)

Because || ~w || has a square root, it is much simpler to optimize 1
2 || ~w ||2, which becomes a quadratic

problem that can be solved using Lagrange multipliers [24]. The form of the Lagrangian is

L =
1

2
|| ~w ||2−

N
∑

i=0

αi [yi ( ~w · ~xi + b )−1], (3.24)

where αi denotes the Langrange multipliers. Minimizing L requires four Karush-Kuhn-Tucker (KKT)

conditions [47] to be satisfied

L ~w = 0, (3.25)

Lb = 0, (3.26)

αi ≥ 0, i = 1, . . . , N , (3.27)

αi [yi ( ~w · ~xi + b )−1] = 0, i = 1, . . . , N . (3.28)
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In combination with (3.24), we find

~w =
N
∑

i=1

αi yi xi , (3.29)

N
∑

i=1

αi yi = 0. (3.30)

The Langrangian duality can be written in the Wolfe dual representation form, that is

max
1

2
|| ~w ||2−

N
∑

i=0

αi [yi ( ~w · ~xi + b )−1], (3.31)

subject to ~w =
N
∑

i=1

αi yi xi , (3.32)

N
∑

i=1

αi yi = 0, (3.33)

αi ≥ 0, (3.34)

which is equivalent to

max
N
∑

i=1

αi −
1

2

N
∑

i , j=1

αiα j yi yj ~xi · ~x j , (3.35)

subject to
N
∑

i=1

αi yi = 0, (3.36)

αi ≥ 0. (3.37)

When αi > 0, then ~xi is a support vector and the optimal separation hyperplane is

~w =
n
∑

i=1

αi yi ~xi , (3.38)

where n ≤N is the total number of support vectors. To find b , from (3.28), for any nonzero Lagrange
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multiplier αi with corresponding support vector ~xi and label yi , we find

αi [yi ( ~w · ~xi + b )−1] = 0 (3.39)

yi ( ~w · ~xi + b )−1= 0 (3.40)

yi ~xi · ~w + yi b = 1 (3.41)

b =
1

yi
(1− yi ~xi · ~w ) (3.42)

b = yi − ~xi ~w (3.43)

b = yi −
N
∑

j=1

α j yj ~x j · ~xi . (3.44)

Having found ~w and b , the classification function is

g (w ) = sign( ~w · ~x + b ) (3.45)

= sign

�

n
∑

i=1

αi yi ~xi · ~x + b

�

. (3.46)

3.2.2 Nonseparable Case

While SVMs work very well for data that is linearly separable, the reality is that most data is not

so easily separated. When a linear hyperplane cannot be drawn between the two classes, it is the

nonseparable case, and requires a reformulation of the problem. In this instance, we can still use

SVMs to classify unknown points, but need to account for any error. To do so, we know that H0 and

H1 have the forms

~w · ~xi + b =±1, (3.47)

and the distance between them is the margin of size 2
|| ~w || . As shown in Figure 3.3, any training data

~xi with associated class label yi belongs to one of three cases:

• ~xi is outside the margin, correctly classified, and therefore satisfies the inequality

yi ( ~w · ~xi + b )≥ 1.

• ~xi is correctly classified but within the margin, satisfying the compound inequality

0≤ yi ( ~w · ~xi + b )< 1.

• ~xi is incorrectly classified, satisfying the inequality yi ( ~w · ~xi + b )< 0.

To be able to handle all three cases, we introduce a slack variable ξi in the constraint:
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x2

x1

Figure 3.3: An example of a nonseparable binary problem with SVM.

yi ( ~w · ~xi + b )≥ 1−ξi , (3.48)

where the first case has ξi = 0, the second case has 0 < ξi ≤ 1, and the third case has ξi > 1. The

optimization problem now becomes

min
1

2
|| ~w ||2+C

N
∑

i=1

ξi , (3.49)

subject to yi ( ~w · ~x + b )≥ 1−ξi for i = 1, . . . , N , (3.50)

ξi ≥ 0 for i = 1, . . . , N , (3.51)

where C is an error parameter that determines how much emphasis is placed on maximizing the

margin of the hyperplane versus reducing the number of misclassified data points. The Langrangian

method still works for this optimization. The new form is

L =
1

2
|| ~w ||2+C

N
∑

i=1

ξi −
N
∑

i=1

µiξi −
N
∑

i=0

αi [yi ( ~w · ~xi + b )−1+ξi ], (3.52)
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with the respective KKT conditions

L ~w = 0 or ~w =
N
∑

i=1

αi yi ~xi , (3.53)

Lb = 0 or
N
∑

i=1

αi yi = 0, (3.54)

Lξi
= 0 or C −µi −αi = 0, i = 1, . . . , N , (3.55)

αi [yi ( ~w · ~xi + b )−1+ξi ] = 0, i = 1, . . . , N , (3.56)

αi ≥ 0, i = 1, . . . , N , (3.57)

µi ≥ 0, i = 1, . . . , N , (3.58)

as well as the corresponding Wolfe dual representation

max
1

2
|| ~w ||2+C

N
∑

i=1

ξi −
N
∑

i=1

µiξi −
N
∑

i=0

αi [yi ( ~w · ~xi + b )−1], (3.59)

subject to ~w =
N
∑

i=1

αi yi xi , (3.60)

N
∑

i=1

αi yi = 0, (3.61)

C −µi −αi = 0, i = 1, . . . , N , (3.62)

αi ≥ 0, µi ≥ 0, i = 1, . . . , N . (3.63)

Using the equality constraints substituted into the Lagrangian (3.52), we find the maximization with

new conditions

max
N
∑

i=1

αi −
1

2

N
∑

i , j=1

αiα j yi yj ~xi · ~x j , (3.64)

subject to
N
∑

i=1

αi yi = 0, (3.65)

0≤αi ≤C . (3.66)

As in the separable case, we use the KKT conditions to solve for b . Combining the two equality

statements C −µi −αi = 0 and µiξi = 0, we find ξi = 0 if αi = C . Thus, using any value satisfying

0<αi <C and the fact that ξi = 0, we use αi [yi ( ~w · ~xi + b )−1+ξi ] to compute b . We find that the
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solution for b is the same as the separable case, and the decision function

g (w ) = sign ( ~w · ~x + b ) , (3.67)

where b = yi −
N
∑

j=1

α j yj (~x j · ~xi ), (3.68)

is also the same as in the separable case, with the only additional constraint being that the Langrange

multipliers αi are bounded above by C [47].

3.2.3 Kernel Function

In an effort to prevent the need for any error in the classification, we can try to make the data

linearly separable to use with SVM. This technique depends on using the kernel "trick," a method

using a function, denoted K (xi , x j ), to map the original input data into a higher dimensional space,

ideally taking it from the nonseparable case (and thus requiring the slack error variable discussed

previously) to a linearly separable case [11, 27]. There are a variety of functions that can be used in

this mapping, an example of which is shown in Figure 3.4, but a few are the most commonly used:

Linear: K (~xi , ~x j ) = ~xi · ~x j , (3.69)

Polynomial: K (~xi , ~x j ) = (γ~xi · ~x j + b )p , (3.70)

Sigmoid: K (~xi , ~x j ) = tanh(γ~xi · ~x j + b ), (3.71)

Gaussian: K (~xi , ~x j ) = exp(−γ||~xi − ~x j ||2). (3.72)

Because all of the training data is used in the optimization functions as inner products ~xi · ~x j ,

then these functions K (~xi , ~x j ) can be written as the dot product of the functions Φ(xi ) ·Φ(x j ) that

maps data from the original input dimension to some higher dimensional space, i.e.,

Φ:Rm →Rn , (3.73)

where n >m . Replacing every inner product in the optimization with K (~xi , ~x j ), then the differentia-

tion happens in the higher space, where the data is linearly separable. From prior literature [11],

we find the the Gaussian kernel (also known as the radial basis function, or RBF) works the best.

Because we need to be able to use K (~xi , ~x j ) in any dimension, we can show that the RBF is infinitely
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Figure 3.4: Example of a kernel function mapping.

dimensional [27]. Without loss of generality, we assume γ> 0 and ~x ∈Rm , then

K (~xi , ~x j ) = exp(−γ||~xi − ~x j ||2) (3.74)

= exp(−γ(~xi − ~x j )
2) (3.75)

= exp(−γ~x 2
i +2γ~xi · ~x j −γ~x 2

j ) (3.76)

= exp(−γ~x 2
i )exp(γ~x 2

j )exp(2γ~xi ~x j ) (3.77)

= exp(−γ~x 2
i )exp(γ~x 2

j )

�

1+

√

√2γ

1!
~xi

√

√2γ

1!
~x j +

√

√4γ2

2!
~xi

√

√4γ2

2!
~x j + · · ·

�

(3.78)

=Φ(~xi ) ·Φ(~x j ), (3.79)

where

Φ(x ) = exp

�

1,

√

√2γ

1!
x ,

√

√4γ2

2!
x 2, . . .

�

. (3.80)

To apply the kernel trick to a nonseparable SVM [27], we replace every inner product in the
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training algorithm with K (~xi , ~x j ), so the maximization becomes

max
N
∑

i=1

αi −
1

2

N
∑

i , j=1

αiα j yi yj K (~xi , ~x j ), (3.81)

subject to
N
∑

i=1

αi yi = 0, (3.82)

0≤αi ≤C , (3.83)

and the final decision solution is

g (w ) = sign

�

N
∑

i=1

αi yi K (~xi , ~x j ) + b

�

, (3.84)

where b = yi −
N
∑

j=1

α j yj K (~xi , ~x j ). (3.85)

3.2.4 Multi-Class SVM

The extension of binary SVMs to a multi-class method has led to two common approaches to multi-

class classification. For a problem with N distinct classes, the one-vs-all (OVA) method creates N

SVMs, and places the unknown value in whatever class has the largest decision function value.

For our model, we used the one-vs-one (OVO) method, which creates N (N − 1)/2 SVMs for

classification. For a set of p training data, (x1, y1), . . . , (xp , yp ) where xl ∈ Rn , l = 1, . . . , p and yl ∈
{1, . . . , N } is the class label for xl , then the SVM trained on the i th and j th classes solves

min
w i j ,b i j ,ξi j

1

2
(w i j )T w i j +C

∑

`

ξ
i j
` , (3.86)

where (w i j )Tφ(x`) + b i j ≥ 1−ξi j
` if y` = i , (3.87)

or (w i j )Tφ(x`) + b i j ≤−1+ξi j
` if y` = j , (3.88)

ξ
i j
` ≥ 0, (3.89)

where Φ(x ) is the radial basis function used to map the training data xi , j to a higher dimensional

space and C is the penalty parameter [29]. After all comparisons have been done, the unknown

value is classified according to whichever class has the most votes from the assembled SVMs.

Figure 3.5 shows a basic representation of the differences between the OVA and OVO methods.

Computationally, both methods are fairly equivalent, and so since the middle triangle formed by
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Figure 3.5: A visual representation of the one-vs-all method (thin lines) compared to the one-vs-one
method (thick line) from [2].

the OVA method leaves a gap where the classification algorithm can fail to place an unknown value,

but since the OVO method does not have any blind spots, we used it for our classification.

3.3 Classification Trees

While linear discriminant analysis and support vector machines are geometrically-based methods,

decision trees do not rely on optimizing the distance between classes or the projections of classes.

Introduced by Breiman et al., classification and regression trees (CART) are binary decision trees

built using both continuous and categorical data [9]. Both classification and regression trees are

constructed (or grown) the same way, examining all possible splits of all possible features, and then

making a binary decision, yes or no, if the condition is satisfied or not. Figure 3.6 shows a basic

example of what a single decision tree may look like for pitch prediction.

Decision trees can be thought of as analogous to the way a human being makes decisions,

weighing the most important variable first, then making subsequent decisions on other features

of the data [43]. These decisions, since they split the data at some threshold, can be thought of as

geometric partitions, but are not necessarily visualized geometrically as easily as SVMs and LDA

can be. Instead of attempting to minimize distance or margin error, trees attempt to minimize what
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Figure 3.6: Basic Classification Tree for Pitch Selection.

is known as total impurity.

To build a classification tree, all features are considered at first. The algorithm examines each

feature and finds which one, when split, will reduce the impurity of the tree nodes the most. Once

the feature is selected, then the threshold that reduces impurity the most is found, and the process

is repeated until either some impurity threshold is determined or all the end nodes (leaves) are pure,

i.e., they only contain one class of data. Impurity can be found by different measures, but the one

we employ is the measurement used in the MATLAB implementation of classification trees, the Gini

diversity index (gdi), which can be represented as

I = 1−
N
∑

i=1

p 2(i ), (3.90)

where p (i ) is the fraction of each class i = 1, . . . , N as a total part of the number of observations at

that node. Using the gdi to determine the impurity is the same idea as judging the total accuracy of

the tree by randomly selecting an answer from the distribution of each class at the end leaf node [36].

During the training process, the impurity threshold is generally set to be small enough so that all leaf

nodes are pure. An example of two different splits with two different levels of impurity are shown in

Figure 3.7.

Trees can be pruned. If a validation step is included in the training process, then for any parent

node of two separate leaves, if the validation error is the same whether the leaves are included or if

the parent node itself is used as a leaf, then the excess leaves are discarded and the parent node is

used as the final leaf [43].
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Figure 3.7: Two sample splits for a decision tree with four unique classes. The split on the left is better, as
total impurity is lower due to having higher proportions of fewer classes present in each leaf, minimizing
the gdi. Taken from [30].

3.3.1 Random Forests

Introduced by Brieman in 2001, random forests are used to reduce error by grouping together large

numbers of classification trees. Random forests are an extension of the ensemble approach for

decision making, which involves growing multiple trees on the full data set and letting a majority

vote determine the class (we will discuss this in more depth later in the chapter). Random forests

differ in that each tree is grown on a random subset of the training data without replacement. The

use of these random subsets is known as bootstrap aggregation (or bagging). Parameter selection

may be done randomly as well, selecting from some number K of the best features and the best

splits to grow the tree [8].

For some testing set data X with corresponding labels Y, we denote the ensemble set of random

forest classifiers h1(x), h2(x), . . . , hK (x), each trained with random selections from X. Breiman defines

the margin function

mg (X , Y ) = avk I (hk (X) = Y )−max
j 6=Y

avk I (hk (X) = j ), (3.91)

where I (·) is the indicator function. This margin function is a measure of how much the number

of average votes for the correct class Y is greater than the number of average votes for any other

(incorrect) class. The greater the margin function, the greater the confidence in classification there

is. Breiman defines the generalization error as

PE∗ = PX,Y (mg (X, Y )< 0), (3.92)

where the X, Y subscripts mean that the probability is over the X, Y space [8]. In random forests, the

classifiers hk (X) = h (X,Θk )where Θk is the random sequence subset of X used to train the classifier.
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Given a large amount of trees, then from the Strong Law of Large Numbers and the structure of the

trees themselves, we find:

Theorem 3.3.1. As the number of trees N increases, for almost surely all sequences Θ1, . . . ,ΘN , then

PE∗ converges to

PX,Y (PΘ(h (X,Θ) = Y )−max
j 6=Y

PΘ(h (X,Θ) = j )< 0). (3.93)

The proof is shown in [8]. This theorem shows why the random forest approach does not overfit

as more and more trees are added, but instead limit the generalization error. The resistance to

overfitting is a large strength of the random forest formulation, as opposed to a single decision tree,

which can be overfit as more and more training data is added and the tree grows larger and larger.

3.4 DIRECT Algorithm

To save time and skip performing a brute force grid search to determine optimal parameters for

the SVM and LDA methods, we used DIRECT. The DIRECT algorithm was developed in an effort to

combat issues faced by Lipschitzian optimization: a nontrivial generalization to dimensions of N > 1

and the need for an estimate of the Lipschitz constant. DIRECT is easily extended into multiple

dimensions, and requires no initial parameter estimate, just an error measurement function f .

The algorithm begins by transforming the domain of the optimization problem to the unit

hypercube

Ω= {x ∈RN : 0≤ x ≤ 1},

where N is the number of parameters being estimated. DIRECT marks the center of this space c1

and find f (c1), the error function value at the center. Next, it divides the hypercube into potentially

optimal hyper-rectangles (leading to the name, DIviding RECTangles) by evaluating the error func-

tion at the points c1±δei for i = 1, . . . , N , where δ is one-third the length of the side of the hypercube

and ei is the i th unit vector. The algorithm initializes by choosing to leave the best function values

in the largest space, defining

wi =min
�

f (c1+δei ), f (c1−δei )
�

, (3.94)

for 1≤ i ≤N . DIRECT then divides the dimension where wi is smallest into thirds, leading to c1±δei

as the new centers of the new hyper-rectangles, repeating the split for each subsequently larger wi

to find an initialization, an example which is shown in Figure 3.8.

After testing the center c j of each hyper-rectangle j with dimension measure d j , those which
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Figure 3.8: An example initialization of the DIRECT method for two parameter optimization.

minimize the function are identified as potentially optimal, which are then split and tested them-

selves. These potentially optimal rectangles may be found using a few observations defined in [20]:

• If hyper-rectangle i is potentially optimal, then f (ci )≤ f (c j ) for all hyper-rectangles that are

of the same size as i , i.e., di = d j .

• If di ≥ dk for all k hyper-rectangles, and f (ci )≤ f (c j ) for all hyper-rectangles such that di = d j ,

then hyper-rectangle i is potentially optimal.

• If di ≤ dk for all k hyper-rectangles, and i is potentially optimal, then f (ci ) = fmin.

Once a potentially optimal hyper-rectangle is identified with center ci , DIRECT continues to

divide it into small hyper-rectangles along the j th dimension, evaluating at the points ci ±δi e j ,

using a determination similar to the initialization, i.e.,

w j =min
�

f (ci +δi e j ), f (ci −δi e j )
�

, (3.95)

for j ∈ I , where I is the set of all dimensions of maximal length of hyper-rectangle i . The algorithm

continues as in Figure 3.9 until either a maximum number of function evaluations is reached, a

maximum number of iterations is reached, or the error value is within a certain distance of a known

global minimum [20].
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Figure 3.9: An example of four iterations of the DIRECT algorithm. Possible optimal rectangles are high-
lighted in yellow for each iteration.

Cross validation error is a method of model validation that uses a majority portion of the data to fit

the model and the remaining fraction to test it. Cross validation is repeated at least twice on different

splits of the data (called n-fold cross validation for n different splits) to determine a theoretical level

of accuracy for the model. For DIRECT, we use the error of the five-fold cross-validation estimate as

the value we are trying to minimize over a two dimensional rectangle of parameters C and γ for

the SVM and the regularization parameters γ and δ for LDA. Some experiments were attempted

using different class weights as parameters, but the computation time was prohibitively increased

for little to no improvement in results.

3.5 Committee Approach

A reoccurring topic in machine learning is the use of a committee in developing a model for pre-

diction or classification, also referred to as the ensemble approach. Committees occur commonly

when using neural network or decision tree based algorithms [48], and can either be applied as a

total aggregate approach, or can be combined into subsets of all of the trained classifiers [54]. In

order to create a committee, either different types of methods have to be used (such as combining

neural networks with decision trees or decision trees with SVMs), or, if the same type of method is

used, the architecture has be changed in some way that will result in different results trained on the
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same subset. This can be accomplished by varying the hyper parameters for the individual models,

or changing the error threshold for the committee members, among other ways [1]. The committee

approach is recognized to work better than individual models for three reasons [15]: statistically,

computationally, and representationally:

1. Statistical reason: Any machine learning method is searching a possible hypothesis space

H in an attempt to find the best hypothesis. If, however, the amount of training data is too

small compared to the size of H , then the method could find multiple hypotheses in H that

have the same accuracy on the training data. By constructing multiple different classifiers

and using them in an ensemble, this approach "averages" out the votes and therefore reduces

the risk of finding the wrong class.

2. Computational reason: In order to find the best way to classify, many methods perform a

local search that can possibly get stuck in a local optima (the best example being neural

networks using gradient descent training). Even when there is enough training data to avoid

the statistical pitfall, by combining multiple different classifiers, the various local minima

each gets stuck in can be "averaged" to minimize error.

3. Representational reason: When the actual classification function cannot by represented by any

hypothesis in H , then the weighted sums of the hypotheses found by the individual members

of the committee can expand the search space.

A visual representation of the three reasons for the success of the ensemble method is shown

in Figure 3.10. Just as there are a wide variety of machine learning classifiers, there are a variety of

ways methods can be combined in an ensemble committee, as detailed in [15]:

1. The Bayesian Voting ensemble method uses the sum over all hypotheses function h (x ) ∈H ,

each weighted by its posterior probability P (h |S ), where S is the training sample.

2. The Training Set Manipulation method of ensemble construction is a relatively straightforward

approach, simply giving each member of the committee a different random subset of the

training data.

• The most common way of doing this is taking a set fraction of the original dataset

drawn randomly with replacement, called bootstrap aggregation, or bagging, giving each

member of the committee an equal vote.

• By constructing the training sets with disjoint subsets of the training data, the members

of the committee are trained similarly to the way cross-validation is done, leading to the

name cross-validated committees, which again have equal votes.
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Figure 3.10: A visual representation of the three reasons why an ensemble method works better than a
single one, taken from [15]. Each committee member is represented in blue, with the true classifier labeled
in red.

• A third way of manipulating the training data is the ADABOOST algorithm, which oper-

ates similarly to bagging but associates a weight with each committee member’s hypoth-

esis.

3. The Input Feature Manipulation method operates similarly to training set manipulation, but

instead of using different subsets of the data as training, uses different subsets of the features

themselves.
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4. The Output Target Manipulation method uses derived labels with error-correcting output to

determine different committee members that have been trained on different output subsets.

5. The Randomness method uses random initializations to create different members of the

ensemble, usually applied to neural network algorithms that, because of the backpropagation

training method, end up with different weights given different initializations.

The use of a committee approach for Classification Trees and SVMs is not novel, having been used

for binary SVM classification in [3, 4], but to our knowledge it has not been extended to multi-class

prediction outside of a survey paper [22], and certainly not in the realm of pitch prediction.

We decided to apply bagging to our methods, allowing each classifier an equal vote in the end

decision, so our committee of ten models decides according to the pitch type that has the most

votes. For our committee approach, we run DIRECT ten times on random permutations of the

training set, getting ten different C and γ values for SVM and ten different regularization values (γ

and δ) for LDA. We use 100 trees in each iteration of TreeBagger, as trying to optimize the number

of trees in each random forest was computationally inefficient and resulted in no accuracy increase.

In the case of a tie, five extra models are trained, using a random value between the minimum and

maximum values of the ten original parameters.

3.6 Contributions

While the individual machine learning methods we use are well-defined, and the committee method

has been used before, the combination of the DIRECT method of parameter optimization with

the variety of learning methods bundled into the ensemble committee is a new approach. The

redundancy of the random forests inside a committee is also, to our knowledge, an innovative

method of improving classification and prediction accuracy, as we will show in Chapter 4.
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CHAPTER

4

PREDICTION RESULTS

We implemented all of our experiments in MATLAB, using the statistics and machine learning

toolbox for random forests and linear discriminant analysis and the libsvm software [11] for support

vector machines. Due to the committee method, we used the parallel computing toolbox on a

remote server to train each of the ten committee members at the same time to reduce computation

time.

To establish a value for comparison, we found the best "naive" guess accuracy, similar to that

used in [23]. We define this naive best guess to be the percent of time each pitcher throws his

preferred pitch from the training set in the testing set. Consider some pitcher who throws pitch

types 1, 2, 4, and 5 with distribution P = {p1, p2, p4, p5} where
∑

pi = 1, and his preferred training

set pitch is max(Ptrain) = p2, then the naive guess for the pitcher is Ptest(p2). For example, since Jake

Arrieta threw his sinker the most in the training set (26.31%), we would take the naive guess as the

percentage of the time he threw a sinker in the testing set, which gives a naive guess of 34.03%. For

the random forest method, we predicted 48.33% of his pitches correctly, so we beat the naive guess

by 14.30% in his case. For all 287 pitchers, the average naive guess was 54.38%.
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4.1 Comparison of Methods

Because of the way the committees were built for each pitcher, the LDA parameters γ and δ and the

SVM parameters C and γ varied across each member of the ensemble. Table 4.1 shows the average

values for each parameter across all of the pitchers tested.

Table 4.1: Average parameters values for all committee members for all pitchers.

LDA Parameters SVM Parameters
γ δ C γ

0.0882 0.0932 43.1814 0.0688

Table 4.2 shows the prediction results from each individual method (the random forest method

is labeled 100 CT). Results for every individual pitcher tested are given in Appendix A. The number

of pitchers we predicted better than naive is given, as well as the percentage of the 287 total pitchers

that number represents. The average prediction accuracy is shown, given along with the overall

average improvement over the naive guess, denoted P̄I , the average improvement for those pitchers

who did beat the naive guess, denoted as P̄B , and the average amount the pitchers who did not beat

the naive guess failed by, denoted by ¯PW . Given the number of pitchers N with respective prediction

value Pi and naive guess Gi , the number who did better than the naive guess, NB , the number who

did worse than the naive guess NW , we find

P̄I =

N
∑

i
Pi −Gi

N
,

P̄B =

NB
∑

i
Pi −Gi

NB
,

P̄W =

NW
∑

i
Pi −Gi

NW
.

We also give the average range of accuracy between the most and least accurate members of each

committee as well as the average time for each pitcher’s model to be trained and tested.

As shown in Table 4.2, the random forests of classification trees outperformed both LDA and
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Table 4.2: Comparison of prediction results for each method.

Value LDA SVM 100 CT
# of Predictions >Naive 263 251 282
% of Predictions >Naive 91.64 87.46 98.26
Prediction Accuracy (%) 65.08 64.49 66.62

P̄I (%) 10.70 10.11 12.24
P̄B (%) 13.26 12.38 12.52
P̄W (%) -9.08 -5.40 -1.15

Range of Committee (%) 1.52 3.02 2.22
Time (s) 22.75 2,383.8 72.05

SVM by a wide margin. Basing the judgement solely on how many pitchers were predicted better, the

random forests were near-perfect, leading the average prediction accuracy and improvement to also

be higher. LDA outperforms the random forests only when we examine the average improvement

for those pitchers who we are able to beat the naive guess for, but conversely also has much worse

performance for the pitchers we do not beat the naive guess for. At this stage, we undertook further

comparative analysis to determine if the random forests were the best method overall.

4.2 Results Analysis

4.2.1 Results by Type of Pitcher

Because our data set featured both starters and relievers, we wanted to examine if there was any

difference between the prediction accuracy for starters against relievers. Due to the fact that starters

will play many more innings (and therefore throw more pitches), the average starter had 6,390

pitches over the three seasons, and the average reliever threw 2,812 pitches over all three seasons.

The average naive guess for starters was 51.73%, while for relievers it was 57.28%, indicating that

relievers relied on a preferred pitch more than starters did, which makes sense given the nature of a

reliever’s job: pitch for a short amount of innings, get a lot of strikes and outs, and do so using a pitch

they have the most control over. Table 4.3 shows the difference in the random forests prediction

accuracy for starters versus relievers for all three methods considered.

As shown in Table 4.3, starters were more difficult to predict than relievers. This result makes

sense, as starters generally have more time to pitch in each game, so they have more flexibility to use

pitches they have less control over. A starter has more flexibility, more time in the game to salvage a

bad at-bat or giving up runs, whereas a reliever is brought in explicitly to try to mount a comeback
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Table 4.3: Comparison of prediction results for starters and relievers.

LDA SVM 100 CT
Value Starters Relievers Starters Relievers Starters Relievers

# of Predictions >Naive 134 130 125 126 146 136
% of Predictions >Naive 89.33 94.89 83.33 91.97 97.33 99.27
Prediction Accuracy (%) 60.08 70.43 59.89 69.53 61.90 71.79

P̄I (%) 8.35 13.15 8.16 12.25 10.17 14.51
P̄B (%) 10.86 15.69 10.29 14.47 10.48 14.73
P̄W (%) -7.90 -13.92 -2.53 -11.92 -1.12 -1.30

or preserve a lead, and so therefore has more incentive to throw the pitch he is most comfortable

with and has the most accuracy with.

Once again, the random forests had a higher prediction accuracy and improvement than both

LDA and SVM. The only metric where the random forests were not the highest was in the average

positive improvement, beaten slightly by LDA, but the slight gain is overwhelmingly outweighed by

the drastic average loss for those pitchers where LDA did not beat the naive guess.

4.2.2 Individual Results

In Table 4.4, we show the ten starters and ten relievers with the highest prediction accuracy based on

the results from the random forest method. We compare the results for these pitchers with results

from LDA and SVM to examine another metric of measurement between the three methods.

Of the ten starters shown, nine were in the top ten highest naive guesses (and the tenth was the

eleventh highest naive guess), and of the ten relievers shown, eight were in the top ten highest naive

guesses, giving a good measure of how well each method can handle very imbalanced data sets. Of

the 20 pitchers shown, the random forests were either the highest prediction accuracy or tied for

the highest accuracy 15 out of the 20 times, giving us confidence in selection the random forests as

the best performing method.

To give an example of the kind of results we found for each pitcher, Tables 4.5 and 4.6 give the

full breakdown of the predictions for the two pitchers who throw all seven types of pitches: Jeremy

Guthrie and Odrisamer Despaigne. From this point forward in this chapter, we focus on the results

given by the random forest method since it had the best overall performance.

Both pitchers have relatively similar distributions across the pitches they throw (with the excep-

tion of Guthrie only throwing 4 knuckleballs in the whole testing set), but their results demonstrate

two possible types of results of prediction. In Guthrie’s case, the random forests were very biased

towards predicting fastball, and so more than 80% of his fastballs were predicted correctly and only
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Table 4.4: 10 highest predicted starters and 10 highest predicted relievers by the random forests, training
and testing set sizes, naive guesses, and comparison to LDA and SVM results.

Starters
Pitcher Training Testing Naive LDA SVM 100 CT
R.A. Dickey 7786 2385 88.89 89.31 89.94 89.64
Kevin Gausman 2492 1386 88.31 88.89 88.67 88.82
Lance Lynn 7497 2091 86.90 86.85 87.33 87.33
Taijuan Walker 1490 1905 83.94 84.72 83.20 85.20
Bartolo Colon 6293 1944 83.95 83.44 83.90 84.57
Jake Odorizzi 4262 1831 85.53 80.17 80.17 84.27
Alfredo Simon 5080 2185 81.33 79.82 79.91 82.11
Ubaldo Jiminez 6077 2153 80.12 79.01 78.36 80.03
James Paxton 1809 823 71.81 78.25 77.64 78.86
Juan Nicasio 4446 762 75.33 78.48 75.85 78.35

Relievers
Pitcher Training Testing Naive LDA SVM 100 CT
Koji Uehara 2072 472 99.30 99.30 99.30 99.30
Sam Freeman 1053 476 92.86 92.44 87.61 93.91
Zach Putnam 1063 490 87.78 90.02 84.52 91.04
Jake McGee 2334 384 89.84 90.63 91.15 90.36
Brad Brach 1840 800 86.63 90.00 89.75 89.75
Tony Cigrani 3069 468 88.03 88.03 89.32 89.74
Jonathan Papelbon 2067 649 83.20 89.06 88.44 89.52
Zach Britton 1937 674 31.16 87.98 88.43 89.02
Kenley Jansen 2513 588 85.88 86.39 86.54 87.07
Jeremy Jeffress 974 760 76.45 81.71 81.71 84.74
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Table 4.5: 100 CT pitch-specific model predictions for Jeremy Guthrie, overall accuracy 37.94%.

Predicted Pitch Type
FF CT SI SL CU CH KN % Thrown % of Each Correct

A
ct

u
al

Ty
p

e

FF 432 1 4 3 10 69 0 31.30 83.24
CT 111 9 1 0 3 29 0 9.23 5.88
SI 175 1 23 1 4 75 0 16.83 8.24
SL 53 0 2 5 5 10 0 4.52 6.67
CU 223 2 8 2 41 65 0 20.57 12.02
CH 164 1 1 0 2 119 0 17.31 41.46
KN 4 0 0 0 0 0 0 0.24 0.00

Table 4.6: 100 CT pitch-specific model predictions for Odrisamer Despaigne, overall accuracy 53.30%.

Predicted Pitch Type
FF CT SI SL CU CH KN % Thrown % of Each Correct

A
ct

u
al

Ty
p

e

FF 330 5 77 2 17 2 0 28.60 76.21
CT 55 42 19 2 1 8 3 8.59 32.31
SI 108 5 312 2 19 10 0 30.12 68.42
SL 31 2 23 10 2 6 2 5.02 13.16
CU 36 2 43 3 54 3 1 9.38 38.03
CH 72 1 34 0 2 33 2 9.51 22.92
KN 63 3 30 3 5 3 26 8.78 19.55

one other pitch type, changeup, had a higher accuracy than the actual percent each type was thrown.

For Despaigne, the random forests did much better at predicting more than just a single pitch type

correctly.

We show Guthrie and Despaigne since they are the only two pitchers who throw all seven pitch

types, but the outputs for each pitcher can be represented with a similar error matrix.

4.2.3 Results by Count

To give us an idea of whether or not our predictions were behaving the way we would expect them

to, we examined the breakdown of prediction results given the count of the at-bat. Depending on

the count, pitchers and batters behave very differently. A neutral count has the same number of

balls and strikes, a pitcher-favored count has more strikes than balls, and a batter-favored count has

more balls than strikes. Of the twelve possible ball-strike combinations, three are neutral, three are

pitcher-favored, and six are batter-favored (although one could argue a count of 2-2 is tilted more

towards the pitcher, since he could throw another ball without walking the batter, but the batter
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cannot take one more strike). The average prediction accuracy is shown in Table 4.7.

Table 4.7: Average Prediction accuracy for each pitch count for the 100 CT method. Pitcher favored
counts are shown in bold, batter-favored counts in italics.

Count (B-S) 100 CT
0-0 71.48
0-1 64.77
0-2 62.27
1-0 70.01
1-1 61.15
1-2 58.94
2-0 74.78
2-1 67.43
2-2 59.84
3-0 83.00
3-1 75.62
3-2 67.53

The results we found for each count is encouraging, as we would expect that a pitcher facing a

batter-favored count would behave more predictably, relying on pitches he is most comfortable

with, and therefore has thrown more. In a pitcher-favored count, the pitcher has more flexibility

and ability to use a pitch he may not have as much control over, and so will most likely be less

predictable. Table 4.8 shows the number of pitchers who we predicted 100% of the time for each

given count, by starters and relievers.

On the very batter-favored count of 3-0, we were able to predict 104 pitchers (36.24% of 287

pitchers) totally correct, i.e., for every pitch they threw on a 3-0 count, we predicted them all exactly.

4.2.4 Correlation with Standard Statistics

In an effort to determine if the prediction success correlated with any standard measure of pitcher

success, we looked at the ten pitchers whose prediction improved over the naive guess the most,

and those ten who improved the least (or were worse than the naive guess). We compared the

improvement over the naive guess to the pitchers’ wins-above-replacement (WAR) and fielding-

independent-pitching (FIP) statistics. FIP is an extension of a pitchers’ earned run average (ERA)

that examines only outcomes over which the pitcher had control. A good pitcher will have a low FIP
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Table 4.8: Number of pitchers predicted 100% accurate for each count.

Count (B-S) Starters Relievers Total
0-0 0 0 0
0-1 0 1 1
0-2 0 0 0
1-0 0 2 2
1-1 0 1 1
1-2 0 1 1
2-0 1 13 14
2-1 0 5 5
2-2 0 1 1
3-0 40 64 104
3-1 6 27 33
3-2 1 4 5

and a high WAR. The comparisons are shown in Table 4.9. FIP and WAR statistics were found via

baseball-reference.com.

Table 4.9: 100 CT Prediction Improvement Compared to FIP and WAR.

Most Improved Least Improved
Pitcher Team % Imp. FIP WAR Pitcher Team % Imp. FIP WAR
Jim Johnson ATL 79.45 3.73 0.56 Marco Estrada TOR -1.74 4.40 3.60
T.J. McFarland BAL 72.84 4.47 -0.30 Jordan Lyles COL -1.37 3.79 0.30
Luis Avilan LAD 70.24 3.66 0.29 Jared Hughes PIT -1.30 3.81 1.20
Jesse Hahn OAK 67.84 3.51 1.00 Jake Odorizzi TB -1.26 3.61 3.60
Hector Santiago MIN 63.40 4.77 1.80 Ubaldo Jiminez BAL -0.09 4.01 2.60
Jaime Garcia STL 63.04 3.00 3.90 Koji Uehara BOS 0.00 2.44 1.30
Joe Kelly BOS 61.95 4.18 1.00 Lance Lynn STL 0.43 3.44 3.50
Kyle Gibson MIN 59.88 3.96 3.20 Kevin Gausman BAL 0.50 4.10 1.30
Tanner Roark WSH 58.06 4.70 0.70 Jake McGee COL 0.52 2.33 1.00
Zach Britton BAL 57.86 2.01 2.50 Bartolo Colon NYM 0.62 3.84 1.00

Average 65.46 3.80 1.47 Average -0.37 3.58 1.94

In Table 4.9, we examined those pitchers who improved over the naive guess the most rather

than just the pitchers with the highest overall prediction accuracy because some pitchers highly
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favor one type of pitch, sometimes throwing it upwards of 90% of the time, and so even with only a

small improvement they would be one of the highest predicted pitchers. A look back at Table 4.4

will show many of those pitchers with high naive guesses also appearing in the "Least Improved"

column in Table 4.9. Many of the pitchers appearing in the "Most Improved" column completely

abandoned their formerly preferred pitch in the testing set, and therefore had a naive guess of 0.

After examining the standard metrics next to the prediction improvement, we found a small

correlation between the ability of the classification trees to improve on the naive guess and the

overall pitcher performance. On average, the pitchers who were hardest to beat the guess had a WAR

almost 0.5 higher than those who were most improved on and around 0.2 less FIP. While not a huge

difference in performance metrics, these results suggest that the harder it is to predict a pitcher, the

better he is in a game.

4.3 Contributions

Our results are better than the start of the art presented in [7], even more so considering that we

examine up to seven pitch types as opposed to only four. All three of the methods we examined

outperformed the out-of-sample results given in [7], with the random forest method giving the best

performance, LDA giving the next best, most efficient, and most consistent (i.e., lowest variability

within the committee) performance, and SVM performing the worst overall. The use of multiple

random forests together in an ensemble method was able to improve on the performance of LDA

without costing too much in computation time, and therefore are the most promising method to

examine further for prediction.
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CHAPTER

5

DDAGS AND FEATURE ANALYSIS

One of the most important part of any machine learning method is the feature selection (as discussed

in Chapter 2) and the subsequent reduction in the number of features to avoid overfitting to the

training data, leading to poor out of sample performance. To explore feature reduction within

our methods, we decided to use a pair of feature reduction techniques prevalent throughout the

literature, such as [27]. An issue, however, arose due to these techniques being built for binary

classifiers. In order to overcome this obstacle, we needed to employ a multi-class classifier that still

behaved like a binary one, which led us to Decision Directed Acyclic Graphs.

5.1 Directed Acyclic Graphs

Directed Acyclic Graphs (DAGs) are directed graphs of finite size with no cycles, i.e., a graph that

has a specified number of edges and vertices, where each edge points to a single vertex, and there is

no way to cycle back to a vertex once you have followed an edge from it. DAGs are used in variety

of mathematical settings, but have been implemented in machine learning using an approach

analagous to a decision tree. Referred to as a decision directed acyclic graph (DDAG), it is a graph

where some form of a decision is placed at each vertex that has at least one edge pointing away from

it, leading to nodes at the end, which are vertices that only having edges pointing towards them [45].
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We use the definition of DDAGs from [39]:

Definition 1. Decision Directed Acyclic Graphs (DDAGs): Given a space X and a set of boolean

functions F = { f : X →{0, 1}}, the class DDAG(F ) of Decision DAGs on N classes over F are functions

which can be implemented using a rooted binary DAG with N leaves labeled by the classes where

each of the K =N (N −1)/2 internal nodes is labeled with an element of F . The nodes are arranged in

a triangle with the single root node at the top, two nodes in the second layer and so on until the final

layer of N leaves. The i th node in layer j <N is connected to the i th and (i +1)st node in the ( j +1)st

layer.

To evaluate some DDAG graph G on an input x , start at the root node’s binary function. The

input exits the root node either to the right or left, then the next node’s binary function operates on

the input, again exiting either to the left or right, continuing down the graph until the input reaches

a class labeled node, also called a leaf. A DDAG can be considered equivalent to operating on a list

where each binary function at the internal nodes eliminates one possible class from the list that is

initialized with all classes. The evaluation on the DDAG ends when only one class remains in the

list [39].

Similar to the one-vs-one and one-vs-all methods, a DAG implementation can be used for

support vector machines [29, 39]. In this instance, the support vector machines are used as the

decisions for the interior vertices, and the class labels are the end vertices. Because each vertex is

only making a binary decision, to implement the DAGSVM construction, each binary combination

of classes has to have a classifier trained for it, resulting in N (N −1)/2 total classifiers trained.

The DAG implementation is not limited solely to SVMs. To examine whether the alternate

formulation of the multiclass problem changed our results, we also employed binary LDA and

random forest classification as intermediate decision vertices. Again, this required training N (N −
1)/2 classifiers of each type to populate the graph. In an attempt to fully enhance classification,

we employed the DIRECT parameter optimization method for each of the binary classifiers in the

DAGLDA and DAGSVM constructions.

Because the DDAG formulation is similar to a decision tree, we can visualize it in a similar way.

Figure 5.1 gives a graphical representation of how we employed the directed graph method for

each pitcher, starting with the binary classifier for the "first" and "last" type of pitch thrown, and

progressively working towards the middle pitches separation.

For example, if a pitcher throws the five pitches given as an example in Figure 5.1, then for an

unknown pitch, the inputs will first be fed into the 1v5 (FF vs CH) binary classifier, and if the pitch is

classified as 1, then the unknown features will be used as inputs into the 1v4 binary classifier. If that

classifier gives a result of 4, the pitch proceeds to the 2v4 classifier, and assuming it is classified as 2
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FF1 CT2 SI3 SL4 CU5

1v2 2v3 3v4 4v5

1v3 2v4 3v5

1v4 2v5

1v5

44 533221

1 3 2 4 3 5

1 4 2 5

1 5

Figure 5.1: A DAG visualization for the classification of five pitch types. A binary classifier is trained for
each pair of pitch types in the ellipses.

by this binary decision then to the 2v3 classifier, and if it is classified as 3 from that binary model

then the final answer is 3, or sinker. This example is shown visually in Figure 5.2.

FF1 CT2 SI3 SL4 CU5

1v2 2v3 3v4 4v5

1v3 2v4 3v5

1v4 2v5

1v5

44 533221

1 3 2 4 3 5

1 4 2 5

1 5

Figure 5.2: An example of how the DAG classifier labels an unknown input.

While the DDAG implementation was worth exploring as an alternative formulation of the multi-

class classification problem (the results of which are shown in Table 5.2), we also utilized the unique
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interior binary structure of the DAG to employ preprocessing feature selection methods. Because

these methods are designed for and only work with binary classifiers, the N (N − 1)/2 classifiers

trained in the construction of the DAG are able to undergo individual feature reduction at each

individual node, allowing for each binary decision to be optimized on its own, and not risk losing

important data that may be disregarded due to the correlations between the other classes.

Our work focused on two specific binary methods of feature selection and reduction. Because

these are preprocessing techniques, we had to be able to find the most amount of information

possible from each data set before the classifiers were trained. Similar to [27], we used receiver

operating characteristic (ROC) curves as one method of feature reduction for each binary classifier.

We also examined the F-score method as detailed in [13] due to its use in previous work as an SVM

feature selection strategy.

5.2 Feature Reduction

One of the most commonly cited issues in machine learning is the so-called "curse of dimen-

sionality." This problem arises most often when there are more features associated with a given

observation than the number of observations themselves. Due to a high number of features, without

an equivalently high number of observations, the features can be thought of as sparse since the

likelihood that every possible combination will not be seen in training, and can lead to overfitting of

the training data. Overfitting results when the classifier is trained too tightly on the training set, and

cannot adapt to or accurately classify out of sample observations from the testing set. By reducing

the number of features given for each data point, then the classifier is more likely to be able to

predict the testing set [34].

While the PITCHf/x data we gathered for our experiments does not necessarily run the risk of

overfitting (the highest any ratio of the number of features to the number of training observations

would be is roughly 15%), feature reduction techniques can still be useful in providing a more

adaptable framework for out of sample prediction.

5.2.1 F-Scores

As described in [13], F-scores are used to measure the discrimination between two classes within a

certain feature. For some set of feature vectors xj, j = 1, . . . , n , where the number of instances of 1 is
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n1 and the number of instances of -1 is n−1, then the F-score of the i th feature is

F (i ) =
(x̄1i
− x̄i )2+ (x̄−1i

− x̄i )2

1
n1−1

n1
∑

j=1
(x1 j ,i

− x̄1i
)2+ 1

n−1−1

n−1
∑

j=1
(x−1 j ,i

− x̄−1i
)2

, (5.1)

where x̄i , x̄1i
, x̄−1i

are the means of the i th feature of the entire set, the set of 1’s, and the set of -1’s,

respectively; x1 j ,i
is the i th feature of the j th instance of 1, and x−1 j ,i

is the i th feature of the j th

instance of -1.

Once the F-scores of each feature are found, we determine a threshold to eliminate features

with a score less than. We tested thresholds of 0.01, 0.005, and 0.001 for all of the pitchers examined.

Table 5.1 shows the average amount of features remaining given each thresholding level for pitchers

throwing various pitchtypes. Figure 5.3 shows the F-score plots for Cleveland Indian’s pitcher Corey

Kluber for all six binary decisions made in the DDAG implementation as well as the thresholding

levels in different colors.

As seen in Figure 5.3, each binary split can have very different amounts of features remaining

to be used as input data, which can then affect whether some binary decisions are more accurate

than others within the DDAG construction. Table 5.2 shows the results of the different levels of

thresholding we implemented.

5.2.2 ROC Curves

First developed during WWII for object detection on battlefields, receiver operating characteristic

(ROC) curves were shortly thereafter introduced in many application areas as a method of visualizing

the traditional confusion matrix of a classifier [18]. ROC curves are generated by plotting the true

positive rate (TPR, the sensitivity) of a classifier against its false positive rate (FPR, 1 - specificity) as

the threshold (the value of the feature) increases. We define TPR and FPR as

TPR=
tp1

t1
, (5.2)

FPR=
fp−1

t1
, (5.3)

where tp1 is the number of correct predicted 1’s, fp−1 is the number of incorrectly predicted -1’s, and

t1 is the total number of true 1’s. Because these curves are on a scale of 0 to 1, all the features used,

including categorical features, must be normalized. To decide whether or not to keep a feature, we

examine the area under the curve (AUC). It is common practice to eliminate features with an AUC

less than 0.5, which is the equivalent of simply guessing randomly [42]. An example ROC curve is
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Figure 5.3: F-Score plots for the six binary splits of pitches thrown by Corey Kluber. F-Scores are shown in
log10. Thresholding levels of 0.01, 0.005, and 0.001 are shown in blue, green, and red, respectively.
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Table 5.1: Average features remaining given different thresholding measures for F-Scores and ROC AUC.

Pitches Thrown Binary Decisions # Features AUC<.5 FS<.001 FS<.005 FS<.01
2 1 63 25.13 42.13 19.75 11.13
3 3 71 35.81 51.4 34.1 25.01
4 6 79 39.39 58.9 40.01 30.91
5 10 87 44.53 66.74 47.62 37.83
6 15 95 45.91 70.35 49.96 39.59
7 21 103 41.43 77.48 51.90 39.17

shown in Figure 5.4 for Corey Kluber for the fastball vs. curveball decision made in the DDAG. The

two highest and two lowest AUCs are shown.

Most pitchers had ROC behavior similar to Kluber when the data was split up for the individual

decisions. Because the binary decisions were being made about each pair of pitch types, generally

the least informative features were the historical or game-time information about the pitches that

were not being considered, resulting in their elimination from the training set. Table 5.2 shows the

results of eliminating the features with an AUC < 0.5 for each DDAG implementation.

5.2.3 Reduced Subset Results

Due to issues in the way the binary subsets were constructed, we eliminated five pitchers from the

DAG implementation. These errors were caused by the pitchers throwing so few pitches of a certain

type that the training or testing sets had none of that type of pitch in them. We examined how many

features were, on average, left for the pitchers who threw each number of pitch types (since the size

of the dataset changes for the different numbers of pitches thrown) and show the results in Table 5.1.

The subsequent reduced subset prediction results are shown in Table 5.2.

For both LDA and SVM, we again used the DIRECT method for parameter optimization of γ and

C for SVMs and δ and γ for LDA. We used DIRECT to optimize for each individual binary classifier

on the interior of the tree, which caused a dramatic spike in computation times for both methods

as shown in Table 5.2 in the standard DDAG implementation, but was lessened out by the feature

reduction techniques.

Once again, the random forest method has the best overall performance, improving on the

standard implementation prediction results for both the regular DAG without any feature reduction

and the DAG with the ROC curve feature reduction. Past that, however, as fewer and fewer features

are used (since as the F-score threshold goes up, less features are used in the classifier), the random

forest performance declines. Since random forests already only use a subset of the data for the
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Figure 5.4: Highest two AUCs and lowest two AUCs for Corey Kluber for Fastball vs. Curveball split. The
highest AUC, 0.8414, for his historical tendency to throw a fastball, is shown in green; the second-highest,
0.7123, for the percent of the last five pitches that were curveballs in blue; the second-lowest, 0.322, for
his historical tendency to throw a changeup in magenta, and lowest, 0.1219, for his historical tendency to
throw a slider in red. The black line in the middle has an AUC of 0.5.
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Table 5.2: Average values comparing different preprocessing techniques for the reduced subset of 282
pitchers.

SVM
Value DAG AUC<.5 FS<.001 FS<.005 FS<.01

# Better 251 268 255 262 265
% Better 89.00 95.04 90.43 92.91 93.97

Acc. 64.86 63.67 65.35 65.70 65.51
Imp. 10.59 9.40 11.08 11.43 11.24

PI 12.58 10.10 12.92 12.76 12.52
NL -4.69 -3.19 -4.38 -5.41 -7.99
CR 3.19 3.85 2.88 2.81 2.73

Time 11,499 5,950.9 6,839.2 4,236.2 3,265.7
LDA

Value DAG AUC<.5 FS<.001 FS<.005 FS<.01
# Better 261 274 260 260 259
% Better 92.56 97.16 92.20 92.20 91.84

Acc. 64.90 64.30 65.39 65.21 65.11
Imp. 10.63 10.03 11.12 10.94 10.84

PI 13.07 10.54 12.97 12.80 12.68
NL -11.63 -0.90 -10.06 -9.92 -9.35
CR 1.68 2.14 1.76 1.52 1.42

Time 963.1 812.6 440.6 340.6 337.2
100 CT

Value DAG AUC<.5 FS<.001 FS<.005 FS<.01
# Better 278 277 274 268 258
% Better 98.58 98.23 97.16 95.04 91.49

Acc. 66.91 66.90 66.89 66.20 65.22
Imp. 12.64 12.63 12.62 11.93 10.95

PI 12.90 12.92 12.99 12.81 12.36
NL -1.73 -1.13 -2.00 -2.97 -3.13
CR 2.42 2.45 2.36 2.42 2.39

Time 116.1 111.8 122.1 105.5 100.8

construction of each tree, as well as practicing a type of feature selection in the pruning method,

reducing the number of features overall is not going to boost performance. Regardless of the selection

method, however, random forests were by far the fastest method since there was no parameter

optimization employed.

We noticed the opposite trend with SVMs, noting in fact the performance generally increased as
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fewer features were used in the training set. This is most likely due to the kernel trick and its effect

on finding the optimal hyperplane, as reducing the number of features usually leads to less risk of

overfitting and better performance on out of sample observations.

5.3 Variable Importance

While ROC curves and F-scores are used as pre-processing techniques to eliminate those features

that provide the least amount of information, post-processing techniques can be used to determine

what features are the most important. Post-processing techniques are dependent on a model being

made already, and so we had to use the models created for the results in Chapter 4 to find measures

of variable importance: the permuted variable delta error (PVDE) for the random forests and the

delta predictor (∆ P) for LDA.

Before we expanded our dataset to include all 287 pitchers and all seven pitch types, our prelim-

inary experiments were run on a smaller, less comprehensive dataset that only had 110 pitchers and

incorporated five pitch types. We employed variable importance methods on the models created in

that instance, including for SVM, using the central difference derivative based sensitivity equation

∂ g j

∂ xi
≈

g j (xi +h )− g j (xi −h )

2h
, (5.4)

where g j is the decision value for the j th class and xi is the i th feature. This derivative approximation

did not work well due to a variety of factors, most notably the change of dimensionality caused by

using the kernel function and the multiple types of input (i.e., continuous vs. binary vs. categorical),

and so an accurate measure of variable importance for the SVMs could not be found.

The delta predictor for LDA, as previously described in Chapter 3, can be used in conjunction

with the δ parameter to reduce the number of features used in the testing set. The delta predictor is

found once the regularized linear term

(~x −µ)T Σ̂−1(µk −µ) =
�

(~x −µ)T D −1/2
� �

Ĉ −1D −1/2(µk −µ)
�

(5.5)

is established, where the terms are found as detailed previously. The right-most term of the right-

hand side of the equality is the vector of delta predictors, i.e.,

∆P =
�

Ĉ −1D −1/2(µk −µ)
�

. (5.6)

For a feature set with N variables, this is an N -by-1 vector where the magnitude of each entry is

the measure of variable importance [35]. The MATLAB implementation of discriminant analysis
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provides the vector for each model constructed.

MATLAB also gives a convenient flag that can be turned on when constructing random forests

to include a variety of measures of variable importance, including the number of splits for each

predictor, two different permuted variable margin differences, and the one we use as our measure

of variable importance for the random forests: permuted variable delta error (PVDE).

The PVDE is found during the construction of each random forest for each variable by first

finding the expected error (EO i ) against a hold-out validation set, similar to the cross-validation

used for the parameter optimization. The values for a particular variable xi are then randomly

permuted across every observation in the subset of the training data used for the tree construction,

and the expected error value (EP i ) is found against the same holdout set. The PVDE for each variable

is found by

PVDEi = EO i −EP i , (5.7)

again output as an N -by-1 vector where the magnitude is the measure of variable importance to the

model [36].

Table 5.3 gives the ranks of the delta predictors and permuted variable delta error for each input

feature group (with 29 feature groups, total), respectively. The ranks were found by first averaging

the values for each pitcher over all ten models created, then sorting those averages by magnitude,

and then averaging each rank across each variable in the group. Once the group ranks were found,

we sorted the averaged group ranks to find the overall importance.

Some of the variable importance results are consistent with what we would expect, but many

others are not, especially the disparity between the rankings of the two methods. As seen in Table 5.3,

the LDA and random forest models agree on the relative importance of a few of the inputs (such as

the strike and ball count going into each pitch) but differ widely on others. For example, the LDA

models rank the batter handedness as the 25th most important variable group while the random

forests consider it to be the 7th most important, with that feature group having the largest absolute

difference between the two method. The next largest difference between the two methods comes

for the Previous 10 Pitch Tendency group, which the LDA model ranks as the 4th most important

but the random forests rank as the 17th most. To further analyze the variable importance results, we

again broke the information down between starters and relievers, shown in Table 5.4.

There are few wide disparities in the importance for starters and relievers for each model type,

but the small differences are fairly consistent with what we would expect. For the LDA mode, the

top or bottom of the inning’s importance increases by five for relievers, which is reasonable since

a reliever will change his pitch selection if he knows his team is guaranteed another at bat or not
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Table 5.3: Variable Importance for LDA Delta Predictor and CT Permuted Variable Delta Error for all
pitchers. 1 means highest importance, 29 means lowest importance.

Feature Group Delta Predictor PVDE
Inning 13 16

Top or Bottom 20 29
Outs 26 27

Order Position 15 18
Total At-Bat 7 6

Score Spread 25 21
Time of Day 19 25

Batter Handedness 23 7
Strikes 3 2
Balls 2 3

On Base 28 28
Base Score 29 19

Previous At-Bat Result 27 24
Previous Pitch Result 22 10
Previous Pitch Type 1 4

Previous Pitch Location 18 8
Pitch Number 10 1

Previous Pitch Stats 5 5
Previous 5 Pitch Tendency 6 13

Previous 10 Pitch Tendency 4 17
Previous 20 Pitch Tendency 8 14

Previous 5 Pitch Strikes 12 11
Previous 10 Pitch Strikes 9 15
Previous 20 Pitch Strikes 14 20

Pitcher Historical Tendency 24 26
Pitcher Tendency vs. Batter 21 23

Batter Strike Tendency 17 22
Batter In-Play Tendency 11 12

Batter Ball Tendency 16 9

(i.e., the top of the ninth inning, if his team is up, a reliever will pitch to prevent runs and prevent

his team from going back to the plate). For the random forest importance, the largest difference is

in the batter in-play tendency, with the reliever models assigning a higher importance, suggesting

that the relievers are more adverse to throwing a pitch that a batter may put in play at all, as that

increases the risk of runs being scored.
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Table 5.4: Variable Importance for LDA Delta Predictor and CT Permuted Variable Delta Error broken
down by starts and relievers.

Delta Predictor PVDE
Feature Group Starters Relievers Starters Relievers

Inning 12 13 16 16
Top or Bottom 21 16 29 29

Outs 27 26 27 27
Order Position 15 18 18 18

Total At-Bat 8 7 6 6
Score Spread 26 24 21 21
Time of Day 18 20 24 25

Batter Handedness 20 25 7 7
Strikes 3 2 5 2
Balls 2 3 2 5

On Base 28 27 28 28
Base Score 29 29 20 19

Previous At-Bat Result 25 28 25 24
Previous Pitch Result 24 22 11 10
Previous Pitch Type 1 1 3 3

Previous Pitch Location 17 21 8 8
Pitch Number 10 11 1 1

Previous Pitch Stats 5 5 4 4
Previous 5 Pitch Tendency 6 6 13 13

Previous 10 Pitch Tendency 4 4 17 17
Previous 20 Pitch Tendency 7 8 12 14

Previous 5 Pitch Strikes 11 12 10 12
Previous 10 Pitch Strikes 9 9 15 15
Previous 20 Pitch Strikes 14 15 19 20

Pitcher Historical Tendency 23 23 26 26
Pitcher Tendency vs. Batter 22 14 23 23

Batter Strike Tendency 19 17 22 22
Batter In-Play Tendency 13 10 14 9

Batter Ball Tendency 16 19 9 11

56



5.4 Contributions

Feature selection and reduction is an important topic in any machine learning application. To the

best of the author’s knowledge, the use of the DDAG architecture to allow the use of binary feature

reduction techniques such as F-Scores and ROC curve analysis for a multi-class method is novel.

Because measuring the discrimination between multiple classes is a difficult and ill-defined task,

using the binary separation techniques allows for useful information to be found and previously

employed reduction methods to be used. Other works in the pitch prediction domain such as [7], [53],

and [23] have mentioned what features are the most important in their work, but have not broken

the full analysis down in the detail shown in Table 5.3. Since the models used previously have all

focused on SVMs, the use of the LDA Delta Predictor and the random forest Permuted Variable Delta

Error as measures of importance for pitch prediction is also novel.
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CHAPTER

6

LIVE IMPLEMENTATION

At the start of this research, one of the reasons we examined different machine learning methods of

prediction was to determine what would work best in real time in a live game environment. The

previous experiments were all done in a "bulk" setting, i.e., predicting all of the testing set all at once.

While this gives a way to measure the effectiveness of each method, the construction of the testing

datasets was not reflective of the way a dataset would be built during an actual baseball season.

Any live prediction training set could only be updated with after each game, and would only show

historical pitcher or batter tendencies up to the day before a game was played.

The data for the live predictions was parsed appropriately, creating pitcher preferences and batter

performance measures up until the day being predicted. We examined the games in September 2016,

creating models for each pitcher for not only predicting the type of pitch thrown, but also the speed

of the pitch and the location of the pitch (as determined by the zones detailed in Chapter 2). Models

were created for every pitcher who pitched in September, as long as he had pitched at some point

after the All-Star break (mid-July) and before September 1st.

Along with the rebuilt datasets, the other difficulty involved in implementing the prediction

in real time was the programming language the prediction method was written in. MATLAB is

a powerful software originally designed for manipulating matrices and expanded to include the

statistics and machine learning toolboxes we employed in the original results, but it is not open-
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source. Because it requires a license for each user in an academic, government, or business setting,

it is not necessarily flexible enough for the design of the live prediction environment [19]. These

limitations required us to find a different language to use, which led us to employ Python. Because

a large amount of machine learning work done by mathematicians is reliant on MATLAB and its

licenses in academia, we feel it is important to introduce a different language and its capabilities in

general as well as for our application.

6.1 Conversion to Python

Python is high-level dynamic programming language that was first introduced in 1991 with the

updates Python 2.0 and Python 3.0 following in 2000 and 2006, respectively. Guido van Rossum, a

Dutch developer, came up with the language as a "hobby" programming project [41]. Designed to

support multi paradigms, Python allows for object-oriented and structure programming, among

others. The language was built to be extendable, resulting in a plethora of open-source packages

that can be downloaded and called with an "import" command to increase the versatility of the

code.

The guiding philosophy behind the Python language can be summed up in "The Zen of Python"

included in the Python Developer’s guide. This philosophy [38] contains such single-sentence

guidelines as:

• Beautiful is better than ugly.

• Explicit is better than implicit.

• Simple is better than complex.

• Complex is better than complicated.

• Flat is better than nested.

• Sparse is better than dense.

• Now is better than never.

• Although never is often better than *right* now.

• If the implementation is hard to explain, it’s a bad idea.

• If the implementation is easy to explain, it may be a good idea.
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Python can be used to scrape and download data from the web, similar to the SQL process we dis-

cussed in Chapter 2. To create an up-to-date, Python-compatible dataset, we used the BeautifulSoup

package to download and parse the .xml pages from gd2.mlb.com.

Similar to the statistics and machine learning toolbox in MATLAB, Python uses the scikit-learn

package to build and apply different machine learning methods. Because we use the ensemble

method, we use the subpackage sklearn.ensemble to maintain a similar methodology to the testing

done in MATLAB. We constructed our models using the RandomForestClassifier structure from

scikit-learn. These random forests are built similarly to the TreeBagger class, using the Gini diversity

index as a measure of impurity and employing pruning to reduce the size of the trees.

As discussed previously, we limited the training data to only what was available prior to the

day tested. Datasets for each pitcher, as well as up-to-the-day summaries for each batter, were

constructed to be used. An example of an individual pitch and subsequent output for pitch type,

speed, and location is given in Figure 6.1.

We decided to test our live prediction method on the tail end of the 2016 baseball season, between

September 1st and October 2nd, the last day of the regular season. There was a large amount of data

available to test on, and the characteristics of the data are shown in Table 6.1.

Table 6.1: Details of the testing dataset from 9/1/2016 to 10/2/2016 used for the live predictions.

Value Amount
Days 32

Total Pitches 111,425
Pitcher Appearances 3,892

Unique Pitchers 544
Pitches/Day 3,482

Pitches/Appearance 28.63
Pitch Type # Thrown

FF 58,102
CT 4,588
SI 6,974
SL 17,075
CU 13,272
CH 11,222
KN 192

Instead of simulating every pitch one-by-one, we designed a bulk testing method that stayed
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Figure 6.1: Example of the Python interface for live pitch prediction on the command line in OSX.

true to the up-to-the-day training set but also accounted for the game situational data. Part of the

live prediction datasets includes additional features: the pitcher’s historical tendency given the

current count he is facing. While not used in the MATLAB results, we include the new synthetic

features here in hope they will help raise prediction accuracy even higher. The results from testing

from the first day of September until the end of the 2016 regular season are shown in Table 6.2.

For the sake of efficiency, the results shown use 20 trees per random forest created. Because we

attempted to create models to predict both the speed and the location, we have included those

results, which we will discuss later.∆Speed is the average difference between the predicted speeds

and the actual speeds, and the zone accuracy is simply the percentage of locations we predicted
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correctly.

Table 6.2: Results of the live prediction method for September 1st, 2016 through October 2nd, 2016.

Prediction Acc. ∆Speed Zone Acc.
Value 58.69% 14.0649 12.29%

Overall, the pitch type accuracy did a satisfactory job, as the amount of training data varied

wildly for the pitchers we examined over the course of the 32 days. The random forests did not do as

well as the MATLAB implementation, but that could be due to a few factors, the reduced number

of trees and training set size among them. The error matrix for the entire testing set is shown in

Table 6.3 in a similar style as the previous individual pitcher results were.

Table 6.3: Python live pitch predictions for September 1st through October 2nd, 2016, with overall accu-
racy 58.69%.

Predicted Pitch Type
FF CT SI SL CU CH KN % Thrown % of Each Correct

A
ct

u
al

Ty
p

e

FF 53322 354 803 1839 1154 610 20 52.14 91.77
CT 2766 1356 200 16 133 114 3 4.12 29.56
SI 787 168 5386 362 189 82 0 6.26 77.23
SL 12681 60 1521 2640 92 81 0 15.32 15.46
CU 10153 364 651 183 1726 195 0 11.91 13.00
CH 8668 197 990 296 275 796 0 10.07 7.09
KN 18 0 0 0 0 0 174 0.17 90.62

We also examined the progression of the prediction over the course of the testing set, to see if

the addition of training data would make a difference in the prediction accuracy (i.e., would the

accuracy go up as time went on). The daily results, plotted alongside the number of pitchers that

day, and compared to the overall accuracy, are shown in Figure 6.2.

There is no correlation between the time passed and the prediction accuracy, but the accuracy

mostly follows along with the number of pitchers throwing that day. This is consistent with expecta-

tions, as more pitchers will generally mean a better training set overall, leading to better results for

the given day.
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Figure 6.2: Progression of daily prediction accuracy from September 1st to October 2nd.

6.1.1 Live Prediction Limitations

While the pitch type prediction results are somewhat consistent with what we had found with the

MATLAB approach, the speed and location predictions do not achieve the same accuracy as the pitch

type. This is consistent with expectations, however, as the feature set was developed specifically to

predict the pitch type, and not the speed or location of the pitch, which would involve a different set

of informative features. We have included the histogram of the error between the predicted pitch

speed in Figure 6.3 and the histogram overlay of the predicted zone versus the actual zone for the

pitches thrown in Figure 6.4.

Again, because the feature set was not designed for predicting the speed or the location of the

pitch, these results, while disappointing, are not surprising. The upside of these results, however,

is that we have a better idea of the types of modifications necessary for improving these alternate

models in the future.

6.2 iOS App Development

Due to the agreement between the MLB and Apple, the iPad tablet can now be found in every dugout

around the league [37]. We decided the next step in the real-time, in-game prediction was to work

on a mobile application that would work on iOS, using the capabilities of Python as the workhorse

and the iPad interface to communicate back and forth with a remote server the Python was running

on.
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Figure 6.3: Histogram of error between predicted pitch speed and actual pitch speed.

Because an iPad does not necessarily have the hardware necessary to build and run the random

forest classifiers, we decided to use a Representational State Transfer (REST) Application Program

Interface (API). This REST API allows the iPad to communicate with the server running the Python

code, transferring data back and forth in a JSON format, designed to transmit data in a minimalist

style [52]. This JSON data is relayed in the same way as it would be in the interface shown in Figure 6.1,

allowing for real-time predictions.

We worked with a graduate student in the Computer Science department, Dustin Lampright,

who developed the GUI for the iOS application and the REST interface built into the app. A prototype

GUI for the application is shown in Figure 6.5. The application development was pursued until the

author started a full-time job, but will hopefully be resumed in the future either by the author or a

fellow graduate student.
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6.3 Contributions

Besides occasionally hearing an announcer take a guess during a windup, the author believes no

prior attempts have been made at mathematically predicting the type of pitch as a game is going

on. The conversion to Python and subsequent development of the input environment to allow for

real-time prediction was a large step forward in the use of open-source machine learning packages

to enhance sports analytics, leading to a prediction method that, given time and more improvement,

may perform better, helping hitters get on base and teaching pitchers how to change their routines

and increase strikeout rates.
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Figure 6.5: GUI for the pitch prediction iOS application.
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CHAPTER

7

CONCLUSION AND FUTURE WORK

7.1 Summary of Contributions

Our work in pitch prediction has centered around the difficulties involved in taking a classifier

designed for a binary problem and extending it to multi-class prediction. We highlight some of our

key contributions here:

• The use of expert domain knowledge in the development of a feature set for the input into our

models, balancing the uncertainty caused from using the PITCHf/x data with the extra insight

those features give.

• Comparing various multi-class machine learning methods in an attempt to find which is the

best and the most computationally efficient gives us an advantage over previous work that

relied solely on a single classification method for prediction.

• The use of the DIRECT optimization method for parameter optimization combined with the

ensemble approach for the prediction method is a previously unused optimization method

and a very lightly used approach for the multi-class problem.

• Using the the DDAG construction for the multi-class classification combined with the com-

mittee approach and DIRECT optimization is a novel method for the extension of the decision
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graph architecture.

• To use binary feature selection techniques, our use the of the DDAG structure is a new approach

that allows us to utilize the spread out construction of the graph architecture for feature

reduction.

• Because previous work centered around the use of SVMs as the pitch predictor, utilizing

the LDA and random forest variable importance measures is a different approach to feature

analysis.

• Converting the code to Python and implementing a live, in game style of prediction is an

innovative approach that may be used in real MLB situations.

• All of the models tested, but especially the random forests, represent a large margin of improve-

ment over the naive guess, which would give a batter extra knowledge at the plate, theoretically

helping to improve on base percentage or even batting average.

7.2 Pitch Prediction Future Work

Even though the results from the random forest method outperform the best naive guess, we do not

have a human accuracy to measure against. The random forests essentially replicate what the best

hitters in the MLB already do, using context of the game and prior knowledge about the pitcher to

anticipate the type of incoming pitch. While the limitations of machine learning will prevent 100%

accuracy from ever being achieved, the method can be improved in a few ways.

We have shown that feature generation is very important in creating the model and can be

improved with some feature reduction techniques and variable importance measures. The same

intuition and expert knowledge that led to the generation of the current synthetic features can

be used in an attempt to find and include more into the model. Some possible examples include

data about the individual ballpark being played in (some ballparks are regarded as more hitter- or

pitcher-friendly), who is catching (as some pitchers have a strong preference for one catcher or

another), how many days rest a pitcher is throwing on, or even how long it has been since he was last

injured. We feel that the best chance of improvement lies in selecting better and more informative

features. As discussed in Chapter 6, the live prediction for speed and location does not perform

as well as the pitch type prediction, and so the best way to improve those predictions may rely on

reducing the size of or changing the input feature set.

Some relatively recent developments in the subfield of machine learning called deep learning

may be one way to improve the features used and therefore the prediction accuracy. Recurrent
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neural networks (RNNs) can be used with time-dependent data (as pitches over the course of a game

are) as a feature extraction method, finding the most informative combination for the top-level

classifier (in this case our random forest method). RNNs are multi-layered neural networks that can

examine past, present, and future data in the training stage to find the best features for prediction,

and can be optimized using different architectures, such a long short term memory (LSTM) or gated

feedback RNNs [14]. The author’s employment has sparked a need and desire to learn, implement,

and improve deep learning techniques, and so he is hopeful that they will lead to a second sports

statistics revolution: as opposed to Bill James’ effort to help managers and coaches and fans learn

more from combinations of the data, machine learning may lead to the data teaching them how to

play the game.
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APPENDIX

A

FULL PITCHER RESULTS

Table A.1: Results from all 287 pitchers for all three methods tested.

Pitcher Naive LDA SVM 100 CT

A.J. Burnett 29.99 59.88 57.93 59.60

A.J. Ramos 45.70 62.03 61.39 59.87

Aaron Harang 67.26 68.87 67.02 69.64

Aaron Loup 47.04 72.78 70.93 67.59

Aaron Sanchez 80.36 79.04 80.17 81.68

Adam Warren 39.75 51.20 52.15 50.76

Addison Reed 66.51 74.31 73.70 76.91

Al Alburquerque 61.07 71.73 72.00 73.20

Alex Torres 64.05 71.43 68.10 74.29

Alex Wood 26.73 56.46 56.60 62.56

Alfredo Simon 81.33 79.82 79.91 82.11

Allen Webster 60.27 76.00 71.47 72.80

Andrew Cashner 65.10 69.90 69.45 69.45

Andrew Miller 42.18 42.18 73.60 76.61

Anibal Sanchez 50.46 53.29 50.75 53.75

Anthony DeSclafani 61.74 63.28 63.78 66.52
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Table A.1: (continued)

Pitcher Naive LDA SVM 100 CT

Antonio Bastardo 76.73 76.86 73.07 79.08

Aroldis Chapman 74.02 76.28 75.44 78.05

Bartolo Colon 83.95 83.90 83.44 84.57

Blaine Boyer 64.16 77.58 76.25 78.17

Blaine Hardy 37.75 64.12 62.82 63.98

Blake Treinen 62.43 78.42 77.87 76.50

Brad Boxberger 64.10 73.25 72.41 74.22

Brad Brach 86.63 90.00 89.75 89.75

Brad Hand 71.63 71.63 71.72 74.20

Brandon Gomes 58.59 73.54 73.84 76.23

Brandon Maurer 35.26 66.49 66.67 67.54

Brett Anderson 53.42 61.12 60.37 62.77

Brett Cecil 45.27 64.02 63.45 60.42

Brett Oberholtzer 59.58 12.29 55.00 65.21

Brian Duensing 32.96 48.13 50.94 51.12

Brian Matusz 59.97 71.99 73.48 73.15

Bryan Morris 39.70 55.25 56.34 50.61

Bryan Shaw 81.39 82.41 79.33 83.44

Bud Norris 59.96 68.22 69.35 66.98

Burke Badenhop 61.45 75.42 72.35 75.98

C.J. Wilson 52.96 58.75 58.54 56.10

Carlos Carrasco 57.01 60.59 56.81 61.36

Carlos Martinez 56.58 63.19 59.77 62.76

Carlos Torres 35.79 63.38 61.20 62.21

Carlos Villanueva 44.96 62.40 62.40 66.40

Casey Fien 56.67 65.82 70.76 69.12

Casey Janssen 48.95 69.00 68.07 73.66

CC Sabathia 26.25 46.42 48.12 46.99

Cesar Ramos 41.07 58.06 53.55 58.23

Chad Bettis 65.73 64.69 60.61 69.44

Charlie Morton 72.36 78.05 76.93 77.15

Chase Anderson 59.41 64.99 63.13 65.50

Chris Archer 52.93 61.73 61.29 61.73

Chris Bassitt 30.99 48.88 48.19 49.56
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Table A.1: (continued)

Pitcher Naive LDA SVM 100 CT

Chris Capuano 43.59 64.29 67.03 64.10

Chris Hatcher 65.55 70.02 68.90 72.04

Chris Sale 51.61 56.72 55.53 54.92

Chris Tillman 62.52 63.04 63.47 64.55

Chris Young 57.78 65.48 63.85 66.17

Christian Bergman 47.07 58.93 55.68 56.55

Clay Buchholz 42.96 48.90 46.32 47.81

Clayton Kershaw 54.30 62.81 63.07 64.63

Cody Allen 62.26 62.26 75.00 77.00

Colby Lewis 40.53 56.22 54.19 53.38

Cole Hamels 51.12 58.99 58.29 57.30

Collin McHugh 33.88 46.28 50.00 51.34

Corey Kluber 31.36 37.79 41.17 42.31

Craig Breslow 50.15 60.23 59.36 58.92

Craig Kimbrel 69.48 78.71 78.18 77.38

Dale Thayer 72.89 74.89 76.44 82.00

Dallas Keuchel 55.35 58.54 59.97 57.84

Dan Haren 41.59 55.30 55.50 56.07

Dan Jennings 53.06 76.03 76.20 76.53

Dan Otero 62.18 70.76 67.45 70.37

Daniel Webb 66.05 75.33 73.21 74.27

Danny Duffy 67.32 67.32 68.32 69.03

Danny Farquhar 42.81 59.20 59.74 60.66

Danny Salazar 70.12 63.21 60.12 71.62

Darren ODay 44.10 64.46 64.20 63.04

David Buchanan 64.81 67.08 64.69 67.88

David Hale 61.92 68.93 63.43 68.07

David Holmberg 60.52 66.49 63.12 62.60

David Phelps 56.84 59.86 59.55 60.25

David Price 49.18 54.64 53.43 52.03

David Robertson 56.18 71.30 70.08 68.70

Dellin Betances 51.39 69.05 69.94 69.74

Dillon Gee 54.50 57.43 55.63 58.56

Doug Fister 32.57 66.28 61.13 65.47
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Table A.1: (continued)

Pitcher Naive LDA SVM 100 CT

Drew Hutchison 65.27 69.24 67.42 69.19

Drew Pomeranz 69.22 76.89 74.37 74.46

Drew Smyly 57.11 61.65 60.22 61.05

Drew Storen 37.03 59.81 60.44 58.70

Edinson Volquez 25.01 51.45 51.45 51.87

Edward Mujica 74.80 74.80 81.00 83.40

Edwin Jackson 63.00 69.81 71.90 74.52

Erasmo Ramirez 53.74 60.64 58.67 59.19

Eric Stults 45.66 51.45 48.75 48.36

Ervin Santana 54.62 65.14 66.24 66.84

Esmil Rogers 57.18 59.33 59.09 65.31

Felix Doubront 53.18 58.11 56.94 57.98

Felix Hernandez 15.99 42.12 42.54 42.77

Fernando Abad 61.57 34.89 53.36 64.93

Fernando Rodney 59.15 74.69 76.57 77.44

Fernando Salas 59.10 69.25 68.83 68.27

Francisco Liriano 46.59 58.27 58.98 60.02

Francisco Rodriguez 38.22 65.94 64.49 68.66

Franklin Morales 73.80 77.48 77.00 77.80

Garrett Richards 35.05 50.59 51.36 50.45

Gerrit Cole 67.13 67.50 68.09 67.79

Gio Gonzalez 63.67 66.19 67.62 66.95

Glen Perkins 65.72 74.25 73.08 75.92

Greg Holland 47.14 70.82 72.86 71.02

Hector Noesi 53.15 64.41 59.46 64.64

Hector Rondon 57.60 66.79 68.58 67.82

Hector Santiago 0.00 54.45 50.22 63.40

Hisashi Iwakuma 40.14 43.08 48.89 51.35

Ian Kennedy 61.18 59.82 63.57 62.54

Ian Krol 59.63 34.56 64.38 68.87

J.A. Happ 68.72 71.57 72.67 70.99

J.J. Hoover 69.77 72.79 72.91 75.33

J.P. Howell 58.58 70.15 69.78 68.66

Jacob deGrom 61.40 63.47 60.05 63.89
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Table A.1: (continued)

Pitcher Naive LDA SVM 100 CT

Jaime Garcia 0.00 62.58 55.75 63.04

Jake Arrieta 29.15 49.40 50.52 48.33

Jake Diekman 34.72 78.40 61.47 75.09

Jake McGee 89.84 90.63 91.15 90.36

Jake Odorizzi 85.53 80.17 80.17 84.27

Jake Peavy 48.71 54.47 56.31 57.81

Jake Petricka 23.13 82.28 38.43 28.92

James Paxton 71.81 78.25 77.64 78.86

James Shields 37.10 53.70 53.44 54.84

Jared Hughes 83.55 78.35 76.19 82.25

Jarred Cosart 50.58 52.56 52.21 59.30

Jason Grilli 65.75 74.66 73.52 76.48

Jason Hammel 50.82 59.34 58.37 59.60

Jason Vargas 53.83 63.10 62.30 61.49

Jean Machi 53.05 68.70 67.76 68.54

Jeanmar Gomez 66.79 71.89 70.34 72.24

Jeff Locke 62.35 65.45 63.21 63.06

Jeff Samardzija 57.47 57.91 59.45 61.11

Jered Weaver 39.18 48.81 47.29 48.57

Jeremy Affeldt 65.93 65.93 78.19 75.98

Jeremy Guthrie 31.30 39.32 40.11 37.94

Jeremy Hellickson 52.74 61.29 61.12 61.53

Jeremy Jeffress 76.45 81.71 81.71 84.74

Jerome Williams 33.01 51.43 50.59 49.06

Jesse Chavez 40.42 51.16 51.72 52.10

Jesse Hahn 0.00 65.75 64.80 67.84

Jeurys Familia 66.44 69.10 67.01 71.06

Jim Johnson 0.00 83.12 79.84 79.45

Jimmy Nelson 39.02 48.94 45.14 52.23

Joakim Soria 52.70 71.64 67.38 70.89

Joaquin Benoit 43.63 65.85 65.72 63.28

Joba Chamberlain 47.87 66.92 62.41 66.92

Joe Kelly 0.00 64.78 58.32 61.95

Joe Smith 30.88 65.37 63.42 64.95
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Table A.1: (continued)

Pitcher Naive LDA SVM 100 CT

John Axford 68.19 74.65 76.05 74.90

John Danks 41.89 41.89 51.31 50.47

John Lackey 64.62 64.62 65.80 66.51

Johnny Cueto 48.63 57.45 55.54 58.60

Jon Lester 46.94 52.45 55.23 53.06

Jon Niese 53.03 14.92 44.44 57.67

Jonathan Broxton 64.44 76.25 78.19 74.03

Jonathan Papelbon 83.20 89.06 88.44 89.52

Jordan Lyles 64.90 63.73 60.59 63.53

Jordan Zimmermann 59.74 65.89 65.33 64.71

Jorge De La Rosa 68.17 69.93 67.77 70.22

Jose Fernandez 52.16 52.16 58.86 63.60

Jose Quintana 58.04 60.64 60.48 60.12

Josh Collmenter 66.39 69.89 69.05 71.51

Josh Fields 76.29 80.21 79.14 80.39

Josh Tomlin 47.54 59.38 58.00 55.85

Juan Nicasio 75.33 78.48 75.85 78.35

Julio Teheran 62.93 65.42 65.19 67.45

Jumbo Diaz 74.01 77.37 71.39 78.83

Junichi Tazawa 78.72 78.72 11.74 82.02

Justin De Fratus 57.44 66.82 65.40 68.72

Justin Grimm 58.41 68.10 64.92 71.27

Justin Masterson 36.77 60.45 59.47 61.14

Justin Verlander 58.11 57.15 55.65 59.62

Justin Wilson 78.67 80.73 79.94 83.25

Kelvin Herrera 77.47 77.47 81.25 82.03

Ken Giles 59.78 75.67 75.55 76.28

Kenley Jansen 85.88 86.39 86.56 87.07

Kevin Gausman 88.31 88.89 88.67 88.82

Kevin Jepsen 67.32 70.37 70.37 73.66

Kevin Quackenbush 74.35 79.30 79.43 81.90

Kevin Siegrist 75.27 77.09 79.76 79.01

Koji Uehara 99.30 99.30 99.30 99.30

Kyle Gibson 0.00 60.88 55.38 59.88
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Table A.1: (continued)

Pitcher Naive LDA SVM 100 CT

Kyle Hendricks 61.83 68.18 65.88 68.04

Kyle Kendrick 25.96 47.01 43.87 52.55

Kyle Lobstein 19.67 49.17 47.23 48.34

Kyle Lohse 43.32 56.20 56.09 56.52

Lance Lynn 86.90 86.85 87.33 87.33

LaTroy Hawkins 72.15 78.69 81.84 78.93

Liam Hendriks 66.86 71.92 69.24 74.89

Luis Avilan 0.00 76.02 74.83 70.24

Luke Gregerson 42.93 71.72 70.88 75.42

Madison Bumgarner 48.72 56.58 56.25 57.08

Marc Rzepczynski 58.98 80.34 79.37 80.58

Marco Estrada 58.43 41.48 51.22 56.69

Mark Buehrle 54.23 56.79 56.73 58.36

Mark Melancon 57.85 73.69 74.33 74.20

Martin Perez 56.80 59.67 56.68 60.98

Masahiro Tanaka 47.42 50.72 54.78 54.57

Mat Latos 49.05 60.41 61.47 61.70

Matt Belisle 61.30 72.21 73.77 72.47

Matt Cain 50.74 55.44 56.03 57.21

Matt Garza 67.69 67.17 68.78 70.69

Matt Shoemaker 57.45 63.99 60.55 65.19

Matt Thornton 69.05 79.29 80.48 78.81

Max Scherzer 59.97 62.75 62.07 65.62

Michael Pineda 35.67 56.95 53.45 56.68

Michael Wacha 59.59 62.87 60.06 62.68

Miguel Gonzalez 58.47 60.20 57.92 61.74

Mike Bolsinger 37.24 50.74 44.65 52.46

Mike Dunn 63.32 71.43 73.08 72.94

Mike Fiers 57.11 58.79 58.33 61.19

Mike Leake 46.67 53.03 51.54 53.68

Mike Morin 39.00 63.50 60.00 68.75

Nathan Eovaldi 63.58 61.71 61.97 65.49

Neal Cotts 51.15 73.68 70.31 71.79

Nick Martinez 52.25 61.32 64.13 60.51
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Table A.1: (continued)

Pitcher Naive LDA SVM 100 CT

Odrisamer Despaigne 8.59 51.12 50.00 53.30

Oliver Perez 46.07 67.23 62.17 64.04

Pat Neshek 38.08 75.20 75.04 75.20

Pedro Strop 42.61 69.13 70.43 71.88

Phil Hughes 53.72 58.82 58.88 56.36

R.A. Dickey 88.89 89.31 89.94 89.64

Randall Delgado 53.63 60.99 57.14 61.32

Rick Porcello 61.10 63.55 62.62 63.61

Ricky Nolasco 55.62 67.89 68.92 65.24

Robbie Ray 70.06 73.94 68.60 72.47

Robbie Ross Jr. 58.59 60.08 58.05 63.19

Roberto Hernandez 21.15 51.28 45.83 50.11

Roenis Elias 51.04 60.35 60.66 60.74

Ross Detwiler 34.02 65.50 61.52 66.34

Rubby De La Rosa 60.83 64.85 61.32 64.56

Ryan Vogelsong 56.19 56.19 56.54 60.63

Sam Dyson 75.14 75.14 78.45 78.59

Sam Freeman 92.86 92.44 87.61 93.91

Santiago Casilla 53.87 66.23 66.39 64.58

Scott Carroll 64.90 71.21 72.22 70.45

Scott Feldman 37.81 46.78 49.54 48.16

Scott Kazmir 16.90 39.84 44.11 58.69

Sergio Romo 62.73 68.32 66.30 65.22

Shane Greene 46.90 57.82 54.46 60.55

Shawn Kelley 58.06 77.93 71.31 78.10

Shawn Tolleson 66.07 74.40 72.50 73.93

Shelby Miller 67.14 65.04 62.95 67.82

Sonny Gray 60.06 62.50 61.44 63.24

Stephen Strasburg 61.89 64.92 67.27 65.52

Steve Cishek 39.43 59.43 63.57 57.86

T.J. McFarland 0.00 73.26 75.79 72.84

Taijuan Walker 83.94 84.72 83.20 85.20

Tanner Roark 0.00 60.48 41.48 58.06

Tim Hudson 47.89 54.26 50.28 53.78
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Table A.1: (continued)

Pitcher Naive LDA SVM 100 CT

Tim Lincecum 40.51 53.93 54.20 53.79

Tom Koehler 55.89 62.19 61.16 61.77

Tom Wilhelmsen 53.95 64.12 63.42 66.95

Tommy Hunter 60.59 71.00 71.38 73.05

Tommy Kahnle 49.02 68.19 69.50 69.28

Tommy Milone 56.09 62.19 62.06 60.22

Tony Cingrani 88.03 88.03 89.32 89.74

Tony Sipp 50.27 67.39 66.31 65.05

Tony Watson 75.95 78.02 78.14 79.12

Travis Wood 65.52 65.93 66.53 67.85

Trevor Bauer 56.15 61.33 56.06 62.38

Trevor Cahill 14.69 40.17 41.04 39.31

Trevor May 57.02 65.43 61.65 65.05

Trevor Rosenthal 76.95 76.72 75.82 78.53

Tyler Clippard 62.40 75.19 74.31 76.07

Tyson Ross 50.65 64.27 64.61 63.62

Ubaldo Jimenez 80.12 79.01 78.36 80.03

Vance Worley 65.17 69.40 65.30 70.73

Vidal Nuno 33.82 56.43 55.65 57.12

Wade Davis 55.66 64.11 61.90 62.29

Wade Miley 56.05 57.99 55.71 59.24

Wei-Yin Chen 64.61 65.11 64.66 65.99

Will Smith 52.15 73.48 69.19 66.41

Wily Peralta 65.64 67.93 69.27 70.77

Yohan Flande 48.20 58.37 57.75 64.95

Yordano Ventura 55.64 62.47 60.03 61.46

Yovani Gallardo 49.06 49.06 53.96 55.32

Yusmeiro Petit 45.48 59.63 57.14 61.07

Zach Britton 31.16 87.98 88.43 89.02

Zach Duke 51.76 67.67 65.32 64.28

Zach McAllister 76.47 37.95 46.02 78.66

Zach Putnam 87.78 90.02 84.52 91.04

Zack Greinke 54.68 58.15 59.23 59.50
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